
Haskell

en.wikibooks.org

November 27, 2016

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia
projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A
URI to this license is given in the list of figures on page 603. If this document is a derived work
from the contents of one of these projects and the content was still licensed by the project under
this license at the time of derivation this document has to be licensed under the same, a similar or a
compatible license, as stated in section 4b of the license. The list of contributors is included in chapter
Contributors on page 589. The licenses GPL, LGPL and GFDL are included in chapter Licenses on
page 607, since this book and/or parts of it may or may not be licensed under one or more of these
licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 603. This PDF was generated by the LATEX typesetting software. The LATEX source
code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from
the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www.
pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save
the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.
To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX
source itself was generated by a program written by Dirk Hünniger, which is freely available under
an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Haskell Basics 3

2 Getting set up 5
2.1 Installing Haskell . 5
2.2 First code . 6

3 Variables and functions 7
3.1 Variables . 7
3.2 Haskell source files . 7
3.3 Comments . 9
3.4 Variables in imperative languages . 9
3.5 Functions . 11
3.6 Local definitions . 14
3.7 Summary . 15

4 Truth values 17
4.1 Equality and other comparisons . 17
4.2 Boolean values . 18
4.3 Infix operators . 19
4.4 Boolean operations . 20
4.5 Guards . 21

5 Type basics 25
5.1 Introduction . 25
5.2 Using the interactive :type command . 26
5.3 Functional types . 28
5.4 Type signatures in code . 31

6 Lists and tuples 35

7 Type basics II 37
7.1 The Num class . 37
7.2 Numeric types . 38
7.3 Classes beyond numbers . 41

8 Building vocabulary 43
8.1 Function composition . 43
8.2 The need for a vocabulary . 44
8.3 Prelude and the libraries . 45
8.4 One exhibit . 45

III

Contents

8.5 This book’s use of the libraries . 47
8.6 Other resources . 48

9 Next steps 49
9.1 if / then / else . 49
9.2 Introducing pattern matching . 50
9.3 Tuple and list patterns . 53
9.4 let bindings . 54

10 Simple input and output 57
10.1 Back to the real world . 57
10.2 Sequencing actions with do . 58
10.3 Actions under the microscope . 61
10.4 Learn more . 65

11 Elementary Haskell 67

12 Recursion 69
12.1 Numeric recursion . 69
12.2 List-based recursion . 74
12.3 Don’t get TOO excited about recursion... 75

13 Lists II 77
13.1 Rebuilding lists . 77
13.2 Generalizing even further . 79
13.3 The map function . 80
13.4 Tips and Tricks . 82

14 Lists III 85
14.1 Folds . 85
14.2 Scans . 89
14.3 filter . 90
14.4 List comprehensions . 91

15 Type declarations 95
15.1 data and constructor functions . 95
15.2 Deconstructing types . 96
15.3 type for making type synonyms . 97

16 Pattern matching 99
16.1 Analysing pattern matching . 99
16.2 The connection with constructors . 100
16.3 Matching literal values . 102
16.4 Syntax tricks . 103
16.5 Where we can use pattern matching . 104

17 Control structures 107
17.1 if and guards revisited . 107
17.2 case expressions . 108

IV

Contents

17.3 Controlling actions, revisited . 110

18 More on functions 113
18.1 let and where revisited . 113
18.2 Anonymous Functions - lambdas . 114
18.3 Operators . 115

19 Higher-order functions 117
19.1 A sorting algorithm . 117
19.2 Choosing how to compare . 118
19.3 Higher-Order Functions and Types . 119
19.4 Function manipulation . 121

20 Using GHCi effectively 125
20.1 User interface . 125

21 Intermediate Haskell 127

22 Modules 129
22.1 Modules . 129
22.2 Importing . 129
22.3 Exporting . 132

23 Indentation 133
23.1 The golden rule of indentation . 133
23.2 Explicit characters in place of indentation 134
23.3 Layout in action . 135

24 More on datatypes 139
24.1 Enumerations . 139
24.2 Named Fields (Record Syntax) . 139
24.3 Parameterized Types . 142

25 Other data structures 145
25.1 Trees . 145
25.2 Other datatypes . 149

26 Classes and types 155
26.1 Classes and instances . 155
26.2 Deriving . 156
26.3 Class inheritance . 157
26.4 Standard classes . 158
26.5 Type constraints . 159
26.6 A concerted example . 160

27 The Functor class 163
27.1 Motivation . 163
27.2 Introducing Functor . 163
27.3 What did we gain? . 165

V

Contents

28 Monads 167

29 Prologue: IO, an applicative functor 169
29.1 Scene 1 : Applicative . 169
29.2 Scene 2 : IO . 173
29.3 The end of the beginning . 177

30 Understanding monads 179
30.1 Definition . 179
30.2 Notions of Computation . 182
30.3 Monad Laws . 184
30.4 Monads and Category Theory . 185
30.5 liftM and Friends . 186

31 The Maybe monad 189
31.1 Safe functions . 189
31.2 Lookup tables . 190
31.3 Open monads . 191
31.4 Maybe and safety . 192

32 The List monad 193
32.1 The Monad instance of lists . 193
32.2 Bunny invasion . 194
32.3 Board game example . 194
32.4 List comprehensions . 195

33 do Notation 197

34 The IO monad 199
34.1 Combining functions and I/O actions . 199
34.2 The universe as part of our program . 201
34.3 Pure and impure . 201
34.4 Functional and imperative . 202
34.5 I/O in the libraries . 203
34.6 Monadic control structures . 203

35 The State monad 207
35.1 Pseudo-Random Numbers . 207
35.2 Introducing State . 212
35.3 Pseudo-random values of different types . 218

36 Alternative and MonadPlus 221
36.1 Definition . 221
36.2 Example: parallel parsing . 222
36.3 MonadPlus . 222
36.4 Alternative and MonadPlus laws . 223
36.5 Useful functions . 223
36.6 Exercises . 226
36.7 Relationship with monoids . 226

VI

Contents

36.8 Other suggested laws . 227

37 Monad transformers 229
37.1 Passphrase validation . 229
37.2 A simple monad transformer: MaybeT . 230
37.3 A plethora of transformers . 232
37.4 Lifting . 233
37.5 Implementing transformers . 235
37.6 Acknowledgements . 237

38 Advanced Haskell 239

39 Monoids 241
39.1 What is a monoid? . 241
39.2 The Monoid class . 242
39.3 Uses . 243
39.4 Homomorphisms . 247
39.5 Further reading . 248

40 Applicative functors 249
40.1 Functor recap . 249
40.2 Application in functors . 250
40.3 The Applicative class . 250
40.4 Déja vu . 252
40.5 ZipList . 253
40.6 Sequencing of effects . 255
40.7 A sliding scale of power . 257
40.8 The monoidal presentation . 260

41 Foldable 261
41.1 Deconstructing foldr . 261
41.2 The Foldable class . 263
41.3 List-like folding . 265
41.4 More facts about Foldable . 266

42 Traversable 269
42.1 Functors made for walking . 269
42.2 Interpretations of Traversable . 271
42.3 The Traversable laws . 273
42.4 Recovering fmap and foldMap . 274

43 Arrow tutorial 277
43.1 Stephen’s Arrow Tutorial . 277
43.2 Type definition for Circuit . 278
43.3 Circuit primitives . 279
43.4 Arrow proc notation . 279
43.5 Hangman: Pick a word . 280
43.6 Hangman: Main program . 282
43.7 Advanced stuff . 283

VII

Contents

44 Understanding arrows 287
44.1 Pocket guide to Arrow . 287
44.2 Using arrows . 297
44.3 Arrows in practice . 302
44.4 See also . 302
44.5 Acknowledgements . 302

45 Continuation passing style (CPS) 303
45.1 What are continuations? . 303
45.2 Passing continuations . 304
45.3 The Cont monad . 306
45.4 callCC . 307
45.5 Example: a complicated control structure 310
45.6 Example: exceptions . 312
45.7 Example: coroutines . 313
45.8 Example: Implementing pattern matching 315

46 Zippers 317
46.1 Theseus and the Zipper . 317
46.2 Differentiation of data types . 326
46.3 See Also . 334

47 Lenses and functional references 335
47.1 A taste of lenses . 335
47.2 The scenic route to lenses . 337
47.3 Composition . 347
47.4 Operators . 348
47.5 A swiss army knife . 349
47.6 Laws . 353
47.7 No strings attached . 355
47.8 Further reading . 356

48 Mutable objects 357
48.1 IORefs . 357
48.2 The ST monad . 360
48.3 Mutable data structures . 361
48.4 Further reading . 362

49 Concurrency 363
49.1 Concurrency . 363
49.2 When do you need it? . 363
49.3 Example . 364
49.4 Software Transactional Memory . 364

50 Fun with Types 367

51 Polymorphism basics 369
51.1 Parametric Polymorphism . 369
51.2 System F . 372

VIII

Contents

51.3 Examples . 372
51.4 Other forms of Polymorphism . 372
51.5 Free Theorems . 372
51.6 See also . 373

52 Existentially quantified types 375
52.1 The forall keyword . 375
52.2 Example: heterogeneous lists . 376
52.3 A Further Explanation . 377
52.4 Example: runST . 379
52.5 Quantification as a primitive . 381
52.6 Further reading . 382

53 Advanced type classes 383
53.1 Multi-parameter type classes . 383
53.2 Functional dependencies . 384

54 Phantom types 387
54.1 Phantom types . 387

55 Generalised algebraic data-types (GADT) 389
55.1 Introduction . 389
55.2 Understanding GADTs . 389
55.3 Summary . 393
55.4 Examples . 395
55.5 Discussion . 399

56 Type constructors & Kinds 401
56.1 Kinds for C++ users . 401

57 Wider Theory 403

58 Denotational semantics 405
58.1 Introduction . 405
58.2 Bottom and Partial Functions . 408
58.3 Recursive Definitions as Fixed Point Iterations 412
58.4 Strict and Non-Strict Semantics . 417
58.5 Algebraic Data Types . 419
58.6 Other Selected Topics . 429
58.7 External Links . 431

59 Category theory 433
59.1 Introduction to categories . 433
59.2 Functors . 436
59.3 Monads . 439
59.4 The monad laws and their importance . 441
59.5 Summary . 446

60 The Curry-Howard isomorphism 447

IX

Contents

61 fix and recursion 449
61.1 Introducing fix . 449
61.2 fix and fixed points . 451
61.3 Recursion . 452
61.4 The typed lambda calculus . 453
61.5 Fix as a data type . 455

62 Haskell Performance 457

63 Introduction 459

64 Step by Step Examples 461

65 Graph reduction 463
65.1 Notes and TODOs . 463
65.2 Introduction . 463
65.3 Evaluating Expressions by Lazy Evaluation 464
65.4 Controlling Space . 471
65.5 Reasoning about Time . 472
65.6 Implementation of Graph reduction . 474
65.7 References . 474

66 Laziness 475
66.1 Introduction . 475
66.2 Thunks and Weak head normal form . 475
66.3 Lazy and strict functions . 478
66.4 Lazy pattern matching . 481
66.5 Benefits of nonstrict semantics . 482
66.6 Common nonstrict idioms . 484
66.7 Conclusions about laziness . 486
66.8 References . 486

67 Strictness 487
67.1 Difference between strict and lazy evaluation 487
67.2 Why laziness can be problematic . 487
67.3 Strictness annotations . 488
67.4 seq . 488
67.5 References . 488

68 Algorithm complexity 489
68.1 Optimising . 490

69 Libraries Reference 491

70 The Hierarchical Libraries 493

71 Lists 495
71.1 Theory . 495
71.2 Definition . 495

X

Contents

71.3 Basic list usage . 496
71.4 List utilities . 497

72 Arrays 499

73 Maybe 501

74 Maps 503

75 IO 505

76 Random Numbers 507

77 General Practices 509

78 Building a standalone application 511

79 Debugging 513
79.1 Debug prints with Debug.Trace . 513
79.2 Incremental development with GHCi . 515
79.3 Debugging with Hat . 515
79.4 General tips . 515

80 Testing 517
80.1 Quickcheck . 517
80.2 HUnit . 520

81 Packaging your software (Cabal) 521
81.1 Recommended tools . 521
81.2 Structure of a simple project . 522
81.3 Libraries . 528
81.4 Automation . 530
81.5 Licenses . 531
81.6 Releases . 532
81.7 Hosting . 532
81.8 Example . 533

82 Using the Foreign Function Interface (FFI) 535
82.1 Calling C from Haskell . 535
82.2 Calling Haskell from C . 548

83 Generic Programming : Scrap your boilerplate 553
83.1 Serialization Example . 553
83.2 Comparing Haskell ASTs . 553
83.3 TODO . 554

84 Specialised Tasks 555

85 Graphical user interfaces (GUI) 557
85.1 Getting and running wxHaskell . 557

XI

Contents

85.2 Hello World . 558
85.3 Controls . 559
85.4 Layout . 561
85.5 Attributes . 565
85.6 Events . 567

86 Databases 569
86.1 Introduction . 569
86.2 Installation . 569
86.3 General Workflow . 570
86.4 Running SQL Statements . 571
86.5 Transaction . 571
86.6 Calling Procedure . 572

87 Web programming 573

88 Working with XML 575
88.1 Getting acquainted with HXT . 575

89 Using Regular Expressions 579

90 Parsing Mathematical Expressions 581
90.1 First Warmup . 581
90.2 Adaptation . 582
90.3 Structure Emerges . 584
90.4 Whitespace and applicative notation . 585

91 Contributors 589

List of Figures 603

92 Licenses 607
92.1 GNU GENERAL PUBLIC LICENSE . 607
92.2 GNU Free Documentation License . 608
92.3 GNU Lesser General Public License . 609

1

1 Haskell Basics

3

2 Getting set up

This chapter describes how to install the programs you’ll need to start coding in Haskell.

2.1 Installing Haskell

Haskell is a programming language, i.e. a language in which humans can express how
computers should behave. It’s like writing a cooking recipe: you write the recipe and the
computer executes it.

To use Haskell programs, you need a special program called a Haskell compiler. A com-
piler takes code written in Haskell and translates it into machine code, a more elementary
language that the computer understands. Using the cooking analogy, you write a recipe
(your Haskell program) and a cook (a compiler program) does the work of putting together
actual ingredients into an edible dish (an executable file). Of course, you can’t easily get
the recipe from a final dish (and you can’t get the Haskell program code from executable
after it’s compiled).

To get started, see haskell.org/downloads1 for the latest instructions including the ”Glasgow
Haskell Compiler” (GHC) and everything else you need.

To just test some Haskell basics without downloading and installing, the Haskell.org home
page2 includes a simplified interpreter right on the website. The instructions here in the
Wikibook assume the full GHC install, but some of the basics can work in the website
version.

Note:
UNIX users:
If you are a person who prefers to compile from source: This might be a bad idea with
GHC, especially if it’s the first time you install it. GHC is itself mostly written in
Haskell, so trying to bootstrap it by hand from source is very tricky. Besides, the build
takes a very long time and consumes a lot of disk space. If you are sure that you want
to build GHC from the source, see Building and Porting GHC at the GHC homepagea.

a http://hackage.haskell.org/trac/ghc/wiki/Building

1 https://www.haskell.org/downloads
2 https://www.haskell.org/

5

http://hackage.haskell.org/trac/ghc/wiki/Building
https://www.haskell.org/downloads
https://www.haskell.org/

Getting set up

2.2 First code

After installation, we will do our first Haskell coding with the program called GHCi (the ’i’
stands for ’interactive’). Depending on your operating system, perform the following steps:

• On Windows: Click Start, then Run, then type ’cmd’ and hit Enter, then type ghci and
hit Enter once more.

• On MacOS: Open the application ”Terminal” found in the ”Applications/Utilities” folder,
type the letters ghci into the window that appears, and hit the Enter key.

• On Linux: Open a terminal and run ghci.

You should get output that looks something like the following:

GHCi, version 7.10.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude>

The first bit is GHCi’s version. It then informs you that it’s loading the base package,
so you’ll have access to most of the built-in functions and modules that come with GHC.
Finally, the Prelude> bit is known as the prompt. This is where you enter commands, and
GHCi will respond with their results.

Now let’s try some basic arithmetic:

Prelude> 2 + 2
4
Prelude> 5 + 4 * 3
17
Prelude> 2 ˆ 5
32

These operators match most other programming languages: + is addition, * is multiplica-
tion, and ˆ is exponentiation (raising to the power of, or ab). As shown in the second
example, Haskell follows standard order of math operations (e.g. multiplication before
addition).

Now you know how to use Haskell as a calculator. Actually, Haskell is always a calculator
— just a really powerful one, able to deal not only with numbers but also with other objects
like characters, lists, functions, trees, and even other programs (if you aren’t familiar with
these terms yet, don’t worry).

GHCi is a powerful development environment. As we progress, we will learn how to load
files with source code into GHCi and evaluate different parts of them.

Assuming you’re clear on everything so far (if not, use the talk page and help us improve
this Wikibook!), then you are ready for next chapter where we will introduce some of the
basic concepts of Haskell and make our first Haskell functions.

6

3 Variables and functions

All the examples in this chapter can be saved into a Haskell source file and then evaluated
by loading that file into GHC. Do not include the ”Prelude>” prompts part of any example.
When that prompt is shown, it means you can type the following code into an environment
like GHCi. Otherwise, you should put the code in a file and run it.

3.1 Variables

In the last chapter, we used GHCi as a calculator. Of course, that’s only practical for short
calculations. For longer calculations and for writing Haskell programs, we want to keep
track of intermediate results.

We can store intermediate results by assigning them names. These names are called vari-
ables. When a program runs, each variable is substituted for the value to which it refers.
For instance, consider the following calculation

Prelude> 3.141592653 * 5ˆ2
78.539816325

That is the approximate area of a circle with radius 5, according to the formula A = πr2. Of
course, it is cumbersome to type in the digits of π ≈ 3.141592653, or even to remember more
than the first few. Programming helps us avoid mindless repetition and rote memorization
by delegating these tasks to a machine. That way, our minds stay free to deal with more
interesting ideas. For the present case, Haskell already includes a variable named pi that
stores over a dozen digits of π for us. This allows for not just clearer code, but also greater
precision.

Prelude> pi
3.141592653589793
Prelude> pi * 5ˆ2
78.53981633974483

Note that the variable pi and its value, 3.141592653589793, can be used interchangeably
in calculations.

3.2 Haskell source files

Beyond momentary operations in GHCi, you will save your code in Haskell source files
(basically plain text) with the extension .hs. Work with these files using a text editor

7

Variables and functions

appropriate for coding (see the Wikipedia article on text editors1). Proper source code
editors will provide syntax highlighting, which colors the code in relevant ways to make
reading and understanding easier. Vim and Emacs are popular choices among Haskell
programmers.

To keep things tidy, create a directory (i.e. a folder) in your computer to save the Haskell
files you will create while doing the exercises in this book. Call the directory something
like HaskellWikibook. Then, create a new file in that directory called Varfun.hs with the
following code:

r = 5.0

That code defines the variable r as the value 5.0.

Note: make sure that there are no spaces at the beginning of the line because Haskell is
sensitive to whitespace.

Next, with your terminal at the HaskellWikibook directory, start GHCi and load the
Varfun.hs file using the :load command:

Prelude> :load Varfun.hs
[1 of 1] Compiling Main (Varfun.hs, interpreted)
Ok, modules loaded: Main.

Note that :load can be abbreviated as :l (as in :l Varfun.hs).

If GHCi gives an error like Could not find module 'Varfun.hs', you probably running
GHCi in the wrong directory or saved your file in the wrong directory. You can use the
:cd command to change directories within GHCi (for instance, :cd HaskellWikibook).

With the file loaded, GHCi’s prompt changes from ”Prelude” to ”*Main”. You can now use
the newly defined variable r in your calculations.

• Main> r 5.0
• Main> pi * rˆ2 78.53981633974483

So, we calculated the area of a circle with radius of 5.0 using the well-known formula πr2.
This worked because we defined r in our Varfun.hs file and pi comes from the standard
Haskell libraries.

Next, we’ll make the area formula easier to quickly access by defining a variable name for
it. Change the contents of the source file to:

r = 5.0
area = pi * r ^ 2

Save the file. Then, assuming you kept GHCi running with the file still loaded, type
:reload (or abbreviate version :r).

1 https://en.wikipedia.org/wiki/text%20editor

8

https://en.wikipedia.org/wiki/text%20editor

Comments

• Main> :reload Compiling Main (Varfun.hs, interpreted) Ok, modules loaded: Main.
• Main>

Now we have two variables r and area.

• Main> area 78.53981633974483
• Main> area / r 15.707963267948966

Note:
Note: The let keyword (a word with a special meaning) lets us define variables directly
at the GHCi prompt without a source file. This looks like:

Prelude> let area = pi * 5 ˆ 2

Although sometimes convenient, assigning variables entirely in GHCi this way is im-
practical for any complex tasks. We will usually want to use saved source files.

3.3 Comments

Besides the working code itself, source files may contain text comments. In Haskell there
are two types of comment. The first starts with -- and continues until the end of the line:

x = 5 -- x is 5.
y = 6 -- y is 6.
-- z = 7 -- z is not defined.

In this case, x and y are defined in actual Haskell code, but z is not.

The second type of comment is denoted by an enclosing {- ... -} and can span multiple
lines:

answer = 2 * {-
block comment, crossing lines and...
-} 3 {- inline comment. -} * 7

We use comments for explaining parts of a program or making other notes in context.
Beware of comment overuse as too many comments can make programs harder to read.
Also, we must carefully update comments whenever we change the corresponding code.
Outdated comments can cause significant confusion.

3.4 Variables in imperative languages

Readers familiar with imperative programming will notice that variables in Haskell seem
quite different from variables in languages like C. If you have no programming experience,
you could skip this section, but it will help you understand the general situation when

9

Variables and functions

encountering the many cases (most Haskell textbooks, for example) where people discuss
Haskell in reference to other programming languages.

Imperative programming treats variables as changeable locations in a computer’s memory.
That approach connects to the basic operating principles of computers. Imperative pro-
grams explicitly tell the computer what to do. Higher-level imperative languages are quite
removed from direct computer assembly code instructions, but they retain the same step-
by-step way of thinking. In contrast, functional programming offers a way to think in
higher-level mathematical terms, defining how variables relate to one another, leaving the
compiler to translate these to the step-by-step instructions that the computer can process.

Let’s look at an example. The following code does not work in Haskell:

r = 5
r = 2

An imperative programmer may read this as first setting r = 5 and then changing it to r =
2. In Haskell, however, the compiler will respond to the code above with an error: ”multiple
declarations of r”. Within a given scope, a variable in Haskell gets defined only once and
cannot change.

The variables in Haskell seem almost invariable, but they work like variables in mathematics.
In a math classroom, you never see a variable change its value within a single problem.

In precise terms, Haskell variables are immutable. They vary only based on the data we
enter into a program. We can’t define r two ways in the same code, but we could change
the value by changing the file. Let’s update our code from above:

r = 2.0
area = pi * r ^ 2

Of course, that works just fine. We can change r in the one place where it is defined, and
that will automatically update the value of all the rest of the code that uses the r variable.

Real-world Haskell programs work by leaving some variables unspecified in the code. The
values then get defined when the program gets data from an external file, a database, or
user input. For now, however, we will stick to defining variables internally. We will cover
interaction with external data in later chapters.

Here’s one more example of a major difference from imperative languages:

r = r + 1

Instead of ”incrementing the variable r” (i.e. updating the value in memory), this Haskell
code is a recursive definition of r (i.e. defining it in terms of itself). We will explain
recursion2 in detail later on. For this specific case, if r had been defined with any value
beforehand, then r = r + 1in Haskell would bring an error message. r = r + 1is akin
to saying, in a mathematical context, that 5 = 5+1, which is plainly wrong.

Because their values do not change within a program, variables can be defined in any order.
For example, the following fragments of code do exactly the same thing:

2 Chapter 12 on page 69

10

Functions

y = x * 2
x = 3

x = 3
y = x * 2

In Haskell, there is no notion of ”x being declared before y” or the other way around. Of
course, using y will still require a value for x, but this is unimportant until you need a
specific numeric value.

3.5 Functions

Changing our program every time we want to calculate the area of new circle is both tedious
and limited to one circle at a time. We could calculate two circles by duplicating all the
code using new variables r2 and area2 for the second circle:3

r = 5
area = pi * r ^ 2
r2 = 3
area2 = pi * r2 ^ 2

Of course, to eliminate this mindless repetition, we would prefer to have simply one
function for area and then apply it to different radii.

A function takes an argument value (or parameter) and gives a result value (essentially the
same as in mathematical functions). Defining functions in Haskell is like defining a variable,
except that we take note of the function argument that we put on the left hand side. For
instance, the following defines a function area which depends on an argument named r:

area r = pi * r ^ 2

Look closely at the syntax: the function name comes first (area in our example), followed
by a space and then the argument (r in the example). Following the = sign, the function
definition is a formula that uses the argument in context with other already defined terms.

Now, we can plug in different values for the argument in a call to the function. Save the
code above in a file, load it into GHCi, and try the following:

• Main> area 5 78.53981633974483
• Main> area 3 28.274333882308138
• Main> area 17 907.9202768874502

Thus, we can call this function with different radii to calculate the area of any circle.

Our function here is defined mathematically as

A(r) = π · r2

3 As this example shows, the names of variables may contain numbers as well as letters. Variables in Haskell
must begin with a lowercase letter but may then have any string consisting of letter, numbers, underscore
(_) or tick (’).

11

Variables and functions

In mathematics, the parameter is enclosed between parentheses, as in A(5) = 78.54 or
A(3) = 28.27. Haskell code will also work with parentheses, but we omit them as a conven-
tion. Haskell uses functions all the time, and whenever possible we want to minimize extra
symbols.

We still use parentheses for grouping expressions (any code that gives a value) that must
be evaluated together. Note how the following expressions are parsed differently:

5 * 3 + 2 -- 15 + 2 = 17 (multiplication is done before addition)
5 * (3 + 2) -- 5 * 5 = 25 (thanks to the parentheses)
area 5 * 3 -- (area 5) * 3
area (5 * 3) -- area 15

Note that Haskell functions take precedence over all other operators such as + and *, in the
same way that, for instance, multiplication is done before addition in mathematics.

3.5.1 Evaluation

What exactly happens when you enter an expression into GHCi? After you press the
enter key, GHCi will evaluate the expression you have given. That means it will replace
each function with its definition and calculate the results until a single value remains. For
example, the evaluation of area 5 proceeds as follows:

area 5
=> { replace the left-hand side area r = ... by the right-hand side ... =
pi * rˆ2 }

pi * 5 ˆ 2
=> { replace pi by its numerical value }

3.141592653589793 * 5 ˆ 2
=> { apply exponentiation (ˆ) }

3.141592653589793 * 25
=> { apply multiplication (*) }

78.53981633974483

As this shows, to apply or call a function means to replace the left-hand side of its definition
by its right-hand side. When using GHCi, the results of a function call will then show on
the screen.

Some more functions:

double x = 2 * x
quadruple x = double (double x)
square x = x * x
half x = x / 2

Exercises:

• Explain how GHCi evaluates quadruple 5.
• Define a function that subtracts 12 from half its argument.

12

Functions

3.5.2 Multiple parameters

Functions can also take more than one argument. For example, a function for calculating
the area of a rectangle given its length and width:

areaRect l w = l * w

• Main> areaRect 5 10 50

Another example that calculates the area of a triangle
(
A = bh

2

)
:

areaTriangle b h = (b * h) / 2

• Main> areaTriangle 3 9 13.5

As you can see, multiple arguments are separated by spaces. That’s also why you sometimes
have to use parentheses to group expressions. For instance, to quadruple a value x, you
can’t write

quadruple x = double double x -- error

That would apply a function named double to the two arguments double and x. Note
that functions can be arguments to other functions (you will see why later). To make this
example work, we need to put parentheses around the argument:

quadruple x = double (double x)

Arguments are always passed in the order given. For example:

minus x y = x - y

• Main> minus 10 5 5
• Main> minus 5 10 -5

Here, minus 10 5 evaluates to 10 - 5, but minus 5 10 evaluates to 5 - 10 because the
order changes.

Exercises:

• Write a function to calculate the volume of a box.
• Approximately how many stones are the famous pyramids at Giza made up of? Hint:
you will need estimates for the volume of the pyramids and the volume of each block.

3.5.3 On combining functions

Of course, you can use functions that you have already defined to define new functions, just
like you can use the predefined functions like addition (+) or multiplication (*) (operators

13

Variables and functions

are defined as functions in Haskell). For example, to calculate the area of a square, we can
reuse our function that calculates the area of a rectangle:

areaRect l w = l * w
areaSquare s = areaRect s s

• Main> areaSquare 5 25

After all, a square is just a rectangle with equal sides.

Exercises:

• Write a function to calculate the volume of a cylinder. The volume of a cylinder is
the area of the base, which is a circle (you already programmed this function in this
chapter, so reuse it) multiplied by the height.

3.6 Local definitions

3.6.1 where clauses

When defining a function, we sometimes want to define intermediate results that are local to
the function. For instance, consider Heron’s formula4 A =

√
s(s−a)(s− b)(s− c) for calcu-

lating the area of a triangle with sides a, b, and c:

heron a b c = sqrt (s * (s - a) * (s - b) * (s - c))
where
s = (a + b + c) / 2

The variable s is half the perimeter of the triangle and it would be tedious to write it out
four times in the argument of the square root function sqrt.

Simply writing the definitions in sequence does not work...

heron a b c = sqrt (s * (s - a) * (s - b) * (s - c))
s = (a + b + c) / 2 -- a, b, and c are not
defined here

... because the variables a, b, c are only available in the right-hand side of the function
heron, but the definition of s as written here is not part of the right-hand side of heron.
To make it part of the right-hand side, we use the where keyword.

Note that both the where and the local definitions are indented by 4 spaces, to distinguish
them from subsequent definitions. Here is another example that shows a mix of local and
top-level definitions:

areaTriangleTrig a b c = c * height / 2 -- use trigonometry
where
cosa = (b ^ 2 + c ^ 2 - a ^ 2) / (2 * b * c)

4 https://en.wikipedia.org/wiki/Heron%27s%20formula

14

https://en.wikipedia.org/wiki/Heron%27s%20formula

Summary

sina = sqrt (1 - cosa ^ 2)
height = b * sina

areaTriangleHeron a b c = result -- use Heron's formula
where
result = sqrt (s * (s - a) * (s - b) * (s - c))
s = (a + b + c) / 2

3.6.2 Scope

If you look closely at the previous example, you’ll notice that we have used the variable
names a, b, c twice, once for each of the two area functions. How does that work?

Consider the following GHCi sequence:

Prelude> let r = 0
Prelude> let area r = pi * r ˆ 2
Prelude> area 5
78.53981633974483

It would have been an unpleasant surprise to return 0 for the area because of the earlier let
r = 0 definition getting in the way. That does not happen because when you defined r the
second time you are talking about a different r. This may seem confusing, but consider
how many people have the name John, and yet for any context with only one John, we can
talk about ”John” with no confusion. Programming has a notion similar to context, called
scope5.

We will not explain the technicalities behind scope right now. Just keep in mind that the
value of a parameter is strictly what you pass in when you call the function, regardless of
what the variable was called in the function’s definition. That said, appropriately unique
names for variables do make the code easier for human readers to understand.

3.7 Summary

1. Variables store values (which can be any arbitrary Haskell expression).
2. Variables do not change within a scope.
3. Functions help you write reusable code.
4. Functions can accept more than one parameter.

We also learned about non-code text comments within a source file.

5 https://en.wikipedia.org/wiki/Scope%20%28programming%29

15

https://en.wikipedia.org/wiki/Scope%20%28programming%29

4 Truth values

4.1 Equality and other comparisons

In the last chapter, we used the equals sign to define variables and functions in Haskell as
in the following code:

r = 5

That means that the evaluation of the program replaces all occurrences of r with 5 (within
the scope of the definition). Similarly, evaluating the code

f x = x + 3

replaces all occurrences of f followed by a number (f’s argument) with that number plus
three.

Mathematics also uses the equals sign in an important and subtly different way. For instance,
consider this simple problem:

Example: Solve the following equation:
x+3 = 5

Our interest here isn’t about representing the value 5 as x + 3, or vice-versa. Instead, we
read the x+3 = 5 equation as a proposition that some number x gives 5 as result when added
to 3. Solving the equation means finding which, if any, values of x make that proposition
true. In this example, elementary algebra tells us that x = 2 (i.e. 2 is the number that will
make the equation true, giving 2+3 = 5).

Comparing values to see if they are equal is also useful in programming. In Haskell, such
tests look just like an equation. Since the equals sign is already used for defining things,
Haskell uses a double equals sign, == instead. Enter our proposition above in GHCi:

Prelude> 2 + 3 == 5
True

GHCi returns ”True” because 2 + 3 is equal to 5. What if we use an equation that is not
true?

Prelude> 7 + 3 == 5
False

17

Truth values

Nice and coherent. Next, we will use our own functions in these tests. Let’s try the function
f we mentioned at the start of the chapter:

Prelude> let f x = x + 3
Prelude> f 2 == 5
True

This works as expected because f 2 evaluates to 2 + 3.

We can also compare two numerical values to see which one is larger. Haskell provides a
number of tests including: < (less than), > (greater than), <= (less than or equal to) and
>= (greater than or equal to). These tests work comparably to == (equal to). For example,
we could use < alongside the area function from the previous module to see whether a circle
of a certain radius would have an area smaller than some value.

Prelude> let area r = pi * r ˆ 2
Prelude> area 5 < 50
False

4.2 Boolean values

What is actually going on when GHCi determines whether these arithmetical propositions
are true or false? Consider a different but related issue. If we enter an arithmetical expres-
sion in GHCi the expression gets evaluated, and the resulting numerical value is displayed
on the screen:

Prelude> 2 + 2
4

If we replace the arithmetical expression with an equality comparison, something similar
seems to happen:

Prelude> 2 == 2
True

Whereas the ”4” returned earlier is a number which represents some kind of count, quantity,
etc., ”True” is a value that stands for the truth of a proposition. Such values are called
truth values, or boolean values.1 Naturally, only two possible boolean values exist:
True and False.

1 The term is a tribute to the mathematician and philosopher George Boole ˆ{https://en.wikipedia.
org/wiki/George%20Boole} .

18

https://en.wikipedia.org/wiki/George%20Boole
https://en.wikipedia.org/wiki/George%20Boole

Infix operators

4.2.1 Introduction to types

True and False are real values, not just an analogy. Boolean values have the same status
as numerical values in Haskell, and you can manipulate them in similar ways. One trivial
example:

Prelude> True == True
True
Prelude> True == False
False

True is indeed equal to True, and True is not equal to False. Now: can you answer whether
2 is equal to True?

Prelude> 2 == True

<interactive>:1:0:

No instance for (Num Bool)
arising from the literal ‘2’ at <interactive>:1:0

Possible fix: add an instance declaration for (Num Bool)
In the first argument of ‘(==)’, namely ‘2’
In the expression: 2 == True
In an equation for ‘it’: it = 2 == True

Error! The question just does not make sense. We cannot compare a number with a non-
number or a boolean with a non-boolean. Haskell incorporates that notion, and the ugly
error message complains about this. Ignoring much of the clutter, the message says that
there was a number (Num) on the left side of the ==, and so some kind of number was
expected on the right side; however, a boolean value (Bool) is not a number, and so the
equality test failed.

So, values have types, and these types define limits to what we can or cannot do with
the values. True and False are values of type Bool. The 2 is complicated because there
are many different types of numbers, so we will defer that explanation until later. Overall,
types provide great power because they regulate the behavior of values with rules that make
sense, making it easier to write programs that work correctly. We will come back to the
topic of types many times as they are very important to Haskell.

4.3 Infix operators

An equality test like 2 == 2 is an expression just like 2 + 2; it evaluates to a value in pretty
much the same way. The ugly error message we got on the previous example even says so:

In the expression: 2 == True

19

Truth values

When we type 2 == 2 in the prompt and GHCi ”answers” True, it is simply evaluating an
expression. In fact, == is itself a function which takes two arguments (which are the left
side and the right side of the equality test), but the syntax is notable: Haskell allows two-
argument functions to be written as infix operators placed between their arguments. When
the function name uses only non-alphanumeric characters, this infix approach is the common
use case. If you wish to use such a function in the ”standard” way (writing the function
name before the arguments, as a prefix operator) the function name must be enclosed in
parentheses. So the following expressions are completely equivalent:

Prelude> 4 + 9 == 13
True
Prelude> (==) (4 + 9) 13
True

Thus, we see how (==) works as a function similarly to areaRect from the previous module.
The same considerations apply to the other relational operators we mentioned (<, >, <=, >=)
and to the arithmetical operators (+, *, etc.) – all are functions that take two arguments
and are normally written as infix operators.

In general, we can say that tangible things in Haskell are either values or functions.

4.4 Boolean operations

Haskell provides three basic functions for further manipulation of truth values as in logic
propositions:

• (&&) performs the and operation. Given two boolean values, it evaluates to True if both
the first and the second are True, and to False otherwise.

Prelude> (3 < 8) && (False == False)
True
Prelude> (&&) (6 <= 5) (1 == 1)
False

• (||) performs the or operation. Given two boolean values, it evaluates to True if either
the first or the second are True (or if both are true), and to False otherwise.

Prelude> (2 + 2 == 5) || (2 > 0)
True
Prelude> (||) (18 == 17) (9 >= 11)
False

• not performs the negation of a boolean value; that is, it converts True to False and
vice-versa.

20

Guards

Prelude> not (5 * 2 == 10)
False

Haskell libraries already include the relational operator function (/=) for not equal to, but
we could easily implement it ourselves as:

x /= y = not (x == y)

Note that we can write operators infix even when defining them. Completely new operators
can also be created out of ASCII symbols (which means mostly the common symbols used
on a keyboard).

4.5 Guards

Haskell programs often use boolean operators in convenient and abbreviated syntax. When
the same logic is written in alternative styles, we call this syntactic sugar because it sweetens
the code from the human perspective. We’ll start with guards, a feature that relies on
boolean values and allows us to write simple but powerful functions.

Let’s implement the absolute value function. The absolute value of a real number is the
number with its sign discarded; so if the number is negative (that is, smaller than zero) the
sign is inverted; otherwise it remains unchanged. We could write the definition as:

|x| =
{

x, if x ≥ 0
−x, if x < 0.

Here, the actual expression to be used for calculating |x| depends on a set of propositions
made about x. If x ≥ 0 is true, then we use the first expression, but if x < 0 is the case,
then we use the second expression instead. To express this decision process in Haskell using
guards, the implementation could look like this:2

Example: The absolute value function.

absolute x
| x < 0 = 0 - x
| otherwise = x

Remarkably, the above code is about as readable as the corresponding mathematical defi-
nition. Let us dissect the components of the definition:

• We start just like a normal function definition, providing a name for the function, abso-
lute, and saying it will take a single argument, which we will name x.

2 This function is already provided by Haskell with the name abs, so in a real-world situation you don’t
need to provide an implementation yourself.

21

Truth values

• Instead of just following with the = and the right-hand side of the definition, we enter the
two alternatives placed below on separate lines.3 These alternatives are the guards proper.
Note that the whitespace (the indentation of the second and third lines) is not just for
aesthetic reasons; it is necessary for the code to be parsed correctly.

• Each of the guards begins with a pipe character, |. After the pipe, we put an expression
which evaluates to a boolean (also called a boolean condition or a predicate), which is
followed by the rest of the definition. The function only uses the equals sign and the
right-hand side from a line if the predicate evaluates to True.

• The otherwise case is used when none of the preceding predicates evaluate to True. In
this case, if x is not smaller than zero, it must be greater than or equal to zero, so the
final predicate could have just as easily been x >= 0; but otherwise works just as well.

Note:
There is no syntactical magic behind otherwise. It is defined alongside the default
variables and functions of Haskell as simply
otherwise = True

This definition makes otherwise a catch-all guard. As evaluation of the guard predicates
is sequential, the otherwise predicate will only be reached if none of the previous cases
evaluate to True (so make sure you always place otherwise as the last guard!). In general,
it is a good idea to always provide an otherwise guard, because a rather ugly runtime
error will be produced if none of the predicates is true for some input.

Note:
You might wonder why we wrote 0 - x and not simply -x to denote the sign inversion.
Well, we could have written the first guard as

| x < 0 = -x

and that would work, but this way of expressing sign inversion is one of a few ”special
cases” in Haskell; the - is not a function that takes one argument and evaluates to
0 - x, it’s a syntactical abbreviation. While very handy, this shortcut occasionally
conflicts with the usage of (-) as an actual function (the subtraction operator), which
is a potential source of annoyance (for example, try writing three minus negative-four
without using any parentheses for grouping). So, we wrote 0 - x explicitly so that we
could point out this issue.

4.5.1 where and Guards

where clauses work well along with guards. For instance, consider a function which com-
putes the number of (real) solutions for a quadratic equation4, ax2 + bx+ c = 0:

3 We could have joined the lines and written everything in a single line, but it would be less readable.
4 https://en.wikipedia.org/wiki/Quadratic%20equation

22

https://en.wikipedia.org/wiki/Quadratic%20equation

Guards

numOfRealSolutions a b c
| disc > 0 = 2
| disc == 0 = 1
| otherwise = 0

where
disc = b^2 - 4*a*c

The where definition is within the scope of all of the guards, sparing us from repeating the
expression for disc.

23

5 Type basics

In programming, Types are used to group similar values into categories. In Haskell, the
type system is a powerful way of reducing the number of mistakes in your code.

5.1 Introduction

Programming deals with different sorts of entities. For example, consider adding two num-
bers together:

2+3

What are 2 and 3? Well, they are numbers. What about the plus sign in the middle?
That’s certainly not a number, but it stands for an operation which we can do with two
numbers – namely, addition.

Similarly, consider a program that asks you for your name and then greets you with a ”Hello”
message. Neither your name nor the word Hello are numbers. What are they then? We
might refer to all words and sentences and so forth as text. It’s normal in programming to
use a slightly more esoteric word: String, which is short for ”string of characters”.

Note:
Haskell has a rule that all type names have to begin with a capital letter. We shall
adhere to this convention henceforth.

Databases illustrate clearly the concept of types. For example, say we had a table in a
database to store details about a person’s contacts; a kind of personal telephone book. The
contents might look like this:

First Name Last Name Address Telephone number
Sherlock Holmes 221B Baker Street London 743756
Bob Jones 99 Long Road Street Villestown 655523

The fields in each entry contain values. Sherlock is a value as is 99 Long Road Street
Villestown as well as 655523. Let’s classify the values in this example in terms of types.
”First Name” and ”Last Name” contain text, so we say that the values are of type String.

At first glance, we might classify address as a String. However, the semantics behind an
innocent address are quite complex. Many human conventions dictate how we interpret
addresses. For example, if the beginning of the address text contains a number it is likely
the number of the house. If not, then it’s probably the name of the house – except if it

25

Type basics

starts with ”PO Box”, in which case it’s just a postal box address and doesn’t indicate where
the person lives at all. Each part of the address has its own meaning.

In principle, we can indeed say that addresses are Strings, but that doesn’t capture many
important features of addresses. When we describe something as a String, all that we are
saying is that it is a sequence of characters (letters, numbers, etc). Recognizing something
as a specialized type is far more meaningful. If we know something is an Address, we
instantly know much more about the piece of data – for instance, that we can interpret it
using the ”human conventions” that give meaning to addresses.

We might also apply this rationale to the telephone numbers. We could specify a Telepho-
neNumber type. Then, if we were to come across some arbitrary sequence of digits which
happened to be of type TelephoneNumber we would have access to a lot more information
than if it were just a Number – for instance, we could start looking for things such as area
and country codes on the initial digits.

Another reason not to consider the telephone numbers as Numbers is that doing arithmetics
with them makes no sense. What is the meaning and expected effect of, say, multiplying
a TelephoneNumber by 100? It would not allow calling anyone by phone. Also, each digit
comprising a telephone number is important; we cannot accept losing some of them by
rounding or even by omitting leading zeros.

5.1.1 Why types are useful

How does it help us program well to describe and categorize things? Once we define a type,
we can specify what we can or cannot do with it. That makes it far easier to manage larger
programs and avoid errors.

5.2 Using the interactive :type command

Let’s explore how types work using GHCi. The type of any expression can be checked with
:type (or shortened to :t) command. Try this on the boolean values from the previous
module:

Example:
Exploring the types of boolean values in GHCi
Prelude> :type True
True :: Bool
Prelude> :type False
False :: Bool
Prelude> :t (3 < 5)
(3 < 5) :: Bool

The symbol ::, which will appear in a couple other places, can be read as simply ”is of
type”, and indicates a type signature.

26

Using the interactive :type command

:type reveals that truth values in Haskell are of type Bool, as illustrated above for the two
possible values, True and False, as well as for a sample expression that will evaluate to
one of them. Note that boolean values are not just for value comparisons. Bool captures
the semantics of a yes/no answer, so it can represent any information of such kind – say,
whether a name was found in a spreadsheet, or whether a user has toggled an on/off option.

5.2.1 Characters and strings

Now let’s try :t on something new. Literal characters are entered by enclosing them with
single quotation marks. For instance, this is the single letter H:

Example:
Using the :type command in GHCi on a literal character
Prelude> :t ’H’
’H’ :: Char

So, literal character values have type Char (short for ”character”). Now, single quotation
marks only work for individual characters, so if we need to enter longer text – that is, a
string of characters – we use double quotation marks instead:

Example:
Using the :t command in GHCi on a literal string
Prelude> :t ”Hello World”
”Hello World” :: [Char]

Why did we get Char again? The difference is the square brackets. [Char] means a number
of characters chained together, forming a list of characters. Haskell considers all Strings to
be lists of characters. Lists in general are important entities in Haskell, and we will cover
them in more detail in a little while.

Exercises:

1. Try using :type on the literal value "H" (notice the double quotes). What hap-
pens? Why?

2. Try using :type on the literal value 'Hello World' (notice the single quotes).
What happens? Why?

Incidentally, Haskell allows for type synonyms, which work pretty much like synonyms in
human languages (words that mean the same thing – say, ’big’ and ’large’). In Haskell, type
synonyms are alternative names for types. For instance, String is defined as a synonym of
[Char], and so we can freely substitute one with the other. Therefore, to say:

"Hello World" :: String

is also perfectly valid, and in many cases a lot more readable. From here on we’ll mostly
refer to text values as String, rather than [Char].

27

Type basics

5.3 Functional types

So far, we have seen how values (strings, booleans, characters, etc.) have types and how
these types help us to categorize and describe them. Now, the big twist that makes Haskell’s
type system truly powerful: Functions have types as well.1 Let’s look at some examples to
see how that works.

5.3.1 Example: not

We can negate boolean values with not (e.g. not True evaluates to False and vice-versa).
To figure out the type of a function, we consider two things: the type of values it takes as
its input and the type of value it returns. In this example, things are easy. not takes a
Bool (the Bool to be negated), and returns a Bool (the negated Bool). The notation for
writing that down is:

Example: Type signature for not

not :: Bool -> Bool

You can read this as ”not is a function from things of type Bool to things of type Bool”.

Using :t on a function will work just as expected:

Prelude> :t not
not :: Bool -> Bool

The description of a function’s type is in terms of the types of argument(s) it takes and the
type of value it evaluates to.

5.3.2 Example: chr and ord

Text presents a problem to computers. At its lowest level, a computer only knows binary
1s and 0s. To represent text, every character is first converted to a number, then that
number is converted to binary and stored. That’s how a piece of text (which is just a
sequence of characters) is encoded into binary. Normally, we’re only interested in how to
encode characters into their numerical representations, because the computer takes care of
the conversion to binary numbers without our intervention.

The easiest way to convert characters to numbers is simply to write all the possible char-
acters down, then number them. For example, we might decide that ’a’ corresponds to 1,
then ’b’ to 2, and so on. This is what something called the ASCII standard is: take 128
commonly-used characters and number them (ASCII doesn’t actually start with ’a’, but
the general idea is the same). Of course, it would be quite a chore to sit down and look

1 The deeper truth is that functions are values, just like all the others.

28

Functional types

up a character in a big lookup table every time we wanted to encode it, so we’ve got two
functions that do it for us, chr (pronounced ’char’) and ord2:

Example: Type signatures for chr and ord

chr :: Int -> Char
ord :: Char -> Int

We already know what Char means. The new type on the signatures above, Int, refers to
integer numbers, and is one of quite a few different types of numbers.3 The type signature
of chr tells us that it takes an argument of type Int, an integer number, and evaluates to
a result of type Char. The converse is the case with ord: It takes things of type Char and
returns things of type Int. With the info from the type signatures, it becomes immediately
clear which of the functions encodes a character into a numeric code (ord) and which does
the decoding back to a character (chr).

To make things more concrete, here are a few examples. Notice that the two functions
aren’t available by default; so before trying them in GHCi you need to use the :module
Data.Char (or :m Data.Char) command to load the Data.Char module where they are
defined.

Example:
Function calls to <code>chr</code> and <code>ord</code>
Prelude> :m Data.Char
Prelude Data.Char> chr 97
’a’
Prelude Data.Char> chr 98
’b’
Prelude Data.Char> ord ’c’
99

5.3.3 Functions with more than one argument

What would be the type of a function that takes more than one argument?

Example: A function with more than one argument

xor p q = (p || q) && not (p && q)

2 This isn’t quite what chr and ord do, but that description fits our purposes well, and it’s close enough.
3 In fact, it is not even the only type for integers! We will meet its relatives in a short while.

29

Type basics

(xor is the exclusive-or function, which evaluates to True if either one or the other argument
is True, but not both; and False otherwise.)

The general technique for forming the type of a function that accepts more than one argu-
ment is simply to write down all the types of the arguments in a row, in order (so in this
case p first then q), then link them all with ->. Finally, add the type of the result to the
end of the row and stick a final -> in just before it.4 In this example, we have:

1. Write down the types of the arguments. In this case, the use of (||) and (&&) gives
away that p and q have to be of type Bool:
Bool Bool
ˆˆ p is a Bool ˆˆ q is a Bool as well

2. Fill in the gaps with ->:
Bool -> Bool

3. Add in the result type and a final ->. In our case, we’re just doing some basic boolean
operations so the result remains a Bool.
Bool -> Bool -> Bool

ˆˆ We're returning a Bool
ˆˆ This is the extra -> that got added in

The final signature, then, is:

Example: The signature of xor

xor :: Bool -> Bool -> Bool

5.3.4 Real world example: openWindow

Note:
A library is a collection of common code used by many programs.

As you’ll learn in the Haskell in Practice section of the course, one popular group of Haskell
libraries are the GUI (Graphical User Interface) ones. These provide functions for deal-
ing with the visual things computer users are familiar with: menus, buttons, application
windows, moving the mouse around, etc. One function from one of these libraries is called
openWindow, and you can use it to open a new window in your application. For example,
say you’re writing a word processor, and the user has clicked on the ’Options’ button. You
need to open a new window which contains all the options that they can change. Let’s look
at the type signature for this function:5

4 This method might seem just a trivial hack by now, but actually there are very deep reasons behind it,
which we’ll cover in the chapter on higher-order functions ˆ{Chapter19 on page 117}.

5 This has been somewhat simplified to fit our purposes. Don’t worry, the essence of the function is there.

30

Type signatures in code

Example: openWindow

openWindow :: WindowTitle -> WindowSize -> Window

You don’t know these types, but they’re quite simple. All three of the types there, Win-
dowTitle, WindowSize and Window are defined by the GUI library that provides open-
Window. As we saw earlier, the two arrows mean that the first two types are the types
of the parameters, and the last is the type of the result. WindowTitle holds the title of
the window (which typically appears in a title bar at the very top of the window), and
WindowSize specifies how big the window should be. The function then returns a value of
type Window which represents the actual window.

So, even if you have never seen a function before or don’t know how it actually works, a
type signature can give you a general idea of what the function does. Make a habit of
testing every new function you meet with :t. If you start doing that now, you’ll not only
learn about the standard library Haskell functions but also develop a useful kind of intuition
about functions in Haskell.

Exercises:
What are the types of the following functions? For any functions involving numbers,
you can just pretend the numbers are Ints.
1. The negate function, which takes an Int and returns that Int with its sign swapped.
For example, negate 4 = -4, and negate (-2) = 2

2. The (||) function, pronounced ’or’, that takes two Bools and returns a third Bool
which is True if either of the arguments were, and False otherwise.

3. A monthLength function which takes a Bool which is True if we are considering
a leap year and False otherwise, and an Int which is the number of a month; and
returns another Int which is the number of days in that month.

4. f x y = not x && y
5. g x = (2*x - 1)ˆ2

5.4 Type signatures in code

We have explored the basic theory behind types and how they apply to Haskell. Now, we
will see how type signatures are used for annotating functions in source files. Consider the
xor function from an earlier example:

Example: A function with its signature

xor :: Bool -> Bool -> Bool
xor p q = (p || q) && not (p && q)

31

Type basics

That is all we have to do. For maximum clarity, type signatures go above the corresponding
function definition.

The signatures we add in this way serve a dual role: they clarify the type of the functions
both to human readers and to the compiler/interpreter.

5.4.1 Type inference

If type signatures tell the interpreter (or compiler) about the function type, how did we
write our earliest Haskell code without type signatures? Well, when you don’t tell Haskell
the types of your functions and variables it figures them out through a process called type
inference. In essence, the compiler starts with the types of things it knows and then works
out the types of the rest of the values. Consider a general example:

Example: Simple type inference

-- We're deliberately not providing a type signature for this function
isL c = c == 'l'

isL is a function that takes an argument c and returns the result of evaluating c == 'l'.
Without a type signature, the type of c and the type of the result are not specified. In the
expression c == 'l', however, the compiler knows that 'l' is a Char. Since c and 'l' are
being compared with equality with (==) and both arguments of (==) must have the same
type,6 it follows that c must be a Char. Finally, since isL c is the result of (==) it must
be a Bool. And thus we have a signature for the function:

Example: isL with a type

isL :: Char -> Bool
isL c = c == 'l'

Indeed, if you leave out the type signature, the Haskell compiler will discover it through
this process. You can verify that by using :t on isL with or without a signature.

So why write type signatures if they will be inferred anyway? In some cases, the compiler
lacks information to infer the type, and so the signature becomes obligatory. In some other
cases, we can use a type signature to influence to a certain extent the final type of a function
or value. These cases needn’t concern us for now, but we have a few other reasons to include
type signatures:

• Documentation: type signatures make your code easier to read. With most functions,
the name of the function along with the type of the function is sufficient to guess what

6 As discussed in Truth values ˆ{Chapter4 on page 17}. That fact is actually stated by the type signature
of (==) – if you are curious you can check it, although you will have to wait a little bit more for a full
explanation of the notation used in that.

32

Type signatures in code

the function does. Of course, commenting your code helps, but having the types clearly
stated helps too.

• Debugging: when you annotate a function with a type signature and then make a typo
in the body of the function which changes the type of a variable, the compiler will tell
you, at compile-time, that your function is wrong. Leaving off the type signature might
allow your erroneous function to compile, and the compiler would assign it the wrong
type. You wouldn’t know until you ran your program that you made this mistake.

5.4.2 Types and readability

A somewhat more realistic example will help us understand better how signatures can help
documentation. The piece of code quoted below is a tiny module (modules are the typical
way of preparing a library), and this way of organizing code is like that in the libraries
bundled with GHC.

Note:
Do not go crazy trying to understand how the functions here actually work; that is
beside the point as we still have not covered many of the features being used. Just keep
reading and play along.

Example: Module with type signatures

module StringManip where

import Data.Char

uppercase, lowercase :: String -> String
uppercase = map toUpper
lowercase = map toLower

capitalize :: String -> String
capitalize x =

let capWord [] = []
capWord (x:xs) = toUpper x : xs

in unwords (map capWord (words x))

This tiny library provides three string manipulation functions. uppercase converts a string
to upper case, lowercase to lower case, and capitalize capitalizes the first letter of every
word. Each of these functions takes a String as argument and evaluates to another String.
Even if we do not understand how these functions work, looking at the type signatures allows
us to immediately know the types of the arguments and return values. Paired with sensible
function names, we have enough information to figure out how we can use the functions.

33

Type basics

Note that when functions have the same type we have the option of writing just one signature
for all of them, by separating their names with commas, as above with uppercase and
lowercase.

5.4.3 Types prevent errors

The role of types in preventing errors is central to typed languages. When passing expres-
sions around you have to make sure the types match up like they did here. If they don’t,
you’ll get type errors when you try to compile; your program won’t pass the typecheck. This
helps reduce bugs in your programs. To take a very trivial example:

Example: A non-typechecking program

"hello" + " world" -- type error

That line will cause a program to fail when compiling. You can’t add two strings together. In
all likelihood, the programmer intended to use the similar-looking concatenation operator,
which can be used to join two strings together into a single one:

Example: Our erroneous program, fixed

"hello" ++ " world" -- "hello world"

An easy typo to make, but Haskell catches the error when you tried to compile. You don’t
have to wait until you run the program for the bug to become apparent.

Updating a program commonly involves changes to types. If a change is unintended, or has
unforeseen consequences, then it will show up when compiling. Haskell programmers often
remark that once they have fixed all the type errors, and their programs compile, that they
tend to ”just work”. The behavior may not always match the intention, but the program
won’t crash. Haskell has far fewer run-time errors (where your program goes wrong when
you run it rather than when you compile) than other languages.

34

6 Lists and tuples

35

7 Type basics II

In this chapter, we will show how numerical types are handled in Haskell and introduce
some important features of the type system. Before diving into the text, though, pause for
a moment and consider the following question: what should be the type of the function
(+)?1

7.1 The Num class

Mathematics puts restrictions on the kind of numbers we can add together. 2 + 3 (two
natural numbers), (−7)+5.12 (a negative integer and a rational number), 1

7 +π (a rational
and an irrational). All of these are valid. In fact any two real numbers can be added
together. In order to capture such generality in the simplest way possible we need a general
Number type in Haskell, so that the signature of (+) would be simply

(+) :: Number -> Number -> Number

However, that design fits poorly with the way computers perform arithmetic. While com-
puters can handle integers as a sequence of bits in memory, that approach does not work for
real numbers,2 thus making it necessary for a less than perfect encoding for them: floating
point numbers3. While floating point provides a reasonable way to deal with real numbers
in general, it has some inconveniences (most notably, loss of precision) which makes using
the simpler encoding worthwhile for integer values. So, we have at least two different ways
of storing numbers: one for integers and another for general real numbers. Each approach
should correspond to different Haskell types. Furthermore, computers are only able to
perform operations like (+) on a pair of numbers if they are in the same format.

So much for having a universal Number type – it seems that we can’t even have (+) mix in-
tegers and floating-point numbers. However, Haskell can at least use the same (+) function
with either integers or floating point numbers. Check this yourself in GHCi:

Prelude>3 + 4
7
Prelude>4.34 + 3.12
7.46

1 If you followed our recommendations in ”Type basics”, chances are you have already seen the rather exotic
answer by testing with :t... if that is the case, consider the following analysis as a path to understanding
the meaning of that signature.

2 Among other issues, between any two real numbers there are uncountably many real numbers – and that
fact can’t be directly mapped into a representation in memory no matter what we do.

3 https://en.wikipedia.org/wiki/Floating%20point

37

https://en.wikipedia.org/wiki/Floating%20point

Type basics II

When discussing lists and tuples, we saw that functions can accept arguments of different
types if they are made polymorphic. In that spirit, here’s a possible type signature for
(+) that would account for the facts above:

(+) :: a -> a -> a

With that type signature, (+) would take two arguments of the same type a (which could
be integers or floating-point numbers) and evaluate to a result of type a (as long as both
arguments are the same type). But this type signature indicates any type at all, and we
know that we can’t use (+) with two Bool values, or two Char values. What would adding
two letters or two truth-values mean? So, the actual type signature of (+) uses a language
feature that allows us to express the semantic restriction that a can be any type as long as
it is a number type:

(+) :: (Num a) => a -> a -> a

Num is a typeclass — a group of types which includes all types which are regarded as
numbers.4 The (Num a) => part of the signature restricts a to number types – or, in Haskell
terminology, instances of Num.

7.2 Numeric types

So, which are the actual number types (that is, the instances of Num that the a in the
signature may stand for)? The most important numeric types are Int, Integer and Double:

• Int corresponds to the plain integer type found in most languages. It has fixed maximum
and minimum values that depend on a computer’s processor. (In 32-bit machines the
range goes from -2147483648 to 2147483647).

• Integer also is used for integer numbers, but it supports arbitrarily large values – at the
cost of some efficiency.

• Double is the double-precision floating point type, a good choice for real numbers in
the vast majority of cases. (Haskell also has Float, the single-precision counterpart of
Double, which is usually less attractive due to further loss of precision.)

Several other number types are available, but these cover most in everyday tasks.

7.2.1 Polymorphic guesswork

If you’ve read carefully this far, you know that we don’t need to specify types always
because the compiler can infer types. You also know that we cannot mix types when
functions require matched types. Combine this with our new understanding of numbers to
understand how Haskell handles basic arithmetic like this:

4 This is a loose definition, but will suffice until we discuss typeclasses in more detail.

38

Numeric types

Prelude> (-7) + 5.12
-1.88

This may seem to add two numbers of different types – an integer and a non-integer. Let’s
see what the types of the numbers we entered actually are:

Prelude> :t (-7)
(-7) :: (Num a) => a

So, (-7) is neither Int nor Integer! Rather, it is a polymorphic constant, which can
”morph” into any number type. Now, let’s look at the other number:

Prelude> :t 5.12
5.12 :: (Fractional t) => t

5.12 is also a polymorphic constant, but one of the Fractional class, which is a subset of
Num (every Fractional is a Num, but not every Num is a Fractional; for instance, Ints and
Integers are not Fractional).

When a Haskell program evaluates (-7) + 5.12, it must settle for an actual matching type
for the numbers. The type inference accounts for the class specifications: (-7) can be any
Num, but there are extra restrictions for 5.12, so that’s the limiting factor. With no other
restrictions, 5.12 will assume the default Fractional type of Double, so (-7) will become
a Double as well. Addition then proceeds normally and returns a Double.56

The following test will give you a better feel of this process. In a source file, define

x = 2

Then load the file in GHCi and check the type of x. Then, change the file to add a y variable,

x = 2
y = x + 3

reload it and check the types of x and y. Finally, modify y to

x = 2
y = x + 3.1

and see what happens with the types of both variables.

5 For seasoned programmers:
6 This appears to have the same effect that programs in C (and many other languages) manage with an

implicit cast (where an integer literal is silently converted to a double). In C, however, the conversion is
done behind your back, while in Haskell it only occurs if the variable/literal is a polymorphic constant.
This distinction will become clearer shortly, when we show a counter-example.

39

Type basics II

7.2.2 Monomorphic trouble

The sophistication of the numerical types and classes occasionally leads to some complica-
tions. Consider, for instance, the common division operator (/). It has the following type
signature:

(/) :: (Fractional a) => a -> a -> a

Restricting a to fractional types is a must because the division of two integer numbers will
often result in a non-integer. Nevertheless, we can still write something like

Prelude> 4 / 3
1.3333333333333333

because the literals 4 and 3 are polymorphic constants and therefore assume the type
Double at the behest of (/). Suppose, however, we want to divide a number by the length
of a list.7 The obvious thing to do would be using the length function:

Prelude> 4 / length [1,2,3]

Unfortunately, that blows up:

<interactive>:1:0:

No instance for (Fractional Int)
arising from a use of `/' at <interactive>:1:0-17

Possible fix: add an instance declaration for (Fractional Int)
In the expression: 4 / length [1, 2, 3]
In the definition of `it': it = 4 / length [1, 2, 3]

As usual, the problem can be understood by looking at the type signature of length:

length :: [a] -> Int

The result of length is an Int, not a polymorphic constant. As an Int is not a Fractional,
Haskell won’t let us use it with (/).

To escape this problem, we have a special function. Before following on with the text, try
to guess what this does only from the name and signature:

fromIntegral :: (Integral a, Num b) => a -> b

fromIntegral takes an argument of some Integral type (like Int or Integer) and makes
it a polymorphic constant. By combining it with length, we can make the length of the
list fit into the signature of (/):

7 A reasonable scenario – think of computing an average of the values in a list.

40

Classes beyond numbers

Prelude> 4 / fromIntegral (length [1,2,3])
1.3333333333333333

In some ways, this issue is annoying and tedious, but it is an inevitable side-effect of having
a rigorous approach to manipulating numbers. In Haskell, if you define a function with an
Int argument, it will never be converted to an Integer or Double, unless you explicitly use
a function like fromIntegral. As a direct consequence of its refined type system, Haskell
has a surprising diversity of classes and functions dealing with numbers.

7.3 Classes beyond numbers

Haskell has typeclasses beyond arithmetic. For example, the type signature of (==) is:

(==) :: (Eq a) => a -> a -> Bool

Like (+) or (/), (==) is a polymorphic function. It compares two values of the same type,
which must belong to the class Eq and returns a Bool. Eq is simply the class for types of
values which can be compared for equality, and it includes all of the basic non-functional
types.8

Typeclasses add a lot to the power of the type system. We will return to this topic later to
see how to use them in custom ways.

8 Comparing two functions for equality is considered intractable

41

8 Building vocabulary

This chapter will be a bit of an interlude with some advice for studying and using Haskell.
We will discuss the importance of acquiring a vocabulary of functions and how this book
and other resources can help. First, however, we need to understand function composition.

8.1 Function composition

Function composition means applying one function to a value and then applying another
function to the result. Consider these two functions:

Example: Simple functions

f x = x + 3
square x = x 2

We can compose them in two different ways, depending on which one we apply first:

Prelude> square (f 1)
16
Prelude> square (f 2)
25
Prelude> f (square 1)
4
Prelude> f (square 2)
7

The parentheses around the inner function are necessary; otherwise, the interpreter would
think that you were trying to get the value of square f, or f square; and both of those
would give type errors.

The composition of two functions results in a function in its own right. If we regularly apply
f and then square (or vice-versa), we should generate a new variable name for the resulting
combinations:

43

Building vocabulary

Example: Composed functions

squareOfF x = square (f x)

fOfSquare x = f (square x)

There is a second, nifty way of writing composed functions. It uses (.), the function
composition operator and is as simple as putting a period between the two functions:

Example: Composing functions with (.)

squareOfF x = (square . f) x

fOfSquare x = (f . square) x

Note that functions are still applied from right to left, so that g(f(x)) == (g . f) x.
(.) is modeled after the mathematical operator ◦, which works in the same way: (g◦f)(x) =
g(f(x)).

Incidentally, our function definitions are effectively mathematical equations, so we can take

squareOfF x = (square . f) x

and cancel the x from both sides, leaving:

squareOfF = square . f

We will later learn more about such cases of functions without arguments shown. For now,
understand we can simply substitute our defined variable name for any case of the composed
functions.

8.2 The need for a vocabulary

Haskell makes it simple to write composed functions and to define variables, so we end up
with relatively simple, elegant, and expressive code. Of course, to use function composition,
we first need to have functions to compose. While functions we write ourselves will always be
available, every installation of GHC comes with a vast assortment of libraries (i.e. packaged
code), which provide functions for many common tasks. For that reason, effective Haskell
programmers need some familiarity with the essential libraries. At the least, you should
know how to find useful functions in the libraries when you need them.

Given only the Haskell syntax we will cover through the Recursion1 chapter, we will, in
principle, have enough knowledge to write nearly any list manipulation program we want.

1 Chapter 12 on page 69

44

Prelude and the libraries

However, writing full programs with only these basics would be terribly inefficient because
we would end up rewriting large parts of the standard libraries. So, much of our study going
forward will involve studying and understanding these valuable tools the Haskell community
has already built.

8.3 Prelude and the libraries

Here are a few basic facts about Haskell libraries:

First and foremost, Prelude is the core library loaded by default in every Haskell program.
Alongside with the basic types, it provides a set of ubiquitous and useful functions. We will
refer to Prelude and its functions all the time throughout these introductory chapters.

GHC includes a large set of core libraries that provide a wide range of tools, but only
Prelude is loaded automatically. The other libraries are available as modules which you can
import into your program. Later on, we will explain the minutiae of how modules work. For
now, just know that your source file needs lines near the top to import any desired modules.
For example, to use the function permutations from the module Data.List, add the line
import Data.List to the top of your .hs file. Here’s a full source file example:

Example: Importing a module in a source file

import Data.List

testPermutations = permutations "Prelude"

For quick GHCi tests, just enter :m +Data.List at the command line to load that module.

Prelude> :m +Data.List
Prelude Data.List> :t permutations
permutations :: [a] -> a2

8.4 One exhibit

Before continuing, let us see one (slightly histrionic, we admit) example of what familiarity
with a few basic functions from Prelude can bring us.3 Suppose we need a function which
takes a string composed of words separated by spaces and returns that string with the order
of the words reversed, so that "Mary had a little lamb" becomes "lamb little a had
Mary". We could solve this problem using only the basics we have already covered along
with a few insights in the upcoming Recursion chapter. Below is one messy, complicated
solution. Don’t stare at it for too long!

3 The example here is inspired by the Simple Unix tools ˆ{http://www.haskell.org/haskellwiki/
Simple_unix_tools} demo in the HaskellWiki.

45

http://www.haskell.org/haskellwiki/Simple_unix_tools
http://www.haskell.org/haskellwiki/Simple_unix_tools

Building vocabulary

Example: There be dragons

monsterRevWords :: String -> String
monsterRevWords input = rejoinUnreversed (divideReversed input)

where
divideReversed s = go1 [] s

where
go1 divided [] = divided
go1 [] (c:cs)

| testSpace c = go1 [] cs
| otherwise = go1 [[]] (c:cs)

go1 (w:ws) [c]
| testSpace c = (w:ws)
| otherwise = ((c:w):ws)

go1 (w:ws) (c:c':cs)
| testSpace c =

if testSpace c'
then go1 (w:ws) (c':cs)
else go1 ([c']:w:ws) cs

| otherwise = go1 ((c:w):ws) (c':cs)
testSpace c = c == ' '
rejoinUnreversed [] = []
rejoinUnreversed [w] = reverseList w
rejoinUnreversed strings = go2 (' ' : reverseList newFirstWord) (otherWords)

where
(newFirstWord : otherWords) = reverseList strings
go2 rejoined ([]:[]) = rejoined
go2 rejoined ([]:(w':ws')) = go2 (rejoined) ((' ':w'):ws')
go2 rejoined ((c:cs):ws) = go2 (c:rejoined) (cs:ws)

reverseList [] = []
reverseList w = go3 [] w

where
go3 rev [] = rev
go3 rev (c:cs) = go3 (c:rev) cs

There are too many problems with this thing; so let us consider just three of them:

• To see whether monsterRevWords does what you expect, you could either take our word
for it, test it exhaustively on all sorts of possible inputs, or attempt to understand it and
get an awful headache (please don’t).

• Furthermore, if we write a function this ugly and have to fix a bug or slightly modify it
later on,4 we are set for an awful time.

4 Co-author’s note: ”Later on? I wrote that half an hour ago, and I’m not totally sure about how it works
already...”

46

This book’s use of the libraries

• Finally, we have at least one easy-to-spot potential problem: if you have another glance
at the definition, about halfway down there is a testSpace helper function which checks
if a character is a space or not. The test, however, only includes the common space
character (that is, ' '), and no other whitespace characters (tabs, newlines, etc.).5

We can do much better than the junk above if we use the following Prelude functions:

• words, which reliably breaks down a string in whitespace delimited words, returning a
list of strings;

• reverse, which reverses a list (incidentally, that is exactly what the reverseList above
does); and

• unwords, which does the opposite of words;

then function composition means our problem is instantly solved.

Example: revWords done the Haskell way

revWords :: String -> String
revWords input = (unwords . reverse . words) input

That’s short, simple, readable and (since Prelude is reliable) bug-free.6 So, any time some
program you are writing begins to look like monsterRevWords, look around and reach for
your toolbox — the libraries.

8.5 This book’s use of the libraries

After the stern warnings above, you might expect us to continue diving deep into the
standard libraries. However, the Beginner’s Track is meant to cover Haskell functionality in
a conceptual, readable, and reasonably compact manner. A systematic study of the libraries
would not help us, but we will introduce functions from the libraries as appropriate to each
concept we cover.

• In the Elementary Haskell section, several of the exercises (mainly, among those about
list processing) involve writing equivalent definitions for Prelude functions. For each of
these exercises you do, one more function will be added to your repertoire.

• Every now and then we will introduce more library functions; maybe within an example,
or just with a mention in passing. Whenever we do so, take a minute to test the function
and do some experiments. Remember to extend that habitual curiosity about types we
mentioned in Type basics7 to the functions themselves.

5 A reliable way of checking whether a character is whitespace is with the isSpace function, which is in the
module Data.Char.

6 In case you are wondering, many other functions from Prelude or Data.List could help to make
monsterRevWords somewhat saner — to name a few: (++), concat, groupBy, intersperse — but no use
of those would compare to the one-liner above.

7 Chapter 5 on page 25

47

Building vocabulary

• While the first few chapters are quite tightly-knit, later parts of the book are more
independent. Haskell in Practice includes chapters on the Hierarchical libraries8, and
most of their content can be understood soon after having completed Elementary Haskell.

• As we reach the later parts of the Beginner’s track, the concepts we will discuss (monads
in particular) will naturally lead to exploration of important parts of the core libraries.

8.6 Other resources

• First and foremost, all modules have basic documentation. You may not be ready to read
that directly yet, but we’ll get there. You can read the Prelude specification9 on-line as
well as the documentation of the libraries bundled with GHC10, with nice navigation and
source code just one click away.

• Hoogle11 is a great way to search through the documentation. It is a Haskell search engine
which covers the core libraries. You can search for everything from function names to
type definitions and more.

• Beyond the libraries included with GHC, there is a large ecosystem of libraries, made
available through Hackage12 and installable with a tool called cabal13. The Hackage site
has documentation for its libraries. We will not venture outside of the core libraries in
the Beginner’s Track, but you should certainly use Hackage once you begin your own
projects. A second Haskell search engine called Hayoo!14 covers all of Hackage.

• When appropriate, we will give pointers to other useful learning resources, especially
when we move towards intermediate and advanced topics.

8 Chapter 70 on page 493
9 http://www.haskell.org/onlinereport/standard-prelude.html
10 http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
11 http://www.haskell.org/hoogle
12 https://hackage.haskell.org/
13 http://www.haskell.org/cabal/users-guide/
14 http://holumbus.fh-wedel.de/hayoo/hayoo.html

48

http://www.haskell.org/onlinereport/standard-prelude.html
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://www.haskell.org/hoogle
https://hackage.haskell.org/
http://www.haskell.org/cabal/users-guide/
http://holumbus.fh-wedel.de/hayoo/hayoo.html

9 Next steps

This chapter introduces pattern matching and two new pieces of syntax: if expressions and
let bindings.

9.1 if / then / else

Haskell syntax supports garden-variety conditional expressions of the form if... then... else
.... For instance, consider a function that returns (-1) if its argument is less than 0; 0 if
its argument is 0; and 1 if its argument is greater than 0. The predefined signum function
does that job already; but for the sake of illustration, let’s define a version of our own:

Example: The signum function.

mySignum x =
if x < 0

then -1
else if x > 0

then 1
else 0

You can experiment with this:
• Main> mySignum 5 1
• Main> mySignum 0 0
• Main> mySignum (5 - 10) -1
• Main> mySignum (-1) -1

The parentheses around ”-1” in the last example are required; if missing, Haskell will think
that you are trying to subtract 1 from mySignum (which would give a type error).

In an if/then/else construct, first the condition (in this case x < 0) is evaluated. If it results
True, the whole construct evaluates to the then expression; otherwise (if the condition is
False), the construct evaluates to the else expression. All of that is pretty intuitive. If
you have programmed in an imperative language before, however, it might seem surprising
to know that Haskell always requires both a then and an else clause. The construct has to
result in a value in both cases and, specifically, a value of the same type in both cases.

Function definitions using if / then / else like the one above can be rewritten using Guards1.

1 Chapter 4.5 on page 21

49

Next steps

Example: From if to guards

mySignum x
| x < 0 = -1
| x > 0 = 1
| otherwise = 0

Similarly, the absolute value function defined in Truth values2 can be rendered with an
if/then/else:

Example: From guards to if

absolute x =
if x < 0

then -x
else x

Why use if/then/else versus guards? As you will see with later examples and in your own
programming, either way of handling conditionals may be more readable or convenient
depending on the circumstances. In many cases, both options work equally well.

9.2 Introducing pattern matching

Consider a program which tracks statistics from a racing competition in which racers receive
points based on their classification in each race, the scoring rules being:

• 10 points for the winner;
• 6 for second-placed;
• 4 for third-placed;
• 3 for fourth-placed;
• 2 for fifth-placed;
• 1 for sixth-placed;
• no points for other racers.

We can write a simple function which takes a classification (represented by an integer
number: 1 for first place, etc.3) and returns how many points were earned. One possible
solution uses if/then/else:

2 Chapter 4.5 on page 21
3 Here we will not be much worried about what happens if a nonsensical value (say, (-4)) is passed to the

function. In general, however, it is a good idea to give some thought to such ”strange” cases, in order to
avoid nasty surprises down the road.

50

Introducing pattern matching

Example: Computing points with if/then/else

pts :: Int -> Int
pts x =

if x == 1
then 10
else if x == 2

then 6
else if x == 3

then 4
else if x == 4

then 3
else if x == 5

then 2
else if x == 6

then 1
else 0

Yuck! Admittedly, it wouldn’t look this hideous had we used guards instead of if/then/else,
but it still would be tedious to write (and read!) all those equality tests. We can do better,
though:

Example: Computing points with a piece-wise definition

pts :: Int -> Int
pts 1 = 10
pts 2 = 6
pts 3 = 4
pts 4 = 3
pts 5 = 2
pts 6 = 1
pts _ = 0

Much better. However, even though defining pts in this style (which we will arbitrarily call
piece-wise definition from now on) shows to a reader of the code what the function does in
a clear way, the syntax looks odd given what we have seen of Haskell so far. Why are there
seven equations for pts? What are those numbers doing in their left-hand sides? What
about variable arguments?

This feature of Haskell is called pattern matching. When we call pts, the argument is
matched against the numbers on the left side of each of the equations, which in turn are the
patterns. The matching is done in the order we wrote the equations. First, the argument
is matched against the 1 in the first equation. If the argument is indeed 1, we have a
match and the first equation is used; so pts 1 evaluates to 10 as expected. Otherwise, the
other equations are tried in order following the same procedure. The final one, though, is

51

Next steps

rather different: the _ is a special pattern, often called a ”wildcard”, that might be read as
”whatever”: it matches with anything; and therefore if the argument doesn’t match any of
the previous patterns pts will return zero.

As for the lack of x or any other variable standing for the argument, we simply don’t need
that to write the definitions. All possible return values are constants. Besides, variables
are used to express relationships on the right side of the definition, so the x is unnecessary
in our pts function.

However, we could use a variable to make pts even more concise. The points given to a
racer decrease regularly from third place to sixth place, at a rate of one point per position.
After noticing that, we can eliminate three of the seven equations as follows:

Example: Mixing styles

pts :: Int -> Int
pts 1 = 10
pts 2 = 6
pts x

| x <= 6 = 7 - x
| otherwise = 0

So, we can mix both styles of definitions. In fact, when we write pts x in the left side of
an equation we are using pattern matching too! As a pattern, the x (or any other variable
name) matches anything just like _; the only difference being that it also gives us a name
to use on the right side (which, in this case, is necessary to write 7 - x).

Exercises:
We cheated a little when moving from the second version of pts to the third one: they
do not do exactly the same thing. Can you spot what the difference is?

Beyond integers, pattern matching works with values of various other types. One handy
example is booleans. For instance, the (||) logical-or operator we met in Truth values4
could be defined as:

Example: (||)

(||) :: Bool -> Bool -> Bool
False || False = False
_ || _ = True

Or:

4 Chapter 4.5.1 on page 22

52

Tuple and list patterns

Example: (||), done another way

(||) :: Bool -> Bool -> Bool
True || _ = True
False || y = y

When matching two or more arguments at once, the equation will only be used if all of
them match.

Now, let’s discuss a few things that might go wrong when using pattern matching:

• If we put a pattern which matches anything (such as the final patterns in each of the
pts example) before the more specific ones the latter will be ignored. GHC(i) will typi-
cally warn us that ”Pattern match(es) are overlapped” in such cases.

• If no patterns match, an error will be triggered. Generally, it is a good idea to ensure
the patterns cover all cases, in the same way that the otherwise guard is not mandatory
but highly recommended.

• Finally, while you can play around with various ways of (re)defining (&&),5 here is one
version that will not work:

(&&) :: Bool -> Bool -> Bool
x && x = x -- oops!
_ && _ = False

The program won’t test whether the arguments are equal just because we happened to
use the same name for both. As far as the matching goes, we could just as well have
written _ && _ in the first case. And even worse: because we gave the same name to both
arguments, GHC(i) will refuse the function due to ”Conflicting definitions for ‘x’ ”.

9.3 Tuple and list patterns

While the examples above show that pattern matching helps in writing more elegant code,
that does not explain why it is so important. So, let’s consider the problem of writing a
definition for fst, the function which extracts the first element of a pair. At this point, that
appears to be an impossible task, as the only way of accessing the first value of the pair is
by using fst itself... The following function, however, does the same thing as fst (confirm
it in GHCi):

Example: A definition for fst

fst' :: (a, b) -> a
fst' (x, _) = x

5 If you are going to experiment with it in GHCi, call your version something else to avoid a name clash;
say, (&!&).

53

Next steps

It’s magic! Instead of using a regular variable in the left side of the equation, we specified
the argument with the pattern of the 2-tuple - that is, (,) - filled with a variable and the
_ pattern. Then the variable was automatically associated with the first component of the
tuple, and we used it to write the right side of the equation. The definition of snd is, of
course, analogous.

Furthermore, the trick demonstrated above can be done with lists as well. Here are the
actual definitions of head and tail:

Example: head, tail and patterns

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "Prelude.tail: empty list"

The only essential change in relation to the previous example was replacing (,) with the
pattern of the cons operator (:). These functions also have an equation using the pattern
of the empty list, []; however, since empty lists have no head or tail there is nothing to do
other than use error to print a prettier error message.

In summary, the power of pattern matching comes from its use in accessing the parts of
a complex value. Pattern matching on lists, in particular, will be extensively deployed in
Recursion6 and the chapters that follow it. Later on, we will explore what is happening
behind this seemingly magical feature.

9.4 let bindings

To conclude this chapter, a brief word about let bindings (an alternative to where clauses
for making local declarations). For instance, take the problem of finding the roots of a
polynomial of the form ax2 +bx+c (in other words, the solution to a second degree equation
— think back to your middle school math courses). Its solutions are given by:

x = −b±
√

b2 −4ac

2a

We could write the following function to compute the two values of x:

roots a b c =
((-b + sqrt(b * b - 4 * a * c)) / (2 * a),
(-b - sqrt(b * b - 4 * a * c)) / (2 * a))

6 Chapter 12 on page 69

54

let bindings

Writing the sqrt(b * b - 4 * a * c) term in both cases is annoying, though; we can
use a local binding instead, using either where or, as will be demonstrated below, a
let declaration:

roots a b c =
let sdisc = sqrt (b * b - 4 * a * c)
in ((-b + sdisc) / (2 * a),

(-b - sdisc) / (2 * a))

We put the let keyword before the declaration, and then use in to signal we are returning
to the ”main” body of the function. It is possible to put multiple declarations inside a single
let...in block — just make sure they are indented the same amount or there will be syntax
errors:

roots a b c =
let sdisc = sqrt (b * b - 4 * a * c)

twice_a = 2 * a
in ((-b + sdisc) / twice_a,

(-b - sdisc) / twice_a)

B Warning
Because indentation matters syntactically in Haskell, you need to be careful about
whether you are using tabs or spaces. By far the best solution is to configure your text
editor to insert two or four spaces in place of tabs. If you insist on keeping tabs as
distinct, at least ensure that your tabs always have the same length.

Note:
The Indentationa chapter has a full account of indentation rules.

a Chapter 23 on page 133

55

10 Simple input and output

10.1 Back to the real world

Beyond internally calculating values, we want our programs to interact with the world. The
most common beginners’ program in any language simply displays a ”hello world” greeting
on the screen. Here’s a Haskell version:

Prelude> putStrLn "Hello, World!"

putStrLn is one of the standard Prelude tools. As the ”putStr” part of the name suggests,
it takes a String as an argument and prints it to the screen. We could use putStr on its
own, but we usually include the ”Ln” part so to also print a line break. Thus, whatever else
is printed next will appear on a new line.

So now you should be thinking, ”what is the type of the putStrLn function?” It takes a
String and gives… um… what? What do we call that? The program doesn’t get something
back that it can use in another function. Instead, the result involves having the computer
change the screen. In other words, it does something in the world outside of the program.
What type could that have? Let’s see what GHCi tells us:

Prelude> :t putStrLn
putStrLn :: String -> IO ()

”IO” stands for ”input and output”. Wherever there is IO in a type, interaction with the
world outside the program is involved. We’ll call these IO values actions. The other part of
the IO type, in this case (), is the type of the return value of the action; that is, the type
of what it gives back to the program (as opposed to what it does outside the program).
() (pronounced as ”unit”) is a type that only contains one value also called () (effectively
a tuple with zero elements). Since putStrLn sends output to the world but doesn’t return
anything to the program, () is used as a placeholder. We might read IO () as ”action which
returns ()”.

A few more examples of when we use IO:

• print a string to the screen
• read a string from a keyboard
• write data to a file
• read data from a file

What makes IO actually work? Lots of things happen behind the scenes to take us from
putStrLn to pixels in the screen, but we don’t need to understand any of the details to
write our programs. A complete Haskell program is actually a big IO action. In a compiled
program, this action is called main and has type IO (). From this point of view, to write a
Haskell program is to combine actions and functions to form the overall action main that will

57

Simple input and output

be executed when the program is run. The compiler takes care of instructing the computer
on how to do this.

Exercises:
Back in the Type Basics chapter, we mentioned that the type of the
openWindow functiona had been simplified. Can you guess what the simplification was?

a Chapter 5.1.1 on page 26

10.2 Sequencing actions with do

do notation provides a convenient means of putting actions together (which is essential in
doing useful things with Haskell). Consider the following program:

Example: What is your name?

main = do
putStrLn "Please enter your name:"
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

Note:
Even though do notation looks very different from the Haskell code we have seen so far,
it is just syntactic sugar for a handful of functions, the most important of them being
the (>>=) operator. We could explain how those functions work and then introduce
do notation. However, there are several topics we would need to cover before we can
give a convincing explanation. Jumping in with do right now is a pragmatic short cut
that will allow you to start writing complete programs with IO right away. We will see
how do works later in the book, beginning with the ../Understanding monads/a chapter.

a Chapter 30 on page 179

Before we get into how do works, take a look at getLine. It goes to the outside world (to
the terminal in this case) and brings back a String. What is its type?

Prelude> :t getLine
getLine :: IO String

That means getLine is an IO action that, when run, will return a String. But what
about the input? While functions have types like a -> b which reflect that they take
arguments and give back results, getLine doesn’t actually take an argument. It takes as
input whatever is in the line in the terminal. However, that line in the outside world isn’t
a defined value with a type until we bring it into the Haskell program.

The program doesn’t know the state of the outside world until runtime, so it cannot predict
the exact results of IO actions. To manage the relationship of these IO actions to other

58

Sequencing actions with do

aspects of a program, the actions must be executed in a predictable sequence defined in
advance in the code. With regular functions that do not perform IO, the exact sequencing
of execution is less of an issue — as long as the results eventually go to the right places.

In our name program, we’re sequencing three actions: a putStrLn with a greeting, a get-
Line, and another putStrLn. With the getLine, we use <- notation which assigns a variable
name to stand for the returned value. We cannot know what the value will be in advance,
but we know it will use the specified variable name, so we can then use the variable else-
where (in this case, to prepare the final message being printed). The final action defines
the type of the whole do block. Here, the final action is the result of a putStrLn, and so
our whole program has type IO ().

Exercises:
Write a program which asks the user for the base and height of a right angled triangle,
calculates its area, and prints it to the screen. The interaction should look something
like:
The base?
3.3
The height?
5.4
The area of that triangle is 8.91

You will need to use the function read to convert user strings like ”3.3” into numbers
like 3.3 and the function show to convert a number into string.

10.2.1 Left arrow clarifications

While actions like getLine are almost always used to get values, we are not obliged to
actually get them. For example, we could write something like this:

Example: executing getLine directly

main = do
putStrLn "Please enter your name:"
getLine
putStrLn "Hello, how are you?"

In this case, we don’t use the input at all, but we still give the user the experience of entering
their name. By omitting the <-, the action will happen, but the data won’t be stored or
accessible to the program.

<- can be used with any action except the last

There are very few restrictions on which actions can have values obtained from them.
Consider the following example where we put the results of each action into a variable
(except the last... more on that later):

59

Simple input and output

Example: putting all results into a variable

main = do
x <- putStrLn "Please enter your name:"
name <- getLine
putStrLn ("Hello, " ++ name ++ ", how are you?")

The variable x gets the value out of its action, but that isn’t useful in this case because the
action returns the unit value (). So while we could technically get the value out of any
action, it isn’t always worth it.

So, what about the final action? Why can’t we get a value out of that? Let’s see what
happens when we try:

Example: getting the value out of the last action

main = do
x <- putStrLn "Please enter your name:"
name <- getLine
y <- putStrLn ("Hello, " ++ name ++ ", how are you?")

Whoops! Error!
HaskellWikibook.hs:5:2:

The last statement in a 'do' construct must be an expression

Making sense of this requires a somewhat deeper understanding of Haskell than we currently
have. Suffice it to say, whenever you use <- to get the value of an action, Haskell is always
expecting another action to follow it. So the final action cannot have any <-s.

10.2.2 Controlling actions

Normal Haskell constructions like if/then/elsecan be used within the do notation, but
you need to take some care here. For instance, in a simple ”guess the number” program, we
have:

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
if (read guess) < num

then do putStrLn "Too low!"
doGuessing num

else if (read guess) > num
then do putStrLn "Too high!"

60

Actions under the microscope

doGuessing num
else putStrLn "You Win!"

Remember that the if/then/else construction takes three arguments: the condition, the
”then” branch, and the ”else” branch. The condition needs to have type Bool, and the two
branches can have any type, provided that they have the same type. The type of the entire
if/then/elseconstruction is then the type of the two branches.
In the outermost comparison, we have (read guess) < num as the condition. That has
the correct type. Let’s now consider the ”then” branch. The code here is:

do putStrLn "Too low!"
doGuessing num

Here, we are sequencing two actions: putStrLn and doGuessing. The first has type IO (),
which is fine. The second also has type IO (), which is fine. The type result of the entire
computation is precisely the type of the final computation. Thus, the type of the ”then”
branch is also IO (). A similar argument shows that the type of the ”else” branch is also IO
(). This means the type of the entire if/then/elseconstruction is IO (), which is what
we want.

Note: be careful if you find yourself thinking, ”Well, I already started a do block; I don’t
need another one.” We can’t have code like:

do if (read guess) < num
then putStrLn "Too low!"

doGuessing num
else ...

Here, since we didn’t repeat the do, the compiler doesn’t know that the putStrLn and
doGuessing calls are supposed to be sequenced, and the compiler will think you’re trying
to call putStrLn with three arguments: the string, the function doGuessing and the integer
num, and thus reject the program.

Exercises:
Write a program that asks the user for his or her name. If the name is one of Simon,
John or Phil, tell the user that you think Haskell is a great programming language. If
the name is Koen, tell them that you think debugging Haskell is fun (Koen Classen is
one of the people who works on Haskell debugging); otherwise, tell the user that you
don’t know who he or she is. (As far as syntax goes there are a few different ways to do
it; write at least a version using if / then / else.)

10.3 Actions under the microscope

Actions may look easy up to now, but they are a common stumbling block for new Haskellers.
If you have run into trouble working with actions, see if any of your problems or questions
match any of the cases below. We suggest skimming this section now, then come back here
when you actually experience trouble.

61

Simple input and output

10.3.1 Mind your action types

One temptation might be to simplify our program for getting a name and printing it back
out. Here is one unsuccessful attempt:

Example: Why doesn’t this work?

main =
do putStrLn "What is your name? "

putStrLn ("Hello " ++ getLine)

Ouch! Error!
HaskellWikiBook.hs:3:26:

Couldn't match expected type `[Char]'
against inferred type `IO String'

Let us boil the example above down to its simplest form. Would you expect this program
to compile?

Example: This still does not work

main =
do putStrLn getLine

For the most part, this is the same (attempted) program, except that we’ve stripped off
the superfluous ”What is your name” prompt as well as the polite ”Hello”. One trick to
understanding this is to reason about it in terms of types. Let us compare:

putStrLn :: String -> IO ()
getLine :: IO String

We can use the same mental machinery we learned in ../Type basics/1 to figure how this
went wrong. putStrLn is expecting a String as input. We do not have a String; we have
something tantalisingly close: an IO String. This represents an action that will give us
a String when it’s run. To obtain the String that putStrLn wants, we need to run the
action, and we do that with the ever-handy left arrow, <-.

1 Chapter 5 on page 25

62

Actions under the microscope

Example: This time it works

main =
do name <- getLine

putStrLn name

Working our way back up to the fancy example:
main =
do putStrLn "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

Now the name is the String we are looking for and everything is rolling again.

10.3.2 Mind your expression types too

So, we’ve made a big deal out of the idea that you can’t use actions in situations that
don’t call for them. The converse of this is that you can’t use non-actions in situations that
expect actions. Say we want to greet the user, but this time we’re so excited to meet them,
we just have to SHOUT their name out:

63

Simple input and output

Example: Exciting but incorrect. Why?

import Data.Char (toUpper)

main =
do name <- getLine

loudName <- makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

-- Don't worry too much about this function; it just converts a String to
uppercase
makeLoud :: String -> String
makeLoud s = map toUpper s

This goes wrong...

Couldn't match expected type `IO' against inferred type `[]'
Expected type: IO t
Inferred type: String

In a 'do' expression: loudName <- makeLoud name

This is similar to the problem we ran into above: we’ve got a mismatch between something
expecting an IO type and something which does not produce IO. This time, the trouble is
the left arrow <-; we’re trying to left-arrow a value of makeLoud name, which really isn’t
left arrow material. It’s basically the same mismatch we saw in the previous section, except
now we’re trying to use regular old String (the loud name) as an IO String. The latter
is an action, something to be run, whereas the former is just an expression minding its
own business. We cannot simply use loudName = makeLoud name because a do sequences
actions, and loudName = makeLoud name is not an action.

So how do we extricate ourselves from this mess? We have a number of options:

• We could find a way to turn makeLoud into an action, to make it return IO String.
However, we don’t want to make actions go out into the world for no reason. Within
our program, we can reliably verify how everything is working. When actions engage the
outside world, our results are much less predictable. An IO makeLoud would be misguided.
Consider another issue too: what if we wanted to use makeLoud from some other, non-IO,
function? We really don’t want to engage IO actions except when absolutely necessary.

• We could use a special code called return to promote the loud name into an action,
writing something like loudName <- return (makeLoud name). This is slightly better.
We at least leave the makeLoud function itself nice and IO-free whilst using it in an IO-
compatible fashion. That’s still moderately clunky because, by virtue of left arrow, we’re
implying that there’s action to be had -- how exciting! -- only to let our reader down
with a somewhat anticlimactic return (note: we will learn more about appropriate uses
for return in later chapters).

64

Learn more

• Or we could use a let binding...

It turns out that Haskell has a special extra-convenient syntax for let bindings in actions.
It looks a little like this:

Example: let bindings in do blocks.

main =
do name <- getLine

let loudName = makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn ("Oh boy! Am I excited to meet you, " ++ loudName)

If you’re paying attention, you might notice that the let binding above is missing an in.
This is because let bindings inside do blocks do not require the in keyword. You could
very well use it, but then you’d have messy extra do blocks. For what it’s worth, the
following two blocks of code are equivalent.
sweet unsweet

do name <- getLine
let loudName = makeLoud name
putStrLn ("Hello " ++ loudName ++ "!")
putStrLn (

"Oh boy! Am I excited to meet you, "
++ loudName)

do name <- getLine
let loudName = makeLoud name
in do putStrLn ("Hello " ++ loudName ++ "!")

putStrLn (
"Oh boy! Am I excited to meet you, "

++ loudName)

Exercises:

1. Why does the unsweet version of the let binding require an extra do keyword?
2. Do you always need the extra do?
3. (extra credit) Curiously, let without in is exactly how we wrote things when we
were playing with the interpreter in the beginning of this book. Why is it ok
to omit the in keyword in the interpreter but needed (outside of do blocks) in a
source file?

10.4 Learn more

At this point, you have the fundamentals needed to do some fancier input/output. Here
are some IO-related topics you may want to check in parallel with the main track of this
course.

65

Simple input and output

• You could continue the sequential track, learning more about types2 and eventually mon-
ads3.

• Alternately: you could start learning about building graphical user interfaces in the
../GUI/4 chapter

• For more IO-related functionality, you could also consider learning more about the Sys-
tem.IO library5

2 Chapter 15 on page 95
3 Chapter 30 on page 179
4 Chapter 85 on page 557
5 Chapter 75 on page 505

66

11 Elementary Haskell

67

12 Recursion

Recursion plays a central role in Haskell (and computer science and mathematics in gen-
eral). Recursion is merely a form of repetition, but sometimes it is taught in confusing
or obscure ways. To understand recursion, you should separate the meaning of a recursive
function from its behaviour.

A function is recursive when one part of its definition includes the function itself again.
Along with the recursive condition, these functions generally also contain at least one base
case condition that stops (i.e. terminates) the function without calling the function again.
Without a terminating condition, recursive functions would lead to infinite regress (i.e. an
infinite loop).

12.1 Numeric recursion

12.1.1 The factorial function

Mathematics (specifically combinatorics) has a function called factorial.1 It takes a single
non-negative integer as an argument, finds all the positive integers less than or equal to
”n”, and multiplies them all together. For example, the factorial of 6 (denoted as 6!) is
1×2×3×4×5×6 = 720. We can use a recursive style to define this in Haskell:

Let’s look at the factorials of two adjacent numbers:

Example: Factorials of consecutive numbers

Factorial of 6 = 6 × 5 × 4 × 3 × 2 × 1
Factorial of 5 = 5 × 4 × 3 × 2 × 1

Notice how we’ve lined things up. You can see here that the 6! includes the 5!. In fact, 6!
is just 6×5!. Let’s continue:

Example: Factorials of consecutive numbers

Factorial of 4 = 4 × 3 × 2 × 1
Factorial of 3 = 3 × 2 × 1
Factorial of 2 = 2 × 1
Factorial of 1 = 1

1 In mathematics, n! normally means the factorial of a non-negative integer n, but that syntax is impossible
in Haskell, so we don’t use it here.

69

Recursion

The factorial of any number is just that number multiplied by the factorial of the number
one less than it. There’s one exception: if we ask for the factorial of 0, we don’t want to
multiply 0 by the factorial of -1 (factorial is only for positive numbers). In fact, we just say
the factorial of 0 is 1 (we define it to be so. Just take our word for it that this is right.2).
So, 0 is the base case for the recursion: when we get to 0 we can immediately say that the
answer is 1, no recursion needed. We can summarize the definition of the factorial function
as follows:

• The factorial of 0 is 1.
• The factorial of any other number is that number multiplied by the factorial of the number
one less than it.

We can translate this directly into Haskell:

Example: Factorial function

factorial 0 = 1
factorial n = n * factorial (n - 1)

This defines a new function called factorial. The first line says that the factorial of 0
is 1, and the second line says that the factorial of any other number n is equal to n times
the factorial of n - 1. Note the parentheses around the n - 1; without them this would
have been parsed as (factorial n) - 1; remember that function application (applying
a function to a value) takes precedence over anything else when grouping isn’t specified
otherwise (we say that function application binds more tightly than anything else).

Note:
The factorial function above is best defined in a file, but since it is a small function,
it is feasible to write it in GHCi as a one-liner. To do this, we need to add a semicolon
to separate the lines:

> let factorial 0 = 1; factorial n = n * factorial (n - 1)

Haskell actually uses line separation and other whitespace as a substitute for separation
and grouping characters such as semicolons. Haskell programmers generally prefer the
clean look of separate lines and appropriate indentation; still, explicit use of semicolons
and other markers is always an alternative.

The example above demonstrate the simple relationship between factorial of a number, n,
and the factorial of a slightly smaller number, n - 1.

Think of a function call as delegation. The instructions for a recursive function delegate a
sub-task. It just so happens that the delegate function uses the same instructions as the
delegator; it’s only the input data that changes. The only really confusing thing about

2 Actually, defining the factorial of 0 to be 1 is not just arbitrary; it’s because the factorial of 0 represents
an empty product ˆ{https://en.wikipedia.org/wiki/empty%20product} .

70

https://en.wikipedia.org/wiki/empty%20product

Numeric recursion

recursive functions is the fact that each function call uses the same parameter names, so it
can be tricky to keep track of the many delegations.

Let’s look at what happens when you execute factorial 3:

• 3 isn’t 0, so we calculate the factorial of 2
• 2 isn’t 0, so we calculate the factorial of 1
• 1 isn’t 0, so we calculate the factorial of 0
• 0 is 0, so we return 1.

• To complete the calculation for factorial 1, we multiply the current number, 1, by
the factorial of 0, which is 1, obtaining 1 (1 × 1).

• To complete the calculation for factorial 2, we multiply the current number, 2, by the
factorial of 1, which is 1, obtaining 2 (2 × 1 × 1).

• To complete the calculation for factorial 3, we multiply the current number, 3, by the
factorial of 2, which is 2, obtaining 6 (3 × 2 × 1 × 1).

(Note that we end up with the one appearing twice, since the base case is 0 rather than 1;
but that’s okay since multiplying by 1 has no effect. We could have designed factorial to
stop at 1 if we had wanted to, but the convention (which is often useful) is to define the
factorial of 0.)

When reading or composing recursive functions, you’ll rarely need to ”unwind” the recursion
bit by bit — we leave that to the compiler.

One more note about our recursive definition of factorial: the order of the two declara-
tions (one for factorial 0 and one for factorial n) is important. Haskell decides which
function definition to use by starting at the top and picking the first one that matches. If we
had the general case (factorial n) before the ’base case’ (factorial 0), then the general
n would match anything passed into it – including 0. The compiler would then conclude
that factorial 0 equals 0 * factorial (-1), and so on to negative infinity (clearly not
what we want). So, always list multiple function definitions starting with the most
specific and proceeding to the most general.

Exercises:

1. Type the factorial function into a Haskell source file and load it into GHCi.
2. Try examples like factorial 5 and factorial 1000.a
• What about factorial (-1)? Why does this happen?

3. The double factorial of a number n is the product of every other number from 1 (or
2) up to n. For example, the double factorial of 8 is 8 × 6 × 4 × 2 = 384, and the
double factorial of 7 is 7 × 5 × 3 × 1 = 105. Define a doublefactorial function
in Haskell.

a Interestingly, older scientific calculators can’t handle things like factorial of 1000 because they run out
of memory with that many digits!

71

Recursion

12.1.2 Loops, recursion, and accumulating parameters

Imperative languages use loops in the same sorts of contexts where Haskell programs use
recursion. For example, an idiomatic way of writing a factorial function in C, a typical
imperative language, would be using a for loop, like this:

Example: The factorial function in an imperative language

int factorial(int n) {
int res = 1;
for (; n > 1; n--)

res *= n;
return res;

}

Here, the for loop causes res to be multiplied by n repeatedly. After each repetition, 1 is
subtracted from n (that is what n-- does). The repetitions stop when n is no longer greater
than 1.

A straightforward translation of such a function to Haskell is not possible, since changing the
value of the variables res and n (a destructive update) would not be allowed. However, you
can always translate a loop into an equivalent recursive form by making each loop variable
into an argument of a recursive function. For example, here is a recursive ”translation” of
the above loop into Haskell:

Example: Using recursion to simulate a loop

factorial n = go n 1
where
go n res

| n > 1 = go (n - 1) (res * n)
| otherwise = res

go is an auxiliary function which actually performs the factorial calculation. It takes an
extra argument, res, which is used as an accumulating parameter to build up the final
result.

Note:
Depending on the languages you are familiar with, you might have concerns about
performance problems caused by recursion. However, compilers for Haskell and other
functional programming languages include a number of optimizations for recursion, (not
surprising given how often recursion is needed). Also, Haskell is lazy — calculations
are only performed once their results are required by other calculations, and that helps
to avoid some of the performance problems. We’ll discuss such issues and some of the
subtleties they involve further in later chapters.

72

Numeric recursion

12.1.3 Other recursive functions

As it turns out, there is nothing particularly special about the factorial function; a great
many numeric functions can be defined recursively in a natural way. For example, let’s
think about multiplication. When you were first learning multiplication (remember that
moment? :)), it may have been through a process of ’repeated addition’. That is, 5 × 4 is
the same as summing four copies of the number 5. Of course, summing four copies of 5 is
the same as summing three copies, and then adding one more – that is, 5 × 4 = 5 × 3 +
5. This leads us to a natural recursive definition of multiplication:

Example: Multiplication defined recursively

mult _ 0 = 0 -- anything times 0 is zero
mult n 1 = n -- anything times 1 is itself
mult n m = (mult n (m - 1)) + n -- recurse: multiply by one less, and add an
extra copy

Stepping back a bit, we can see how numeric recursion fits into the general recursive pattern.
The base case for numeric recursion usually consists of one or more specific numbers (often
0 or 1) for which the answer can be immediately given. The recursive case computes the
result by calling the function recursively with a smaller argument and using the result in
some manner to produce the final answer. The ’smaller argument’ used is often one less
than the current argument, leading to recursion which ’walks down the number line’ (like
the examples of factorial and mult above). However, the prototypical pattern is not the
only possibility; the smaller argument could be produced in some other way as well.

Exercises:

1. Expand out the multiplication 5 × 4 similarly to the expansion we used above for
factorial 3.

2. Define a recursive function power such that power x y raises x to the y power.
3. You are given a function plusOne x = x + 1. Without using any other (+)s, de-
fine a recursive function addition such that addition x y adds x and y together.

4. (Harder) Implement the function log2, which computes the integer log (base 2) of
its argument. That is, log2 computes the exponent of the largest power of 2 which
is less than or equal to its argument. For example, log2 16 = 4, log2 11 = 3,
and log2 1 = 0. (Small hint: read the last phrase of the paragraph immediately
preceding these exercises.)

73

Recursion

12.2 List-based recursion

Haskell has many recursive functions, especially concerning lists.3 Consider the
length function that finds the length of a list:

Example: The recursive definition of length

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

So, the type signature of length tells us that it takes any type of list and produces an Int.
The next line says that the length of an empty list is 0 (this is the base case). The final line
is the recursive case: if a list isn’t empty, then it can be broken down into a first element
(here called x) and the rest of the list (which will just be the empty list if there are no more
elements) which will, by convention, be called xs (i.e. plural of x). The length of the list is
1 (accounting for the x) plus the length of xs (as in the tail example in Next steps4, xs is
set when the argument list matches the (:) pattern).

Consider the concatenation function (++) which joins two lists together:

Example: The recursive (++)

Prelude> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]
Prelude> "Hello " ++ "world" -- Strings are lists of Chars
"Hello world"

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys

This is a little more complicated than length. The type says that (++) takes two lists
of the same type and produces another list of the same type. The base case says that
concatenating the empty list with a list ys is the same as ys itself. Finally, the recursive
case breaks the first list into its head (x) and tail (xs) and says that to concatenate the two
lists, concatenate the tail of the first list with the second list, and then tack the head x on
the front.

3 This is no coincidence; without mutable variables, recursion is the only way to implement control struc-
tures. This might sound like a limitation until you get used to it.

4 Chapter 9 on page 49

74

Don’t get TOO excited about recursion...

There’s a pattern here: with list-based functions, the base case usually involves an empty
list, and the recursive case involves passing the tail of the list to our function again, so that
the list becomes progressively smaller.

Exercises:
Give recursive definitions for the following list-based functions. In each case, think what
the base case would be, then think what the general case would look like, in terms of
everything smaller than it. (Note that all of these functions are available in Prelude, so
you will want to give them different names when testing your definitions in GHCi.)
1. replicate :: Int -> a -> [a], which takes a count and an element and returns
the list which is that element repeated that many times. E.g. replicate 3 'a'
= "aaa". (Hint: think about what replicate of anything with a count of 0 should
be; a count of 0 is your ’base case’.)

2. (!!) :: [a] -> Int -> a, which returns the element at the given ’index’. The
first element is at index 0, the second at index 1, and so on. Note that with this
function, you’re recursing both numerically and down a lista.

3. (A bit harder.) zip :: [a] -> [b] -> [(a, b)], which takes two lists and ’zips’
them together, so that the first pair in the resulting list is the first two elements
of the two lists, and so on. E.g. zip [1,2,3] "abc" = [(1, 'a'), (2, 'b'),
(3, 'c')]. If either of the lists is shorter than the other, you can stop once either
list runs out. E.g. zip [1,2] "abc" = [(1, 'a'), (2, 'b')].

4. Define length using an auxiliary function and an accumulating parameter, as in
the loop-like alternate version of factorial.

a Incidentally, (!!) provides a reasonable solution for the problem of the fourth exercise in Lists
and tuples/Retrieving values ˆ{https://en.wikibooks.org/wiki/..%2FLists%20and%20tuples%
23Pending%20questions} .

Recursion is used to define nearly all functions to do with lists and numbers. The next
time you need a list-based algorithm, start with a case for the empty list and a case for the
non-empty list and see if your algorithm is recursive.

12.3 Don’t get TOO excited about recursion...

Despite its ubiquity in Haskell, one rarely has to write functions that are explicitly recursive.
Instead, standard library functions perform recursion for us in various ways. For example,
a simpler way to implement the factorial function is:

Example: Implementing factorial with a standard library function

factorial n = product [1..n]

Almost seems like cheating, doesn’t it? :) This is the version of factorial that most
experienced Haskell programmers would write, rather than the explicitly recursive version

75

https://en.wikibooks.org/wiki/..%2FLists%20and%20tuples%23Pending%20questions
https://en.wikibooks.org/wiki/..%2FLists%20and%20tuples%23Pending%20questions

Recursion

we started out with. Of course, the product function uses some list recursion behind the
scenes,5 but writing factorial in this way means you, the programmer, don’t have to worry
about it.

5 Actually, it uses a function called foldl, which actually does the recursion.

76

13 Lists II

Earlier, we learned that Haskell builds lists via the cons operator (:) and the empty list [].
We saw how we can work on lists bit by bit using a combination of recursion and pattern
matching. In this chapter and the next, we will consider more in-depth techniques for list
processing and discover some new notation. We will get our first taste of Haskell features
like infinite lists, list comprehensions, and higher-order functions.

Note:
Throughout this chapter, you will read and write functions which sum, subtract, and
multiply elements of lists. For simplicity’s sake, we will pretend that list elements are
of type Integer. However, as you will recall from the discussions on Type basics IIa,
there are many different types with the Num typeclass. As an exercise of sorts, you
could figure out what the type signatures of such functions would be if we made them
polymorphic, allowing for the list elements to have any type in the class Num. To check
your signatures, just omit them temporarily, load the functions into GHCi, use :t and
let type inference guide you.

a Chapter 7 on page 37

13.1 Rebuilding lists

Here’s a function that doubles every element from a list of integers:

doubleList :: [Integer] -> [Integer]
doubleList [] = []
doubleList (n:ns) = (2 * n) : doubleList ns

Here, the base case is the empty list which evaluates to an empty list. In the recursive case,
doubleList builds up a new list by using (:). The first element of this new list is twice the
head of the argument, and we obtain the rest of the result by recursively calling doubleList
on the tail of the argument. When the tail gets to an empty list, the base case will be
invoked and recursion will stop.1

Let’s study the evaluation of an example expression:

doubleList [1,2,3,4]

We can work it out longhand by substituting the argument into the function definition, just
like schoolbook algebra:

1 Had we forgotten the base case, once the recursion got to an empty list the (x:xs) pattern match would
fail, and we would get an error.

77

Lists II

doubleList 1:[2,3,4] = (1*2) : doubleList (2 : [3,4])
= (1*2) : (2*2) : doubleList (3 : [4])
= (1*2) : (2*2) : (3*2) : doubleList (4 : [])
= (1*2) : (2*2) : (3*2) : (4*2) : doubleList []
= (1*2) : (2*2) : (3*2) : (4*2) : []
= 2 : 4 : 6 : 8 : []
= [2, 4, 6, 8]

Thus, we rebuilt the original list replacing every element by its double.

In this longhand evaluation exercise, the moment at which we choose to evaluate the mul-
tiplications does not affect the result. We could just as well have evaluated the doublings
immediately after each recursive call of doubleList.2

Haskell uses this flexibility on evaluation order in some important ways. As a pure functional
programming language, the compiler makes most of the decisions about when to actually
evaluate things. As a lazy language, Haskell usually defers evaluation until a final value
is needed (which may sometimes never occur).3 From the programmer’s point of view,
evaluation order rarely matters.4

13.1.1 Generalizing

To triple each element in a list, we could follow the same strategy as with doubleList:

tripleList :: [Integer] -> [Integer]
tripleList [] = []
tripleList (n:ns) = (3 * n) : tripleList ns

But we don’t want to write a new list-multiplying function for every different multiplier
(such as multiplying the elements of a list by 4, 8, 17 etc.). So, let’s make a general function
to allow multiplication by any number. Our new function will take two arguments: the
multiplicand as well as a list of Integers to multiply:

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList _ [] = []
multiplyList m (n:ns) = (m * n) : multiplyList m ns

This example deploys _ as a ”don’t care” pattern. The multiplicand is not used for the base
case, so we ignore that argument instead of giving it a name (like m, n, or ns).

We can test multiplyList to see that it works as expected:

Prelude> multiplyList 17 [1,2,3,4]
[17,34,51,68]

2 …as long as none of the calculations result in an error or nontermination, which are not problems in this
case.

3 The compiler may sometimes evaluate things sooner in order to improve efficiency.
4 One exception is the case of infinite lists (!) which we will consider in a short while.

78

Generalizing even further

Exercises:
Write the following functions and test them out. Don’t forget the type signatures.
1. takeInt returns the first n items in a list. So, takeInt 4

[11,21,31,41,51,61] returns [11,21,31,41].
2. dropInt drops the first n items in a list and returns the rest. So, dropInt 3

[11,21,31,41,51] returns [41,51].
3. sumInt returns the sum of the items in a list.
4. scanSum adds the items in a list and returns a list of the running totals. So,

scanSum [2,3,4,5] returns [2,5,9,14].
5. diffs returns a list of the differences between adjacent items. So, diffs

[3,5,6,8] returns [2,1,2]. (Hints: one solution involves writing an auxiliary
function which takes two lists and calculates the difference between corresponding
elements. Alternatively, you might explore the fact that lists with at least two
elements can be matched to a (x:y:ys) pattern.) The first three functions are in
Prelude under the names take, drop, and sum.

13.2 Generalizing even further

In this chapter, we started with a function constrained to multiplying the elements by 2.
Then, we recognized that we could avoid hard-coding a new function for each multiplicand
by making multiplyList to easily use any Integer. Now, what if we wanted a different
operator such as addition or to compute the square of each element?

We can generalize still further using a key functionality of Haskell. However, because the
solution can seem surprising, we will approach it in a somewhat roundabout way. Consider
the type signature of multiplyList:

multiplyList :: Integer -> [Integer] -> [Integer]

The first thing to know is that the -> arrow in type signatures is right associative. That
means we can read this signature as:

multiplyList :: Integer -> ([Integer] -> [Integer])

How should we understand that? It tells us that multiplyList is a function that takes
one Integer argument and evaluates to another function. The function it returns happens
to take a list of Integers and return another list of Integers.

Consider our old doubleList function redefined in terms of multiplyList:

doubleList :: [Integer] -> [Integer]
doubleList xs = multiplyList 2 xs

Writing this way, we can clearly cancel out the ‘xs‘:

doubleList = multiplyList 2

This definition style (with no argument variables) is called point-free style. Our definition
now says that applying only one argument to multiplyList doesn’t fail to evaluate, rather

79

Lists II

it gives us a more specific function of type [Integer] -> [Integer] instead of finishing
with a final [Integer] value.

We now see that functions in Haskell behave much like any other value. Functions can
return other functions, and functions can stand alone as objects without mentioning their
arguments. Functions seem almost like normal constants. Can we use functions themselves
as arguments even? Yes, and that’s the key to the next step in generalizing multiplyList.
We need a function that takes any other appropriate function and applies the given function
to the elements of a list:

applyToIntegers :: (Integer -> Integer) -> [Integer] -> [Integer]
applyToIntegers _ [] = []
applyToIntegers f (n:ns) = (f n) : applyToIntegers f ns

With applyToIntegers, we can take any Integer -> Integer function and apply it to
the elements of a list of Integers. We can thus use this generalized function to redefine
multiplyList:

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList m = applyToIntegers ((*) m)

That uses the (*) function with a single initial argument to create a new function which is
ready to take one more argument (which, in this use case, will come from the numbers in a
given list).

13.2.1 Currying

If all this abstraction confuses you, consider a concrete example: When we multiply 5 * 7
in Haskell, the (*) function doesn’t just take two arguments at once, it actually first takes
the 5 and returns a new 5* function; and that new function then takes a second argument
and multiplies that by 5. So, for our example, we then give the 7 as an argument to the 5*
function, and that returns us our final evaluated number (35).

So, all functions in Haskell really take only one argument. However, when we
know how many intermediate functions we will generate to reach a final result, we can
treat functions as if they take many arguments. The number of arguments we generally talk
about functions taking is actually the number of one-argument functions we get between
the first argument and a final, non-functional result value.

The process of creating intermediate functions when feeding arguments into a complex
function is called currying (named after Haskell Curry, also the namesake of the Haskell
programming language).

13.3 The map function

While applyToIntegers has type (Integer -> Integer) -> [Integer] -> [Integer],
the definition itself contains nothing specific to integers. To use the same logic with other
types of lists, we could define versions such as applyToChars, applyToStrings and so on.
They would all have the same definition but different type signatures. We can avoid all that

80

The map function

redundancy with the final step in generalizing: making a fully polymorphic version with
signature (a -> b) -> [a] -> [b]. Prelude already has this function, and it is called
map:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = (f x) : map f xs

With map, we can effortlessly implement functions as different as...

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList m = map ((*) m)

... and...

heads :: [[a]] -> [a]
heads = map head

Prelude> heads [[1,2,3,4],[4,3,2,1],[5,10,15]]
[1,4,5]

map is the general solution for applying a function to each and every element of a list. Our
original doubleList problem was simply a specific version of map. Functions like map which
take other functions as arguments are called higher-order functions. We will learn about
more higher-order functions for list processing in the next chapter.

Exercises:

1. Use map to build functions that, given a list xs of Ints, return:
• A list that is the element-wise negation of xs.
• A list of lists of Ints xss that, for each element of xs, contains the divisors of xs.
You can use the following function to get the divisors:
divisors p = [f | f <- [1..p], p `mod` f == 0]

• The element-wise negation of xss.
2. Implement a Run Length Encoding (RLE) encoder and decoder.
• The idea of RLE is simple; given some input:

"aaaabbaaa"
compress it by taking the length of each run of characters:(4,'a'), (2, 'b'),
(3, 'a')

• The concat and group functions might be helpful. In order to use group,
import the Data.List module by typing :m Data.List at the ghci prompt or by
adding import Data.List to your Haskell source code file.

• What is the type of your encode and decode functions?
• How would you convert the list of tuples (e.g. [(4,'a'), (6,'b')]) into a
string (e.g. ”4a6b”)?

• (bonus) Assuming numeric characters are forbidden in the original string, how
would you parse that string back into a list of tuples?

81

Lists II

13.4 Tips and Tricks

A few miscellaneous notes about lists in Haskell:

13.4.1 Dot Dot Notation

Haskell has a convenient shorthand for writing ordered lists of regularly-spaced integers.
Some examples to illustrate it:

Code Result
---- ------
[1..10] [1,2,3,4,5,6,7,8,9,10]
[2,4..10] [2,4,6,8,10]
[5,4..1] [5,4,3,2,1]
[1,3..10] [1,3,5,7,9]

The same notation works with characters and even with floating point numbers. Unfortu-
nately, floating-point numbers are problematic due to rounding errors. Try this:

[0,0.1 .. 1]

Note:
The .. notation only works with sequences with fixed differences between consecutive
elements. For instance, you cannot write...
[0,1,1,2,3,5,8..100]

... and expect to magically get back the rest of the Fibonacci series.a

a http://en.wikipedia.org/wiki/Fibonacci_number

13.4.2 Infinite Lists

Thanks to lazy evaluation, Haskell lists can be infinite. For example, the following generates
the infinite list of integers starting with 1:

[1..]

(If you try this in GHCi, remember you can stop an evaluation with Ctrl-c).

The same effect could be achieved with a recursive function:

intsFrom n = n : intsFrom (n + 1) -- note there is no base case!
positiveInts = intsFrom 1

Infinite lists are useful in practice because Haskell’s lazy evaluation never actually evaluates
more than it needs at any given moment. In most cases, we can treat an infinite list like an
ordinary one. The program will only go into an infinite loop when evaluation requires all
the values in the list. So, we can’t sort or print an infinite list, but:

82

http://en.wikipedia.org/wiki/Fibonacci_number

Tips and Tricks

evens = doubleList [1..]

will define ”evens” to be the infinite list [2,4,6,8..], and we can then pass ”evens” into other
functions that only need to evaluate part of the list for their final result. Haskell will know
to only use the portion of the infinite list needed in the end.

Compared to hard-coding a long finite list, it’s often more convenient to define an infinite
list and then take the first few items. An infinite list can also be a handy alternative to the
traditional endless loop at the top level of an interactive program.

13.4.3 A note about head and tail

Given the choice of using either the (:) pattern or head/tail to split lists, pattern
matching is almost always preferable. It may be tempting to use head and tail due to
simplicity and terseness, but it is too easy to forget that they fail on empty lists (and
runtime crashes are never good). We do have a Prelude function, null :: [a] -> Bool,
which returns True for empty lists and False otherwise, so that provides a sane way of
checking for empty lists without pattern matching; but matching an empty list tends to be
cleaner and clearer than the corresponding if-then-else expression using null.

Exercises:

1. With respect to your solutions to the first set of exercises in this chapter, is there
any difference between scanSum (takeInt 10 [1..]) and takeInt 10 (scan-
Sum [1..])?

2. Write functions that, when applied to lists, give the last element of the list and
the list with the last element dropped.
This functionality is provided by Prelude through the last and init functions.
Like head and tail, they blow up when given empty lists.

83

14 Lists III

14.1 Folds

Like map, a fold is a higher order function that takes a function and a list. However, instead
of applying the function element by element, the fold uses it to combine the list elements
into a result value.

Let’s look at a few concrete examples. sum could be implemented as:

Example: sum

sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

and product as:

Example: product

product :: [Integer] -> Integer
product [] = 1
product (x:xs) = x * product xs

concat, which takes a list of lists and joins (concatenates) them into one:

Example: concat

concat :: [[a]] -> [a]
concat [] = []
concat (x:xs) = x ++ concat xs

All these examples show a pattern of recursion known as a fold. Think of the name referring
to a list getting ”folded up” into a single value or to a function being ”folded between” the
elements of the list.

Prelude defines four fold functions: foldr, foldl, foldr1 and foldl1.

85

Lists III

14.1.1 foldr

The right-associative foldr folds up a list from the right to left. As it proceeds, foldr
uses the given function to combine each of the elements with the running value called the
accumulator. When calling foldr, the initial value of the accumulator is set as an argument.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)

The first argument to foldr is a function with two arguments. The second argument is
value for the accumulator (which often starts at a neutral ”zero” value). The third argument
is the list to be folded.

In sum, f is (+), and acc is 0. In concat, f is (++) and acc is []. In many cases (like all
of our examples so far), the function passed to a fold will be one that takes two arguments
of the same type, but this is not necessarily the case (as we can see from the (a -> b ->
b) part of the type signature — if the types had to be the same, the first two letters in the
type signature would have matched).

Remember, a list in Haskell written as [a, b, c] is an alternative (syntactic sugar) style
for a : b : c : [].

Now, foldr f acc xs in the foldr definition simply replaces each cons (:) in the xs list
with the function f while replacing the empty list at the end with acc:

foldr f acc (a:b:c:[]) = f a (f b (f c acc))

Note how the parentheses nest around the right end of the list.

An elegant visualisation is given by picturing the list data structure as a tree:

: f
/ \ / \
a : foldr f acc a f

/ \ -------------> / \
b : b f

/ \ / \
c [] c acc

We can see here that foldr (:) [] will return the list completely unchanged. That sort of
function that has no effect is called an identity function. You should start building a habit
of looking for identity functions in different cases, and we’ll discuss them more later when
we learn about monoids.

14.1.2 foldl

The left-associative foldl processes the list in the opposite direction, starting at the left
side with the first element.

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs

86

Folds

So, brackets in the resulting expression accumulate around the left end of the list:

foldl f acc (a:b:c:[]) = f (f (f acc a) b) c

The corresponding trees look like:

: f
/ \ / \
a : foldl f acc f c

/ \ -------------> / \
b : f b

/ \ / \
c [] acc a

Because all folds include both left and right elements, beginners can get confused by the
names. You could think of foldr as short for fold-right-to-left and foldl as fold-left-to-right.
The names refer to where the fold starts.

Note:
Technical Note: foldl is tail-recursive, that is, it recurses immediately, calling itself. For
this reason the compiler will optimise it to a simple loop for efficiency. However, Haskell
is a lazy language, so the calls to f will be left unevaluated by default, thus building
up an unevaluated expression in memory that includes the entire length of the list. To
avoid running out of memory, we have a version of foldl called foldl'that is strict — it
forces the evaluation of f immediately at each step.
An apostrophe at the end of a function name is pronounced ”tick” as in ”fold-L-
tick”. A tick is a valid character in Haskell identifiers. foldl' can be found in the
Data.List library module (imported by adding import Data.List to the beginning of
a source file). As a rule of thumb, you should use foldr on lists that might be infinite
or where the fold is building up a data structure and use foldl' if the list is known to
be finite and comes down to a single value. There is almost never a good reason to use
foldl (without the tick), though it might just work if the lists fed to it are not too long.

14.1.3 foldr1 and foldl1

As previously noted, the type declaration for foldr makes it quite possible for the list
elements and result to be of different types. For example, ”read” is a function that takes a
string and converts it into some type (the type system is smart enough to figure out which
one). In this case we convert it into a float.

87

Lists III

Example: The list elements and results can have different types

addStr :: String -> Float -> Float
addStr str x = read str + x

sumStr :: [String] -> Float
sumStr = foldr addStr 0.0

There is also a variant called foldr1 (”fold - R - one”) which dispenses with an explicit
”zero” for an accumulator by taking the last element of the list instead:

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "Prelude.foldr1: empty list"

And foldl1 as well:

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "Prelude.foldl1: empty list"

Note: Just like for foldl, the Data.List library includes foldl1’ as a strict version of foldl1.

With foldl1 and foldr1, all the types have to be the same, and an empty list is an error.
These variants are useful when there is no obvious candidate for the initial accumulator
value and we are sure that the list is not going to be empty. When in doubt, stick with
foldr or foldl’.

14.1.4 folds and laziness

One reason that right-associative folds are more natural in Haskell than left-associative ones
is that right folds can operate on infinite lists. A fold that returns an infinite list is perfectly
usable in a larger context that doesn’t need to access the entire infinite result. In that case,
foldr can move along as much as needed and the compiler will know when to stop. However,
a left fold necessarily calls itself recursively until it reaches the end of the input list (because
the recursive call is not made in an argument to f). Needless to say, no end will be reached
if an input list to foldl is infinite.

As a toy example, consider a function echoes that takes a list of integers and produces a
list such that wherever the number n occurs in the input list, it is replicated n times in the
output list. To create our echoes function, we will use the prelude function replicate in
which replicate n x is a list of length n with x the value of every element.

We can write echoes as a foldr quite handily:

echoes = foldr (\ x xs -> (replicate x x) ++ xs) []
take 10 (echoes [1..]) -- [1,2,2,3,3,3,4,4,4,4]

88

Scans

(Note: This definition is compact thanks to the \ x xs ->syntax. The \, meant to look
like a lambda (λ), works as an unnamed function for cases where we won’t use the function
again anywhere else. Thus, we provide the definition of our one-time function in situ. In
this case, x and xs are the arguments, and the right-hand side of the definition is what
comes after the ->.)

We could have instead used a foldl:

echoes = foldl (\xs x -> xs ++ (replicate x x)) []
take 10 (echoes [1..]) -- not terminating

but only the foldr version works on an infinite lists. What would happen if you just evaluate
echoes [1..]? Try it! (If you try this in GHCi or a terminal, remember you can stop an
evaluation with Ctrl-c, but you have to be quick and keep an eye on the system monitor or
your memory will be consumed in no time and your system will hang.)

As a final example, map itself can be implemented as a fold:

map f = foldr (\x xs -> f x : xs) []

Folding takes some time to get used to, but it is a fundamental pattern in functional
programming and eventually becomes very natural. Any time you want to traverse a list
and build up a result from its members, you likely want a fold.

Exercises:

1. Define the following functions recursively (like the definitions for sum, product and
concat above), then turn them into a fold:
• and :: [Bool] -> Bool, which returns True if a list of Bools are all True, and
False otherwise.

• or :: [Bool] -> Bool, which returns True if any of a list of Bools are True,
and False otherwise.

2. Define the following functions using foldl1 or foldr1:
• maximum :: Ord a => [a] -> a, which returns the maximum element of a list
(hint: max :: Ord a => a -> a -> a returns the maximum of two values).

• minimum :: Ord a => [a] -> a, which returns the minimum element of a list
(hint: min :: Ord a => a -> a -> a returns the minimum of two values).

3. Use a fold (which one?) to define reverse :: [a] -> [a], which returns a list
with the elements in reverse order.

Note that all of these are Prelude functions, so they will be always close at hand when
you need them. (Also, that means you must use slightly different names in order to
test your answers in GHCi.)

14.2 Scans

A ”scan” is like a cross between a map and a fold. Folding a list accumulates a single return
value, whereas mapping puts each item through a function returning a separate result for

89

Lists III

each item. A scan does both: it accumulates a value like a fold, but instead of returning
only a final value it returns a list of all the intermediate values.

Prelude contains four scan functions:

scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl accumulates the list from the left, and the second argument becomes the first item
in the resulting list. So, scanl (+) 0 [1,2,3] = [0,1,3,6].

scanl1 :: (a -> a -> a) -> [a] -> [a]

scanl1 uses the first item of the list as a zero parameter. It is what you would typically use
if the input and output items are the same type. Notice the difference in the type signatures
between scanl and scanl1. scanl1 (+) [1,2,3] = [1,3,6].

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr (+) 0 [1,2,3] = [6,5,3,0]
scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 (+) [1,2,3] = [6,5,3]

These two functions are the counterparts of scanl and scanl1 that accumulate the totals
from the right.

Exercises:

1. Write your own definition of scanr, first using recursion, and then using foldr.
Do the same for scanl first using recursion then foldl.

2. Define the following functions:
• factList :: Integer -> [Integer], which returns a list of factorials from 1
up to its argument. For example, factList 4 = [1,2,6,24]. More to be added

14.3 filter

A common operation performed on lists is filtering1 — generating a new list composed only
of elements of the first list that meet a certain condition. A simple example: making a list
of only even numbers from a list of integers.

retainEven :: [Int] -> [Int]
retainEven [] = []
retainEven (n:ns) =
-- mod n 2 computes the remainder for the integer division of n by 2.

if (mod n 2) == 0
then n : (retainEven ns)
else retainEven ns

This definition is somewhat verbose and specific. Prelude provides a concise and general
filter function with type signature:

filter :: (a -> Bool) -> [a] -> [a]

1 https://en.wikipedia.org/wiki/Filter%20%28mathematics%29

90

https://en.wikipedia.org/wiki/Filter%20%28mathematics%29

List comprehensions

So, a (a -> Bool) function tests an elements for some condition, we then feed in a list to
be filtered, and we get back the filtered list.

To write retainEven using filter, we need to state the condition as an auxiliary (a ->
Bool) function, like this one:

isEven :: Int -> Bool
isEven n = (mod n 2) == 0

And then retainEven becomes simply:

retainEven ns = filter isEven ns

We used ns instead of xs to indicate that we know these are numbers and not just anything,
but we can ignore that and use a more terse point-free definition:

retainEven = filter isEven

This is like what we demonstrated before for map and the folds. Like filter, those take
another function as argument; and using them point-free emphasizes this ”functions-of-
functions” aspect.

14.4 List comprehensions

List comprehensions are syntactic sugar for some common list operations, such as filtering.
For instance, instead of using the Prelude filter, we could write retainEven like this:

retainEven es = [n | n <- es, isEven n]

This compact syntax may look intimidating, but it is simple to break down. One interpre-
tation is:

• (Starting from the middle) Take the list es and draw (the ”<-”) each of its elements as a
value n.

• (After the comma) For each drawn n test the boolean condition isEven n.
• (Before the vertical bar) If (and only if) the boolean condition is satisfied, append n to
the new list being created (note the square brackets around the whole expression).

Thus, if es is [1,2,3,4], then we would get back the list [2,4]. 1 and 3 were not drawn because
(isEven n) == False.

The power of list comprehensions comes from being easily extensible. Firstly, we can use as
many tests as we wish (even zero!). Multiple conditions are written as a comma-separated
list of expressions (which should evaluate to a Boolean, of course). For a simple example,
suppose we want to modify retainEven so that only numbers larger than 100 are retained:

retainLargeEvens :: [Int] -> [Int]
retainLargeEvens es = [n | n <- es, isEven n, n > 100]

Furthermore, we are not limited to using n as the element to be appended when generating
a new list. Instead, we could place any expression before the vertical bar (if it is compatible

91

Lists III

with the type of the list, of course). For instance, if we wanted to subtract one from every
even number, all it would take is:

evensMinusOne es = [n - 1 | n <- es, isEven n]

In effect, that means the list comprehension syntax incorporates the functionalities of
map and filter.

To further sweeten things, the left arrow notation in list comprehensions can be combined
with pattern matching. For example, suppose we had a list of (Int, Int) tuples, and we
would like to construct a list with the first element of every tuple whose second element is
even. Using list comprehensions, we might write it as follows:

firstForEvenSeconds :: [(Int, Int)] -> [Int]
firstForEvenSeconds ps = [fst p | p <- ps, isEven (snd p)] -- here, p is for
pairs.

Patterns can make it much more readable:

firstForEvenSeconds ps = [x | (x, y) <- ps, isEven y]

As in other cases, arbitrary expressions may be used before the |. If we wanted a list with
the double of those first elements:

doubleOfFirstForEvenSeconds :: [(Int, Int)] -> [Int]
doubleOfFirstForEvenSeconds ps = [2 * x | (x, y) <- ps, isEven y]

Not counting spaces, that function code is shorter than its descriptive name!

There are even more possible tricks:

allPairs :: [(Int, Int)]
allPairs = [(x, y) | x <- [1..4], y <- [5..8]]

This comprehension draws from two lists, and generates all possible (x, y) pairs with the
first element drawn from [1..4] and the second from [5..8]. In the final list of pairs, the
first elements will be those generated with the first element of the first list (here, 1), then
those with the second element of the first list, and so on. In this example, the full list is
(linebreaks added for clarity):

Prelude> [(x, y) | x <- [1..4], y <- [5..8]]
[(1,5),(1,6),(1,7),(1,8),
(2,5),(2,6),(2,7),(2,8),
(3,5),(3,6),(3,7),(3,8),
(4,5),(4,6),(4,7),(4,8)]

We could easily add a condition to restrict the combinations that go into the final list:

somePairs = [(x, y) | x <- [1..4], y <- [5..8], x + y > 8]

This list only has the pairs with the sum of elements larger than 8; starting with (1,8),
then (2,7) and so forth.

92

List comprehensions

Exercises:

1. Write a returnDivisible :: Int -> [Int] -> [Int] function which filters a
list of integers retaining only the numbers divisible by the integer passed as first
argument. For integers x and n, x is divisible by n if (mod x n) == 0 (note that
the test for evenness is a specific case of that).

2.
3. Write a function choosingTails :: [[Int]] -> [[Int]] using list comprehen-
sion syntax with appropriate guards (filters) for empty lists returning a list of tails
following a head bigger than 5:
choosingTails [[7,6,3],[],[6,4,2],[9,4,3],[5,5,5]]
-- [[6,3],[4,2],[4,3]]

4.
5. Does the order of guards matter? You may find it out by playing with the function
of the preceding exercise.

6.
7. Over this section we’ve seen how list comprehensions are essentially syntactic sugar
for filter and map. Now work in the opposite direction and define alternative
versions of the filter and map using the list comprehension syntax.

8.
9. Rewrite doubleOfFirstForEvenSeconds using filter and map instead of list
comprehension.

93

15 Type declarations

You’re not restricted to working with just the types provided by default with the language.
There are many benefits to defining your own types:

• Code can be written in terms of the problem being solved, making programs easier to
design, write and understand.

• Related pieces of data can be brought together in ways more convenient and meaningful
than simply putting and getting values from lists or tuples.

• Pattern matching and the type system can be used to their fullest extent by making them
work with your custom types.

Haskell has three basic ways to declare a new type:

• The data declaration, which defines new data types.
• The type declaration for type synonyms, that is, alternative names for existing types.
• The newtype declaration, which defines new data types equivalent to existing ones.

In this chapter, we will study data and type. In a later chapter, we will discuss newtype and
see where it can be useful.

15.1 data and constructor functions

data is used to define new data types mostly using existing ones as building blocks. Here’s
a data structure for elements in a simple list of anniversaries:

data Anniversary = Birthday String Int Int Int -- name, year, month, day
| Wedding String String Int Int Int -- spouse name 1, spouse

name 2, year, month, day

This declares a new data type Anniversary, which can be either a Birthday or a Wedding.
A Birthday contains one string and three integers and a Wedding contains two strings and
three integers. The definitions of the two possibilities are separated by the vertical bar.
The comments explain to readers of the code about the intended use of these new types.
Moreover, with the declaration we also get two constructor functions for Anniversary;
appropriately enough, they are called Birthday and Wedding. These functions provide a
way to build a new Anniversary.

Types defined by data declarations are often referred to as algebraic data types, which is
something we will address further in later chapters.

As usual with Haskell, the case of the first letter is important: type names and constructor
functions must start with capital letters. Other than this syntactic detail, constructor
functions work pretty much like the ”conventional” functions we have met so far. In fact, if
you use :t in GHCi to query the type of, say, Birthday, you’ll get:

95

Type declarations

• Main> :t Birthday Birthday :: String -> Int -> Int -> Int -> Anniversary

Meaning it’s just a function which takes one String and three Int as arguments and evaluates
to an Anniversary. This anniversary will contain the four arguments we passed as specified
by the Birthday constructor.

Calling constructors is no different from calling other functions. For example, suppose we
have John Smith born on 3rd July 1968:

johnSmith :: Anniversary
johnSmith = Birthday "John Smith" 1968 7 3

He married Jane Smith on 4th March 1987:

smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" 1987 3 4

These two anniversaries can, for instance, be put in a list:

anniversariesOfJohnSmith :: [Anniversary]
anniversariesOfJohnSmith = [johnSmith, smithWedding]

Or you could just as easily have called the constructors straight away when building the list
(although the resulting code looks a bit cluttered).

anniversariesOfJohnSmith = [Birthday "John Smith" 1968 7 3, Wedding "John Smith"
"Jane Smith" 1987 3 4]

15.2 Deconstructing types

To use our new data types, we must have a way to access their contents. For instance, one
very basic operation with the anniversaries defined above would be extracting the names
and dates they contain as a String. So we need a showAnniversary function (for the sake
of code clarity, we used an auxiliary showDate function but let’s ignore it for a moment):

showDate :: Int -> Int -> Int -> String
showDate y m d = show y ++ "-" ++ show m ++ "-" ++ show d

showAnniversary :: Anniversary -> String

showAnniversary (Birthday name year month day) =
name ++ " born " ++ showDate year month day

showAnniversary (Wedding name1 name2 year month day) =
name1 ++ " married " ++ name2 ++ " on " ++ showDate year month day

This example shows how we can deconstruct the values built in our data types.
showAnniversary takes a single argument of type Anniversary. Instead of just provid-
ing a name for the argument on the left side of the definition, however, we specify one of
the constructor functions and give names to each argument of the constructor (which cor-
respond to the contents of the Anniversary). A more formal way of describing this ”giving
names” process is to say we are binding variables. ”Binding” is being used in the sense of

96

type for making type synonyms

assigning a variable to each of the values so that we can refer to them on the right side of
the function definition.

To handle both ”Birthday” and ”Wedding” Anniversaries, we needed to provide two function
definitions, one for each constructor. When showAnniversary is called, if the argument is a
Birthday Anniversary, the first definition is used and the variables name, month, date and
year are bound to its contents. If the argument is a Wedding Anniversary, then the second
definition is used and the variables are bound in the same way. This process of using a
different version of the function depending on the type of constructor is pretty much like
what happens when we use a case statement or define a function piece-wise.

Note that the parentheses around the constructor name and the bound variables are manda-
tory; otherwise the compiler or interpreter would not take them as a single argument. Also,
it is important to have it absolutely clear that the expression inside the parentheses is not a
call to the constructor function, even though it may look just like one.

Exercises:
Note: The solution of this exercise is given near the end of the chapter, so we recommend
that you attempt it before getting there.
Reread the function definitions above. Then look closer at the showDate helper function.
We said it was provided ”for the sake of code clarity”, but there is a certain clumsiness
in the way it is used. You have to pass three separate Int arguments to it, but these
arguments are always linked to each other as part of a single date. It would make no
sense to do things like passing the year, month and day values of the Anniversary in a
different order, or to pass the month value twice and omit the day.
• Could we use what we’ve seen in this chapter so far to reduce this clumsiness?
• Declare a Date type which is composed of three Int, corresponding to year, month and
day. Then, rewrite showDate so that it uses the new Date data type. What changes
will then be needed in showAnniversary and the Anniversary for them to make use
of Date?.

15.3 type for making type synonyms

As mentioned in the introduction of this module, code clarity is one of the motivations for
using custom types. In that spirit, it could be nice to make it clear that the Strings in the
Anniversary type are being used as names while still being able to manipulate them like
ordinary Strings. This calls for a type declaration:

type Name = String

The code above says that a Name is now a synonym for a String. Any function that takes
a String will now take a Name as well (and vice-versa: functions that take Name will accept
any String). The right hand side of a type declaration can be a more complex type as
well. For example, String itself is defined in the standard libraries as

type String = [Char]

We can do something similar for the list of anniversaries we made use of:

97

Type declarations

type AnniversaryBook = [Anniversary]

Type synonyms are mostly just a convenience. They help make the roles of types clearer or
provide an alias to such things as complicated list or tuple types. It is largely a matter of
personal discretion to decide how type synonyms should be deployed. Abuse of synonyms
could make code confusing (for instance, picture a long program using multiple names for
common types like Int or String simultaneously).

Incorporating the suggested type synonyms and the Date type we proposed in the exer-
cise(*) of the previous section the code we’ve written so far looks like this:

((*) last chance to try that exercise without looking at the spoilers.)

type Name = String

data Anniversary =
Birthday Name Date
| Wedding Name Name Date

data Date = Date Int Int Int -- Year, Month, Day

johnSmith :: Anniversary
johnSmith = Birthday "John Smith" (Date 1968 7 3)

smithWedding :: Anniversary
smithWedding = Wedding "John Smith" "Jane Smith" (Date 1987 3 4)

type AnniversaryBook = [Anniversary]

anniversariesOfJohnSmith :: AnniversaryBook
anniversariesOfJohnSmith = [johnSmith, smithWedding]

showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" ++ show m ++ "-" ++ show d

showAnniversary :: Anniversary -> String
showAnniversary (Birthday name date) =

name ++ " born " ++ showDate date
showAnniversary (Wedding name1 name2 date) =

name1 ++ " married " ++ name2 ++ " on " ++ showDate date

Even in a simple example like this one, there is a noticeable gain in simplicity and clarity
compared to the same task using only Ints, Strings, and corresponding lists.

Note that the Date type has a constructor function which is called Date as well. That is
perfectly valid and indeed giving the constructor the same name of the type when there is
just one constructor is good practice, as a simple way of making the role of the function
obvious.

Note:
After these initial examples, the mechanics of using constructor functions may look a
bit unwieldy, particularly if you’re familiar with analogous features in other languages.
There are syntactical constructs that make dealing with constructors more convenient.
These will be dealt with later on, when we return to the topic of constructors and data
types to explore them in detail.

98

16 Pattern matching

In the previous modules, we introduced and made occasional reference to pattern matching.
Now that we have developed some familiarity with the language, it is time to take a proper,
deeper look. We will kick-start the discussion with a condensed description, which we will
expand upon throughout the chapter:

In pattern matching, we attempt to match values against patterns and, if so desired,
bind variables to successful matches.

16.1 Analysing pattern matching

Pattern matching is virtually everywhere. For example, consider this definition of map:

map _ [] = []
map f (x:xs) = f x : map f xs

At surface level, there are four different patterns involved, two per equation.

• f is a pattern which matches anything at all, and binds the f variable to whatever is
matched.

• (x:xs) is a pattern that matches a non-empty list which is formed by something (which
gets bound to the x variable) which was cons’d (by the (:) function) onto something else
(which gets bound to xs).

• [] is a pattern that matches the empty list. It doesn’t bind any variables.
• _ is the pattern which matches anything without binding (wildcard, ”don’t care” pattern).

In the (x:xs) pattern, x and xs can be seen as sub-patterns used to match the parts of
the list. Just like f, they match anything - though it is evident that if there is a successful
match and x has type a, xs will have type [a]. Finally, these considerations imply that
xs will also match an empty list, and so a one-element list matches (x:xs).

From the above dissection, we can say pattern matching gives us a way to:

• recognize values. For instance, when map is called and the second argument matches
[] the first equation for map is used instead of the second one.

• bind variables to the recognized values. In this case, the variables f, x, and xs are assigned
to the values passed as arguments to map when the second equation is used, and so we
can use these values through the variables in the right-hand side of =. As _ and [] show,
binding is not an essential part of pattern matching, but just a side effect of using variable
names as patterns.

• break down values into parts, as the (x:xs) pattern does by binding two variables to
parts (head and tail) of a matched argument (the non-empty list).

99

Pattern matching

16.2 The connection with constructors

Despite the detailed analysis above, it may seem a little too magical how we break down
a list as if we were undoing the effects of the (:) operator. Be careful: this process will
not work with any arbitrary operator. For example, one might think of defining a function
which uses (++) to chop off the first three elements of a list:

dropThree ([x,y,z] ++ xs) = xs

But that will not work. The function (++) is not allowed in patterns. In fact, most other
functions that act on lists are similarly prohibited from pattern matching. Which functions,
then, are allowed?

In one word, constructors – the functions used to build values of algebraic data types. Let
us consider a random example:

data Foo = Bar | Baz Int

Here Bar and Baz are constructors for the type Foo. You can use them for pattern matching
Foo values and bind variables to the Int value contained in a Foo constructed with Baz:

f :: Foo -> Int
f Bar = 1
f (Baz x) = x - 1

This is exactly like showAnniversary and showDate in the Type declarations module. For
instance:

data Date = Date Int Int Int -- Year, Month, Day
showDate :: Date -> String
showDate (Date y m d) = show y ++ "-" ++ show m ++ "-" ++ show d

The (Date y m d) pattern in the left-hand side of the showDate definition matches a
Date (built with the Date constructor) and binds the variables y, m and d to the contents
of the Date value.

16.2.1 Why does it work with lists?

As for lists, they are no different from data-defined algebraic data types as far as pattern
matching is concerned. It works as if lists were defined with this data declaration (note
that the following isn’t actually valid syntax: lists are actually too deeply ingrained into
Haskell to be defined like this):

data [a] = [] | a : [a]

So the empty list, [] and the (:) function are constructors of the list datatype, and so you
can pattern match with them. [] takes no arguments, and therefore no variables can be
bound when it is used for pattern matching. (:) takes two arguments, the list head and
tail, which may then have variables bound to them when the pattern is recognized.

Prelude> :t []
[] :: [a]

100

The connection with constructors

Prelude> :t (:)
(:) :: a -> [a] -> [a]

Furthermore, since [x, y, z] is just syntactic sugar for x:y:z:[], we can achieve some-
thing like dropThree using pattern matching alone:

dropThree :: [a] -> [a]
dropThree (_:_:_:xs) = xs
dropThree _ = []

The first pattern will match any list with at least three elements. The catch-all second
definition provides a reasonable default1 when lists fail to match the main pattern, and
thus prevents runtime crashes due to pattern match failure.

Note:
From the fact that we could write a dropThree function with bare pattern matching it
doesn’t follow that we should do so! Even though the solution is simple, it is still a waste
of effort to code something this specific when we could just use Prelude and settle it
with drop 3 xs instead. Mirroring what was said before about baking bare recursive
functions, we might say: don’t get too excited about pattern matching either...

16.2.2 Tuple constructors

Analogous considerations are valid for tuples. Our access to their components via pattern
matching...

fstPlusSnd :: (Num a) => (a, a) -> a
fstPlusSnd (x, y) = x + y

norm3D :: (Floating a) => (a, a, a) -> a
norm3D (x, y, z) = sqrt (x^2 + y^2 + z^2)

... is granted by the existence of tuple constructors. For pairs, the constructor is the
comma operator, (,); for larger tuples there are (,,); (,,,) and so on. These operators
are slightly unusual in that we can’t use them infix in the regular way; so 5 , 3 is not a
valid way to write (5, 3). All of them, however, can be used prefix, which is occasionally
useful.

Prelude> (,) 5 3
(5,3)
Prelude> (,,,) "George" "John" "Paul" "Ringo"
("George","John","Paul","Ringo")

1 Reasonable for this particular task, and only because it makes sense to expect that dropThree will give
[] when applied to a list of, say, two elements. With a different problem, it might not be reasonable to
return any list if the first match failed. In a later chapter, we will consider one simple way of dealing with
such cases.

101

Pattern matching

16.3 Matching literal values

As discussed earlier in the book, a simple piece-wise function definition like this one

f :: Int -> Int
f 0 = 1
f 1 = 5
f 2 = 2
f _ = -1

is performing pattern matching as well, matching the argument of f with the Int literals
0, 1 and 2, and finally with _ . In general, numeric and character literals can be used in
pattern matching on their own2 as well as together with constructor patterns. For instance,
this function

g :: [Int] -> Bool
g (0:[]) = False
g (0:xs) = True
g _ = False

will evaluate to False for the [0] list, to True if the list has 0 as first element and a non-empty
tail and to False in all other cases. Also, lists with literal elements like [1,2,3], or even ”abc”
(which is equivalent to [’a’,’b’,’c’]) can be used for pattern matching as well, since these
forms are only syntactic sugar for the (:) constructor.

The above considerations are only valid for literal values, so the following will not work:

k = 1
--again, this won't work as expected
h :: Int -> Bool
h k = True
h _ = False

Exercises:

1. Test the flawed h function above in GHCi, with arguments equal to and different
from 1. Then, explain what goes wrong.

2. In this section about pattern matching with literal values, we made no mention of
the boolean values True and False, but we can do pattern matching with them as
well, as demonstrated in the Next stepsa chapter. Can you guess why we omitted
them? (Hint: is there anything distinctive about the way we write boolean values?)

a Chapter 9.2 on page 50

2 As perhaps could be expected, this kind of matching with literals is not constructor-based. Rather, there
is an equality comparison behind the scenes

102

Syntax tricks

16.4 Syntax tricks

16.4.1 As-patterns

Sometimes, when matching a pattern with a value, it may be useful to bind a name to
the whole value being matched. As-patterns allow exactly this: they are of the form
var@pattern and have the additional effect to bind the name var to the whole value being
matched by pattern. For instance, here is a toy variation on the map theme:

contrivedMap :: ([a] -> a -> b) -> [a] -> [b]
contrivedMap f [] = []
contrivedMap f list@(x:xs) = f list x : contrivedMap f xs

contrivedMap passes to the parameter function f not only x but also the undivided list
used as argument of each recursive call. Writing it without as-patterns would have been a
bit clunky because we would have to either use head or needlessly reconstruct the original
value of list, i.e. actually evaluate x:xs on the right side:

contrivedMap :: ([a] -> a -> b) -> [a] -> [b]
contrivedMap f [] = []
contrivedMap f (x:xs) = f (x:xs) x : contrivedMap f xs

Exercises:
Implement scanr, as in the exercise in Lists IIIa, but this time using an as-pattern.

a Chapter 14.2 on page 89

16.4.2 Introduction to records

For constructors with many elements, records provide a way of naming values in a datatype
using the following syntax:

data Foo2 = Bar2 | Baz2 {bazNumber::Int, bazName::String}

Using records allows doing matching and binding only for the variables relevant to the
function we’re writing, making code much clearer:

h :: Foo2 -> Int
h Baz2 {bazName=name} = length name
h Bar2 {} = 0

x = Baz2 1 "Haskell" -- construct by declaration order, try ":t Baz2" in
GHCi
y = Baz2 {bazName = "Curry", bazNumber = 2} -- construct by name

h x -- 7
h y -- 5

Also, the {} pattern can be used for matching a constructor regardless of the datatype
elements even if you don’t use records in the data declaration:

data Foo = Bar | Baz Int
g :: Foo -> Bool

103

Pattern matching

g Bar {} = True
g Baz {} = False

The function g does not have to be changed if we modify the number or the type of elements
of the constructors Bar or Baz.

There are further advantages to using record syntax which we will cover in more details in
the Named fields3 section of the More on datatypes chapter.

16.5 Where we can use pattern matching

The short answer is that wherever you can bind variables, you can pattern match. Let us
have a glance at such places we have seen before; a few more will be introduced in the
following chapters.

16.5.1 Equations

The most obvious use case is the left-hand side of function definition equations, which were
the subject of our examples so far.

map _ [] = []
map f (x:xs) = f x : map f xs

In the map definition we’re doing pattern matching on the left hand side of both equations,
and also binding variables on the second one.

16.5.2 let expressions and where clauses

Both let and where are ways of doing local variable bindings. As such, you can also use
pattern matching in them. A simple example:

y =
let
(x:_) = map (*2) [1,2,3]

in x + 5

Or, equivalently,

y = x + 5
where
(x:_) = map (*2) [1,2,3]

Here, x will be bound to the first element of map ((*) 2) [1,2,3]. y, therefore, will
evaluate to 2+5 = 7.

3 Chapter 24.2 on page 139

104

Where we can use pattern matching

16.5.3 List comprehensions

After the | in list comprehensions you can pattern match. This is actually extremely useful,
and adds a lot to the expressiveness of comprehensions. Let’s see how that works with a
slightly more sophisticated example. Prelude provides a Maybe type which has the following
constructors:

data Maybe a = Nothing | Just a

It is typically used to hold values resulting from an operation which may or may not
succeed; if the operation succeeds, the Just constructor is used and the value is passed
to it; otherwise Nothing is used.4 The utility function catMaybes (which is available from
Data.Maybe library module) takes a list of Maybes (which may contain both ”Just” and
”Nothing” Maybes), and retrieves the contained values by filtering out the Nothing values
and getting rid of the Just wrappers of the Just x. Writing it with list comprehensions is
very straightforward:

catMaybes :: [Maybe a] -> [a]
catMaybes ms = [x | Just x <- ms]

Another nice thing about using a list comprehension for this task is that if the pattern
match fails (that is, it meets a Nothing) it just moves on to the next element in ms, thus
avoiding the need of explicitly handling constructors we are not interested in with alternate
function definitions.5

16.5.4 do blocks

Within a do block like the ones we used in the Simple input and output6 chapter, we can
pattern match with the left-hand side of the left arrow variable bindings:

putFirstChar = do
(c:_) <- getLine
putStrLn [c]

Furthermore, the let bindings in do blocks are, as far as pattern matching is concerned,
just the same as the ”real” let expressions.

4 The canonical example of such an operation is looking up values in a dictionary - which might just be a
[(a, b)] list with the tuples being key-value pairs, or a more sophisticated implementation. In any case,
if we, given an arbitrary key, try to retrieve a value there is no guarantee we will actually find a value
associated to the key.

5 The reason why it works this way instead of crashing out on a pattern matching failure has to do with
the real nature of list comprehensions: They are actually wrappers for the list monad. We will eventually
explain what that means when we discuss monads.

6 Chapter 10 on page 57

105

17 Control structures

Haskell offers several ways of expressing a choice between different values. We explored
some of them in the Haskell Basics chapters. This section will bring together what we have
seen thus far, discuss some finer points, and introduce a new control structure.

17.1 if and guards revisited

We have already met these constructs. The syntax for if expressions is:

if <condition> then <true-value> else <false-value>

<condition> is an expression which evaluates to a boolean. If the <condition> is
True then the <true-value> is returned, otherwise the <false-value> is returned. Note
that in Haskell if is an expression (which is converted to a value) and not a statement (which
is executed) as in many imperative languages.1 As a consequence, the else is mandatory in
Haskell. Since if is an expression, it must evaluate to a result whether the condition is true
or false, and the else ensures this. Furthermore, <true-value> and <false-value> must
evaluate to the same type, which will be the type of the whole if expression.

When if expressions are split across multiple lines, they are usually indented by aligning
elses with thens, rather than with ifs. A common style looks like this:

describeLetter :: Char -> String
describeLetter c =

if c >= 'a' && c <= 'z'
then "Lower case"
else if c >= 'A' && c <= 'Z'

then "Upper case"
else "Not an ASCII letter"

Guards and top-level if expressions are mostly interchangeable. With guards, the example
above is a little neater:

describeLetter :: Char -> String
describeLetter c

| c >= 'a' && c <= 'z' = "Lower case"
| c >= 'A' && c <= 'Z' = "Upper case"
| otherwise = "Not an ASCII letter"

Remember that otherwise is just an alias to True, and thus the last guard is a catch-all,
playing the role of the final else of the if expression.

1 If you have programmed in C or Java, you will recognize Haskell’s if/then/else as an equivalent to the
ternary conditional operator ?: .

107

Control structures

Guards are evaluated in the order they appear. Consider a set up like the following:

f (pattern1) | predicate1 = w
| predicate2 = x

f (pattern2) | predicate3 = y
| predicate4 = z

Here, the argument of f will be pattern-matched against pattern1. If it succeeds, then we
proceed to the first set of guards: if predicate1 evaluates to True, then w is returned. If
not, then predicate2 is evaluated; and if it is true x is returned. Again, if not, then we
proceed to the next case and try to match the argument against pattern2, repeating the
guards procedure with predicate3 and predicate4. (Of course, if neither pattern matches or
neither predicate is true for the matching pattern there will be a runtime error. Regardless
of the chosen control structure, it is important to ensure all cases are covered.)

17.1.1 Embedding if expressions

A handy consequence of if constructs being expressions is that they can be placed anywhere
a Haskell expression could be, allowing us to write code like this:

g x y = (if x == 0 then 1 else sin x / x) * y

Note that we wrote the if expression without line breaks for maximum terseness. Unlike
if expressions, guard blocks are not expressions; and so a let or a where definition is the
closest we can get to this style when using them. Needless to say, more complicated one-
line if expressions would be hard to read, making let and where attractive options in such
cases.

17.2 case expressions

One control structure we haven’t talked about yet are case expressions. They are to piece-
wise function definitions what if expressions are to guards. Take this simple piece-wise
definition:

f 0 = 18
f 1 = 15
f 2 = 12
f x = 12 - x

It is equivalent to - and, indeed, syntactic sugar for:

f x =
case x of

0 -> 18
1 -> 15
2 -> 12
_ -> 12 - x

Whatever definition we pick, the same happens when f is called: The argument x is matched
against all of the patterns in order; and on the first match the expression on the right-hand
side of the corresponding equal sign (in the piece-wise version) or arrow (in the case version)

108

case expressions

is evaluated. Note that in this case expression there is no need to write x in the pattern;
the wildcard pattern _ gives the same effect.2

Indentation is important when using case. The cases must be indented further to the
right than the beginning of the line containing the of keyword, and all cases must have
the same indentation. For the sake of illustration, here are two other valid layouts for a
case expression:

f x = case x of
0 -> 18
1 -> 15
2 -> 12
_ -> 12 - x

f x = case x of 0 -> 18
1 -> 15
2 -> 12
_ -> 12 - x

Since the left hand side of any case branch is just a pattern, it can also be used for binding,
exactly like in piece-wise function definitions:3

describeString :: String -> String
describeString str =

case str of
(x:xs) -> "The first character of the string is: " ++ [x] ++ "; and " ++

"there are " ++ show (length xs) ++ " more characters in it."
[] -> "This is an empty string."

This function describes some properties of str using a human-readable string. Using case
syntax to bind variables to the head and tail of our list is convenient here, but you could
also do this with an if-statement (with a condition of null str to pick the empty string
case).

Finally, just like if expressions (and unlike piece-wise definitions), case expressions can be
embedded anywhere another expression would fit:

data Colour = Black | White | RGB Int Int Int

describeBlackOrWhite :: Colour -> String
describeBlackOrWhite c =

"This colour is"
++ case c of

Black -> " black"
White -> " white"
RGB 0 0 0 -> " black"
RGB 255 255 255 -> " white"
_ -> "... uh... something else"

++ ", yeah?"

The case block above fits in as any string would. Writing describeBlackOrWhite this way
makes let/where unnecessary (although the resulting definition is not as readable).

2 To see why this is so, consider our discussion of matching and binding in the ../Pattern matching/
ˆ{Chapter16 on page 99} section

3 Thus, case statements are a lot more versatile than most of the superficially similar switch/case statements
in imperative languages which are typically restricted to equality tests on integral primitive types.

109

Control structures

Exercises:
Use a case statement to implement a fakeIf function which could be used as a replace-
ment to the familiar if expressions.

17.3 Controlling actions, revisited

In the final part of this chapter, we will introduce a few extra points about control structures
while revisiting the discussions in the ”Simple input and output” chapter. There, in the
Controlling actions4 section, we used the following function to show how to execute actions
conditionally within a do block using if expressions:

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
if (read guess) < num

then do putStrLn "Too low!"
doGuessing num

else if (read guess) > num
then do putStrLn "Too high!"

doGuessing num
else do putStrLn "You Win!"

We can write the same doGuessing function using a casestatement. To do this, we first
introduce the Prelude function compare which takes two values of the same type (in the
Ordclass) and returns a value of type Ordering — namely one of GT, LT, EQ, depending on
whether the first is greater than, less than, or equal to the second.

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of
LT -> do putStrLn "Too low!"

doGuessing num
GT -> do putStrLn "Too high!"

doGuessing num
EQ -> putStrLn "You Win!"

The dos after the ->s are necessary on the first two options, because we are sequencing
actions within each case.

17.3.1 A note about return

Now, we are going to dispel a possible source of confusion. In a typical imperative language
(C, for example) an implementation of doGuessing might look like the following (if you
don’t know C, don’t worry with the details, just follow the if-else chain):

void doGuessing(int num) {
printf("Enter your guess:");
int guess = atoi(readLine());
if (guess == num) {

4 Chapter 10.2.2 on page 60

110

Controlling actions, revisited

printf("You win!\n");
return ();

}

// we won't get here if guess == num
if (guess < num) {

printf("Too low!\n");
doGuessing(num);

} else {
printf("Too high!\n");
doGuessing(num);

}
}

This doGuessing first tests the equality case, which does not lead to a new call of doGuess-
ing, and the if has no accompanying else. If the guess was right, a return statement is
used to exit the function at once, skipping the other cases. Now, going back to Haskell,
action sequencing in do blocks looks a lot like imperative code, and furthermore there ac-
tually is a return in Prelude. Then, knowing that casestatements (unlike if statements)
do not force us to cover all cases, one might be tempted to write a literal translation of the
C code above (try running it if you are curious)...

doGuessing num = do
putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of

EQ -> do putStrLn "You win!"
return ()

-- we don't expect to get here if guess == num
if (read guess < num)

then do putStrLn "Too low!";
doGuessing num

else do putStrLn "Too high!";
doGuessing num

... but it won’t work! If you guess correctly, the function will first print ”You win!,” but
it will not exit at the return (). Instead, the program will continue to the if expression
and check whether guess is less than num. Of course it is not, so the else branch is taken,
and it will print ”Too high!” and then ask you to guess again. Things aren’t any better
with an incorrect guess: it will try to evaluate the case statement and get either LT or
GT as the result of the compare. In either case, it won’t have a pattern that matches, and
the program will fail immediately with an exception (as usual, the incomplete case alone
should be enough to raise suspicion).

The problem here is that return is not at all equivalent to the C (or Java etc.) statement
with the same name. For our immediate purposes, we can say that return is a function.5
The return () in particular evaluates to an action which does nothing. return does not
affect the control flow at all. In the correct guess case, the case statement evaluates to
return (), an action of type IO (), and execution just follows along normally.

5 Superfluous note: somewhat closer to a proper explanation, we might say return is a function which
takes a value and makes it into an action which, when evaluated, gives the original value. A return
"strawberry" within one of the do blocks we are dealing with would have type IO String - the same type
as getLine. Do not worry if that doesn’t make sense for now; you will understand what return really
does when we actually start discussing monads further ahead on the book.

111

Control structures

The bottom line is that while actions and do blocks resemble imperative code, they must
be dealt with on their own terms - Haskell terms.

Exercises:

1. Redo the ”Haskell greeting” exercise in Simple input and output/Controlling ac-
tionsa, this time using a case statement.

2. What does the following program print out? And why?
main =
do x <- getX

putStrLn x

getX =
do return "My Shangri-La"

return "beneath"
return "the summer moon"
return "I will"
return "return"
return "again"

a Chapter 10.2.2 on page 60

112

18 More on functions

Here are several nice features that make using functions easier.

18.1 let and where revisited

As discussed in earlier chapters, let and where are useful in local function definitions. Here,
sumStr calls addStr function:

addStr :: Float -> String -> Float
addStr x str = x + read str

sumStr :: [String] -> Float
sumStr = foldl addStr 0.0

But what if we never need addStr anywhere else? Then we could rewrite sumStr using
local bindings. We can do that either with a let binding...

sumStr =
let addStr x str = x + read str
in foldl addStr 0.0

... or with a where clause...

sumStr = foldl addStr 0.0
where addStr x str = x + read str

... and the difference appears to be just a question of style: Do we prefer the bindings to
come before or after the rest of the definition?

However, there is another important difference between let and where. The
let...in construct is an expression just like if/then/else. In contrast, where clauses are
like guards and so are not expressions. Thus, let bindings can be used within complex
expressions:

f x =
if x > 0

then (let lsq = (log x) ^ 2 in tan lsq) * sin x
else 0

The expression within the outer parentheses is self-contained, and evaluates to the tangent
of the square of the logarithm of x. Note that the scope of lsq does not extend beyond the
parentheses; so changing the then-branch to

then (let lsq = (log x) ^ 2 in tan lsq) * (sin x + lsq)

113

More on functions

does not work without dropping the parentheses around the let.

Despite not being full expressions, where clauses can be incorporated into case expressions:

describeColour c =
"This colour "
++ case c of

Black -> "is black"
White -> "is white"
RGB red green blue -> " has an average of the components of " ++ show

av
where av = (red + green + blue) `div` 3

++ ", yeah?"

In this example, the indentation of the where clause sets the scope of the av variable so
that it only exists as far as the RGB red green blue case is concerned. Placing it at the
same indentation of the cases would make it available for all cases. Here is an example with
guards:

doStuff :: Int -> String
doStuff x

| x < 3 = report "less than three"
| otherwise = report "normal"
where
report y = "the input is " ++ y

Note that since there is one equals sign for each guard there is no place we could put a
let expression which would be in scope of all guards in the manner of the where clause. So
this is a situation in which where is particularly convenient.

18.2 Anonymous Functions - lambdas

Why create a formal name for a function like addStr when it only exists within another
function’s definition, never to be used again? Instead, we can make it an anonymous
function also known as a ”lambda function”. Then, sumStr could be defined like this:

sumStr = foldl (\ x str -> x + read str) 0.0

The expression in the parentheses is a lambda function. The backslash is used as the
nearest ASCII equivalent to the Greek letter lambda (λ). This lambda function takes two
arguments, x and str, and it evaluates to ”x + read str”. So, the sumStr presented just
above is precisely the same as the one that used addStr in a let binding.

Lambdas are handy for writing one-off functions to be used with maps, folds and their sib-
lings, especially where the function in question is simple (beware of cramming complicated
expressions in a lambda — it can hurt readability).

Since variables are being bound in a lambda expression (to the arguments, just like in a
regular function definition), pattern matching can be used in them as well. A trivial example
would be redefining tail with a lambda:

tail' = (\ (_:xs) -> xs)

114

Operators

Note: Since lambdas are a special character in Haskell, the \ on its own will be treated
as the function and whatever non-space character is next will be the variable for the first
argument. It is still good form to put a space between the lambda and the argument as in
normal function syntax (especially to make things clearer when a lambda takes more than
one argument).

18.3 Operators

In Haskell, any function that takes two arguments and has a name consisting entirely of
non-alphanumeric characters is considered an operator. The most common examples are the
arithmetical ones like addition (+) and subtraction (-). Unlike other functions, operators
are normally used infix (written between the two arguments). All operators can also be
surrounded with parentheses and then used prefix like other functions:

-- these are the same:
2 + 4
(+) 2 4

We can define new operators in the usual way as other functions — just don’t use any
alphanumeric characters in their names. For example, here’s the set-difference definition
from Data.List:

(\\) :: (Eq a) => [a] -> [a] -> [a]
xs \\ ys = foldl (\zs y -> delete y zs) xs ys

As the example above shows, operators can be defined infix as well. The same definition
written as prefix also works:

(\\) xs ys = foldl (\zs y -> delete y zs) xs ys

Note that the type declarations for operators have no infix version and must be written
with the parentheses.

18.3.1 Sections

Sections are a nifty piece of syntactical sugar that can be used with operators. An operator
within parentheses and flanked by one of its arguments...

(2+) 4
(+4) 2

... is a new function in its own right. (2+), for instance, has the type (Num a) => a -> a.
We can pass sections to other functions, e.g. map (+2) [1..4] == [3..6]. For another
example, we can add an extra flourish to the multiplyList function we wrote back in More
about lists:

multiplyList :: Integer -> [Integer] -> [Integer]
multiplyList m = map (m*)

115

More on functions

If you have a ”normal” prefix function and want to use it as an operator, simply surround
it with backticks:

1 `elem` [1..4]

This is called making the function infix. It’s normally done for readability purposes: 1
`elem` [1..4] reads better than elem 1 [1..4]. You can also define functions infix:

elem :: (Eq a) => a -> [a] -> Bool
x `elem` xs = any (==x) xs

But once again notice that the type signature stays with the prefix style.

Sections even work with infix functions:

(1 `elem`) [1..4]
(`elem` [1..4]) 1

Of course, remember that you can only make binary functions (that is, those that take two
arguments) infix.

Exercises:

• Lambdas are a nice way to avoid defining unnecessary separate functions. Convert
the following let- or where-bindings to lambdas:
• map f xs where f x = x * 2 + 3
• let f x y = read x + y in foldr f 1 xs

• Sections are just syntactic sugar for lambda operations. I.e. (+2) is equivalent to
\x -> x + 2. What would the following sections ’desugar’ to? What would be their
types?
• (4+)
• (1 `elem`)
• (`notElem` "abc")

116

19 Higher-order functions

At the heart of functional programming is the idea that functions are just like any other
value. The power of functional style comes from handling functions themselves as regular
values, i.e. by passing functions to other functions and returning them from functions.
A function that takes another function (or several functions) as an argument is called a
higher-order function. They can be found pretty much anywhere in a Haskell program;
and indeed we have already met some of them, such as map and the various folds. We saw
commonplace examples of higher-order functions when discussing map in Lists II1. Now, we
are going to explore some common ways of writing code that manipulates functions.

19.1 A sorting algorithm

For a concrete example, we will consider the task of sorting a list. Quicksort is a well-
known recursive sorting algorithm. To apply its sorting strategy to a list, we first choose
one element and then divide the rest of the list into (A) those elements that should go
before the chosen element, (B) those elements equal to the chosen one, and (C) those that
should go after. Then, we apply the same algorithm to the unsorted (A) and (C) lists. After
enough recursive sorting, we concatenate everything back together and have a final sorted
list. That strategy can be translated into a Haskell implementation in a very simple way.

-- Type signature: any list with elements in the Ord class can be sorted.
quickSort :: (Ord a) => [a] -> [a]
-- Base case:
-- If the list is empty, there is nothing to do.
quickSort [] = []

-- The recursive case:
-- We pick the first element as our "pivot", the rest is to be sorted.
-- Note how the pivot itself ends up included in the middle part.
quickSort (x : xs) = (quickSort less) ++ (x : equal) ++ (quickSort more)

where
less = filter (< x) xs
equal = filter (== x) xs
more = filter (> x) xs

It should be pointed out that our quickSort is rather naïve. A more efficient implementa-
tion would avoid the three passes through filter at each recursive step and not use (++) to
build the sorted list. Furthermore, unlike our implementation, the original quicksort algo-
rithm does the sorting in-place using mutability.2 We will ignore such concerns for now,

1 Chapter 13 on page 77
2 The ”true”, in-place quicksort can be done in Haskell, but it requires some rather advanced tools that we

will not discuss in the Beginners’ Track.

117

Higher-order functions

as we are more interested in the usage patterns of sorting functions, rather than in exact
implementation.

19.1.1 The Ord class

Almost all the basic data types in Haskell are members of the Ord class, which is for ordering
tests what Eq is for equality tests. The Ord class defines which ordering is the ”natural” one
for a given type. It provides a function called compare, with type:

compare :: (Ord a) => a -> a -> Ordering

compare takes two values and compares them, returning an Ordering value, which is LT if
the first value is less than the second, EQ if it is equal and GT if it is greater than. For an
Ord type, (<), (==) from Eq and (>) can be seen as shortcuts to compare that check for
one of the three possibilities and return a Bool to indicate whether the specified ordering
is true according to the Ord specification for that type. Note that each of the tests we use
with filter in the definition of quickSort corresponds to one of the possible results of
compare, and so we might have written, for instance, less as less = filter (\y -> y
`compare` x == LT) xs.

19.2 Choosing how to compare

With quickSort, sorting any list with elements in the Ord class is easy. Suppose we have a
list of String and we want to sort them; we just apply quickSort to the list. For the rest
of this chapter, we will use a pseudo-dictionary of just a few words (but dictionaries with
thousands of words would work just as well):

dictionary = ["I", "have", "a", "thing", "for", "Linux"]

quickSort dictionary returns:

["I", "Linux", "a", "for", "have", "thing"]

As you can see, capitalization is considered for sorting by default. Haskell Strings are lists
of Unicode characters. Unicode (and almost all other encodings of characters) specifies that
the character code for capital letters are less than the lower case letters. So ”Z” is less than
”a”.

To get a proper dictionary-like sorting, we need a case insensitive quickSort. To achieve
that, we can take a hint from the discussion of compare just above. The recursive case of
quickSort can be rewritten as:

quickSort compare (x : xs) = (quickSort compare less) ++ (x : equal) ++
(quickSort compare more)

where
less = filter (\y -> y `compare` x == LT) xs
equal = filter (\y -> y `compare` x == EQ) xs
more = filter (\y -> y `compare` x == GT) xs

118

Higher-Order Functions and Types

While this version is less tidy than the original one, it makes it obvious that the ordering of
the elements hinges entirely on the compare function. That means we only need to replace
compare with an (Ord a) => a -> a -> Ordering function of our choice. Therefore, our
updated quickSort' is a higher-order function which takes a comparison function along
with the list to sort.

quickSort' :: (Ord a) => (a -> a -> Ordering) -> [a] -> [a]
-- No matter how we compare two things the base case doesn't change,
-- so we use the _ "wildcard" to ignore the comparison function.
quickSort' _ [] = []

-- c is our comparison function
quickSort' c (x : xs) = (quickSort' c less) ++ (x : equal) ++ (quickSort' c
more)

where
less = filter (\y -> y `c` x == LT) xs
equal = filter (\y -> y `c` x == EQ) xs
more = filter (\y -> y `c` x == GT) xs

We can reuse our quickSort' function to serve many different purposes.

If we wanted a descending order, we could just reverse our original sorted list with reverse
(quickSort dictionary). Yet to actually do the initial sort descending, we could supply
quickSort' with a comparison function that returns the opposite of the usual Ordering.

-- the usual ordering uses the compare function from the Ord class
usual = compare

-- the descending ordering, note we flip the order of the arguments to compare
descending x y = compare y x

-- the case-insensitive version is left as an exercise!
insensitive = ...
-- How can we do case-insensitive comparisons without making a big list of all
possible cases?

Note:
Data.List offers a sort function for sorting lists. It does not use quicksort; rather,
it uses an efficient implementation of an algorithm called mergesort. Data.List also
includes sortBy, which takes a custom comparison function just like our quickSort'

Exercises:
Write insensitive, such that quickSort' insensitive dictionary gives ["a",
"for", "have", "I", "Linux", "thing"].

19.3 Higher-Order Functions and Types

The concept of currying (the generating of intermediate functions on the way toward a final
result) was first introduced in the earlier chapter ”More about lists”. This is a good place
to revisit how currying works.

Our quickSort' has type (a -> a -> Ordering) -> [a] -> [a].

119

Higher-order functions

Most of the time, the type of a higher-order function provides a guideline about how to use
it. A straightforward way of reading the type signature would be ”quickSort' takes, as its
first argument, a function that gives an ordering of two as. Its second argument is a list of
as. Finally, it returns a new list of as”. This is enough to correctly guess that it uses the
given ordering function to sort the list.

Note that the parentheses surrounding a -> a -> Ordering are mandatory. They specify
that a -> a -> Ordering forms a single argument that happens to be a function.

Without the parentheses, we would get a -> a -> Ordering -> [a] -> [a] which ac-
cepts four arguments (none of which are themselves functions) instead of the desired two,
and that wouldn’t work as desired.

Remember that the -> operator is right-associative. Thus, our erroneous type signature a
-> a -> Ordering -> [a] -> [a] means the same thing as a -> (a -> (Ordering ->
([a] -> [a]))).

Given that -> is right-associative, the explicitly grouped version of the correct
quickSort' signature is actually (a -> a -> Ordering) -> ([a] -> [a]). This makes
perfect sense. Our original quickSort lacking the adjustable comparison function argu-
ment was of type [a] -> [a]. It took a list and sorted it. Our new quickSort' is simply
a function that generates quickSort style functions! If we plug in compare for the (a ->
a -> Ordering) part, then we just return our original simple quickSort function. If we
use a different comparison function for the argument, we generate a different variety of a
quickSort function.

Of course, if we not only give a comparison function as an argument but also feed in an
actual list to sort, then the final result is not the new quickSort-style function; instead, it
continues on and passes the list to the new function and returns the sorted list as our final
result.

120

Function manipulation

Exercises:
(Challenging) The following exercise combines what you have learned about higher order
functions, recursion and I/O. We are going to recreate what is known in imperative
languages as a for loop. Implement a function
for :: a -> (a -> Bool) -> (a -> a) -> (a -> IO ()) -> IO ()
for i p f job = -- ???
An example of how this function would be used might be
for 1 (<10) (+1) print
which prints the numbers 1 to 9 on the screen.
The desired behaviour of for is: starting from an initial value i, for executes job i.
It then uses f to modify this value and checks to see if the modified value f i satisfies
some condition p. If it doesn’t, it stops; otherwise, the for loop continues, using the
modified f i in place of i.
1. Implement the for loop in Haskell.
2. The paragraph just above gives an imperative description of the for loop. Describe
your implementation in more functional terms.
Some more challenging exercises you could try

3. Consider a task like ”print the list of numbers from 1 to 10”. Given that print is
a function, and we can apply it to a list of numbers, using map sounds like the
natural thing to do. But would it actually work?

4. Implement a function sequenceIO :: [IO a] -> IO [a]. Given a list of actions,
this function runs each of the actions in order and returns all their results as a list.

5. Implement a function mapIO :: (a -> IO b) -> [a] -> IO [b] which given a
function of type a -> IO b and a list of type [a], runs that action on each item
in the list, and returns the results.
This exercise was inspired from a blog post by osfameron. No peeking!

19.4 Function manipulation

We will close the chapter by discussing a few examples of common and useful general-
purpose higher-order functions. Familiarity with these will greatly enhance your skill at
both writing and reading Haskell code.

19.4.1 Flipping arguments

flip is a handy little Prelude function. It takes a function of two arguments and returns a
version of the same function with the arguments swapped.

flip :: (a -> b -> c) -> b -> a -> c

flip in use:

Prelude> (flip (/)) 3 1
0.3333333333333333
Prelude> (flip map) [1,2,3] (*2)
[2,4,6]

121

Higher-order functions

We could have used flip to write a point-free version of the descending comparing function
from the quickSort example:

descending = flip compare

flip is particularly useful when we want to pass a function with two arguments of different
types to another function and the arguments are in the wrong order with respect to the
signature of the higher-order function.

19.4.2 Composition

The (.) composition operator is another higher-order function. It has the signature:

(.) :: (b -> c) -> (a -> b) -> a -> c

(.) takes two functions as arguments and returns a new function which applies both the
second argument and then the first.

Composition and higher-order functions provide a range of powerful tricks. For a tiny
sample, first consider the inits function, defined in the module Data.List. Quoting the
documentation, it ”returns all initial segments of the argument, shortest first”, so that:

Prelude Data.List> inits [1,2,3]
[[],[1],[1,2],[1,2,3]]

We can provide a one-line implementation for inits (written point-free for extra dramatic
effect) using only the following higher-order functions from Prelude: flip, scanl, (.) and
map:

myInits :: [a] -> [[a]]
myInits = map reverse . scanl (flip (:)) []

Swallowing a definition so condensed may look daunting at first, so analyze it slowly, bit by
bit, recalling what each function does and using the type signatures as a guide.

The definition of myInits is super concise and clean with use of parentheses kept to a
bare minimum. Naturally, if one goes overboard with composition by writing mile-long
(.) chains, things will get confusing; but, when deployed reasonably, these point-free styles
shine. Furthermore, the implementation is quite ”high level”: we do not deal explicitly
with details like pattern matching or recursion; the functions we deployed — both the
higher-order ones and their functional arguments — take care of such plumbing.

19.4.3 Application

($) is a curious higher-order operator. Its type is:

($) :: (a -> b) -> a -> b

122

Function manipulation

It takes a function as its first argument, and all it does is to apply the function to the second
argument, so that, for instance, (head $ "abc") == (head "abc").

You might think that ($) is completely useless! However, there are two interesting points
about it. First, ($) has very low precedence,3 unlike regular function application which has
the highest precedence. In effect, that means we can avoid confusing nesting of parentheses
by breaking precedence with $. We write a non-point-free version of myInits without
adding new parentheses:

myInits :: [a] -> [[a]]
myInits xs = map reverse . scanl (flip (:)) [] $ xs

Furthermore, as ($) is just a function which happens to apply functions, and functions are
just values, we can write intriguing expressions such as:

map ($ 2) [(2*), (4*), (8*)]

(Yes, that is a list of functions, and it is perfectly legal.)

19.4.4 uncurry and curry

As the name suggests, uncurry is a function that undoes currying; that is, it converts a
function of two arguments into a function that takes a pair as its only argument.

uncurry :: (a -> b -> c) -> (a, b) -> c

Prelude> let addPair = uncurry (+)
Prelude> addPair (2, 3)
5

One interesting use of uncurry occasionally seen in the wild is in combination with ($), so
that the first element of a pair is applied to the second.

Prelude> uncurry ($) (reverse, "stressed")
"desserts"

There is also curry, which is the opposite of uncurry.

curry :: ((a, b) -> c) -> a -> b -> c

Prelude> curry addPair 2 3 -- addPair as in the earlier example.
5

Because most Haskell functions are already curried, curry is nowhere near as common as
uncurry.

3 As a reminder, precedence here is meant in the same sense that * has higher precedence (i.e. is evaluated
first) than + in mathematics.

123

Higher-order functions

19.4.5 id and const

Finally, we should mention two functions which, while not higher-order functions themselves,
are most often used as arguments to higher-order functions. id, the identity function, is a
function with type a -> a that returns its argument unchanged.

Prelude> id "Hello"
"Hello"

Similar in spirit to id, const is an a -> b -> a function that works like this:

Prelude> const "Hello" "world"
"Hello"

const takes two arguments, discards the second and returns the first. Seen as a function
of one argument, a -> (b -> a), it returns a constant function, which always returns the
same value no matter what argument it is given.

id and const might appear worthless at first. However, when dealing with higher-order
functions it is sometimes necessary to pass a dummy function, be it one that does noth-
ing with its argument or one that always returns the same value. id and const give us
convenient dummy functions for such cases.

Exercises:

1. Write implementations for curry, uncurry and const.
2. Describe what the following functions do without testing them:
• uncurry const
• curry fst
• curry swap, where swap :: (a, b) -> (b, a) swaps the elements of a pair.
(swap can be found in Data.Tuple.)

3. (Very hard) Use foldr to implement foldl. Hint: begin by reviewing the sections
about foldr and foldl in Lists IIIa. There are two solutions; one is easier but
relatively boring and the other is truly interesting. For the interesting one, think
carefully about how you would go about composing all functions in a list.

a Chapter 14.1.1 on page 86

124

20 Using GHCi effectively

GHCi assists in several ways toward more efficient work. Here, we will discuss some of the
best practices for using GHCi.

20.1 User interface

20.1.1 Tab completion

As in many other terminal programs, you can enter some starting text in GHCi and then
hit the Tab key to be presented with a list of all possibilities that start with what you’ve
written so far. When there is only one possibility, using Tab will auto-complete the string.
For example fol<Tab> will append letter ”d” (since nothing exists with ”fol” other than
items that start with ”fold”). A second Tab will list the four functions included in Prelude:
foldl, foldl1, foldr, and foldr1. More options may show if you have already imported
additional modules.

Tab completion works also when you are loading a file with your program into GHCi. For
example, after typing :l fi<Tab>, you will be presented with all files that start with ”fi”
that are present in the current directory (the one you were in when you launched GHCi).

The same also applies when you are importing modules, after typing :m +Da<Tab> or import
Da<Tab>, you will be presented with all modules that start with ”Da” present in installed
packages.

20.1.2 ”: commands”

On GHCi command line, commands for the interpreter start with the character ”:” (colon).

• :help or :h -- prints a list of all available commands.
• :load or :l -- loads a given file into GHCi (you must include the filename with the
command).

• :reload or :r -- reloads whatever file had been loaded most recently (useful after changes
to the file).

• :type or :t -- prints the type of a given expression included with the command
• :module or :m -- loads a given module (include the module name with the command).
You can also unload a module by adding a - symbol before the module name.

• :browse -- gives the type signatures for all functions available from a given module.

Here again, you can use Tab to see the list of commands, type :Tab to see all possible
commands.

125

Using GHCi effectively

20.1.3 Timing Functions in GHCi

GHCi provides a basic way to measure how much time a function takes to run, which can
be useful for to find out which version of a function runs fastest (such as when there are
multiple ways to define something to get the same effective result).

1. Type :set +s into the ghci command line.
2. run the function(s) you are testing. The time the function took to run will be displayed
after GHCi outputs the results of the function.

20.1.4 Multi-line Input

If you are trying to define a function that takes up multiple lines, or if you want to type a
do block into ghci (without writing a file that you then import), there is an easy way to do
this:

1. Begin a new line with :{
2. Type in your code. Press enter when you need a new line.
3. Type :} to end the multi-line input.

For example:

*Main> :{
*Main| let askname = do
*Main| putStrLn "What is your name?"
*Main| name <- getLine
*Main| putStrLn $ "Hello " ++ name
*Main| :}
*Main>

The same can be accomplished by using :set +m command (allow multi-line commands).
In this case, an empty line will end the block.

In addition, line breaks in ghci commands can be separated by ;, like this:

*Main> let askname1 = do ; putStrLn "what is your name?" ; name <- getLine ;
putStrLn $ "Hello " ++ name

126

21 Intermediate Haskell

127

22 Modules

Modules are the primary means of organizing Haskell code. We met them in passing when
using import statements to put library functions into scope. Beyond allowing us to make
better use of libraries, knowledge of modules will help us to shape our own programs and
create standalone programs which can be executed independently of GHCi (incidentally,
that is the topic of the very next chapter, ../Standalone programs/1).

22.1 Modules

Haskell modules2 are a useful way to group a set of related functionalities into a single pack-
age and manage different functions that may have the same names. The module definition
is the first thing that goes in your Haskell file.

A basic module definition looks like:

module YourModule where

Note that

1. the name of the module begins with a capital letter;
2. each file contains only one module.

The name of the file is the name of the module plus the .hs file extension. Any dots
’.’ in the module name are changed for directories.3 So the module YourModule would
be in the file YourModule.hs while a module Foo.Bar would be in the file Foo/Bar.hs or
Foo\Bar.hs. Since the module name must begin with a capital letter, the file name must
also start with a capital letter.

22.2 Importing

Modules can themselves import functions from other modules. That is, in between the
module declaration and the rest of your code, you may include some import declarations
such as

1 https://en.wikibooks.org/wiki/..%2FStandalone%20programs%2F
2 See the Haskell report for more details on the module system ˆ{http://www.haskell.org/onlinereport/

modules.html} .
3 In Haskell98, the last standardised version of Haskell before Haskell 2010, the module system was fairly

conservative, but recent common practice consists of employing a hierarchical module system, using periods
to section off namespaces.

129

https://en.wikibooks.org/wiki/..%2FStandalone%20programs%2F
http://www.haskell.org/onlinereport/modules.html
http://www.haskell.org/onlinereport/modules.html

Modules

import Data.Char (toLower, toUpper) -- import only the functions toLower and
toUpper from Data.Char

import Data.List -- import everything exported from Data.List

import MyModule -- import everything exported from MyModule

Imported datatypes are specified by their name, followed by a list of imported constructors
in parenthesis. For example:

import Data.Tree (Tree(Node)) -- import only the Tree data type and its Node
constructor from Data.Tree

What if you import some modules that have overlapping definitions? Or if you import a
module but want to overwrite a function yourself? There are three ways to handle these
cases: Qualified imports, hiding definitions, and renaming imports.

22.2.1 Qualified imports

Say MyModule and MyOtherModule both have a definition for remove_e, which removes
all instances of e from a string. However, MyModule only removes lower-case e’s, and
MyOtherModule removes both upper and lower case. In this case the following code is
ambiguous:

import MyModule
import MyOtherModule

-- someFunction puts a c in front of the text, and removes all e's from the rest
someFunction :: String -> String
someFunction text = 'c' : remove_e text

It isn’t clear which remove_e is meant! To avoid this, use the qualified keyword:

import qualified MyModule
import qualified MyOtherModule

someFunction text = 'c' : MyModule.remove_e text -- Will work, removes lower
case e's
someOtherFunction text = 'c' : MyOtherModule.remove_e text -- Will work, removes
all e's
someIllegalFunction text = 'c' : remove_e text -- Won't work as there is no
remove_e defined

In the latter code snippet, no function named remove_e is available at all. When we do
qualified imports, all the imported values include the module names as a prefix. Inciden-
tally, you can also use the same prefixes even if you did a regular import (in our example,
MyModule.remove_e works even if the ”qualified” keyword isn’t included).

Note:
There is an ambiguity between a qualified name like MyModule.remove_e and the func-
tion composition operator (.). Writing reverse.MyModule.remove_e is bound to con-
fuse your Haskell compiler. One solution is stylistic: always use spaces for function
composition, for example, reverse . remove_e or Just . remove_e or even Just .
MyModule.remove_e

130

Importing

22.2.2 Hiding definitions

Now suppose we want to import both MyModule and MyOtherModule, but we know for sure
we want to remove all e’s, not just the lower cased ones. It will become really tedious to add
MyOtherModule before every call to remove_e. Can’t we just exclude the remove_e from
MyModule?

import MyModule hiding (remove_e)
import MyOtherModule

someFunction text = 'c' : remove_e text

This works because of the word hiding on the import line. Whatever follows the ”hiding”
keyword will not be imported. Hide multiple items by listing them with parentheses and
comma-separation:

import MyModule hiding (remove_e, remove_f)

Note that algebraic datatypes and type synonyms cannot be hidden. These are always
imported. If you have a datatype defined in multiple imported modules, you must use
qualified names.

22.2.3 Renaming imports

This is not really a technique to allow for overwriting, but it is often used along with the
qualified flag. Imagine:

import qualified MyModuleWithAVeryLongModuleName

someFunction text = 'c' : MyModuleWithAVeryLongModuleName.remove_e $ text

Especially when using qualified, this gets irritating. We can improve things by using the
as keyword:

import qualified MyModuleWithAVeryLongModuleName as Shorty

someFunction text = 'c' : Shorty.remove_e $ text

This allows us to use Shorty instead of MyModuleWithAVeryLongModuleName as prefix for
the imported functions. This renaming works with both qualified and regular importing.

As long as there are no conflicting items, we can import multiple modules and rename them
the same:

import MyModule as My
import MyCompletelyDifferentModule as My

In this case, both the functions in MyModule and the functions in
MyCompletelyDifferentModule can be prefixed with My.

131

Modules

22.2.4 Combining renaming with limited import

Sometimes it is convenient to use the import directive twice for the same module. A typical
scenario is as follows:

import qualified Data.Set as Set
import Data.Set (Set, empty, insert)

This give access to all of the Data.Set module via the alias ”Set”, and also lets you access a
few selected functions (empty, insert, and the constructor) without using the ”Set” prefix.

22.3 Exporting

In the examples at the start of this article, the words ”import everything exported from
MyModule” were used.4 This raises a question. How can we decide which functions are
exported and which stay ”internal”? Here’s how:

module MyModule (remove_e, add_two) where

add_one blah = blah + 1

remove_e text = filter (/= 'e') text

add_two blah = add_one . add_one $ blah

In this case, only remove_e and add_two are exported. While add_two is allowed to make
use of add_one, functions in modules that import MyModule cannot use add_one directly,
as it isn’t exported.

Datatype export specifications are written similarly to import. You name the type, and
follow with the list of constructors in parenthesis:

module MyModule2 (Tree(Branch, Leaf)) where

data Tree a = Branch {left, right :: Tree a}
| Leaf a

In this case, the module declaration could be rewritten ”MyModule2 (Tree(..))”, declaring
that all constructors are exported.

Maintaining an export list is good practice not only because it reduces namespace pollu-
tion but also because it enables certain compile-time optimizations5 which are unavailable
otherwise.

4 A module may export functions that it imports. Mutually recursive modules are possible
but need some special treatment ˆ{http://www.haskell.org/ghc/docs/latest/html/users_guide/
separate-compilation.html#mutual-recursion} .

5 http://www.haskell.org/haskellwiki/Performance/GHC#Inlining

132

http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html#mutual-recursion
http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html#mutual-recursion
http://www.haskell.org/haskellwiki/Performance/GHC#Inlining

23 Indentation

Haskell relies on indentation to reduce the verbosity of your code. Despite some complexity
in practice, there are really only a couple fundamental layout rules.1

23.1 The golden rule of indentation

Code which is part of some expression should be indented further in than the
beginning of that expression (even if the expression is not the leftmost element of the
line).

The easiest example is a ’let’ binding group. The equations binding the variables are part of
the ’let’ expression, and so should be indented further in than the beginning of the binding
group: the ’let’ keyword. When you start the expression on a separate line, you only need to
indent by one space (although more than one space is also acceptable and may be clearer).

let
x = a
y = b

You may also place the first clause alongside the ’let’ as long as you indent the rest to line
up:
wrong wrong right

let x = a
y = b

let x = a
y = b

let x = a
y = b

This tends to trip up a lot of beginners: All grouped expressions must be exactly aligned.
On the first line, Haskell counts everything to the left of the expression as indent, even
though it is not whitespace.

Here are some more examples:

do
foo
bar
baz

do foo
bar
baz

1 See section 2.7 of The Haskell Report (lexemes) ˆ{http://www.haskell.org/onlinereport/lexemes.
html#sect2.7} on layout.

133

http://www.haskell.org/onlinereport/lexemes.html#sect2.7
http://www.haskell.org/onlinereport/lexemes.html#sect2.7

Indentation

where x = a
y = b

case x of
p -> foo
p' -> baz

Note that with ’case’ it is less common to place the first subsidiary expression on the same
line as the ’case’ keyword (although it would still be valid code). Hence, the subsidiary
expressions in a case expression tend to be indented only one step further than the ’case’
line. Also note how we lined up the arrows here: this is purely aesthetic and is not counted
as different layout; only indentation (i.e. whitespace beginning on the far-left edge) makes
a difference to the interpretation of the layout.

Things get more complicated when the beginning of an expression is not at the start of a
line. In this case, it’s safe to just indent further than the line containing the expression’s
beginning. In the following example, do comes at the end of a line, so the subsequent parts
of the expression simply need to be indented relative to the line that contains the do, not
relative to the do itself.

myFunction firstArgument secondArgument = do
foo
bar
baz

Here are some alternative layouts which all work:

myFunction firstArgument secondArgument =
do foo

bar
baz

myFunction firstArgument secondArgument = do foo
bar
baz

myFunction firstArgument secondArgument =
do

foo
bar
baz

23.2 Explicit characters in place of indentation

Indentation is actually optional if you instead use semicolons and curly braces for grouping
and separation, as in ”one-dimensional” languages like C. Even though the consensus among
Haskell programmers is that meaningful indentation leads to better-looking code, under-
standing how to convert from one style to the other can help understand the indentation
rules. The entire layout process can be summed up in three translation rules (plus a fourth
one that doesn’t come up very often):

1. If you see one of the layout keywords, (let, where, of, do), insert an open curly brace
(right before the stuff that follows it)

2. If you see something indented to the SAME level, insert a semicolon
3. If you see something indented LESS, insert a closing curly brace

134

Layout in action

4. If you see something unexpected in a list, like where, insert a closing brace before
instead of a semicolon.

For instance, this definition...

foo :: Double -> Double
foo x =

let s = sin x
c = cos x

in 2 * s * c

...can be rewritten without caring about the indentation rules as:

foo :: Double -> Double;
foo x = let {

s = sin x;
c = cos x;
} in 2 * s * c

One circumstance in which explicit braces and semicolons can be convenient is when writing
one-liners in GHCi:

Prelude> let foo :: Double -> Double; foo x = let { s = sin x; c = cos x } in 2
* s * c

Exercises:
Rewrite this snippet from the Control Structures chapter using explicit braces and semi-
colons:
doGuessing num = do

putStrLn "Enter your guess:"
guess <- getLine
case compare (read guess) num of

LT -> do putStrLn "Too low!"
doGuessing num

GT -> do putStrLn "Too high!"
doGuessing num

EQ -> putStrLn "You Win!"

23.3 Layout in action

wrong wrong right right

do first thing
second thing
third thing

do first thing
second thing
third thing

do first thing
second thing
third thing

do
first thing
second thing
third thing

135

Indentation

23.3.1 Indent to the first

Due to the ”golden rule of indentation” described above, a curly brace within a do block
depends not on the do itself but the thing that immediately follows it. For example, this
weird-looking block of code is totally acceptable:

do
first thing
second thing
third thing

As a result, you could also write combined if/do combination like this:
Wrong Right Right

if foo
then do first thing

second thing
third thing

else do something_else

if foo
then do first thing

second thing
third thing

else do something_else

if foo
then do

first thing
second thing
third thing

else do
something_else

It isn’t about the do, it’s about lining up all the items that are at the same level within the
do.

Thus, all of the following are acceptable:

main = do
first thing
second thing

or

main =
do
first thing
second thing

or

main =
do first thing

second thing

23.3.2 if within do

This is a combination which trips up many Haskell programmers. Why does the following
block of code not work?
sweet but wrong unsweet and wrong

136

Layout in action

-- why is this bad?
do first thing

if condition
then foo
else bar
third thing

-- still bad, just explicitly so
do { first thing

; if condition
; then foo
; else bar
; third thing }

Naturally, the Haskell compiler is confused because it thinks that you never finished writing
your if expression, before writing a new statement. The compiler sees that you have written
something like if condition;, which is bad because it is unfinished. In order to fix this,
we need to indent the bottom parts of this if block so that then and else become part of
the if statement.
sweet and correct unsweet and correct

-- whew, fixed it!
do first thing

if condition
then foo
else bar

third thing

-- the fixed version without sugar
do { first thing

; if condition
then foo
else bar

; third thing }

Now, the do block sees the whole if statement as one item. When if-then-else statements
are not within do blocks, this specific indentation isn’t technically necessary, but it never
hurts, so it is a good habit to always indent if-then-else in this way.

Exercises:
The if-within-do issue has tripped up so many Haskellers that one programmer has
posted a proposala to the Haskell prime initiative to add optional semicolons between
if then else. How would that help?

a http://hackage.haskell.org/trac/haskell-prime/ticket/23

Issues with indentation are explained further in connection with showing how do is syntactic
sugar for the monadic operator (>>=). See Translating the bind operator2 and the associated
footnote about indentation3.

2 Chapter 34 on page 199
3 Chapter 34 on page 199

137

http://hackage.haskell.org/trac/haskell-prime/ticket/23

24 More on datatypes

24.1 Enumerations

One special case of the data declaration is the enumeration — a data type where none of
the constructor functions have any arguments:

data Month = January | February | March | April | May | June | July
| August | September | October | November | December

You can mix constructors that do and do not have arguments, but then the result is not
called an enumeration. The following example is not an enumeration because the last con-
structor takes three arguments:

data Colour = Black | Red | Green | Blue | Cyan
| Yellow | Magenta | White | RGB Int Int Int

As you will see further on when we discuss classes and derivation, there are practical reasons
to distinguish between what is and isn’t an enumeration.

Incidentally, the Bool datatype is an enumeration:

data Bool = False | True
deriving (Bounded, Enum, Eq, Ord, Read, Show)

24.2 Named Fields (Record Syntax)

Consider a datatype whose purpose is to hold configuration settings. Usually, when you
extract members from this type, you really only care about one or two of the many settings.
Moreover, if many of the settings have the same type, you might often find yourself won-
dering ”wait, was this the fourth or fifth element?” One way to clarify is to write accessor
functions. Consider the following made-up configuration type for a terminal program:

data Configuration = Configuration
String -- User name
String -- Local host
String -- Remote host
Bool -- Is guest?
Bool -- Is superuser?
String -- Current directory
String -- Home directory
Integer -- Time connected

deriving (Eq, Show)

You could then write accessor functions, such as:

139

More on datatypes

getUserName (Configuration un _ _ _ _ _ _ _) = un
getLocalHost (Configuration _ lh _ _ _ _ _ _) = lh
getRemoteHost (Configuration _ _ rh _ _ _ _ _) = rh
getIsGuest (Configuration _ _ _ ig _ _ _ _) = ig
-- And so on...

You could also write update functions to update a single element. Of course, if you add
or remove an element in the configuration later, all of these functions now have to take
a different number of arguments. This is quite annoying and is an easy place for bugs to
slip in. Thankfully, there’s a solution: we simply give names to the fields in the datatype
declaration, as follows:

data Configuration = Configuration
{ username :: String
, localHost :: String
, remoteHost :: String
, isGuest :: Bool
, isSuperuser :: Bool
, currentDir :: String
, homeDir :: String
, timeConnected :: Integer
}

This will automatically generate the following accessor functions for us:

username :: Configuration -> String
localHost :: Configuration -> String
-- etc.

This also gives us a convenient update method. Here is a short example for a ”post working
directory” and ”change directory” functions that work on Configurations:

changeDir :: Configuration -> String -> Configuration
changeDir cfg newDir =

if directoryExists newDir -- make sure the directory exists
then cfg { currentDir = newDir }
else error "Directory does not exist"

postWorkingDir :: Configuration -> String
postWorkingDir cfg = currentDir cfg

So, in general, to update the field x in a datatype y to z, you write y { x = z }. You can
change more than one; each should be separated by commas, for instance, y {x = z, a =
b, c = d }.

Note:
Those of you familiar with object-oriented languages might be tempted, after all of this
talk about ”accessor functions” and ”update methods”, to think of the y{x=z} construct
as a setter method, which modifies the value of x in a pre-existing y. It is not like that –
remember that in Haskell variables are immutablea. Therefore, using the example above,
if you do something like conf2 = changeDir conf1 "/opt/foo/bar" conf2 will be de-
fined as a Configuration which is just like conf1 except for having "/opt/foo/bar" as
its currentDir, but conf1 will remain unchanged.

a Chapter 3.4 on page 9

140

Named Fields (Record Syntax)

24.2.1 It’s only sugar

You can, of course, continue to pattern match against Configurations as you did before.
The named fields are simply syntactic sugar; you can still write something like:

getUserName (Configuration un _ _ _ _ _ _ _) = un

But there is no need to do this.

Finally, you can pattern match against named fields as in:

getHostData (Configuration { localHost = lh, remoteHost = rh }) = (lh, rh)

This matches the variable lh against the localHost field in the Configuration and the
variable rh against the remoteHost field. These matches will succeed, of course. You could
also constrain the matches by putting values instead of variable names in these positions,
as you would for standard datatypes.

If you are using GHC, then, with the language extension NamedFieldPuns, it is also possible
to use this form:

getHostData (Configuration { localHost, remoteHost }) = (localHost, remoteHost)

It can be mixed with the normal form like this:

getHostData (Configuration { localHost, remoteHost = rh }) = (localHost, rh)

(To use this language extension, enter :set -XNamedFieldPuns in the interpreter, or use
the {-# LANGUAGE NamedFieldPuns #-} pragma at the beginning of a source file, or pass
the -XNamedFieldPuns command-line flag to the compiler.)

You can create values of Configuration in the old way as shown in the first definition
below, or in the named field’s type, as shown in the second definition:

initCFG = Configuration "nobody" "nowhere" "nowhere" False False "/" "/" 0

initCFG' = Configuration
{ username = "nobody"
, localHost = "nowhere"
, remoteHost = "nowhere"
, isguest = False
, issuperuser = False
, currentdir = "/"
, homedir = "/"
, timeConnected = 0
}

The first way is much shorter, but the second is much clearer.

WARNING: The second style will allow you to write code that omits fields but will still
compile, such as:

cfgFoo = Configuration { username = "Foo" }
cfgBar = Configuration { localHost = "Bar", remoteHost = "Baz" }
cfgUndef = Configuration {}

Trying to evaluate the unspecified fields will then result in a runtime error!

141

More on datatypes

24.3 Parameterized Types

Parameterized types are similar to ”generic” or ”template” types in other languages. A
parameterized type takes one or more type parameters. For example, the Standard Prelude
type Maybe is defined as follows:

data Maybe a = Nothing | Just a

This says that the type Maybe takes a type parameter a. You can use this to declare, for
example:

lookupBirthday :: [Anniversary] -> String -> Maybe Anniversary

The lookupBirthday function takes a list of birthday records and a string and returns a
Maybe Anniversary. The usual interpretation of such a type is that if the name given
through the string is found in the list of anniversaries the result will be Just the corre-
sponding record; otherwise, it will be Nothing. Maybe is the simplest and most common
way of indicating failure in Haskell. It is also sometimes seen in the types of function ar-
guments, as a way to make them optional (the intent being that passing Nothing amounts
to omitting the argument).

You can parameterize type and newtype declarations in exactly the same way. Furthermore
you can combine parameterized types in arbitrary ways to construct new types.

24.3.1 More than one type parameter

We can also have more than one type parameter. An example of this is the Either type:

data Either a b = Left a | Right b

For example:

pairOff :: Int -> Either String Int
pairOff people

| people < 0 = Left "Can't pair off negative number of people."
| people > 30 = Left "Too many people for this activity."
| even people = Right (people `div` 2)
| otherwise = Left "Can't pair off an odd number of people."

groupPeople :: Int -> String
groupPeople people =

case pairOff people of
Right groups -> "We have " ++ show groups ++ " group(s)."
Left problem -> "Problem! " ++ problem

In this example pairOff indicates how many groups you would have if you paired off a
certain number of people for your activity. It can also let you know if you have too many
people for your activity or if somebody will be left out. So pairOff will return either an
Int representing the number of groups you will have, or a String describing the reason why
you can’t create your groups.

142

Parameterized Types

24.3.2 Kind Errors

The flexibility of Haskell parameterized types can lead to errors in type declarations that
are somewhat like type errors, except that they occur in the type declarations rather than
in the program proper. Errors in these ”types of types” are known as ”kind” errors. You
don’t program with kinds: the compiler infers them for itself. But if you get parameterized
types wrong then the compiler will report a kind error.

143

25 Other data structures

In this chapter, we will work through examples of how the techniques we have studied thus
far can be used to deal with more complex data types. In particular, we will see examples
of recursive data structures, which are data types that can contain values of the same type.
Recursive data structures play a vital role in many programming techniques, and so even if
you are not going to need defining a new one often (as opposed to using the ones available
from the libraries) it is important to be aware of what they are and how they can be
manipulated. Besides that, following closely the implementations in this chapter is a good
exercise for your budding Haskell abilities.

Note:
The Haskell library ecosystem provides a wealth of data structures (recursive and other-
wise), covering a wide range of practical needs. Beyond lists, there are maps, sets, finite
sequences and arrays, among many others. A good place to begin learning about the
main ones is the Data structures primera in the Haskell in Practice track. We recommend
you to at least skim it once you finish the next few Intermediate Haskell chapters.

a https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer

25.1 Trees

One of the most important types of recursive data structures are trees. There are several
different kinds of trees, so we will arbitrarily choose a simple one to use as an example.
Here is its definition:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

As you can see, it’s parameterized; i.e. we can have trees of Ints, trees of Strings, trees of
Maybe Ints, trees of (Int, String) pairs and so forth. What makes this data type special
is that Tree appears in the definition of itself. A Tree a is either a leaf, containing a value
of type a or a branch, from which hang two other trees of type Tree a.

25.1.1 Lists as Trees

As we have seen in More about lists1 and List Processing2, we break lists down into two
cases: An empty list (denoted by []), and an element of the specified type plus another list
(denoted by (x:xs)). That means the definition of the list data type might look like this:

1 https://en.wikibooks.org/wiki/Haskell%2FMore%20about%20lists
2 https://en.wikibooks.org/wiki/Haskell%2FList_Processing

145

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer
https://en.wikibooks.org/wiki/Haskell%2FMore%20about%20lists
https://en.wikibooks.org/wiki/Haskell%2FList_Processing

Other data structures

-- Pseudo-Haskell, will not actually work (because lists have special syntax).
data [a] = [] | (a:[a])

An equivalent definition you can actually play with is:

data List a = Nil | Cons a (List a)

Like trees, lists are also recursive. For lists, the constructor functions are [] and (:). They
correspond to Leaf and Branch in the Tree definition above. That implies we can use
Leaf and Branch for pattern matching just as we did with the empty list and the (x:xs).

25.1.2 Maps and Folds

We already know about maps and folds for lists. Now, we can write map and fold functions
for our new Tree type. To recap:

data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Show)
data [a] = [] | (:) a [a]

-- (:) a [a] is the same as (a:[a]) with prefix instead of infix notation.

Note:
Deriving is explained later on in the section Class Declarationsa. For now, understand
it as telling Haskell (and by extension your interpreter) how to display a Tree instance.

a Chapter 26 on page 155

Map

Let’s take a look at the definition of map for lists:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

If we were to write treeMap, what would its type be? Defining the function is easier if you
have an idea of what its type should be.

We want treeMap to work on a Tree of some type and return another Tree of some type
by applying a function on each element of the tree.

treeMap :: (a -> b) -> Tree a -> Tree b

This is just like the list example.

Now, when talking about a Tree, each Leaf only contains a single value, so all we have to
do is apply the given function to that value and then return a Leaf with the altered value:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)

146

Trees

This looks a lot like the empty list case with map. Now, if we have a Branch, it will include
two subtrees; what do we do with those? The list-map uses a call to itself on the tail of the
list, so we also shall do that with the two subtrees. The complete definition of treeMap is
as follows:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Branch left right) = Branch (treeMap f left) (treeMap f right)

We can make this a bit more readable by noting that treeMap f is itself a function with
type Tree a -> Tree b. This gives us the following revised definition:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f = g where

g (Leaf x) = Leaf (f x)
g (Branch left right) = Branch (g left) (g right)

If you didn’t follow that immediately, try re-reading it. This use of pattern matching may
seem weird at first, but it is essential to the use of datatypes. Remember that pattern
matching happens on constructor functions.

When you’re ready, read on for folds over Trees.

Fold

As with map, let’s first review the definition of foldr for lists:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)

Recall that lists have two constructors:

(:) :: a -> [a] -> [a] -- takes an element and combines it with the rest of the
list
[] :: [a] -- the empty list takes zero arguments

Thus foldr takes two arguments corresponding to the two constructors:

f :: a -> b -> b -- a function takes two elements and operates on them to
return a single result
acc :: b -- the accumulator defines what happens with the empty list

Let’s take a moment to make this clear. If the initial foldr is given an empty list, then
the default accumulator is returned. For functions like (+), the initial accumulator will
be 0. With a non-empty list, the value returned by each fold is used in the next fold.
When the list runs out, we are back at the empty list, so foldr returns whatever is then the
accumulator value from the last fold.

Like foldr for lists, we want treeFold to transform a tree of some type into a value of
some other type; so in place of [a] -> b we will have Tree a -> b. How do we specify
the transformation? First note that Tree a has two constructors (just like lists have two
constructors):

147

Other data structures

Branch :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

So treeFold will have two arguments corresponding to the two constructors:

fbranch :: b -> b -> b
fleaf :: a -> b

Putting it all together we get the following type definition:

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b

That is, the first argument, of type (b -> b -> b), is a function specifying how to combine
subtrees into a single result; the second argument, of type a -> b, is a function specifying
what to do with leaves (which are the end of recursion, just like empty-list for lists); and
the third argument, of type Tree a, is the whole tree we want to fold.

As with treeMap, we’ll avoid repeating the arguments fbranch and fleaf by introducing
a local function g:

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where

-- definition of g goes here

The argument fleaf tells us what to do with Leaf subtrees:

g (Leaf x) = fleaf x

The argument fbranch tells us how to combine the results of ”folding” two subtrees:

g (Branch left right) = fbranch (g left) (g right)

Our full definition becomes:

treeFold :: (b -> b -> b) -> (a -> b) -> Tree a -> b
treeFold fbranch fleaf = g where

g (Leaf x) = fleaf x
g (Branch left right) = fbranch (g left) (g right)

For examples of how these work, copy the Tree data definition and the treeMap and
treeFold functions to a Haskell file, along with the following example Tree and example
functions to fold over.

tree1 :: Tree Integer
tree1 =

Branch
(Branch

(Branch
(Leaf 1)
(Branch (Leaf 2) (Leaf 3)))

(Branch
(Leaf 4)
(Branch (Leaf 5) (Leaf 6))))

(Branch
(Branch (Leaf 7) (Leaf 8))
(Leaf 9))

doubleTree = treeMap (*2) -- doubles each value in tree

148

Other datatypes

sumTree = treeFold (+) id -- sum of the leaf values in tree
fringeTree = treeFold (++) (: []) -- list of the leaves of tree

Then load it into GHCi and evaluate:

doubleTree tree1
sumTree tree1
fringeTree tree1

25.2 Other datatypes

Map and fold functions can be defined for any kind of data type. In order to generalize the
strategy applied for lists and trees, in this final section we will work out a map and a fold
for a very strange, intentionally-contrived datatype:

data Weird a b = First a
| Second b
| Third [(a,b)]
| Fourth (Weird a b)

It can be a useful exercise to write the functions as you follow the examples, trying to keep
the coding one step ahead of your reading.

25.2.1 General Map

The first important difference in working with this Weird type is that it has two type param-
eters. For that reason, we will want the map function to take two functions as arguments,
one to be applied on the elements of type a and another for the elements of type b. With
that accounted for, we can write the type signature of weirdMap:

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d

Next step is defining weirdMap. The key point is that maps preserve the structure of a
datatype, so the function must evaluate to a Weird which uses the same constructor as the
one used for the original Weird. For that reason, we need one definition to handle each
constructor, and these constructors are used as patterns for writing them. As before, to
avoid repeating the weirdMap argument list over and over again a where clause comes in
handy. A sketch of the function is below:

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g

where
g (First x) = --More to follow
g (Second y) = --More to follow
g (Third z) = --More to follow
g (Fourth w) = --More to follow

The first two cases are fairly straightforward, as there is just a single element of a or b type
inside the Weird.

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d

149

Other data structures

weirdMap fa fb = g
where
g (First x) = First (fa x)
g (Second y) = Second (fb y)
g (Third z) = --More to follow
g (Fourth w) = --More to follow

Third is trickier because it contains a list whose elements are themselves data structures
(the tuples). So we need to navigate the nested data structures, apply fa and fb on all
elements of type a and b and eventually (as a map must preserve structure) produce a list
of tuples – [(c,d)] – to be used with the constructor. The simplest approach might seem
to be just breaking down the list inside the Weird and playing with the patterns:

g (Third []) = Third []
g (Third ((x,y):zs)) = Third ((fa x, fb y) : ((\(Third z) -> z) (g (Third

zs))))

This appears to be written as a typical recursive function for lists. We start by applying
the functions of interest to the first element in order to obtain the head of the new list,
(fa x, fb y). But what will we cons it to? As g requires a Weird argument, we need to
make a Weird using the list tail in order to make the recursive call. But then g will give a
Weird and not a list, so we have to retrieve the modified list from that – that’s the role of
the lambda function. Finally, there is also the empty list base case to be defined as well.

After all of that, we are left with a messy function. Every recursive call of g requires
wrapping zs into a Weird, while what we really wanted to do was to build a list with
(fa x, fb y) and the modified xs. The problem with this solution is that g can (thanks
to pattern matching) act directly on the list head but (due to its type signature) can’t
be called directly on the list tail. For that reason, it would be better to apply fa and
fb without breaking down the list with pattern matching (as far as g is directly concerned,
at least). But there was a way to directly modify a list element-by-element...

g (Third z) = Third (map (\(x, y) -> (fa x, fb y)) z)

...our good old map function, which modifies all tuples in the list z using a lambda function.
In fact, the first attempt at writing the definition looked just like an application of the
list map except for the spurious Weird packing and unpacking. We got rid of these by
having the pattern splitting of z done by map, which works directly with regular lists. You
could find it useful to expand the map definition inside g to see the difference more clearly.
Finally, you may prefer to write this new version in an alternative and clean way using list
comprehension syntax:

g (Third z) = Third [(fa x, fb y) | (x,y) <- z]

Adding the Third function, we only have the Fourth left to define:

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g

where
g (First x) = First (fa x)
g (Second y) = Second (fb y)
g (Third z) = Third (map (\(x, y) -> (fa x, fb y)) z)
g (Fourth w) = --More to follow

All we need to do is apply g recursively:

150

Other datatypes

weirdMap :: (a -> c) -> (b -> d) -> Weird a b -> Weird c d
weirdMap fa fb = g

where
g (First x) = First (fa x)
g (Second y) = Second (fb y)
g (Third z) = Third (map (\(x, y) -> (fa x, fb y)) z)
g (Fourth w) = Fourth (g w)

25.2.2 General Fold

While we were able to define a map by specifying as arguments a function for every separate
type, this isn’t enough for a fold. For a fold, we’ll need a function for every constructor func-
tion. With lists, the constructors are [] and (:). The acc argument in the foldr function
corresponds to the [] constructor. The f argument in the foldr function corresponds to
the (:) constructor. The Weird datatype has four constructors, so we need four functions –
one for handling the internal structure of the datatype specified by each constructor. Next,
we have an argument of the Weird a b type, and finally we want the whole fold function
to evaluate to a value of some other, arbitrary, type. Additionally, each individual function
we pass to weirdFold must evaluate to the same type weirdFold does. That allows us to
make a mock type signature and sketch the definition:

weirdFold :: (something1 -> c) -> (something2 -> c) -> (something3 -> c) ->
(something4 -> c) -> Weird a b -> c
weirdFold f1 f2 f3 f4 = g

where
g (First x) = --Something of type c here
g (Second y) = --Something of type c here
g (Third z) = --Something of type c here
g (Fourth w) = --Something of type c here

Now, we need to figure out to which types something1, something2, something3 and
something4 correspond to. That is done by analyzing the constructors, since the functions
must take as arguments the elements of the datatype (whose types are specified by the
constructor type signature). Again, the types and definitions of the first two functions are
easy enough. The third one isn’t too difficult either because, for the purposes of folding the
list of (a,b), tuples are no different from a simple type (unlike in the map example, the
internal structure does not concern us now). The fourth constructor, however, is recursive,
and we have to be careful. As with weirdMap, we also need to recursively call the g function.
This brings us to the final definition:

weirdFold :: (a -> c) -> (b -> c) -> ([(a,b)] -> c) -> (c -> c) -> Weird a b ->
c
weirdFold f1 f2 f3 f4 = g

where
g (First x) = f1 x
g (Second y) = f2 y
g (Third z) = f3 z
g (Fourth w) = f4 (g w)

151

Other data structures

Note:
If you were expecting very complex expressions in the weirdFold above and are surprised
by the immediacy of the solution, it might be helpful to have a look on what the common
foldr would look like if we wrote it in this style and didn’t have the special square-
bracket syntax of lists to distract us:
-- List a is [a], Cons is (:) and Nil is []
data List a = Cons a (List a) | Nil

listFoldr :: (a -> b -> b) -> (b) -> List a -> b
listFoldr fCons fNil = g

where
g (Cons x xs) = fCons x (g xs)
g Nil = fNil

Now it is easier to see the parallels. The extra complications are that Cons (that is, (:))
takes two arguments (and, for that reason, so does fCons) and is recursive, requiring a
call to g. Also, fNil is of course not really a function, as it takes no arguments.

Folds on recursive datatypes

As far as folds are concerned, Weird was a fairly nice datatype to deal with. Just one
recursive constructor, which isn’t even nested inside other structures. What would happen
if we added a truly complicated fifth constructor?

Fifth [Weird a b] a (Weird a a, Maybe (Weird a b))

This is a valid and yet tricky question. In general, the following rules apply:

• A function to be supplied to a fold has the same number of arguments as the corresponding
constructor.

• The type of the arguments of such a function match the types of the constructor ar-
guments, except if the constructor is recursive (that is, takes an argument of its own
type).

• If a constructor is recursive, any recursive argument of the constructor will correspond
to an argument of the type the fold evaluates to.3

• If a constructor is recursive, the complete fold function should be (recursively) applied to
the recursive constructor arguments.

• If a recursive element appears inside another data structure, the appropriate map function
for that data structure should be used to apply the fold function to it.

So f5 would have the type:

f5 :: [c] -> a -> (Weird a a, Maybe c) -> c

3 This sort of recursiveness, in which the function used for folding can take the result of another fold as
an argument, is what confers the folds of data structures such as lists and trees their ”accumulating”
functionality.

152

Other datatypes

as the type of Fifth is:

Fifth :: [Weird a b] -> a -> (Weird a a, Maybe (Weird a b)) -> Weird a b

The definition of g for the Fifth constructor will be:

g (Fifth list x (waa, mc)) = f5 (map g list) x (waa, maybeMap g mc)
where
maybeMap f Nothing = Nothing
maybeMap f (Just w) = Just (f w)

Note that nothing strange happens with the Weird a a part. No g gets called. What’s up?
This is recursion, right? Well, not really. Weird a a and Weird a b are different types, so
it isn’t a real recursion. It isn’t guaranteed that, for example, f2 will work with something
of type ’a’, where it expects a type ’b’. It can be true for some cases but is not reliable for
every case.

Also look at the definition of maybeMap. Verify that it is indeed a map function as:

• It preserves structure.
• Only types are changed.

A nice sounding word

The folds we have defined here are examples of catamorphisms. A catamorphism is a general
way to collapse a data structure into a single value. There is deep theory associated with
catamorphisms and related recursion schemes; however, we won’t go through any of it now,
as our main goal here was exercising the mechanics of data structure manipulation in Haskell
with believable examples.

153

26 Classes and types

Back in Type basics II1 we had a brief encounter with type classes as the mechanism used
with number types. As we hinted back then, however, classes have many other uses.

Broadly speaking, the point of type classes is to ensure that certain operations will be
available for values of chosen types. For example, if we know a type belongs to (or, to use
the jargon, instantiates) the class Fractional, then we are guaranteed to, among other
things, be able to perform real division with its values.2

26.1 Classes and instances

Up to now we have seen how existing type classes appear in signatures such as:

(==) :: (Eq a) => a -> a -> Bool

Now it is time to switch perspectives. First, we quote the definition of the Eq class from
Prelude:

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:
-- (==) or (/=)

x /= y = not (x == y)
x == y = not (x /= y)

The definition states that if a type a is to be made an instance of the class Eq it must
support the functions (==) and (/=) - the class methods - both of them having type a ->
a -> Bool. Additionally, the class provides default definitions for (==) and (/=) in terms
of each other. As a consequence, there is no need for a type in Eq to provide both definitions
- given one of them, the other will be generated automatically.

With a class defined, we proceed to make existing types instances of it. Here is an arbitrary
example of an algebraic data type made into an instance of Eq by an instance declaration:

data Foo = Foo {x :: Integer, str :: String}

instance Eq Foo where
(Foo x1 str1) == (Foo x2 str2) = (x1 == x2) && (str1 == str2)

1 Chapter 7 on page 37
2 To programmers coming from object-oriented languages: A class in Haskell in all likelihood is not what

you expect - don’t let the terms confuse you. While some of the uses of type classes resemble what is done
with abstract classes or Java interfaces, there are fundamental differences which will become clear as we
advance.

155

Classes and types

And now we can apply (==) and (/=) to Foo values in the usual way:

• Main> Foo 3 "orange" == Foo 6 "apple" False
• Main> Foo 3 "orange" /= Foo 6 "apple" True

A few important remarks:

• The class Eq is defined in the Standard Prelude. This code sample defines the type
Foo and then declares it to be an instance of Eq. The three definitions (class, data type,
and instance) are completely separate and there is no rule about how they are grouped.
This works both ways: you could just as easily create a new class Bar and then declare
the type Integer to be an instance of it.

• Classes are not types, but categories of types; and so the instances of a class are types
instead of values.3

• The definition of (==) for Foo relies on the fact that the values of its fields (namely
Integer and String) are also members of Eq. In fact, almost all types in Haskell are
members of Eq (the most notable exception being functions).

• Type synonyms defined with type keyword cannot be made instances of a class.

26.2 Deriving

Since equality tests between values are commonplace, in all likelihood most of the data types
you create in any real program should be members of Eq. A lot of them will also be members
of other Prelude classes such as Ord and Show. To avoid large amounts of boilerplate for
every new type, Haskell has a convenient way to declare the ”obvious” instance definitions
using the keyword deriving. So, Foo would be written as:

data Foo = Foo {x :: Integer, str :: String}
deriving (Eq, Ord, Show)

This makes Foo an instance of Eq with an automatically generated definition of == exactly
equivalent to the one we just wrote, and also makes it an instance of Ord and Show for good
measure.

You can only use deriving with a limited set of built-in classes, which are described
very briefly below:

Eq
Equality operators == and /=

Ord
Comparison operators < <= > >=; min, max, and compare.

Enum
For enumerations only. Allows the use of list syntax such as [Blue .. Green].

3 This is a key difference from most OO languages, where a class is also itself a type.

156

Class inheritance

Bounded
Also for enumerations, but can also be used on types that have only one constructor.
Provides minBound and maxBound as the lowest and highest values that the type can take.

Show
Defines the function show, which converts a value into a string, and other related functions.

Read
Defines the function read, which parses a string into a value of the type, and other related
functions.

The precise rules for deriving the relevant functions are given in the language report. How-
ever, they can generally be relied upon to be the ”right thing” for most cases. The types of
elements inside the data type must also be instances of the class you are deriving.

This provision of special ”magic” function synthesis for a limited set of predefined classes
goes against the general Haskell philosophy that ”built in things are not special”, but it
does save a lot of typing. Besides that, deriving instances stops us from writing them in
the wrong way (an example: an instance of Eq such that x == y would not be equal to y
== x would be flat out wrong). 4

26.3 Class inheritance

Classes can inherit from other classes. For example, here is the main part of the definition
of Ord in Prelude:

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

The actual definition is rather longer and includes default implementations for most of the
functions. The point here is that Ord inherits from Eq. This is indicated by the => notation
in the first line, which mirrors the way classes appear in type signatures. Here, it means
that for a type to be an instance of Ord it must also be an instance of Eq, and hence needs
to implement the == and /= operations.5

A class can inherit from several other classes: just put all of its superclasses in the paren-
theses before the =>. Let us illustrate that with yet another Prelude quote:

class (Num a, Ord a) => Real a where
-- | the rational equivalent of its real argument with full precision
toRational :: a -> Rational

4 There are ways to make the magic apply to other classes. GHC extensions allow deriving for a few other
common classes for which there is only one correct way of writing the instances, and the GHC generics
machinery make it possible to generate instances automatically for custom classes.

5 If you check the full definition in the Prelude ˆ{http://hackage.haskell.org/packages/archive/base/
4.1.0.0/doc/html/Prelude.html} specification, the reason for that becomes clear: the default imple-
mentations involve applying (==) to the values being compared.

157

http://hackage.haskell.org/packages/archive/base/4.1.0.0/doc/html/Prelude.html
http://hackage.haskell.org/packages/archive/base/4.1.0.0/doc/html/Prelude.html

Classes and types

26.4 Standard classes

This diagram, copied from the Haskell Report, shows the relationships between the classes
and types in the Standard Prelude. The names in bold are the classes, while the non-bold
text stands for the types that are instances of each class ((->) refers to functions and [],
to lists). The arrows linking classes indicate the inheritance relationships, pointing to the
inheriting class.

Figure 1

158

Type constraints

26.5 Type constraints

With all pieces in place, we can go full circle by returning to the very first example involving
classes in this book:

(+) :: (Num a) => a -> a -> a

(Num a) => is a type constraint, which restricts the type a to instances of the class Num. In
fact, (+) is a method of Num, along with quite a few other functions (notably, (*) and (-);
but not (/)).

You can put several limits into a type signature like this:

foo :: (Num a, Show a, Show b) => a -> a -> b -> String
foo x y t =

show x ++ " plus " ++ show y ++ " is " ++ show (x+y) ++ ". " ++ show t

Here, the arguments x and y must be of the same type, and that type must be an instance of
both Num and Show. Furthermore, the final argument t must be of some (possibly different)
type that is also an instance of Show. This example also displays clearly how constraints
propagate from the functions used in a definition (in this case, (+) and show) to the function
being defined.

26.5.1 Other uses

Beyond simple type signatures, type constraints can be introduced in a number of other
places:

• instance declarations (typical with parametrized types);

• class declarations (constraints can be introduced in the method signatures in the usual
way for any type variable other than the one defining the class6);

• data declarations,7 where they act as constraints for the constructor signatures.

6 Constraints for the type defining the class should be set via class inheritance.
7 And newtype declarations as well, but not type.

159

Classes and types

Note:
Type constraints in data declarations are less useful than it might seem at first. Con-
sider:
data (Num a) => Foo a = F1 a | F2 a String

Here, Foo is a type with two constructors, both taking an argument of a type a which
must be in Num. However, the (Num a) => constraint is only effective for the F1 and
F2 constructors, and not for other functions involving Foo. Therefore, in the following
example...
fooSquared :: (Num a) => Foo a -> Foo a
fooSquared (F1 x) = F1 (x * x)
fooSquared (F2 x s) = F2 (x * x) s

... even though the constructors ensure a will be some type in Num we can’t avoid
duplicating the constraint in the signature of fooSquared.a

a Extra note for the curious: This issue is related to some of the problems tackled by the advanced
features discussed in the ”Fun with types” chapter of the Advanced Track.

26.6 A concerted example

To provide a better view of the interplay between types, classes, and constraints, we will
present a very simple and somewhat contrived example. We will define a Located class, a
Movable class which inherits from it, and a function with a Movable constraint implemented
using the methods of the parent class, i.e. Located.

-- Location, in two dimensions.
class Located a where

getLocation :: a -> (Int, Int)

class (Located a) => Movable a where
setLocation :: (Int, Int) -> a -> a

-- An example type, with accompanying instances.
data NamedPoint = NamedPoint

{ pointName :: String
, pointX :: Int
, pointY :: Int
} deriving (Show)

instance Located NamedPoint where
getLocation p = (pointX p, pointY p)

instance Movable NamedPoint where
setLocation (x, y) p = p { pointX = x, pointY = y }

-- Moves a value of a Movable type by the specified displacement.
-- This works for any movable, including NamedPoint.
move :: (Movable a) => (Int, Int) -> a -> a
move (dx, dy) p = setLocation (x + dx, y + dy) p

where
(x, y) = getLocation p

160

A concerted example

26.6.1 A word of advice

Do not read too much into the Movable example just above; it is merely a demonstration of
class-related language features. It would be a mistake to think that every single functionality
which might be conceivably generalized, such as setLocation, needs a type class of its
own. In particular, if all your Located instances should be able to be moved as well then
Movable is unnecessary - and if there is just one instance there is no need for type classes
at all! Classes are best used when there are several types instantiating it (or if you expect
others to write additional instances) and you do not want users to know or care about
the differences between the types. An extreme example would be Show: general-purpose
functionality implemented by an immense number of types, about which you do not need
to know a thing about before calling show. In the following chapters, we will explore a
number of important type classes in the libraries; they provide good examples of the sort
of functionality which fits comfortably into a class.

161

27 The Functor class

In this chapter, we will introduce the important Functor type class.

27.1 Motivation

In Other data structures1, we saw operations that apply to all elements of some grouped
value. The prime example is map which works on lists. Another example we worked through
was the following Tree datatype:

data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Show)

The map function we wrote for Tree was:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Branch left right) = Branch (treeMap f left) (treeMap f right)

As discussed before, we can conceivably define a map-style function for any arbitrary data
structure.

When we first introduced map in Lists II2, we went through the process of taking a very spe-
cific function for list elements and generalizing to show how map combines any appropriate
function with all sorts of lists. Now, we will generalize still further. Instead of map-for-lists
and map-for-trees and other distinct maps, how about a general concept of maps for all
sorts of mappable types?

27.2 Introducing Functor

Functor is a Prelude class for types which can be mapped over. It has a single method,
called fmap. The class is defined as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The usage of the type variable f can look a little strange at first. Here, f is a parametrized
data type; in the signature of fmap, f takes a as a type parameter in one of its appearances
and b in the other. Let’s consider an instance of Functor: By replacing f with Maybe we
get the following signature for fmap...

1 Chapter 25 on page 145
2 Chapter 13 on page 77

163

The Functor class

fmap :: (a -> b) -> Maybe a -> Maybe b

... which fits the natural definition:

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

(Incidentally, this definition is in Prelude; so we didn’t really need to implement
maybeMap for that example in the ”Other data structures” chapter.)

The Functor instance for lists (also in Prelude) is simple:

instance Functor [] where
fmap = map

... and if we replace f with [] in the fmap signature, we get the familiar type of map.

So, fmap is a generalization of map for any parametrized data type.3

Naturally, we can provide Functor instances for our own data types. In particular,
treeMap can be promptly relocated to an instance:

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch left right) = Branch (fmap f left) (fmap f right)

Here’s a quick demo of fmap in action with the instances above (to reproduce it, you only
need to load the data and instance declarations for Tree; the others are already in Pre-
lude):

• Main> fmap (2*) [1,2,3,4] [2,4,6,8]
• Main> fmap (2*) (Just 1) Just 2
• Main> fmap (fmap (2*)) [Just 1, Just 2, Just 3, Nothing] [Just 2, Just 4, Just 6, Nothing]
• Main> fmap (2*) (Branch (Branch (Leaf 1) (Leaf 2)) (Branch (Leaf 3) (Leaf 4))) Branch (Branch

(Leaf 2) (Leaf 4)) (Branch (Leaf 6) (Leaf 8))

Note:
Beyond [] and Maybe, there are many other Functor instances already defined. Those
made available from the Prelude can are listed in the Data.Functora module.

a http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor.html

27.2.1 The functor laws

When providing a new instance of Functor, you should ensure it satisfies the two functor
laws. There is nothing mysterious about these laws; their role is to guarantee fmap behaves

3 Data structures provide the most intuitive examples; however, there are functors which cannot reasonably
be seen as data structures. A commonplace metaphor consists in thinking of functors as containers; like
all metaphors, however, it can be stretched only so far.

164

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor.html

What did we gain?

sanely and actually performs a mapping operation (as opposed to some other nonsense). 4
The first law is:

fmap id = id

id is the identity function, which returns its argument unaltered. The first law states that
mapping id over a functorial value must return the functorial value unchanged.

Next, the second law:

fmap (g . f) = fmap g . fmap f

It states that it should not matter whether we map a composed function or first map one
function and then the other (assuming the application order remains the same in both
cases).

27.3 What did we gain?

At this point, we can ask what benefit we get from the extra layer of generalization brought
by the Functor class. There are two significant advantages:

• The availability of the fmap method relieves us from having to recall, read, and write
a plethora of differently named mapping methods (maybeMap, treeMap, weirdMap, ad
infinitum). As a consequence, code becomes both cleaner and easier to understand. On
spotting a use of fmap, we instantly have a general idea of what is going on.5 Thanks to
the guarantees given by the functor laws, this general idea is surprisingly precise.

• Using the type class system, we can write fmap-based algorithms which work out of the
box with any functor - be it [], Maybe, Tree or whichever you need. Indeed, a number
of useful classes in the core libraries inherit from Functor.

Type classes make it possible to create general solutions to whole categories of problems.
Depending on what you use Haskell for, you may not need to define new classes often, but
you will certainly be using type classes all the time. Many of the most powerful features
and sophisticated capabilities of Haskell rely on type classes (residing either in the standard
libraries or elsewhere). From this point on, classes will be a prominent presence in our
studies.

4 Some examples of nonsense that the laws rule out: removing or adding elements from a list, reversing a
list, changing a Just-value into a Nothing.

5 This is analogous to the gain in clarity provided by replacing explicit recursive algorithms on lists with
implementations based on higher-order functions.

165

28 Monads

167

29 Prologue: IO, an applicative functor

For shorter links to this chapter, be them within the book or off-wiki, you can use the
Haskell/Applicative prologue1 redirect.

The emergence of functors is a watershed in the course of this book. The reasons for that
will begin to reveal themselves in this prologue, as we set the stage for the next several
chapters of the book. While the code examples we will work with here are very simple, we
will use them to bring several new and important ideas into play, ideas that will be revisited
and further developed later in the book. That being so, we recommend you to study this
chapter at a gentle pace, which gives you space for thinking about the implications of each
step, as well as trying out the code samples in GHCi.

29.1 Scene 1 : Applicative

Our initial examples will use the function readMaybe, which is provided by the
Text.Read module.

GHCi> :m +Text.Read
GHCi> :t readMaybe
readMaybe :: Read a => String -> Maybe a

readMaybe provides a simple way of converting strings into Haskell values. If the provided
string has the correct format to be read as a value of type a, readMaybe gives back the
converted value wrapped in Just; otherwise, the result is Nothing.

GHCi> readMaybe "3" :: Maybe Integer
Just 3
GHCi> readMaybe "foo" :: Maybe Integer
Nothing
GHCi> readMaybe "3.5" :: Maybe Integer
Nothing
GHCi> readMaybe "3.5" :: Maybe Double
Just 3.5

Note:
To use readMaybe, we need to specify which type we are trying to read. Most of the time,
that would be done through a combination of type inference and the signatures in our
code. Occasionally, however, it is more convenient to just slap in a type annotation rather
than writing down a proper signature. For instance, in the first example above the ::
Maybe Integer in readMaybe "3" :: Maybe Integer says that the type of readMaybe
"3" is Maybe Integer.

169

Prologue: IO, an applicative functor

We can use readMaybe to write a little program in the style of those in the Simple input
and output2 chapter that:

• Gets a string given by the user through the command line;
• Tries to read it into a number (let’s use Double as the type); and
• If the read succeeds, prints the double of the number; otherwise, prints an explanatory
message and starts over.

Note:
Before continuing, we suggest you try writing the program. Beyond readMaybe, you will
likely find getLine, putStrLn and show useful. Have a look at the Simple input and
outputa chapter if you need a reminder about how to do reading from and printing to
the console.

a Chapter 10 on page 57

Here is a possible implementation:

import Text.Read

interactiveDoubling = do
putStrLn "Choose a number:"
s <- getLine
let mx = readMaybe s :: Maybe Double
case mx of

Just x -> putStrLn ("The double of your number is " ++ show (2*x))
Nothing -> do

putStrLn "This is not a valid number. Retrying..."
interactiveDoubling

GHCi> interactiveDoubling
Choose a number:
foo
This is not a valid number. Retrying...
Choose a number:
3
The double of your number is 6.0

Nice and simple. A variation of this solution might take advantage of how, given that
Maybe is a Functor, we can double the value before unwrapping mx in the case statement:

interactiveDoubling = do
putStrLn "Choose a number:"
s <- getLine
let mx = readMaybe s :: Maybe Double
case fmap (2*) mx of

Just d -> putStrLn ("The double of your number is " ++ show d)
Nothing -> do

putStrLn "This is not a valid number. Retrying..."
interactiveDoubling

In this case, there is no real advantage in doing that. Still, keep this possibility in mind.

2 Chapter 10 on page 57

170

Scene 1 : Applicative

29.1.1 Application in functors

Now, let’s do something slightly more sophisticated: reading two numbers with
readMaybe and printing their sum (we suggest that you attempt writing this one as well
before continuing).

Here is one solution:

interactiveSumming = do
putStrLn "Choose two numbers:"
sx <- getLine
sy <- getLine
let mx = readMaybe sx :: Maybe Double

my = readMaybe sy
case mx of

Just x -> case my of
Just y -> putStrLn ("The sum of your numbers is " ++ show (x+y))
Nothing -> retry

Nothing -> retry
where
retry = do

putStrLn "Invalid number. Retrying..."
interactiveSumming

GHCi> interactiveSumming
Choose two numbers:
foo
4
Invalid number. Retrying...
Choose two numbers:
3
foo
Invalid number. Retrying...
Choose two numbers:
3
4
The sum of your numbers is 7.0

interactiveSumming works, but it is somewhat annoying to write. In particular, the nested
case statements are not pretty, and make reading the code a little difficult. If only there
was a way of summing the numbers before unwrapping them, analogously to what we did
with fmap in the second version of interactiveDoubling, we would be able to get away
with just one case:

-- Wishful thinking...
case somehowSumMaybes mx my of

Just z -> putStrLn ("The sum of your numbers is " ++ show (x+y))
Nothing -> do

putStrLn "Invalid number. Retrying..."
interactiveSumming

But what should we put in place of somehowSumMaybes? fmap, for one, is not enough.
While fmap (+) works just fine to partially apply (+) to the value wrapped by Maybe...

GHCi> :t (+) 3
(+) 3 :: Num a => a -> a
GHCi> :t fmap (+) (Just 3)
fmap (+) (Just 3) :: Num a => Maybe (a -> a)

171

Prologue: IO, an applicative functor

... we don’t know how to apply a function wrapped in Maybe to the second value. For that,
we would need a function with a signature like this one...

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

... which would then be used like this:

GHCi> fmap (+) (Just 3) <*> Just 4
Just 7

The GHCi prompt in this example, however, is not wishful thinking: (<*>) actually exists,
and if you try it in GHCi, it will actually work! The expression looks even neater if we use
the infix synonym of fmap, (<$>):

GHCi> (+) <$> Just 3 <*> Just 4
Just 7

The actual type (<*>) is more general than what we just wrote. Checking it...

GHCi> :t (<*>)
(<*>) :: Applicative f => f (a -> b) -> f a -> f b

... introduces us to a new type class: Applicative, the type class of applicative functors.
For an initial explanation, we can say that an applicative functor is a functor which supports
applying functions within the functor, thus allowing for smooth usage of partial applica-
tion (and therefore functions of multiple arguments). All instances of Applicative are
Functors, and besides Maybe, there are many other common Functors which are also Ap-
plicative.

This is the Applicative instance for Maybe:

instance Applicative Maybe where
pure = Just
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

The definition of (<*>) is actually quite simple: if neither of the values are Nothing,
apply the function f to x and wrap the result with Just; otherwise, give back Noth-
ing. Note that the logic is exactly equivalent to what the nested case statement of
interactiveSumming does.

Note that beyond (<*>) there is a second method in the instance above, pure:

GHCi> :t pure
pure :: Applicative f => a -> f a

pure takes a value and brings it into the functor in a default, trivial way. In the case of
Maybe, the trivial way amounts to wrapping the value with Just – the nontrivial alternative
would be discarding the value and giving back Nothing. With pure, we might rewrite the
three-plus-four example above as...

GHCi> (+) <$> pure 3 <*> pure 4 :: Num a => Maybe a
Just 7

... or even:

172

Scene 2 : IO

GHCi> pure (+) <*> pure 3 <*> pure 4 :: Num a => Maybe a
Just 7

Just like the Functor class has laws which specify how sensible instance should behave,
there is a set of laws for Applicative. Among other things, these laws specify what the
”trivial” way of bringing values into the functor through pure amounts to. Since there is a
lot going on in this stretch of the book, we will not discuss the laws now; however, we will
return to this important topic in a not too distant future.

Note:
In any case, if you are curious feel free to make a detour though the Applicative functorsa
chapter and read its ”Applicative functor laws” subsection. If you choose to go there, you
might as well have a look at the ”ZipList” section, which provides an additional example
of a common applicative functor that can be grasped using only what we have seen so
far.

a Chapter 40 on page 249

To wrap things up, here is a version of interactiveSumming enhanced by (<*>):

interactiveSumming = do
putStrLn "Choose two numbers:"
sx <- getLine
sy <- getLine
let mx = readMaybe sx :: Maybe Double

my = readMaybe sy
case (+) <$> mx <*> my of

Just z -> putStrLn ("The sum of your numbers is " ++ show z)
Nothing -> do

putStrLn "Invalid number. Retrying..."
interactiveSumming

29.2 Scene 2 : IO

In the examples above, we have been taking I/O actions such as getLine for granted. We
now find ourselves at an auspicious moment to revisit a question first raised many chapters
ago: what is the type of getLine?

Back in the Simple input and output3 chapter, we saw the answer to that question is:

GHCi> :t getLine
getLine :: IO String

Using what we learned since then, we can now see that IO is a type constructor with one
type variable, which happens to be instantiated as String in the case of getLine. That,
however, doesn’t get to the root of the issue: what does IO String really mean, and what
is the difference between that and plain old String?

3 Chapter 10 on page 57

173

Prologue: IO, an applicative functor

29.2.1 Referential transparency

A key feature of Haskell is that all expressions we can write are referentially transparent.
That means we can replace any expression whatsoever by its value without changing the
behaviour of the program. For instance, consider this very simple program:

addExclamation :: String -> String
addExclamation s = s ++ "!"

main = putStrLn (addExclamation "Hello")

Its behaviour is wholly unsurprising:

GHCi> main
Hello!

Given that addExclamation s = s ++ "!", we can rewrite main so that it doesn’t mention
addExclamation. All we have to do is replacing s by "Hello" in the right-hand side of the
addExclamation definition and then replacing addExclamation "Hello!" by the resulting
expression. As advertised, the program behaviour does not change:

GHCi> let main = putStrLn ("Hello" ++ "!")
GHCi> main
Hello!

Referential transparency ensures that this sort of substitution works. This guarantee ex-
tends to anywhere in any Haskell program, which goes a long way towards making programs
easier to understand, and their behaviour easier to predict.

Now, suppose that the type of getLine were String. In that case, we would be able to use
it as the argument to addExclamation, as in:

-- Not actual code.
main = putStrLn (addExclamation getLine)

In that case, however, a new question would spring forth: if getLine is a String, which
String is it? There is no satisfactory answer: it could be "Hello", "Goodbye", or what-
ever else the user chooses to type at the terminal. And yet, replacing getLine by any
String breaks the program, as the user would not be able to type the input string at the
terminal any longer. Therefore getLine having type String would cause referential trans-
parency to be broken. The same goes for all other I/O actions: their results are opaque,
in that it is impossible to tell them in advance, as they depend on factors external to the
program.

29.2.2 Cutting through the fog

As getLine illustrates, there is a fundamental indeterminacy associated with I/O ac-
tions. Respecting this indeterminacy is necessary for preserving referential transparency.
In Haskell, that is achieved through the IO type constructor. getLine being an IO
String means that it is not any actual String, but both a placeholder for a String that
will only materialise when the program is executed and a promise that this String will

174

Scene 2 : IO

indeed be delivered (in the case of getLine, by slurping it from the terminal). As a conse-
quence, when we manipulate an IO String we are setting up plans for what will be done
once this unknown String comes into being. There are quite a few ways of achieving that.
In this section, we will consider two of them; to which we will add a third one in the next
few chapters.

The idea of dealing a value which isn’t really there might seem bizarre at first. However,
we have already discussed at least one example of something not entirely unlike it without
batting an eyelid. If mx is a Maybe Double, then fmap (2*) mx doubles the value if it is
there, and works regardless of whether the value actually exists.4 Both Maybe a and IO
a imply, for different reasons, a layer of indirection in reaching the corresponding values
of type a. That being so, it comes as no surprise that, like Maybe, IO is a Functor, with
fmap being the most elementary way of getting across the indirection.

To begin with, we can exploit the fact of IO being a Functor to replace the let definitions
in interactiveSumming from the end of the previous section by something more compact:

interactiveSumming :: IO ()
interactiveSumming = do

putStrLn "Choose two numbers:"
mx <- readMaybe <$> getLine -- equivalently: fmap readMaybe getLine
my <- readMaybe <$> getLine
case (+) <$> mx <*> my :: Maybe Double of

Just z -> putStrLn ("The sum of your numbers is " ++ show z)
Nothing -> do

putStrLn "Invalid number. Retrying..."
interactiveSumming

readMaybe <$> getLine can be read as ”once getLine delivers a string, whatever it turns
out to be, apply readMaybe on it”. Referential transparency is not compromised: the value
behind readMaybe <$> getLine is just as opaque as that of getLine, and its type (in this
case IO (Maybe Double)) disallows us from replacing it with any determinate value (say,
Just 3) that would violate referential transparency.

Beyond being a Functor, IO is also an Applicative, which provides us a second way
of manipulating the values delivered by I/O actions. We will illustrate it with a
interactiveConcatenating action, similar in spirit to interactiveSumming. A first ver-
sion is just below. Can you anticipate how to simplify it with (<*>)?

interactiveConcatenating :: IO ()
interactiveConcatenating = do

putStrLn "Choose two strings:"
sx <- getLine
sy <- getLine
putStrLn "Let's concatenate them:"
putStrLn (sx ++ sy)

Here is a version exploiting (<*>):

interactiveConcatenating :: IO ()
interactiveConcatenating = do

putStrLn "Choose two strings:"

4 The key difference between the two situations is that with Maybe the indeterminacy is only apparent, and
it is possible to figure out in advance whether there is an actual Double behind mx – or, more precisely, it
is possible as long as the value of mx does not depend on I/O!

175

Prologue: IO, an applicative functor

sz <- (++) <$> getLine <*> getLine
putStrLn "Let's concatenate them:"
putStrLn sz

(++) <$> getLine <*> getLine is an I/O action which is made out of two other I/O
actions (the two getLine). When it is executed, these two I/O actions are executed and the
strings they deliver are concatenated. One important thing to notice is that (<*>) maintains
a consistent order of execution between the actions it combines. Order of execution matters
when dealing with I/O – examples of that are innumerable, but for starters consider this
question: if we replace the second getLine in the example above with take 3 <$> getLine,
which of the strings entered at the terminal will be cut down to three characters?

As (<*>) respects the order of actions, it provides a way of sequencing them. In particular,
if we are only interested in sequencing and don’t care about the result of the first action we
can use _ y -> y to discard it:

GHCi> (_ y -> y) <$> putStrLn "First!" <*> putStrLn "Second!"
First!
Second!

This is such a common usage pattern that there is an operator specifically for it: (*>).

u *> v = (_ y -> y) <$> u <*> v

GHCi> :t (*>)
(*>) :: Applicative f => f a -> f b -> f b
GHCi> putStrLn "First!" *> putStrLn "Second!"
First!
Second!

It can be readily applied to interactiveConcatenating example:

interactiveConcatenating :: IO ()
interactiveConcatenating = do

putStrLn "Choose two strings:"
sz <- (++) <$> getLine <*> getLine
putStrLn "Let's concatenate them:" *> putStrLn sz

Or, going even further:

interactiveConcatenating :: IO ()
interactiveConcatenating = do

sz <- putStrLn "Choose two strings:" *> ((++) <$> getLine <*> getLine)
putStrLn "Let's concatenate them:" *> putStrLn sz

Note that each of the (*>) replaces one of the magical line breaks of the do block that lead
actions to be executed one after the other. In fact, that is all there is to the replaced line
breaks: they are just syntactic sugar for (*>).

Earlier, we said that a functor brings in a layer of indirection for accessing the values within
it. The flip side of that observation is that the indirection is caused by a context, within
which the values are found. For IO, the indirection is that the values are only determined
when the program is executed, and the context consists in the series of instructions that
will be used to produce these values (in the case of getLine, these instructions amount to
”slurp a line of text from the terminal”). From this perspective, (<*>) takes two functorial
values and combines not only the values within but also the contexts themselves. In the

176

The end of the beginning

case of IO combining the contexts means appending the instructions of one I/O action to
those of the other, thus sequencing the actions.

29.3 The end of the beginning

This chapter was a bit of a whirlwind! Let’s recapitulate the key points we discussed in it:

• Applicative is a subclass of Functor for applicative functors, which are functors that
support function application without leaving the functor.

• The (<*>) method of Applicative can be used as a generalisation of fmap to multiple
arguments.

• An IO a is not a tangible value of type a, but a placeholder for an a value that will only
come into being when the program is executed and a promise that this value will be
delivered through some means. That makes referential transparency possible even when
dealing with I/O actions.

• IO is a functor, and more specifically an instance of Applicative. That provides means
to modify the value produced by an I/O action in spite of its indeterminacy.

• A functorial value can be seen as being made of values in a context. fmap cuts through
the context to modify the underlying values. (<*>) combines both the contexts and the
underlying values of two functorial values.

• In the case of IO, (<*>), and the closely related (*>), combine contexts by sequencing
I/O actions.

• A large part of the role of do blocks is simply providing syntactic sugar for (*>).

As a final observation, note that there is still a major part of the mystery behind do blocks
left to explain: what does the left arrow do? In a do-block line such as...

sx <- getLine

... it looks like we are extracting the value produced by getLine from the IO context.
Thanks to the discussion about referential transparency, we now know that must be an
illusion. But what is going on behind the scenes? Feel free to place your bets, as we are
about to find out!

177

30 Understanding monads

There is a certain mystique about monads, and even about the word ”monad” itself. While
one of our goals of this set of chapters is removing the shroud of mystery that is often
wrapped around them, it is not difficult to understand how it comes about. Monads are
very useful in Haskell, but the concept is often difficult to grasp at first. Since monads have
so many applications, people often explain them from a particular point of view, which can
derail your efforts towards understanding them in their full glory.

Historically, monads were introduced into Haskell to perform input and output – that is,
I/O operations of the sort we dealt with in the Simple input and output1 chapter and the
prologue to this unit2. A predetermined execution order is crucial for things like reading and
writing files, and monadic operations lend themselves naturally to sequencing. However,
monads are by no means limited to input and output. They can be used to provide a whole
range of features, such as exceptions, state, non-determinism, continuations, coroutines,
and more. In fact, thanks to the versatility of monads, none of these constructs needed to
be built into Haskell as a language; rather, they are defined by the standard libraries.

In the Prologue3 chapter, we began with an example and used it to steadily introduce several
new ideas. Here, we will do it the other way around, starting with a definition of monad
and, from that, building connections with what we already know.

30.1 Definition

A monad is defined by three things:

• a type constructor4 m;
• a function return;5
• an operator (>>=) which is pronounced ”bind”.

The function and operator are methods of the Monad type class and have types

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

and are required to obey three laws6 that will be explained later on.

1 Chapter 10 on page 57
2 https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue
3 https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue
4 Chapter 24.3 on page 142
5 This return function has nothing to do with the return keyword found in imperative languages like C or

Java; don’t conflate these two.
6 Chapter 30.3 on page 184

179

https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue
https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue

Understanding monads

For a concrete example, take the Maybe monad. The type constructor is m = Maybe, while
return and (>>=) are defined like this:

return :: a -> Maybe a
return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
m >>= g = case m of

Nothing -> Nothing
Just x -> g x

Maybe is the monad, and return brings a value into it by wrapping it with Just. As for
(>>=), it takes a m :: Maybe a value and a g :: a -> Maybe b function. If m is Nothing,
there is nothing to do and the result is Nothing. Otherwise, in the Just x case, g is applied
to x, the underlying value wrapped in Just, to give a Maybe b result. Note that this result
may or may not be Nothing, depending on what g does to x. To sum it all up, if there is
an underlying value of type a in m, we apply g to it, which brings the underlying value back
into the Maybe monad.

The key first step to understand how return and (>>=) work is tracking which values and
arguments are monadic and which ones aren’t. As in so many other cases, type signatures
are our guide to the process.

30.1.1 Motivation: Maybe

To see the usefulness of (>>=) and the Maybe monad, consider the following example: Imag-
ine a family database that provides two functions:

father :: Person -> Maybe Person
mother :: Person -> Maybe Person

These look up the name of someone’s father or mother. In case our database is missing
some relevant information, Maybe allows us to return a Nothing value to indicate that the
lookup failed, rather than crashing the program.

Let’s combine our functions to query various grandparents. For instance, the following
function looks up the maternal grandfather (the father of one’s mother):

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =

case mother p of
Nothing -> Nothing
Just mom -> father mom

Or consider a function that checks whether both grandfathers are in the database:

bothGrandfathers :: Person -> Maybe (Person, Person)
bothGrandfathers p =

case father p of
Nothing -> Nothing
Just dad ->

case father dad of
Nothing -> Nothing
Just gf1 -> -- found first

grandfather
case mother p of

180

Definition

Nothing -> Nothing
Just mom ->

case father mom of
Nothing -> Nothing
Just gf2 -> -- found second

grandfather
Just (gf1, gf2)

What a mouthful! Every single query might fail by returning Nothing and the whole
function must fail with Nothing if that happens.

Clearly there has to be a better way to write that instead of repeating the case of
Nothing again and again! Indeed, that’s what the Maybe monad is set out to do. For
instance, the function retrieving the maternal grandfather has exactly the same structure
as the (>>=) operator, so we can rewrite it as:

maternalGrandfather p = mother p >>= father

With the help of lambda expressions and return, we can rewrite the two grandfathers
function as well:

bothGrandfathers p =
father p >>=

(\dad -> father dad >>=
(\gf1 -> mother p >>= -- gf1 is only used in the final return

(\mom -> father mom >>=
(\gf2 -> return (gf1,gf2)))))

While these nested lambda expressions may look confusing to you, the thing to take away
here is that (>>=) releases us from listing all the Nothings, shifting the focus back to the
interesting part of the code.

To be a little more precise: The result of father p is a monadic value (in this case, ei-
ther Just dad or Nothing, depending on whether p’s father is in the database). As the
father function takes a regular (non-monadic value), the (>>=) feeds p’s dad to it as a
non-monadic value. The result of father dad is then monadic again, and the process con-
tinues.

So, (>>=) helps us pass non-monadic values to functions without actually leaving a monad.
In the case of the Maybe monad, the monadic aspect is the qualifier that we don’t know
with certainty whether the value will be found.

30.1.2 Type class

In Haskell, the Monad type class is used to implement monads. It is provided by the Con-
trol.Monad7 module and included in the Prelude. The class has the following methods:

class Applicative m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b
fail :: String -> m a

7 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad.html

181

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad.html

Understanding monads

Aside from return and bind, there are two additional methods, (>>) and fail. Both of
them have default implementations, and so you don’t need to provide them when writing
an instance.

The operator (>>), spelled ”then”, is a mere convenience and commonly implemented as

m >> n = m >>= _ -> n

(>>) sequences two monadic actions when the second action does not involve the result of
the first, which is a common scenario for monads such as IO.

printSomethingTwice :: String -> IO ()
printSomethingTwice str = putStrLn str >> putStrLn str

The function fail handles pattern match failures in do notation8. It’s an unfortunate
technical necessity and doesn’t really have anything to do with monads. You are advised
not to call fail directly in your code.

30.1.3 Monad and Applicative

An important thing to note is that Applicative is a superclass of Monad.9 That has a
few consequences worth highlighting. First of all, every Monad is also a Functor and an
Applicative, and so fmap, pure, (<*>) can all be used with monads. Secondly, actually
writing a Monad instance also requires providing Functor and Applicative instances. We
will discuss ways of doing that later in this chapter. Thirdly, if you have worked through
the Prologue10, the types and roles of return and (>>) should look familiar...

(*>) :: Applicative f => f a -> f b -> f b
(>>) :: Monad m => m a -> m b -> m b

pure :: Applicative f => a -> f a
return :: Monad m => a -> m a

The only difference between the types of (*>) and (>>) is that the constraint changes from
Applicative to Monad. In fact, that is the only difference between the methods: if you
are dealing with a Monad you can always replace (*>) and (>>), and vice-versa. The same
goes for pure/return – in fact, it is not even necessary to implement return if there is an
independent definition of pure in the Applicative instance, as return = pure is provided
as a default definition of return.

30.2 Notions of Computation

We have seen how (>>=) and return are very handy for removing boilerplate code that
crops up when using Maybe. That, however, is not enough to justify why monads matter so

8 Chapter 33 on page 197
9 This important superclass relationship was, thanks to historic accidents, only implemented quite recently

(early 2015) in GHC (version 7.10). If you are using a GHC version older than that, this class constraint
will not exist, and so some of the practical considerations we will make next will not apply.

10 https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue

182

https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue

Notions of Computation

much. Our next step towards that will be rewriting the two-grandfathers function in a quite
different-looking style: using do notation with explicit braces and semicolons11. Depending
on your experience with other programming languages, you may find this very suggestive:

bothGrandfathers p = do {
dad <- father p;
gf1 <- father dad;
mom <- mother p;
gf2 <- father mom;
return (gf1, gf2);

}

If this looks like a code snippet of an imperative programming language to you, that’s
because it is. In particular, this imperative language supports exceptions : father and
mother are functions that might fail to produce results, i.e. raise an exception, and when
that happens, the whole do-block will fail, i.e. terminate with an exception.

In other words, the expression father p, which has type Maybe Person, is interpreted as
a statement of an imperative language that returns a Person as result. This is true for all
monads: a value of type M a is interpreted as a statement of an imperative language that
returns a value of type a as result; and the semantics of this language are determined by
the monad M.12

Under this interpretation, the bind operator (>>=) is simply a function version of the
semicolon. Just like a let expression can be written as a function application,

let x = foo in x + 3 corresponds to (\x -> x + 3) foo

an assignment and semicolon can be written as the bind operator:

x <- foo; return (x + 3) corresponds to foo >>= (\x -> return (x +
3))

The return function lifts a plain value a to M a, a statement of the imperative language
corresponding to the monad M.

Note:
The fact that (>>=), and therefore Monad, lies behind the left arrows in do-blocks explains
why we were not able to explain them in the Prologuea, when we only knew about
Functor and Applicative. Applicative would be enough to provide some, but not
all, of the functionality of a do-block.

a https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue%23The%20end%20of%20the%20beginning

Different semantics of the imperative language correspond to different monads. The follow-
ing table shows the classic selection that every Haskell programmer should know. If the

11 Chapter 23.2 on page 134
12 By ”semantics”, we mean what the language allows you to say. In the case of Maybe, the semantics allow

us to express failure, as statements may fail to produce a result, leading to the statements that follow it
being skipped.

183

https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue%23The%20end%20of%20the%20beginning

Understanding monads

idea behind monads is still unclear to you, studying each of the examples in the following
chapters will not only give you a well-rounded toolbox but also help you understand the
common abstraction behind them.

Monad Imperative Semantics Wikibook chapter
Maybe Exception (anonymous) Haskell/Understanding mon-

ads/Maybe13
Error Exception (with error descrip-

tion)
Haskell/Understanding monads/Error14

State Global state Haskell/Understanding monads/State15
IO Input/Output Haskell/Understanding monads/IO16
[] (lists) Nondeterminism Haskell/Understanding monads/List17
Reader Environment Haskell/Understanding mon-

ads/Reader18
Writer Logger Haskell/Understanding mon-

ads/Writer19

Furthermore, these different semantics need not occur in isolation. As we will see in a few
chapters, it is possible to mix and match them by using monad transformers20 to combine
the semantics of multiple monads in a single monad.

30.3 Monad Laws

In Haskell, every instance of the Monad type class (and thus all implementations of bind
(>>=) and return) must obey the following three laws:

m >>= return = m -- right unit
return x >>= f = f x -- left unit

(m >>= f) >>= g = m >>= (\x -> f x >>= g) -- associativity

30.3.1 Return as neutral element

The behavior of return is specified by the left and right unit laws. They state that
return doesn’t perform any computation, it just collects values. For instance,

maternalGrandfather p = do
mom <- mother p
gf <- father mom
return gf

13 Chapter 31 on page 189
14 https://en.wikibooks.org/wiki/Haskell%2FUnderstanding%20monads%2FError
15 Chapter 35 on page 207
16 Chapter 34 on page 199
17 Chapter 32 on page 193
18 https://en.wikibooks.org/wiki/Haskell%2FUnderstanding%20monads%2FReader
19 https://en.wikibooks.org/wiki/Haskell%2FUnderstanding%20monads%2FWriter
20 Chapter 37 on page 229

184

https://en.wikibooks.org/wiki/Haskell%2FUnderstanding%20monads%2FError
https://en.wikibooks.org/wiki/Haskell%2FUnderstanding%20monads%2FReader
https://en.wikibooks.org/wiki/Haskell%2FUnderstanding%20monads%2FWriter

Monads and Category Theory

is exactly the same as

maternalGrandfather p = do
mom <- mother p
father mom

by virtue of the right unit law.

30.3.2 Associativity of bind

The law of associativity makes sure that (like the semicolon) the bind operator (>>=) only
cares about the order of computations, not about their nesting; e.g. we could have written
bothGrandfathers like this (compare with our earliest version without do):

bothGrandfathers p =
(father p >>= father) >>=

(\gf1 -> (mother p >>= father) >>=
(\gf2 -> return (gf1,gf2)))

The associativity of the then operator (>>) is a special case:

(m >> n) >> o = m >> (n >> o)

Monadic composition

It is easier to picture the associativity of bind by recasting the law as

(f >=> g) >=> h = f >=> (g >=> h)

where (>=>) is the monad composition operator, a close analogue of the function composi-
tion operator (.), only with flipped arguments. It is defined as:

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
f >=> g = \x -> f x >>= g

There is also (<=<), which is flipped version of (>=>). When using it, the order of compo-
sition matches that of (.), so that in (f <=< g) g comes first.21

30.4 Monads and Category Theory

Monads originally come from a branch of mathematics called Category Theory. Fortunately,
it is entirely unnecessary to understand category theory in order to understand and use
monads in Haskell. The definition of monads in Category Theory actually uses a slightly
different presentation. Translated into Haskell, this presentation gives an alternative yet
equivalent definition of a monad which can give us some additional insight.22

21 Of course, the functions in regular function composition are non-monadic functions whereas monadic
composition takes only monadic functions.

22 Deep into the Advanced Track, we will cover the theoretical side of the story in the chapter on Category
Theory ˆ{Chapter59.3 on page 439}.

185

Understanding monads

So far, we have defined monads in terms of (>>=) and return. The alternative definition,
instead, treats monads as functors with two additional combinators:

fmap :: (a -> b) -> M a -> M b -- functor

return :: a -> M a
join :: M (M a) -> M a

For the purposes of this discussion, we will use the functors-as-containers metaphor discussed
in the chapter on the functor class23. According to it, a functor M can be thought of as
container, so that M a ”contains” values of type a, with a corresponding mapping function,
i.e. fmap, that allows functions to be applied to values inside it.

Under this interpretation, the functions behave as follows:

• fmap applies a given function to every element in a container
• return packages an element into a container,
• join takes a container of containers and flattens it into a single container.

With these functions, the bind combinator can be defined as follows:

m >>= g = join (fmap g m)

Likewise, we could give a definition of fmap and join in terms of (>>=) and return:

fmap f x = x >>= (return . f)
join x = x >>= id

30.5 liftM and Friends

Earlier, we pointed out that every Monad is an Applicative, and therefore also a Func-
tor. One of the consequences of that was return and (>>) being monad-only versions of
pure and (*>) respectively. It doesn’t stop there, though. For one, Control.Monad defines
liftM, a function with a strangely familiar type signature...

liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r

As you might suspect, liftM is merely fmap implemented with (>>=) and return, just as
we have done in the previous section. liftM and fmap are therefore interchangeable.

Another Control.Monad function with an uncanny type is ap:

ap :: Monad m => m (a -> b) -> m a -> m b

Analogously to the other cases, ap is a monad-only version of (<*>).

There are quite a few more examples of Applicative functions that have versions
specialised to Monad in Control.Monad and other base library modules. Their existence
is primarily due to historical reasons: several years went by between the introductions of

23 Chapter 27 on page 163

186

liftM and Friends

Monad and Applicative in Haskell, and it took an even longer time for Applicative to be-
come a superclass of Monad, thus making usage of the specialised variants optional. While in
principle there is little need for using the monad-only versions nowadays, in practice you will
see return and (>>) all the time in other people’s code – at this point, their usage is well
established thanks to more than two decades of Haskell praxis without Applicative being
a superclass of Monad.

Note:
Given that Applicative is a superclass of Monad, the most obvious way of implementing
Monad begins by writing the Functor instance and then moving down the class hierarchy:
instance Functor Foo where

fmap = -- etc.

instance Applicative Foo where
pure = -- etc.
(<*>) = -- etc.

instance Monad Foo where
(>>=) = -- etc.

While following the next few chapters, you will likely want to write instances of
Monad and try them out, be it to run the examples in the book or to do other ex-
periments you might think of. However, writing the instances in the manner shown
above requires implementing pure and (<*>), which is not a comfortable task at this
point of the book as we haven’t covered the Applicative laws yet (we will only do so
at the applicative functors chaptera). Fortunately, there is a workaround: implementing
just (>>=) and return, thus providing a self-sufficient Monad instance, and then using
liftM, ap and return to fill in the other instances:
instance Monad Foo where

return = -- etc.
(>>=) = -- etc.

instance Applicative Foo where
pure = return
(<*>) = ap

instance Functor Foo where
fmap = liftM

The examples and exercises in this initial series of chapters about monads will not
demand writing Applicative instances, and so you can use this workaround until we
discuss Applicative in detail.

a Chapter 40 on page 249

187

31 The Maybe monad

We introduced monads using Maybe as an example. The Maybe monad represents com-
putations which might ”go wrong” by not returning a value. For reference, here are the
definitions of return and (>>=) for Maybe as we saw in the last chapter:1

return :: a -> Maybe a
return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) m g = case m of

Nothing -> Nothing
Just x -> g x

31.1 Safe functions

The Maybe datatype provides a way to make a safety wrapper around partial functions,
that is, functions which can fail to work for a range of arguments. For example, head and
tail only work with non-empty lists. Another typical case, which we will explore in this sec-
tion, are mathematical functions like sqrt and log; (as far as real numbers are concerned)
these are only defined for non-negative arguments.

> log 1000
6.907755278982137
> log (-1000)
''ERROR'' -- runtime error

To avoid this crash, a ”safe” implementation of log could be:

safeLog :: (Floating a, Ord a) => a -> Maybe a
safeLog x

| x > 0 = Just (log x)
| otherwise = Nothing

> safeLog 1000
Just 6.907755278982137
> safeLog -1000
Nothing

We could write similar ”safe functions” for all functions with limited domains such as division,
square-root, and inverse trigonometric functions (safeDiv, safeSqrt, safeArcSin, etc. all
of which would have the same type as safeLog but definitions specific to their constraints)

1 The definitions in the actual instance in Data.Maybe are written a little differently, but are fully equivalent
to these.

189

The Maybe monad

If we wanted to combine these monadic functions, the cleanest approach is with monadic
composition (which was mentioned briefly near the end of the last chapter2) and point-free
style:

safeLogSqrt = safeLog <=< safeSqrt

Written in this way, safeLogSqrt resembles a lot its unsafe, non-monadic counterpart:

unsafeLogSqrt = log . sqrt

31.2 Lookup tables

A lookup table relates keys to values. You look up a value by knowing its key and using
the lookup table. For example, you might have a phone book application with a lookup
table where contact names are keys to corresponding phone numbers. An elementary way
of implementing lookup tables in Haskell is to use a list of pairs: [(a, b)]. Here a is the
type of the keys, and b the type of the values.3 Here’s how the phone book lookup table
might look:

phonebook :: [(String, String)]
phonebook = [("Bob", "01788 665242"),

("Fred", "01624 556442"),
("Alice", "01889 985333"),
("Jane", "01732 187565")]

The most common thing you might do with a lookup table is look up values. Everything is
fine if we try to look up ”Bob”, ”Fred”, ”Alice” or ”Jane” in our phone book, but what if we
were to look up ”Zoe”? Zoe isn’t in our phone book, so the lookup would fail. Hence, the
Haskell function to look up a value from the table is a Maybe computation (it is available
from Prelude):

lookup :: Eq a => a -- a key
-> [(a, b)] -- the lookup table to use
-> Maybe b -- the result of the lookup

Let us explore some of the results from lookup:

Prelude> lookup "Bob" phonebook
Just "01788 665242"
Prelude> lookup "Jane" phonebook
Just "01732 187565"
Prelude> lookup "Zoe" phonebook
Nothing

Now let’s expand this into using the full power of the monadic interface. Say, we’re now
working for the government, and once we have a phone number from our contact, we want
to look up this phone number in a big, government-sized lookup table to find out the

2 Chapter 30.3.2 on page 185
3 Check the chapter about maps ˆ{Chapter74 on page 503} in Haskell in Practice for a different, and

potentially more useful, implementation.

190

Open monads

registration number of their car. This, of course, will be another Maybe-computation. But
if the person we’re looking for isn’t in our phone book, we certainly won’t be able to look up
their registration number in the governmental database. What we need is a function that
will take the results from the first computation and put it into the second lookup only if we
get a successful value in the first lookup. Of course, our final result should be Nothing if
we get Nothing from either of the lookups.

getRegistrationNumber :: String -- their name
-> Maybe String -- their registration number

getRegistrationNumber name =
lookup name phonebook >>=

(\number -> lookup number governmentDatabase)

If we then wanted to use the result from the governmental database lookup in a third lookup
(say we want to look up their registration number to see if they owe any car tax), then we
could extend our getRegistrationNumber function:

getTaxOwed :: String -- their name
-> Maybe Double -- the amount of tax they owe

getTaxOwed name =
lookup name phonebook >>=

(\number -> lookup number governmentDatabase) >>=
(\registration -> lookup registration taxDatabase)

Or, using the do-block style:

getTaxOwed name = do
number <- lookup name phonebook
registration <- lookup number governmentDatabase
lookup registration taxDatabase

Let’s just pause here and think about what would happen if we got a Nothing anywhere. By
definition, when the first argument to >>= is Nothing, it just returns Nothing while ignoring
whatever function it is given. Thus, a Nothing at any stage in the large computation will
result in a Nothing overall, regardless of the other functions. After the first Nothing hits,
all >>=s will just pass it to each other, skipping the other function arguments. The technical
description says that the structure of the Maybe monad propagates failures.

31.3 Open monads

Another trait of the Maybe monad is that it is ”open”: if we have a Just value, we can see
the contents and extract the associated values through pattern matching.

zeroAsDefault :: Maybe Int -> Int
zeroAsDefault mx = case mx of

Nothing -> 0
Just x -> x

This usage pattern of replacing Nothing with a default is captured by the
fromMaybe function in Data.Maybe.

zeroAsDefault :: Maybe Int -> Int
zeroAsDefault mx = fromMaybe 0 mx

191

The Maybe monad

The maybe Prelude function allows us to do it in a more general way, by supplying a function
to modify the extracted value.

displayResult :: Maybe Int -> String
displayResult mx = maybe "There was no result" (("The result was " ++) . show)
mx

Prelude> :t maybe
maybe :: b -> (a -> b) -> Maybe a -> b
Prelude> displayResult (Just 10)
"The result was 10"
Prelude> displayResult Nothing
"There was no result"

This possibility makes sense for Maybe, as it allows us to recover from failures. Not all mon-
ads are open in this way; often, they are designed to hide unnecessary details. return and
(>>=) alone do not allow us to extract the underlying value from a monadic computation,
and so it is perfectly possible to make a ”no-exit” monad, from which it is never possible to
extract values. The most obvious example of that is the IO monad.

31.4 Maybe and safety

We have seen how Maybe can make code safer by providing a graceful way to deal with
failure that does not involve runtime errors. Does that mean we should always use Maybe for
everything? Not really.

When you write a function, you are able to tell whether it might fail to produce a result
during normal operation of the program,4 either because the functions you use might fail (as
in the examples in this chapter) or because you know some of the argument or intermediate
result values do not make sense (for instance, imagine a calculation that is only meaningful
if its argument is less than 10). If that is the case, by all means use Maybe to signal failure;
it is far better than returning an arbitrary default value or throwing an error.

Now, adding Maybe to a result type without a reason would only make the code more
confusing and no safer. The type signature of a function with unnecessary Maybe would
tell users of the code that the function could fail when it actually can’t. Of course, that is
not as bad a lie as the opposite one (that is, claiming that a function will not fail when it
actually can), but we really want honest code in all cases. Furthermore, using Maybe forces
us to propagate failure (with fmap or monadic code) and eventually handle the failure
cases (using pattern matching, the maybe function, or fromMaybe from Data.Maybe). If the
function cannot actually fail, coding for failure is an unnecessary complication.

4 With ”normal operation” we mean to exclude failure caused by uncontrollable circumstances in the real
world, such as memory exhaustion or a dog chewing the printer cable.

192

32 The List monad

Lists are a fundamental part of Haskell, and we’ve used them extensively before getting to
this chapter. The novel insight is that the list type is a monad too!

As monads, lists are used to model nondeterministic computations which may return an
arbitrary number of results. There is a certain parallel with how Maybe represented com-
putations which could return zero or one value; but with lists, we can return zero, one, or
many values (the number of values being reflected in the length of the list).

32.1 The Monad instance of lists

The return function for lists simply injects a value into a list:

return x = [x]

In other words, return here makes a list containing one element, namely the single argument
it took. The type of the list return is return :: a -> [a], or, equivalently, return :: a -
> [] a. The latter style of writing it makes it more obvious that we are replacing the
generic type constructor in the signature of return (which we had called M in Understanding
monads1) by the list type constructor [] (which is distinct from but easy to confuse with
the empty list!).

The binding operator is less trivial. We will begin by considering its type, which for the
case of lists should be:

[a] -> (a -> [b]) -> [b]

This is just what we’d expect: it pulls out the values from the list to give them to a function
that produces a new list.

The actual process here involves first mapping a given function over a given list to get back
a list of lists, i.e. type [[b]] (of course, many functions which you might use in mapping do
not return lists; but, as shown in the type signature above, monadic binding for lists only
works with functions that return lists). To get back to a regular list, we then concatenate
the elements of our list of lists to get a final result of type [b]. Thus, we can define the list
version of (>>=):

xs >>= f = concat (map f xs)

The bind operator is key to understanding how different monads do their jobs, as its def-
inition specifies the chaining strategy used when working with the monad. In the case of

1 Chapter 30 on page 179

193

The List monad

the list monad, the strategy allows us to model non-determinism: an a -> [b] function
can be seen as a way of generating, from an input of type a, an unspecified number of
possible outputs of type b, without settling on any one of them in particular. (>>=), from
that perspective, does that for multiple inputs and combines all output possibilities in a
single result list.

32.2 Bunny invasion

It is easy to incorporate the familiar list processing functions in monadic code. Consider
this example: rabbits raise an average of six kits in each litter, half of which will be female.
Starting with a single mother, we can model the number of female kits in each successive
generation (i.e. the number of new kits after the rabbits grow up and have their own litters):

Prelude> let generation = replicate 3
Prelude> ["bunny"] >>= generation
["bunny","bunny","bunny"]
Prelude> ["bunny"] >>= generation >>= generation
["bunny","bunny","bunny","bunny","bunny","bunny","bunny","bunny","bunny"]

In this silly example all elements are equal, but the same overall logic could be used to
model radioactive decay2, or chemical reactions, or any phenomena that produces a series
of elements starting from a single one.

Exercises:

1. Predict what should be the result of ["bunny", "rabbit"] >>= generation.
2. Implement themselvesTimes :: [Int] -> [Int], which takes each number n in
the argument list and generates n copies of it in the result list.

32.3 Board game example

Suppose we are modeling a turn-based board game and want to find all the possible ways
the game could progress. We would need a function to calculate the list of options for the
next turn, given a current board state:

nextConfigs :: Board -> [Board]
nextConfigs bd = undefined -- details not important

To figure out all the possibilities after two turns, we would again apply our function to each
of the elements of our new list of board states. Our function takes a single board state and
returns a list of possible new states. Thus, we can use monadic binding to map the function
over each element from the list:

nextConfigs bd >>= nextConfigs

2 http://en.wikipedia.org/wiki/Decay_chain

194

http://en.wikipedia.org/wiki/Decay_chain

List comprehensions

In the same fashion, we could bind the result back to the function yet again (ad infinitum)
to generate the next turn’s possibilities. Depending on the particular game’s rules, we may
reach board states that have no possible next-turns; in those cases, our function will return
the empty list.

On a side note, we could translate several turns into a do block (like we did for the grand-
parents example in Understanding monads3):

threeTurns :: Board -> [Board]
threeTurns bd = do

bd1 <- nextConfigs bd -- bd1 refers to a board configuration after 1 turn
bd2 <- nextConfigs bd1
nextConfigs bd2

If the above looks too magical, keep in mind that do notation is syntactic sugar for
(>>=) operations. To the right of each left-arrow, there is a function with arguments that
evaluate to a list; the variable to the left of the arrow stands for the list elements. After
a left-arrow assignment line, there can be later lines that call the assigned variable as an
argument for a function. This later function will be performed for each of the elements
from within the list that came from the left-arrow line’s function. This per-element process
corresponds to the ‘map‘ in the definition of (>>=). A resulting list of lists (one per element
of the original list) will be flattened into a single list (the ‘concat‘ in the definition of (>>=)).

32.4 List comprehensions

The list monad works in a way that has uncanny similarity to list comprehensions. Let’s
slightly modify the do block we just wrote for threeTurns so that it ends with a return...

threeTurns bd = do
bd1 <- nextConfigs bd
bd2 <- nextConfigs bd1
bd3 <- nextConfigs bd2
return bd3

This mirrors exactly the following list comprehension:

threeTurns bd = [bd3 | bd1 <- nextConfigs bd, bd2 <- nextConfigs bd1, bd3 <-
nextConfigs bd2]

(In a list comprehension, it is perfectly legal to use the elements drawn from one list to
define the following ones, like we did here.)

The resemblance is no coincidence: list comprehensions are, behind the scenes, defined in
terms of concatMap, a function available from the Prelude that is defined as concatMap f
xs = concat (map f xs). That’s just the list monad binding definition again! To sum-
marize the nature of the list monad: binding for the list monad is a combination of con-
catenation and mapping, and so the combined function concatMap is effectively the same
as >>= for lists (except for different syntactic order).

3 Chapter 30 on page 179

195

The List monad

For the correspondence between list monad and list comprehension to be complete, we need
a way to reproduce the filtering that list comprehensions can do. We will explain how that
can be achieved a little later in the Additive monads4 chapter.

Exercises:
As discussed in Understanding monadsa, all Monads also have an instance of Applica-
tive. In particular, (<*>) for that instance might be defined as:
fs <*> xs = concatMap (\f -> map f xs) fs
1. Explain briefly what this (<*>) does.
2. Write an alternative definition of (<*>) using a list comprehension. Do not use

map, concat or concatMap explicitly.

a Chapter 30 on page 179

4 https://en.wikibooks.org/wiki/Haskell%2FMonadPlus

196

https://en.wikibooks.org/wiki/Haskell%2FMonadPlus

33 do Notation

1. REDIRECT Haskell/do notation1

1 Chapter 33 on page 197

197

34 The IO monad

Two defining features of Haskell are pure functions and lazy evaluation. All Haskell functions
are pure, which means that, when given the same arguments, they return the same results.
Lazy evaluation means that, by default, Haskell values are only evaluated when some part of
the program requires them – perhaps never, if they are never used – and repeated evaluation
of the same value is avoided wherever possible.

Pure functions and lazy evaluation bring forth a number of advantages. In particular, pure
functions are reliable and predictable; they ease debugging and validation. Test cases can
also be set up easily since we can be sure that nothing other than the arguments will influence
a function’s result. Being entirely contained within the program, the Haskell compiler can
evaluate functions thoroughly in order to optimize the compiled code. However, input
and output operations, which involve interaction with the world outside the confines of
the program, can’t be expressed through pure functions. Furthermore, in most cases I/O
can’t be done lazily. Since lazy computations are only performed when their values become
necessary, unfettered lazy I/O would make the order of execution of the real world effects
unpredictable.

There is no way to ignore this issue, as any useful program needs to do I/O, even if it is
only to display a result. That being so, how do we manage actions like opening a network
connection, writing a file, reading input from the outside world, or anything else that goes
beyond calculating a value? The main insight is: actions are not functions. The IO type
constructor provides a way to represent actions as Haskell values, so that we can manipulate
them with pure functions. In the Prologue1 chapter, we anticipated some of the key features
of this solution. Now that we also know that IO is a monad, we can wrap up the discussion
we started there.

34.1 Combining functions and I/O actions

Let’s combine functions with I/O to create a full program that will:

1. Ask the user to insert a string
2. Read their string
3. Use fmap to apply a function shout that capitalizes all the letters from the string
4. Write the resulting string

module Main where

import Data.Char (toUpper)
import Control.Monad

1 https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue

199

https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue

The IO monad

main = putStrLn "Write your string: " >> fmap shout getLine >>= putStrLn

shout = map toUpper

We have a full-blown program, but we didn’t include any type definitions. Which parts are
functions and which are IO actions or other values? We can load our program in GHCi and
check the types:

main :: IO ()
putStrLn :: String -> IO ()
"Write your string: " :: [Char]
(>>) :: Monad m => m a -> m b -> m b
fmap :: Functor m => (a -> b) -> m a -> m b
shout :: [Char] -> [Char]
getLine :: IO String
(>>=) :: Monad m => m a -> (a -> m b) -> m b

Whew, that is a lot of information there. We’ve seen all of this before, but let’s review.

main is IO (). That’s not a function. Functions are of types a -> b. Our entire program
is an IO action.

putStrLn is a function, but it results in an IO action. The ”Write your string: ” text is
a String (remember, that’s just a synonym for [Char]). It is used as an argument for
putStrLn and is incorporated into the IO action that results. So, putStrLn is a function,
but putStrLn x evaluates to an IO action. The () part of the IO type indicates that
nothing is available to be passed on to any later functions or actions.

That last part is key. We sometimes say informally that an IO action ”returns” something;
however, taking that too literally leads to confusion. It is clear what we mean when we
talk about functions returning results, but IO actions are not functions. Let’s skip down to
getLine — an IO action that does provide a value. getLine is not a function that returns
a String because getLine isn’t a function. Rather, getLine is an IO action which, when
evaluated, will materialize a String, which can then be passed to later functions through,
for instance, fmap and (>>=).

When we use getLine to get a String, the value is monadic because it is wrapped in
IO functor (which happens to be a monad). We cannot pass the value directly to a function
that takes plain (non-monadic, or non-functorial) values. fmap does the work of taking a
non-monadic function while passing in and returning monadic values.

As we’ve seen already, (>>=) does the work of passing a monadic value into a function
that takes a non-monadic value and returns a monadic value. It may seem inefficient for
fmap to take the non-monadic result of its given function and return a monadic value only
for (>>=) to then pass the underlying non-monadic value to the next function. It is precisely
this sort of chaining, however, that creates the reliable sequencing that make monads so
effective at integrating pure functions with IO actions.

200

The universe as part of our program

34.1.1 do notation review

Given the emphasis on sequencing, the do notation2 can be especially appealing with the
IO monad. Our program

putStrLn "Write your string: " >> fmap shout getLine >>= putStrLn

could be written as:

do putStrLn "Write your string: "
string <- getLine
putStrLn (shout string)

34.2 The universe as part of our program

One way of viewing the IO monad is to consider IO a as a computation which provides a
value of type a while changing the state of the world by doing input and output. Obviously,
you cannot literally set the state of the world; it is hidden from you, as the IO functor is
abstract (that is, you cannot dig into it to see the underlying values; it is closed in a way
opposite to that in which Maybe can be said to be open3).

Understand that this idea of the universe as an object affected and affecting Haskell values
through IO is only a metaphor; a loose interpretation at best. The more mundane fact is
that IO simply brings some very base-level operations into the Haskell language.4 Remember
that Haskell is an abstraction, and that Haskell programs must be compiled to machine code
in order to actually run. The actual workings of IO happen at a lower level of abstraction,
and are wired into the very definition of the Haskell language.5

34.3 Pure and impure

The adjectives ”pure” and ”impure” often crop up while talking about I/O in Haskell. To
clarify what is meant by them, we will revisit the discussion about referential transparency
from the Prologue chapter6. Consider the following snippet:

speakTo :: (String -> String) -> IO String
speakTo fSentence = fmap fSentence getLine

-- Usage example.
sayHello :: IO String
sayHello = speakTo (\name -> "Hello, " ++ name ++ "!")

2 Chapter 33 on page 197
3 Chapter 31.3 on page 191
4 The technical term is ”primitive”, as in primitive operations.
5 The same can be said about all higher-level programming languages, of course. Incidentally, Haskell’s IO

operations can actually be extended via the Foreign Function Interface (FFI) which can make calls to C
libraries. As C can use inline assembly code, Haskell can indirectly engage with anything a computer can
do. Still, Haskell functions manipulate such outside operations only indirectly as values in IO functors.

6 https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue%23Referential%20transparency

201

https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue%23Referential%20transparency

The IO monad

In most other programming languages, which do not have separate types for I/O actions,
speakTo would have a type akin to:

speakTo :: (String -> String) -> String

With such a type, however, speakTo would not be a function at all! Functions produce the
same results when given the same arguments; the String delivered by speakTo, however,
also depends on whatever is typed at the terminal prompt. In Haskell, we avoid that pitfall
by returning an IO String, which is not a String but a promise that some String will be
delivered by carrying out certain instructions involving I/O (in this case, the I/O consists
of getting a line of input from the terminal). Though the String can be different each time
speakTo is evaluated, the I/O instructions are always the same.

When we say Haskell is a purely functional language, we mean that all of its functions are
really functions – or, in other words, that Haskell expressions are always referentially trans-
parent. If speakTo had the problematic type we mentioned above, referential transparency
would be violated: sayHello would be a String, and yet replacing it by any specific string
would break the program.

In spite of Haskell being purely functional, IO actions can be said to be impure because
their impact on the outside world are side effects (as opposed to the regular effects that
are entirely contained within Haskell). Programming languages that lack purity may have
side-effects in many other places connected with various calculations. Purely functional
languages, however, assure that even expressions with impure values are referentially trans-
parent. That means we can talk about, reason about and handle impurity in a purely
functional way, using purely functional machinery such as functors and monads. While
IO actions are impure, all of the Haskell functions that manipulate them remain pure.

Functional purity, coupled to the fact that I/O shows up in types, benefit Haskell program-
mers in various ways. The guarantees about referential transparency increase a lot the
potential for compiler optimizations. IO values being distinguishable through types alone
make it possible to immediately tell where we are engaging with side effects or opaque val-
ues. As IO itself is just another functor, we maintain to the fullest extent the predictability
and ease of reasoning associated with pure functions.

34.4 Functional and imperative

When we introduced monads7, we said that a monadic expression can be interpreted as a
statement of an imperative language. That interpretation is immediately compelling for
IO, as the language around IO actions looks a lot like a conventional imperative language.
It must be clear, however, that we are talking about an interpretation. We are not saying
that monads or do notation turn Haskell into an imperative language. The point is merely
that you can view and understand monadic code in terms of imperative statements. The
semantics may be imperative, but the implementation of monads and (>>=) is still purely
functional. To make this distinction clear, let’s look at a little illustration:

7 Chapter 30.2 on page 182

202

I/O in the libraries

int x;
scanf("%d", &x);
printf("%d\n", x);

This is a snippet of C, a typical imperative language. In it, we declare a variable x, read its
value from user input with scanf and then print it with printf. We can, within an IO do
block, write a Haskell snippet that performs the same function and looks quite similar:

x <- readLn
print x

Semantically, the snippets are nearly equivalent.8 In the C code, however, the statements
directly correspond to instructions to be carried out by the program. The Haskell snippet,
on the other hand, is desugared to:

readLn >>= \x -> print x

The desugared version has no statements, only functions being applied. We tell the program
the order of the operations indirectly as a simple consequence of data dependencies: when we
chain monadic computations with (>>=), we get the later results by applying functions to
the results of the earlier ones. It just happens that, for instance, evaluating print x leads
to a string to be printed in the terminal.

When using monads, Haskell allows us to write code with imperative semantics while keeping
the advantages of functional programming.

34.5 I/O in the libraries

So far the only I/O primitives we have used were putStrLn and getLine and small varia-
tions thereof. The standard libraries, however, offer many other useful functions and actions
involving IO. We present some of the most important ones in the IO chapter in Haskell in
Practice9, including the basic functionality needed for reading from and writing to files.

34.6 Monadic control structures

Given that monads allow us to express sequential execution of actions in a wholly general
way, could we use them to implement common iterative patterns, such as loops? In this
section, we will present a few of the functions from the standard libraries which allow us to
do precisely that. While the examples are presented here applied to IO, keep in mind that
the following ideas apply to every monad.

8 One difference is that x is a mutable variable in C, and so it is possible to declare it in one statement and
set its value in the next; Haskell never allows such mutability. If we wanted to imitate the C code even
more closely, we could have used an IORef, which is a cell that contains a value which can be destructively
updated. For obvious reasons, IORefs can only be used within the IO monad.

9 Chapter 75 on page 505

203

The IO monad

Remember, there is nothing magical about monadic values; we can manipulate them just
like any other values in Haskell. Knowing that, we might think to try the following function
to get five lines of user input:

fiveGetLines = replicate 5 getLine

That won’t do, however (try it in GHCi!). The problem is that replicate produces,
in this case, a list of actions, while we want an action which returns a list (that is, IO
[String] rather than [IO String]). What we need is a fold to run down the list of ac-
tions, executing them and combining the results into a single list. As it happens, there is a
Prelude function which does that: sequence.

sequence :: (Monad m) => [m a] -> m [a]

And so, we get the desired action with:

fiveGetLines = sequence $ replicate 5 getLine

replicate and sequence form an appealing combination; so Control.Monad10 of-
fers a replicateM function for repeating an action an arbitrary number of times.
Control.Monad provides a number of other convenience functions in the same spirit -
monadic zips, folds, and so forth.

fiveGetLinesAlt = replicateM 5 getLine

A particularly important combination is map and sequence. Together, they allow us to
make actions from a list of values, run them sequentially, and collect the results. mapM, a
Prelude function, captures this pattern:

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

We also have variants of the above functions with a trailing underscore in the name, such as
sequence_, mapM_ and replicateM_. These discard any final values and so are appropriate
when you are only interested in performing actions. Compared with their underscore-less
counterparts, these functions are like the distinction between (>>) and (>>=). mapM_ for
instance has the following type:

mapM_ :: (Monad m) => (a -> m b) -> [a] -> m ()

Finally, it is worth mentioning that Control.Monad also provides forM and forM_, which are
flipped versions of mapM and mapM_. forM_ happens to be the idiomatic Haskell counterpart
to the imperative for-each loop; and the type signature suggests that neatly:

forM_ :: (Monad m) => [a] -> (a -> m b) -> m ()

10 http://hackage.haskell.org/packages/archive/base/4.1.0.0/doc/html/Control-Monad.html

204

http://hackage.haskell.org/packages/archive/base/4.1.0.0/doc/html/Control-Monad.html

Monadic control structures

Exercises:

1. Using the monadic functions we have just introduced, write a function which prints
an arbitrary list of values.

2. Generalize the bunny invasion examplea in the list monad chapter for an arbitrary
number of generations.

3. What is the expected behavior of sequence for the Maybe monad?

a Chapter 32.2 on page 194

205

35 The State monad

If you have programmed in any other language before, you likely wrote some functions that
”kept state”. For those new to the concept, a state is one or more variables that are required
to perform some computation but are not among the arguments of the relevant function.
Object-oriented languages, like C++, suggest extensive use of state variables within objects
in the form of member variables. Programs written in procedural languages, like C, typically
use variables declared outside the current scope to keep track of state.

In Haskell, however, such techniques are not as straightforward to apply. They require
mutable variables and imply functions will have hidden dependencies, which is at odds with
Haskell’s functional purity. Fortunately, in most cases it is possible to avoid such extra
complications and keep track of state in a functionally pure way. We do so by passing
the state information from one function to the next, thus making the hidden dependencies
explicit. The State type is a tool crafted to make this process of threading state through
functions more convenient. In this chapter, we will see how it can assist us in a typical
problem involving state: generating pseudo-random numbers.

35.1 Pseudo-Random Numbers

Generating actual random numbers1 is far from easy. Computer programs almost always
use pseudo-random numbers2 instead. They are called ”pseudo” because they are not truly
random. Rather, they are genererated by algorithms (the pseudo-random number genera-
tors) which take an initial state (commonly called the seed) and produce from it a sequence
of numbers that have the appearance of being random.3 Every time a pseudo-random num-
ber is requested, state somewhere must be updated, so that the generator can be ready for
producing a fresh, different random number. Sequences of pseudo-random numbers can be
replicated exactly if the initial seed and the generating algorithm are known.

35.1.1 Implementation in Haskell

Producing a pseudo-random number in most programming languages is very simple: there
is a function somewhere in the libraries that provides a pseudo-random value (perhaps even
a truly random one, depending on how it is implemented). Haskell has a similar one in the
System.Random module from the random package:

1 https://en.wikibooks.org/wiki/%3Awikipedia%3ARandom%20number%20generation
2 https://en.wikibooks.org/wiki/%3Awikipedia%3APseudorandom%20number%20generator
3 A common source of seeds is the current date and time as given by the internal clock of the computer.

Assuming the clock is functioning correctly, it can provide unique seeds suitable for most day-to-day needs
(as opposed to applications which demand high-quality randomness, as in cryptography or statistics).

207

https://en.wikibooks.org/wiki/%3Awikipedia%3ARandom%20number%20generation
https://en.wikibooks.org/wiki/%3Awikipedia%3APseudorandom%20number%20generator

The State monad

GHCi> :m System.Random
GHCi> :t randomIO
randomIO :: Random a => IO a
GHCi> randomIO
-1557093684
GHCi> randomIO
1342278538

randomIO is an IO action. It couldn’t be otherwise, as it makes use of mutable state, which
is kept out of reach from our Haskell programs. Thanks to this hidden dependency, the
pseudo-random values it gives back can be different every time.

35.1.2 Example: Rolling Dice

Figure 2 randomRIO (1,6)

Suppose we are coding a game in which at some point we need an element of chance. In
real-life games that is often obtained by means of dice. So, let’s create a dice-throwing
function. We’ll use the IO function randomRIO, which allows us to specify a range from
which the pseudo-random values will be taken. For a 6 die, the call will be randomRIO
(1,6).

import Control.Applicative
import System.Random

208

Pseudo-Random Numbers

rollDiceIO :: IO (Int, Int)
rollDiceIO = liftA2 (,) (randomRIO (1,6)) (randomRIO (1,6))

That function rolls two dice. Here, liftA2 is used to make the two-argument function
(,) work within a monad or applicative functor, in this case IO.4 It can be easily defined
in terms of (<*>):

liftA2 f u v = f <$> u <*> v

As for (,), it is the non-infix version of the tuple constructor. That being so, the two die
rolls will be returned as a tuple in IO.

Exercises:

1. Implement a function rollNDiceIO :: Int -> IO [Int] that, given an integer
(a number of die rolls), returns a list of that number of pseudo-random integers
between 1 and 6.

35.1.3 Getting Rid of IO

A disadvantage of randomIO is that it requires us to use IO and store our state outside the
program, where we can’t control what happens to it. We would rather only use I/O when
there is an unavoidable reason to interact with the outside world.

To avoid bringing IO into play, we can build a local generator. The random and
mkStdGen functions in System.Random allow us to generate tuples containing a pseudo-
random number together with an updated generator to use the next time the function is
called.

GHCi> :m System.Random
GHCi> let generator = mkStdGen 0 -- "0" is our seed
GHCi> :t generator
generator :: StdGen
GHCi> generator
1 1
GHCi> :t random
random :: (RandomGen g, Random a) => g -> (a, g)
GHCi> random generator :: (Int, StdGen)
(2092838931,1601120196 1655838864)

Note:
In random generator :: (Int, StdGen), we use the :: to introduce a type annotation,
which is essentially a type signature that we can put in the middle of an expression.
Here, we are saying that the expression to the right, random generator has type (Int,
StdGen). It makes sense to use a type annotation here because, as we will discuss later,
random can produce values of different types, so if we want it to give us an Int we’d
better specify it in some way.

4 If you need a refresher on applicative functors, have a look at the first section of the Prologue ˆ{https:
//en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue%23Scene%201%3A%20Applicative} .

209

https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue%23Scene%201%3A%20Applicative
https://en.wikibooks.org/wiki/Haskell%2FApplicative%20prologue%23Scene%201%3A%20Applicative

The State monad

While we managed to avoid IO, there are new problems. First and foremost, if we want to
use generator to get random numbers, the obvious definition...

GHCi> let randInt = fst . random $ generator :: Int
GHCi> randInt
2092838931

... is useless. It will always give back the same value, 2092838931, as the same generator
in the same state will be used every time. To solve that, we can take the second member
of the tuple (that is, the new generator) and feed it to a new call to random:

GHCi> let (randInt, generator') = random generator :: (Int, StdGen)
GHCi> randInt -- Same value
2092838931
GHCi> random generator' :: (Int, StdGen) -- Using new generator' returned from
“random generator”
(-2143208520,439883729 1872071452)

That, of course, is clumsy and rather tedious, as we now need to deal with the fuss of
carefully passing the generator around.

35.1.4 Dice without IO

We can re-do our dice throw with our new approach using the randomR function:

GHCi> randomR (1,6) (mkStdGen 0)
(6, 40014 40692)

The resulting tuple combines the result of throwing a single die with a new generator. A
simple implementation for throwing two dice is then:

clumsyRollDice :: (Int, Int)
clumsyRollDice = (n, m)

where
(n, g) = randomR (1,6) (mkStdGen 0)
(m, _) = randomR (1,6) g

210

Pseudo-Random Numbers

Figure 3 Boxcars!a

a http://en.wikipedia.org/wiki/Boxcars_%28slang%29

Exercises:

1. Implement a function rollDice :: StdGen -> ((Int, Int), StdGen) that,
given a generator, return a tuple with our random numbers as first element and
the last generator as the second.

The implementation of clumsyRollDice works as an one-off, but we have to manually pass
the generator g from one where clause to the other. This approach becomes increasingly
cumbersome as our programs get more complex, which means we have more values to shift
around. It is also error-prone: what if we pass one of the middle generators to the wrong
line in the where clause?

What we really need is a way to automate the extraction of the second member of the tuple
(i.e. the new generator) and feed it to a new call to random. This is where the State comes
into the picture.

211

http://en.wikipedia.org/wiki/Boxcars_%28slang%29

The State monad

35.2 Introducing State

Note:
In this chapter we will use the state monad provided by the module
Control.Monad.Trans.State of the transformers package. By reading Haskell code
in the wild, you will soon meet Control.Monad.State, a module of the closely related
mtl package. The differences between these two modules need not concern us at the
moment; everything we discuss here also applies to the mtl variant.

The Haskell type State describes functions that consume a state and produce both a result
and an updated state, which are given back in a tuple.

The state function is wrapped by a data type definition which comes along with a
runState accessor so that pattern matching becomes unnecessary. For our current pur-
poses, the State type might be defined as:

newtype State s a = State { runState :: s -> (a, s) }

Here, s is the type of the state, and a the type of the produced result. Calling the type
State is arguably a bit of a misnomer because the wrapped value is not the state itself but
a state processor.

35.2.1 newtype

Note that we defined the data type with the newtype keyword, rather than the usual data.
newtype can be used only for types with just one constructor and just one field. It en-
sures that the trivial wrapping and unwrapping of the single field is eliminated by the
compiler. For that reason, simple wrapper types such as State are usually defined with
newtype. Would defining a synonym with type be enough in such cases? Not really, be-
cause type does not allow us to define instances for the new data type, which is what we
are about to do...

35.2.2 Where did the State constructor go?

When you start using Control.Monad.Trans.State, you will quickly notice there is no
State constructor available. That was the reason for the ”for our current purposes”
caveat a few paragraphs ago, when introducing the type. The transformers package
implements the State type in a somewhat different way. The differences do not af-
fect how we use or understand State; except that, instead of a State constructor,
Control.Monad.Trans.State exports a state function,

state :: (s -> (a, s)) -> State s a

which does the same job. As for why the implementation is not the obvious one we presented
above, we will get back to that a few chapters down the road.

212

Introducing State

35.2.3 Instantiating the Monad

So far, all we have done was to wrap a function type and give it a name. There is another
ingredient, however: State is a monad, and that gives us very handy ways of using it. Unlike
the instances of Functor or Monad we have seen so far, State has two type parameters.
Since the type class only allows one parametrised parameter, the last one, we have to
indicate the other one, s, will be fixed.

instance Monad (State s) where

That means there are actually many different State monads, one for each possible type of
state - State String, State Int, State SomeLargeDataStructure, and so forth. Natu-
rally, we only need to write one implementation of return and (>>=); the methods will be
able to deal with all choices of s.

The return function is implemented as:

return :: a -> State s a
return x = state (\ st -> (x, st))

Giving a value (x) to return produces a function which takes a state (st) and returns it
unchanged, together with value we want to be returned. As a finishing step, the function
is wrapped up with the state function.

Binding is a bit intricate:

(>>=) :: State s a -> (a -> State s b) -> State s b
pr >>= k = state $ \ st ->

let (x, st') = runState pr st -- Running the first processor on st.
in runState (k x) st' -- Running the second processor on st'.

(>>=) is given a state processor (pr) and a function (k) that is used to create another
processor from the result of the first one. The two processors are combined into a function
that takes the initial state (st) and returns the second result and the third state (i.e. the
output of the second processor). Overall, (>>=) here allows us to run two state processors
in sequence, while allowing the result of the first stage to influence what happens in the
second one.

213

The State monad

Figure 4 Schematic representation of how bind creates a new state processor (pAB) from
a state processor (pA) and a processor-making function (f). s1, s2 and s3 are states.
v1 and v2 are values. pA, pB and pAB are state processors. The wrapping and unwrapping
by state/runState is implicit.

One detail in the implementation is how runState is used to undo the State wrapping, so
that we can reach the function that will be applied to the states. The type of runState
pr, for instance, is s -> (a, s).

Another way to understand this derivation of the bind operator >>= is to consider once
more the explicit but cumbersome way to simulate a stateful function of type a -> b by
using functions of type (a, s) -> (b, s), or, said another way: a -> s -> (b,s) = a
-> (s -> (b,s)). These classes of functions pass the state on from function to function.
Note that this last signature already suggests the right-hand side type in a bind operation
where the abstract type S b = (s -> (b, s)).

Now that we have seen how the types seem to suggest the monadic signatures, lets consider a
much more concrete question: Given two functions f :: s -> (a, s) and g:: a -> s ->

214

Introducing State

(b, s), how do we chain them to produce a new function that passes on the intermediate
state?

This question does not require thinking about monads: one option is to simply use func-
tion composition. It helps our exposition if we just write it down explicitly as a lambda
expression:

compose :: (s -> (a,s)) -> {- first function -}
a -> (s -> (b,s)) -> {- second function, note type is similar to

(a,s) -> (b,s) -}
s -> (b,s) {- composed function -}

compose f g = \s0 -> let (a1, s1) = f s0 in (g a1) s1
{-This lambda expression threads both intermediate results produced by f into
those required by g -}

Now, if in addition to chaining the input functions, we find that the functions of signature
s -> (a,s) were all wrapped in an abstract datatype Wrapped a, and that therefore we
need to call some other provided functionswrap :: (s -> (a,s)) -> Wrapped a, and un-
wrap :: Wrapped a -> (s -> (a,s)) in order to get to the inner function, then the code
changes slightly:

{- what happens if the type s -> (a,s) is wrapped and this new type is called
Wrapped a -}
composeWrapped :: Wrapped a -> (a -> Wrapped b) -> Wrapped b
composeWrapped wrappedf g = wrap (\s0 -> let (a1,s1) = (unwrap wf) s0 in
(unwrap (g a1)) s1)

This code is the implementation of (>>=) shown above, with wrap = state and unwrap
= runState, so we can now see how the definition of bind given earlier is the standard
function composition for this special kind of stateful function.

This explanation does not address yet where the original functions Wrapped a and a ->
Wrapped b come from in the first place, but they do explain what you can do with them
once you have them.

35.2.4 Setting and Accessing the State

The monad instance allows us to manipulate various state processors, but you may at this
point wonder where exactly the original state comes from in the first place. That issue is
handily dealt with by the function put:

put newState = state $ _ -> ((), newState)

Given a state (the one we want to introduce), put generates a state processor which ignores
whatever state it receives, and gives back the state we originally provided to put. Since we
don’t care about the result of this processor (all we want to do is to replace the state), the
first element of the tuple will be (), the universal placeholder value.5

As a counterpart to put, there is get:

get = state $ \st -> (st, st)

5 The technical term for both () and its type is unit.

215

The State monad

The resulting state processor gives back the state st it is given in both as a result and as
a state. That means the state will remain unchanged, and that a copy of it will be made
available for us to manipulate.

35.2.5 Getting Values and State

As we have seen in the implementation of (>>=), runState is used to unwrap the State
a b value to get the actual state processing function, which is then applied to some initial
state. Other functions which are used in similar ways are evalState and execState. Given
a State a b and an initial state, the function evalState will give back only the result value
of the state processing, whereas execState will give back just the new state.

evalState :: State s a -> s -> a
evalState pr st = fst (runState pr st)

execState :: State s a -> s -> s
execState pr st = snd (runState pr st)

35.2.6 Dice and state

Time to use the State monad for our dice throw examples.

import Control.Monad.Trans.State
import System.Random

We want to generate Int dice throw results from a pseudo-random generator of type StdGen.
Therefore, the type of our state processors will be State StdGen Int, which is equivalent
to StdGen -> (Int, StdGen) bar the wrapping.

We can now implement a processor that, given a StdGen generator, produces a number
between 1 and 6. Now, the type of randomR is:

-- The StdGen type we are using is an instance of RandomGen.
randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

Doesn’t it look familiar? If we assume a is Int and g is StdGen it becomes:

randomR (1, 6) :: StdGen -> (Int, StdGen)

We already have a state processing function! All that is missing is to wrap it with state:

rollDie :: State StdGen Int
rollDie = state $ randomR (1, 6)

For illustrative purposes, we can use get, put and do-notation to write rollDie in a very
verbose way which displays explicitly each step of the state processing:

rollDie :: State StdGen Int
rollDie = do generator <- get

let (value, newGenerator) = randomR (1,6) generator
put newGenerator
return value

216

Introducing State

Let’s go through each of the steps:

1. First, we take out the pseudo-random generator from the monadic context with <-,
so that we can manipulate it.

2. Then, we use the randomR function to produce an integer between 1 and 6 using the
generator we took. We also store the new generator graciously returned by randomR.

3. We then set the state to be the newGenerator using put, so that any further
randomR in the do-block, or further on in a (>>=) chain, will use a different pseudo-
random generator.

4. Finally, we inject the result back into the State StdGen monad using return.

We can finally use our monadic die. As before, the initial generator state itself is produced
by the mkStdGen function.

GHCi> evalState rollDie (mkStdGen 0)
6

Why have we involved monads and built such an intricate framework only to do exactly
what fst $ randomR (1,6) already does? Well, consider the following function:

rollDice :: State StdGen (Int, Int)
rollDice = liftA2 (,) rollDie rollDie

We obtain a function producing two pseudo-random numbers in a tuple. Note that these
are in general different:

GHCi> evalState rollDice (mkStdGen 666)
(6,1)

Under the hood, state is being passed through (>>=) from one rollDie computation to the
other. Doing that was previously very clunky using randomR (1,6) alone because we had
to pass state manually. Now, the monad instance is taking care of that for us. Assuming we
know how to use the lifting functions, constructing intricate combinations of pseudo-random
numbers (tuples, lists, whatever) has suddenly become much easier.

217

The State monad

Exercises:

1. Similarly to what was done for rollNDiceIO, implement a function rollNDice
:: Int -> State StdGen [Int] that, given an integer, returns a list with that
number of pseudo-random integers between 1 and 6.

2. Write an instance of Functor for State s. Your final answer should not use any-
thing that mentions Monad in its type (that is, return, (>>=), etc.). Then, explain
in a few words what the fmap you wrote does.(Hint: If you get stuck, have another
look at the comments about liftM at the very end of Understanding monadsa.)

3. Besides put and get, there are also
modify :: (s -> s) -> State s ()
which modifies the current state using a function, and
gets :: (s -> a) -> State s a
which produces a modified copy of the state while leaving the state itself un-
changed. Write implementations for them.

a Chapter 30.5 on page 186

35.3 Pseudo-random values of different types

Until now, we have used only Int as type of the value produced by the pseudo-random
generator. However, looking at the type of randomR shows we are not restricted to Int. It
can generate values of any type in the Random class from System.Random6. There already
are instances for Int, Char, Integer, Bool, Double and Float, so you can immediately
generate any of those.

Because State StdGen is ”agnostic” in regard to the type of the pseudo-random value it
produces, we can write a similarly ”agnostic” function that provides a pseudo-random value
of unspecified type (as long as it is an instance of Random):

getRandom :: Random a => State StdGen a
getRandom = state random

Compared to rollDie, this function does not specify the Int type in its signature and uses
random instead of randomR; otherwise, it is just the same. getRandom can be used for any
instance of Random:

GHCi> evalState getRandom (mkStdGen 0) :: Bool
True
GHCi> evalState getRandom (mkStdGen 0) :: Char
'\64685'
GHCi> evalState getRandom (mkStdGen 0) :: Double
0.9872770354820595
GHCi> evalState getRandom (mkStdGen 0) :: Integer
2092838931

Indeed, it becomes quite easy to conjure all these at once:

6 http://hackage.haskell.org/packages/archive/random/latest/doc/html/System-Random.html

218

http://hackage.haskell.org/packages/archive/random/latest/doc/html/System-Random.html

Pseudo-random values of different types

someTypes :: State StdGen (Int, Float, Char)
someTypes = liftA3 (,,) getRandom getRandom getRandom

allTypes :: State StdGen (Int, Float, Char, Integer, Double, Bool, Int)
allTypes = (,,,,,,) <$> getRandom

<*> getRandom
<*> getRandom
<*> getRandom
<*> getRandom
<*> getRandom
<*> getRandom

For writing allTypes, there is no liftA7,7 and so we resort to plain old (<*>) instead.
Using it, we can apply the tuple constructor to each of the seven random values in the
State StdGen monadic context.

allTypes provides pseudo-random values for all default instances of Random; an additional
Int is inserted at the end to prove that the generator is not the same, as the two Ints will
be different.

GHCi> evalState allTypes (mkStdGen 0)
GHCi>
(2092838931,9.953678e-4,'\825586',-868192881,0.4188001483955421,False,316817438)

Exercises:

1. If you are not convinced that State is worth using, try to implement a function
equivalent to evalState allTypes without making use of monads, i.e. with an
approach similar to clumsyRollDice above.

7 Beyond liftA3, the standard libraries only provide the monad-only liftM4 and liftM5 in Con-
trol.Monad.

219

36 Alternative and MonadPlus

In our studies so far, we saw that both Maybe and lists can represent computations with a
varying number of results. We use Maybe to indicate a computation can fail somehow (that
is, it can have either zero results or one result), and we use lists for computations that can
have many possible results (ranging from zero to arbitrarily many results). In both of these
cases, one useful operation is amalgamating all possible results from multiple computations
into a single computation. With lists, for instance, that would amount to concatenating
lists of possible results. The Alternative class captures this amalgamation in a general
way.

36.1 Definition

Note:
The Alternative class and its methods can be found in the Control.Applicativea mod-
ule.

a http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html

Alternative is a subclass of Applicative whose instances must define, at a minimum, the
following two methods:

class Applicative f => Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a

empty is an applicative computation with zero results, while (<|>) is a binary function
which combines two computations.

Here are the two instance definitions for Maybe and lists:

instance Alternative Maybe where
empty = Nothing
-- Note that this could have been written more compactly.
Nothing <|> Nothing = Nothing -- 0 results + 0 results = 0 results
Just x <|> Nothing = Just x -- 1 result + 0 results = 1 result
Nothing <|> Just x = Just x -- 0 results + 1 result = 1 result
Just x <|> Just y = Just x -- 1 result + 1 result = 1 result:

-- Maybe can only hold up to one result,
-- so we discard the second one.

instance Alternative [] where
empty = []
(<|>) = (++) -- length xs + length ys = length (xs ++ ys)

221

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html

Alternative and MonadPlus

36.2 Example: parallel parsing

Traditional input parsing involves functions which consume an input one character at a time.
That is, a parsing function takes an input string and chops off (i.e. ”consumes”) characters
from the front if they satisfy certain criteria. For example, you could write a function which
consumes one uppercase character. If the characters on the front of the string don’t satisfy
the given criteria, the parser has failed. In the example below, for instance, we consume a
digit in the input and return the digit that was parsed. The possibility of failure is expressed
by using Maybe.

digit :: Int -> String -> Maybe Int
digit i s | i > 9 || i < 0 = Nothing

| otherwise = do
let (c:_) = s
if [c] == show i then Just i else Nothing

The guards assure that the Int we are checking for is a single digit. Otherwise, we are just
checking that the first character of our String matches the digit we are checking for. If it
passes, we return the digit wrapped in a Just. The do-block assures that any failed pattern
match will result in returning Nothing.

Now, (<|>) can be used to run two parsers in parallel. That is, we use the result of the
first one if it succeeds, and otherwise, we use the result of the second. If both fail, then
the combined parser returns Nothing. We can use digit with (<|>) to, for instance, parse
strings of binary digits:

binChar :: String -> Maybe Int
binChar s = digit 0 s <|> digit 1 s

Parser libraries often make use of Alternative in this way. Two examples are (+++) in
Text.ParserCombinators.ReadP1 and (<|>) in Text.ParserCombinators.Parsec.Prim2. This
usage pattern can be described in terms of choice. For instance, if we want to give binChar a
string that will be successfully parsed, we have two choices: either to begin the string with
'0' or with '1'.

36.3 MonadPlus

MonadPlus is a class which is closely related to Alternative:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

This definition is exactly like that of Alternative, only with different method names and
the Applicative constraint being changed into Monad. Unsurprisingly, for types that have
instances of both Alternative and MonadPlus, mzero and mplus should be equivalent to
empty and (<|>) respectively.

1 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Text-ParserCombinators-ReadP.html
2 http://hackage.haskell.org/packages/archive/parsec/latest/doc/html/Text-ParserCombinators-Parsec-Prim.html

222

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Text-ParserCombinators-ReadP.html
http://hackage.haskell.org/packages/archive/parsec/latest/doc/html/Text-ParserCombinators-Parsec-Prim.html

Alternative and MonadPlus laws

One might legitimately wonder why the seemingly redundant MonadPlus class exists. Part
of the reason is historical: just like Monad existed in Haskell long before Applicative was
introduced, MonadPlus is much older than Alternative. Beyond such accidents, there are
also additional expectations about how the MonadPlus methods should interact with the
Monad ones that do not apply to Alternative, and so saying something is a MonadPlus is
a stronger claim than saying it is both an Alternative and a Monad. We will make some
additional considerations about this issue in the following section.

36.4 Alternative and MonadPlus laws

Like most general-purpose classes Alternative and MonadPlus are expected to follow a
handful of laws. However, there isn’t universal agreement on what the full set of laws
should look like. The most commonly adopted laws, and the most crucial for providing
intuition about Alternative say that empty and (<|>) form a monoid. By that, we mean:

-- empty is a neutral element
empty <|> u = u
u <|> empty = u
-- (<|>) is associative
u <|> (v <|> w) = (u <|> v) <|> w

There is nothing fancy about ”forming a monoid”: in the above, ”neutral element” and
”associative” here is just like how addition of integer numbers is said to be associative and to
have zero as neutral element. In fact, this analogy is the source of the MonadPlus methods,
mzero and mplus.

As for MonadPlus, at a minimum there usually are the monoid laws, which correspond
exactly to the ones just above...

mzero `mplus` m = m
m `mplus` mzero = m
m `mplus` (n `mplus` o) = (m `mplus` n) `mplus` o

... plus the additional two laws, quoted by the Control.Monad3 documentation:

mzero >>= f = mzero -- left zero
m >> mzero = mzero -- right zero

If mzero is interpreted as a failed computation, these laws state that a failure within a chain
of monadic computations leads to the failure of the whole chain.

We will touch upon some additional suggestions of laws for Alternative and MonadPlus at
the end of the chapter.

36.5 Useful functions

In addition to (<|>) and empty, there are two other general-purpose functions in the base
libraries involving Alternative.

3 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad.html

223

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad.html

Alternative and MonadPlus

36.5.1 asum

A common task when working with Alternative is taking a list of alternative values,
e.g. [Maybe a] or [[a]], and folding it down with (<|>). The function asum, from
Data.Foldable fulfills this role:

asum :: (Alternative f, Foldable t) => t (f a) -> f a
asum = foldr (<|>) empty

In a sense, asum generalizes the list-specific concat operation. Indeed, the two are equiva-
lent when the lists are the Alternative being used. For Maybe, asum finds the first Just
x in the list and returns Nothing if there aren’t any.

It should also be mentioned that msum, available from both ‘Data.Foldable‘ and ‘Con-
trol.Monad‘, is just asum specialised to MonadPlus.

msum :: (MonadPlus m, Foldable t) => t (m a) -> m a

36.5.2 guard

When discussing the list monad4 we noted how similar it was to list comprehensions, but
we didn’t discuss how to mirror list comprehension filtering. The guard function from
Control.Monad allows us to do exactly that.

Consider the following comprehension which retrieves all pythagorean triples5 (i.e. trios of
integer numbers which work as the lengths of the sides for a right triangle). First we’ll
examine the brute-force approach. We’ll use a boolean condition for filtering; namely,
Pythagoras’ theorem:

pythags = [(x, y, z) | z <- [1..], x <- [1..z], y <- [x..z], x^2 + y^2 == z^2]

The translation of the comprehension above to a list monad do-block is:

pythags = do
z <- [1..]
x <- [1..z]
y <- [x..z]
guard (x^2 + y^2 == z^2)
return (x, y, z)

The guard function can be defined for all Alternatives like this:

guard :: Alternative m => Bool -> m ()
guard True = return ()
guard _ = empty

guard will reduce a do-block to empty if its predicate is False. Given the left zero law...

mzero >>= f = mzero
-- Or, equivalently:
empty >>= f = empty

4 Chapter 32 on page 193
5 https://en.wikipedia.org/wiki/Pythagorean_triple

224

https://en.wikipedia.org/wiki/Pythagorean_triple

Useful functions

... an empty on the left-hand side of an >>= operation will produce empty again. As do-
blocks are decomposed to lots of expressions joined up by (>>=), an empty at any point
will cause the entire do-block to become empty.

Let’s examine in detail what guard does in the pythags. First, here is guard defined for
the list monad:

-- guard :: Bool -> [()]
guard True = [()]
guard _ = []

Basically, guard blocks off a route. In pythags, we want to block off all the routes (or
combinations of x, y and z) where xˆ2 + yˆ2 == zˆ2 is False. Let’s look at the expansion
of the above do-block to see how it works:

pythags =
[1..] >>= \z ->
[1..z] >>= \x ->
[x..z] >>= \y ->
guard (x^2 + y^2 == z^2) >>= _ ->
return (x, y, z)

Replacing >>= and return with their definitions for the list monad (and using some let-
bindings to keep it readable), we obtain:

pythags =
let ret x y z = [(x, y, z)]

gd z x y = concatMap (_ -> ret x y z) (guard $ x^2 + y^2 == z^2)
doY z x = concatMap (gd z x) [x..z]
doX z = concatMap (doY z) [1..z]
doZ = concatMap (doX) [1..]

in doZ

Remember that guard returns the empty list in the case of its argument being False.
Mapping across the empty list produces the empty list, no matter what function you pass
in. So an empty list produced by the call to guard in gd will cause gd to produce an empty
list, with _ -> ret x y z, which would otherwise add a result, not being actually called.

To understand why this matters, think about list-computations as a tree. With our
Pythagorean triple algorithm, we need a branch starting from the top for every choice of
z, then a branch from each of these branches for every value of x, then from each of these,
a branch for every value of y. So the tree looks like this:

start
|_________________________...
| | |

z 1 2 3
| |____ |____________
| | | | | |

x 1 1 2 1 2 3
| |_ | |___ |_ |
| | | | | | | | | |

y 1 1 2 2 1 2 3 2 3 3

Each combination of z, x and y represents a route through the tree. Once all the functions
have been applied, the results of each branch are concatenated together, starting from the

225

Alternative and MonadPlus

bottom. Any route where our predicate doesn’t hold evaluates to an empty list, and so has
no impact on this concatenation.

36.6 Exercises

Exercises:

1. Prove the Alternative monoid laws for Maybe and lists.
2. We could augment the parser from the parallel parsing example so that it would
handle any character, in the following manner:
-- | Consume a given character in the input, and return
-- the character we just consumed, paired with rest of
-- the string. We use a do-block so that if the
-- pattern match fails at any point, 'fail' of the
-- Maybe monad (i.e. Nothing) is returned.
char :: Char -> String -> Maybe (Char, String)
char c s = do

let (c':s') = s
if c == c' then Just (c, s') else Nothing

It would then be possible to write a hexChar function which parses any valid
hexadecimal character (0-9 or a-f). Try writing this function (hint: map digit
[0..9] :: [String -> Maybe Int]).

3. Use guard and the Applicative combinators (pure, (<*>), (*>), etc.) to imple-
ment safeLog from the Maybe monad chaptera. Do not use the Monad combinators
(return, (>>=), (>>), etc.).

a Chapter 31 on page 189

36.7 Relationship with monoids

When discussing the Alternative laws, we alluded to the mathematical concept of monoids.
It turns out that there is a Monoid class in Haskell, defined in Data.Monoid6. A fuller
presentation of will be given in a later chapter7. For now, it suffices to say that a minimal
definition of Monoid implements two methods; namely, a neutral element (or ’zero’) and an
associative binary operation (or ’plus’).

class Monoid m where
mempty :: m
mappend :: m -> m -> m

For example, lists form a simple monoid:

6 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data.Monoid.html
7 Chapter 39 on page 241

226

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data.Monoid.html

Other suggested laws

instance Monoid [a] where
mempty = []
mappend = (++)

Looks familiar, doesn’t it? In spite of the uncanny resemblance to Alternative and Monad-
Plus, there is a key difference. Note the use of [a] instead of [] in the instance declaration.
Monoids are not necessarily ”wrappers” of anything, or parametrically polymorphic. For in-
stance, the integer numbers on form a monoid under addition with 0 as neutral element.
Alternative is a separate type class because it captures a specific sort of monoid with
distinctive properties − for instance, a binary operation (< that is intrinsically linked to an
Applicative context.

36.8 Other suggested laws

Note:
Consider this as a bonus section. While it is good to be aware of there being various
takes on these laws, the whole issue is, generally speaking, not one worth losing sleep
over.

Beyond the commonly assumed laws mentioned a few sections above, there are a handful of
others which make sense from certain perspectives, but do not hold for all existing instances
of Alternative and MonadPlus. The current MonadPlus, in particular, might be seen as
an intersection between a handful of hypothetical classes that would have additional laws.

The following two additional laws are commonly suggested for Alternative. While they
do hold for both Maybe and lists, there are counterexamples in the core libraries. Also note
that, for Alternatives that are also MonadPlus, the mzero laws mentioned earlier are not
a consequence of these laws.

(f <|> g) <*> a = (f <*> a) <|> (g <*> a) -- right distributivity (of <*>)
empty <*> a = empty -- right absorption (for <*>)

As for MonadPlus, a common suggestion is the left distribution law, which holds for lists,
but not for Maybe:

(m `mplus` n) >>= k = (m >>= k) `mplus` (n >>= k) -- left distribution

Conversely, the left catch law holds for Maybe but not for lists:

return x `mplus` m = return m -- left catch

It is generally assumed that at least one of left distribution and left catch will hold for any
MonadPlus instance.

Finally, it is worth noting that there are divergences even about the monoid laws. One
case sometimes raised against them is that for certain non-determinism monads typically
expressed in terms of MonadPlus the key laws are left zero and left distribution, while the
monoid laws in such cases lead to difficulties and should be relaxed or dropped entirely.

Some entirely optional further reading, for the curious reader:

227

Alternative and MonadPlus

• The Haskell Wiki on MonadPlus8 (note that this debate long predates the existence of
Alternative).

• Distinction between typeclasses MonadPlus, Alternative, and Monoid?9 and Confused by
the meaning of the ’Alternative’ type class and its relationship to other type classes10 at
Stack Overflow (detailed overviews of the status quo reflected by the documentation of
the relevant libraries as of GHC 7.x/8.x − as opposed to the 2010 Haskell Report, which
is less prescriptive on this matter.)

• From monoids to near-semirings: the essence of MonadPlus and Alternative by Rivas,
Jaskelioff and Schrijvers11 (a formulation that includes, beyond the monoid laws, right
distribution and right absorption for Alternative, as well as left zero and left distribution
for MonadPlus).

• Wren Romano on MonadPlus and seminearrings12 (argues that the MonadPlus right zero
law is too strong).

• Oleg Kiselyov on the MonadPlus laws13 (argues against the monoid laws in the case of
non-determinism monads).

• Must mplus always be associative? at Stack Overflow14 (a discussion about the merits of
the monoid laws of MonadPlus).

8 http://www.haskell.org/haskellwiki/MonadPlus
9 http://stackoverflow.com/q/10167879/2751851
10 http://stackoverflow.com/q/13080606/2751851
11 https://lirias.kuleuven.be/handle/123456789/499951
12 http://winterkoninkje.dreamwidth.org/90905.html
13 http://okmij.org/ftp/Computation/monads.html#monadplus
14 http://stackoverflow.com/q/15722906/2751851

228

http://www.haskell.org/haskellwiki/MonadPlus
http://stackoverflow.com/q/10167879/2751851
http://stackoverflow.com/q/13080606/2751851
https://lirias.kuleuven.be/handle/123456789/499951
http://winterkoninkje.dreamwidth.org/90905.html
http://okmij.org/ftp/Computation/monads.html#monadplus
http://stackoverflow.com/q/15722906/2751851

37 Monad transformers

We have seen how monads can help handling IO actions, Maybe, lists, and state. With
monads providing a common way to use such useful general-purpose tools, a natural thing
we might want to do is using the capabilities of several monads at once. For instance, a
function could use both I/O and Maybe exception handling. While a type like IO (Maybe
a) would work just fine, it would force us to do pattern matching within IO do-blocks to
extract values, something that the Maybe monad was meant to spare us from.

Enter monad transformers: special types that allow us to roll two monads into a single
one that shares the behavior of both.

37.1 Passphrase validation

Consider a real-life problem for IT staff worldwide: getting users to create strong
passphrases. One approach: force the user to enter a minimum length with various irri-
tating requirements (such as at least one capital letter, one number, one non-alphanumeric
character, etc.)

Here’s a Haskell function to acquire a passphrase from a user:

getPassphrase :: IO (Maybe String)
getPassphrase = do s <- getLine

if isValid s then return $ Just s
else return Nothing

-- The validation test could be anything we want it to be.
isValid :: String -> Bool
isValid s = length s >= 8

&& any isAlpha s
&& any isNumber s
&& any isPunctuation s

First and foremost, getPassphrase is an IO action, as it needs to get input from the user.
We also use Maybe, as we intend to return Nothing in case the password does not pass the
isValid. Note, however, that we aren’t actually using Maybe as a monad here: the do block
is in the IO monad, and we just happen to return a Maybe value into it.

Monad transformers not only make it easier to write getPassphrase but also simplify all
the code instances. Our passphrase acquisition program could continue like this:

askPassphrase :: IO ()
askPassphrase = do putStrLn "Insert your new passphrase:"

maybe_value <- getPassphrase
if isJust maybe_value

then do putStrLn "Storing in database..." -- do stuff
else putStrLn "Passphrase invalid."

229

Monad transformers

The code uses one line to generate the maybe_value variable followed by further validation
of the passphrase.

With monad transformers, we will be able to extract the passphrase in one go — without
any pattern matching or equivalent bureaucracy like isJust. The gains for our simple
example might seem small but will scale up for more complex situations.

37.2 A simple monad transformer: MaybeT

To simplify getPassphrase and all the code that uses it, we will define a monad
transformer that gives the IO monad some characteristics of the Maybe monad; we will
call it MaybeT. That follows a convention where monad transformers have a ”T” appended
to the name of the monad whose characteristics they provide.

MaybeT is a wrapper around m (Maybe a), where m can be any monad (IO in our example):

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

This data type definition specifies a MaybeT type constructor, parameterized over m, with a
term constructor, also called MaybeT, and a convenient accessor function runMaybeT, with
which we can access the underlying representation.

The whole point of monad transformers is that they are monads themselves; and so we need
to make MaybeT m an instance of the Monad class:

instance Monad m => Monad (MaybeT m) where
return = MaybeT . return . Just

It would also have been possible (though arguably less readable) to write return = MaybeT
. return . return.

As in all monads, the bind operator is the heart of the transformer.

-- The signature of (>>=), specialized to MaybeT m
(>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b

x >>= f = MaybeT $ do maybe_value <- runMaybeT x
case maybe_value of

Nothing -> return Nothing
Just value -> runMaybeT $ f value

Starting from the first line of the do block:

• First, the runMaybeT accessor unwraps x into an m (Maybe a) computation. That shows
us that the whole do block is in m.

• Still in the first line, <- extracts a Maybe a value from the unwrapped computation.
• The case statement tests maybe_value:
• With Nothing, we return Nothing into m;
• With Just, we apply f to the value from the Just. Since f has MaybeT m b as result
type, we need an extra runMaybeT to put the result back into the m monad.

• Finally, the do block as a whole has m (Maybe b) type; so it is wrapped with the
MaybeT constructor.

230

A simple monad transformer: MaybeT

It may look a bit complicated; but aside from the copious amounts of wrapping and un-
wrapping, the implementation does the same as the familiar bind operator of Maybe:

-- (>>=) for the Maybe monad
maybe_value >>= f = case maybe_value of

Nothing -> Nothing
Just value -> f value

Why use the MaybeT constructor before the do block while we have the accessor
runMaybeT within do? Well, the do block must be in the m monad, not in MaybeT m (which
lacks a defined bind operator at this point).

Note:
The chained functions in the definition of return suggest a metaphor, which you may
find either useful or confusing. Consider the combined monad as a sandwich. This
metaphor might suggest three layers of monads in action, but there are only two really:
the inner monad and the combined monad (there are no binds or returns done in the
base monad; it only appears as part of the implementation of the transformer). If you
like this metaphor at all, think of the transformer and the base monad as two parts of
the same thing - the bread - which wraps the inner monad.

Technically, this is all we need; however, it is convenient to make MaybeT an instance of a
few other classes:

instance Monad m => Alternative (MaybeT m) where
empty = MaybeT $ return Nothing
x <|> y = MaybeT $ do maybe_value <- runMaybeT x

case maybe_value of
Nothing -> runMaybeT y
Just _ -> return maybe_value

instance Monad m => MonadPlus (MaybeT m) where
mzero = empty
mplus = (<|>)

instance MonadTrans MaybeT where
lift = MaybeT . (liftM Just)

MonadTrans implements the lift function, so we can take functions from the m monad
and bring them into the MaybeT m monad in order to use them in do blocks. As for
Alternative and MonadPlus, since Maybe is an instance of those class it makes sense to
make the MaybeT an instance too.

37.2.1 Application to the passphrase example

With all this done, here is what the previous example of passphrase management looks like:

getValidPassphrase :: MaybeT IO String
getValidPassphrase = do s <- lift getLine

guard (isValid s) -- Alternative provides guard.
return s

askPassphrase :: MaybeT IO ()
askPassphrase = do lift $ putStrLn "Insert your new passphrase:"

231

Monad transformers

value <- getValidPassphrase
lift $ putStrLn "Storing in database..."

The code is now simpler, especially in the user function askPassphrase. Most importantly,
we do not have to manually check whether the result is Nothing or Just: the bind operator
takes care of that for us.

Note how we use lift to bring the functions getLine and putStrLn into the MaybeT
IO monad. Also, since MaybeT IO is an instance of Alternative, checking for passphrase
validity can be taken care of by a guard statement, which will return empty (i.e. IO Noth-
ing) in case of a bad passphrase.

Incidentally, with the help of MonadPlus it also becomes very easy to ask the user ad
infinitum for a valid passphrase:

askPassword :: MaybeT IO ()
askPassword = do lift $ putStrLn "Insert your new password:"

value <- msum $ repeat getValidPassphrase
lift $ putStrLn "Storing in database..."

37.3 A plethora of transformers

The transformers package provides modules with transformers for many common monads
(MaybeT, for instance, can be found in Control.Monad.Trans.Maybe1). These are defined
consistently with their non-transformer versions; that is, the implementation is basically the
same except with the extra wrapping and unwrapping needed to thread the other monad.
From this point on, we will use base monad to refer to the non-transformer monad (e.g.
Maybe in MaybeT) on which a transformer is based and inner monad to refer to the other
monad (e.g. IO in MaybeT IO) on which the transformer is applied.

To pick an arbitrary example, ReaderT Env IO String is a computation which involves
reading values from some environment of type Env (the semantics of Reader, the base
monad) and performing some IO in order to give a value of type String. Since the bind
operator and return for the transformer mirror the semantics of the base monad, a do block
of type ReaderT Env IO String will, from the outside, look a lot like a do block of the
Reader monad, except that IO actions become trivial to embed by using lift.

37.3.1 Type juggling

We have seen that the type constructor for MaybeT is a wrapper for a Maybe value in the
inner monad. So, the corresponding accessor runMaybeT gives us a value of type m (Maybe
a) - i.e. a value of the base monad returned in the inner monad. Similarly, for the ListT and
ExceptT transformers, which are built around lists and Either respectively:

runListT :: ListT m a -> m [a]

and

1 http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-Trans-Maybe.html

232

http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-Trans-Maybe.html

Lifting

runExceptT :: ExceptT e m a -> m (Either e a)

Not all transformers are related to their base monads in this way, however. Unlike the base
monads in the two examples above, the Writer, Reader, State, and Cont monads have
neither multiple constructors nor constructors with multiple arguments. For that reason,
they have run... functions which act as simple unwrappers, analogous to the run...T of
the transformer versions. The table below shows the result types of the run... and
run...T functions in each case, which may be thought of as the types wrapped by the
base and transformed monads respectively.2

Base Monad Transformer Original Type
(”wrapped” by base)

Combined Type
(”wrapped” by trans-
former)

Writer WriterT (a, w) m (a, w)
Reader ReaderT r -> a r -> m a
State StateT s -> (a, s) s -> m (a, s)
Cont ContT (a -> r) -> r (a -> m r) -> m r

Notice that the base monad is absent in the combined types. Without interesting construc-
tors (of the sort for Maybe or lists), there is no reason to retain the base monad type after
unwrapping the transformed monad. It is also worth noting that in the latter three cases
we have function types being wrapped. StateT, for instance, turns state-transforming func-
tions of the form s -> (a, s) into state-transforming functions of the form s -> m (a,
s); only the result type of the wrapped function goes into the inner monad. ReaderT is
analogous.ContT is different because of the semantics of Cont (the continuation monad):
the result types of both the wrapped function and its function argument must be the same,
and so the transformer puts both into the inner monad. In general, there is no magic for-
mula to create a transformer version of a monad; the form of each transformer depends on
what makes sense in the context of its non-transformer type.

37.4 Lifting

We will now have a more detailed look at the lift function, which is critical in day-to-day
use of monad transformers. The first thing to clarify is the name ”lift”. One function with
a similar name that we already know is liftM. As we have seen in Understanding monads3,
it is a monad-specific version of fmap:

liftM :: Monad m => (a -> b) -> m a -> m b

liftM applies a function (a -> b) to a value within a monad m. We can also look at it as
a function of just one argument:

liftM :: Monad m => (a -> b) -> (m a -> m b)

2 The wrapping interpretation is only literally true for versions of the mtl package older than 2.0.0.0 .
3 Chapter 30.5 on page 186

233

Monad transformers

liftM converts a plain function into one that acts within m. By ”lifting”, we refer to bringing
something into something else — in this case, a function into a monad.

liftM allows us to apply a plain function to a monadic value without needing do-blocks or
other such tricks:
do notation liftM

do x <- monadicValue
return (f x)

liftM f monadicValue

The lift function plays an analogous role when working with monad transformers. It
brings (or, to use another common word for that, promotes) inner monad computations to
the combined monad. By doing so, it allows us to easily insert inner monad computations
as part of a larger computation in the combined monad.

lift is the single method of the MonadTrans class, found in Control.Monad.Trans.Class4.
All monad transformers are instances of MonadTrans, and so lift is available for them all.

class MonadTrans t where
lift :: (Monad m) => m a -> t m a

There is a variant of lift specific to IO operations, called liftIO, which is the single
method of the MonadIO class in Control.Monad.IO.Class5.

class (Monad m) => MonadIO m where
liftIO :: IO a -> m a

liftIO can be convenient when multiple transformers are stacked into a single combined
monad. In such cases, IO is always the innermost monad, and so we typically need more
than one lift to bring IO values to the top of the stack. liftIO is defined for the instances
in a way that allows us to bring an IO value from any depth while writing the function a
single time.

37.4.1 Implementing lift

Implementing lift is usually pretty straightforward. Consider the MaybeT transformer:

instance MonadTrans MaybeT where
lift m = MaybeT (liftM Just m)

We begin with a monadic value of the inner monad. With liftM (fmap would have worked
just as fine), we slip the base monad (through the Just constructor) underneath, so that
we go from m a to m (Maybe a)). Finally, we use the MaybeT constructor to wrap up the
monadic sandwich. Note that the liftM here works in the inner monad, just like the do-
block wrapped by MaybeT in the implementation of (>>=) we saw early on was in the inner
monad.

4 http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-Trans-Class.html
5 http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-IO-Class.html

234

http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-Trans-Class.html
http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-IO-Class.html

Implementing transformers

Exercises:

1. Why is it that the lift function has to be defined separately for each monad,
where as liftM can be defined in a universal way?

2. Identity is a trivial functor, defined in Data.Functor.Identity as:
newtype Identity a = Identity { runIdentity :: a }
It has the following Monad instance:
instance Monad Identity where

return a = Identity a
m >>= k = k (runIdentity m)

Implement a monad transformer IdentityT, analogous to Identity but wrap-
ping values of type m a rather than a. Write at least its Monad and
MonadTrans instances.

37.5 Implementing transformers

37.5.1 The State transformer

As an additional example, we will now have a detailed look at the implementation of StateT.
You might want to review the section on the State monad6 before continuing.

Just as the State monad might have been built upon the definition newtype State s a =
State { runState :: (s -> (a,s)) }, the StateT transformer is built upon the defini-
tion:

newtype StateT s m a = StateT { runStateT :: (s -> m (a,s)) }

StateT s m will have the following Monad instance, here shown alongside the one for the
base state monad:
State StateT

newtype State s a =
State { runState :: (s -> (a,s)) }

instance Monad (State s) where
return a = State $ \s -> (a,s)
(State x) >>= f = State $ \s ->

let (v,s') = x s
in runState (f v) s'

newtype StateT s m a =
StateT { runStateT :: (s -> m (a,s)) }

instance (Monad m) => Monad (StateT s m) where
return a = StateT $ \s -

> return (a,s)
(StateT x) >>= f = StateT $ \s -> do
(v,s') <- x s --

get new value and state
runStateT (f v) s' -- pass them to f

Our definition of return makes use of the return function of the inner monad. (>>=) uses
a do-block to perform a computation in the inner monad.

6 Chapter 35 on page 207

235

Monad transformers

Note:
Incidentally, we can now finally explain why, back in the chapter about Statea,
there was a state function instead of a State constructor. In the transformers and
mtl packages, State s is implemented as a type synonym for StateT s Identity, with
Identity being the dummy monad introduced in an exercise of the previous section.
The resulting monad is equivalent to the one defined using newtype that we have used
up to now.

a Chapter 35.2.1 on page 212

If the combined monads StateT s m are to be used as state monads, we will certainly
want the all-important get and put operations. Here, we will show definitions in the
style of the mtl package. In addition to the monad transformers themselves,mtl
provides type classes for the essential operations of common monads. For instance, the
MonadState class, found in Control.Monad.State7, has get and put as methods:

instance (Monad m) => MonadState s (StateT s m) where
get = StateT $ \s -> return (s,s)
put s = StateT $ _ -> return ((),s)

Note:
instance (Monad m) => MonadState s (StateT s m) should be read as: ”For any
type s and any instance of Monad m, s and StateT s m together form an instance of
MonadState”. s and m correspond to the state and the inner monad, respectively. s is
an independent part of the instance specification so that the methods can refer to it −
for instance, the type of put is s -> StateT s m ().

There are MonadState instances for state monads wrapped by other transformers, such
as MonadState s m => MonadState s (MaybeT m). They bring us extra convenience by
making it unnecessary to lift uses of get and put explicitly, as the MonadState instance for
the combined monads handles the lifting for us.

It can also be useful to lift instances that might be available for the inner monad to the
combined monad. For instance, all combined monads in which StateT is used with an
instance of MonadPlus can be made instances of MonadPlus:

instance (MonadPlus m) => MonadPlus (StateT s m) where
mzero = StateT $ _ -> mzero
(StateT x1) `mplus` (StateT x2) = StateT $ \s -> (x1 s) `mplus` (x2 s)

The implementations of mzero and mplus do the obvious thing; that is, delegating the
actual work to the instance of the inner monad.

Lest we forget, the monad transformer must have a MonadTrans, so that we can use lift:

instance MonadTrans (StateT s) where
lift c = StateT $ \s -> c >>= (\x -> return (x,s))

7 http://hackage.haskell.org/packages/archive/mtl/latest/doc/html/Control-Monad-State.html

236

http://hackage.haskell.org/packages/archive/mtl/latest/doc/html/Control-Monad-State.html

Acknowledgements

The lift function creates a StateT state transformation function that binds the compu-
tation in the inner monad to a function that packages the result with the input state.
If, for instance, we apply StateT to the List monad, a function that returns a list (i.e.,
a computation in the List monad) can be lifted into StateT s [] where it becomes a
function that returns a StateT (s -> [(a,s)]). I.e. the lifted computation produces
multiple (value,state) pairs from its input state. This ”forks” the computation in StateT,
creating a different branch of the computation for each value in the list returned by the lifted
function. Of course, applying StateT to a different monad will produce different semantics
for the lift function.

Exercises:

1. Implement state :: MonadState s m => (s -> (a, s)) -> m a in terms of
get and put.

2. Are MaybeT (State s) and StateT s Maybe equivalent? (Hint: one approach is
comparing what the run...T unwrappers produce in each case.)

37.6 Acknowledgements

This module uses a number of excerpts from All About Monads8, with permission from its
author Jeff Newbern.

ru:Haskell/Monad transformers9

8 http://www.haskell.org/haskellwiki/All_About_Monads
9 https://ru.wikibooks.org/wiki/Haskell%2FMonad%20transformers

237

http://www.haskell.org/haskellwiki/All_About_Monads
https://ru.wikibooks.org/wiki/Haskell%2FMonad%20transformers

38 Advanced Haskell

239

39 Monoids

In earlier parts of the book, we have made a few passing allusions to monoids and the
Monoid type class (most notably when discussing MonadPlus1). Here we’ll give them a
more detailed look and show what makes them useful.

39.1 What is a monoid?

The operation of adding numbers has a handful of properties which are so elementary we
don’t even think about them when summing numbers up. One of them is associativity:
when adding three or more numbers it doesn’t matter how we group the terms.

GHCi> (5 + 6) + 10
21
GHCi> 5 + (6 + 10)
21

Another one is that it has an identity element, which can be added to any other number
without changing its value. That element is the number zero:

GHCi> 255 + 0
255
GHCi> 0 + 255
255

Addition is not the only binary operation which is associative and has an identity element.
Multiplication does too, albeit with a different identity.

GHCi> (5 * 6) * 10
300
GHCi> 5 * (6 * 10)
300
GHCi> 255 * 1
255
GHCi> 1 * 255
255

We needn’t restrict ourselves to arithmetic either. (++), the appending operation for Haskell
lists, is another example. It has the empty list as its identity element.

GHCi> ([1,2,3] ++ [4,5,6]) ++ [7,8,9]
[1,2,3,4,5,6,7,8,9]
GHCi> [1,2,3] ++ ([4,5,6] ++ [7,8,9])
[1,2,3,4,5,6,7,8,9]
GHCi> [1,2,3] ++ []
[1,2,3]

1 https://en.wikibooks.org/wiki/Haskell%2FMonadPlus%23Relationship%20with%20monoids

241

https://en.wikibooks.org/wiki/Haskell%2FMonadPlus%23Relationship%20with%20monoids

Monoids

GHCi> [] ++ [1,2,3]
[1,2,3]

It turns out there are a great many associative binary operations with an identity. All of
them, by definition, give us examples of monoids. We say, for instance, that the integer
numbers form a monoid under addition with 0 as identity element.

39.2 The Monoid class

Monoids show up very often in Haskell, and so it is not surprising to find there is a type
class for them in the core libraries. Here it is:

class Monoid a where
mempty :: a
mappend :: a -> a -> a

mconcat :: [a] -> a
mconcat = foldr mappend mempty

The mappend method is the binary operation, and mempty is its identity. The third method,
mconcat, is provided as a bonus; it runs down a list and mappends its elements together in
order.

”mappend” is a somewhat long and unwieldy name for a binary function so general, even
more so for one which is often used infix. Fortunately, Data.Monoid2 Data.Monoid provides
(<>), a convenient operator synonym for mappend. In what follows, we will use
mappend and (<>) interchangeably.

As an example, this is the monoid instance for lists:

instance Monoid [a] where
mempty = []
mappend = (++)

Note that, in this case, mconcat = foldr (++) [] is equivalent to concat, which explains
the name of the method.

It is legitimate to think of monoids as types which support appending in some sense, though
a dose of poetic licence is required. The Monoid definition is extremely general and not at
all limited to data structures, so ”appending” will be just a metaphor at times.

As we suggested earlier on, numbers (i.e. instances of Num) form monoids under both
addition and multiplication. That leads to the awkward question of which one to choose
when writing the instance. In situations like this one, in which there is no good reason to
choose one possibility over the other, the dilemma is averted by creating one newtype for
each instance:

-- | Monoid under addition.
newtype Sum a = Sum { getSum :: a }

-- | Monoid under multiplication.

2 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html

242

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html

Uses

newtype Product a = Product { getProduct :: a }

instance Num a => Monoid (Sum a) where
mempty = Sum 0
Sum x `mappend` Sum y = Sum (x + y)

instance Num a => Monoid (Product a) where
mempty = Product 1
Product x `mappend` Product y = Product (x * y)

Here is a quick demonstration of Sum and Product:

GHCi> import Data.Monoid
GHCi> Sum 5 <> Sum 6 <> Sum 10
Sum {getSum = 21}
GHCi> mconcat [Sum 5, Sum 6, Sum 10]
Sum {getSum = 21}
GHCi> getSum . mconcat . fmap Sum $ [5, 6, 10]
21
GHCi> getProduct . mconcat . fmap Product $ [5, 6, 10]
300

39.2.1 Monoid laws

The laws which all instances of Monoid must follow simply state the properties we already
know: mappend is associative and mempty is its identity element.

(x <> y) <> z = x <> (y <> z) -- associativity
mempty <> x = x -- left identity
x <> mempty = x -- right identity

Exercises:

1. There are several possible monoid instances for Bool. Write at least two of them
using newtypes, as in the Sum and Product examples. Be sure to verify the monoid
laws hold for your instances a.

a You will later find that two of those instances are defined in Data.Monoid already.

39.3 Uses

Which advantages are there in having a class with a pompous name for such a simple con-
cept? As usual in such cases, the key gains are in two associated dimensions: recognisability
and generality. Whenever, for instance, you see (<>) being used you know that, however
the specific instance was defined, the operation being done is associative and has an identity
element. Moreover, you also know that if there is an instance of Monoid for a type you can
take advantage of functions written to deal with monoids in general. As a toy example of
such a function, we might take this function that concatenates three lists..

threeConcat :: [a] -> [a] -> [a] -> [a]
threeConcat a b c = a ++ b ++ c

... and replace all (++) with (<>)...

243

Monoids

mthreeConcat :: Monoid m => m -> m -> m -> m
mthreeConcat a b c = a <> b <> c

... thus making it work with any Monoid. When used on other types the generalised function
will behave in an analogous way to the original one, as specified by the monoid laws.

GHCi> mthreeConcat "Hello" " " "world!"
"Hello world!"
GHCi> mthreeConcat (Sum 5) (Sum 6) (Sum 10)
Sum {getSum = 21}

Monoids are extremely common, and have many interesting practical applications.

The Writer monad

A computation of type Writer w a returns a value of type a while producing extra output
of type w. A typical use case would be logging, in which each computation produces a log
entry for later inspection. The w type must be an instance of Monoid, and the bind operator
of the monad uses mappend to accumulate the extra output. In the logging use case,
that would mean all entries generated during a series of computations are automatically
combined into a single log output.

The Foldable class

Monoids play an important role in generalising list-like folding to other data structures.
We will study that in detail in the upcoming chapter about the Foldable class3.

Finger trees
Moving on from operations on data structures to data structure implementations, monoids
can be used to implement finger trees, an efficient and versatile data structure. Its im-
plementation makes use of monoidal values as tags for the tree nodes; and different data
structures (such as sequences, priority queues, and search trees) can be obtained simply
by changing the involved Monoid instance.4

Options and settings
In a wholly different context, monoids can be a handy way of treating application options
and settings. Two examples are Cabal, the Haskell packaging system (”Package databases
are monoids. Configuration files are monoids. Command line flags and sets of command
line flags are monoids. Package build information is a monoid.”) and XMonad5, a tiling
window manager implemented in Haskell (”xmonad configuration hooks are monoidal.”) 6.
Below are snippets from a XMonad configuration file (which is just a Haskell program)
showing the monoidal hooks in action 7.

3 Chapter 41 on page 261
4 This blog post ˆ{http://apfelmus.nfshost.com/articles/monoid-fingertree.html} , based on a

paper by Ralf Hinze and Ross Patterson ˆ{http://www.soi.city.ac.uk/~ross/papers/FingerTree.
html} , contains a brief and accessible explanation on how monoids are used in finger trees.

5 http://xmonad.org
6 Sources of the quotes (Haskell Cafe mailing list): http://www.haskell.org/pipermail/haskell-cafe/

2009-January/053602.html, http://www.haskell.org/pipermail/haskell-cafe/2009-January/
053603.html.

7 The snippets were taken from Ivy Foster’s example config in the HaskellWiki ˆ{https://wiki.haskell.
org/Xmonad/Config_archive/ivy-foster-xmonad.hs} and XMonad’s XMonad.ManageHook ˆ{http:

244

http://apfelmus.nfshost.com/articles/monoid-fingertree.html
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html
http://www.soi.city.ac.uk/~ross/papers/FingerTree.html
http://xmonad.org
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053602.html
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053602.html
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053603.html
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053603.html
https://wiki.haskell.org/Xmonad/Config_archive/ivy-foster-xmonad.hs
https://wiki.haskell.org/Xmonad/Config_archive/ivy-foster-xmonad.hs
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html

Uses

-- A ManageHook is a rule, or a combination of rules, for
-- automatically handling specific kinds of windows. It
-- is applied on window creation.

myManageHook :: ManageHook
myManageHook = composeAll

[manageConkeror
, manageDocs
, manageEmacs
, manageGimp
, manageImages
, manageTerm
, manageTransient
, manageVideo
, manageWeb
, myNSManageHook scratchpads
]

-- manageEmacs, for instance, makes a duplicate of an Emacs
-- window in workspace 3 and sets its opacity to 90%. It
-- looks like this:

-- liftX lifts a normal X action into a Query (as expected by -->)
-- idHook ensures the proper return type
manageEmacs :: ManageHook
manageEmacs =

className =? "Emacs"
--> (ask >>= doF . \w -> (copyWindow w "3:emacs"))
<+> (ask >>= \w -> liftX (setOpacity w 0.9) >> idHook)

-- The hooks are used as fields of the XMonad configuration,
-- which is passed to the IO action that starts XMonad.

myConfig xmproc = defaultConfig
{ -- Among other fields...
, manageHook = myManageHook
}

-- idHook, (<+>), composeAll and (-->) are just user-friendly
-- synonyms for monoid operations, defined in the
-- XMonad.ManageHook module thusly:

-- | The identity hook that returns the WindowSet unchanged.
idHook :: Monoid m => m
idHook = mempty

-- | Infix 'mappend'. Compose two 'ManageHook' from right to left.
(<+>) :: Monoid m => m -> m -> m
(<+>) = mappend

-- | Compose the list of 'ManageHook's.
composeAll :: Monoid m => [m] -> m
composeAll = mconcat

-- | @p --> x@. If @p@ returns 'True', execute the 'ManageHook'.
--
-- > (-->) :: Monoid m => Query Bool -> Query m -> Query m -- a simpler type
(-->) :: (Monad m, Monoid a) => m Bool -> m a -> m a
p --> f = p >>= \b -> if b then f else return mempty

//hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html}
module as of version 0.11.

245

http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html
http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html

Monoids

Figure 5 A simple diagrams example. The code for it is:
mconcat (fmap

(circle . (/20)) [1..5])
<> triangle (sqrt 3 / 2)

lwL 0.01 fc yellow
<> circle 0.5 lwL 0.02

fc deepskyblue

diagrams

The diagrams8 package provides a powerful library for generating vectorial images progra-
matically. On a basic level, (<>) appears often in code using diagrams because squares,

8 http://projects.haskell.org/diagrams

246

http://projects.haskell.org/diagrams

Homomorphisms

rectangles and other such graphic elements have Monoid instances which are used to put
them on the top of each other. On a deeper level, most operations with graphic elements
are internally defined in terms of monoids, and the implementation takes full advantage
of their mathematical properties.

39.4 Homomorphisms

A function f :: a -> b between two monoids a and b is called a monoid
homomorphism if it preserves the monoid structure, so that:

f mempty = mempty
f (x `mappend` y) = f x `mappend` f y

For instance, length is an homomorphism between ([],++) and (0,+)

length [] = 0
length (xs ++ ys) = length xs + length ys

An interesting example ”in the wild” of monoids and homomorphisms was identified by Chris
Kuklewicz amidst the Google Protocol Buffers API documentation 9 Based on the quotes
provided in the referenced comment, we highlight that the property that (in Python)...

MyMessage message;
message.ParseFromString(str1 + str2);

... is equivalent to...

MyMessage message, message2;
message.ParseFromString(str1);
message2.ParseFromString(str2);
message.MergeFrom(message2);

... means that ParseFromString is a monoid homomorphism. In a hypothetical Haskell
implementation, the following equations would hold:

parse :: String -> Message
-- these are just equations, not actual code.
parse [] = mempty
parse (xs ++ ys) = parse xs `mergeFrom` parse ys

(They wouldn’t hold perfectly, as parsing might fail, but roughly so.)

Recognising an homomorphism can lead to useful refactorings. For instance, if
mergeFrom turned out to be an expensive operation it might be advantageous in terms
of performance to concatenate the strings before parsing them. parse being a monoid
homomorphism would then guarantee the same results would be obtained.

9 Source (Haskell Cafe): http://www.haskell.org/pipermail/haskell-cafe/2009-January/053709.
html

247

http://www.haskell.org/pipermail/haskell-cafe/2009-January/053709.html
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053709.html

Monoids

39.5 Further reading

• Dan Piponi (Sigfpe) on monoids: a blog post overview10; a comment about intuition on
associativity11.

• Many monoid related links12

• Additional comment on finger trees (Haskell Cafe): FingerTrees13.

• Additional comments on Monoid usage in Cabal (Haskell Cafe): http:
//www.haskell.org/pipermail/haskell-cafe/2009-January/053626.html;
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053721.html.

• On diagrams and monoids: Monoids: Theme and Variations (Functional Pearl)14, by
Brent Yorgey.

10 http://sigfpe.blogspot.com/2009/01/haskell-monoids-and-their-uses.html
11 http://www.haskell.org/pipermail/haskell-cafe/2009-January/053798.html
12 http://groups.google.com/group/bahaskell/browse_thread/thread/4cf0164263e0fd6b/42b621f5a4da6019
13 http://www.haskell.org/pipermail/haskell-cafe/2009-January/053689.html
14 http://dept.cs.williams.edu/~byorgey/publications.html

248

http://www.haskell.org/pipermail/haskell-cafe/2009-January/053626.html
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053626.html
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053721.html
http://sigfpe.blogspot.com/2009/01/haskell-monoids-and-their-uses.html
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053798.html
http://groups.google.com/group/bahaskell/browse_thread/thread/4cf0164263e0fd6b/42b621f5a4da6019
http://www.haskell.org/pipermail/haskell-cafe/2009-January/053689.html
http://dept.cs.williams.edu/~byorgey/publications.html

40 Applicative functors

When covering the vital Functor and Monad type classes, we glossed over a third type class:
Applicative, the class for applicative functors. Like monads, applicative functors are func-
tors with extra laws and operations; in fact, Applicative is an intermediate class between
Functor and Monad. Applicative are a widely used class with a wealth of applications
(pardon the pun). It enables the eponymous applicative style, a convenient way of struc-
turing functorial computations, and also provides means to express a number of important
patterns.

40.1 Functor recap

We will begin with a quick review of the Functor class1 chapter. Functor is characterised
by the fmap function:

class Functor f where
fmap :: (a -> b) -> f a -> f b

If a type has an instance of Functor, you can use fmap to apply a function to values in
it. Another way of describing fmap is saying that it promotes functions to act on functo-
rial values. To ensure fmap works sanely, any instance of Functor must comply with the
following two laws:

fmap id = id -- 1st functor law
fmap (g . f) = fmap g . fmap f -- 2nd functor law

Maybe, for example, has a Functor instance, and so we can easily modify the value inside
it...

Prelude> fmap negate (Just 2)
Just (-2)

...as long as it exists, of course.

Prelude> fmap negate Nothing
Nothing

For extra convenience, fmap has an infix synonym, (<$>). It often helps readability, and
also suggests how fmap can be seen as a different kind of function application.

Prelude> negate <$> Just 2
Just (-2)

1 Chapter 27 on page 163

249

Applicative functors

Exercises:
Define instances of Functor for the following types:
1. A rose tree, defined as: data Tree a = Node a [Tree a]
2. Either e for a fixed e.
3. The function type ((->) r). In this case, f a will be (r -> a)

40.2 Application in functors

As useful as it is, fmap isn’t much help if we want to apply a function of two arguments to
functorial values. For instance, how could we sum Just 2 and Just 3? The brute force ap-
proach would be extracting the values from the Maybe wrapper. That, however, would mean
having to do tedious checks for Nothing. Even worse: in a different Functor extracting the
value might not even be an option (just think about IO).

We could use fmap to partially apply (+) to the first argument:

Prelude> :t (+) <$> Just 2
(+) <$> Just 2 :: Num a => Maybe (a -> a)

But now we are stuck: we have a function and a value both wrapped in Maybe, and no
way of applying one to the other. What we would like to have is an operator with a type
akin to f (a -> b) -> f a -> f b to apply functions in the context of a functor. If that
operator was called (<*>), we would be able to write:

(+) <$> Just 2 <*> Just 3

Lo and behold - if you try that in GHCi it will just work!

Prelude> (+) <$> Just 2 <*> Just 3
Just 5

The type of (<*>) is:

Prelude> :t (<*>)
(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(<*>) is one of the methods of Applicative, the type class of applicative functors - functors
that support function application within their contexts. Expressions such as (+) <$> Just
2 <*> Just 3 are said to be written in applicative style, which is as close as we can get to
regular function application while working with a functor. If you pretend for a moment the
(<$>), (<*>) and Just aren’t there, our example looks just like (+) 2 3.

40.3 The Applicative class

The definition of Applicative is:

class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

250

The Applicative class

Beyond (<*>), the class has a second method, pure, which brings arbitrary values into the
functor. As an example, let’s have a look at the Maybe instance:

instance Applicative Maybe where
pure = Just
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

It doesn’t do anything surprising: pure wraps the value with Just; (<*>) applies the func-
tion to the value if both exist, and results in Nothing otherwise.

40.3.1 Applicative functor laws

Note:
For the lack of a better shorthand, in what follows we will use the jargony word
morphism to refer to the values to the left of (<*>), which fit the type Applicative
f => f (a -> b); that is, the function-like things inserted into an applicative functor.
”Morphism” is a term which comes from category theory and which has a much wider
meaning, but that needn’t concern us now.

Just like Functor, Applicative has a set of laws which reasonable instances should follow.
They are:

pure id <*> v = v -- Identity
pure f <*> pure x = pure (f x) -- Homomorphism
u <*> pure y = pure ($ y) <*> u -- Interchange
pure (.) <*> u <*> v <*> w = u <*> (v <*> w) -- Composition

Those laws are a bit of a mouthful. They become easier to understand if you think of
pure as a way to inject values into the functor in a default, featureless way, so that the
result is as close as possible to the plain value. Thus:

• The identity law says that applying the pure id morphism does nothing, exactly like
with the plain id function.

• The homomorphism law says that applying a ”pure” function to a ”pure” value is the
same as applying the function to the value in the normal way and then using pure on
the result. In a sense, that means pure preserves function application.

• The interchange law says that applying a morphism to a ”pure” value pure y is the same
as applying pure ($ y) to the morphism. No surprises there - as we have seen in the
higher order functions chapter2, ($ y) is the function that supplies y as argument to
another function.

• The composition law says that if (<*>) is used to compose morphisms the composition
is associative, like plain function composition 3.

There is also a bonus law about the relation between fmap and (<*>):

fmap f x = pure f <*> x -- fmap

2 Chapter 19.4.3 on page 122
3 With plain functions, we have h . g . f = (h . g) . f = h . (g . f). That is why we never bother

to use parentheses in the middle of (.) chains.

251

Applicative functors

Applying a ”pure” function with (<*>) is equivalent to using fmap. This law is a conse-
quence of the other ones, so you need not bother with proving it when writing instances of
Applicative.

Exercises:

1. Check that the Applicative laws hold for this instance for Maybe
2. Write Applicative instances for
a. Either e, for a fixed e
b. ((->) r), for a fixed r

40.4 Déja vu

Does pure remind you of anything?

pure :: Applicative f => a -> f a

The only difference between that and...

return :: Monad m => a -> m a

... is the class constraint. pure and return serve the same purpose; that is, bringing values
into functors. The uncanny resemblances do not stop here. Back in the chapter about
State4 we mentioned a function called ap...

ap :: (Monad m) => m (a -> b) -> m a -> m b

... which could be used to make functions with many arguments less painful to handle in
monadic code:

allTypes :: GeneratorState (Int, Float, Char, Integer, Double, Bool, Int)
allTypes = liftM (,,,,,,) getRandom

`ap` getRandom
`ap` getRandom
`ap` getRandom
`ap` getRandom
`ap` getRandom
`ap` getRandom

ap looks a lot like (<*>).

Those, of course, are not coincidences. Monad inherits from Applicative...

Prelude> :info Monad
class Applicative m => Monad (m :: * -> *) where
--etc.

... because return and (>>=) are enough to implement pure and (<*>) 5.

4 Chapter 35 on page 207
5 And if the Monad instance follows the monad laws, the resulting pure and (<*>) will automatically follow

the applicative laws.

252

ZipList

pure = return
(<*>) = ap

ap u v = do
f <- u
x <- v
return (f x)

Several other monadic functions have more general applicative versions. Here are a few of
them:

Monadic Applicative Module
(where to find the applicative version)

(>>) (*>) Prelude (GHC 7.10+); Control.Applicative6
liftM2 liftA2 Control.Applicative7
mapM traverse Prelude (GHC 7.10+); Data.Traversable8
sequence sequenceA Data.Traversable9
forM_ for_ Data.Foldable10

Exercises:

1. Write a definition of (<*>) using (>>=) and fmap. Do not use do-notation.
2. Implement

liftA5 :: Applicative f => (a -> b -> c -> d -> e -> k)
-> f a -> f b -> f c -> f d -> f e -> f k

40.5 ZipList

Lists are applicative functors as well. Specialised to lists, the type of (<*>) becomes...

[a -> b] -> [a] -> [b]

... and so (<*>) applies a list of functions to another list. But exactly how is that done?

The standard instance of Applicative for lists, which follows from the Monad instance11,
applies every function to every element, like an explosive version of map.

Prelude> [(2*),(5*),(9*)] <*> [1,4,7]
[2,8,14,5,20,35,9,36,63]

Interestingly, there is another reasonable way of applying a list of functions. Instead of using
every combination of functions and values, we can match each function with the value in

6 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html
7 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html
8 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html
9 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html
10 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html
11 Chapter 32 on page 193

253

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html

Applicative functors

the corresponding position in the other list. A Prelude function which can be used for that
is zipWith:

Prelude> :t zipWith
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
Prelude> zipWith ($) [(2*),(5*),(9*)] [1,4,7]
[2,20,63]

When there are two useful possible instances for a single type, the dilemma is averted by
creating a newtype which implements one of them. In this case, we have ZipList, which
lives in Control.Applicative12:

newtype ZipList a = ZipList { getZipList :: [a] }

We have already seen what <*> should be for zip-lists; all that is needed is to add the
newtype wrappers:

instance Applicative ZipList where
(ZipList fs) <*> (ZipList xs) = ZipList (zipWith ($) fs xs)
pure x = undefined -- TODO

As for pure, it is tempting to use pure x = ZipList [x], following the standard list
instance. We can’t do that, however, as it violates the applicative laws. According to
the identity law:

pure id <*> v = v

Substituting (<*>) and the suggested pure, we get:

ZipList [id] <*> ZipList xs = ZipList xs
ZipList (zipWith ($) [id] xs) = ZipList xs

Now, suppose xs is the infinite list [1..]:

ZipList (zipWith ($) [id] [1..]) = ZipList [1..]
ZipList [1] = ZipList [1..]
[1] = [1..] -- Obviously false!

The problem is that zipWith produces lists whose length is that of the shortest list passed
as argument, and so (ZipList [id] <*>) will cut off all elements of the other zip-list
after the first. The only way to ensure zipWith ($) fs never removes elements is making
fs infinite. The correct pure follows from that:

instance Applicative ZipList where
(ZipList fs) <*> (ZipList xs) = ZipList (zipWith ($) fs xs)
pure x = ZipList (repeat x)

The ZipList applicative instance offers an alternative to all the zipN and zipWithN func-
tions in Data.List13 which can be extended to any number of arguments:

>>> import Control.Applicative
>>> ZipList [(2*),(5*),(9*)] <*> ZipList [1,4,7]

12 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control.Applicative.html
13 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-List.html

254

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control.Applicative.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-List.html

Sequencing of effects

ZipList {getZipList = [2,20,63]}
>>> (,,) <$> ZipList [1,4,9] <*> ZipList [2,8,1] <*> ZipList [0,0,9]
ZipList {getZipList = [(1,2,0),(4,8,0),(9,1,9)]}
>>> liftA3 (,,) (ZipList [1,4,9]) (ZipList [2,8,1]) (ZipList [0,0,9])
ZipList {getZipList = [(1,2,0),(4,8,0),(9,1,9)]}

40.6 Sequencing of effects

As we have just seen, the standard Applicative instance for lists applies every function in
one list to every element of the other. That, however, does not specify (<*>) unambiguously.
To see why, try to guess what is the result of [(2*),(3*)]<*>[4,5] without looking at the
example above or the answer just below.

Prelude> [(2*),(3*)] <*> [4,5]

--- ...

[8,10,12,15]

Unless you were paying very close attention or had already analysed the implementation
of (<*>), the odds of getting it right were about even. The other possibility would be
[8,12,10,15]. The difference is that for the first (and correct) answer the result is obtained
by taking the skeleton of the first list and replacing each element by all possible combinations
with elements of the second list, while for the other possibility the starting point is the second
list.

In more general terms, the difference between is one of sequencing of effects. Here, by
effects we mean the functorial context, as opposed to the values within the functor (some
examples: the skeleton of a list, actions performed in the real world in IO, the existence
of a value in Maybe). The existence of two legal implementations of (<*>) for lists which
only differ in the sequencing of effects indicates that [] is a non-commutative applicative
functor. A commutative applicative functor, by contrast, leaves no margin for ambiguity
in that respect. More formally, a commutative applicative functor is one for which the
following holds:

liftA2 f u v = liftA2 (flip f) v u -- Commutativity

Or, equivalently,

f <$> u <*> v = flip f <$> v <*> u

By the way, if you hear about commutative monads in Haskell, the concept involved is the
same, only specialised to Monad.

Commutativity (or the lack thereof) affects other functions which are derived from (<*>) as
well. (*>) is a clear example:

(*>) :: Applicative f => f a -> f b -> f b

(*>) combines effects while preserving only the values of its second argument. For monads,
it is equivalent to (>>). Here is a demonstration of it using Maybe, which is commutative:

255

Applicative functors

Prelude> Just 2 *> Just 3
Just 3
Prelude> Just 3 *> Just 2
Just 2
Prelude> Just 2 *> Nothing
Nothing
Prelude> Nothing *> Just 2
Nothing

Swapping the arguments does not affect the effects (that is, the being and nothingness of
wrapped values). For IO, however, swapping the arguments does reorder the effects:

Prelude> (print "foo" *> pure 2) *> (print "bar" *> pure 3)
"foo"
"bar"
3
Prelude> (print "bar" *> pure 3) *> (print "foo" *> pure 2)
"bar"
"foo"
2

The convention in Haskell is to always implement (<*>) and other applicative operators
using left-to-right sequencing. Even though this convention helps reducing confusion, it also
means appearances sometimes are misleading. For instance, the (<*) function is not flip
(*>), as it sequences effects from left to right just like (*>):

Prelude> (print "foo" *> pure 2) <* (print "bar" *> pure 3)
"foo"
"bar"
2

For the same reason, (<**>) :: Applicative f => f a -> f (a -> b) -> f b from
Control.Applicative is not flip (<*>). That means it provides a way of inverting the
sequencing:

>>> [(2*),(3*)] <*> [4,5]
[8,10,12,15]
>>> [4,5] <**> [(2*),(3*)]
[8,12,10,15]

An alternative is the Control.Applicative.Backwards14 module from transformers, which
offers a newtype for flipping the order of effects:

newtype Backwards f a = Backwards { forwards :: f a }

>>> Backwards [(2*),(3*)] <*> Backwards [4,5]
Backwards [8,12,10,15]

14 http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Applicative-Backwards.html

256

http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Applicative-Backwards.html

A sliding scale of power

Exercises:

1. For the list functor, implement from scratch (that is, without using anything from
Applicative or Monad directly) both (<*>) and its version with the ”wrong” se-
quencing of effects,
(<|*|>) :: Applicative f => f (a -> b) -> f a -> f b

2. Rewrite the definition of commutativity for a Monad using do-notation instead of
ap or liftM2.

3. Are the following applicative functors commutative?
a. ZipList
b. ((->) r)
c. State s (Use the newtype definition from the State chaptera. Hint: You may
find the answer to exercise 2 of this block useful.)

4. What is the result of [2,7,8] *> [3,9]? (Try to guess without writing.)
5. Implement (<**>) in terms of other Applicative functions.
6. As we have just seen, some functors allow two legal implementations of

(<*>) which are only different in the sequencing of effects. Why there is not
an analogous issue involving (>>=)?

a Chapter 35.2.1 on page 212

40.7 A sliding scale of power

Functor, Applicative, Monad. Three closely related functor type classes; three of the most
important classes in Haskell. Though we have seen many examples of Functor and Monad in
use, and a few of Applicative, we have not compared them head to head yet. If we ignore
pure/return for a moment, the characteristic methods of the three classes are:

fmap :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
(>>=) :: Monad m => m a -> (a -> m b) -> m b

While those look like disparate types, we can change the picture with a few aesthetic
adjustments. Let’s replace fmap by its infix synonym, (<$>); (>>=) by its flipped version,
(=<<); and tidy up the signatures a bit:

(<$>) :: Functor t => (a -> b) -> (t a -> t b)
(<*>) :: Applicative t => t (a -> b) -> (t a -> t b)
(=<<) :: Monad t => (a -> t b) -> (t a -> t b)

Suddenly, the similarities are striking. fmap, (<*>) and (=<<) are all mapping functions
over Functors 15. The differences between them are in what is being mapped over in each
case:

• fmap maps arbitrary functions over functors.

15 It is not just a question of type signatures resembling each other: the similarity has theoretical ballast.
One aspect of the connection is that it is no coincidence that all three type classes have identity and
composition laws.

257

Applicative functors

• (<*>) maps t (a -> b) morphisms16 over (applicative) functors.
• (=<<) maps a -> t b functions over (monadic) functors.

The day-to-day differences in uses of Functor, Applicative and Monad follow from what
the types of those three mapping functions allow you to do. As you move from fmap to
(<*>) and then to (>>=), you gain in power, versatility and control, at the cost of guarantees
about the results. We will now slide along this scale. While doing so, we will use the
contrasting terms values and context to refer to plain values within a functor and to the
whatever surrounds them, respectively.

The type of fmap ensures that it is impossible to use it to change the context, no matter
which function it is given. In (a -> b) -> t a -> t b, the (a -> b) function has nothing
to do with the t context of the t a functorial value, and so applying it cannot affect the
context. For that reason, if you do fmap f xs on some list xs the number of elements of
the list will never change.

Prelude> fmap (2*) [2,5,6]
[4,10,12]

That can be taken as a safety guarantee or as an unfortunate restriction, depending on
what you intend. In any case, (<*>) is clearly able to change the context:

Prelude> [(2*),(3*)] <*> [2,5,6]
[4,10,12,6,15,18]

The t (a -> b) morphism carries a context of its own, which is combined with that of
the t a functorial value. (<*>), however, is subject to a more subtle restriction. While t
(a -> b) morphisms carry context, within them there are plain (a -> b), which are still
unable to modify the context. That means the changes to the context (<*>) performs are
fully determined by the context of its arguments, and the values have no influence over the
resulting context.

Prelude> (print "foo" *> pure (2*)) <*> (print "bar" *> pure 3)
"foo"
"bar"
6
Prelude> (print "foo" *> pure 2) *> (print "bar" *> pure 3)
"foo"
"bar"
3
Prelude> (print "foo" *> pure undefined) *> (print "bar" *> pure 3)
"foo"
"bar"
3

Thus with list (<*>) you know that the length of the resulting list will be the product of the
lengths of the original lists, with IO (<*>) you know that all real world effect will happen
as long as the evaluation terminates, and so forth.

With Monad, however, we are in a very different game. (>>=) takes a a -> t b function,
and so it is able to create context from values. That means a lot of flexibility:

Prelude> [1,2,5] >>= \x -> replicate x x

16 Chapter 40.3.1 on page 251

258

A sliding scale of power

[1,2,2,5,5,5,5,5]
Prelude> [0,0,0] >>= \x -> replicate x x
[]
Prelude> return 3 >>= \x -> print $ if x < 10 then "Too small" else "OK"
"Too small"
Prelude> return 42 >>= \x -> print $ if x < 10 then "Too small" else "OK"
"OK"

Taking advantage of the extra flexibility, however, might mean having less guarantees about,
for instance, whether your functions are able to unexpectedly erase parts of a data structure
for pathological inputs, or whether the control flow in your application remains intelligible.
In some situations there might be performance implications as well, as the complex data
dependencies monadic code makes possible might prevent useful refactorings and optimisa-
tions. All in all, it is a good idea to only use as much power as needed for the task at hand.
If you do need the extra capabilities of Monad, go right ahead; however, it is often worth it
to check whether Applicative or Functor are sufficient.

Exercises:
The next few exercises concern the following tree data structure:
data AT a = L a | B (AT a) (AT a)

1. Write Functor, Applicative and Monad instances for AT. Do not use short-
cuts such as pure = return. The Applicative and Monad instances should
match; in particular, (<*>) should be equivalent to ap, which follows from the
Monad instance.

2. Implement the following functions, using either the Applicative instance, the
Monad one or neither of them, if neither is enough to provide a solution. Between
Applicative and Monad, choose the least powerful one which is still good enough
for the task. Justify your choice for each case in a few words.
a. fructify :: AT a -> AT a, which grows the tree by replacing each leaf L with
a branch B containing two copies of the leaf.
b. prune :: a -> (a -> Bool) -> AT a -> AT a, with prune z p t replacing
a branch of t with a leaf carrying the default value z whenever any of the leaves
directly on it satisfies the test p.
c. reproduce :: (a -> b) -> (a -> b) -> AT a -> AT b, with reproduce f
g t resulting in a new tree with two modified copies of t on the root branch. The
left copy is obtained by applying f to the values in t, and the same goes for g and
the right copy.

3. There is another legal instance of Applicative for AT (the reversed sequencing
version of the original one doesn’t count). Write it. Hint: this other instance can
be used to implement
sagittalMap :: (a -> b) -> (a -> b) -> AT a -> AT b
which, when given a branch, maps one function over the left child tree and the
other over the right child tree. (In case you are wondering, ”AT” stands for ”apple
tree”. Botanist readers, please forgive the weak metaphors.)

259

Applicative functors

40.8 The monoidal presentation

Back in Understanding monads17, we saw how the Monad class can be specified using either
(>=>) or join instead of (>>=). In a similar way, Applicative also has an alternative
presentation, which might be implemented through the following type class:

class Functor f => Monoidal f where
unit :: f ()
(*&*) :: f a -> f b -> f (a,b)

There are deep theoretical reasons behind the name ”monoidal” 18. In any case, we can
informally say that it does look a lot like a monoid: unit provides a default functorial
value whose context wraps nothing of interest, and (*&*) combines functorial values by
pairing values and combining effects. The Monoidal formulation provides a clearer view of
how Applicative manipulates functorial contexts. Naturally, unit and (*&*) can be used
to define pure and (<*>), and vice-versa.

The Applicative laws are equivalent to the following set of laws, stated in terms of
Monoidal:

fmap snd $ unit *&* v = v -- Left identity
fmap fst $ u *&* unit = u -- Right identity
fmap asl $ u *&* (v *&* w) = (u *&* v) *&* w -- Associativity
-- asl (x, (y, z)) = ((x, y), z)

The functions to the left of the ($) are just boilerplate to convert between equivalent types,
such as b and ((), b). If you ignore them, the laws are a lot less opaque than in the usual
Applicative formulation. By the way, just like for Applicative there is a bonus law,
which is guaranteed to hold in Haskell:

fmap (g *** h) (u *&* v) = fmap g u *&* fmap h v -- Naturality
-- g *** h = \(x, y) -> (g x, h y)

Exercises:

1. Write implementations for unit and (*&*) in terms of pure and (<*>), and vice-
versa.

2. Formulate the law of commutative applicative functors (see the Sequencing of
effectsa section) in terms of the Monoidal methods.

3. Write from scratch Monoidal instances for:
a. ZipList
b. ((->) r)

a Chapter 40.6 on page 255

17 Chapter 30.3.2 on page 185
18 For extra details, follow the leads from the corresponding section of the Typeclasseopedia ˆ{https://wiki.

haskell.org/Typeclassopedia#Alternative_formulation} and the blog post by Edward Z. Yang
which inspired it ˆ{http://blog.ezyang.com/2012/08/applicative-functors/} .

260

https://wiki.haskell.org/Typeclassopedia#Alternative_formulation
https://wiki.haskell.org/Typeclassopedia#Alternative_formulation
http://blog.ezyang.com/2012/08/applicative-functors/

41 Foldable

The Foldable type class provides a generalisation of list folding (foldr and friends) and
operations derived from it to arbitrary data structures. Besides being extremely useful,
Foldable is a great example of how monoids can help formulating good abstractions.

41.1 Deconstructing foldr

foldr is quite a busy function − two binary functions on each side of the first function
arrow, with types which use two variables each.

foldr :: (a -> b -> b) -> b -> [a] -> b

If we are going to generalise foldr, it would be convenient to have something simpler to
work with, or at least to be able to break it down into simpler components. What could
those components be?

A rough description of list folding would be that it consists of running through the list
elements and combining them with a binary function. We happen to know one type class
which is all about combining pairs of values: Monoid. If we take foldr f z ...

a `f` (b `f` (c `f` z)) -- foldr f z [a,b,c]

... and make f = (<>) and z = mempty ...

a <> (b <> (c <> mempty)) -- foldr (<>) mempty [a,b,c]

... we get mconcat = foldr mappend mempty, which is a simpler, specialised foldr in
which we do not need to specify the combining function nor initial accumulator, as we
simply use mappend (i.e. (<>)) and mempty:

mconcat :: Monoid m => [m] -> m

mconcat captures the combine-all-elements aspect of foldr well enough, and covers a few
of its use cases:

GHCi> mconcat ["Tree", "fingers"] -- concat
"Treefingers"

Neat − but surely we don’t want to be restricted to folding with Monoid instances only.
One way to improve the situation a bit is by realising we can use mconcat to fold a list with
elements of any type, as long as we have a function to convert them to some Monoid type:

foldMap :: Monoid m => (a -> m) -> [a] -> m
foldMap g = mconcat . fmap g

261

Foldable

That makes things more interesting already:

GHCi> foldMap Sum [1..10]
Sum {getSum = 55}

So far so good, but it seems that we are still unable to fold with arbitrary combining
functions. It turns out, however, that any binary function that fits the foldr signature can
be used to convert values to a Monoid type! The trick is looking at the combining function
passed to foldr as a function of one argument...

foldr :: (a -> (b -> b)) -> b -> [a] -> b

... and taking advantage of the fact that b -> b functions form a monoid under composition,
with (.) as mappend and id as mempty 1. The corresponding Monoid instance is available
through the Endo wrapper from Data.Monoid 2:

newtype Endo b = Endo { appEndo :: b -> b }

instance Monoid Endo where
mempty = Endo id
Endo g `mappend` Endo f = Endo (g . f)

We can now define...

foldComposing :: (a -> (b -> b)) -> [a] -> Endo b
foldComposing f = foldMap (Endo . f)

... which makes a b -> b function out of each element and composes them all:

Endo (f a) <> (Endo (f b) <> (Endo (f c) <> (Endo id))) -- foldComposing f
[a,b,c]
Endo (f a . (f b . (f c . id)))
-- (<>) and (.) are associative, so we don't actually need the parentheses.

-- As an example, here is a step-by-step evaluation:
foldComposing (+) [1, 2, 3]
foldMap (Endo . (+)) [1, 2, 3]
mconcat (fmap (Endo . (+)) [1, 2, 3])
mconcat (fmap Endo [(+1), (+2), (+3)])
mconcat [Endo (+1), Endo (+2), Endo (+3)]
Endo ((+1) . (+2) . (+3))
Endo (+6)

If we apply that function to some b value...

foldr :: (a -> (b -> b)) -> b -> [a] -> b
foldr f z xs = appEndo (foldComposing f xs) z

...we finally recover foldr. That means we can define foldr in terms of foldMap, a function
which is much simpler and therefore easier to reason about. For that reason, foldMap is the
conceptual heart of Foldable, the class which generalises foldr to arbitrary data structures.

1 This trick will probably ring familiar if you did the exercise about foldl at the end of Higher order
functions ˆ{Chapter19.4.5 on page 124}.

2 ”Endo” is shorthand for ”endomorphism”, a jargony word for functions from one type to the same type.

262

The Foldable class

Exercises:

1. Write two implementations of foldMap for lists: one in terms of foldr and the
other using recursion explicitly.

41.2 The Foldable class

Implementing Foldable for a data structure requires writing just one function: either
foldMap or foldr. Foldable, however, has a lot of other methods:

-- Abridged definition, with just the method signatures.
class Foldable t where

foldMap :: Monoid m => (a -> m) -> t a -> m
foldr :: (a -> b -> b) -> b -> t a -> b

-- All of the following have default implementations:
fold :: Monoid m => t m -> m -- generalised mconcat
foldr' :: (a -> b -> b) -> b -> t a -> b
foldl :: (b -> a -> b) -> b -> t a -> b
foldl' :: (b -> a -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a
toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a

The extra methods are there so that more efficient implementations can be written if nec-
essary − for instance, if you are writing a highly optimised data structure you don’t want
foldl' to actually do all the fancy trickery needed to turn a right fold into a left fold. In any
case, writing just foldMap or foldr gives you all of the very useful functions listed above
for free. And it gets even better: Data.Foldable3 provides still more functions generalised
to any Foldable, including, remarkably, mapM_/traverse_.

Here is a quick demonstration of Foldable using Data.Map4 5:

GHCi> import qualified Data.Map as M
GHCi> let testMap = M.fromList $ zip [0..]
["Yesterday","I","woke","up","sucking","a","lemon"]
GHCi> length testMap
7
GHCi> sum . fmap length $ testMap
29
GHCi> elem "lemon" testMap
True
GHCi> foldr1 (\x y -> x ++ (' ' : y)) testMap -- Be careful: foldr1 is partial!

3 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html
4 http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Map.html
5 For more information on Data.Map and other useful data structure implementations with, see the data

structures primer ˆ{https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%
20primer} .

263

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html
http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Map.html
https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer
https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer

Foldable

"Yesterday I woke up sucking a lemon"
GHCi> import Data.Foldable
GHCi> traverse_ putStrLn testMap
Yesterday
I
woke
up
sucking
a
lemon

Beyond providing useful generalisations, Foldable and foldMap suggest a more declarative
way of thinking about folds. For instance, instead of describing sum as a function which
runs across a list (or tree, or whatever the data structure is) accumulating its elements with
(+), we might say that it queries each element for its value and summarises the results of
the queries using the Sum monoid. Though the difference may seem small, the monoidal
summary perspective can help clarifying problems involving folds by separating the core
issue of what sort of result we wish to obtain from the details of the data structure being
folded.

Exercises:

1. Let’s play Spot The Monoid! Here are the rules:For each function, suggest a
combination of mempty, mappend and, if necessary, a function to prepare the values
that would allow it to be implemented with fold or foldMap. No need to bother
with newtype instances (unless you want to test your solutions with foldMap, of
course) − for example, ”mempty is 0 and mappend is (+)” would be a perfectly
acceptable answer for sum. If necessary, you can partially apply the functions and
use the supplied arguments in the answers. Do not answer every question with
id and (.) - that would be cheating!(Hint: if you need suggestions, have a look
at the Monoid instances in Data.Monoida.)
a) product :: (Foldable t, Num a) => t a -> a
b) concat :: Foldable t => t [a] -> [a]
c) concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
d) all :: Foldable t => (a -> Bool) -> t a -> Bool
e) elem :: Eq a => a -> t a -> Bool
f) length :: t a -> Int
g) traverse_ :: (Foldable t, Applicative f) =>

(a -> f b) -> t a -> f ()
h) mapM_ :: (Foldable t, Monad m) =>

(a -> m b) -> t a -> m ()
i) safeMaximum :: Ord a => t a -> Maybe a
(like maximum, but handling emptiness.)

j) find :: Foldable t => (a -> Bool) -> t a -> Maybe a
k) composeL :: Foldable t =>

(b -> a -> b) -> t a -> b -> b
(equivalent to foldl.)

a http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html

264

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html

List-like folding

41.3 List-like folding

Foldable includes the toList :: Foldable t => t a -> [a] method. That means any
Foldable data structure can be turned into a list; moreover, folding the resulting list
will produce the same results than folding the original structure directly. A possible
toList implementation in terms of foldMap would be 6:

toList = foldMap (\x -> [x])

toList reflects the fact that lists are the free monoid for Haskell types. ”Free” here means
any value can be promoted to the monoid in a way which neither adds nor erases any
information (we can convert values of type a to [a] lists with a single element and back
through (\x->[x]) and head in a lossless way) 7.

A related key trait of Foldable is made obvious by toList. Since toList = id for lists, if
you are given a function defined as...

-- Given a list xs :: [a]
xsAsFoldMap :: Monoid m => (a -> m) -> m
xsAsFoldMap = \f -> foldMap f xs

... it is always possible to recover the original list xs by supplying (\x->[x]) to xsAs-
FoldMap. In this sense, lists are equivalent to their right folds. That implies folding with
the Foldable operations will unavoidably be a lossy operation if the data structure is more
complex than a list. Putting it in another way, we can say that the list-like folds offered by
Foldable are less general than folds of the sort we have seen back in Other data structures8
(formally known as catamorphisms), which do make it possible to reconstruct the original
structure.

Exercises:

1. This exercise concerns the tree type we used in Other data structuresa: data Tree
a = Leaf a | Branch (Tree a) (Tree a)
a) Write a Foldable instance for Tree.
b) Implement treeDepth :: Tree a -> Int, which gives the number of
branches from the root of the tree to the furthest leaf. Use either the
Foldable or the treeFold catamorphism defined in Other data structuresb.
Are both suggestions actually possible?

a Chapter 25.1 on page 145
b Chapter 25.1.2 on page 147

6 Data.Foldable uses a different default implementation for performance reasons.
7 There is one caveat relating to non-termination with regards to saying lists form a free monoid. For details,

see the Free Monoids in Haskell ˆ{http://comonad.com/reader/2015/free-monoids-in-haskell} post
by Dan Doel. (Note that the discussion there is quite advanced. You might not enjoy it much right now
if you have just been introduced to Foldable.)

8 Chapter 25 on page 145

265

http://comonad.com/reader/2015/free-monoids-in-haskell

Foldable

41.4 More facts about Foldable

Foldable is slightly unusual among Haskell classes which are both principled and general-
purpose in that it has no laws of its own. The closest thing is the following property, which
strictly speaking is not a law (as it is guaranteed to hold whatever the instance is): given a
monoid homomorphism9 g,

foldMap (g . f) = g . foldMap f

Switching from foldMap (g . f) to g . foldMap f can be advantageous, as it means ap-
plying g only to the result of the fold, rather than to the potentially many elements in the
structure being folded.

If the Foldable structure is a Functor as well, it also automatically holds that...

foldMap f = fold . fmap f

... and thus we get, after applying the second functor law10 and the property just above:

foldMap g . fmap f = foldMap (g . f) = g . foldMap f

Though the presence of a method such as foldMap might suggest that any Foldable types
should have Functor instances as well, Functor is not actually a superclass of Foldable.
That makes it possible to give Foldable instances to structures that, for whatever reason,
cannot be Functors. The most common example are the sets11 from Data.Set12. Element
types for those sets must be instances of Ord, and therefore their map function cannot be
used as fmap, which has no additional class constraints. That, however, does not deny
Data.Set.Set an useful Foldable instance.

GHCi> import qualified Data.Set as S
GHCi> let testSet = S.fromList [1,3,2,5,5,0]
GHCi> testSet
fromList [0,1,2,3,5]
GHCi> import Data.Foldable
GHCi> toList testSet
[0,1,2,3,5]
GHCi> foldMap show testSet
"01235"

9 Chapter 39.4 on page 247
10 Chapter 27.2.1 on page 164
11 https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer%23Variations
12 http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Set.html

266

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer%23Variations
http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Set.html

More facts about Foldable

Exercises:

1. a) Write the monoid instance for pairs,

(Monoid a, Monoid b) => Monoid (a,b)
b) Prove that fst and snd are monoid homomorphisms.
c) Use the monoid homomorphism property of foldMap presented above to
prove that

foldMap f &&& foldMap g = foldMap (f &&& g)
where

f &&& g = \x -> (f x, g x)

This exercise is based on a message by Edward Kmett a.

a Source (Haskell Café): https://mail.haskell.org/pipermail/haskell-cafe/2015-February/
118152.html

267

https://mail.haskell.org/pipermail/haskell-cafe/2015-February/118152.html
https://mail.haskell.org/pipermail/haskell-cafe/2015-February/118152.html

42 Traversable

We already have studied four of the five type classes in the Prelude that can be used
for data structure manipulation: Functor, Applicative, Monad and Foldable. The
fifth one is Traversable 1. To traverse means to walk across, and that is exactly what
Traversable generalises: walking across a structure, collecting results at each stop.

42.1 Functors made for walking

If traversing means walking across, though, we have been performing traversals for a long
time already. Consider the following plausible Functor and Foldable instances for lists:

instance Functor [] where
fmap _ [] = []
fmap f (x:xs) = f x : fmap f xs

instance Foldable [] where
foldMap _ [] = mempty
foldMap f (x:xs) = f x <> foldMap f xs

fmap f walks across the list, applies f to each element and collects the results by rebuilding
the list. Similarly, foldMap f walks across the list, applies f to each element and collects
the results by combining them with mappend. Functor and Foldable, however, are not
enough to express all useful ways of traversing. For instance, suppose we have the following
Maybe-encoded test for negative numbers...

deleteIfNegative :: (Num a, Ord a) => a -> Maybe a
deleteIfNegative x = if x < 0 then Nothing else Just x

... and we want to use it to implement...

rejectWithNegatives :: (Num a, Ord a) => [a] -> Maybe [a]

... which gives back the original list wrapped in Just if there are no negative elements in
it, and Nothing otherwise. Neither Foldable nor Functor on their own would help. Using
Foldable would replace the structure of the original list with that of whatever Monoid we
pick for folding, and there is no way of twisting that into giving either the original list or
Nothing 2. As for Functor, fmap might be attractive at first...

1 Strictly speaking, we should refer to the five classes in the GHC Prelude, as Applicative, Foldable and
Traversable aren’t officially part of the Prelude yet according to the Haskell Report ˆ{https://www.
haskell.org/onlinereport/haskell2010} . It is just a matter of time for them to be included, though.

2 One thing to attempt would be exploiting the Monoid a => Monoid (Maybe a) instance from
Data.Monoid ˆ{http://hackage.haskell.org/packages/archive/base/latest/doc/html/

269

https://www.haskell.org/onlinereport/haskell2010
https://www.haskell.org/onlinereport/haskell2010
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html

Traversable

GHCi> let testList = [-5,3,2,-1,0]
GHCi> fmap deleteIfNegative testList
[Nothing,Just 3,Just 2,Nothing,Just 0]

... but then we would need a way to turn a list of Maybe into Maybe a list. If you squint
hard enough, that looks somewhat like a fold. Instead, however, of merely combining the
values and destroying the list, we need to combine the Maybe contexts of the values and
recreate the list structure within the combined context. Fortunately, there is a type class
which is essentially about combining Functor contexts: Applicative 3. Applicative, in
turn, leads us to the class we need: Traversable.

instance Traversable [] where
-- sequenceA :: Applicative f => [f a] -> f [a]
sequenceA [] = pure []
sequenceA (u:us) = (:) <$> u <*> sequenceA us

-- Or, equivalently:
instance Traversable [] where

sequenceA us = foldr (\u v -> (:) <$> u <*> v) (pure []) us

Traversable is to Applicative contexts what Foldable is to Monoid values. From that
point of view, sequenceA is analogous to fold − it creates an applicative summary of
the contexts within a structure, and then rebuilds the structure in the new context.
sequenceA is the function we were looking for:

GHCi> let rejectWithNegatives = sequenceA . fmap deleteIfNegative
GHCi> :t rejectWithNegatives
rejectWithNegatives

:: (Num a, Ord a, Traversable t) => t a -> Maybe (t a)
GHCi> rejectWithNegatives testList
Nothing
GHCi> rejectWithNegatives [0..10]
Just [0,1,2,3,4,5,6,7,8,9,10]

These are the methods of Traversable:

class (Functor t, Foldable t) => Traversable t where
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
sequenceA :: Applicative f => t (f a) -> f (t a)

-- These methods have default definitions.
-- They are merely specialised versions of the other two.
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
sequence :: Monad m => t (m a) -> m (t a)

If sequenceA is analogous to fold, traverse is analogous to foldMap. They can be defined
in terms of each other, and therefore a minimal implementation of Traversable just needs
to supply one of them:

traverse f = sequenceA . fmap f
sequenceA = traverse id

Data-Monoid.html} . If you try that, however, you will see it can’t possibly give the desired
results.

3 The monoidal presentation ˆ{https://en.wikibooks.org/wiki/Haskell%2FApplicative%20functors%
20II%23The%20monoidal%20presentation} of Applicative makes that very clear.

270

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
https://en.wikibooks.org/wiki/Haskell%2FApplicative%20functors%20II%23The%20monoidal%20presentation
https://en.wikibooks.org/wiki/Haskell%2FApplicative%20functors%20II%23The%20monoidal%20presentation

Interpretations of Traversable

Rewriting the list instance using traverse makes the parallels with Functor and
Foldable obvious:

instance Traversable [] where
traverse _ [] = pure []
traverse f (x:xs) = (:) <$> f x <*> traverse f xs

-- Or, equivalently:
instance Traversable [] where

traverse f xs = foldr (\x v -> (:) <$> f x <*> v) (pure []) xs

In general, it is better to write traverse when implementing Traversable, as the de-
fault definition of traverse performs, in principle, two runs across the structure (one for
fmap and another for sequenceA).

We can cleanly define rejectWithNegatives directly in terms of traverse:

rejectWithNegatives :: (Num a, Ord a, Traversable t) => t a -> Maybe (t a)
rejectWithNegatives = traverse deleteIfNegative

Exercises:

1. Give the Tree from Other data structuresa a Traversable instance. The defini-
tion of Tree is:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

a Chapter 25.1 on page 145

42.2 Interpretations of Traversable

Traversable structures can be walked over using the applicative functor of your choice.
The type of traverse...

traverse :: (Applicative f, Traversable t) => (a -> f b) -> t a -> f (t b)

... resembles that of mapping functions we have seen in other classes. Rather than using
its function argument to insert functorial contexts under the original structure (as might
be done with fmap) or to modify the structure itself (as (>>=) does), traverse adds an
extra layer of context on the top of the structure. Said in another way, traverse allows for
effectful traversals − traversals which produce an overall effect (i.e. the new outer layer of
context).

If the structure below the new layer is recoverable at all, it will match the original structure
(the values might have changed, of course). Here is an example involving nested lists:

GHCi> traverse (\x -> [0..x]) [0..3]
[[0,0,0,0],[0,0,0,1],[0,0,0,2],[0,0,0,3],[0,0,1,0],[0,0,1,1]
,[0,0,1,2],[0,0,1,3],[0,0,2,0],[0,0,2,1],[0,0,2,2],[0,0,2,3]
,[0,1,0,0],[0,1,0,1],[0,1,0,2],[0,1,0,3],[0,1,1,0],[0,1,1,1]
,[0,1,1,2],[0,1,1,3],[0,1,2,0],[0,1,2,1],[0,1,2,2],[0,1,2,3]
]

271

Traversable

The inner lists retain the structure the original list − all of them have four elements. The
outer list is the new layer, corresponding to the introduction of nondeterminism through
allowing each element to vary from zero to its (original) value.

We can also understand Traversable by focusing on sequenceA and how it
distributes context.

GHCi> sequenceA [[1,2,3,4],[5,6,7]]
[[1,5],[1,6],[1,7],[2,5],[2,6],[2,7]
,[3,5],[3,6],[3,7],[4,5],[4,6],[4,7]
]

In this example, sequenceA can be seen distributing the old outer structure into the new
outer structure, and so the new inner lists have two elements, just like the old outer list.
The new outer structure is a list of twelve elements, which is exactly what you would
expect from combining with (<*>) one list of four elements with another of three elements.
One interesting aspect of the distribution perspective is how it helps making sense of why
certain functors cannot possibly have instances of Traversable (how would one distribute
an IO action? Or a function?).

Exercises:
Having the applicative functorsa chapter fresh in memory can help with the following
exercises.
1. Consider a representation of matricesb as nested lists, with the inner lists being
the rows. Use Traversable to implement

transpose :: [[a]] -> [[a]]
which transposes a matrix (i.e. changes columns into rows and vice-versa). For
the purposes of this exercise, we don’t care about how fake ”matrices” with rows
of different sizes are handled.

2. Explain what traverse mappend does.
3. Time for a round of Spot The Applicative Functor. Consider:

mapAccumL :: Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)

Does its type remind you of anything? Use the appropriate Applicative to im-
plement it with Traversable. As further guidance, here is the description of
mapAccumL in the Data.Traversablec documentation:
The mapAccumL function behaves like a combination of fmap and foldl; it
applies a function to each element of a structure, passing an accumulating
parameter from left to right, and returning a final value of this accumulator
together with the new structure.

a Chapter 40 on page 249
b https://en.wikipedia.org/wiki/Matrix%20%28mathematics%29
c http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html

272

https://en.wikipedia.org/wiki/Matrix%20%28mathematics%29
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html

The Traversable laws

42.3 The Traversable laws

Sensible instances of Traversable have a set of laws to follow. There are the following two
laws:

traverse Identity = Identity -- identity
traverse (Compose . fmap g . f) = Compose . fmap (traverse g) . traverse f --
composition

Plus a bonus law, which is guaranteed to hold:

-- If t is an applicative homomorphism, then
t . traverse f = traverse (t . f) -- naturality

Those laws are not exactly self-explanatory, so let’s have a closer look at them. Start-
ing from the last one: an applicative homomorphism is a function which preserves the
Applicative operations, so that:

-- Given a choice of f and g, and for any a,
t :: (Applicative f, Applicative g) => f a -> g a

t (pure x) = pure x
t (x <*> y) = t x <*> t y

Note that not only this definition is analogous to the one of monoid homomorphisms4 which
we have seen earlier on but also that the naturality law mirrors exactly the property about
foldMap and monoid homomorphisms seen in the chapter about Foldable5.

The identity law involves Identity, the dummy functor:

newtype Identity a = Identity { runIdentity :: a }

instance Functor Identity where
fmap f (Identity x) = Identity (f x)

instance Applicative Identity where
pure x = Identity x
Identity f <*> Identity x = Identity (f x)

The law says that all traversing with the Identity constructor does is wrap the structure
with Identity, which amounts to doing nothing (as the original structure can be trivially
recovered with runIdentity). The Identity constructor is thus the identity traversal,
which is very reasonable indeed.

The composition law, in turn, is stated in terms of the Compose functor:

newtype Compose f g a = Compose { getCompose :: f (g a) }

instance (Functor f, Functor g) => Functor (Compose f g) where
fmap f (Compose x) = Compose (fmap (fmap f) x)

instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure x = Compose (pure (pure x))
Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

4 Chapter 39.4 on page 247
5 Chapter 42 on page 269

273

Traversable

Compose performs composition of functors. Composing two Functors results in a Functor,
and composing two Applicatives results in an Applicative 6. The instances are the
obvious ones, threading the methods one further functorial layer down.

The composition law states that it doesn’t matter whether we perform two traversals sep-
arately (right side of the equation) or compose them in order to walk across the structure
only once (left side). It is analogous, for instance, to the second functor law. The fmaps are
needed because the second traversal (or the second part of the traversal, for the left side
of the equation) happens below the layer of structure added by the first (part). Compose is
needed so that the composed traversal is applied to the correct layer.

Identity and Compose are available from Data.Functor.Identity7 and
Data.Functor.Compose8 respectively.

The laws can also be formulated in terms of sequenceA:

sequenceA . fmap Identity = Identity -- identity
sequenceA . fmap Compose = Compose . fmap sequenceA . sequenceA -- composition
-- For any applicative homomorphism t:
t . sequenceA = sequenceA . fmap t -- naturality

Though it’s not immediately obvious, several desirable characteristics of traversals follow
from the laws, including 9:

• Traversals do not skip elements.
• Traversals do not visit elements more than once.
• traverse pure = pure
• Traversals cannot modify the original structure (it is either preserved or fully destroyed).

42.4 Recovering fmap and foldMap

We still have not justified the Functor and Foldable class constraints of Traversable.
The reason for them is very simple: as long as the Traversable instance follows the laws
traverse is enough to implement both fmap and foldMap. For fmap, all we need is to use
Identity to make a traversal out of an arbitrary function:

fmap f = runIdentity . traverse (Identity . f)

To recover foldMap, we need to introduce a third utility functor: Const from Con-
trol.Applicative10:

newtype Const a b = Const { getConst :: a }

instance Functor (Const a) where
fmap _ (Const x) = Const x

6 Remarkably, however, composing two Monads does not necessarily result in a Monad.
7 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor-Identity.html
8 http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Data-Functor-Compose.html
9 For technical details, check the papers cited by the Data.Traversable ˆ{http://hackage.haskell.org/

packages/archive/base/latest/doc/html/Data-Traversable.html} documentation.
10 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control.Applicative.html

274

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor-Identity.html
http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Data-Functor-Compose.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control.Applicative.html

Recovering fmap and foldMap

Const is a constant functor. A value of type Const a b does not actually contain a b value.
Rather, it holds an a value which is unaffected by fmap. For our current purposes, the truly
interesting instance is the Applicative one

instance Monoid a => Applicative (Const a) where
pure _ = Const mempty
Const x <*> Const y = Const (x `mappend` y)

(<*>) simply combines the values in each context with mappend 11. We can exploit that to
make a traversal out of any Monoid m => a -> m function that we might pass to foldMap.
Thanks to the instance above, the traversal then becomes a fold:

foldMap f = getConst . traverse (Const . f)

We have just recovered from traverse two functions which on the surface appear to be
entirely different, and all we had to do was pick two different functors. That is a taste of
how powerful an abstraction functors are 12.

11 This is a great illustration of how Applicative combines contexts monoidally. If we remove the values
within the context, the applicative laws in monoidal presentation ˆ{https://en.wikibooks.org/wiki/
Haskell%2FApplicative%20functors%20II%23The%20monoidal%20presentation} match the monoid
laws exactly.

12 A prime example, and one of clear practical relevance at that, is that great ode to functors, the lens
ˆ{https://hackage.haskell.org/package/lens} library.

275

https://en.wikibooks.org/wiki/Haskell%2FApplicative%20functors%20II%23The%20monoidal%20presentation
https://en.wikibooks.org/wiki/Haskell%2FApplicative%20functors%20II%23The%20monoidal%20presentation
https://hackage.haskell.org/package/lens

43 Arrow tutorial

Arrows provide an alternative to the usual way of structuring computations with the basic
functor classes. This chapter provides a hands-on tutorial about them, while the next one,
Understanding arrows1, complements it with a conceptual overview. We recommend you to
start with the tutorial, so that you get to taste what programming with arrows feel like. You
can of course switch back and forth between the tutorial and the first part of Understanding
arrowsif you prefer going at a slower pace. Be sure to follow along every step of the tutorial
on GHC(i).

43.1 Stephen’s Arrow Tutorial

In this tutorial, I will create my own arrow, show how to use the arrow proc notation, and
show how ArrowChoice works. We will end up with a simple game of Hangman.

First, we give a language pragma to enable the arrow do notation in the compiler:

{-# LANGUAGE Arrows #-}

And then, some imports:

module Main where

import Control.Arrow
import Control.Monad
import qualified Control.Category as Cat
import Data.List
import Data.Maybe
import System.Random

Any Haskell function can behave as an arrow, because there is an Arrow instance for the
function type constructor (->). In this tutorial I will build a more interesting arrow than
this, with the ability to maintain state (something that a plain Haskell function arrow
cannot do). Arrows can produce all sorts of effects, including I/O, but we’ll just explore
some simple examples.

We’ll call our new arrow Circuit to suggest that we can visualize arrows as circuits.2

1 Chapter 44 on page 287
2 This interpretation of arrows-as-circuits is loosely based on the Yampa functional reactive programming

library.

277

Arrow tutorial

43.2 Type definition for Circuit

A plain Haskell function treated as an arrow has type a -> b. Our Circuit arrow has
two distinguishing features: First, we wrap it in a newtypedeclaration to cleanly define an
Arrow instance. Second, in order for the circuit to maintain its own internal state, our
arrow returns a replacement for itself along with the normal b output value.

newtype Circuit a b = Circuit { unCircuit :: a -> (Circuit a b, b) }

To make this an arrow, we need to make it an instance of both Category and Arrow.
Throughout these definitions, we always replace each Circuit with the new version of itself
that it has returned.

instance Cat.Category Circuit where
id = Circuit $ \a -> (Cat.id, a)
(.) = dot

where
(Circuit cir2) `dot` (Circuit cir1) = Circuit $ \a ->

let (cir1', b) = cir1 a
(cir2', c) = cir2 b

in (cir2' `dot` cir1', c)

The Cat.id function replaces itself with a copy of itself without maintaining any state. The
purpose of the (.) function is to chain two arrows together from right to left. (>>>) and
(<<<) are based on (.). It needs to replace itself with the ‘dot‘ of the two replacements
returned by the execution of the argument Circuits.

instance Arrow Circuit where
arr f = Circuit $ \a -> (arr f, f a)
first (Circuit cir) = Circuit $ \(b, d) ->

let (cir', c) = cir b
in (first cir', (c, d))

arr lifts a plain Haskell function as an arrow. Like with id, the replacement it gives is just
itself, since a plain Haskell function can’t maintain state.

Now we need a function to run a circuit:

runCircuit :: Circuit a b -> [a] -> [b]
runCircuit _ [] = []
runCircuit cir (x:xs) =

let (cir',x') = unCircuit cir x
in x' : runCircuit cir' xs

For mapAccumL fans like me, this can alternatively be written as

runCircuit :: Circuit a b -> [a] -> [b]
runCircuit cir inputs =

snd $ mapAccumL (\cir x -> unCircuit cir x) cir inputs

or, after eta-reduction, simply as:

runCircuit :: Circuit a b -> [a] -> [b]
runCircuit cir = snd . mapAccumL unCircuit cir

278

Circuit primitives

43.3 Circuit primitives

Let’s define a generalized accumulator to be the basis for our later work. accum' is a less
general version of accum.

-- | Accumulator that outputs a value determined by the supplied function.
accum :: acc -> (a -> acc -> (b, acc)) -> Circuit a b
accum acc f = Circuit $ \input ->

let (output, acc') = input `f` acc
in (accum acc' f, output)

-- | Accumulator that outputs the accumulator value.
accum' :: b -> (a -> b -> b) -> Circuit a b
accum' acc f = accum acc (\a b -> let b' = a `f` b in (b', b'))

Here is a useful concrete accumulator which keeps a running total of all the numbers passed
to it as inputs.

total :: Num a => Circuit a a
total = accum' 0 (+)

We can run this circuit, like this:

*Main> runCircuit total [1,0,1,0,0,2]
[1,1,2,2,2,4]
*Main>

43.4 Arrow proc notation

Here is a statistical mean function:

mean1 :: Fractional a => Circuit a a
mean1 = (total &&& (const 1 ^>> total)) >>> arr (uncurry (/))

It maintains two accumulator cells, one for the sum, and one for the number of elements. It
splits the input using the ”fanout” operator &&& and before the input of the second stream,
it discards the input value and replaces it with 1.

const 1 ˆ>> total is shorthand for arr (const 1) >>> total. The first stream is the
sum of the inputs. The second stream is the sum of 1 for each input (i.e. a count of the
number of inputs). Then, it merges the two streams with the (/) operator.

Here is the same function, but written using arrow proc notation:

mean2 :: Fractional a => Circuit a a
mean2 = proc value -> do

t <- total -< value
n <- total -< 1
returnA -< t / n

The proc notation describes the same relationship between the arrows, but in a totally
different way. Instead of explicitly describing the wiring, you glue the arrows together
using variable bindings and pure Haskell expressions, and the compiler works out all the

279

Arrow tutorial

arr, (>>>), (&&&) stuff for you. Arrow proc notation also contains a pure ’let’ statement
exactly like the monadic do one.

proc is the keyword that introduces arrow notation, and it binds the arrow input to a
pattern (value in this example). Arrow statements in a do block take one of these forms:

• variable binding pattern <- arrow -< pure expression giving arrow input
• arrow -< pure expression giving arrow input

Like with monads, the do keyword is needed only to combine multiple lines using the variable
binding patterns with <-. As with monads, the last line isn’t allowed to have a variable
binding pattern, and the output value of the last line is the output value of the arrow.
returnA is an arrow just like ’total’ is (in fact, returnA is just the identity arrow, defined
as arr id).

Also like with monads, lines other than the last line may have no variable binding, and you
get the effect only, discarding the return value. In Circuit, there would never be a point in
doing this (since no state can escape except through the return value), but in many arrows
there would be.

As you can see, for this example the proc notation makes the code much more readable.
Let’s try them:

*Main> runCircuit mean1 [0,10,7,8]
[0.0,5.0,5.666666666666667,6.25]
*Main> runCircuit mean2 [0,10,7,8]
[0.0,5.0,5.666666666666667,6.25]
*Main>

43.5 Hangman: Pick a word

Now for our Hangman game. Let’s pick a word from a dictionary:

generator :: Random a => (a, a) -> StdGen -> Circuit () a
generator range rng = accum rng $ \() rng -> randomR range rng

dictionary = ["dog", "cat", "bird"]

pickWord :: StdGen -> Circuit () String
pickWord rng = proc () -> do

idx <- generator (0, length dictionary-1) rng -< ()
returnA -< dictionary !! idx

With generator, we’re using the accumulator functionality to hold our random number
generator. pickWord doesn’t introduce anything new, except that the generator arrow is
constructed by a Haskell function that takes arguments. Here is the output:

*Main> rng <- getStdGen
*Main> runCircuit (pickWord rng) [(), (), ()]
["dog","bird","dog"]
*Main>

We will use these little arrows in a minute. The first returns True the first time, then
Falseforever afterwards:

280

Hangman: Pick a word

oneShot :: Circuit () Bool
oneShot = accum True $ _ acc -> (acc, False)

*Main> runCircuit oneShot [(), (), (), (), ()]
[True,False,False,False,False]

The second stores a value and returns it, when it gets a new one:

delayedEcho :: a -> Circuit a a
delayedEcho acc = accum acc (\a b -> (b,a))

which can be shortened to:

delayedEcho :: a -> Circuit a a
delayedEcho acc = accum acc (flip (,))

*Main> runCircuit (delayedEcho False) [True, False, False, False, True]
[False,True,False,False,False]

The game’s main arrow will be executed repeatedly, and we would like to pick the word
only once on the first iteration, and have it remember it for the rest of the game. Rather
than just mask its output on subsequent loops, we’d prefer to actually run pickWord only
once (since in a real implementation it could be very slow). However, as it stands, the data
flow in a Circuit must go down all the paths of component arrows. In order to allow the
data flow to go down one path and not another, we need to make our arrow an instance of
ArrowChoice. Here’s the minimal definition:

instance ArrowChoice Circuit where
left orig@(Circuit cir) = Circuit $ \ebd -> case ebd of

Left b -> let (cir', c) = cir b
in (left cir', Left c)

Right d -> (left orig, Right d)

getWord :: StdGen -> Circuit () String
getWord rng = proc () -> do

-- If this is the first game loop, run pickWord. mPicked becomes Just
<word>.

-- On subsequent loops, mPicked is Nothing.
firstTime <- oneShot -< ()
mPicked <- if firstTime

then do
picked <- pickWord rng -< ()
returnA -< Just picked

else returnA -< Nothing
-- An accumulator that retains the last 'Just' value.
mWord <- accum' Nothing mplus -< mPicked
returnA -< fromJust mWord

Because ArrowChoice is defined, the compiler now allows us to put an if after <-, and thus
choose which arrow to execute (either run pickWord, or skip it). Note that this is not a
normal Haskell if: The compiler implements this using ArrowChoice. The compiler also
implements case here in the same way.

It is important to understand that none of the local name bindings, including the
proc argument, is in scope between <- and -< except in the condition of an if or case.
For example, this is illegal:

281

Arrow tutorial

{-
proc rng -> do

idx <- generator (0, length dictionary-1) rng -< () -- ILLEGAL
returnA -< dictionary !! idx

-}

The arrow to execute, here generator (0, length dictionary -1) rng, is evaluated in
the scope that exists outside the ’proc’ statement. rng does not exist in this scope. If you
think about it, this makes sense, because the arrow is constructed at the beginning only
(outside proc). If it were constructed for each execution of the arrow, how would it keep
its state?

Let’s try getWord:

*Main> rng <- getStdGen
*Main> runCircuit (getWord rng) [(), (), (), (), (), ()]
["dog","dog","dog","dog","dog","dog"]
*Main>

43.6 Hangman: Main program

Now here is the game:

attempts :: Int
attempts = 5

livesLeft :: Int -> String
livesLeft hung = "Lives: ["

++ replicate (attempts - hung) '#'
++ replicate hung ' '
++ "]"

hangman :: StdGen -> Circuit String (Bool, [String])
hangman rng = proc userInput -> do

word <- getWord rng -< ()
let letter = listToMaybe userInput
guessed <- updateGuess -< (word, letter)
hung <- updateHung -< (word, letter)
end <- delayedEcho True -< not (word == guessed || hung >= attempts)
let result = if word == guessed

then [guessed, "You won!"]
else if hung >= attempts

then [guessed, livesLeft hung, "You died!"]
else [guessed, livesLeft hung]

returnA -< (end, result)
where
updateGuess :: Circuit (String, Maybe Char) String
updateGuess = accum' (repeat '_') $ \(word, letter) guess ->

case letter of
Just l -> map (\(w, g) -> if w == l then w else g) (zip word guess)
Nothing -> take (length word) guess

updateHung :: Circuit (String, Maybe Char) Int
updateHung = proc (word, letter) -> do

total -< case letter of
Just l -> if l `elem` word then 0 else 1
Nothing -> 0

282

Advanced stuff

main :: IO ()
main = do

rng <- getStdGen
interact $ unlines -- Concatenate lines out output

. ("Welcome to Arrow Hangman":) -- Prepend a greeting to the output

. concat . map snd . takeWhile fst -- Take the [String]s as long as the
first element of the tuples is True

. runCircuit (hangman rng) -- Process the input lazily

. ("":) -- Act as if the user pressed ENTER
once at the start

. lines -- Split input into lines

And here’s an example session. For best results, compile the game and run it from a terminal
rather than from GHCi:

Welcome to Arrow Hangman

Lives: [#####]
a

Lives: [####]
g
__g
Lives: [####]
d
d_g
Lives: [####]
o
dog
You won!

43.7 Advanced stuff

In this section I will complete the coverage of arrow notation.

43.7.1 Combining arrow commands with a function

We implemented mean2 like this:

mean2 :: Fractional a => Circuit a a
mean2 = proc value -> do

t <- total -< value
n <- total -< 1
returnA -< t / n

GHC defines a banana bracket syntax for combining arrow statements with a function that
operates on arrows. (In Ross Paterson’s paper 3 a form keyword is used, but GHC adopted
the banana bracket instead.) Although there’s no real reason to, we can write mean like
this:

mean3 :: Fractional a => Circuit a a
mean3 = proc value -> do

3 Ross Paterson’s Paper specifying arrow proc notation ˆ{http://www.soi.city.ac.uk/~ross/papers/
notation.html}

283

http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/notation.html

Arrow tutorial

(t, n) <- (| (&&&) (total -< value) (total -< 1) |)
returnA -< t / n

The first item inside the (| ... |) is a function that takes any number of arrows as input
and returns an arrow. Infix notation cannot be used here. It is followed by the arguments,
which are in the form of proc statements. These statements may contain do and bindings
with <- if you like. Each argument is translated into an arrow and given as an argument
to the function (&&&).

You may ask, what is the point of this? We can combine arrows quite happily without
the proc notation. Well, the point is that you get the convenience of using local variable
bindings in the statements.

The banana brackets are in fact not required. The compiler is intelligent enough to assume
that this is what you mean when you write it like this (note that infix notation is allowed
here):

mean4 :: Fractional a => Circuit a a
mean4 = proc value -> do

(t, n) <- (total -< value) &&& (total -< 1)
returnA -< t / n

So why do we need the banana brackets? For situations where this plainer syntax is am-
biguous. The reason is that the arrow part of a proc command is not an ordinary Haskell
expression. Recall that for arrows specified in proc statements, the following things hold
true:

• Local variable bindings are only allowed in the input expression after -<, and for the
if and case condition. The arrow itself is interpreted in the scope that exists outside
proc.

• if and case statements are not plain Haskell. They are implemented using ArrowChoice.
• Functions used to combine arrows are not normal Haskell either. They are shorthand for
banana bracket notation.

43.7.2 Recursive bindings

At the risk of wearing out the mean example, here is yet another way to implement it using
recursive bindings. In order for this to work, we’ll need an arrow that delays its input by
one step:

delay :: a -> Circuit a a
delay last = Circuit $ \this -> (delay this, last)

Here is what delay does:

*Main> runCircuit (delay 0) [5,6,7]
[0,5,6]
*Main>

Here is our recursive version of mean:

mean5 :: Fractional a => Circuit a a
mean5 = proc value -> do

284

Advanced stuff

rec
(lastTot, lastN) <- delay (0,0) -< (tot, n)
let (tot, n) = (lastTot + value, lastN + 1)
let mean = tot / n

returnA -< mean

The rec block resembles a do’ block, except that

• The last line can be, and usually is, a variable binding. It doesn’t matter whether it’s a
let or a do-block binding with <-.

• The rec block doesn’t have a return value. var <- rec ... is illegal, and rec is not
allowed to be the last element in a do block.

• The use of variables is expected to form a cycle (otherwise there is no point in rec).

The machinery of rec is handled by the loop function of the ArrowLoop class, which we
define for Circuit like this:

instance ArrowLoop Circuit where
loop (Circuit cir) = Circuit $ \b ->

let (cir', (c,d)) = cir (b,d)
in (loop cir', c)

Behind the scenes, the way it works is this:

• Any variables defined in rec that are forward referenced in rec are looped around by
passing them through the second tuple element of loop. Effectively the variable bindings
and references to them can be in any order (but the order of arrow statements is significant
in terms of effects).

• Any variables defined in rec that are referenced from outside rec are returned in the
first tuple element of loop.

It is important to understand that loop (and therefore rec) simply binds variables. It
doesn’t hold onto values and pass them back in the next invocation - delay does this part.
The cycle formed by the variable references must be broken by some sort of delay arrow or
lazy evaluation, otherwise the code would die in an infinite loop as if you had written let
a = a+1 in plain Haskell.

43.7.3 ArrowApply

As mentioned before, the arrow part of an arrow statement (before -<) can’t contain any
variables bound inside ’proc’. There is an alternative operator, -<< which removes this
restriction. It requires the arrow to implement the ArrowApply typeclass.

285

44 Understanding arrows

i Information
We have permission to import material from the Haskell arrows page1. See the talk
page for details.

Arrows, like monads, express computations that happen within a context. However, they
are a more general abstraction than monads, and thus allow for contexts beyond what
the Monad class makes possible. The essential difference between the abstractions can be
summed up thus:

Just as we think of a monadic type m a as representing a ’computation delivering an a
’; so we think of an arrow type a b c, (that is, the application of the parameterised type
a to the two parameters b and c) as representing ’a computation with input of type b
delivering a c’; arrows make the dependence on input explicit.

This chapter has two main parts. Firstly, we will consider the main ways in which arrow
computations differ from those expressed by the functor classes we are used to, and also
briefly present some of the core arrow-related type classes. Secondly, we will study the
parser example used by John Hughes in the original presentation of arrows.

44.1 Pocket guide to Arrow

44.1.1 Arrows look a lot like functions

The first step towards understanding arrows is realising how similar they are to functions.
Like (->), the type constructor of an Arrow instance has kind * -> * -> *, that is, it takes
two type arguments − unlike, say, a Monad, which takes only one. Crucially, Arrow has
Category as a superclass. Category is, to put it very roughly, the class for things that can
be composed like functions:

class Category y where
id :: y a a -- identity for composition.
(.) :: y b c -> y a b -> y a c -- associative composition.

(It goes without saying that functions have an instance of Category − in fact, they are
Arrows as well.)

A practical consequence of this similarity is that you have to think in point-free terms when
looking at expressions full of Arrow operators, such as this example from the tutorial:

287

Understanding arrows

(total &&& (const 1 ^>> total)) >>> arr (uncurry (/))

Otherwise you will quickly get lost looking for the values to apply things on. In any case,
it is easy to get lost even if you look at such expressions in the right way. That’s what
proc notation is all about: adding extra variable names and whitespace while making some
operators implicit, so that Arrow code gets easier to follow.

Before continuing, we should mention that Control.Category2 also defines (<<<) = (.) and
(>>>) = flip (.), which is very commonly used to compose arrows from left to right.

44.1.2 Arrow glides between Applicative and Monad

In spite of the warning we gave just above, arrows can be compared to applicative functors
and monads. The trick is making the functors look more like arrows, and not the opposite.
That is, you should not compare Arrow y => y a b with Applicative f => f a or Monad
m => m a, but rather with:

• Applicative f => f (a -> b), the type of static morphisms i.e. the values to the left
of (<*>); and

• Monad m => a -> m b, the type of Kleisli morphisms i.e. the functions to the right of
(>>=) 3.

Morphisms are the sort of things that can have Category instances, and indeed we could
write instances of Category for both static and Kleisli morphisms. This modest twisting is
enough for a sensible comparison.

If this argument reminds you of the sliding scale of power4 discussion, in which we compared
Functor, Applicative and Monad, that is a sign you are paying attention, as we are follow-
ing exactly the same route. Back then, we remarked how the types of the morphisms limit
how they can, or cannot, create effects. Monadic binds can induce near-arbitrary changes to
the effects of a computation depending on the a values given to the Kleisli morphism, while
the isolation between the functorial wrapper and the function arrow in static morphisms
mean the effects in an applicative computation do not depend at all on the values within
the functor 5.

What sets arrows apart from this point of view is that in Arrow y => y a b there is no such
connection between the context y and a function arrow to determine so rigidly the range of
possibilities. Both static and Kleisli morphisms can be made into Arrows, and conversely
an instance of Arrow can be made as limited as an Applicative one or as powerful as a
Monad one 6. More interestingly, we can use Arrow to take a third option and have both

2 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Category.html
3 Those two concepts are usually known as static arrows and Kleisli arrows respectively. Since using the

word ”arrow” with two subtly different meanings would make this text horribly confusing, we opted for
”morphism”, which is a synonym for this alternative meaning.

4 https://en.wikibooks.org/wiki/Haskell%2FApplicative%20functors%20II%23A%20sliding%20scale%20of%20power
5 Incidentally, that is why they are called static: the effects are set in stone by the sequencing of computa-

tions; the generated values cannot affect them.
6 For details, see Idioms are oblivious, arrows are meticulous, monads are promiscuous ˆ{http://

homepages.inf.ed.ac.uk/wadler/topics/monads.html} , by Sam Lindley, Philip Wadler and Jeremy
Yallop.

288

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Category.html
https://en.wikibooks.org/wiki/Haskell%2FApplicative%20functors%20II%23A%20sliding%20scale%20of%20power
http://homepages.inf.ed.ac.uk/wadler/topics/monads.html
http://homepages.inf.ed.ac.uk/wadler/topics/monads.html

Pocket guide to Arrow

applicative-like static effects and monad-like dynamic effects in a single context, but kept
separate from each other. Arrows make it possible to fine tune how effects are to be
combined. That is the main thrust of the classic example of the arrow-based parser, which
we will have a look at near the end of this chapter.

44.1.3 An Arrow can multitask

These are the Arrow methods:

class Category y => Arrow y where
-- Minimal implementation: arr and first
arr :: (a -> b) -> y a b -- converts function to arrow
first :: y a b -> y (a, c) (b, c) -- maps over first component

second :: y a b -> y (c, a) (c, b) -- maps over second component
(***) :: y a c -> y b d -> y (a, b) (c, d) -- first and second combined
(&&&) :: y a b -> y a c -> y a (b, c) -- (***) on a duplicated value

With these methods, we can carry out multiple computations at each step of what seems
to be a linear chain of composed arrows. That is done by keeping values used in separate
computations as elements of pairs in a (possibly nested) pair, and then using the using
pair-handling functions to reach each value when desired. That allows, for instance, saving
intermediate values for later or using functions with multiple arguments conveniently 7.

Visualising may help understanding the data flow in an arrow computation. Here are
illustrations of (>>>) and the five Arrow methods:

7 ”Conveniently” is arguably too strong a word, though, given how confusing handling nested tuples can get.
Ergo, proc notation.

289

Understanding arrows

Figure 6 arr turns a function into an
arrow, composable with other arrows.
Naturally, not all arrows are created in this
way.

Figure 7 (>>>) composes two arrows.
The output of the first one is fed to the
second.

290

Pocket guide to Arrow

Figure 8 first takes two inputs side by
side. The first one is modified using an
arrow, while the second is left unchanged.

Figure 9 second, conversely, takes two
inputs but only modifies the second.

291

Understanding arrows

Figure 10 (***) takes two inputs and
modifies them with two arrows, one for each
input.

Figure 11 (&&&) takes one input,
duplicates it and modifies each copy with a
different arrow.

292

Pocket guide to Arrow

Figure 12 Data flow for the mean1 arrow from the tutoriala. Rectangles are arrows,
rounded rectangles are arrows made with arr, circles are other data flow split/merge
points. Other combinators are left implicit. Corresponding code:
(total &&& (const 1 > > total))

>>> arr (uncurry (/))

a Chapter 43.3 on page 279

It is worth mentioning that Control.Arrow8 defines returnA = arr id as a do-nothing
arrow. One of the arrow laws says returnA must be equivalent to the id from the
Category instance 9.

44.1.4 An ArrowChoice can be resolute

If Arrow makes multitasking possible, ArrowChoice forces a decision on what task to do.

class Arrow y => ArrowChoice y where
-- Minimal implementation: left
left :: y a b -> y (Either a c) (Either b c) -- maps over left

choice

right :: y a b -> y (Either c a) (Either c b) -- maps over right
choice

(+++) :: y a c -> y b d -> y (Either a b) (Either c d) -- left and right
combined

(|||) :: y a c -> y b c -> y (Either a b) c -- (+++), then merge
results

8 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Arrow.html
9 Arrow has laws, and so do the other arrow classes we are discussing in these two chapters. We won’t pause

to pore over the laws here, but you can check them in the Control.Arrow ˆ{http://hackage.haskell.
org/packages/archive/base/latest/doc/html/Control-Arrow.html} documentation.

293

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Arrow.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Arrow.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Arrow.html

Understanding arrows

Either provides a way to tag the values, so that different arrows can handle them depend-
ing on whether they are tagged with Left or Right. Note that these methods involving
Either are entirely analogous to those involving pairs offered by Arrow.

294

Pocket guide to Arrow

Figure 13 Data flow in a fragment of the getWord example of the tutoriala. Blue
indicates a Left tag and red indicates Right. Note that the if construct of proc notation
sends True to Left and False to Right. Corresponding code:
proc () -> do

firstTime <- oneShot -< ()
mPicked <- if firstTime

then do
picked <- pickWord rng -< ()
returnA -< Just picked

else returnA -< Nothing
accum' Nothing mplus -< mPicked

a https://en.wikibooks.org/wiki/Haskell%2FArrow%20tutorial%23Hangman%3A%20Pick%20a%20word

295

https://en.wikibooks.org/wiki/Haskell%2FArrow%20tutorial%23Hangman%3A%20Pick%20a%20word

Understanding arrows

44.1.5 An ArrowApply is just boring

As the name suggests, ArrowApply makes it possible to apply arrows to values directly
midway through an arrow computation. Ordinary Arrows do not allow that − we can
just compose them on and on and on. Application only happens right at the end, once a
run-arrow function of some sort is used to get a plain function from the arrow.

class Arrow y => ArrowApply y where
app :: y (y a b, a) b -- applies first component to second

(For instance, app for functions is uncurry ($) = \(f, x) -> f x .)

app, however, comes at a steep price. Building an arrow as a value within an arrow com-
putation and then eliminating it through application implies allowing the values within the
computation to affect the context. That sounds a lot like what monadic binds do. It turns
out that an ArrowApply is exactly equivalent to some Monad as long as the ArrowApply laws
are followed. The ultimate consequence is that ArrowApply arrows cannot realise any of
the interesting possibilities Arrow allows but Monad doesn’t, such as having a partly static
context.

The real flexibility with arrows comes with the ones that aren’t monads, otherwise it’s
just a clunkier syntax.

44.1.6 Arrow combinators crop up in unexpected places

Functions are the trivial example of arrows, and so all of the Control.Arrow functions
shown above can be used with them. For that reason, it is quite common to see arrow
combinators being used in code that otherwise has nothing to do with arrows. Here is a
summary of what they do with plain functions, alongside with combinators in other modules
that can be used in the same way (in case you prefer the alternative names, or just prefer
using simple modules for simple tasks).

Combina-
tor

What it does
(specialised to (->))

Alternatives

(>>>) flip (.)
first \f (x, y) -> (f x, y) first (Data.Bifunctor10)
second \f (x, y) -> (x, f y) fmap; second (Data.Bifunctor11)
(***) \f g (x, y) -> (f x, g y) bimap (Data.Bifunctor12)
(&&&) \f g x -> (f x, g x) liftA2

(,) (Control.Applicative13)
left Maps over Left case. first (Data.Bifunctor14)
right Maps over Right case. fmap; second (Data.Bifunctor15)

10 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
11 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
12 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
13 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html
14 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
15 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html

296

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html

Using arrows

Combina-
tor

What it does
(specialised to (->))

Alternatives

(+++) Maps over both cases. bimap (Data.Bifunctor16)
(|||) Eliminates Either. either (Data.Either17)
app \(f, x) -> f x uncurry ($)

The Data.Bifunctor module provides the Bifunctor class, of which pairs and Either are
instances of. A Bifunctor is very much like a Functor, except that there are two indepen-
dent ways of mapping functions over it, corresponding to the first and second methods
18.

Exercises:

1. Write implementations for second, (***) and (&&&). Use just (>>>), arr, and
first (plus any plain functions) to implement second; after that, you can use the
other combinators once you have implemented them.

2. Write an implementation for right in terms of left.
3. Implement liftY2 :: Arrow y =>

(a -> b -> c) -> y r a -> y r b -> y r c

44.2 Using arrows

44.2.1 Avoiding leaks

Arrows were originally motivated by an efficient parser design found by Swierstra &
Duponcheel19.

To describe the benefits of their design, let’s examine exactly how monadic parsers work.

If you want to parse a single word, you end up with several monadic parsers stacked end to
end. Taking Parsec as an example 20, a parser for the string ”word” can be thought of as 21:

word = do char 'w' >> char 'o' >> char 'r' >> char 'd'
return "word"

16 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
17 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Either.html
18 Data.Bifunctor was only added to the core GHC libraries in version 7.10, so it might not be installed if

you are using an older version. In that case, you can install the bifunctors package, which also includes
several other bifunctor-related modules

19 Swierstra, Duponcheel. Deterministic, error correcting parser combinators. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.29.2760

20 Parsec is a popular and powerful parsing library. See the parsec documentation on Hackage ˆ{https:
//hackage.haskell.org/package/parsec} for more information.

21 ”Thought of as” because in actual code we evidently wouldn’t return the string explicitly in such a crude
way. Parsec offers a combinator string which would allow writing word = string "word". In any case,
right now we are only concerned with how characters are tested, and so the crude parser is good enough
for a mental model.

297

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Either.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2760
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2760
https://hackage.haskell.org/package/parsec
https://hackage.haskell.org/package/parsec

Understanding arrows

Each character is tried in order, if ”worg” is the input, then the first three parsers will
succeed, and the last one will fail, making the entire string ”word” parser fail.

If you want to parse one of two options, you create a new parser for each and they are tried
in order. The first one must fail in order for the next to be tried with the same input.

ab = char 'a' <|> char 'b' <|> char 'c' -- (<|>) is a combinator for
alternatives.

To parse ”c” successfully, both ’a’ and ’b’ must have been tried.

one = do char 'o' >> char 'n' >> char 'e'
return "one"

two = do char 't' >> char 'w' >> char 'o'
return "two"

three = do char 't' >> char 'h' >> char 'r' >> char 'e' >> char 'e'
return "three"

nums = one <|> two <|> three

With these three parsers, you can’t detect that the string ”four” will fail the parser nums until
the last parser has failed.

If one of the options can consume much of the input but will fail, you still must descend
down the chain of parsers until the final parser fails. All of the input that can possibly be
consumed by later parsers must be retained in memory in case one of them does consume
it. That can lead to much more space usage than you would naively expect − a situation
often called a space leak.

The general pattern with monadic parsers, then, is that each option must fail or one option
must succeed.

Can it be done better?

Swierstra & Duponcheel (1996) noticed that a smarter parser could immediately fail upon
seeing the very first character. For example, in the nums parser above, the choice of first
letter parsers was limited to either the letter ’o’ for ”one” or the letter ’t’ for both ”two” and
”three”. This smarter parser would also be able to garbage collect input sooner because it
could look ahead to see if any other parsers might be able to consume the input, and drop
input that could not be consumed. This new parser is a lot like the monadic parsers with
the major difference that it exports static information. It’s like a monad, but it also tells
you what it can parse.

There’s one major problem. This doesn’t fit into the Monad interface. Monadic composition
works with (a -> m b) functions, and functions alone. There’s no way to attach static
information. You have only one choice, throw in some input, and see if it passes or fails.

Back when this issue first arose, the monadic interface was being touted as a completely gen-
eral purpose tool in the functional programming community, so finding that there was some
particularly useful code that just couldn’t fit into that interface was something of a setback.
This is where arrows come in. John Hughes’s Generalising monads to arrows proposed the
arrows abstraction as new, more flexible tool.

298

Using arrows

Static and dynamic parsers

Let us examine Swierstra and Duponcheel’s parser in greater detail, from the perspective of
arrows a presented by Hughes. The parser has two components: a fast, static parser which
tells us if the input is worth trying to parse; and a slow, dynamic parser which does the
actual parsing work.

import Control.Arrow
import qualified Control.Category as Cat
import Data.List (union)

data Parser s a b = P (StaticParser s) (DynamicParser s a b)
data StaticParser s = SP Bool [s]
newtype DynamicParser s a b = DP ((a, [s]) -> (b, [s]))

The static parser consists of a flag, which tells us if the parser can accept the empty input,
and a list of possible starting characters. For example, the static parser for a single
character would be as follows:

spCharA :: Char -> StaticParser Char
spCharA c = SP False [c]

It does not accept the empty string (False) and the list of possible starting characters
consists only of c.

The dynamic parser needs a little more dissecting. What we see is a function that goes
from (a, [s]) to (b, [s]). It is useful to think in terms of sequencing two parsers: each
parser consumes the result of the previous parser (a), along with the remaining bits of input
stream ([s]), it does something with a to produce its own result b, consumes a bit of string
and returns that. So, as an example of this in action, consider a dynamic parser (Int,
String) -> (Int, String), where the Int represents a count of the characters parsed so
far. The table below shows what would happen if we sequence a few of them together and
set them loose on the string ”cake” :

result remaining
before 0 cake
after first parser 1 ake
after second parser 2 ke
after third parser 3 e

So the point here is that a dynamic parser has two jobs : it does something to the output
of the previous parser (informally, a -> b), and it consumes a bit of the input string,
(informally, [s] -> [s]), hence the type DP ((a,[s]) -> (b,[s])). Now, in the case of
a dynamic parser for a single character (type (Char, String) -> (Char, String)), the
first job is trivial. We ignore the output of the previous parser, return the character we
have parsed and consume one character off the stream:

dpCharA :: Char -> DynamicParser Char Char Char
dpCharA c = DP (\(_,x:xs) -> (x,xs))

This might lead you to ask a few questions. For instance, what’s the point of accepting the
output of the previous parser if we’re just going to ignore it? And shouldn’t the dynamic

299

Understanding arrows

parser be making sure that the current character off the stream matches the character to
be parsed by testing x == c? The answer to the second question is no − and in fact, this
is part of the point: the work is not necessary because the check would already have been
performed by the static parser. Naturally, things are only so simple because we are testing
just one character. If we were writing a parser for several characters in sequence we would
need dynamic parsers that actually tested the second and further characters; and if we
wanted to build an output string by chaining several parsers of characters then we would
need the output of previous parsers.

Time to put both parsers together. Here is our S+D style parser for a single character:

charA :: Char -> Parser Char Char Char
charA c = P (SP False [c]) (DP (\(_,x:xs) -> (x,xs)))

Bringing the arrow combinators in

With the preliminary bit of exposition done, we are now going to implement the Arrow
class for Parser s, and by doing so, give you a glimpse of what makes arrows useful. So
let’s get started:

-- We explain the Eq s constraint below.
instance Eq s => Arrow (Parser s) where

arr should convert an arbitrary function into a parsing arrow. In this case, we have to
use ”parse” in a very loose sense: the resulting arrow accepts the empty string, and only
the empty string (its set of first characters is []). Its sole job is to take the output of the
previous parsing arrow and do something with it. That being so, it does not consume any
input.

arr f = P (SP True []) (DP (\(b,s) -> (f b,s)))

Likewise, the first combinator is relatively straightforward. Given a parser, we want to
produce a new parser that accepts a pair of inputs (b,d). The first component of the input
b, is what we actually want to parse. The second part passes through untouched:

first (P sp (DP p)) = P sp (DP (\((b,d),s) ->
let (c, s') = p (b,s)
in ((c,d),s')))

We also have to supply the Category instance. id is entirely obvious, as id = arr id must
hold:

instance Eq s => Cat.Category (Parser s) where
id = P (SP True []) (DP (\(b,s) -> (b,s)))
-- Or simply: id = P (SP True []) (DP id)

On the other hand, the implementation of (.) requires a little more thought. We want
to take two parsers, and return a combined parser incorporating the static and dynamic
parsers of both arguments:

-- The Eq s constraint is needed for using union here.
(P (SP empty1 start1) (DP p2)) .

300

Using arrows

(P (SP empty2 start2) (DP p1)) =
P (SP (empty1 && empty2)

(if not empty1 then start1 else start1 `union` start2))
(DP (p2.p1))

Combining the dynamic parsers is easy enough; we just do function composition. Putting
the static parsers together requires a little bit of thought. First of all, the combined parser
can only accept the empty string if both parsers do. Fair enough, now how about the starting
symbols? Well, the parsers are supposed to be in a sequence, so the starting symbols of
the second parser shouldn’t really matter. If life were simple, the starting symbols of the
combined parser would only be start1. Alas, life is not simple, because parsers could very
well accept the empty input. If the first parser accepts the empty input, then we have to
account for this possibility by accepting the starting symbols from both the first and the
second parsers 22.

So what do arrows buy us?

If you look back at our Parser type and blank out the static parser section, you might
notice that this looks a lot like the arrow instances for functions.

arr f = \(b, s) -> (f b, s)
first p = \((b, d), s) ->

let (c, s') = p (b, s)
in ((c, d), s'))

id = id
p2 . p1 = p2 . p1

There’s the odd s variable out for the ride, which makes the definitions look a little strange,
but the outline of e.g. the simple first functions23 is there. Actually, what you see here is
roughly the arrow instance for the State monad/Kleisli morphism (let f :: b -> c, p ::
b -> State s c and (.) actually be (<=<) = flip (>=>)).

That’s fine, but we could have easily done that with bind in classic monadic style, with
first becoming just an odd helper function that could be easily written with a bit of
pattern matching. But remember, our Parser type is not just the dynamic parser − it also
contains the static parser.

arr f = SP True []
first sp = sp
(SP empty1 start1) >>> (SP empty2 start2) = (SP (empty1 && empty2)

(if not empty1 then start1 else start1 `union` start2))

This is not at all a function, it’s just pushing around some data types, and it cannot be
expressed in a monadic way. But the Arrow interface can deal with just as well. And when
we combine the two types, we get a two-for-one deal: the static parser data structure goes
along for the ride along with the dynamic parser. The Arrow interface lets us transparently

22 A reasonable question at this point would be ”Okay, we can compose the static parsers by uniting their
lists, but when we are actually gone to test things with them?”. The answer is that the static tests would
be performed by the alternatives combinator, which unites two parsers to produce a parser that accepts
input from either.

23 Chapter 44.1.6 on page 296

301

Understanding arrows

compose and manipulate the two parsers, static and dynamic, as a unit, which we can then
run as a traditional, unified function.

44.3 Arrows in practice

Some examples of libraries using arrows:

• The Haskell XML Toolbox (project page24 and library documentation25) uses arrows for
processing XML. There is a Wiki page in the Haskell Wiki with a somewhat Gentle
Introduction to HXT26.

• Netwire (page library documentation27) is a library for functional reactive
programming (FRP). FRP is a functional paradigm for handling events and time-varying
values, with use cases including user interfaces, simulations and games. Netwire has an
arrow interface as well as an applicative one.

• Yampa (Haskell Wiki page28 library documentation29) is another arrow-based FRP li-
brary, and a predecessor to Netwire.

• Hughes’ arrow-style parsers were first described in his 2000 paper, but a usable imple-
mentation wasn’t available until May 2005, when Einar Karttunen released PArrows30.

44.4 See also

• Bibliography on arrows (haskell.org)31

44.5 Acknowledgements

This module uses text from An Introduction to Arrows by Shae Erisson, originally written
for The Monad.Reader 4

24 http://www.fh-wedel.de/~si/HXmlToolbox/index.html
25 https://hackage.haskell.org/package/hxt
26 http://www.haskell.org/haskellwiki/HXT
27 http://hackage.haskell.org/package/netwire
28 https://wiki.haskell.org/Yampa
29 https://hackage.haskell.org/package/Yampa
30 https://hackage.haskell.org/package/PArrows
31 http://www.haskell.org/arrows/biblio.html

302

http://www.fh-wedel.de/~si/HXmlToolbox/index.html
https://hackage.haskell.org/package/hxt
http://www.haskell.org/haskellwiki/HXT
http://hackage.haskell.org/package/netwire
https://wiki.haskell.org/Yampa
https://hackage.haskell.org/package/Yampa
https://hackage.haskell.org/package/PArrows
http://www.haskell.org/arrows/biblio.html

45 Continuation passing style (CPS)

Continuation Passing Style (CPS for short) is a style of programming in which functions
do not return values; rather, they pass control onto a continuation, which specifies what
happens next. In this chapter, we are going to consider how that plays out in Haskell and,
in particular, how CPS can be expressed with a monad.

45.1 What are continuations?

To dispel puzzlement, we will have a second look at an example from way back in the book,
when we introduced the ($) operator1:

> map ($ 2) [(2*), (4*), (8*)]
[4,8,16]

There is nothing out of ordinary about the expression above, except that it is a little quaint
to write that instead of map (*2) [2, 4, 8]. The ($) section makes the code appear
backwards, as if we are applying a value to the functions rather than the other way around.
And now, the catch: such an innocent-looking reversal is at heart of continuation passing
style!

From a CPS perspective, ($ 2) is a suspended computation: a function with general type
(a -> r) -> r which, given another function as argument, produces a final result. The
a -> r argument is the continuation; it specifies how the computation will be brought to a
conclusion. In the example, the functions in the list are supplied as continuations via map,
producing three distinct results. Note that suspended computations are largely interchange-
able with plain values: flip ($) 2 converts any value into a suspended computation, and
passing id as its continuation gives back the original value.

45.1.1 What are they good for?

There is more to continuations than just a parlour trick to impress Haskell newbies. They
make it possible to explicitly manipulate, and dramatically alter, the control flow of a
program. For instance, returning early from a procedure can be implemented with con-
tinuations. Exceptions and failure can also be handled with continuations - pass in a
continuation for success, another continuation for fail, and invoke the appropriate continu-
ation. Other possibilities include ”suspending” a computation and returning to it at another

1 Chapter 19.4 on page 121
2 That is, \x -> ($ x), fully spelled out as \x -> \k -> k x

303

Continuation passing style (CPS)

time, and implementing simple forms of concurrency (notably, one Haskell implementation,
Hugs, uses continuations to implement cooperative concurrency).

In Haskell, continuations can be used in a similar fashion, for implementing interesting
control flow in monads. Note that there usually are alternative techniques for such use
cases, especially in tandem with laziness. In some circumstances, CPS can be used to
improve performance by eliminating certain construction-pattern matching sequences (i.e.
a function returns a complex structure which the caller will at some point deconstruct),
though a sufficiently smart compiler should be able to do the elimination 3.

45.2 Passing continuations

An elementary way to take advantage of continuations is to modify our functions so that
they return suspended computations rather than ordinary values. We will illustrate how
that is done with two simple examples.

45.2.1 pythagoras

Example: A simple module, no continuations

-- We assume some primitives add and square for the example:

add :: Int -> Int -> Int
add x y = x + y

square :: Int -> Int
square x = x * x

pythagoras :: Int -> Int -> Int
pythagoras x y = add (square x) (square y)

Modified to return a suspended computation, pythagoras looks like this:

3 attoparsec ˆ{http://hackage.haskell.org/package/attoparsec-0.10.4.0/docs/
Data-Attoparsec-ByteString.html} is an example of performance-driven usage of CPS.

304

http://hackage.haskell.org/package/attoparsec-0.10.4.0/docs/Data-Attoparsec-ByteString.html
http://hackage.haskell.org/package/attoparsec-0.10.4.0/docs/Data-Attoparsec-ByteString.html

Passing continuations

Example: A simple module, using continuations

-- We assume CPS versions of the add and square primitives,
-- (note: the actual definitions of add_cps and square_cps are not
-- in CPS form, they just have the correct type)

add_cps :: Int -> Int -> ((Int -> r) -> r)
add_cps x y = \k -> k (add x y)

square_cps :: Int -> ((Int -> r) -> r)
square_cps x = \k -> k (square x)

pythagoras_cps :: Int -> Int -> ((Int -> r) -> r)
pythagoras_cps x y = \k ->
square_cps x $ \x_squared ->
square_cps y $ \y_squared ->
add_cps x_squared y_squared $ k

How the pythagoras_cps example works:

1. square x and throw the result into the (\x_squared -> ...) continuation
2. square y and throw the result into the (\y_squared -> ...) continuation
3. add x_squared and y_squared and throw the result into the top level/program con-
tinuation k.

We can try it out in GHCi by passing print as the program continuation:

*Main> pythagoras_cps 3 4 print
25

If we look at the type of pythagoras_cps without the optional parentheses around
(Int -> r) -> r and compare it with the original type of pythagoras, we note that the
continuation was in effect added as an extra argument, thus justifying the ”continuation
passing style” moniker.

45.2.2 thrice

Example: A simple higher order function, no continuations

thrice :: (a -> a) -> a -> a
thrice f x = f (f (f x))

*Main> thrice tail "foobar"
"bar"

305

Continuation passing style (CPS)

A higher order function such as thrice, when converted to CPS, takes as
arguments functions in CPS form as well. Therefore, f :: a -> a will
becomef_cps :: a -> ((a -> r) -> r), and the final type will be thrice_cps :: (a -
> ((a -> r) -> r)) -> a -> ((a -> r) -> r). The rest of the definition follows quite
naturally from the types - we replace f by the CPS version, passing along the continuation
at hand.

Example: A simple higher order function, with continuations

thrice_cps :: (a -> ((a -> r) -> r)) -> a -> ((a -> r) -> r)
thrice_cps f_cps x = \k ->
f_cps x $ \fx ->
f_cps fx $ \ffx ->
f_cps ffx $ k

45.3 The Cont monad

Having continuation-passing functions, the next step is providing a neat way of composing
them, preferably one which does not require the long chains of nested lambdas we have
seen just above. A good start would be a combinator for applying a CPS function to a
suspended computation. A possible type for it would be:

chainCPS :: ((a -> r) -> r) -> (a -> ((b -> r) -> r)) -> ((b -> r) -> r)

(You may want to try implementing it before reading on. Hint: start by stating that the
result is a function which takes a b -> r continuation; then, let the types guide you.)

And here is the implementation:

chainCPS s f = \k -> s $ \x -> f x $ k

We supply the original suspended computation s with a continuation which makes a new
suspended computation (produced by f) and passes the final continuation k to it. Unsur-
prisingly, it mirrors closely the nested lambda pattern of the previous examples.

Doesn’t the type of chainCPS look familiar? If we replace (a -> r) -> r with
(Monad m) => m a and (b -> r) -> r with (Monad m) => m b we get the
(>>=) signature. Furthermore, our old friend flip ($) plays a return-like role, in
that it makes a suspended computation out of a value in a trivial way. Lo and behold, we
have a monad! All we need now 4 is a Cont r a type to wrap suspended computations,
with the usual wrapper and unwrapper functions.

cont :: ((a -> r) -> r) -> Cont r a
runCont :: Cont r a -> (a -> r) -> r

4 Beyond verifying that the monad laws hold, which is left as an exercise to the reader.

306

callCC

The monad instance for Cont follows directly from our presentation, the only difference
being the wrapping and unwrapping cruft:

instance Monad (Cont r) where
return x = cont ($ x)
s >>= f = cont $ \c -> runCont s $ \x -> runCont (f x) c

The end result is that the monad instance makes the continuation passing (and thus the
lambda chains) implicit. The monadic bind applies a CPS function to a suspended compu-
tation, and runCont is used to provide the final continuation. For a simple example, the
Pythagoras example becomes:

Example: The pythagoras example, using the Cont monad

-- Using the Cont monad from the transformers package.
import Control.Monad.Trans.Cont

add_cont :: Int -> Int -> Cont r Int
add_cont x y = return (add x y)

square_cont :: Int -> Cont r Int
square_cont x = return (square x)

pythagoras_cont :: Int -> Int -> Cont r Int
pythagoras_cont x y = do

x_squared <- square_cont x
y_squared <- square_cont y
add_cont x_squared y_squared

45.4 callCC

While it is always pleasant to see a monad coming forth naturally, a hint of disappointment
might linger at this point. One of the promises of CPS was precise control flow manipulation
through continuations. And yet, after converting our functions to CPS we promptly hid
the continuations behind a monad. To rectify that, we shall introduce callCC, a function
which gives us back explicit control of continuations - but only where we want it.

callCC is a very peculiar function; one that is best introduced with examples. Let us start
with a trivial one:

307

Continuation passing style (CPS)

Example: square using callCC

-- Without callCC
square :: Int -> Cont r Int
square n = return (n 2)

-- With callCC
squareCCC :: Int − > Cont r Int

squareCCC n = callCC $ \k − > k (n 2)

The argument passed to callCC is a function, whose result is a suspended computation
(general type Cont r a) which we will refer to as ”the callCC computation”. In principle,
the callCC computation is what the whole callCC expression evaluates to. The caveat,
and what makes callCC so special, is due to k, the argument to the argument. It is a
function which acts as an eject button: calling it anywhere will lead to the value passed to
it being made into a suspended computation, which then is inserted into control flow at
the point of the callCC invocation. That happens unconditionally; in particular, whatever
follows a k invocation in the callCC computation is summarily discarded. From another
perspective, k captures the rest of the computation following the callCC; calling it throws
a value into the continuation at that particular point (”callCC” stands for ”call with current
continuation”). While in this simple example the effect is merely that of a plain return,
callCC opens up a number of possibilities, which we are now going to explore.

45.4.1 Deciding when to use k

callCC gives us extra power over what is thrown into a continuation, and when that is
done. The following example begins to show how we can use this extra power.

Example: Our first proper callCC function

foo :: Int -> Cont r String
foo x = callCC $ \k -> do

let y = x 2 + 3
when (y > 20) $ k ”over twenty”
return (show $ y − 4)

foo is a slightly pathological function that computes the square of its input and adds
three; if the result of this computation is greater than 20, then we return from the
callCC computation (and, in this case, from the whole function) immediately, throwing
the string "over twenty" into the continuation that will be passed to foo. If not, then we
subtract four from our previous computation, show it, and throw it into the continuation.
Remarkably, k here is used just like the ’return’ statement from an imperative language,
that immediately exits the function. And yet, this being Haskell, k is just an ordinary
first-class function, so you can pass it to other functions like when, store it in a Reader, etc.

308

callCC

Naturally, you can embed calls to callCC within do-blocks:

Example: More developed callCC example involving a do-block

bar :: Char -> String -> Cont r Int
bar c s = do

msg <- callCC $ \k -> do
let s0 = c : s
when (s0 == "hello") $ k "They say hello."
let s1 = show s0
return ("They appear to be saying " ++ s1)

return (length msg)

When you call k with a value, the entire callCC call takes that value. In effect, that makes
k a lot like an ’goto’ statement in other languages: when we call k in our example, it pops
the execution out to where you first called callCC, the msg <- callCC $... line. No
more of the argument to callCC (the inner do-block) is executed. Hence the following
example contains a useless line:

Example: Popping out a function, introducing a useless line

quux :: Cont r Int
quux = callCC $ \k -> do

let n = 5
k n
return 25

quux will return 5, and not 25, because we pop out of quux before getting to the return
25 line.

45.4.2 Behind the scenes

We have deliberately broken a trend here: normally when we introduce a function we give
its type straight away, but in this case we chose not to. The reason is simple: the type is
pretty complex, and it does not immediately give insight into what the function does, or
how it works. After the initial presentation of callCC, however, we are in a better position
to tackle it. Take a deep breath...

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

We can make sense of that based on what we already know about callCC. The overall result
type and the result type of the argument have to be the same (i.e. Cont r a), as in the
absence of an invocation of k the corresponding result values are one and the same. Now,
what about the type of k? As mentioned above, k’s argument is made into a suspended
computation inserted at the point of the callCC invocation; therefore, if the latter has type

309

Continuation passing style (CPS)

Cont r a k’s argument must have type a. As for k’s result type, interestingly enough it
doesn’t matter as long as it is wrapped in the same Cont r monad; in other words, the
b stands for an arbitrary type. That happens because the suspended computation made
out of the a argument will receive whatever continuation follows the callCC, and so the
continuation taken by k’s result is irrelevant.

Note:
The arbitrariness of k’s result type explains why the following variant of the useless line
example leads to a type error:
quux :: Cont r Int
quux = callCC $ \k -> do

let n = 5
when True $ k n
k 25

k’s result type could be anything of form Cont r a; however, the when constrains it to
Cont r (), and so the closing k 25 does not match the result type of quux. The solution
is very simple: replace the final k by a plain old return.

To conclude this section, here is the implementation of callCC. Can you identify k in it?

callCC f = cont $ \h -> runCont (f (\a -> cont $ _ -> h a)) h

The code is far from obvious. However, the amazing fact is that the implementations
of callCC, return and (>>=) for Cont can be produced automatically from their type
signatures - Lennart Augustsson’s Djinn http://lambda-the-ultimate.org/node/1178
is a program that will do this for you. See Phil Gossett’s Google tech talk: http:
//www.youtube.com/watch?v=h0OkptwfX4g for background on the theory behind Djinn;
and Dan Piponi’s article: http://www.haskell.org/wikiupload/1/14/TMR-Issue6.pdf
which uses Djinn in deriving continuation passing style.

45.5 Example: a complicated control structure

We will now look at some more realistic examples of control flow manipulation. The first
one, presented below, was originally taken from the ”The Continuation monad” section of
the All about monads tutorial5, used with permission.

5 http://www.haskell.org/haskellwiki/All_about_monads

310

http://lambda-the-ultimate.org/node/1178
http://www.youtube.com/watch?v=h0OkptwfX4g
http://www.youtube.com/watch?v=h0OkptwfX4g
http://www.haskell.org/wikiupload/1/14/TMR-Issue6.pdf
http://www.haskell.org/haskellwiki/All_about_monads

Example: a complicated control structure

Example: Using Cont for a complicated control structure

{- We use the continuation monad to perform "escapes" from code blocks.
This function implements a complicated control structure to process
numbers:

Input (n) Output List Shown
========= ====== ==========
0-9 n none
10-199 number of digits in (n/2) digits of (n/2)
200-19999 n digits of (n/2)
20000-1999999 (n/2) backwards none
>= 2000000 sum of digits of (n/2) digits of (n/2)
-}
fun :: Int -> String
fun n = (`runCont` id) $ do

str <- callCC $ \exit1 -> do -- define "exit1"
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n `div` 2))
n' <- callCC $ \exit2 -> do -- define "exit2"

when ((length ns) < 3) (exit2 (length ns))
when ((length ns) < 5) (exit2 n)
when ((length ns) < 7) $ do

let ns' = map intToDigit (reverse ns)
exit1 (dropWhile (=='0') ns') --escape 2 levels

return $ sum ns
return $ "(ns = " ++ (show ns) ++ ") " ++ (show n')

return $ "Answer: " ++ str

fun is a function that takes an integer n. The implementation uses Cont and callCC to set
up a control structure using Cont and callCC that does different things based on the range
that n falls in, as stated by the comment at the top. Let us dissect it:

1. Firstly, the (`runCont` id) at the top just means that we run the Cont block that
follows with a final continuation of id (or, in other words, we extract the value from
the suspended computation unchanged). That is necessary as the result type of
fun doesn’t mention Cont.

2. We bind str to the result of the following callCC do-block:
a) If n is less than 10, we exit straight away, just showing n.
b) If not, we proceed. We construct a list, ns, of digits of n `div` 2.
c) n' (an Int) gets bound to the result of the following inner callCC do-block.

i. If length ns < 3, i.e., if n `div` 2 has less than 3 digits, we pop out of
this inner do-block with the number of digits as the result.

ii. If n `div` 2 has less than 5 digits, we pop out of the inner do-block return-
ing the original n.

311

Continuation passing style (CPS)

iii. If n `div` 2 has less than 7 digits, we pop out of both the inner and outer
do-blocks, with the result of the digits of n `div` 2 in reverse order (a
String).

iv. Otherwise, we end the inner do-block, returning the sum of the digits of n
`div` 2.

d) We end this do-block, returning the String "(ns = X) Y", where X is ns, the
digits of n `div` 2, and Y is the result from the inner do-block, n'.

3. Finally, we return out of the entire function, with our result being the string ”Answer:
Z”, where Z is the string we got from the callCC do-block.

45.6 Example: exceptions

One use of continuations is to model exceptions. To do this, we hold on to two continuations:
one that takes us out to the handler in case of an exception, and one that takes us to the
post-handler code in case of a success. Here’s a simple function that takes two numbers and
does integer division on them, failing when the denominator is zero.

Example: An exception-throwing div

divExcpt :: Int -> Int -> (String -> Cont r Int) -> Cont r Int
divExcpt x y handler = callCC $ \ok -> do

err <- callCC $ \notOk -> do
when (y == 0) $ notOk "Denominator 0"
ok $ x `div` y

handler err

{- For example,
runCont (divExcpt 10 2 error) id --> 5
runCont (divExcpt 10 0 error) id --> *** Exception: Denominator 0
-}

How does it work? We use two nested calls to callCC. The first labels a continuation
that will be used when there’s no problem. The second labels a continuation that will
be used when we wish to throw an exception. If the denominator isn’t 0, x `div` y is
thrown into the ok continuation, so the execution pops right back out to the top level of
divExcpt. If, however, we were passed a zero denominator, we throw an error message
into the notOk continuation, which pops us out to the inner do-block, and that string gets
assigned to err and given to handler.

A more general approach to handling exceptions can be seen with the following function.
Pass a computation as the first parameter (more precisely, a function which takes an error-
throwing function and results in the computation) and an error handler as the second pa-

312

Example: coroutines

rameter. This example takes advantage of the generic MonadCont class 6 which covers both
Cont and the corresponding ContT transformer by default, as well as any other continuation
monad which instantiates it.

Example: General try using continuations.

import Control.Monad.Cont

tryCont :: MonadCont m => ((err -> m a) -> m a) -> (err -> m a) -> m a
tryCont c h = callCC $ \ok -> do

err <- callCC $ \notOk -> do
x <- c notOk
ok x

h err

And here is our try in action:

Example: Using try

data SqrtException = LessThanZero deriving (Show, Eq)

sqrtIO :: (SqrtException -> ContT r IO ()) -> ContT r IO ()
sqrtIO throw = do

ln <- lift (putStr "Enter a number to sqrt: " >> readLn)
when (ln < 0) (throw LessThanZero)
lift $ print (sqrt ln)

main = runContT (tryCont sqrtIO (lift . print)) return

In this example, error throwing means escaping from an enclosing callCC. The throw in
sqrtIO jumps out of tryCont’s inner callCC.

45.7 Example: coroutines

In this section we make a CoroutineT monad that provides a monad with fork, which
enqueues a new suspended coroutine, and yield, that suspends the current thread.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-- We use GeneralizedNewtypeDeriving to avoid boilerplate. As of GHC 7.8, it is
safe.

6 Found in the mtl package, module Control.Monad.Cont ˆ{http://hackage.haskell.org/packages/
archive/mtl/2.1.2/doc/html/Control-Monad-Cont.html} .

313

http://hackage.haskell.org/packages/archive/mtl/2.1.2/doc/html/Control-Monad-Cont.html
http://hackage.haskell.org/packages/archive/mtl/2.1.2/doc/html/Control-Monad-Cont.html

Continuation passing style (CPS)

import Control.Applicative
import Control.Monad.Cont
import Control.Monad.State

-- The CoroutineT monad is just ContT stacked with a StateT containing the
suspended coroutines.
newtype CoroutineT r m a = CoroutineT {runCoroutineT' :: ContT r (StateT
[CoroutineT r m ()] m) a}

deriving (Functor,Applicative,Monad,MonadCont,MonadIO)

-- Used to manipulate the coroutine queue.
getCCs :: Monad m => CoroutineT r m [CoroutineT r m ()]
getCCs = CoroutineT $ lift get

putCCs :: Monad m => [CoroutineT r m ()] -> CoroutineT r m ()
putCCs = CoroutineT . lift . put

-- Pop and push coroutines to the queue.
dequeue :: Monad m => CoroutineT r m ()
dequeue = do

current_ccs <- getCCs
case current_ccs of

[] -> return ()
(p:ps) -> do

putCCs ps
p

queue :: Monad m => CoroutineT r m () -> CoroutineT r m ()
queue p = do

ccs <- getCCs
putCCs (ccs++[p])

-- The interface.
yield :: Monad m => CoroutineT r m ()
yield = callCC $ \k -> do

queue (k ())
dequeue

fork :: Monad m => CoroutineT r m () -> CoroutineT r m ()
fork p = callCC $ \k -> do

queue (k ())
p
dequeue

-- Exhaust passes control to suspended coroutines repeatedly until there isn't
any left.
exhaust :: Monad m => CoroutineT r m ()
exhaust = do

exhausted <- null <$> getCCs
if not exhausted

then yield >> exhaust
else return ()

-- Runs the coroutines in the base monad.
runCoroutineT :: Monad m => CoroutineT r m r -> m r
runCoroutineT = flip evalStateT [] . flip runContT return . runCoroutineT' . (<*
exhaust)

Some example usage:

printOne n = do
liftIO (print n)
yield

example = runCoroutineT $ do
fork $ replicateM_ 3 (printOne 3)

314

Example: Implementing pattern matching

fork $ replicateM_ 4 (printOne 4)
replicateM_ 2 (printOne 2)

Outputting:

3
4
3
2
4
3
2
4
4

45.8 Example: Implementing pattern matching

An interesting usage of CPS functions is to implement our own pattern matching. We will
illustrate how this can be done by some examples.

Example: Built-in pattern matching

check :: Bool -> String
check b = case b of

True -> "It's True"
False -> "It's False"

Now we have learnt CPS, we can refactor the code like this.

Example: Pattern matching in CPS

type BoolCPS r = r -> r -> r

true :: BoolCPS r
true x _ = x

false :: BoolCPS r
false _ x = x

check :: BoolCPS String -> String
check b = b "It's True" "It's False"

*Main> check true
"It's True"
*Main> check false
"It's False"

315

Continuation passing style (CPS)

What happens here is that, instead of plain values, we represent True and False by func-
tions that would choose either the first or second argument they are passed. Since true and
false behave differently, we can achieve the same effect as pattern matching. Furthermore,
True, False and true, false can be converted back and forth by \b -> b True False and
\b -> if b then true else false.

We should see how this is related to CPS in this more complicated example.

Example: More complicated pattern matching and its CPS equivalence

data Foobar = Zero | One Int | Two Int Int

type FoobarCPS r = r -> (Int -> r) -> (Int -> Int -> r) -> r

zero :: FoobarCPS r
zero x _ _ = x

one :: Int -> FoobarCPS r
one x _ f _ = f x

two :: Int -> Int -> FoobarCPS r
two x y _ _ f = f x y

fun :: Foobar -> Int
fun x = case x of

Zero -> 0
One a -> a + 1
Two a b -> a + b + 2

funCPS :: FoobarCPS Int -> Int
funCPS x = x 0 (+1) (\a b -> a + b + 2)

*Main> fun zero
0
*Main> fun $ one 3
4
*Main> fun $ two 3 4
9

Similar to former example, we represent values by functions. These function-values pick
the corresponding (i.e. match) continuations they are passed to and pass to the latter the
values stored in the former. An interesting thing is that this process involves in no com-
parison. As we know, pattern matching can work on types that are not instances of Eq:
the function-values ”know” what their patterns are and would automatically pick the right
continuations. If this is done from outside, say, by an pattern_match :: [(pattern,
result)] -> value -> result function, it would have to inspect and compare the pat-
terns and the values to see if they match -- and thus would need Eq instances.

316

46 Zippers

46.1 Theseus and the Zipper

46.1.1 The Labyrinth

”Theseus, we have to do something” said Homer, chief marketing officer of Ancient Geeks
Inc.. Theseus put the Minotaur action figure™ back onto the shelf and nodded. ”Today’s
children are no longer interested in the ancient myths, they prefer modern heroes like
Spiderman or Sponge Bob.” Heroes. Theseus knew well how much he had been a hero in
the labyrinth back then on Crete1. But those ”modern heroes” did not even try to appear
realistic. What made them so successful? Anyway, if the pending sales problems could not
be resolved, the shareholders would certainly arrange a passage over the Styx for Ancient
Geeks Inc.

”Heureka! Theseus, I have an idea: we implement your story with the Minotaur as a
computer game! What do you say?” Homer was right. There had been several books, epic
(and chart breaking) songs, a mandatory movie trilogy and uncountable Theseus & the
Minotaur™ gimmicks, but a computer game was missing. ”Perfect, then. Now, Theseus,
your task is to implement the game”.

A true hero, Theseus chose Haskell as the language to implement the company’s redeeming
product in. Of course, exploring the labyrinth of the Minotaur was to become one of the
game’s highlights. He pondered: ”We have a two-dimensional labyrinth whose corridors
can point in many directions. Of course, we can abstract from the detailed lengths and
angles: for the purpose of finding the way out, we only need to know how the path forks.
To keep things easy, we model the labyrinth as a tree. This way, the two branches of a fork
cannot join again when walking deeper and the player cannot go round in circles. But I
think there is enough opportunity to get lost; and this way, if the player is patient enough,
he can explore the entire labyrinth with the left-hand rule.”

data Node a = DeadEnd a
| Passage a (Node a)
| Fork a (Node a) (Node a)

1 Ian Stewart. The true story of how Theseus found his way out of the labyrinth. Scientific American,
February 1991, page 137.

317

Zippers

Figure 14 An example labyrinth and its representation as tree.

Theseus made the nodes of the labyrinth carry an extra parameter of type a. Later
on, it may hold game relevant information like the coordinates of the spot a node
designates, the ambience around it, a list of game items that lie on the floor, or a list
of monsters wandering in that section of the labyrinth. We assume that two helper functions

get :: Node a -> a
put :: a -> Node a -> Node a

retrieve and change the value of type a stored in the first argument of every constructor of
Node a.

Exercises:

1. Implement get and put. One case for get is
get (Passage x _) = x.

2. To get a concrete example, write down the labyrinth shown in the picture as a value
of type Node (Int,Int). The extra parameter (Int,Int) holds the cartesian
coordinates of a node.

”Mh, how to represent the player’s current position in the labyrinth? The player can
explore deeper by choosing left or right branches, like in”

turnRight :: Node a -> Maybe (Node a)
turnRight (Fork _ l r) = Just r
turnRight _ = Nothing

”But replacing the current top of the labyrinth with the corresponding sub-labyrinth this
way is not an option, because he cannot go back then.” He pondered. ”Ah, we can apply
Ariadne’s trick with the thread for going back. We simply represent the player’s position

318

Theseus and the Zipper

by the list of branches his thread takes, the labyrinth always remains the same.”

data Branch = KeepStraightOn
| TurnLeft
| TurnRight

type Thread = [Branch]

Figure 15 Representation of the player’s position by Ariadne’s thread.

”For example, a thread [TurnRight,KeepStraightOn] means that the player took the
right branch at the entrance and then went straight down a Passage to reach its current
position. With the thread, the player can now explore the labyrinth by extending or
shortening it. For instance, the function turnRight extends the thread by appending the
TurnRight to it.”

turnRight :: Thread -> Thread
turnRight t = t ++ [TurnRight]

”To access the extra data, i.e. the game relevant items and such, we simply follow the
thread into the labyrinth.”

319

Zippers

retrieve :: Thread -> Node a -> a
retrieve [] n = get n
retrieve (KeepStraightOn:bs) (Passage _ n) = retrieve bs n
retrieve (TurnLeft :bs) (Fork _ l r) = retrieve bs l
retrieve (TurnRight :bs) (Fork _ l r) = retrieve bs r

Exercises:
Write a function update that applies a function of type a -> a to the extra data at the
player’s position.

Theseus’ satisfaction over this solution did not last long. ”Unfortunately, if we want to
extend the path or go back a step, we have to change the last element of the list. We could
store the list in reverse, but even then, we have to follow the thread again and again to
access the data in the labyrinth at the player’s position. Both actions take time proportional
to the length of the thread and for large labyrinths, this will be too long. Isn’t there another
way?”

46.1.2 Ariadne’s Zipper

While Theseus was a skillful warrior, he did not train much in the art of programming and
could not find a satisfying solution. After intense but fruitless cogitation, he decided to call
his former love Ariadne to ask her for advice. After all, it was she who had the idea with the
thread. Ariadne Consulting. What can I do for you? Our hero immediately recognized the
voice. ”Hello Ariadne, it’s Theseus.” An uneasy silence paused the conversation. Theseus
remembered well that he had abandoned her on the island of Naxos and knew that she
would not appreciate his call. But Ancient Geeks Inc. was on the road to Hades and he had
no choice. ”Uhm, darling, ... how are you?” Ariadne retorted an icy response, Mr. Theseus,
the times of darling are long over. What do you want? ”Well, I uhm ... I need some help
with a programming problem. I’m programming a new Theseus & the Minotaur™ computer
game.” She jeered, Yet another artifact to glorify your ’heroic being’? And you want me of
all people to help you? ”Ariadne, please, I beg of you, Ancient Geeks Inc. is on the brink of
insolvency. The game is our last hope!” After a pause, she came to a decision. Fine, I will
help you. But only if you transfer a substantial part of Ancient Geeks Inc. to me. Let’s say
thirty percent. Theseus turned pale. But what could he do? The situation was desperate
enough, so he agreed but only after negotiating Ariadne’s share to a tenth.

After Theseus told Ariadne of the labyrinth representation he had in mind, she could
immediately give advice, You need a zipper. ”Huh? What does the problem have to
do with my fly?” Nothing, it’s a data structure first published by Gérard Huet2. ”Ah.”
More precisely, it’s a purely functional way to augment tree-like data structures like lists
or binary trees with a single focus or finger that points to a subtree inside the data
structure and allows constant time updates and lookups at the spot it points to3. In our

2 Gérard Huet. The Zipper. Journal of Functional Programming, 7 (5), Sept 1997, pp. 549--554. PDF
ˆ{http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf}

3 Note the notion of zipper as coined by Gérard Huet also allows to replace whole subtrees even if there is
no extra data associated with them. In the case of our labyrinth, this is irrelevant. We will come back to
this in the section Differentiation of data types ˆ{Chapter46.2 on page 326}.

320

http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf

Theseus and the Zipper

case, we want a focus on the player’s position. ”I know for myself that I want fast updates,
but how do I code it?” Don’t get impatient, you cannot solve problems by coding, you can
only solve them by thinking. The only place where we can get constant time updates in
a purely functional data structure is the topmost node45. So, the focus necessarily has to
be at the top. Currently, the topmost node in your labyrinth is always the entrance, but
your previous idea of replacing the labyrinth by one of its sub-labyrinths ensures that the
player’s position is at the topmost node. ”But then, the problem is how to go back, because
all those sub-labyrinths get lost that the player did not choose to branch into.” Well, you
can use my thread in order not to lose the sub-labyrinths. Ariadne savored Theseus’
puzzlement but quickly continued before he could complain that he already used Ariadne’s
thread, The key is to glue the lost sub-labyrinths to the thread so that they actually don’t
get lost at all. The intention is that the thread and the current sub-labyrinth complement
one another to the whole labyrinth. With ’current’ sub-labyrinth, I mean the one that
the player stands on top of. The zipper simply consists of the thread and the current
sub-labyrinth.

type Zipper a = (Thread a, Node a)

Figure 16 The zipper is a pair of Ariadne’s thread and the current sub-labyrinth that
the player stands on top. The main thread is colored red and has sub-labyrinths attached
to it, such that the whole labyrinth can be reconstructed from the pair.

4 Of course, the second topmost node or any other node at most a constant number of links away from the
top will do as well.

5 Note that changing the whole data structure as opposed to updating the data at a node can be achieved in
amortized constant time even if more nodes than just the top node is affected. An example is incrementing a
number in binary representation. While incrementing say 111..11 must touch all digits to yield 1000..00,
the increment function nevertheless runs in constant amortized time (but not in constant worst case time).

321

Zippers

Theseus didn’t say anything. You can also view the thread as a context in which the
current sub-labyrinth resides. Now, let’s find out how to define Thread a. By the way,
Thread has to take the extra parameter a because it now stores sub-labyrinths. The thread
is still a simple list of branches, but the branches are different from before.

data Branch a = KeepStraightOn a
| TurnLeft a (Node a)
| TurnRight a (Node a)

type Thread a = [Branch a]

Most importantly, TurnLeft and TurnRight have a sub-labyrinth glued to them. When
the player chooses say to turn right, we extend the thread with a TurnRight and now
attach the untaken left branch to it, so that it doesn’t get lost. Theseus interrupts, ”Wait,
how would I implement this behavior as a function turnRight? And what about the first
argument of type a for TurnRight? Ah, I see. We not only need to glue the branch that
would get lost, but also the extra data of the Fork because it would otherwise get lost as
well. So, we can generate a new branch by a preliminary”

branchRight (Fork x l r) = TurnRight x l

”Now, we have to somehow extend the existing thread with it.” Indeed. The second point
about the thread is that it is stored backwards. To extend it, you put a new branch in front
of the list. To go back, you delete the topmost element. ”Aha, this makes extending and
going back take only constant time, not time proportional to the length as in my previous
version. So the final version of turnRight is”

turnRight :: Zipper a -> Maybe (Zipper a)
turnRight (t, Fork x l r) = Just (TurnRight x l : t, r)
turnRight _ = Nothing

Figure 17 Taking the right subtree from the entrance. Of course, the thread is initially
empty. Note that the thread runs backwards, i.e. the topmost segment is the most recent.

”That was not too difficult. So let’s continue with keepStraightOn for going down a
passage. This is even easier than choosing a branch as we only need to keep the extra

322

Theseus and the Zipper

data:”

keepStraightOn :: Zipper a -> Maybe (Zipper a)
keepStraightOn (t, Passage x n) = Just (KeepStraightOn x : t, n)
keepStraightOn _ = Nothing

Figure 18 Now going down a passage.

Exercises:
Write the function turnLeft.

Pleased, he continued, ”But the interesting part is to go back, of course. Let’s see...”

back :: Zipper a -> Maybe (Zipper a)
back ([] , _) = Nothing
back (KeepStraightOn x : t , n) = Just (t, Passage x n)
back (TurnLeft x r : t , l) = Just (t, Fork x l r)
back (TurnRight x l : t , r) = Just (t, Fork x l r)

”If the thread is empty, we’re already at the entrance of the labyrinth and cannot go back. In
all other cases, we have to wind up the thread. And thanks to the attachments to the thread,
we can actually reconstruct the sub-labyrinth we came from.” Ariadne remarked, Note that
a partial test for correctness is to check that each bound variable like x, l and r on the left
hand side appears exactly once at the right hands side as well. So, when walking up and
down a zipper, we only redistribute data between the thread and the current sub-labyrinth.

323

Zippers

Exercises:

1. Now that we can navigate the zipper, code the functions get, put and update that
operate on the extra data at the player’s position.

2. Zippers are by no means limited to the concrete example Node a, they can be
constructed for all tree-like data types. Go on and construct a zipper for binary
trees
data Tree a = Leaf a | Bin (Tree a) (Tree a)

Start by thinking about the possible branches Branch a that a thread can take.
What do you have to glue to the thread when exploring the tree?

3. Simple lists have a zipper as well.
data List a = Empty | Cons a (List a)

What does it look like?
4. Write a complete game based on Theseus’ labyrinth.

Heureka! That was the solution Theseus sought and Ancient Geeks Inc. should prevail,
even if partially sold to Ariadne Consulting. But one question remained: ”Why is it called
zipper?” Well, I would have called it ’Ariadne’s pearl necklace’. But most likely, it’s called
zipper because the thread is in analogy to the open part and the sub-labyrinth is like the
closed part of a zipper. Moving around in the data structure is analogous to zipping or
unzipping the zipper. ” ’Ariadne’s pearl necklace’,” he articulated disdainfully. ”As if your
thread was any help back then on Crete.” As if the idea with the thread were yours, she
replied. ”Bah, I need no thread,” he defied the fact that he actually did need the thread to
program the game. Much to his surprise, she agreed, Well, indeed you don’t need a thread.
Another view is to literally grab the tree at the focus with your finger and lift it up in
the air. The focus will be at the top and all other branches of the tree hang down. You
only have to assign the resulting tree a suitable algebraic data type, most likely that of the
zipper.

324

Theseus and the Zipper

Figure 19 Grab the focus with your finger, lift it in the air and the hanging branches
will form new tree with your finger at the top, ready to be structured by an algebraic data
type.

”Ah.” He didn’t need Ariadne’s thread but he needed Ariadne to tell him? That was too
much. ”Thank you, Ariadne, good bye.” She did not hide her smirk as he could not see it
anyway through the phone.

Exercises:
Take a list, fix one element in the middle with your finger and lift the list into the air.
What type can you give to the resulting tree?

Half a year later, Theseus stopped in front of a shop window, defying the cold rain that
tried to creep under his buttoned up anorak. Blinking letters announced

”Spider-Man: lost in the Web”

- find your way through the labyrinth of threads -

the great computer game by Ancient Geeks Inc.

He cursed the day when he called Ariadne and sold her a part of the company. Was it
she who contrived the unfriendly takeover by WineOS Corp., led by Ariadne’s husband
Dionysus? Theseus watched the raindrops finding their way down the glass window. Af-
ter the production line was changed, nobody would produce Theseus and the Minotaur™
merchandise anymore. He sighed. His time, the time of heroes, was over. Now came the
super-heroes.

325

Zippers

46.2 Differentiation of data types

The previous section has presented the zipper, a way to augment a tree-like data structure
Node a with a finger that can focus on the different subtrees. While we constructed a zipper
for a particular data structure Node a, the construction can be easily adapted to different
tree data structures by hand.

Exercises:
Start with a ternary tree
data Tree a = Leaf a | Node (Tree a) (Tree a) (Tree a)

and derive the corresponding Thread a and Zipper a.

46.2.1 Mechanical Differentiation

But there is also an entirely mechanical way to derive the zipper of any (suitably regular)
data type. Surprisingly, ’derive’ is to be taken literally, for the zipper can be obtained
by the derivative of the data type, a discovery first described by Conor McBride6. The
subsequent section is going to explicate this truly wonderful mathematical gem.

For a systematic construction, we need to calculate with types. The basics of structural
calculations with types are outlined in a separate chapter ../Generic Programming/7 and
we will heavily rely on this material.

Let’s look at some examples to see what their zippers have in common and how they hint
differentiation. The type of binary tree is the fixed point of the recursive equation

Tree2 = 1+Tree2 ×Tree2

.

When walking down the tree, we iteratively choose to enter the left or the right subtree and
then glue the not-entered subtree to Ariadne’s thread. Thus, the branches of our thread
have the type

Branch2 = Tree2 +Tree2 ∼= 2×Tree2

.

Similarly, the thread for a ternary tree

Tree3 = 1+Tree3 ×Tree3 ×Tree3

6 Conor Mc Bride. The Derivative of a Regular Type is its Type of One-Hole Contexts. Available online.
PDF ˆ{http://strictlypositive.org/diff.pdf}

7 https://en.wikibooks.org/wiki/..%2FGeneric%20Programming%2F

326

http://strictlypositive.org/diff.pdf
https://en.wikibooks.org/wiki/..%2FGeneric%20Programming%2F

Differentiation of data types

has branches of type

Branch3 = 3×Tree3 ×Tree3

because at every step, we can choose between three subtrees and have to store the two
subtrees we don’t enter. Isn’t this strikingly similar to the derivatives d

dxx2 = 2 × x and
d

dxx3 = 3 ×x2?
The key to the mystery is the notion of the one-hole context of a data structure. Imagine
a data structure parameterised over a type X, like the type of trees Tree X. If we were
to remove one of the items of this type X from the structure and somehow mark the now
empty position, we obtain a structure with a marked hole. The result is called ”one-hole
context” and inserting an item of type X into the hole gives back a completely filled Tree X.
The hole acts as a distinguished position, a focus. The figures illustrate this.

Figure 20 Removing a value of type X from a Tree X leaves a hole at that
position.

Figure 21 A more abstract illustration of plugging X into a one-hole context.

Of course, we are interested in the type to give to a one-hole context, i.e. how to represent
it in Haskell. The problem is how to efficiently mark the focus. But as we will see, finding
a representation for one-hole contexts by induction on the structure of the type we want to
take the one-hole context of automatically leads to an efficient data type8. So, given a data
structure F X with a functor F and an argument type X, we want to calculate the type
∂F X of one-hole contexts from the structure of F . As our choice of notation ∂F already
reveals, the rules for constructing one-hole contexts of sums, products and compositions are
exactly Leibniz’ rules for differentiation.

One-hole context Illustration
(∂ConstA)X = 0 There is no X in A = ConstA X, so the type of

its one-hole contexts must be empty.
(∂Id)X = 1 There is only one position for items X in

X = Id X. Removing one X leaves no X in the
result. And as there is only one position we can
remove it from, there is exactly one one-hole
context for Id X. Thus, the type of one-hole
contexts is the singleton type.

∂(F +G) = ∂F +∂G As an element of type F + G is either of type
F or of type G, a one-hole context is also either
∂F or ∂G.

8 This phenomenon already shows up with generic tries.

327

Zippers

One-hole context Illustration

∂(F ×G) = F ×∂G+∂F ×G

Figure 22
The hole in a one-hole context of a pair is either
in the first or in the second component.

∂(F ◦G) = (∂F ◦G)×∂G

Figure 23
Chain rule. The hole in a composition arises
by making a hole in the enclosing structure and
fitting the enclosed structure in.

Of course, the function plug that fills a hole has the type (∂F X)×X → F X.

So far, the syntax ∂ denotes the differentiation of functors, i.e. of a kind of type functions
with one argument. But there is also a handy expression oriented notation ∂X slightly more
suitable for calculation. The subscript indicates the variable with respect to which we want
to differentiate. In general, we have

(∂F)X = ∂X(F X)

An example is

∂(Id × Id)X = ∂X(X ×X) = 1×X +X ×1 ∼= 2×X

Of course, ∂X is just point-wise whereas ∂ is point-free style.

328

Differentiation of data types

Exercises:

1. Rewrite some rules in point-wise style. For example, the left hand side of the
product rule becomes ∂X(F X ×GX) =

2. To get familiar with one-hole contexts, differentiate the product Xn := X × X ×
·· ·×X of exactly n factors formally and convince yourself that the result is indeed
the corresponding one-hole context.

3. Of course, one-hole contexts are useless if we cannot plug values of type X back
into them. Write the plug functions corresponding to the five rules.

4. Formulate the chain rule for two variables and prove that it yields one-hole
contexts. You can do this by viewing a bifunctor F X Y as an normal functor in
the pair (X,Y). Of course, you may need a handy notation for partial derivatives
of bifunctors in point-free style.

46.2.2 Zippers via Differentiation

The above rules enable us to construct zippers for recursive data types µF := µX.F X
where F is a polynomial functor. A zipper is a focus on a particular subtree, i.e. substructure
of type µF inside a large tree of the same type. As in the previous chapter, it can be
represented by the subtree we want to focus at and the thread, that is the context in which
the subtree resides

ZipperF = µF ×ContextF

.

Now, the context is a series of steps each of which chooses a particular subtree µF among
those in F µF . Thus, the unchosen subtrees are collected together by the one-hole context
∂F (µF). The hole of this context comes from removing the subtree we’ve chosen to enter.
Putting things together, we have

ContextF = List (∂F (µF))

.

or equivalently

ContextF = 1+∂F (µF)×ContextF

.

To illustrate how a concrete calculation proceeds, let’s systematically construct the zipper
for our labyrinth data type

329

Zippers

data Node a = DeadEnd a
| Passage a (Node a)
| Fork a (Node a) (Node a)

This recursive type is the fixed point

Node A = µX.NodeFA X

of the functor

NodeFA X = A+A×X +A×X ×X

.

In other words, we have

Node A ∼= NodeFA (Node A) ∼= A+A×Node A+A×Node A×Node A

.

The derivative reads

∂X(NodeFA X) ∼= A+2×A×X

and we get

∂NodeFA (Node A) ∼= A+2×A×Node A

.

Thus, the context reads

ContextNodeF ∼= List (∂NodeFA (Node A)) ∼= List (A+2×A× (Node A))

.

Comparing with

data Branch a = KeepStraightOn a
| TurnLeft a (Node a)
| TurnRight a (Node a)

type Thread a = [Branch a]

330

Differentiation of data types

we see that both are exactly the same as expected!

Exercises:

1. Redo the zipper for a ternary tree, but with differentiation this time.
2. Construct the zipper for a list.
3. Rhetorical question concerning the previous exercise: what’s the difference between
a list and a stack?

46.2.3 Differentation of Fixed Point

There is more to data types than sums and products, we also have a fixed point operator
with no direct correspondence in calculus. Consequently, the table is missing a rule of
differentiation, namely how to differentiate fixed points µF X = µY.F X Y :

∂X(µF X) = ?

.

As its formulation involves the chain rule in two variables, we delegate it to the exercises.
Instead, we will calculate it for our concrete example type Node A:

∂A(Node A) = ∂A(A+A×Node A+A×Node A×Node A)
∼= 1+Node A+Node A×Node A

+∂A(Node A)× (A+2×A×Node A).

Of course, expanding ∂A(Node A) further is of no use, but we can see this as a fixed point
equation and arrive at

∂A(Node A) = µX.T A+S A×X

with the abbreviations

T A = 1+Node A+Node A×Node A

and

S A = A+2×A×Node A

.

331

Zippers

The recursive type is like a list with element types S A, only that the empty list is replaced
by a base case of type T A. But given that the list is finite, we can replace the base case
with 1 and pull T A out of the list:

∂A(Node A) ∼= T A× (µX.1+S A×X) = T A×List (S A)

.

Comparing with the zipper we derived in the last paragraph, we see that the list type is
our context

List (S A) ∼= ContextNodeF

and that

A×T A ∼= Node A

.

In the end, we have

ZipperNodeF
∼= ∂A(Node A)×A

.

Thus, differentiating our concrete example Node A with respect to A yields the zipper up
to an A!

Exercises:

1. Use the chain rule in two variables to formulate a rule for the differentiation of a
fixed point.

2. Maybe you know that there are inductive (µ) and coinductive fixed points (ν).
What’s the rule for coinductive fixed points?

46.2.4 Differentation with respect to functions of the argument

When finding the type of a one-hole context one does d f(x)/d x. It is entirely possible
to solve expressions like d f(x)/d g(x). For example, solving d xˆ4 / d xˆ2 gives 2xˆ2 , a
two-hole context of a 4-tuple. The derivation is as follows let u=xˆ2 d xˆ4 / d xˆ2 = d uˆ2
/d u = 2u = 2 xˆ2 .

332

Differentiation of data types

46.2.5 Zippers vs Contexts

In general however, zippers and one-hole contexts denote different things. The zipper is a
focus on arbitrary subtrees whereas a one-hole context can only focus on the argument of
a type constructor. Take for example the data type

data Tree a = Leaf a | Bin (Tree a) (Tree a)

which is the fixed point

Tree A = µX.A+X ×X

.

The zipper can focus on subtrees whose top is Bin or Leaf but the hole of one-hole context
of Tree A may only focus a Leafs because this is where the items of type A reside. The
derivative of Node A only turned out to be the zipper because every top of a subtree is
always decorated with an A.

Exercises:

1. Surprisingly, ∂A(Tree A) × A and the zipper for Tree A again turn out to be the
same type. Doing the calculation is not difficult but can you give a reason why
this has to be the case?

2. Prove that the zipper construction for µF can be obtained by introducing an aux-
iliary variable Y , differentiating µX.Y ×F X with respect to it and re-substituting
Y = 1. Why does this work?

3. Find a type GA whose zipper is different from the one-hole context.

46.2.6 Conclusion

We close this section by asking how it may happen that rules from calculus appear in a
discrete setting. Currently, nobody knows. But at least, there is a discrete notion of linear,
namely in the sense of ”exactly once”. The key feature of the function that plugs an item
of type X into the hole of a one-hole context is the fact that the item is used exactly once,
i.e. linearly. We may think of the plugging map as having type

∂XF X → (X ⊸ F X)

where A ⊸ B denotes a linear function, one that does not duplicate or ignore its argument,
as in linear logic. In a sense, the one-hole context is a representation of the function space
X ⊸ F X, which can be thought of being a linear approximation to X → F X.

333

Zippers

46.3 See Also

w:Zipper (data structure)9

• Zipper10 on the haskell.org wiki
• Generic Zipper and its applications11
• Zipper-based file server/OS12
• Scrap Your Zippers: A Generic Zipper for Heterogeneous Types13

9 https://en.wikipedia.org/wiki/Zipper%20%28data%20structure%29
10 http://www.haskell.org/haskellwiki/Zipper
11 http://okmij.org/ftp/Computation/Continuations.html#zipper
12 http://okmij.org/ftp/Computation/Continuations.html#zipper-fs
13 http://www.michaeldadams.org/papers/scrap_your_zippers/

334

https://en.wikipedia.org/wiki/Zipper%20%28data%20structure%29
http://www.haskell.org/haskellwiki/Zipper
http://okmij.org/ftp/Computation/Continuations.html#zipper
http://okmij.org/ftp/Computation/Continuations.html#zipper-fs
http://www.michaeldadams.org/papers/scrap_your_zippers/

47 Lenses and functional references

This chapter is about functional references. By ”references”, we mean they point at parts
of values, allowing us to access and modify them. By ”functional”, we mean they do so in
a way that provides the flexibility and composability we came to expect from functions.
We will study functional references as implemented by the powerful lens1 library. lens is
named after lenses, a particularly well known kind of functional reference. Beyond being
very interesting from a conceptual point of view, lenses and other functional references allow
for several convenient and increasingly common idioms, put into use by a number of useful
libraries.

47.1 A taste of lenses

As a warm-up, we will demonstrate the simplest use case for lenses: as a nicer alternative
to the vanilla Haskell records. There will be little in the way of explanations in this section;
we will fill in the gaps through the remainder of the chapter.

Consider the following types, which are not unlike something you might find in a 2D drawing
library:

-- A point in the plane.
data Point = Point

{ positionX :: Double
, positionY :: Double
} deriving (Show)

-- A line segment from one point to another.
data Segment = Segment

{ segmentStart :: Point
, segmentEnd :: Point
} deriving (Show)

-- Helpers to create points and segments.
makePoint :: (Double, Double) -> Point
makePoint (x, y) = Point x y

makeSegment :: (Double, Double) -> (Double, Double) -> Segment
makeSegment start end = Segment (makePoint start) (makePoint end)

Record syntax gives us functions for accessing the fields. With them, getting the coordinates
of the points that define a segment is easy enough:

GHCi> let testSeg = makeSegment (0, 1) (2, 4)
GHCi> positionY . segmentEnd $ testSeg
GHCi> 4.0

1 https://hackage.haskell.org/package/lens

335

https://hackage.haskell.org/package/lens

Lenses and functional references

Updates, however, are clunkier...

GHCi> testSeg { segmentEnd = makePoint (2, 3) }
Segment {segmentStart = Point {positionX = 0.0, positionY = 1.0}
, segmentEnd = Point {positionX = 2.0, positionY = 3.0}}

... and get downright ugly when we need to reach a nested field. Here is what it takes to
double the value of the y coordinate of the end point:

GHCi> :set +m -- Enabling multi-line input in GHCi.
GHCi> let end = segmentEnd testSeg
GHCi| in testSeg { segmentEnd = end { positionY = 2 * positionY end } }
Segment {segmentStart = Point {positionX = 0.0, positionY = 1.0}
, segmentEnd = Point {positionX = 2.0, positionY = 8.0}}

Lenses allow us to avoid such nastiness, so let’s start over with them:

-- Some of the examples in this chapter require a few GHC extensions:
-- TemplateHaskell is needed for makeLenses; RankNTypes is needed for
-- a few type signatures later on.
{-# LANGUAGE TemplateHaskell, RankNTypes #-}

import Control.Lens

data Point = Point
{ _positionX :: Double
, _positionY :: Double
} deriving (Show)

makeLenses ''Point

data Segment = Segment
{ _segmentStart :: Point
, _segmentEnd :: Point
} deriving (Show)

makeLenses ''Segment

makePoint :: (Double, Double) -> Point
makePoint (x, y) = Point x y

makeSegment :: (Double, Double) -> (Double, Double) -> Segment
makeSegment start end = Segment (makePoint start) (makePoint end)

The only real change here is the use of makeLenses, which automatically generates lenses
for the fields of Point and Segment (the extra underscores are required by the naming
conventions of makeLenses). As we will see, writing lenses definitions by hand is not
difficult at all; however, it can be tedious if there are lots of fields to make lenses for, and
thus automatic generation is very convenient.

Thanks to makeLenses, we now have a lens for each field. Their names match that of the
fields, except with the leading underscore removed:

GHCi> :info positionY
positionY :: Lens' Point Double

-- Defined at WikibookLenses.hs:9:1
GHCi> :info segmentEnd
segmentEnd :: Lens' Segment Point

-- Defined at WikibookLenses.hs:15:1

The type positionY :: Lens' Point Double tells us that positionY is a reference to a
Double within a Point. To work with such references, we use the combinators provided by

336

The scenic route to lenses

the lens library. One of them is view, which gives us the value pointed at by a lens, just
like a record accessor:

GHCi> let testSeg = makeSegment (0, 1) (2, 4)
GHCi> view segmentEnd testSeg
Point {_positionX = 2.0, _positionY = 4.0}

Another one is set, which overwrites the value pointed at:

GHCi> set segmentEnd (makePoint (2, 3)) testSeg
Segment {_segmentStart = Point {_positionX = 0.0, _positionY = 1.0}
, _segmentEnd = Point {_positionX = 2.0, _positionY = 3.0}}

One of the great things about lenses is that they are easy to compose:

GHCi> view (segmentEnd . positionY) testSeg
GHCi> 4.0

Note that when writing composed lenses, such as segmentEnd . positionY, the order is
from large to small. In this case, the lens that focuses on a point of the segment comes
before the one that focuses on a coordinate of that point. While that might look a little
surprising in contrast to how record accessors work (compare with the equivalent lens-less
example at the beginning of this section), the (.) used here is just the function composition
operator we know and love.

Composition of lenses provide a way out of the nested record update quagmire. Here is a
translation of the coordinate-doubling example using over, through which we can apply a
function to the value pointed at by a lens:

GHCi> over (segmentEnd . positionY) (2 *) testSeg
Segment {_segmentStart = Point {_positionX = 0.0, _positionY = 1.0}
, _segmentEnd = Point {_positionX = 2.0, _positionY = 8.0}}

These initial examples might look a bit magical at first. What makes it possible to use
one and the same lens to get, set and modify a value? How come composing lenses with
(.) just works? Is it really so easy to write lenses without the help of makeLenses? We
will answer such questions by going behind the curtains to find what lenses are made of.

47.2 The scenic route to lenses

There are many ways to make sense of lenses. We will follow a sinuous yet gentle path,
one which avoids conceptual leaps of faith. Along the way, we will introduce a few different
kinds of functional references. Following lens terminology, from now on we will use the
word ”optics” to refer collectively to the various species of functional references. As we will
see, the optics in lens are interrelated, forming a hierarchy. It is this hierarchy which we
are now going to explore.

337

Lenses and functional references

47.2.1 Traversals

We will begin not with lenses, but with a closely related optic: traversals. The Traversable2
chapter discussed how traverse makes it possible to walk across a structure while producing
an overall effect:

traverse
:: (Applicative f, Traversable t) => (a -> f b) -> t a -> f (t b)

With traverse, you can use any Applicative you like to produce the effect. In particular,
we have seen how fmap can be obtained from traverse simply by picking Identity as the
applicative functor, and that the same goes for foldMap and Const m, using Monoid m =>
Applicative (Const m):

fmap f = runIdentity . traverse (Identity . f)
foldMap f = getConst . traverse (Const . f)

lens takes this idea and lets it blossom.

Manipulating values within a Traversable structure, as traverse allows us to, is an ex-
ample of targeting parts of a whole. As flexible as it is, however, traverse only handles a
rather limited range of targets. For one, we might want to walk across structures that are
not Traversable functors. Here is an entirely reasonable function that does so with our
Point type:

pointCoordinates
:: Applicative f => (Double -> f Double) -> Point -> f Point

pointCoordinates g (Point x y) = Point <$> g x <*> g y

pointCoordinates is a traversal of Point. It looks a lot like a typical implementation of
traverse, and can be used in pretty much the same way. Here is an adaptation of the
rejectWithNegatives example from the Traversable3 chapter:

GHCi> let deleteIfNegative x = if x < 0 then Nothing else Just x
GHCi> pointCoordinates deleteIfNegative (makePoint (1, 2))
Just (Point {_positionX = 1.0, _positionY = 2.0})
GHCi> pointCoordinates deleteIfNegative (makePoint (-1, 2))
Nothing

This generalised notion of a traversal that pointCoordinates exemplifies is captured by
one of the core types of lens: Traversal.

type Traversal s t a b =
forall f. Applicative f => (a -> f b) -> s -> f t

Note:
The forall f. on the right side of the type declaration means that any
Applicative can be used to replace f. That makes it unnecessary to mention f on
the left side, or to specify which f to pick when using a Traversal.

2 Chapter 42 on page 269
3 Chapter 42.1 on page 269

338

The scenic route to lenses

With the Traversal synonym, the type of pointCoordinates can be expressed as:

Traversal Point Point Double Double

Let’s have a closer look at what became of each type variable in Traversal s t a b:

• s becomes Point: pointCoordinates is a traversal of a Point.
• t becomes Point: pointCoordinates produces a Point (in some Applicative context).
• a becomes Double: pointCoordinates targets Double values in a Point (the X and Y
coordinates of the points).

• b becomes Double: the targeted Double values become Double values (possibly different
than the original ones).

In the case of pointCoordinates, s is the same as t, and a is the same as b.
pointCoordinates does not change the type of the traversed structure, or that of the
targets in it, but that need not be the case. One example is good old traverse, whose type
can be expressed as:

Traversable t => Traversal (t a) (t b) a b

traverse is able to change the types of the targeted values in the Traversable structure
and, by extension, the type of the structure itself.

The Control.Lens.Traversal4 module includes generalisations of Data.Traversable5 functions
and various other tools for working with traversals.

Exercises:

1. Write extremityCoordinates, a traversal that goes through all coordinates of
the points that define a Segment in the order suggested by the data declaration.
(Hint: use the pointCoordinates traversal.)

47.2.2 Setters

Next in our programme comes the generalisation of the links between Traversable,
Functor and Foldable. We shall begin with Functor.

To recover fmap from traverse, we picked Identity as the applicative functor. That choice
allowed us to modify the targeted values without producing any extra effects. We can reach
similar results by picking the definition of a Traversal...

forall f. Applicative f => (a -> f b) -> s -> f t

... and specialising f to Identity:

(a -> Identity b) -> s -> Identity t

4 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Traversal.html
5 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html

339

http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Traversal.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html

Lenses and functional references

In lens parlance, that is how you get a Setter. For technical reasons, the definition of
Setter in Control.Lens.Setter6 is a little different...

type Setter s t a b =
forall f. Settable f => (a -> f b) -> s -> f t

... but if you dig into the documentation you will find that a Settable functor is either
Identity or something very much like it, so the difference need not concern us.

When we take Traversal and restrict the choice of f we actually make the type more
general. Given that a Traversal works with any Applicative functor, it will also work
with Identity, and therefore any Traversal is a Setter and can be used as one. The
reverse, however, is not true: not all setters are traversals.

over is the essential combinator for setters. It works a lot like fmap, except that you pass
a setter as its first argument in order to specify which parts of the structure you want to
target:

GHCi> over pointCoordinates negate (makePoint (1, 2))
Point {_positionX = -1.0, _positionY = -2.0}

In fact, there is a Setter called mapped that allows us to recover fmap:

GHCi> over mapped negate [1..4]
[-1,-2,-3,-4]
GHCi> over mapped negate (Just 3)
Just (-3)

Another very important combinator is set, which replaces all targeted values with a
constant. set setter x = over setter (const x), analogously to how (x <$) = fmap
(const x):

GHCi> set pointCoordinates 7 (makePoint (1, 2))
Point {_positionX = 7.0, _positionY = 7.0}

Exercises:

1. Use over to implement...
scaleSegment :: Double -> Segment -> Segment
... so that scaleSegment n multiplies all coordinates of a segment by x. (Hint:
use your answer to the previous exercise.)

2. Implement mapped. For this exercise, you can specialise the Settable functor to
Identity. (Hint: you will need Data.Functor.Identitya.)

a http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor-Identity.html

47.2.3 Folds

Having generalised the fmap-as-traversal trick, it is time to do the same with the foldMap-
as-traversal one. We will use Const to go from...

6 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Setter.html

340

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor-Identity.html
http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Setter.html

The scenic route to lenses

forall f. Applicative f => (a -> f b) -> s -> f t

... to:

forall r. Monoid r => (a -> Const r a) -> s -> Const r s

Since the second parameter of Const is irrelevant, we replace b with a and t with s to make
our life easier.

Just like we have seen for Setter and Identity, Control.Lens.Fold7 uses something slightly
more general than Monoid r => Const r:

type Fold s a =
forall f. (Contravariant f, Applicative f) => (a -> f a) -> s -> f s

7 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Lens-Fold.html

341

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Lens-Fold.html

Lenses and functional references

Note:
Contravariant is a type class for contravariant functors. The key
Contravariant method is contramap...
contramap :: Contravariant f => (a -> b) -> f b -> f a

... which looks a lot like fmap, except that it, so to say, turns the function arrow
around on mapping. Types parametrised over function arguments are typical examples
of Contravariant. For instance, Data.Functor.Contravarianta defines a Predicate type
for boolean tests on values of type a:
newtype Predicate a = Predicate { getPredicate :: a -> Bool }

GHCi> :m +Data.Functor.Contravariant
GHCi> let largerThanFour = Predicate (> 4)
GHCi> getPredicate largerThanFour 6
True

Predicate is a Contravariant, and so you can use contramap to modify a
Predicate so that the values are adjusted in some way before being submitted to the
test:
GHCi> getPredicate (contramap length largerThanFour) "orange"
True

Contravariant has laws which are analogous to the Functor ones:
contramap id = id
contramap (g . f) = contramap f . contramap g

a http://hackage.haskell.org/packages/archive/contravariant/latest/doc/html/Data-Functor-Contravariant.html

Monoid r => Const r is both a Contravariant and an Applicative. Thanks to the func-
tor and contravariant laws, anything that is both a Contravariant and a Functor is, just
like Const r, a vacuous functor, with both fmap and contramap doing nothing. The addi-
tional Applicative constraint corresponds to the Monoid r; it allows us to actually perform
the fold by combining the Const-like contexts created from the targets.

Every Traversal can be used as a Fold, given that a Traversal must work with any
Applicative, including those that are also Contravariant. The situation parallels exactly
what we have seen for Traversal and Setter.

Control.Lens.Fold offers analogues to everything in Data.Foldable8. Two commonly seen
combinators from that module are toListOf, which produces a list of the Fold targets...

8 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html

342

http://hackage.haskell.org/packages/archive/contravariant/latest/doc/html/Data-Functor-Contravariant.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html

The scenic route to lenses

GHCi> -- Using the solution to the exercise in the traversals subsection.
GHCi> toListOf extremityCoordinates (makeSegment (0, 1) (2, 3))
[0.0,1.0,2.0,3.0]

... and preview, which extracts the first target of a Fold using the First monoid from
Data.Monoid9.

GHCi> preview traverse [1..10]
Just 1

47.2.4 Getters

So far we have moved from Traversal to more general optics (Setter and Fold) by re-
stricting the functors available for traversing. We can also go in the opposite direction, that
is, making more specific optics by broadening the range of functors they have to deal with.
For instance, if we take Fold...

type Fold s a =
forall f. (Contravariant f, Applicative f) => (a -> f a) -> s -> f s

... and relax the Applicative constraint to merely Functor, we obtain Getter:

type Getter s a =
forall f. (Contravariant f, Functor f) => (a -> f a) -> s -> f s

As f still has to be both Contravariant and Functor, it remains being a Const-like vacuous
functor. Without the Applicative constraint, however, we can’t combine results from
multiple targets. The upshot is that a Getter always has exactly one target, unlike a
Fold (or, for that matter, a Setter, or a Traversal) which can have any number of targets,
including zero.

The essence of Getter can be brought to light by specialising f to the obvious choice, Const
r:

someGetter :: (a -> Const r a) -> s -> Const r s

Since a Const r whatever value can be losslessly converted to a r value and back, the type
above is equivalent to:

someGetter' :: (a -> r) -> s -> r

someGetter' k x = getConst (someGetter (Const . k) x)
someGetter g x = Const (someGetter' (getConst . g) x)

An (a -> r) -> s -> r function, however, is just an s -> a function in disguise (the
camouflage being continuation passing style10):

someGetter'' :: s -> a

9 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html
10 Chapter 45 on page 303

343

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html

Lenses and functional references

someGetter'' x = someGetter' id x
someGetter' k x = k (someGetter'' x)

Thus we conclude that a Getter s a is equivalent to a s -> a function. From this point
of view, it is only natural that it takes exactly one target to exactly one result. It is
not surprising either that two basic combinators from Control.Lens.Getter11 are to, which
makes a Getter out of an arbitrary function, and view, which converts a Getter back to
an arbitrary function.

GHCi> -- The same as fst (4, 1)
GHCi> view (to fst) (4, 1)
4

11 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Lens-Getter.html

344

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Lens-Getter.html

The scenic route to lenses

Note:
Given what we have just said about Getter being less general than Fold, it may come
as a surprise that view can work Folds and Traversals as well as with Getters:
GHCi> :m +Data.Monoid
GHCi> view traverse (fmap Sum [1..10])
Sum {getSum = 55}
GHCi> -- both traverses the components of a pair.
GHCi> view both ([1,2],[3,4,5])
[1,2,3,4,5]

That is possible thanks to one of the many subtleties of the type signatures of lens.
The first argument of view is not exactly a Getter, but a Getting:
type Getting r s a = (a -> Const r a) -> s -> Const r s

view :: MonadReader s m => Getting a s a -> m a

Getting specialises the functor parameter to Const r, the obvious choice for Getter,
but leaves it open whether there will be an Applicative instance for it (i.e. whether
r will be a Monoid). Using view as an example, as long as a is a Monoid Getting a s
a can be used as a Fold, and so Folds can be used with view as long as the fold targets
are monoidal.
Many combinators in both Control.Lens.Getter and Control.Lens.Fold are defined
in terms of Getting rather than Getter or Fold. One advantage of using Getting is
that the resulting type signatures tell us more about the folds that might be performed.
For instance, consider hasn't from Control.Lens.Fold:
hasn't :: Getting All s a -> s -> Bool

It is a generalised test for emptiness:
GHCi> hasn't traverse [1..4]
False
GHCi> hasn't traverse Nothing
True

Fold s a -> s -> Bool would work just as well as a signature for hasn't. However,
the Getting All in the actual signature is quite informative, in that it strongly suggests
what hasn't does: it converts all a targets in s to the All monoid (more precisely, to
All False), folds them and extracts a Bool from the overall All result.

47.2.5 Lenses at last

If we go back to Traversal...

345

Lenses and functional references

type Traversal s t a b =
forall f. Applicative f => (a -> f b) -> s -> f t

... and relax the Applicative constraint to Functor, just as we did when going from
Fold to Getter...

type Lens s t a b =
forall f. Functor f => (a -> f b) -> s -> f t

... we finally reach the Lens type.

What changes when moving from Traversal to Lens? As before, relaxing the
Applicative constraint costs us the ability to traverse multiple targets. Unlike a Traver-
sal, a Lens always focuses on a single target. As usual in such cases, there is a bright side
to the restriction: with a Lens, we can be sure that exactly one target will be found, while
with a Traversal we might end up with many, or none at all.

The absence of the Applicative constraint and the uniqueness of targets point towards
another key fact about lenses: they can be used as getters. Contravariant plus Functor is
a strictly more specific constraint than just Functor, and so Getter is strictly more general
than Lens. As every Lens is also a Traversal and therefore a Setter, we conclude that
lenses can be used as both getters and setters. That explains why lenses can replace record
labels.

Note:
On close reading, our claim that every Lens can be used as a Getter might seem rash.
Placing the types side by side...
type Lens s t a b =

forall f. Functor f => (a -> f b) -> s -> f t

type Getter s a =
forall f. (Contravariant f, Functor f) => (a -> f a) -> s -> f s

... shows that going from Lens s t a b to Getter s a involves making s equal to
t and a equal to b. How can we be sure that is possible for any lens? An analogous
issue might be raised about the relationship between Traversal and Fold. For the
moment, this question will be left suspended; we will return to it in the section about
optic laws.

Here is a quick demonstration of the flexibility of lenses using _1, a lens that focuses on the
first component of a tuple:

GHCi> _1 (\x -> [0..x]) (4, 1) -- Traversal
[(0,1),(1,1),(2,1),(3,1),(4,1)]
GHCi> set _1 7 (4, 1) -- Setter
(7,1)
GHCi> over _1 length ("orange", 1) -- Setter, changing the types
(6,1)
GHCi> toListOf _1 (4, 1) -- Fold
[4]
GHCi> view _1 (4, 1) -- Getter
4

346

Composition

Exercises:

1. Implement the lenses for the fields of Point and Segment, that is, the ones we
generated with makeLenses early on. (Hint: Follow the types. Once you write the
signatures down you will notice that beyond fmap and the record labels there is
not much else you can use to write them.)

2. Implement the lens function, which takes a getter function s -> a and a setter
function s -> b -> t and produces a Lens s t a b. (Hint: Your implementa-
tion will be able to minimise the repetitiveness in the solution of the previous
exercise.)

47.3 Composition

The optics we have seen so far fit the shape...

(a -> f b) -> (s -> f t)

... in which:

• f is a Functor of some sort;
• s is the type of the whole, that is, the full structure the optic works with;
• t is the type of what the whole becomes through the optic;
• a is the type of the parts, that is, the targets within s that the optic focuses on; and
• b is the type of what the parts becomes through the optic.

One key thing those optics have in common is that they are all functions. More specifically,
they are mapping functions that turn a function acting on a part (a -> f b) into a function
acting on the whole (s -> f t). Being functions, they can be composed in the usual
manner. Let’s have a second look at the lens composition example from the introduction:

GHCi> let testSeg = makeSegment (0, 1) (2, 4)
GHCi> view (segmentEnd . positionY) testSeg
GHCi> 4.0

An optic modifies the function it receives as argument to make it act on a larger structure.
Given that (.) composes functions from right to left, we find that, when reading code from
left to right, the components of an optic assembled with (.) focus on progressively smaller
parts of the original structure. The conventions used by the lens type synonyms match this
large-to-small order, with s and t coming before a and b. The table below illustrates how
we can look at what an optic does either a mapping (from small to large) or as a focusing
(from large to small), using segmentEnd . positionY as an example:

Lens segmentEnd positionY segmentEnd . positionY
Bare type

Functor f
=> (Point -> f Point)
-> (Segment -
> f Segment)

Functor f
=> (Double -

> f Double)
-> (Point -

> f Point)

Functor f
=> (Double -

> f Double)
-> (Segment -

> f Segment)

347

Lenses and functional references

”Mapping” interpretation From a function on Point to
a function on Segment.

From a function on
Double to a function on
Point.

From a function on
Double to a function on
Segment.

Type with Lens Lens Segment Segment
Point Point

Lens Point Point Double
Double

Lens Segment Segment
Double Double

Type with Lens' Lens' Segment Point Lens' Point Double Lens' Segment Double
”Focusing” interpretation Focuses on a Point within a

Segment
Focuses on a Double within a
Point

Focuses on a Double within a
Segment

Note:
The Lens' synonym is just convenient shorthand for lenses that do not change types
(that is, lenses with s equal to t and a equal to b).
type Lens' s a = Lens s s a a

There are analogous Traversal' and Setter' synonyms as well.

The types behind synonyms such as Lens and Traversal only differ in which functors they
allow in place of f. As a consequence, optics of different kinds can be freely mixed, as long
as there is a type which all of them fit. Here are some examples:

GHCi> -- A Traversal on a Lens is a Traversal.
GHCi> (_2 . traverse) (\x -> [-x, x]) ("foo", [1,2])
[("foo",[-1,-2]),("foo",[-1,2]),("foo",[1,-2]),("foo",[1,2])]
GHCi> -- A Getter on a Lens is a Getter.
GHCi> view (positionX . to negate) (makePoint (2,4))
-2.0
GHCi> -- A Getter on a Traversal is a Fold.
GHCi> toListOf (both . to negate) (2,-3)
[-2,3]
GHCi> -- A Getter on a Setter does not exist (there is no unifying optic).
GHCi> set (mapped . to length) 3 ["orange", "apple"]

<interactive>:49:15:
No instance for (Contravariant Identity) arising from a use of ‘to’
In the second argument of ‘(.)’, namely ‘to length’
In the first argument of ‘set’, namely ‘(mapped . to length)’
In the expression: set (mapped . to length) 3 ["orange", "apple"]

47.4 Operators

Several lens combinators have infix operator synonyms, or at least operators nearly equiv-
alent to them. Here are the correspondences for some of the combinators we have already
seen:

Prefix Infix
view _1 (1,2) (1,2) ˆ. _1
set _1 7 (1,2) (_1 .˜ 7) (1,2)
over _1 (2 *) (1,2) (_1 %˜ (2 *)) (1,2)
toListOf traverse [1..4] [1..4] ˆ.. traverse
preview traverse [] [] ˆ? traverse

348

A swiss army knife

lens operators that extract values (e.g. (ˆ.), (ˆ..) and (ˆ?)) are flipped with respect to
the corresponding prefix combinators, so that they take the structure from which the result
is extracted as the first argument. That improves readability of code using them, as writing
the full structure before the optics targeting parts of it mirrors how composed optics are
written in large-to-small order. With the help of the (&) operator, which is defined simply
as flip ($), the structure can also be written first when using modifying operators (e.g.
(.˜) and (%˜)). (&) is particularly convenient when there are many fields to modify:

sextupleTest = (0,1,0,1,0,1)
& _1 .~ 7
& _2 %~ (5 *)
& _3 .~ (-1)
& _4 .~ "orange"
& _5 %~ (2 +)
& _6 %~ (3 *)

GHCi> sextupleTest
(7,5,-1,"orange",2,3)

47.5 A swiss army knife

Thus far we have covered enough of lens to introduce lenses and show that they aren’t
arcane magic. That, however, is only the tip of the iceberg. lens is a large library providing
a rich assortment of tools, which in turn realise a colourful palette of concepts. The odds
are that if you think of anything in the core libraries there will be a combinator somewhere
in lens that works with it. It is no exaggeration to say that a book exploring every corner
of lens might be made as long as this one you are reading. Unfortunately, we cannot
undertake such an endeavour right here. What we can do is briefly discussing a few other
general-purpose lens tools you are bound to encounter in the wild at some point.

47.5.1 State manipulation

There are quite a few combinators for working with state functors peppered over the
lens modules. For instance:

• use from Control.Lens.Getter is an analogue of gets from Control.Monad.State that
takes a getter instead of a plain function.

• Control.Lens.Setter includes suggestive-looking operators that modify parts of a state
targeted a setter (e.g. .= is analogous to set, %= to over and (+= x) to over (+x)).

• Control.Lens.Zoom12 offers the remarkably handy zoom combinator, which uses a traver-
sal (or a lens) to zoom into a part of a state. It does so by lifiting a stateful computation
into one that works with a larger state, of which the original state is a part.

Such combinators can be used to write highly intention-revealing code that transparently
manipulates deep parts of a state:

import Control.Monad.State

12 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Zoom.html

349

http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Zoom.html

Lenses and functional references

stateExample :: State Segment ()
stateExample = do

segmentStart .= makePoint (0,0)
zoom segmentEnd $ do

positionX += 1
positionY *= 2
pointCoordinates %= negate

GHCi> execState stateExample (makeSegment (1,2) (5,3))
Segment {_segmentStart = Point {_positionX = 0.0, _positionY = 0.0}
, _segmentEnd = Point {_positionX = -6.0, _positionY = -6.0}}

47.5.2 Isos

In our series of Point and Segment examples, we have been using the makePoint function
as a convenient way to make a Point out of (Double, Double) pair.

makePoint :: (Double, Double) -> Point
makePoint (x, y) = Point x y

The X and Y coordinates of the resulting Point correspond exactly to the two components
of the original pair. That being so, we can define an unmakePoint function...

unmakePoint :: Point -> (Double, Double)
unmakePoint (Point x y) = (x,y)

... so that makePoint and unmakePoint are a pair of inverses, that is, they undo each other:

unmakePoint . makePoint = id
makePoint . unmakePoint = id

In other words, makePoint and unmakePoint provide a way to losslessly convert a pair to
a point and vice-versa. Using jargon, we can say that makePoint and unmakePoint form
an isomorphism.

unmakePoint might be made into a Lens' Point (Double, Double). Symmetrically.
makePoint would give rise to a Lens' (Double, Double) Point, and the two lenses would
be a pair of inverses. Lenses with inverses have a type synonym of their own, Iso, as well
as some extra tools defined in Control.Lens.Iso13.

An Iso can be built from a pair of inverses through the iso function:

iso :: (s -> a) -> (b -> t) -> Iso s t a b

pointPair :: Iso' Point (Double, Double)
pointPair = iso unmakePoint makePoint

Isos are Lenses, and so the familiar lens combinators work as usual:

GHCi> import Data.Tuple (swap)
GHCi> let testPoint = makePoint (2,3)
GHCi> view pointPair testPoint -- Equivalent to unmakePoint

13 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Iso.html

350

http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Iso.html

A swiss army knife

(2.0,3.0)
GHCi> view (pointPair . _2) testPoint
3.0
GHCi> over pointPair swap testPoint
Point {_positionX = 3.0, _positionY = 2.0}

Additionally, Isos can be inverted using from:

GHCi> :info from pointPair
from :: AnIso s t a b -> Iso b a t s

-- Defined in ‘Control.Lens.Iso’
pointPair :: Iso' Point (Double, Double)

-- Defined at WikibookLenses.hs:77:1
GHCi> view (from pointPair) (2,3) -- Equivalent to makePoint
Point {_positionX = 2.0, _positionY = 3.0}
GHCi> view (from pointPair . positionY) (2,3)
3.0

Another interesting combinator is under. As the name suggests, it is just like over, except
that it uses the inverted Iso that from would give us. We will demonstrate it by using
the enum isomorphism to play with the Int representation of Chars without using chr and
ord from Data.Char explicitly:

GHCi> :info enum
enum :: Enum a => Iso' Int a -- Defined in ‘Control.Lens.Iso’
GHCi> under enum (+7) 'a'
'h'

newtypes and other single-constructor types give rise to isomorphisms. Con-
trol.Lens.Wrapped14 exploits that fact to provide Iso-based tools which, for instance, make
it unnecessary to remember record label names for unwrapping newtypes...

GHCi> let testConst = Const "foo"
GHCi> -- getConst testConst
GHCi> op Const testConst
"foo"
GHCi> let testIdent = Identity "bar"
GHCi> -- runIdentity testIdent
GHCi> op Identity testIdent
"bar"

... and that make newtype wrapping for instance selection less messy:

GHCi> :m +Data.Monoid
GHCi> -- getSum (foldMap Sum [1..10])
GHCi> ala Sum foldMap [1..10]
55
GHCi> -- getProduct (foldMap Product [1..10])
GHCi> ala Product foldMap [1..10]
3628800

47.5.3 Prisms

With Iso, we have reached for the first time a rank below Lens in the hierarchy of optics:
every Iso is a Lens, but not every Lens is an Iso. By going back to Traversal, we can
observe how the optics get progressively less precise in what they point to:

14 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Wrapped.html

351

http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Wrapped.html

Lenses and functional references

• An Iso is an optic that has exactly one target and is invertible.
• A Lens also has exactly one target but is not invertible.
• A Traversable can have any number of targets and is not invertible.

Along the way, we first dropped invertibility and then the uniqueness of targets. If we follow
a different path by dropping uniqueness before invertibility, we find a second kind of optic
between isomorphisms and traversals: prisms. A Prism is an invertible optic that need not
have exactly one target. As invertibility is incompatible with multiple targets, we can be
more precise: a Prism can reach either no targets or exactly one target.

Aiming at a single target with the possibility of failure sounds a lot like pattern matching,
and prisms are indeed able to capture that. If tuples and records provide natural examples
of lenses, Maybe, Either and other types with multiple constructors play the same role for
prisms.

Every Prism is a Traversal, and so the usual combinators for traversals, setters and folds
all work with prisms:

GHCi> set _Just 5 (Just "orange")
Just 5
GHCi> set _Just 5 Nothing
Nothing
GHCi> over _Right (2 *) (Right 5)
Right 10
GHCi> over _Right (2 *) (Left 5)
Left 5
GHCi> toListOf _Left (Left 5)
[5]

A Prism is not a Getter, though: the target might not be there. For that reason, we use
preview rather than view to retrieve the target:

GHCi> preview _Right (Right 5)
Just 5
GHCi> preview _Right (Left 5)
Nothing

For inverting a Prism, we use re and review from Control.Lens.Review15. re is analogous
to from, though it gives merely a Getter. review is equivalent to view with the inverted
prism.

GHCi> view (re _Right) 3
Right 3
GHCi> review _Right 3
Right 3

Just like there is more to lenses than reaching record fields, prisms are not limited to
matching constructors. For instance, Control.Lens.Prism16 defines only, which encodes
equality tests as a Prism:

GHCi> :info only
only :: Eq a => a -> Prism' a ()

-- Defined in ‘Control.Lens.Prism’

15 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Review.html
16 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Prism.html

352

http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Review.html
http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Prism.html

Laws

GHCi> preview (only 4) (2 + 2)
Just ()
GHCi> preview (only 5) (2 + 2)
Nothing

The prism and prism' functions allow us to build our own prisms. Here is an example
using stripPrefix from Data.List:

GHCi> :info prism
prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b

-- Defined in ‘Control.Lens.Prism’
GHCi> :info prism'
prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b

-- Defined in ‘Control.Lens.Prism’
GHCi> import Data.List (stripPrefix)
GHCi> :t stripPrefix
stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]

prefixed :: Eq a => [a] -> Prism' [a] [a]
prefixed prefix = prism' (prefix ++) (stripPrefix prefix)

GHCi> preview (prefixed "tele") "telescope"
Just "scope"
GHCi> preview (prefixed "tele") "orange"
Nothing
GHCi> review (prefixed "tele") "graph"
"telegraph"

prefixed is available from lens, in the Data.List.Lens17 module.

Exercises:

1. Control.Lens.Prism defines an outside function, which has the following (sim-
plified) type:
outside :: Prism s t a b

-> Lens (t -> r) (s -> r) (b -> r) (a -> r)
a) Explain what outside does without mentioning its implementation. (Hint:
The documentation says that with it we can ”use a Prism as a kind of first-
class pattern”. Your answer should expand on that, explaining how we can
use it in such a way.)

b) Use outside to implement maybe and either from the Prelude: maybe ::
b -> (a -> b) -> Maybe a -> beither :: (a -> c) -> (b -> c) ->
Either a b -> c

47.6 Laws

There are laws specifying how sensible optics should behave. We will now survey those that
apply to the optics that we covered here.

Starting from the top of the taxonomy, Fold does not have laws, just like the Foldable class.
Getter does not have laws either, which is not surprising, given that any function can be
made into a Getter via to.

17 http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Data-List-Lens.html

353

http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Data-List-Lens.html

Lenses and functional references

Setter, however, does have laws. over is a generalisation of fmap, and is therefore subject
to the functor laws:

over s id = id
over s g . over s f = over s (g . f)

As set s x = over s (const x), a consequence of the second functor law is that:

set s y . set s x = set s y

That is, setting twice is the same as setting once.

Traversal laws, similarly, are generalisations of the Traversable laws:

t pure = pure
fmap (t g) . t f = getCompose . t (Compose . fmap g . f)

The consequences discussed in the Traversable18 chapter follow as well: a traversal visits all
of its targets exactly once, and must either preserve the surrounding structure or destroy it
wholly.

Every Lens is a Traversal and a Setter, and so the laws above also hold for lenses. In
addition, every Lens is also a Getter. Given that a lens is both a getter and a setter, it
should get the same target that it sets. This common sense requirement is expressed by the
following laws:

view l (set l x) = x
set l (view l z) z = z

Together with the ”setting twice” law of setters presented above, those laws are commonly
referred to as the lens laws.

Analogous laws hold for Prisms, with preview instead of view and review instead of set:

preview p (review p x) = Just x
review p <$> preview p z = Just z

Isos are both lenses and prisms, so all of the laws above hold for them. The prism laws,
however, can be simplified, given that for isomorphisms preview i = Just . view i (that
is, preview never fails):

view i (review i x) = x
review i (view i z) = z

47.6.1 Polymorphic updates

When we look at optic types such as Setter s t a b and Lens s t a b we see four in-
dependent type variables. However, if we take the various optic laws into account we find
out that not all choices of s, t, a and b are reasonable. For instance, consider the ”setting
twice” law of setters:

18 Chapter 42.3 on page 273

354

No strings attached

set s y . set s x = set s y

For ”setting twice is the same than setting once” to make sense, it must be possible to set
twice using the same setter. As a consequence, the law can only hold for a Setter s t a
b if t can somehow be specialised so that it becomes equal to s (otherwise the type of the
whole would change on every set, leading to a type mismatch).

From considerations about the types involved in the laws such as the one above, it follows
that the four type parameters in law-abiding Setters, Traversals, Prisms and Lenses are
not fully independent from each other. We won’t examine the interdependency in detail,
but merely point out some of its consequences. Firstly, a and b are cut from the same cloth,
in that even if an optic can change types there must be a way of specialising a and b to
make them equal; furthermore, the same holds for s and t. Secondly, if a and b are equal
then s and t must be equal as well.

In practice, those restrictions mean that valid optics that can change types usually have
s and t parametrised in terms of a and b. Type-changing updates in this fashion are often
referred to as polymorphic updates. For the sake of illustration, here are a few arbitrary
examples taken from lens:

-- To avoid distracting details,
-- we specialised the types of argument and _1.
mapped :: Functor f => Setter (f a) (f b) a b
contramapped :: Contravariant f => Setter (f b) (f a) a b
argument :: Setter (b -> r) (a -> r) a b
traverse :: Traversable t => Traversal (t a) (t b) a b
both :: Bitraversable r => Traversal (r a a) (r b b) a b
_1 :: Lens (a, c) (b, c) a b
_Just :: Prism (Maybe a) (Maybe b) a b

At this point, we can return to the question left open when we presented the Lens type.
Given that Lens and Traversal allow type changing while Getter and Fold do not, it
would be indeed rash to say that every Lens is a Getter, or that every Traversal is a
Fold. However, the interdependence of the type variables mean that every lawful Lens can
be used as a Getter, and every lawful Traversal can be used as a Fold, as lawful lenses
and traversals can always be used in non type-changing ways.

47.7 No strings attached

As we have seen, we can use lens to define optics through functions such as lens and
auto-generation tools such as makeLenses. Strictly speaking, though, these are merely
convenience helpers. Given that Lens, Traversal and so forth are just type synonyms,
their definitions are not needed when writing optics − for instance, we can always write
Functor f => (a -> f b) -> (s -> f t) instead of Lens s t a b. That means we can
define optics compatible with lens without using lens at all! In fact, any Lens, Traversal,
Setter or Getting can be defined with no dependencies other than the base package.

The ability to define optics without depending on the lens library provides considerable
flexibility in how they can be leveraged. While there are libraries that do depend on lens,
library authors are often wary of acquiring a dependency on large packages with several
dependencies such as lens, especially when writing small, general-purpose libraries. Such

355

Lenses and functional references

concerns can be sidestepped by defining the optics without using the type synonyms or the
helper tools in lens. Furthermore, the types being only synonyms makes it possible to have
multiple optic frameworks (i.e. lens and similar libraries) that can be used interchangeably.

47.8 Further reading

• Several paragraphs above, we said that lens easily provides enough material for a full
book. The closest thing to that we currently have is Artyom Kazak’s ”lens over tea”19
series of blog posts. It explores the implementation of functional references in lens and
the concepts behind it in far more depth than what we are able to do here. Highly
recommended reading.

• Useful information can be reached through lens’ GitHub wiki20, and of course lens’ API
documentation21 is well worth exploring.

• lens is a large and complex library. If you want to study its implementation but
would rather begin with something simpler, a good place to start are minimalistic lens-
compatible libraries such as microlens22 and lens-simple23.

• Studying (and using!) optic-powered libraries is a good way to get the hang of how
functional references are used. Some arbitrary examples:
• diagrams24, a vector graphics library that uses lens extensively to deal with properties
of graphic elements.

• wreq25, a web client library with a lens-based interface.
• xml-lens26, which provides optics for manipulating XML.
• formattable27, a library for date, time and number formattting. Format-
table.NumFormat28 is an example of a module that provides lens-compatible lenses
without depending on the lens package.

19 http://artyom.me/lens-over-tea-1
20 https://github.com/ekmett/lens/wiki
21 https://hackage.haskell.org/package/lens
22 http://hackage.haskell.org/package/microlens
23 http://hackage.haskell.org/package/lens-simple
24 http://projects.haskell.org/diagrams/
25 http://www.serpentine.com/wreq/
26 https://hackage.haskell.org/package/xml-lens
27 http://hackage.haskell.org/package/formattable
28 http://hackage.haskell.org/packages/archive/formattable/latest/doc/html/Formattable-NumFormat.html

356

http://artyom.me/lens-over-tea-1
https://github.com/ekmett/lens/wiki
https://hackage.haskell.org/package/lens
http://hackage.haskell.org/package/microlens
http://hackage.haskell.org/package/lens-simple
http://projects.haskell.org/diagrams/
http://www.serpentine.com/wreq/
https://hackage.haskell.org/package/xml-lens
http://hackage.haskell.org/package/formattable
http://hackage.haskell.org/packages/archive/formattable/latest/doc/html/Formattable-NumFormat.html

48 Mutable objects

Functional purity is a defining characteristics of Haskell, one which leads to many of its
strengths. As such, language and ecosystem encourage eschewing mutable state altogether.
Thanks to tools such as the State monad1, which allows us to keep track of state in a
convenient and functionally pure way, and efficient immutable data structures2 like the ones
provided by the containers and unordered-containers packages, Haskell programmers
can get by perfectly fine with complete immutability in the vast majority of situations.
However, under select circumstances using mutable state is just the most sensible option.
One might, for instance, be interested in:

• From Haskell code, using a library written in another language which assumes mutable
state everywhere. This situation often arises with event-callback GUI toolkits.

• Using Haskell to implement a language that provides imperative-style mutable variables.

• Implementing algorithms that inherently require destructive updates to variables.

• Dealing with volumes of bulk data massive enough to justify squeezing every drop of
computational power available to make the problem at hand feasible.

Any general-purpose programming language worth its salt should be able to deal with such
tasks. With Haskell, it is no different: there are not only ways to create mutable objects, but
also to keep mutability under control, existing peacefully in a setting where immutability
is the default.

48.1 IORefs

Let’s begin with the simplest of those use cases above. A common way of structuring code
for user interfaces is through the event-and-callback model. The event might be a button
click or a key press, while the callback is just a piece of code meant to be called in response to
the event. The client code (that is, your code, if you are using such a library) should set up
the wiring that connects interface elements, events involving them, and the corresponding
callbacks. An hypothetical function to arrange a callback might have the following type:

register :: (Element -> Event) -> Element -> IO () -> IO ()

The IO () argument is the callback, while the result of register is an IO action which
sets up the wiring. Running register click button1 (print "Hello") would lead to
”Hello” being printed on the console following every click on button1.

1 Chapter 35 on page 207
2 https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer

357

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer

Mutable objects

Both register − with pervasive IO and lacking useful return values − and our exposition
above have a marked imperative feel. That’s because our hypothetical GUI library was
written using a more imperative style in a wholly different language. Some good soul has
written a facade so that we can use it from Haskell, but the facade is a very thin one, and
so the style of the original library leaks into our code 3.

Using register to perform IO actions such as printing to the console or showing dialog
boxes is easy enough. However, what if we want to add 1 to a counter every time a button
is clicked? The type of register doesn’t reveal any way to pass information to the callback,
nor to get information back from it (the return types are ()). State doesn’t help: even if
there was a way to pass an initial state to the callback, run a State computation within
it, what would we do with the results? We would need to pass the resulting state of the
counter to the callback on the next time the button is clicked, and we would have no idea
when that would happen, nor a place to keep the value in the meantime.

The obvious solution to this issue in many languages would be creating a mutable variable
outside of the callback and then giving the callback a reference to it, so that its code can
change the value of the variable at will. We need not worry, though, as Haskell allows us to
do exactly that. In fact, there are several types of mutable variables available, the simplest
of which is the IORef.IORefs are very simple; they are just boxes containing mutable values.
We can create one as follows:

GHCi> import Data.IORef
GHCi> :t newIORef
newIORef :: a -> IO (IORef a)
GHCi> box <- newIORef (4 :: Int)

newIORef takes a value and gives back, as the result of an IO action, an IORef initialised
to that value. We can then use readIORef to retrieve the value in it...

GHCi> :t readIORef
readIORef :: IORef a -> IO a
GHCi> readIORef box >>= print
4

... and modifyIORef and writeIORef to change it:

GHCi> modifyIORef box (2*)
GHCi> readIORef box >>= print
8
GHCi> writeIORef box 0
GHCi> readIORef box >>= print
0

An IORef would be enough for implementing the counter, given that it would persist be-
tween button clicks. The code might look like this:

setupGUI :: IORef Int -> IO ()
setupGUI counter = do

3 The technical term for facades over libraries from other languages is bindings. Bindings can be thin,
exposing transparently the constructs of the original library, or they can add extra layers of abstraction
can be built on to achieve a more Haskell-like feel. The elementary tool for creating bindings in Haskell
is the foreign function interface, which we cover in a chapter of Haskell in Practice ˆ{Chapter82 on page
535}.

358

IORefs

-- However much other GUI preparation code we need.
register click button1 (modifyIORef counter (+1))

main :: IO ()
main = do

-- etc.
counter <- newIORef (0 :: Int)
setupGUI counter
-- Then just use the counter value wherever necessary.

Note there is no point in using IORefs indiscriminately, without a good reason for it. Beyond
the more fundamental concerns with mutable state, it just would not be very convenient to
do so with all those explicit read/write/modify calls, not to mention the need to introduce
IO in extra places to handle the IORef (in our hypothetical example that wouldn’t be much
of an issue, as the GUI code would have to live in IO anyway, and we presumably would
keep it apart from the pure functions forming the core of our program, as good Haskell
practice dictates). Still, IORefs are there for when you can’t avoid them.

48.1.1 The pitfalls of concurrency

There is another very important use case for mutable variables that we didn’t mention in
the introduction: concurrency, that is, circumstances when simultaneous computations are
being executed by the computer. Concurrency scenarios range from the trivial (a progress
bar displaying the status of a background task) to the extremely complex (server-side soft-
ware handling thousands of requests at once). Given that in principle nothing guarantees
that simultaneous computations will run in step with each other, any communication be-
tween them calls for mutable variables. That, however, introduces a complication: the
issues with understandability and predictability of code using mutable state become much
more serious in the presence of independent computations with unpredictable timings. For
instance, computation A might need the result of computation B, but it might ask for that
result earlier than predicted and thus acquire a bogus result. Writing correct concurrent
code can be difficult, and subtle bugs are easy to introduce unless adequate measures are
taken.

The only functions in Data.IORef4 that provide extra safety in concurrent code are atom-
icallyModifyIORef, atomicallyModifyIORef' and atomicallyWriteIORef, which are
only of any help in very simple situations in which there is just one IORef meant to be
used as a shared resource between computations. Concurrent Haskell code should take
advantage of more sophisticated tools tailored for concurrency, such as MVars (mutable
variables that a computation can make unavailable to the others for as long as necessary
− see Control.Concurrent.MVar5) and Control.Concurrent.STM6 from the stm package (an
implementation of software transactional memory, a concurrency model which makes it pos-
sible to write safe concurrent code while avoiding the ugliness and complications of having
to explicitly manage the availability of all shared variables) 7.

4 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-IORef.html
5 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Concurrent-MVar.html
6 http://hackage.haskell.org/packages/archive/stm/latest/doc/html/Control-Concurrent-STM.html
7 A future chapter of this book will introduce some of those features.

359

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-IORef.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Concurrent-MVar.html
http://hackage.haskell.org/packages/archive/stm/latest/doc/html/Control-Concurrent-STM.html

Mutable objects

48.2 The ST monad

In the IORef example above, mutability was imposed upon our code by external demands.
However, in the two final scenarios suggested by the introduction (algorithms that require
mutability and extreme computational demands) the need for mutable state is internal −
that is, it is not reflected in any way in the overall results. For instance, sorting a list
does not require mutability in any essential way, and so a function that sorts a list and
returns a new lists should, in principle, be functionally pure even if the sorting algorithm
uses destructive updates to swap the position of the elements. In such case, the mutability
is just an implementation detail. The standard libraries provide a nifty tool for handling
such situations while still ending up with pure functions: the ST monad, which can be found
in Control.Monad.ST8.

data ST s a

ST s a looks a lot like State s a, and indeed they are similar in spirit. An ST computation
is one that uses an internal state to produce results, except that the state is mutable. For
that purpose, Data.STRef9 provides STRefs. A STRef s a is exactly like an IORef a, but
it lives in the ST s monad rather than in IO.

There is one major difference that sets apart ST from both State and IO.
Control.Monad.ST offers a runST function with the following type:

runST :: (forall s. ST s a) -> a

At first, that is a shocking type signature. If ST involves mutability, how come we can
simply extract a values from the monad? The answer lies in the forall s. part of the
type. Having a forall s. enclosed within the type of an argument amounts to telling the
type checker ”s could be anything. Don’t make any assumptions about it”. Not making any
assumptions, however, means that s cannot be matched with anything else − even with the
s from another invocation of runST 10:

GHCi> import Control.Monad.ST
GHCi> import Data.STRef
GHCi> -- Attempt to keep an STRef around to pass to pure code:
GHCi> let ref = runST $ newSTRef (4 :: Int)

<interactive>:125:19:
Couldn't match type ‘a’ with ‘STRef s Int’

because type variable ‘s’ would escape its scope
This (rigid, skolem) type variable is bound by

a type expected by the context: ST s a
at <interactive>:125:11-37

Expected type: ST s a
Actual type: ST s (STRef s Int)

Relevant bindings include ref :: a (bound at <interactive>:125:5)
In the second argument of ‘($)’, namely ‘newSTRef (4 :: Int)’
In the expression: runST $ newSTRef (4 :: Int)

GHCi> -- The error message is quite clear:
GHCi> -- "because type variable ‘s’ would escape its scope"

8 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad-ST.html
9 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-STRef.html
10 This is an example of an existential type. ”Existential” is meant in a precise technical sense, but we can

get the gist of it by noting that the only thing we know about it is that it exists.

360

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad-ST.html
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-STRef.html

Mutable data structures

GHCi> -- Attempt to feed an STRef from one ST computation to another:
GHCi> let x = runST $ readSTRef =<< runST (newSTRef (4 :: Int))

<interactive>:129:38:
Couldn't match type ‘STRef s1 Int’ with ‘ST s (STRef s a)’
Expected type: ST s1 (ST s (STRef s a))

Actual type: ST s1 (STRef s1 Int)
Relevant bindings include x :: a (bound at <interactive>:129:5)
In the first argument of ‘runST’, namely ‘(newSTRef (4 :: Int))’
In the second argument of ‘(=<<)’, namely

‘runST (newSTRef (4 :: Int))’
GHCi> -- The 's' from each computation are necessarily not the same.

The overall effect of this type trickery is to insulate the internal state and mutability within
each ST computation, so that from the point of view of anything else in the program runST is
a pure function.

As a trivial example of ST in action, here is a very imperative-looking version of sum for
lists 11:

import Control.Monad.ST
import Data.STRef
import Data.Foldable

sumST :: Num a => [a] -> a
sumST xs = runST $ do

n <- newSTRef 0
for_ xs $ \x ->

modifySTRef n (+x)
readSTRef n

For all intents and purposes, sumST is no less pure than the familiar sum. The fact that it
destructively updates its accumulator n is a mere implementation detail, and there is no
way information about n could leak other than through the final result. Looking at a simple
example like this one makes it clear that the s type variable in ST s a does not correspond
to anything in particular within the computation − it is just an artificial marker. Another
detail worth noting is that even though for_ folds the list from the right the sums are done
from the left, as the mutations are performed as applicative effects sequenced form left to
right.

48.3 Mutable data structures

Mutable data structures can be found in the libraries for the exceptional use cases for which
they prove necessary. For instance, mutable arrays (alongside with immutable ones) can be
found in the vector12 package or the array13 package bundled with GHC 14. There are also
mutable hash tables, such as those from the hashtables package15. In all cases mentioned,
both ST and IO versions are provided.

11 Adapted from the HaskellWiki page on ST ˆ{https://wiki.haskell.org/Monad/ST} .
12 https://hackage.haskell.org/package/vector
13 https://hackage.haskell.org/package/array
14 For general observations on arrays, see the data structures primer ˆ{https://en.wikibooks.org/wiki/

Haskell%2FLibraries%2FData%20structures%20primer%23Raw%20performance%20with%20arrays} .
15 https://hackage.haskell.org/package/hashtables

361

https://wiki.haskell.org/Monad/ST
https://hackage.haskell.org/package/vector
https://hackage.haskell.org/package/array
https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer%23Raw%20performance%20with%20arrays
https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FData%20structures%20primer%23Raw%20performance%20with%20arrays
https://hackage.haskell.org/package/hashtables

Mutable objects

48.4 Further reading

• The seventh chapter of Write Yourself a Scheme in 48 Hours16 provides an interesting
example of IORefs being used to implement mutable variables in a language.

• Lennart Augustsson’s blog17 shows how a true quicksort (that is, one using the original
algorithm which performs destructive updates to sort the list) can be implemented in
Haskell, just like we assured that was possible way back in Haskell/Higher-order func-
tions18. His implementation is quite amusing thanks to the combinators used to handle
mutability, which make Haskell look like C. Be sure to check the two posts before the
one linked to see how that was done.

16 https://en.wikibooks.org/wiki/Write_Yourself_a_Scheme_in_48_Hours%2FAdding_Variables_and_Assignment
17 http://augustss.blogspot.com.br/2007/08/quicksort-in-haskell-quicksort-is.html
18 Chapter 19 on page 117

362

https://en.wikibooks.org/wiki/Write_Yourself_a_Scheme_in_48_Hours%2FAdding_Variables_and_Assignment
http://augustss.blogspot.com.br/2007/08/quicksort-in-haskell-quicksort-is.html

49 Concurrency

49.1 Concurrency

Concurrency in Haskell is mostly done with Haskell threads. Haskell threads are user-space
threads that are implemented in the runtime. Haskell threads are much more efficient in
terms of both time and space than Operating System threads. Apart from traditional
synchronization primitives like semaphores, Haskell offers Software Transactional Memory
which greatly simplifies concurrent access to shared memory.

The modules for concurrency are Control.Concurrent.* and Control.Monad.STM.

49.2 When do you need it?

Perhaps more important than when is when not. Concurrency in Haskell is not used to
utilize multiple processor cores; you need another thing, ”parallelism1”, for that. Instead,
concurrency is used for when a single core must divide its attention between various things,
typically IO.

For example, consider a simple ”static” webserver (i.e. serves only static content such as
images). Ideally, such a webserver should consume few processing resources; instead, it
must be able to transfer data as fast as possible. The bottleneck should be I/O, where you
can throw more hardware at the problem. So you must be able to efficiently utilize a single
processor core among several connections.

In a C version of such a webserver, you’d use a big loop centered around select() on
each connection and on the listening socket. Each open connection would have an attached
data structure specifying the state of that connection (i.e. receiving the HTTP header,
parsing it, sending the file). Such a big loop would be difficult and error-prone to code
by hand. However, using Concurrent Haskell, you would be able to write a much smaller
loop concentrating solely on the listening socket, which would spawn a new ”thread” for
each accepted connection. You can then write a new ”thread” in the IO monad which, in
sequence, receives the HTTP header, parses it, and sends the file.

Internally, the Haskell compiler will then convert the spawning of the thread to an allocation
of a small structure specifying the state of the ”thread”, congruent to the data structure
you would have defined in C. It will then convert the various threads into a single big loop.
Thus, while you write as if each thread is independent, internally the compiler will convert
it to a big loop centered around select() or whatever alternative is best on your system.

1 https://en.wikibooks.org/wiki/Haskell%2FParallelism

363

https://en.wikibooks.org/wiki/Haskell%2FParallelism

Concurrency

49.3 Example

Example: Downloading files in parallel

downloadFile :: URL -> IO ()
downloadFile = undefined

downloadFiles :: [URL] -> IO ()
downloadFiles = mapM_ (forkIO . downloadFile)

49.4 Software Transactional Memory

Software Transactional Memory (STM) is a mechanism that allows transactions on mem-
ory similar to database transactions. It greatly simplifies access to shared resources when
programming in a multithreaded environment. By using STM, you no longer have to rely
on locking.

To use STM, you have to include Control.Monad.STM. To change into the STM-Monad
the atomically function is used. STM offers different primitives (TVar, TMVar, TChan and
TArray) that can be used for communication.

The following example shows how to use a TChan to communicate between two threads. The
channel is created in the main function and handed over to the reader/writerThread func-
tions. The readerThread waits on the TChan for new input and prints it. The writerThread
writes some Int-values to the channel and terminates.

364

Software Transactional Memory

Example: Communication with a TChan

import Control.Monad.STM
import Control.Concurrent
import Control.Concurrent.STM.TChan

oneSecond = 1000000

writerThread :: TChan Int -> IO ()
writerThread chan = do

atomically $ writeTChan chan 1
threadDelay oneSecond
atomically $ writeTChan chan 2
threadDelay oneSecond
atomically $ writeTChan chan 3
threadDelay oneSecond

readerThread :: TChan Int -> IO ()
readerThread chan = do

newInt <- atomically $ readTChan chan
putStrLn $ "read new value: " ++ show newInt
readerThread chan

main = do
chan <- atomically $ newTChan
forkIO $ readerThread chan
forkIO $ writerThread chan
threadDelay $ 5 * oneSecond

365

50 Fun with Types

367

51 Polymorphism basics

51.1 Parametric Polymorphism

Section goal = short, enables reader to read code (ParseP) with ∀and use libraries (ST) with-
out horror. Question Talk:Haskell/The_Curry-Howard_isomorphism#Polymorphic types1
would be solved by this section.

Link to the following paper: Luca Cardelli: On Understanding Types, Data Abstraction,
and Polymorphism2.

51.1.1 forall a

As you may know, a polymorphic function is a function that works for many different
types. For instance,

length :: [a] -> Int

can calculate the length of any list, be it a string String = [Char] or a list of integers
[Int]. The type variable a indicates that length accepts any element type. Other ex-
amples of polymorphic functions are

fst :: (a, b) -> a
snd :: (a, b) -> b
map :: (a -> b) -> [a] -> [b]

Type variables always begin in lowercase whereas concrete types like Int or
String always start with an uppercase letter, that’s how we can tell them apart.

There is a more explicit way to indicate that a can be any type

length :: forall a. [a] -> Int

In other words, ”for all types a, the function length takes a list of elements of type a and
returns an integer”. You should think of the old signature as an abbreviation for the new
one with the forall3. That is, the compiler will internally insert any missing forall for
you. Another example: the types signature for fst is really a shorthand for

fst :: forall a. forall b. (a,b) -> a

1 https://en.wikibooks.org/wiki/Talk%3AHaskell%2FThe_Curry-Howard_isomorphism%23Polymorphic%20types
2 http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf
3 Note that the keyword forall is not part of the Haskell 98 standard, but any of the language exten-

sions ScopedTypeVariables, Rank2Types or RankNTypes will enable it in the compiler. A future Haskell
standard will incorporate one of these.

369

https://en.wikibooks.org/wiki/Talk%3AHaskell%2FThe_Curry-Howard_isomorphism%23Polymorphic%20types
http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf

Polymorphism basics

or equivalently

fst :: forall a b. (a,b) -> a

Similarly, the type of map is really

map :: forall a b. (a -> b) -> [a] -> [b]

The idea that something is applicable to every type or holds for everything is called uni-
versal quantification4. In mathematical logic, the symbol ∀⁵ (an upside-down A, read as
”forall”) is commonly used for that, it is called the universal quantifier.

51.1.2 Higher rank types

With explicit forall, it now becomes possible to write functions that expect polymorphic
arguments, like for instance

foo :: (forall a. a -> a) -> (Char,Bool)
foo f = (f 'c', f True)

Here, f is a polymorphic function, it can be applied to anything. In particular, foo can
apply it to both the character 'c' and the boolean True.

It is not possible to write a function like foo in Haskell98, the type checker will complain
that f may only be applied to values of either the type Char or the type Bool and reject
the definition. The closest we could come to the type signature of foo would be

bar :: (a -> a) -> (Char, Bool)

which is the same as

bar :: forall a. ((a -> a) -> (Char, Bool))

But this is very different from foo. The forall at the outermost level means that
bar promises to work with any argument f as long as f has the shape a -> a for some
type a unknown to bar. Contrast this with foo, where it’s the argument f who promises
to be of shape a -> a for all types a at the same time , and it’s foo who makes use of that
promise by choosing both a = Char and a = Bool.

Concerning nomenclature, simple polymorphic functions like bar are said to have a rank-
1 type while the type foo is classified as rank-2 type. In general, a rank-n type is a
function that has at least one rank-(n-1) argument but no arguments of even higher rank.

The theoretical basis for higher rank types is System F6, also known as the second-order
lambda calculus. We will detail it in the section System F7 in order to better understand
the meaning of forall and its placement like in foo and bar.

4 https://en.wikipedia.org/wiki/Universal%20quantification
5 The UnicodeSyntax extension allows you to use the symbol ∀instead of the forall keyword in your

Haskell source code.
6 https://en.wikipedia.org/wiki/System%20F
7 Chapter 51.2 on page 372

370

https://en.wikipedia.org/wiki/Universal%20quantification
https://en.wikipedia.org/wiki/System%20F

Parametric Polymorphism

Haskell98 is based on the Hindley-Milner8 type system, which is a restriction of System F
and does not support forall and rank-2 types or types of even higher rank. You have to
enable the RankNTypes9 language extension to make use of the full power of System F.

But of course, there is a good reason that Haskell98 does not support higher rank types:
type inference for the full System F is undecidable, the programmer would have to write
down all type signatures. Thus, the early versions of Haskell have adopted the Hindley-
Milner type system which only offers simple polymorphic function but enables complete
type inference in return. Recent advances in research have reduced the burden of writing
type signatures and made rank-n types practical in current Haskell compilers.

51.1.3 runST

For the practical Haskell programmer, the ST monad10 is probably the first example of a
rank-2 type in the wild. Similar to the IO monad, it offers mutable references

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

and mutable arrays. The type variable s represents the state that is being manipulated.
But unlike IO, these stateful computations can be used in pure code. In particular, the
function

runST :: (forall s. ST s a) -> a

sets up the initial state, runs the computation, discards the state and returns the result.
As you can see, it has a rank-2 type. Why?

The point is that mutable references should be local to one runST. For instance,

v = runST (newSTRef "abc")
foo = runST (readSTRef v)

is wrong because a mutable reference created in the context of one runST is used again in a
second runST. In other words, the result type a in (forall s. ST s a) -> a may not be
a reference like STRef s String in the case of v. But the rank-2 type guarantees exactly
that! Because the argument must be polymorphic in s, it has to return one and the same
type a for all states s; the result a may not depend on the state. Thus, the unwanted code
snippet above contains a type error and the compiler will reject it.

You can find a more detailed explanation of the ST monad in the original paper Lazy
functional state threads1112.

8 https://en.wikipedia.org/wiki/Hindley-Milner
9 Or enable just Rank2Types if you only want to use rank-2 types
10 http://www.haskell.org/haskellwiki/Monad/ST
11 http://www.dcs.gla.ac.uk/fp/papers/lazy-functional-state-threads.ps.Z
12 John Launchbury; Simon Peyton Jones 1994-??-??. Lazy functional state threads- ACM Press”. pp. 24-35

http://

371

https://en.wikipedia.org/wiki/Hindley-Milner
http://www.haskell.org/haskellwiki/Monad/ST
http://www.dcs.gla.ac.uk/fp/papers/lazy-functional-state-threads.ps.Z
http://

Polymorphism basics

51.1.4 Impredicativity

• predicative = type variables instantiated to monotypes. impredicative = also polytypes.
Example: length [id :: forall a . a -> a] or Just (id :: forall a. a -> a).
Subtly different from higher-rank.

• relation of polymorphic types by their generality, i.e. ‘isInstanceOf‘.
• haskell-cafe: RankNTypes short explanation.13

51.2 System F

Section goal = a little bit lambda calculus foundation to prevent brain damage from implicit
type parameter passing.

• System F = Basis for all this ∀-stuff.
• Explicit type applications i.e. map Int (+1) [1,2,3]. ∀ similar to the function arrow
->.

• Terms depend on types. Big Λ for type arguments, small λ for value arguments.

51.3 Examples

Section goal = enable reader to judge whether to use data structures with ∀in his own code.

• Church numerals, Encoding of arbitrary recursive types (positivity conditions): &forall
x. (F x -> x) -> x

• Continuations, Pattern-matching: maybe, either and foldr

I.e. ∀ can be put to good use for implementing data types in Haskell.

51.4 Other forms of Polymorphism

Section goal = contrast polymorphism in OOP and stuff. how type classes fit in.

• ad-hoc polymorphism = different behavior depending on type s. => Haskell type classes.
• parametric polymorphism = ignorant of the type actually used. => ∀
• subtyping

51.5 Free Theorems

Section goal = enable reader to come up with free theorems. no need to prove them,
intuition is enough.

• free theorems for parametric polymorphism.

13 http://thread.gmane.org/gmane.comp.lang.haskell.cafe/40508/focus=40610

372

http://thread.gmane.org/gmane.comp.lang.haskell.cafe/40508/focus=40610

See also

51.6 See also

• Luca Cardelli. On Understanding Types, Data Abstraction, and Polymorphism14.

14 http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf

373

http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf

52 Existentially quantified types

Existential types, or ’existentials’ for short, are a way of ’squashing’ a group of types into
one, single type.

Existentials are part of GHC’s type system extensions. They aren’t part of Haskell98, and as
such you’ll have to either compile any code that contains them with an extra command-line
parameter of -XExistentialQuantification, or put {-# LANGUAGE ExistentialQuan-
tification #-} at the top of your sources that use existentials.

52.1 The forall keyword

The forall keyword is used to explicitly bring fresh type variables into scope. For example,
consider something you’ve innocuously seen written a hundred times so far:

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

But what are these a and b? Well, they’re type variables, you answer. The compiler
sees that they begin with a lowercase letter and as such allows any type to fill that role.
Another way of putting this is that those variables are ’universally quantified’. If you’ve
studied formal logic, you will have undoubtedly come across the quantifiers: ’for all’ (or ∀)
and ’exists’ (or ∃). They ’quantify’ whatever comes after them: for example, ∃x means that
whatever follows is true for at least one value of x. ∀x means that what follows is true for
every possible value of x you can imagine. For example, ∀x, x2 ≥ 0 and ∃x, x3 = 27.

The forall keyword quantifies types in a similar way. We would rewrite map’s type as
follows:

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

So we see that for any combination of types a and b we can imagine, map takes the type
(a -> b) -> [a] -> [b]. For example, we might choose a = Int and b = String. Then
it’s valid to say that map has the type (Int -> String) -> [Int] -> [String]. Here we
are instantiating the general type of map to a more specific type.

375

Existentially quantified types

However, in Haskell, any introduction of a lowercase type parameter implicitly begins with
a forall keyword, so those two previous type declarations for map are equivalent, as are
the declarations below:

Example: Two equivalent type statements

id :: a -> a
id :: forall a . a -> a

What makes life really interesting and the forall so useful is that you can apply additional
constraints on the type variables it introduces. Such constraints, P (x), serve to guarantee
certain properties of the type variable, x, as a kind of ad-hoc interface restriction, (similar
to ∃x,P (x) or ∀x,P (x) stipulations).

Let’s dive right into the deep end of this by seeing an example of the power of existential
types in action.

52.2 Example: heterogeneous lists

The premise behind Haskell’s type class system is grouping types that all share a common
property. So if you know a type that is a member of some class C, you know certain things
about that type. For example, Int is a member of class Eq, so we know that elements of
Int can be compared for equality.

Suppose we have a group of values. We don’t know if they are all the same type, but we
do know they are all members of some class (and, by extension, that all the values have a
certain property). It might be useful to throw all these values into a list. We can’t do this
normally because lists elements must be of the same type (homogeneous with respect to
types). However, existential types allow us to loosen this requirement by defining a ’type
hider’ or ’type box’:

Example: Constructing a heterogeneous list

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]

We won’t explain precisely what we mean by that data type definition, but its meaning
should be clear to your intuition. The important thing is that we’re calling the constructor
on three values of different types, [SB (), SB 5, SB True], yet we are able to place them
all into a singe list, so we must somehow have the same type for each one. Essentially, yes.
This is because our use of the forall keyword gives our constructor the type SB :: forall
s. Show s => s -> ShowBox. If we were now writing a function to which we intend to pass
heteroList, we couldn’t apply a function such as not to the values inside the SB because
their type might not be Bool. But we do know something about each of the elements: they

376

A Further Explanation

can be converted to a string via show. In fact, that’s pretty much the only thing we know
about them.

Example: Using our heterogeneous list

instance Show ShowBox where
show (SB s) = show s -- (*) see the comment in the text below

f :: [ShowBox] -> IO ()
f xs = mapM_ print xs

main = f heteroList

Let’s expand on this a bit more. In the definition of show for ShowBox – the line marked
with (*) see the comment in the text below – we don’t know the type of s. But as
we mentioned, we do know that the type is an instance of Show due to the constraint on the
SB constructor. Therefore, it’s legal to use the function show on s, as seen in the right-hand
side of the function definition.

As for f, recall the type of print:

Example: Types of the functions involved

print :: Show s => s -> IO () -- print x = putStrLn (show x)
mapM_ :: (a -> m b) -> [a] -> m ()
mapM_ print :: Show s => [s] -> IO ()

As we just declared ShowBox an instance of Show, we can print the values in the list.

52.3 A Further Explanation

One way to think about forall is to think about types as a set of possible values. For
example, Bool is the set {True, False, ⊥} (remember that bottom, ⊥, is a member of every
type!), Integer is the set of integers (and bottom), String is the set of all possible strings
(and bottom), and so on. forall serves as a way to assert a commonality or intersection of
the specified types (i.e. sets of values). For example, forall a. a is the intersection of
all types. This subset turns out to be the set whose sole element is bottom, {⊥}, since it
is an implicit value in every type. That is, the type whose only available value is bottom.
However, since every Haskell type includes bottom, {⊥}, this quantification in fact stipulates
all Haskell types. However, the only permissible operations on it are those available to a
type whose only element is bottom.

A few more examples:

1. The list, [forall a. a], is the type of a list whose elements all have the type forall
a. a, i.e. a list of bottoms.

2. The list, [forall a. Show a => a], is the type of a list whose elements all have the
type forall a. Show a => a. The Show class constraint requires the possible types

377

Existentially quantified types

to also be a member of the class, Show. However, ⊥ is still the only value common to
all these types, so this too is a list of bottoms.

3. The list, [forall a. Num a => a], requires each element to be a member of the
class, Num. Consequently, the possible values include numeric literals, which have
the specific type, forall a. Num a => a, as well as bottom.

4. forall a. [a] is the type of the list whose elements all have the same type a. Since
we cannot presume any particular type at all, this too is a list of bottoms.

We see that most intersections over types just lead to bottoms because types generally don’t
have any values in common and so presumptions cannot be made about a union of their
values.

However, recall that in the last section, we developed a heterogeneous list using a ’type
hider’. This ’type hider’ functions as a wrapper type which guarantees certain facilities by
implying a predicate or constraint on the permissible types. In that case it was that they
must be a member of the type class, Show. In general, that seems to be the purpose of
forall, to impose type constraint on the permissible types within a type declaration and
thereby guaranteeing certain facilities with such types.

Let’s declare one.

Example: An existential datatype

data T = forall a. MkT a

This means that:

Example: This defines a family of constructors for T

MkT :: forall a. (a -> T)

So we can pass any type, a, we want to MkT and it will create a T. So what happens when
we deconstruct a T value with pattern matching...?

Example: Pattern matching on our existential constructor

foo (MkT x) = ... -- what is the type of x?

As we’ve just stated, x could be of any type. That means it’s a member of some arbitrary
type, so has the type forall a. a. In other words the set whose only available value is
bottom, &prep;.

However, we can make a heterogeneous list:

378

Example: runST

Example: Constructing the hetereogeneous list

heteroList = [MkT 5, MkT (), MkT True, MkT map]

Of course, when we pattern match on heteroList we cannot presume any features about
its elements1. So technically, we can’t do anything useful with its elements, except reduce
them to WHNF.because all we know is that they have some arbitrary type. However, if we
introduce class constraints:

Example: A new existential data type, with a class constraint

data T' = forall a. Show a => MkT' a

The class constraint serves to limit the types we are intersecting over, such that we now
have values inside a T' which are elements of some arbitrary type that are members of Show.
The implication of this is that we can apply show to a value of type a upon deconstruction.
It doesn’t matter exactly which type it turns out to be.

Example: Using our new heterogenous setup

heteroList' = [MkT' 5, MkT' (), MkT' True, MkT' "Sartre"]
main = mapM_ (\(MkT' x) -> print x) heteroList'

{- prints:
5
()
True
"Sartre"
-}

To summaries, the interaction of the universal quantifier with data types produces a qualified
subset of types guaranteeing certain facilities as described by one or more class constraints.

52.4 Example: runST

One monad that you may not have come across so far is the ST monad. This is essentially a
more powerful version of the State monad: it has a much more complicated structure and
involves some more advanced topics. It was originally written to provide Haskell with IO.
As we mentioned in the ../Understanding monads/2 chapter, IO is basically just a State
monad with an environment of all the information about the real world. In fact, inside
GHC at least, ST is used, and the environment is a type called RealWorld.

1 However, we can apply them to functions whose type is forall a. a -> R, for some arbitrary R, as these
accept values of any type as a parameter. Examples of such functions: id, const k for any k, seq

2 Chapter 30 on page 179

379

Existentially quantified types

To get out of the State monad, you can use runState. The analogous function for ST is
called runST, and it has a rather particular type:

Example: The runST function

runST :: forall a. (forall s. ST s a) -> a

This is actually an example of a more complicated language feature called rank-2 poly-
morphism, which we don’t go into in detail here. It’s important to notice that there is no
parameter for the initial state. Indeed, ST uses a different notion of state to State; while
State allows you to get and put the current state, ST provides an interface to references.
You create references, which have type STRef, with newSTRef :: a -> ST s (STRef s
a), providing an initial value, then you can use readSTRef :: STRef s a -> ST s a and
writeSTRef :: STRef s a -> a -> ST s () to manipulate them. As such, the internal
environment of a ST computation is not one specific value, but a mapping from references
to values. Therefore, you don’t need to provide an initial state to runST, as the initial state
is just the empty mapping containing no references.

However, things aren’t quite as simple as this. What stops you creating a reference in one
ST computation, then using it in another? We don’t want to allow this because (for reasons
of thread-safety) no ST computation should be allowed to assume that the initial internal
environment contains any specific references. More concretely, we want the following code
to be invalid:

Example: Bad ST code

let v = runST (newSTRef True)
in runST (readSTRef v)

What would prevent this? The effect of the rank-2 polymorphism in runST’s type is to
constrain the scope of the type variable s to be within the first parameter. In other words,
if the type variable s appears in the first parameter it cannot also appear in the second.
Let’s take a look at how exactly this is done. Say we have some code like the following:

Example: Briefer bad ST code

... runST (newSTRef True) ...

The compiler tries to fit the types together:

380

Quantification as a primitive

Example: The compiler’s typechecking stage

newSTRef True :: forall s. ST s (STRef s Bool)
runST :: forall a. (forall s. ST s a) -> a
together, forall a. (forall s. ST s (STRef s Bool)) -> STRef s Bool

The importance of the forall in the first bracket is that we can change the name of the s.
That is, we could write:

Example: A type mismatch!

together, forall a. (forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

This makes sense: in mathematics, saying ∀x.x > 5 is precisely the same as saying ∀y.y > 5;
you’re just giving the variable a different label. However, we have a problem with our above
code. Notice that as the forall does not scope over the return type of runST, we don’t
rename the s there as well. But suddenly, we’ve got a type mismatch! The result type of
the ST computation in the first parameter must match the result type of runST, but now
it doesn’t!

The key feature of the existential is that it allows the compiler to generalise the type of
the state in the first parameter, and so the result type cannot depend on it. This neatly
sidesteps our dependence problems, and ’compartmentalises’ each call to runST into its own
little heap, with references not being able to be shared between different calls.

52.5 Quantification as a primitive

Universal quantification is useful for defining data types that aren’t already defined.
Suppose there was no such thing as pairs built into haskell. Quantification could be used
to define them.

{-# LANGUAGE ExistentialQuantification, RankNTypes #-}

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b
makePair a b = Pair $ \f -> f a b

In GHCi:

λ> :bro
newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}
makePair :: a -> b -> Pair a b

381

Existentially quantified types

λ> let pair = makePair "a" 'b'

λ> :t pair
pair :: Pair [Char] Char

λ> runPair pair (\x y -> x)
"a"

λ> runPair pair (\x y -> y)
'b'

52.6 Further reading

• 24 Days of GHC Extensions: Existential Quantification3
• GHC’s user guide contains useful information4 on existentials, including the various lim-
itations placed on them (which you should know about).

• Lazy Functional State Threads5, by Simon Peyton-Jones and John Launchbury, is a paper
which explains more fully the ideas behind ST.

3 https://ocharles.org.uk/blog/guest-posts/2014-12-19-existential-quantification.html
4 http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
5 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.3299

382

https://ocharles.org.uk/blog/guest-posts/2014-12-19-existential-quantification.html
http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html#existential-quantification
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.3299

53 Advanced type classes

Type classes may seem innocuous, but research on the subject has resulted in several ad-
vancements and generalisations which make them a very powerful tool.

53.1 Multi-parameter type classes

Multi-parameter type classes are a generalisation of the single parameter type classes1, and
are supported by some Haskell implementations.

Suppose we wanted to create a ’Collection’ type class that could be used with a variety
of concrete data types, and supports two operations -- ’insert’ for adding elements, and
’member’ for testing membership. A first attempt might look like this:

Example: The Collection type class (wrong)

class Collection c where
insert :: c -> e -> c
member :: c -> e -> Bool

-- Make lists an instance of Collection:
instance Collection [a] where

insert xs x = x:xs
member = flip elem

This won’t compile, however. The problem is that the ’e’ type variable in the Collection
operations comes from nowhere -- there is nothing in the type of an instance of Collection
that will tell us what the ’e’ actually is, so we can never define implementations of these
methods. Multi-parameter type classes solve this by allowing us to put ’e’ into the type of
the class. Here is an example that compiles and can be used:

1 https://en.wikibooks.org/wiki/Classes%20and%20types

383

https://en.wikibooks.org/wiki/Classes%20and%20types

Advanced type classes

Example: The Collection type class (right)

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
class Eq e => Collection c e where

insert :: c -> e -> c
member :: c -> e -> Bool

instance Eq a => Collection [a] a where
insert = flip (:)
member = flip elem

53.2 Functional dependencies

A problem with the above example is that, in this case, we have extra information that the
compiler doesn’t know, which can lead to false ambiguities and over-generalised function
signatures. In this case, we can see intuitively that the type of the collection will always
determine the type of the element it contains - so if c is [a], then e will be a. If c is
Hashmap a, then e will be a. (The reverse is not true: many different collection types can
hold the same element type, so knowing the element type was e.g. Int, would not tell you
the collection type).

In order to tell the compiler this information, we add a functional dependency, changing
the class declaration to

Example: A functional dependency

class Eq e => Collection c e | c -> e where ...

A functional dependency is a constraint that we can place on type class parameters. Here,
the extra | c -> e should be read ’c uniquely identifies e’, meaning for a given c, there
will only be one e. You can have more than one functional dependency in a class -- for
example you could have c -> e, e -> c in the above case. And you can have more than
two parameters in multi-parameter classes.

53.2.1 Examples

Matrices and vectors

Suppose you want to implement some code to perform simple linear algebra:

Example: The Vector and Matrix datatypes

data Vector = Vector Int Int deriving (Eq, Show)
data Matrix = Matrix Vector Vector deriving (Eq, Show)

384

Functional dependencies

You want these to behave as much like numbers as possible. So you might start by over-
loading Haskell’s Num class:

Example: Instance declarations for Vector and Matrix

instance Num Vector where
Vector a1 b1 + Vector a2 b2 = Vector (a1+a2) (b1+b2)
Vector a1 b1 - Vector a2 b2 = Vector (a1-a2) (b1-b2)
{- ... and so on ... -}

instance Num Matrix where
Matrix a1 b1 + Matrix a2 b2 = Matrix (a1+a2) (b1+b2)
Matrix a1 b1 - Matrix a2 b2 = Matrix (a1-a2) (b1-b2)
{- ... and so on ... -}

The problem comes when you want to start multiplying quantities. You really need a
multiplication function which overloads to different types:

Example: What we need

(*) :: Matrix -> Matrix -> Matrix
(*) :: Matrix -> Vector -> Vector
(*) :: Matrix -> Int -> Matrix
(*) :: Int -> Matrix -> Matrix
{- ... and so on ... -}

How do we specify a type class which allows all these possibilities?

We could try this:

Example: An ineffective attempt (too general)

class Mult a b c where
(*) :: a -> b -> c

instance Mult Matrix Matrix Matrix where
{- ... -}

instance Mult Matrix Vector Vector where
{- ... -}

That, however, isn’t really what we want. As it stands, even a simple expression like this
has an ambiguous type unless you supply an additional type declaration on the intermediate
expression:

Example: Ambiguities lead to more verbose code

m1, m2, m3 :: Matrix
(m1 * m2) * m3 -- type error; type of (m1*m2) is ambiguous
(m1 * m2) :: Matrix * m3 -- this is ok

385

Advanced type classes

After all, nothing is stopping someone from coming along later and adding another instance:

Example: A nonsensical instance of Mult

instance Mult Matrix Matrix (Maybe Char) where
{- whatever -}

The problem is that c shouldn’t really be a free type variable. When you know the types
of the things that you’re multiplying, the result type should be determined from that infor-
mation alone.

You can express this by specifying a functional dependency:

Example: The correct definition of Mult

class Mult a b c | a b -> c where
(*) :: a -> b -> c

This tells Haskell that c is uniquely determined from a and b.

386

54 Phantom types

Phantom types are a way to embed a language with a stronger type system than Haskell’s.

54.1 Phantom types

An ordinary type

data T = TI Int | TS String

plus :: T -> T -> T
concat :: T -> T -> T

its phantom type version

data T a = TI Int | TS String

Nothing’s changed - just a new argument a that we don’t touch. But magic!

plus :: T Int -> T Int -> T Int
concat :: T String -> T String -> T String

Now we can enforce a little bit more!

This is useful if you want to increase the type-safety of your code, but not impose additional
runtime overhead:

-- Peano numbers at the type level.
data Zero = Zero
data Succ a = Succ a
-- Example: 3 can be modeled as the type
-- Succ (Succ (Succ Zero)))

type D2 = Succ (Succ Zero)
type D3 = Succ (Succ (Succ Zero))

data Vector n a = Vector [a] deriving (Eq, Show)

vector2d :: Vector D2 Int
vector2d = Vector [1,2]

vector3d :: Vector D3 Int
vector3d = Vector [1,2,3]

387

Phantom types

-- vector2d == vector3d raises a type error
-- at compile-time:

-- Couldn't match expected type `Zero'
-- with actual type `Succ Zero'
-- Expected type: Vector D2 Int
-- Actual type: Vector D3 Int
-- In the second argument of `(==)', namely `vector3d'
-- In the expression: vector2d == vector3d

-- while vector2d == Vector [1,2,3] works

388

55 Generalised algebraic data-types
(GADT)

w:Generalized algebraic data type1

55.1 Introduction

Generalized algebraic datatypes, or simply GADTs, are a generalization of the algebraic
data types that you are familiar with. Basically, they allow you to explicitly write down the
types of the constructors. In this chapter, you’ll learn why this is useful and how to declare
your own.

We begin with an example of building a simple embedded domain specific language (EDSL)
for simple arithmetical expressions, which is put on a sounder footing with GADTs. This
is followed by a review of the syntax for GADTs, with simpler illustrations, and a different
application to construct a safe list type for which the equivalent of head [] fails to typecheck
and thus does not give the usual runtime error: *** Exception: Prelude.head: empty
list.

55.2 Understanding GADTs

So, what are GADTs and what are they useful for? GADTs are mainly used to implement
domain specific languages, and so this section will introduce them with a corresponding
example.

55.2.1 Arithmetic expressions

Let’s consider a small language for arithmetic expressions, given by the data type

data Expr = I Int -- integer constants
| Add Expr Expr -- add two expressions
| Mul Expr Expr -- multiply two expressions

In other words, this data type corresponds to the abstract syntax tree, an arithmetic term
like (5+1)*7 would be represented as (I 5 `Add` I 1) `Mul` I 7 :: Expr.

1 https://en.wikipedia.org/wiki/Generalized%20algebraic%20data%20type

389

https://en.wikipedia.org/wiki/Generalized%20algebraic%20data%20type

Generalised algebraic data-types (GADT)

Given the abstract syntax tree, we would like to do something with it; we want to compile
it, optimize it and so on. For starters, let’s write an evaluation function that takes an
expression and calculates the integer value it represents. The definition is straightforward:

eval :: Expr -> Int
eval (I n) = n
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

55.2.2 Extending the language

Now, imagine that we would like to extend our language with other types than just integers.
For instance, let’s say we want to represent equality tests, so we need booleans as well. We
augment the ‘Expr‘ type to become

data Expr = I Int
| B Bool -- boolean constants
| Add Expr Expr
| Mul Expr Expr
| Eq Expr Expr -- equality test

The term 5+1 == 7 would be represented as (I 5 `Add` I 1) `Eq` I 7.

As before, we want to write a function eval to evaluate expressions. But this time, ex-
pressions can now represent either integers or booleans and we have to capture that in the
return type

eval :: Expr -> Either Int Bool

The first two cases are straightforward

eval (I n) = Left n
eval (B b) = Right b

but now we get in trouble. We would like to write

eval (Add e1 e2) = eval e1 + eval e2 -- ???

but this doesn’t type check: the addition function + expects two integer arguments, but
eval e1 is of type Either Int Bool and we’d have to extract the Int from that.

Even worse, what happens if e1 actually represents a boolean? The following is a valid
expression

B True `Add` I 5 :: Expr

but clearly, it doesn’t make any sense; we can’t add booleans to integers! In other words,
evaluation may return integers or booleans, but it may also fail because the expression
makes no sense. We have to incorporate that in the return type:

eval :: Expr -> Maybe (Either Int Bool)

390

Understanding GADTs

Now, we could write this function just fine, but that would still be unsatisfactory, because
what we really want to do is to have Haskell’s type system rule out any invalid expressions;
we don’t want to check types ourselves while deconstructing the abstract syntax tree.

Exercise: Despite our goal, it may still be instructional to implement the eval function; do
this.

Starting point:

data Expr = I Int
| B Bool -- boolean constants
| Add Expr Expr
| Mul Expr Expr
| Eq Expr Expr -- equality test

eval :: Expr -> Maybe (Either Int Bool)
-- Your implementation here.

55.2.3 Phantom types

The so-called phantom types are the first step towards our goal. The technique is to augment
the Expr with a type variable, so that it becomes

data Expr a = I Int
| B Bool
| Add (Expr a) (Expr a)
| Mul (Expr a) (Expr a)
| Eq (Expr a) (Expr a)

Note that an expression Expr a does not contain a value a at all; that’s why a is called a
phantom type, it’s just a dummy variable. Compare that with, say, a list [a] which does
contain a bunch of a’s.

The key idea is that we’re going to use a to track the type of the expression for us. Instead
of making the constructor

Add :: Expr a -> Expr a -> Expr a

available to users of our small language, we are only going to provide a smart
constructor with a more restricted type

add :: Expr Int -> Expr Int -> Expr Int
add = Add

The implementation is the same, but the types are different. Doing this with the other
constructors as well,

i :: Int -> Expr Int
i = I
b :: Bool -> Expr Bool
b = B

the previously problematic expression

b True `add` i 5

391

Generalised algebraic data-types (GADT)

no longer type checks! After all, the first arguments has the type Expr Bool while
add expects an Expr Int. In other words, the phantom type a marks the intended type of
the expression. By only exporting the smart constructors, the user cannot create expressions
with incorrect types.

As before, we want to implement an evaluation function. With our new marker a, we might
hope to give it the type

eval :: Expr a -> a

and implement the first case like this

eval (I n) = n

But alas, this does not work: how would the compiler know that encountering the construc-
tor I means that a = Int? Granted, this will be case for all the expression that were created
by users of our language because they are only allowed to use the smart constructors. But
internally, an expression like

I 5 :: Expr String

is still valid. In fact, as you can see, a doesn’t even have to be Int or Bool, it could be
anything.

What we need is a way to restrict the return types of the constructors themselves, and
that’s exactly what generalized data types do.

55.2.4 GADTs

The obvious notation for restricting the type of a constructor is to write down its type, and
that’s exactly how GADTs are defined:

data Expr a where
I :: Int -> Expr Int
B :: Bool -> Expr Bool
Add :: Expr Int -> Expr Int -> Expr Int
Mul :: Expr Int -> Expr Int -> Expr Int
Eq :: Expr Int -> Expr Int -> Expr Bool

In other words, we simply list the type signatures of all the constructors. In particular, the
marker type a is specialised to Int or Bool according to our needs, just like we would have
done with smart constructors.

And the great thing about GADTs is that we now can implement an evaluation function
that takes advantage of the type marker:

eval :: Expr a -> a
eval (I n) = n
eval (B b) = b
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Eq e1 e2) = eval e1 == eval e2

In particular, in the first case

392

Summary

eval (I n) = n

the compiler is now able infer that a=Int when we encounter a constructor I and that it is
legal to return the n :: Int; similarly for the other cases.

To summarise, GADTs allows us to restrict the return types of constructors and thus enable
us to take advantage of Haskell’s type system for our domain specific languages. Thus, we
can implement more languages and their implementation becomes simpler.

55.3 Summary

55.3.1 Syntax

Here a quick summary of how the syntax for declaring GADTs works.

First, consider the following ordinary algebraic datatypes: the familiar List and
Maybe types, and a simple tree type, RoseTree:
Maybe List Rose Tree

data Maybe a =
Nothing |
Just a

data List a =
Nil |
Cons a (List a)

data RoseTree a =
RoseTree a [RoseTree a]

Remember that the constructors introduced by these declarations can be used both for
pattern matches to deconstruct values and as functions to construct values. (Nothing and
Nil are functions with ”zero arguments”.) We can ask what the types of the latter are:

Maybe List Rose Tree

> :t Nothing
Nothing :: Maybe a
> :t Just
Just :: a -> Maybe a

> :t Nil
Nil :: List a
> :t Cons
Cons :: a -> List a -> List a

> :t RoseTree
RoseTree ::

a -> [RoseTree a] -
> RoseTree a

It is clear that this type information about the constructors for Maybe, List and
RoseTree respectively is equivalent to the information we gave to the compiler when declar-
ing the datatype in the first place. In other words, it’s also conceivable to declare a datatype
by simply listing the types of all of its constructors, and that’s exactly what the GADT
syntax does:
Maybe List Rose Tree

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a

data List a where
Nil :: List a
Cons :: a -> List a -

> List a

data RoseTree a where
RoseTree ::

a -> [RoseTree a] -
> RoseTree a

393

Generalised algebraic data-types (GADT)

This syntax is made available by the language option {-#LANGUAGE GADTs #-}. It should
be familiar to you in that it closely resembles the syntax of type class declarations. It’s also
easy to remember if you already like to think of constructors as just being functions. Each
constructor is just defined by a type signature.

55.3.2 New possibilities

Note that when we asked the GHCi for the types of Nothing and Just it returned Maybe
a and a -> Maybe a as the types. In these and the other cases, the type of the final output
of the function associated with a constructor is the type we were initially defining - Maybe
a, List a or RoseTree a. In general, in standard Haskell, the constructor functions for Foo
a have Foo a as their final return type. If the new syntax were to be strictly equivalent to
the old, we would have to place this restriction on its use for valid type declarations.

So what do GADTs add for us? The ability to control exactly what kind of Foo you
return. With GADTs, a constructor for Foo a is not obliged to return Foo a; it can re-
turn any Foo blah that you can think of. In the code sample below, for instance, the
GadtedFoo constructor returns a GadtedFoo Int even though it is for the type GadtedFoo
x.

Example: GADT gives you more control

data FooInGadtClothing a where
MkFooInGadtClothing :: a -> FooInGadtClothing a

--which is no different from: data Haskell98Foo a = MkHaskell98Foo a ,

--by contrast, consider:

data TrueGadtFoo a where
MkTrueGadtFoo :: a -> TrueGadtFoo Int

--This has no Haskell 98 equivalent.

But note that you can only push the generalization so far... if the datatype you are declaring
is a Foo, the constructor functions must return some kind of Foo or another. Returning
anything else simply wouldn’t work

394

Examples

Example: Try this out. It doesn’t work

data Bar where
BarNone :: Bar -- This is ok

data Foo where
MkFoo :: Bar Int-- This will not typecheck

55.4 Examples

55.4.1 Safe Lists

Prerequisite: We assume in this section that you know how a List tends to be represented
in functional languages

Note: The examples in this section additionally require the extensions EmptyDataDecls
and KindSignatures to be enabled

We’ve now gotten a glimpse of the extra control given to us by the GADT syntax. The only
thing new is that you can control exactly what kind of data structure you return. Now,
what can we use it for? Consider the humble Haskell list. What happens when you invoke
head []? Haskell blows up. Have you ever wished you could have a magical version of
head that only accepts lists with at least one element, lists on which it will never blow up?

To begin with, let’s define a new type, SafeList x y. The idea is to have something
similar to normal Haskell lists [x], but with a little extra information in the type. This
extra information (the type variable y) tells us whether or not the list is empty. Empty lists
are represented as SafeList x Empty, whereas non-empty lists are represented as SafeList
x NonEmpty.

-- we have to define these types
data Empty
data NonEmpty

-- the idea is that you can have either
-- SafeList a Empty
-- or SafeList a NonEmpty
data SafeList a b where
-- to be implemented

Since we have this extra information, we can now define a function safeHead on only the
non-empty lists! Calling safeHead on an empty list would simply refuse to type-check.

safeHead :: SafeList a NonEmpty -> a

So now that we know what we want, safeHead, how do we actually go about getting it?
The answer is GADT. The key is that we take advantage of the GADT feature to return
two different list-of-a types, SafeList a Empty for the Nil constructor, and SafeList a
NonEmpty for the Cons constructor:

395

Generalised algebraic data-types (GADT)

data SafeList a b where
Nil :: SafeList a Empty
Cons :: a -> SafeList a b -> SafeList a NonEmpty

This wouldn’t have been possible without GADT, because all of our constructors would
have been required to return the same type of list; whereas with GADT we can now return
different types of lists with different constructors. Anyway, let’s put this all together, along
with the actual definition of SafeHead:

Example: safe lists via GADT

{-LANGUAGE GADTs, EmptyDataDecls -}
-- (the EmptyDataDecls pragma must also appear at the very top of the module,
-- in order to allow the Empty and NonEmpty datatype declarations.)

data Empty
data NonEmpty

data SafeList a b where
Nil :: SafeList a Empty
Cons:: a -> SafeList a b -> SafeList a NonEmpty

safeHead :: SafeList a NonEmpty -> a
safeHead (Cons x _) = x

Copy this listing into a file and load in ghci -fglasgow-exts. You should notice the
following difference, calling safeHead on a non-empty and an empty-list respectively:

Example: safeHead is... safe

Prelude Main> safeHead (Cons "hi" Nil)
"hi"
Prelude Main> safeHead Nil

<interactive>:1:9:
Couldn't match `NonEmpty' against `Empty'
Expected type: SafeList a NonEmpty
Inferred type: SafeList a Empty

In the first argument of `safeHead', namely `Nil'
In the definition of `it': it = safeHead Nil

The complaint is a good thing: it means that we can now ensure during compile-time if we’re
calling safeHead on an appropriate list. However, that also sets up a pitfall in potential.
Consider the following function. What do you think its type is?

396

Examples

Example: Trouble with GADTs

silly False = Nil
silly True = Cons () Nil

Now try loading the example up in GHCi. You’ll notice the following complaint:

Example: Trouble with GADTs - the complaint

Couldn't match `Empty' against `NonEmpty'
Expected type: SafeList () Empty
Inferred type: SafeList () NonEmpty

In the application `Cons () Nil'
In the definition of `silly': silly True = Cons () Nil

The cases in the definition of silly evaluate to marked lists of different types, leading to
a type error. The extra constraints imposed through the GADT make it impossible for a
function to produce both empty and non-empty lists.

If we are really keen on defining silly, we can do so by liberalizing the type of Cons, so
that it can construct both safe and unsafe lists.

397

Generalised algebraic data-types (GADT)

Example: A different approach

{-LANGUAGE GADTs, EmptyDataDecls, KindSignatures -}
-- here we add the KindSignatures pragma,
-- which makes the GADT declaration a bit more elegant.

-- Note the subtle yet revealing change in the phantom type names.
data NotSafe
data Safe

data MarkedList :: * -> * -> * where
Nil :: MarkedList t NotSafe
Cons :: a -> MarkedList a b -> MarkedList a c

safeHead :: MarkedList a Safe -> a
safeHead (Cons x _) = x

-- This function will never produce anything that can be consumed by safeHead,
-- no matter that the resulting list is not necessarily empty.
silly :: Bool -> MarkedList () NotSafe
silly False = Nil
silly True = Cons () Nil

There is a cost to the fix above: by relaxing the constraint on Cons we throw away the
knowledge that it cannot produce an empty list. Based on our first version of the safe list
we could, for instance, define a function which took a SafeList a Empty argument and be
sure anything produced by Cons would not be accepted by it. That does not hold for the
analogous MarkedList a NotSafe; arguably, the type is less useful exactly because it is
less restrictive. While in this example the issue may seem minor, given that not much can
be done with an empty list, in general it is worth considering.

Exercises:

1. Could you implement a safeTail function? Both versions introduced here would
count as valid starting material, as well as any other variants in similar spirit.

55.4.2 A simple expression evaluator

Insert the example used in Wobbly Types paper... I thought that was quite pedagogical

This is already covered in the first part of the tutorial.

398

Discussion

55.5 Discussion

More examples, thoughts

From FOSDEM 2006, I vaguely recall that there is some relationship between GADT and
the below... what?

55.5.1 Phantom types

See ../Phantom types/2.

55.5.2 Existential types

If you like ../Existentially quantified types/3, you’d probably want to notice that they are
now subsumed by GADTs. As the GHC manual says, the following two type declarations
give you the same thing.

data TE a = forall b. MkTE b (b->a)
data TG a where { MkTG :: b -> (b->a) -> TG a }

Heterogeneous lists are accomplished with GADTs like this:

data TE2 = forall b. Show b => MkTE2 [b]
data TG2 where

MkTG2 :: Show b => [b] -> TG2

55.5.3 Witness types

2 Chapter 54 on page 387
3 Chapter 52 on page 375

399

56 Type constructors & Kinds

56.1 Kinds for C++ users

• * is any concrete type, including functions. These all have kind *:

type MyType = Int
type MyFuncType = Int -> Int
myFunc :: Int -> Int

typedef int MyType;
typedef int (*MyFuncType)(int);
int MyFunc(int a);

• * -> * is a template that takes one type argument. It is like a function from types to
types: you plug a type in and the result is a type. Confusion can arise from the two uses
of MyData (although you can give them different names if you wish) - the first is a type
constructor, the second is a data constructor. These are equivalent to a class template
and a constructor respectively in C++. Context resolves the ambiguity - where Haskell
expects a type (e.g. in a type signature) MyData is a type constructor, where a value, it
is a data constructor.

data MyData t -- type constructor with kind * -> *
= MyData t -- data constructor with type a -> MyData a

*Main> :k MyData
MyData :: * -> *
*Main> :t MyData
MyData :: a -> MyData a

template <typename t> class MyData
{

t member;
};

• * -> * -> * is a template that takes two type arguments

data MyData t1 t2 = MyData t1 t2

template <typename t1, typename t2> class MyData
{

t1 member1;
t2 member2;
MyData(t1 m1, t2 m2) : member1(m1), member2(m2) { }

};

• (* -> *) -> * is a template that takes one template argument of kind (* -> *)

data MyData tmpl = MyData (tmpl Int)

401

Type constructors & Kinds

template <template <typename t> class tmpl> class MyData
{

tmpl<int> member1;
MyData(tmpl<int> m) : member1(m) { }

};

402

57 Wider Theory

403

58 Denotational semantics

New readers: Please report stumbling blocks! While the material on this page
is intended to explain clearly, there are always mental traps that innocent readers new
to the subject fall in but that the authors are not aware of. Please report any tricky
passages to the Talk1 page or the #haskell IRC channel so that the style of exposition
can be improved.

58.1 Introduction

This chapter explains how to formalize the meaning of Haskell programs, the denotational
semantics. It may seem to be nit-picking to formally specify that the program square x
= x*x means the same as the mathematical square function that maps each number to its
square, but what about the meaning of a program like f x = f (x+1) that loops forever?
In the following, we will exemplify the approach first taken by Scott and Strachey to this
question and obtain a foundation to reason about the correctness of functional programs
in general and recursive definitions in particular. Of course, we will concentrate on those
topics needed to understand Haskell programs.2

Another aim of this chapter is to illustrate the notions strict and lazy that capture the
idea that a function needs or needs not to evaluate its argument. This is a basic ingredient
to predict the course of evaluation of Haskell programs and hence of primary interest to
the programmer. Interestingly, these notions can be formulated concisely with denotational
semantics alone, no reference to an execution model is necessary. They will be put to
good use in Graph Reduction3, but it is this chapter that will familiarize the reader with
the denotational definition and involved notions such as ⊥ (”Bottom”). The reader only
interested in strictness may wish to poke around in section Bottom and Partial Functions4
and quickly head over to Strict and Non-Strict Semantics5.

58.1.1 What are Denotational Semantics and what are they for?

What does a Haskell program mean? This question is answered by the denotational
semantics of Haskell. In general, the denotational semantics of a programming lan-
guage map each of its programs to a mathematical object (denotation), that represents

2 In fact, there are no written down and complete denotational semantics of Haskell. This would be a tedious
task void of additional insight and we happily embrace the folklore and common sense semantics.

3 Chapter 65 on page 463
4 Chapter 58.2 on page 408
5 Chapter 58.4 on page 417

405

Denotational semantics

the meaning of the program in question. As an example, the mathematical object for the
Haskell programs 10, 9+1, 2*5 and sum [1..4] can be represented by the integer 10. We
say that all those programs denote the integer 10. The collection of such mathematical
objects is called the semantic domain.
The mapping from program code to a semantic domain is commonly written down with
double square brackets (”Oxford brackets”) around program code. For example,

[[2*5]] = 10.

Denotations are compositional, i.e. the meaning of a program like 1+9 only depends on the
meaning of its constituents:

[[a+b]] = [[a]]+ [[b]].

The same notation is used for types, i.e.

[[Integer]] = Z.

For simplicity however, we will silently identify expressions with their semantic objects in
subsequent chapters and use this notation only when clarification is needed.

It is one of the key properties of purely functional languages like Haskell that a direct
mathematical interpretation like ”1+9 denotes 10” carries over to functions, too: in essence,
the denotation of a program of type Integer -> Integer is a mathematical function Z→Z
between integers. While we will see that this expression needs refinement generally, to
include non-termination, the situation for imperative languages is clearly worse: a procedure
with that type denotes something that changes the state of a machine in possibly unintended
ways. Imperative languages are tightly tied to operational semantics which describes
their way of execution on a machine. It is possible to define a denotational semantics for
imperative programs and to use it to reason about such programs, but the semantics often
has operational nature and sometimes must be extended in comparison to the denotational
semantics for functional languages.6 In contrast, the meaning of purely functional languages
is by default completely independent from their way of execution. The Haskell98 standard
even goes as far as to specify only Haskell’s non-strict denotational semantics, leaving open
how to implement them.

In the end, denotational semantics enables us to develop formal proofs that programs indeed
do what we want them to do mathematically. Ironically, for proving program properties
in day-to-day Haskell, one can use Equational reasoning7, which transforms programs into

6 Monads are one of the most successful ways to give denotational semantics to imperative programs. See
also Haskell/Advanced monads ˆ{https://en.wikibooks.org/wiki/Haskell%2FAdvanced%20monads} .

7 https://en.wikibooks.org/wiki/Haskell%2FEquational%20reasoning

406

https://en.wikibooks.org/wiki/Haskell%2FAdvanced%20monads
https://en.wikibooks.org/wiki/Haskell%2FEquational%20reasoning

Introduction

equivalent ones without seeing much of the underlying mathematical objects we are con-
centrating on in this chapter. But the denotational semantics actually show up whenever
we have to reason about non-terminating programs, for instance in Infinite Lists8.

Of course, because they only state what a program is, denotational semantics cannot answer
questions about how long a program takes or how much memory it eats; this is governed by
the evaluation strategy which dictates how the computer calculates the normal form of an
expression. On the other hand, the implementation has to respect the semantics, and to a
certain extent, it is the semantics that determine how Haskell programs must be evaluated
on a machine. We will elaborate on this in Strict and Non-Strict Semantics9.

58.1.2 What to choose as Semantic Domain?

We are now looking for suitable mathematical objects that we can attribute to every Haskell
program. In case of the example 10, 2*5 and sum [1..4], it is clear that all expressions
should denote the integer 10. Generalizing, every value x of type Integer is likely to denote
an element of the set Z. The same can be done with values of type Bool. For functions like
f :: Integer -> Integer, we can appeal to the mathematical definition of ”function” as
a set of (argument,value)-pairs, its graph.

But interpreting functions as their graph was too quick, because it does not work well with
recursive definitions. Consider the definition

shaves :: Integer -> Integer -> Bool
1 `shaves` 1 = True
2 `shaves` 2 = False
0 `shaves` x = not (x `shaves` x)
_ `shaves` _ = False

We can think of 0,1 and 2 as being male persons with long beards and the question is
who shaves whom. Person 1 shaves himself, but 2 gets shaved by the barber 0 because
evaluating the third equation yields 0 `shaves` 2 == True. In general, the third line says
that the barber 0 shaves all persons that do not shave themselves.

What about the barber himself, is 0 `shaves` 0 true or not? If it is, then the third equa-
tion says that it is not. If it is not, then the third equation says that it is. Puzzled, we see
that we just cannot attribute True or False to 0 `shaves` 0, the graph we use as inter-
pretation for the function shaves must have an empty spot. We realize that our semantic
objects must be able to incorporate partial functions, functions that are undefined for
some values of their arguments (..that is otherwise permitted by the arguments’ types).

It is well known that this famous example gave rise to serious foundational problems in set
theory. It’s an example of an impredicative definition, a definition which uses itself, a
logical circle. Unfortunately for recursive definitions, the circle is not the problem but the
feature.

8 Chapter 58.5.3 on page 424
9 Chapter 58.4 on page 417

407

Denotational semantics

58.2 Bottom and Partial Functions

58.2.1 ⊥ Bottom

To define partial functions, we introduce a special value ⊥, named bottom10 and commonly
written _|_ in typewriter font. We say that ⊥is the completely ”undefined” value or
function. Every basic data type like Integer or () contains one ⊥besides their usual
elements. So the possible values of type Integer are

⊥,0,+1,−1,+2,−2,+3,−3, . . .

Adding ⊥to the set of values is also called lifting. This is often depicted by a subscript
like in Z⊥. While this is the correct notation for the mathematical set ”lifted integers”, we
prefer to talk about ”values of type Integer”. We do this because Z⊥ suggests that there
are ”real” integers Z, but inside Haskell, the ”integers” are Integer.

As another example, the type () with only one element actually has two inhabitants:

⊥,()

For now, we will stick to programming with Integers. Arbitrary algebraic data types will
be treated in section Algebraic Data Types11 since strict and non-strict languages diverge
on how these include ⊥.

In Haskell, the expression undefined denotes ⊥. With its help, one can indeed verify
some semantic properties of actual Haskell programs. undefined has the polymorphic type
forall a . a which of course can be specialized to undefined :: Integer, undefined
:: (), undefined :: Integer -> Integer and so on. In the Haskell Prelude, it is defined
as

undefined = error "Prelude.undefined"

As a side note, it follows from the Curry-Howard isomorphism12 that any value of the
polymorphic type forall a . a must denote ⊥.

58.2.2 Partial Functions and the Semantic Approximation Order

Now, ⊥ (bottom type) gives us the possibility to denote partial functions:

f(n) =


1 if n is 0
−2 if n is 1
⊥ else

10 https://en.wikibooks.org/wiki/%3Aw%3ABottom%20type
11 Chapter 58.5 on page 419
12 https://en.wikibooks.org/wiki/Haskell%2FThe%20Curry-Howard%20isomorphism

408

https://en.wikibooks.org/wiki/%3Aw%3ABottom%20type
https://en.wikibooks.org/wiki/Haskell%2FThe%20Curry-Howard%20isomorphism

Bottom and Partial Functions

Here, f(n) yields well defined values for n = 0 and n = 1 but gives ⊥ for all other n. Note
that the type ⊥ is universal, as ⊥ has no value: the function ⊥:: Integer -> Integer is
given by

⊥(n) = ⊥

for all

n

where the ⊥ on the right hand side denotes a value of type Integer.

To formalize, partial functions say, of type Integer -> Integer are at least mathemat-
ical mappings from the lifted integers Z⊥ = {⊥,0,±1,±2,±3, . . .} to the lifted integers. But
this is not enough, since it does not acknowledge the special role of ⊥. For example, the
definition

g(n) =
{

1 if n is ⊥
⊥ else

looks counterintuitive, and, in fact, is wrong. Why does g(⊥) yield a defined value whereas
g(1) is undefined? The intuition is that every partial function g should yield more defined
answers for more defined arguments. To formalize, we can say that every concrete number
is more defined than ⊥:

⊥ < 1 , ⊥ < 2 , . . .

Here, a < b denotes that b is more defined than a. Likewise, a ⊑ b will denote that either
b is more defined than a or both are equal (and so have the same definedness). < is also
called the semantic approximation order because we can approximate defined values
by less defined ones thus interpreting ”more defined” as ”approximating better”. Of course,
⊥ is designed to be the least element of a data type, we always have that ⊥ < x for all x,
except the case when x happens to denote ⊥ itself:

∀x ̸= ⊥ ⊥ < x

As no number is more defined than another, the mathematical relation < is false for any
pair of numbers:

1 < 1

does not hold.

409

Denotational semantics

neither

1 < 2

nor

2 < 1

hold.

This is contrasted to ordinary order predicate ≤, which can compare any two numbers. A
quick way to remember this is the sentence: ”1 and 2 are different in terms of information
content but are equal in terms of information quantity”. That’s another reason why we use
a different symbol: ⊑.

neither

1 ⊑ 2

nor

2 ⊑ 1

hold,

but

1 ⊑ 1

holds.

One says that ⊑ specifies a partial order and that the values of type Integer form a
partially ordered set (poset for short). A partial order is characterized by the following
three laws

• Reflexivity, everything is just as defined as itself: x ⊑ x for all x
• Transitivity: if x ⊑ y and y ⊑ z, then x ⊑ z
• Antisymmetry: if both x ⊑ y and y ⊑ x hold, then x and y must be equal: x = y.

Exercises:
Do the integers form a poset with respect to the order ≤?

We can depict the order ⊑ on the values of type Integer by the following graph

410

Bottom and Partial Functions

Figure 24

where every link between two nodes specifies that the one above is more defined than the
one below. Because there is only one level (excluding ⊥), one says that Integer is a flat
domain. The picture also explains the name of ⊥: it’s called bottom because it always sits
at the bottom.

58.2.3 Monotonicity

Our intuition about partial functions now can be formulated as following: every partial
function f is amonotone mapping between partially ordered sets. More defined arguments
will yield more defined values:

x ⊑ y ⇒ f(x) ⊑ f(y)

In particular, a function h with h(⊥) = 1 is constant: h(n) = 1 for all n. Note that here it
is crucial that 1 ⊑ 2 etc. don’t hold.

Translated to Haskell, monotonicity means that we cannot use ⊥ as a condition, i.e. we
cannot pattern match on ⊥, or its equivalent undefined. Otherwise, the example g from
above could be expressed as a Haskell program. As we shall see later, ⊥ also denotes non-
terminating programs, so that the inability to observe ⊥ inside Haskell is related to the
halting problem.

411

Denotational semantics

Of course, the notion of more defined than can be extended to partial functions by saying
that a function is more defined than another if it is so at every possible argument:

f ⊑ g if ∀x.f(x) ⊑ g(x)

Thus, the partial functions also form a poset, with the undefined function ⊥(x) = ⊥ being
the least element.

58.3 Recursive Definitions as Fixed Point Iterations

58.3.1 Approximations of the Factorial Function

Now that we have a means to describe partial functions, we can give an interpretation to
recursive definitions. Lets take the prominent example of the factorial function f(n) = n!
whose recursive definition is

f(n) = if n == 0 then 1 else n ·f(n−1)

Although we saw that interpreting this recursive function directly as a set description may
lead to problems, we intuitively know that in order to calculate f(n) for every given n we
have to iterate the right hand side. This iteration can be formalized as follows: we calculate
a sequence of functions fk with the property that each one consists of the right hand side
applied to the previous one, that is

fk+1(n) = if n == 0 then 1 else n ·fk(n−1)

We start with the undefined function f0(n) = ⊥, and the resulting sequence of partial
functions reads:

f1(n) =
{

1 if n is 0
⊥ else

, f2(n) =


1 if n is 0
1 if n is 1
⊥ else

, f3(n) =


1 if n is 0
1 if n is 1
2 if n is 2
⊥ else

and so on. Clearly,

⊥ = f0 ⊑ f1 ⊑ f2 ⊑ . . .

412

Recursive Definitions as Fixed Point Iterations

and we expect that the sequence converges to the factorial function.

The iteration follows the well known scheme of a fixed point iteration

x0,g(x0),g(g(x0)),g(g(g(x0))), . . .

In our case, x0 is a function and g is a functional, a mapping between functions. We have

x0 = ⊥

and

g(x) = n 7→ if n == 0 then 1 else n∗x(n−1)

If we start with x0 = ⊥, the iteration will yield increasingly defined approximations to the
factorial function

⊥ ⊑ g(⊥) ⊑ g(g(⊥)) ⊑ g(g(g(⊥))) ⊑ . . .

(Proof that the sequence increases: The first inequality ⊥ ⊑ g(⊥) follows from the fact that
⊥ is less defined than anything else. The second inequality follows from the first one by
applying g to both sides and noting that g is monotone. The third follows from the second
in the same fashion and so on.)

It is very illustrative to formulate this iteration scheme in Haskell. As functionals are just
ordinary higher order functions, we have

g :: (Integer -> Integer) -> (Integer -> Integer)
g x = \n -> if n == 0 then 1 else n * x (n-1)

x0 :: Integer -> Integer
x0 = undefined

(f0:f1:f2:f3:f4:fs) = iterate g x0

We can now evaluate the functions f0,f1,... at sample arguments and see whether they
yield undefined or not:

> f3 0
1
> f3 1
1
> f3 2
2
> f3 5
*** Exception: Prelude.undefined
> map f3 [0..]

413

Denotational semantics

[1,1,2,*** Exception: Prelude.undefined
> map f4 [0..]
[1,1,2,6,*** Exception: Prelude.undefined
> map f1 [0..]
[1,*** Exception: Prelude.undefined

Of course, we cannot use this to check whether f4 is really undefined for all arguments.

58.3.2 Convergence

To the mathematician, the question whether this sequence of approximations converges
is still to be answered. For that, we say that a poset is a directed complete partial
order (dcpo) iff every monotone sequence x0 ⊑ x1 ⊑ . . . (also called chain) has a least
upper bound (supremum)

sup
⊑

{x0 ⊑ x1 ⊑ . . .} = x

.

If that’s the case for the semantic approximation order, we clearly can be sure that monotone
sequence of functions approximating the factorial function indeed has a limit. For our
denotational semantics, we will only meet dcpos which have a least element ⊥ which are
called complete partial orders (cpo).
The Integers clearly form a (d)cpo, because the monotone sequences consisting of more
than one element must be of the form

⊥ ⊑ ·· · ⊑ ⊥ ⊑ n ⊑ n ⊑ ·· · ⊑ n

where n is an ordinary number. Thus, n is already the least upper bound.

For functions Integer -> Integer, this argument fails because monotone sequences may
be of infinite length. But because Integer is a (d)cpo, we know that for every point n,
there is a least upper bound

sup
⊑

{⊥ = f0(n) ⊑ f1(n) ⊑ f2(n) ⊑ . . .} =: f(n)

.

As the semantic approximation order is defined point-wise, the function f is the supremum
we looked for.

These have been the last touches for our aim to transform the impredicative definition of
the factorial function into a well defined construction. Of course, it remains to be shown
that f(n) actually yields a defined value for every n, but this is not hard and far more
reasonable than a completely ill-formed definition.

414

Recursive Definitions as Fixed Point Iterations

58.3.3 Bottom includes Non-Termination

It is instructive to try our newly gained insight into recursive definitions on an example
that does not terminate:

f(n) = f(n+1)

The approximating sequence reads

f0 = ⊥,f1 = ⊥, . . .

and consists only of ⊥. Clearly, the resulting limit is ⊥ again. From an operational point of
view, a machine executing this program will loop indefinitely. We thus see that ⊥ may also
denote a non-terminating function or value. Hence, given the halting problem, pattern
matching on ⊥ in Haskell is impossible.

58.3.4 Interpretation as Least Fixed Point

Earlier, we called the approximating sequence an example of the well known ”fixed point
iteration” scheme. And of course, the definition of the factorial function f can also be
thought as the specification of a fixed point of the functional g:

f = g(f) = n 7→ if n == 0 then 1 else n ·f(n−1)

However, there might be multiple fixed points. For instance, there are several f which fulfill
the specification

f = n 7→ if n == 0 then 1 else f(n+1)

,

Of course, when executing such a program, the machine will loop forever on f(1) or f(2)
and thus not produce any valuable information about the value of f(1). This corresponds
to choosing the least defined fixed point as semantic object f and this is indeed a canonical
choice. Thus, we say that

f = g(f)

,

415

Denotational semantics

defines the least fixed point f of g. Clearly, least is with respect to our semantic approx-
imation order ⊑.

The existence of a least fixed point is guaranteed by our iterative construction if we add
the condition that g must be continuous (sometimes also called ”chain continuous”). That
simply means that g respects suprema of monotone sequences:

sup
⊑

{g(x0) ⊑ g(x1) ⊑ . . .} = g

(
sup

⊑
{x0 ⊑ x1 ⊑ . . .}

)

We can then argue that with

f = sup
⊑

{x0 ⊑ g(x0) ⊑ g(g(x0)) ⊑ . . .}

we have

g(f) = g
(
sup⊑{x0 ⊑ g(x0) ⊑ g(g(x0)) ⊑ . . .}

)
= sup⊑{g(x0) ⊑ g(g(x0)) ⊑ . . .}
= sup⊑{x0 ⊑ g(x0) ⊑ g(g(x0)) ⊑ . . .}
= f

and the iteration limit is indeed a fixed point of g. You may also want to convince yourself
that the fixed point iteration yields the least fixed point possible.

Exercises:
Prove that the fixed point obtained by fixed point iteration starting with x0 = ⊥ is also
the least one, that it is smaller than any other fixed point. (Hint: ⊥ is the least element
of our cpo and g is monotone)

By the way, how do we know that each Haskell function we write down indeed is continuous?
Just as with monotonicity, this has to be enforced by the programming language. Admit-
tedly, these properties can somewhat be enforced or broken at will, so the question feels a
bit void. But intuitively, monotonicity is guaranteed by not allowing pattern matches on ⊥.
For continuity, we note that for an arbitrary type a, every simple function a -> Integer is
automatically continuous because the monotone sequences of Integers are of finite length.
Any infinite chain of values of type a gets mapped to a finite chain of Integers and respect
for suprema becomes a consequence of monotonicity. Thus, all functions of the special
case Integer -> Integer must be continuous. For functionals like g::(Integer -> In-
teger) -> (Integer -> Integer), the continuity then materializes due to currying, as
the type is isomorphic to ::((Integer -> Integer), Integer) -> Integer and we can
take a=((Integer -> Integer), Integer).

In Haskell, the fixed interpretation of the factorial function can be coded as

factorial = fix g

416

Strict and Non-Strict Semantics

with the help of the fixed point combinator

fix :: (a -> a) -> a.

We can define it by

fix f = let x = f x in x

which leaves us somewhat puzzled because when expanding factorial, the result is not
anything different from how we would have defined the factorial function in Haskell in
the first place. But of course, the construction this whole section was about is not at all
present when running a real Haskell program. It’s just a means to put the mathematical
interpretation of Haskell programs on a firm ground. Yet it is very nice that we can explore
these semantics in Haskell itself with the help of undefined.

58.4 Strict and Non-Strict Semantics

After having elaborated on the denotational semantics of Haskell programs, we will drop the
mathematical function notation f(n) for semantic objects in favor of their now equivalent
Haskell notation f n.

58.4.1 Strict Functions

A function f with one argument is called strict, if and only if
f ⊥ = ⊥.

Here are some examples of strict functions

id x = x
succ x = x + 1
power2 0 = 1
power2 n = 2 * power2 (n-1)

and there is nothing unexpected about them. But why are they strict? It is instructive
to prove that these functions are indeed strict. For id, this follows from the definition.
For succ, we have to ponder whether ⊥ + 1is ⊥ or not. If it was not, then we should
for example have ⊥ + 1 = 2or more general ⊥ + 1 = k for some concrete number k. We
remember that every function is monotone, so we should have for example

2 = ⊥ + 1 ⊑ 4 + 1 = 5

as ⊥ ⊑4. But neither of 2 ⊑ 5, 2 = 5 nor 2 ⊒ 5is valid so that k cannot be 2. In general,
we obtain the contradiction

k = ⊥ + 1 ⊑k + 1 = k + 1.

and thus the only possible choice is

succ ⊥ = ⊥ + 1 = ⊥

417

Denotational semantics

and succ is strict.

Exercises:
Prove that power2 is strict. While one can base the proof on the ”obvious” fact that
power2 n is 2n, the latter is preferably proven using fixed point iteration.

58.4.2 Non-Strict and Strict Languages

Searching for non-strict functions, it happens that there is only one prototype of a
non-strict function of type Integer -> Integer:

one x = 1

Its variants are constk x = k for every concrete number k. Why are these the only ones
possible? Remember that one n can be no less defined than one ⊥. As Integer is a flat
domain, both must be equal.

Why is one non-strict? To see that it is, we use a Haskell interpreter and try

> one (undefined :: Integer)
1

which is not ⊥. This is reasonable as one completely ignores its argument. When interpret-
ing ⊥ in an operational sense as ”non-termination”, one may say that the non-strictness of
one means that it does not force its argument to be evaluated and therefore avoids the in-
finite loop when evaluating the argument ⊥. But one might as well say that every function
must evaluate its arguments before computing the result which means that one ⊥ should
be ⊥, too. That is, if the program computing the argument does not halt, one should not
halt as well.13 It shows up that one can choose freely this or the other design for a func-
tional programming language. One says that the language is strict or non-strict depending
on whether functions are strict or non-strict by default. The choice for Haskell is non-strict.
In contrast, the functional languages ML and Lisp choose strict semantics.

58.4.3 Functions with several Arguments

The notion of strictness extends to functions with several variables. For example, a function
f of two arguments is strict in the second argument if and only if

f x ⊥ = ⊥

for every x. But for multiple arguments, mixed forms where the strictness depends on the
given value of the other arguments, are much more common. An example is the conditional

13 Strictness as premature evaluation of function arguments is elaborated in the chapter Graph Reduction
ˆ{Chapter65 on page 463}.

418

Algebraic Data Types

cond b x y = if b then x else y

We see that it is strict in y depending on whether the test b is True or False:

cond True x ⊥ = x
cond False x ⊥ = ⊥

and likewise for x. Apparently, cond is certainly ⊥ if both x and y are, but not necessarily
when at least one of them is defined. This behavior is called joint strictness.
Clearly, cond behaves like the if-then-else statement where it is crucial not to evaluate
both the then and the else branches:

if null xs then 'a' else head xs
if n == 0 then 1 else 5 / n

Here, the else part is ⊥ when the condition is met. Thus, in a non-strict language, we have
the possibility to wrap primitive control statements such as if-then-else into functions like
cond. This way, we can define our own control operators. In a strict language, this is not
possible as both branches will be evaluated when calling cond which makes it rather useless.
This is a glimpse of the general observation that non-strictness offers more flexibility for
code reuse than strictness. See the chapter Laziness1415 for more on this subject.

58.5 Algebraic Data Types

After treating the motivation case of partial functions between Integers, we now want to
extend the scope of denotational semantics to arbitrary algebraic data types in Haskell.

A word about nomenclature: the collection of semantic objects for a particular type is
usually called a domain. This term is more a generic name than a particular definition and
we decide that our domains are cpos (complete partial orders), that is sets of values together
with a relation more defined that obeys some conditions to allow fixed point iteration.
Usually, one adds additional conditions to the cpos that ensure that the values of our
domains can be represented in some finite way on a computer and thereby avoiding to
ponder the twisted ways of uncountable infinite sets. But as we are not going to prove
general domain theoretic theorems, the conditions will just happen to hold by construction.

58.5.1 Constructors

Let’s take the example types

14 Chapter 66 on page 475
15 The term Laziness comes from the fact that the prevalent implementation technique for non-strict lan-

guages is called lazy evaluation

419

Denotational semantics

data Bool = True | False
data Maybe a = Just a | Nothing

Here, True, False and Nothing are nullary constructors whereas Just is a unary construc-
tor. The inhabitants of Bool form the following domain:

Figure 25

Remember that ⊥ is added as least element to the set of values True and False, we say
that the type is lifted16. A domain whose poset diagram consists of only one level is called
a flat domain. We already know that Integer is a flat domain as well, it’s just that the
level above ⊥ has an infinite number of elements.

What are the possible inhabitants of Maybe Bool? They are

⊥, Nothing, Just ⊥, Just True, Just False

So the general rule is to insert all possible values into the unary (binary, ternary, ...) con-
structors as usual but without forgetting ⊥. Concerning the partial order, we remember
the condition that the constructors should be monotone just as any other functions. Hence,
the partial order looks as follows

16 The term lifted is somewhat overloaded, see also Unboxed Types ˆ{Chapter58.1.2 on page 407}.

420

Algebraic Data Types

Figure 26

But there is something to ponder: why isn’t Just ⊥ = ⊥? I mean ”Just undefined” is as
undefined as ”undefined”! The answer is that this depends on whether the language is strict
or non-strict. In a strict language, all constructors are strict by default, i.e. Just ⊥ =
⊥ and the diagram would reduce to

Figure 27

As a consequence, all domains of a strict language are flat.

But in a non-strict language like Haskell, constructors are non-strict by default and Just
⊥ is a new element different from ⊥, because we can write a function that reacts differently
to them:

f (Just _) = 4
f Nothing = 7

421

Denotational semantics

As f ignores the contents of the Just constructor, f (Just ⊥) is 4 but f ⊥ is ⊥ (intu-
itively, if f is passed ⊥, it will not be possible to tell whether to take the Just branch or
the Nothing branch, and so ⊥ will be returned).

This gives rise to non-flat domains as depicted in the former graph. What should these be
of use for? In the context of Graph Reduction17, we may also think of ⊥ as an unevaluated
expression. Thus, a value x = Just ⊥ may tell us that a computation (say a lookup)
succeeded and is not Nothing, but that the true value has not been evaluated yet. If we are
only interested in whether x succeeded or not, this actually saves us from the unnecessary
work to calculate whether x is Just True or Just False as would be the case in a flat
domain. The full impact of non-flat domains will be explored in the chapter Laziness18,
but one prominent example are infinite lists treated in section Recursive Data Types and
Infinite Lists19.

58.5.2 Pattern Matching

In the section Strict Functions20, we proved that some functions are strict by inspecting
their results on different inputs and insisting on monotonicity. However, in the light of
algebraic data types, there can only be one source of strictness in real life Haskell: pattern
matching, i.e. case expressions. The general rule is that pattern matching on a constructor
of a data-type will force the function to be strict, i.e. matching ⊥ against a constructor
always gives ⊥. For illustration, consider

const1 _ = 1

const1' True = 1
const1' False = 1

The first function const1 is non-strict whereas the const1' is strict because it decides
whether the argument is True or False although its result doesn’t depend on that. Pattern
matching in function arguments is equivalent to case-expressions

const1' x = case x of
True -> 1
False -> 1

which similarly impose strictness on x: if the argument to the case expression denotes ⊥
the whole case will denote ⊥, too. However, the argument for case expressions may be
more involved as in

17 Chapter 65 on page 463
18 Chapter 66 on page 475
19 Chapter 58.5.3 on page 424
20 Chapter 58.4.1 on page 417

422

Algebraic Data Types

foo k table = case lookup ("Foo." ++ k) table of
Nothing -> ...
Just x -> ...

and it can be difficult to track what this means for the strictness of foo.

An example for multiple pattern matches in the equational style is the logical or:

or True _ = True
or _ True = True
or _ _ = False

Note that equations are matched from top to bottom. The first equation for or matches the
first argument against True, so or is strict in its first argument. The same equation also
tells us that or True x is non-strict in x. If the first argument is False, then the second
will be matched against True and or False x is strict in x. Note that while wildcards are
a general sign of non-strictness, this depends on their position with respect to the pattern
matches against constructors.

Exercises:

1. Give an equivalent discussion for the logical and
2. Can the logical ”excluded or” (xor) be non-strict in one of its arguments if we know
the other?

There is another form of pattern matching, namely irrefutable patterns marked with a
tilde ˜. Their use is demonstrated by

f ˜(Just x) = 1
f Nothing = 2

An irrefutable pattern always succeeds (hence the name) resulting in f ⊥ = 1. But when
changing the definition of f to

f ˜(Just x) = x + 1
f Nothing = 2 -- this line may as well be left away

we have

f ⊥ = ⊥ + 1 = ⊥
f (Just 1) = 1 + 1 = 2

If the argument matches the pattern, x will be bound to the corresponding value. Otherwise,
any variable like x will be bound to ⊥.

By default, let and where bindings are non-strict, too:

423

Denotational semantics

foo key map = let Just x = lookup key map in ...

is equivalent to

foo key map = case (lookup key map) of ˜(Just x) -> ...

Exercises:

1. The Haskell language definitiona gives the detailed semantics of pattern matchingb
and you should now be able to understand it. So go on and have a look!

2. Consider a function or of two Boolean arguments with the following properties:

or ⊥ ⊥ = ⊥
or True ⊥ = True
or ⊥ True = True

or False y = y
or x False = x

This function is another example of joint strictness, but a much sharper one: the
result is only ⊥ if both arguments are (at least when we restrict the arguments to
True and ⊥). Can such a function be implemented in Haskell?

a http://www.haskell.org/onlinereport/
b http://www.haskell.org/onlinereport/exps.html#case-semantics

58.5.3 Recursive Data Types and Infinite Lists

The case of recursive data structures is not very different from the base case. Consider a
list of unit values

data List = [] | () : List

Though this seems like a simple type, there is a surprisingly complicated number of ways
you can fit ⊥ in here and there, and therefore the corresponding graph is complicated. The
bottom of this graph is shown below. An ellipsis indicates that the graph continues along
this direction. A red ellipse behind an element indicates that this is the end of a chain; the
element is in normal form.

424

http://www.haskell.org/onlinereport/
http://www.haskell.org/onlinereport/exps.html#case-semantics

Algebraic Data Types

Figure 28

and so on. But now, there are also chains of infinite length like

⊥ ⊑ ():⊥ ⊑ ():():⊥ ⊑ ...

This causes us some trouble as we noted in section Convergence21 that every monotone
sequence must have a least upper bound. This is only possible if we allow for infinite
lists. Infinite lists (sometimes also called streams) turn out to be very useful and their
manifold use cases are treated in full detail in chapter Laziness22. Here, we will show what
their denotational semantics should be and how to reason about them. Note that while
the following discussion is restricted to lists only, it easily generalizes to arbitrary recursive
data structures like trees.

In the following, we will switch back to the standard list type

data [a] = [] | a : [a]

21 Chapter 58.3.2 on page 414
22 Chapter 66 on page 475

425

Denotational semantics

to close the syntactic gap to practical programming with infinite lists in Haskell.

Exercises:

1. Draw the non-flat domain corresponding [Bool].
2. How is the graphic to be changed for [Integer]?

Calculating with infinite lists is best shown by example. For that, we need an infinite list

ones :: [Integer]
ones = 1 : ones

When applying the fixed point iteration to this recursive definition, we see that ones ought
to be the supremum of

⊥ ⊑ 1:⊥ ⊑ 1:1:⊥ ⊑ 1:1:1:⊥ ⊑...,

that is an infinite list of 1. Let’s try to understand what take 2 ones should be. With
the definition of take

take 0 _ = []
take n (x:xs) = x : take (n-1) xs
take n [] = []

we can apply take to elements of the approximating sequence of ones:

take 2 ⊥ ==> ⊥
take 2 (1:⊥) ==> 1 : take 1 ⊥ ==> 1 : ⊥
take 2 (1:1:⊥) ==> 1 : take 1 (1:⊥) ==> 1 : 1 : take 0 ⊥

==> 1 : 1 : []

We see that take 2 (1:1:1:⊥) and so on must be the same as take 2 (1:1:⊥) =
1:1:[] because 1:1:[] is fully defined. Taking the supremum on both the sequence of
input lists and the resulting sequence of output lists, we can conclude

take 2 ones = 1:1:[]

Thus, taking the first two elements of ones behaves exactly as expected.

Generalizing from the example, we see that reasoning about infinite lists involves consider-
ing the approximating sequence and passing to the supremum, the truly infinite list. Still,
we did not give it a firm ground. The solution is to identify the infinite list with the whole
chain itself and to formally add it as a new element to our domain: the infinite list is the
sequence of its approximations. Of course, any infinite list like ones can be compactly
depicted as

ones = 1 : 1 : 1 : 1 : ...

426

Algebraic Data Types

what simply means that

ones = (⊥ ⊑ 1:⊥ ⊑ 1:1:⊥ ⊑ ...)

Exercises:

1. Of course, there are more interesting infinite lists than ones. Can you write re-
cursive definition in Haskell for
a) the natural numbers nats = 1:2:3:4:...
b) a cycle like cycle123 = 1:2:3: 1:2:3 : ...

2. Look at the Prelude functions repeat and iterate and try to solve the previous
exercise with their help.

3. Use the example from the text to find the value the expression drop 3
nats denotes.

4. Assume that the work in a strict setting, i.e. that the domain of [Integer] is
flat. What does the domain look like? What about infinite lists? What value does
ones denote?

What about the puzzle of how a computer can calculate with infinite lists? It takes an
infinite amount of time, after all? Well, this is true. But the trick is that the computer
may well finish in a finite amount of time if it only considers a finite part of the infinite list.
So, infinite lists should be thought of as potentially infinite lists. In general, intermediate
results take the form of infinite lists whereas the final value is finite. It is one of the benefits
of denotational semantics that one treat the intermediate infinite data structures as truly
infinite when reasoning about program correctness.

Exercises:

1. To demonstrate the use of infinite lists as intermediate results, show that
take 3 (map (+1) nats) = take 3 (tail nats)
by first calculating the infinite sequence corresponding to map (+1) nats.

2. Of course, we should give an example where the final result indeed takes an
infinite time. So, what does

filter (< 5) nats

denote?
3. Sometimes, one can replace filter with takeWhile in the previous exercise. Why
only sometimes and what happens if one does?

As a last note, the construction of a recursive domain can be done by a fixed point iteration
similar to recursive definition for functions. Yet, the problem of infinite chains has to be
tackled explicitly. See the literature in External Links23 for a formal construction.

23 Chapter 58.7 on page 431

427

Denotational semantics

58.5.4 Haskell specialities: Strictness Annotations and Newtypes

Haskell offers a way to change the default non-strict behavior of data type constructors by
strictness annotations. In a data declaration like

data Maybe' a = Just' !a | Nothing'

an exclamation point ! before an argument of the constructor specifies that it should be
strict in this argument. Hence we have Just' ⊥ = ⊥ in our example. Further information
may be found in chapter Strictness24.

In some cases, one wants to rename a data type, like in

data Couldbe a = Couldbe (Maybe a)

However, Couldbe a contains both the elements ⊥ and Couldbe ⊥. With the help of a
newtype definition

newtype Couldbe a = Couldbe (Maybe a)

we can arrange that Couldbe a is semantically equal to Maybe a, but different during type
checking. In particular, the constructor Couldbe is strict. Yet, this definition is subtly
different from

data Couldbe' a = Couldbe' !(Maybe a)

To explain how, consider the functions

f (Couldbe m) = 42
f' (Couldbe' m) = 42

Here, f' ⊥ will cause the pattern match on the constructor Couldbe' fail with the effect
that f' ⊥ = ⊥. But for the newtype, the match on Couldbe will never fail, we get f ⊥ =
42. In a sense, the difference can be stated as:

• for the strict case, Couldbe' ⊥ is a synonym for ⊥
• for the newtype, ⊥ is a synonym for Couldbe ⊥

with the agreement that a pattern match on ⊥ fails and that a match on
Constructor ⊥does not.

Newtypes may also be used to define recursive types. An example is the alternate definition
of the list type [a]

24 Chapter 67 on page 487

428

Other Selected Topics

newtype List a = In (Maybe (a, List a))

Again, the point is that the constructor In does not introduce an additional lifting with ⊥.

58.6 Other Selected Topics

58.6.1 Abstract Interpretation and Strictness Analysis

As lazy evaluation means a constant computational overhead, a Haskell compiler may want
to discover where inherent non-strictness is not needed at all which allows it to drop the
overhead at these particular places. To that extent, the compiler performs strictness
analysis just like we proved in some functions to be strict section Strict Functions25. Of
course, details of strictness depending on the exact values of arguments like in our example
cond are out of scope (this is in general undecidable). But the compiler may try to find
approximate strictness information and this works in many common cases like power2.

Now, abstract interpretation is a formidable idea to reason about strictness: ...
For more about strictness analysis, see the research papers about strictness analysis on the
Haskell wiki26.

58.6.2 Interpretation as Powersets

So far, we have introduced ⊥ and the semantic approximation order ⊑ abstractly by spec-
ifying their properties. However, both as well as any inhabitants of a data type like Just
⊥ can be interpreted as ordinary sets. This is called the powerset construction. NOTE:
i’m not sure whether this is really true. Someone how knows, please correct this.

The idea is to think of ⊥ as the set of all possible values and that a computation retrieves
more information this by choosing a subset. In a sense, the denotation of a value starts its
life as the set of all values which will be reduced by computations until there remains a set
with a single element only.

As an example, consider Bool where the domain looks like

{True} {False}
\ /
\ /

⊥ = {True, False}

The values True and False are encoded as the singleton sets {True} and {False} and ⊥
is the set of all possible values.

25 Chapter 58.4.1 on page 417
26 http://haskell.org/haskellwiki/Research_papers/Compilation#Strictness

429

http://haskell.org/haskellwiki/Research_papers/Compilation#Strictness

Denotational semantics

Another example is Maybe Bool:

{Just True} {Just False}
\ /
\ /

{Nothing} {Just True, Just False}
\ /
\ /

⊥ = {Nothing, Just True, Just False}

We see that the semantic approximation order is equivalent to set inclusion, but with
arguments switched:

x ⊑ y ⇐⇒ x ⊇ y

This approach can be used to give a semantics to exceptions in Haskell27.

58.6.3 Naïve Sets are unsuited for Recursive Data Types

In the section What to choose as Semantic Domain?28, we argued that taking simple sets as
denotation for types doesn’t work well with partial functions. In the light of recursive data
types, things become even worse as John C. Reynolds showed in his paper Polymorphism
is not set-theoretic29.

Reynolds actually considers the recursive type

newtype U = In ((U -> Bool) -> Bool)

Interpreting Bool as the set {True,False} and the function type A -> B as the set of func-
tions from A to B, the type U cannot denote a set. This is because (A -> Bool) is the set of
subsets (powerset) of A which, due to a diagonal argument analogous to Cantor’s argument
that there are ”more” real numbers than natural ones, always has a bigger cardinality than
A. Thus, (U -> Bool) -> Bool has an even bigger cardinality than U and there is no way
for it to be isomorphic to U. Hence, the set U must not exist, a contradiction.

In our world of partial functions, this argument fails. Here, an element of U is given by a
sequence of approximations taken from the sequence of domains

⊥, (⊥ -> Bool) -> Bool, (((⊥ -> Bool) -> Bool) -> Bool) -> Bool and so on

where ⊥ denotes the domain with the single inhabitant ⊥. While the author of this text
admittedly has no clue on what such a thing should mean, the constructor gives a perfectly

27 S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics for imprecise excep-
tions. ˆ{http://research.microsoft.com/~simonpj/Papers/imprecise-exn.htm} In Programming
Languages Design and Implementation. ACM press, May 1999.

28 Chapter 58.1.2 on page 407
29 John C. Reynolds. Polymorphism is not set-theoretic. INRIA Rapports de Recherche No. 296. May 1984.

430

http://research.microsoft.com/~simonpj/Papers/imprecise-exn.htm

External Links

well defined object for U. We see that the type (U -> Bool) -> Bool merely consists of
shifted approximating sequences which means that it is isomorphic to U.

As a last note, Reynolds actually constructs an equivalent of U in the second order polymor-
phic lambda calculus. There, it happens that all terms have a normal form, i.e. there are
only total functions when we do not include a primitive recursion operator fix :: (a ->
a) -> a. Thus, there is no true need for partial functions and ⊥, yet a naïve set theoretic
semantics fails. We can only speculate that this has to do with the fact that not every
mathematical function is computable. In particular, the set of computable functions A ->
Bool should not have a bigger cardinality than A.

58.7 External Links

w:Denotational semantics30

Online books about Denotational Semantics

• Denotational Semantics. A Methodology for Language Development . Allyn and Bacon
, , 1986

30 https://en.wikipedia.org/wiki/Denotational%20semantics

431

https://en.wikipedia.org/wiki/Denotational%20semantics

59 Category theory

This article attempts to give an overview of category theory, in so far as it applies to Haskell.
To this end, Haskell code will be given alongside the mathematical definitions. Absolute
rigour is not followed; in its place, we seek to give the reader an intuitive feel for what the
concepts of category theory are and how they relate to Haskell.

59.1 Introduction to categories

Figure 29 A simple category, with three objects A, B and C, three identity morphisms
idA, idB and idC , and two other morphisms f : C → B and g : A → B. The third element
(the specification of how to compose the morphisms) is not shown.

433

Category theory

A category is, in essence, a simple collection. It has three components:

• A collection of objects.
• A collection of morphisms, each of which ties two objects (a source object and a target
object) together. (These are sometimes called arrows, but we avoid that term here as it
has other connotations in Haskell.) If f is a morphism with source object A and target
object B, we write f : A → B.

• A notion of composition of these morphisms. If g : A → B and f : B → C are two
morphisms, they can be composed, resulting in a morphism f ◦g : A → C.

Lots of things form categories. For example, Set is the category of all sets with morphisms
as standard functions and composition being standard function composition. (Category
names are often typeset in bold face.) Grp is the category of all groups with morphisms
as functions that preserve group operations (the group homomorphisms), i.e. for any two
groups, G with operation * and H with operation ·, a function f : G → H is a morphism in
Grp if:

f(u∗v) = f(u) ·f(v)

It may seem that morphisms are always functions, but this needn’t be the case. For example,
any partial order (P, ≤) defines a category where the objects are the elements of P, and there
is a morphism between any two objects A and B iff A ≤ B. Moreover, there are allowed to
be multiple morphisms with the same source and target objects; using the Set example, sin
and cos are both functions with source object R and target object [−1,1], but they’re most
certainly not the same morphism!

59.1.1 Category laws

There are three laws that categories need to follow. Firstly, and most simply, the compo-
sition of morphisms needs to be associative. Symbolically,

f ◦ (g ◦h) = (f ◦g)◦h

Morphisms are applied right to left in Haskell and most commonly in mathematics, so with
f ◦g first g is applied, then f.

Secondly, the category needs to be closed under the composition operation. So if f : B → C
and g : A → B, then there must be some morphism h : A → C in the category such that
h = f ◦g. We can see how this works using the following category:

434

Introduction to categories

Figure 30

f and g are both morphisms so we must be able to compose them and get another morphism
in the category. So which is the morphism f ◦ g? The only option is idA. Similarly, we see
that g ◦f = idB.

Lastly, given a category C there needs to be for every object A an identity morphism,
idA : A → A that is an identity of composition with other morphisms. Put precisely, for
every morphism g : A → B:

g ◦ idA = idB ◦g = g

59.1.2 Hask, the Haskell category

The main category we’ll be concerning ourselves with in this article is Hask, which treats
Haskell types as objects and Haskell functions as morphisms and uses (.) for composition:
a function f :: A -> B for types A and B is a morphism in Hask. We can check the first
and second law easily: we know (.) is an associative function, and clearly, for any f and g,
f . g is another function. In Hask, the identity morphism is id, and we have trivially:
id . f = f . id = f
1 This isn’t an exact translation of the law above, though; we’re missing subscripts. The
function id in Haskell is polymorphic — it can take many different types for its domain
and range, or, in category-speak, can have many different source and target objects. But
morphisms in category theory are by definition monomorphic — each morphism has one
specific source object and one specific target object. A polymorphic Haskell function can
be made monomorphic by specifying its type (instantiating with a monomorphic type), so
it would be more precise if we said that the identity morphism from Hask on a type A is
(id :: A -> A). With this in mind, the above law would be rewritten as:

(id :: B -> B) . f = f . (id :: A -> A) = f

1 Actually, there is a subtlety here: because (.) is a lazy function, if f is undefined, we have that id .
f = _ -> ⊥. Now, while this may seem equivalent to ⊥ for all intents and purposes, you can actually
tell them apart using the strictifying function seq, meaning that the last category law is broken. We can
define a new strict composition function, f .! g = ((.) $! f) $! g, that makes Hask a category. We
proceed by using the normal (.), though, and attribute any discrepancies to the fact that seq breaks an
awful lot of the nice language properties anyway.

435

Category theory

However, for simplicity, we will ignore this distinction when the meaning is clear.

Exercises:

• As was mentioned, any partial order (P, ≤) is a category with objects as the elements
of P and a morphism between elements a and b iff a ≤ b. Which of the above laws
guarantees the transitivity of ≤?

• (Harder.) If we add another morphism to the above example, it fails to be a category.
Why? Hint: think about associativity of the composition operation.

Figure 31

59.2 Functors

Figure 32 A functor between two categories, C and D. Of note is that the objects
A and B both get mapped to the same object in D, and that therefore g becomes a
morphism with the same source and target object (but isn’t necessarily an identity), and
idA and idB become the same morphism. The arrows showing the mapping of objects are
shown in a dotted, pale olive. The arrows showing the mapping of morphisms are shown
in a dotted, pale blue.

436

Functors

So we have some categories which have objects and morphisms that relate our objects
together. The next Big Topic in category theory is the functor, which relates categories
together. A functor is essentially a transformation between categories, so given categories
C and D, a functor F : C → D:

• Maps any object A in C to F (A), in D.
• Maps morphisms f : A → B in C to F (f) : F (A) → F (B) in D.

One of the canonical examples of a functor is the forgetful functor Grp → Set which maps
groups to their underlying sets and group morphisms to the functions which behave the
same but are defined on sets instead of groups. Another example is the power set functor
Set → Set which maps sets to their power sets and maps functions f : X → Y to functions
P(X) → P(Y) which take inputs U ⊆ X and return f(U), the image of U under f, defined
by f(U) = {f(u) : u ∈ U }. For any category C, we can define a functor known as the
identity functor on C, or 1C : C → C, that just maps objects to themselves and morphisms
to themselves. This will turn out to be useful in the monad laws2 section later on.

Once again there are a few axioms that functors have to obey. Firstly, given an identity
morphism idA on an object A, F (idA) must be the identity morphism on F (A), i.e.:

F (idA) = idF (A)

Secondly functors must distribute over morphism composition, i.e.

F (f ◦g) = F (f)◦F (g)

Exercises:
For the diagram given on the right, check these functor laws.

59.2.1 Functors on Hask

The Functor typeclass you have probably seen in Haskell does in fact tie in with the
categorical notion of a functor. Remember that a functor has two parts: it maps objects
in one category to objects in another and morphisms in the first category to morphisms
in the second. Functors in Haskell are from Hask to func, where func is the subcategory
of Hask defined on just that functor’s types. E.g. the list functor goes from Hask to
Lst, where Lst is the category containing only list types, that is, [T] for any type
T. The morphisms in Lst are functions defined on list types, that is, functions [T] ->
[U] for types T, U. How does this tie into the Haskell typeclass Functor? Recall its definition:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b

2 Chapter 59.4 on page 441

437

Category theory

Let’s have a sample instance, too:

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing

Here’s the key part: the type constructor Maybe takes any type T to a new type, Maybe
T. Also, fmap restricted to Maybe types takes a function a -> b to a function Maybe a ->
Maybe b. But that’s it! We’ve defined two parts, something that takes objects in Hask to
objects in another category (that of Maybe types and functions defined on Maybe types),
and something that takes morphisms in Hask to morphisms in this category. So Maybe is
a functor.

A useful intuition regarding Haskell functors is that they represent types that can be mapped
over. This could be a list or a Maybe, but also more complicated structures like trees. A
function that does some mapping could be written using fmap, then any functor structure
could be passed into this function. E.g. you could write a generic function that covers all
of Data.List.map, Data.Map.map, Data.Array.IArray.amap, and so on.

What about the functor axioms? The polymorphic function id takes the place of idA for
any A, so the first law states:

fmap id = id

With our above intuition in mind, this states that mapping over a structure doing nothing
to each element is equivalent to doing nothing overall. Secondly, morphism composition is
just (.), so

fmap (f . g) = fmap f . fmap g

This second law is very useful in practice. Picturing the functor as a list or similar container,
the right-hand side is a two-pass algorithm: we map over the structure, performing g, then
map over it again, performing f. The functor axioms guarantee we can transform this into
a single-pass algorithm that performs f . g. This is a process known as fusion.

Exercises:
Check the laws for the Maybe and list functors.

59.2.2 Translating categorical concepts into Haskell

Functors provide a good example of how category theory gets translated into Haskell. The
key points to remember are that:

• We work in the category Hask and its subcategories.
• Objects are types.
• Morphisms are functions.
• Things that take a type and return another type are type constructors.

438

Monads

• Things that take a function and return another function are higher-order functions.
• Typeclasses, along with the polymorphism they provide, make a nice way of capturing
the fact that in category theory things are often defined over a number of objects at once.

59.3 Monads

Figure 33 unit and join, the two morphisms that must exist for every object for a given
monad.

Monads are obviously an extremely important concept in Haskell, and in fact they originally
came from category theory. A monad is a special type of functor, from a category to that
same category, that supports some additional structure. So, down to definitions. A monad
is a functor M : C → C, along with two morphisms3 for every object X in C:

3 Experienced category theorists will notice that we’re simplifying things a bit here; instead of presenting
unit and join as natural transformations, we treat them explicitly as morphisms, and require naturality
as extra axioms alongside the standard monad laws (laws 3 and 4) ˆ{Chapter59.4.3 on page 444}. The
reasoning is simplicity; we are not trying to teach category theory as a whole, simply give a categorical
background to some of the structures in Haskell. You may also notice that we are giving these morphisms
names suggestive of their Haskell analogues, because the names η and µ don’t provide much intuition.

439

Category theory

• unitM
X : X → M(X)

• joinM
X : M(M(X)) → M(X)

When the monad under discussion is obvious, we’ll leave out the M superscript for these
functions and just talk about unitX and joinX for some X.

Let’s see how this translates to the Haskell typeclass Monad, then.

class Functor m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

The class constraint of Functor m ensures that we already have the functor structure: a
mapping of objects and of morphisms. return is the (polymorphic) analogue to unitX

for any X. But we have a problem. Although return’s type looks quite similar to that of
unit; the other function, (>>=), often called bind, bears no resemblance to join. There is
however another monad function, join :: Monad m => m (m a) -> m a, that looks quite
similar. Indeed, we can recover join and (>>=) from each other:

join :: Monad m => m (m a) -> m a
join x = x >>= id

(>>=) :: Monad m => m a -> (a -> m b) -> m b
x >>= f = join (fmap f x)

So specifying a monad’s return, fmap, and join is equivalent to specifying its return and
(>>=). It just turns out that the normal way of defining a monad in category theory is to
give unit and join, whereas Haskell programmers like to give return and (>>=).4 Often,
the categorical way makes more sense. Any time you have some kind of structure M and a
natural way of taking any object X into M(X), as well as a way of taking M(M(X)) into
M(X), you probably have a monad. We can see this in the following example section.

59.3.1 Example: the powerset functor is also a monad

The power set functor P : Set → Set described above forms a monad. For any set S you
have a unitS(x) = {x}, mapping elements to their singleton set. Note that each of these
singleton sets are trivially a subset of S, so unitS returns elements of the powerset of S, as is
required. Also, you can define a function joinS as follows: we receive an input L ∈ P(P(S)).
This is:

• A member of the powerset of the powerset of S.
• So a member of the set of all subsets of the set of all subsets of S.
• So a set of subsets of S

4 This is perhaps due to the fact that Haskell programmers like to think of monads as a way of sequencing
computations with a common feature, whereas in category theory the container aspect of the various
structures is emphasised. join pertains naturally to containers (squashing two layers of a container down
into one), but (>>=) is the natural sequencing operation (do something, feeding its results into something
else).

440

The monad laws and their importance

We then return the union of these subsets, giving another subset of S. Symbolically,

joinS(L) =
∪

L

Hence P is a monad 5.

In fact, P is almost equivalent to the list monad; with the exception that we’re talking lists
instead of sets, they’re almost the same. Compare:

Power set functor on Set
Function type Definition
Given a set S and a morphism f : A → B:
P (f) : P(A) → P(B) (P (f))(S) = {f(a) : a ∈ S}
unitS : S → P(S) unitS(x) = {x}
joinS : P(P(S)) → P(S) joinS(L) =

∪
L

List monad from Haskell
Function type Definition
Given a type T and a function f :: A -> B
fmap f :: [A] -> [B] fmap f xs = [f a | a <- xs]
return :: T -> [T] return x = [x]
join :: [[T]] -> [T] join xs = concat xs

59.4 The monad laws and their importance

Just as functors had to obey certain axioms in order to be called functors, monads have
a few of their own. We’ll first list them, then translate to Haskell, then see why they’re
important.

Given a monad M : C → C and a morphism f : A → B for A,B ∈ C,

1. join ◦M(join) = join ◦ join
2. join ◦M(unit) = join ◦unit = id
3. unit◦f = M(f)◦unit
4. join ◦M(M(f)) = M(f)◦ join

By now, the Haskell translations should be hopefully self-explanatory:

1. join . fmap join = join . join
2. join . fmap return = join . return = id
3. return . f = fmap f . return
4. join . fmap (fmap f) = fmap f . join

(Remember that fmap is the part of a functor that acts on morphisms.) These laws seem a
bit impenetrable at first, though. What on earth do these laws mean, and why should they
be true for monads? Let’s explore the laws.

5 If you can prove that certain laws hold, which we’ll explore in the next section.

441

Category theory

59.4.1 The first law

join . fmap join = join . join

Figure 34 A demonstration of the first law for lists. Remember that join is
concat and fmap is map in the list monad.

In order to understand this law, we’ll first use the example of lists. The first law mentions
two functions, join . fmap join (the left-hand side) and join . join (the right-hand
side). What will the types of these functions be? Remembering that join’s type is [[a]]
-> [a] (we’re talking just about lists for now), the types are both [a6] -> [a] (the fact
that they’re the same is handy; after all, we’re trying to show they’re completely the same
function!). So we have a list of lists of lists. The left-hand side, then, performs fmap
join on this 3-layered list, then uses join on the result. fmap is just the familiar map for

6 https://en.wikibooks.org/wiki/a

442

https://en.wikibooks.org/wiki/a

The monad laws and their importance

lists, so we first map across each of the list of lists inside the top-level list, concatenating
them down into a list each. So afterward, we have a list of lists, which we then run through
join. In summary, we ’enter’ the top level, collapse the second and third levels down, then
collapse this new level with the top level.

What about the right-hand side? We first run join on our list of list of lists. Although
this is three layers, and you normally apply a two-layered list to join, this will still work,
because a [a7] is just [[b]], where b = [a], so in a sense, a three-layered list is just a two
layered list, but rather than the last layer being ’flat’, it is composed of another list. So if
we apply our list of lists (of lists) to join, it will flatten those outer two layers into one. As
the second layer wasn’t flat but instead contained a third layer, we will still end up with a
list of lists, which the other join flattens. Summing up, the left-hand side will flatten the
inner two layers into a new layer, then flatten this with the outermost layer. The right-hand
side will flatten the outer two layers, then flatten this with the innermost layer. These two
operations should be equivalent. It’s sort of like a law of associativity for join.

Maybe is also a monad, with

return :: a -> Maybe a
return x = Just x

join :: Maybe (Maybe a) -> Maybe a
join Nothing = Nothing
join (Just Nothing) = Nothing
join (Just (Just x)) = Just x

So if we had a three-layered Maybe (i.e., it could be Nothing, Just Nothing, Just (Just
Nothing) or Just (Just (Just x))), the first law says that collapsing the inner two layers
first, then that with the outer layer is exactly the same as collapsing the outer layers first,
then that with the innermost layer.

Exercises:
Verify that the list and Maybe monads do in fact obey this law with some examples to
see precisely how the layer flattening works.

59.4.2 The second law

join . fmap return = join . return = id

What about the second law, then? Again, we’ll start with the example of lists. Both func-
tions mentioned in the second law are functions [a] -> [a]. The left-hand side expresses
a function that maps over the list, turning each element x into its singleton list [x], so
that at the end we’re left with a list of singleton lists. This two-layered list is flattened
down into a single-layer list again using the join. The right hand side, however, takes the
entire list [x, y, z, ...], turns it into the singleton list of lists [[x, y, z, ...]], then
flattens the two layers down into one again. This law is less obvious to state quickly, but
it essentially says that applying return to a monadic value, then joining the result should

7 https://en.wikibooks.org/wiki/a

443

https://en.wikibooks.org/wiki/a

Category theory

have the same effect whether you perform the return from inside the top layer or from
outside it.

Exercises:
Prove this second law for the Maybe monad.

59.4.3 The third and fourth laws

return . f = fmap f . return

join . fmap (fmap f) = fmap f . join

The last two laws express more self evident fact about how we expect monads to behave.
The easiest way to see how they are true is to expand them to use the expanded form:

1. \x -> return (f x) = \x -> fmap f (return x)
2. \x -> join (fmap (fmap f) x) = \x -> fmap f (join x)

Exercises:
Convince yourself that these laws should hold true for any monad by exploring what
they mean, in a similar style to how we explained the first and second laws.

59.4.4 Application to do-blocks

Well, we have intuitive statements about the laws that a monad must support, but why
is that important? The answer becomes obvious when we consider do-blocks. Recall that
a do-block is just syntactic sugar for a combination of statements involving (>>=) as
witnessed by the usual translation:

do { x } --> x
do { let { y = v }; x } --> let y = v in do { x }
do { v <- y; x } --> y >>= \v -> do { x }
do { y; x } --> y >>= _ -> do { x }

Also notice that we can prove what are normally quoted as the monad laws using return and
(>>=) from our above laws (the proofs are a little heavy in some cases, feel free to skip them
if you want to):

1. return x >>= f = f x. Proof:
return x >>= f

= join (fmap f (return x)) -- By the definition of (>>=)
= join (return (f x)) -- By law 3
= (join . return) (f x)
= id (f x) -- By law 2
= f x

2. m >>= return = m. Proof:

444

The monad laws and their importance

m >>= return
= join (fmap return m) -- By the definition of (>>=)
= (join . fmap return) m
= id m -- By law 2
= m

3. (m >>= f) >>= g = m >>= (\x -> f x >>= g). Proof (recall that fmap f . fmap
g = fmap (f . g)):

(m >>= f) >>= g
= (join (fmap f m)) >>= g -- By the definition of
(>>=)
= join (fmap g (join (fmap f m))) -- By the definition of
(>>=)
= (join . fmap g) (join (fmap f m))
= (join . fmap g . join) (fmap f m)
= (join . join . fmap (fmap g)) (fmap f m) -- By law 4
= (join . join . fmap (fmap g) . fmap f) m
= (join . join . fmap (fmap g . f)) m -- By the distributive law
of functors
= (join . join . fmap (\x -> fmap g (f x))) m
= (join . fmap join . fmap (\x -> fmap g (f x))) m -- By law 1
= (join . fmap (join . (\x -> fmap g (f x)))) m -- By the distributive law
of functors
= (join . fmap (\x -> join (fmap g (f x)))) m
= (join . fmap (\x -> f x >>= g)) m -- By the definition of
(>>=)
= join (fmap (\x -> f x >>= g) m)
= m >>= (\x -> f x >>= g) -- By the definition of
(>>=)

These new monad laws, using return and (>>=), can be translated into do-block notation.

Points-free style Do-block style
return x >>= f = f x do { v <- return x; f v } = do { f x }
m >>= return = m do { v <- m; return v } = do { m }
(m >>= f) >>= g = m >>= (\x -> f x >>= g)

do { y <- do { x <- m; f x };
g y }

=
do { x <- m;

y <- f x;
g y }

The monad laws are now common-sense statements about how do-blocks should function.
If one of these laws were invalidated, users would become confused, as you couldn’t be able
to manipulate things within the do-blocks as would be expected. The monad laws are, in
essence, usability guidelines.

445

Category theory

Exercises:
In fact, the two versions of the laws we gave:

-- Categorical:
join . fmap join = join . join
join . fmap return = join . return = id
return . f = fmap f . return
join . fmap (fmap f) = fmap f . join

-- Functional:
m >>= return = m
return m >>= f = f m
(m >>= f) >>= g = m >>= (\x -> f x >>= g)

are entirely equivalent. We showed that we can recover the functional laws from the
categorical ones. Go the other way; show that starting from the functional laws, the
categorical laws hold. It may be useful to remember the following definitions:

join m = m >>= id
fmap f m = m >>= return . f

Thanks to Yitzchak Gale for suggesting this exercise.

59.5 Summary

We’ve come a long way in this chapter. We’ve looked at what categories are and how
they apply to Haskell. We’ve introduced the basic concepts of category theory including
functors, as well as some more advanced topics like monads, and seen how they’re crucial
to idiomatic Haskell. We haven’t covered some of the basic category theory that wasn’t
needed for our aims, like natural transformations, but have instead provided an intuitive
feel for the categorical grounding behind Haskell’s structures.

446

60 The Curry-Howard isomorphism

447

61 fix and recursion

The fix function is a particularly weird-looking function when you first see it. However, it
is useful for one main theoretical reason: introducing it into the (typed) lambda calculus as
a primitive allows you to define recursive functions.

61.1 Introducing fix

Let’s have the definition of fix before we go any further:

fix :: (a -> a) -> a
fix f = let x = f x in x

This immediately seems quite magical. Surely fix f will yield an infinite application stream
of fs: f (f (f (...)))? The resolution to this is our good friend, lazy evaluation.
Essentially, this sequence of applications of f will converge to a value if (and only if) f is a
lazy function. Let’s see some examples:

Example: fix examples

Prelude> :m Control.Monad.Fix
Prelude Control.Monad.Fix> fix (2+)
*** Exception: stack overflow
Prelude Control.Monad.Fix> fix (const "hello")
"hello"
Prelude Control.Monad.Fix> fix (1:)
[1,...

We first import the Control.Monad.Fix module to bring fix into scope (this is also
available in the Data.Function). Then we try some examples. Since the definition of
fix is so simple, let’s expand our examples to explain what happens:

fix (2+)
= 2 + (fix (2+))
= 2 + (2 + fix (2+))
= 2 + (2 + (2 + fix (2+)))
= 2 + (2 + (2 + (2 + fix (2+))))
= ...

It’s clear that this will never converge to any value. Let’s expand the next example:

449

fix and recursion

fix (const "hello")
= const "hello" (fix (const "hello"))
= "hello"

This is quite different: we can see after one expansion of the definition of fix that because
const ignores its second argument, the evaluation concludes. The evaluation for the last
example is a little different, but we can proceed similarly:

fix (1:)
= 1 : fix (1:)
= 1 : (1 : fix (1:))
= 1 : (1 : (1 : fix (1:)))

Although this similarly looks like it’ll never converge to a value, keep in mind that when
you type fix (1:) into GHCi, what it’s really doing is applying show to that. So we
should look at how show (fix (1:)) evaluates (for simplicity, we’ll pretend show on lists
doesn’t put commas between items):

show (fix (1:))
= "[" ++ map show (fix (1:)) ++ "]"
= "[" ++ map show (1 : fix (1:)) ++ "]"
= "[" ++ "1" ++ map show (fix (1:)) ++ "]"
= "[" ++ "1" ++ "1" ++ map show (fix (1:)) ++ "]"

So although the map show (fix (1:)) will never terminate, it does produce output: GHCi
can print the beginning of the string, "[" ++ "1" ++ "1", and continue to print more as map
show (fix (1:)) produces more. This is lazy evaluation at work: the printing function
doesn’t need to consume its entire input string before beginning to print, it does so as soon
as it can start.

Lastly, iteratively calculating an approximation of a square root of a number,

fix (\next guess tol val -> if abs(guessˆ2-val) < tol then guess else
next ((guess + val / guess) / 2.0) tol val) 2.0 0.0001 25.0

= let f next guess tol val = if abs(guessˆ2-val) < tol then guess else
next ((guess + val / guess) / 2.0) tol val

in fix f 2.0 0.0001 25.0
= let f ... = ...

in f (fix f) 2.0 0.0001 25.0 -- next = fix f = f (fix f) = f next ...
= 5.000000000016778

Exercises:
What, if anything, will the following expressions converge to?
• fix ("hello"++)
• fix (\x -> cycle (1:x))
• fix reverse
• fix id
• fix (\x -> take 2 $ cycle (1:x))

450

fix and fixed points

61.2 fix and fixed points

A fixed point of a function f is a value a such that f a == a. For example, 0 is a fixed
point of the function (* 3) since 0 * 3 == 0. This is where the name of fix comes from:
it finds the least-defined fixed point of a function. (We’ll come to what ”least defined” means
in a minute.) Notice that for both of our examples above that converge, this is readily
seen:

const "hello" "hello" -> "hello"
(1:) [1,1,..] -> [1,1,...]

And since there’s no number x such that 2+x == x, it also makes sense that fix
(2+) diverges.

Exercises:
For each of the functions f in the above exercises for which you decided that fix
f converges, verify that fix f finds a fixed point.

In fact, it’s obvious from the definition of fix that it finds a fixed point. All we need to
do is write the equation for fix the other way around:

f (fix f) = fix f

Which is precisely the definition of a fixed point! So it seems that fix should always find
a fixed point. But sometimes fix seems to fail at this, as sometimes it diverges. We can
repair this property, however, if we bring in some denotational semantics1. Every Haskell
type actually includes a special value called bottom, written ⊥. So the values with type,
for example, Int include, in fact, ⊥ as well as 1, 2, 3 etc.. Divergent computations are
denoted by a value of ⊥, i.e., we have that fix (2+) = ⊥.

The special value undefined is also denoted by this ⊥. Now we can understand how
fix finds fixed points of functions like (2+):

Example: Fixed points of (2+)

Prelude> (2+) undefined
*** Exception: Prelude.undefined

So feeding undefined (i.e., ⊥) to (2+) gives us undefined back. So ⊥ is a fixed point of
(2+)!

In the case of (2+), it is the only fixed point. However, there are other functions f with
several fixed points for which fix f still diverges: fix (*3) diverges, but we remarked
above that 0 is a fixed point of that function. This is where the ”least-defined” clause comes

1 Chapter 58 on page 405

451

fix and recursion

in. Types in Haskell have a partial order2 on them called definedness. In any type, ⊥ is the
least-defined value (hence the name ”bottom”). For simple types like Int, the only pairs
in the partial order are ⊥ ≤1, ⊥ ≤2and so on. We do not have m ≤ nfor any non-bottom
Ints m, n. Similar comments apply to other simple types like Bool and (). For ”layered”
values such as lists or Maybe, the picture is more complicated, and we refer to the chapter
on denotational semantics3.

So since ⊥ is the least-defined value for all types and fix finds the least-defined fixed point,
if f ⊥ = ⊥, we will have fix f = ⊥ (and the converse is also true). If you’ve read the
denotational semantics article, you will recognise this as the criterion for a strict function:
fix f diverges if and only if f is strict.

61.3 Recursion

If you have already come across examples of fix, chances are they were examples involving
fix and recursion. Here’s a classic example:

Example: Encoding recursion with fix

Prelude> let fact n = if n == 0 then 1 else n * fact (n-1) in fact 5
120
Prelude> fix (\rec n -> if n == 0 then 1 else n * rec (n-1)) 5
120

Here we have used fix to ”encode” the factorial function: note that (if we regard fix as
a language primitive) our second definition of fact doesn’t involve recursion at all. In a
language like the typed lambda calculus that doesn’t feature recursion, we can introduce
fix in to write recursive functions in this way. Here are some more examples:

Example: More fix examples

Prelude> fix (\rec f l -> if null l then [] else f (head l) : rec f (tail l))
(+1) [1..3]
[2,3,4]
Prelude> map (fix (\rec n -> if n == 1 || n == 2 then 1 else rec (n-1) + rec
(n-2))) [1..10]
[1,1,2,3,5,8,13,21,34,55]

So how does this work? Let’s first approach it from a denotational point of view with our
fact function. For brevity let’s define:

fact' rec n = if n == 0 then 1 else n * rec (n-1)

2 http://en.wikipedia.org/wiki/Partial_order
3 Chapter 58 on page 405

452

http://en.wikipedia.org/wiki/Partial_order

The typed lambda calculus

This is the same function as in the first example above, except that we gave a name to the
anonymous function so that we’re computing fix fact' 5 now. fix will find a fixed point
of fact', i.e. the function f such that f == fact' f. But let’s expand what this means:

f = fact' f
= \n -> if n == 0 then 1 else n * f (n-1)

All we did was substitute rec for f in the definition of fact'. But this looks exactly like
a recursive definition of a factorial function! fix feeds fact' itself as its first parameter in
order to create a recursive function out of a higher-order function.

We can also consider things from a more operational point of view. Let’s actually expand
the definition of fix fact':

fix fact'
= fact' (fix fact')
= (\rec n -> if n == 0 then 1 else n * rec (n-1)) (fix fact')
= \n -> if n == 0 then 1 else n * fix fact' (n-1)
= \n -> if n == 0 then 1 else n * fact' (fix fact') (n-1)
= \n -> if n == 0 then 1

else n * (\rec n' -> if n' == 0 then 1 else n' * rec (n'-1)) (fix
fact') (n-1)
= \n -> if n == 0 then 1

else n * (if n-1 == 0 then 1 else (n-1) * fix fact' (n-2))
= \n -> if n == 0 then 1

else n * (if n-1 == 0 then 1
else (n-1) * (if n-2 == 0 then 1

else (n-2) * fix fact' (n-3)))
= ...

Notice that the use of fix allows us to keep ”unravelling” the definition of fact': every time
we hit the else clause, we product another copy of fact' via the evaluation rule fix fact'
= fact' (fix fact'), which functions as the next call in the recursion chain. Eventually
we hit the then clause and bottom out of this chain.

Exercises:

1. Expand the other two examples we gave above in this sense. You may need a lot
of paper for the Fibonacci example!

2. Write non-recursive versions of filter and foldr.

61.4 The typed lambda calculus

In this section we’ll expand upon a point mentioned a few times in the previous section:
how fix allows us to encode recursion in the typed lambda calculus. It presumes you’ve
already met the typed lambda calculus. Recall that in the lambda calculus, there is no
let clause or top-level bindings. Every program is a simple tree of lambda abstractions,
applications and literals. Let’s say we want to write a fact function. Assuming we have a
type called Nat for the natural numbers, we’d start out something like the following:

453

fix and recursion

λn:Nat. if iszero n then 1 else n * <blank> (n-1)

The problem is, how do we fill in the <blank>? We don’t have a name for our function,
so we can’t call it recursively. The only way to bind names to terms is to use a lambda
abstraction, so let’s give that a go:

(λf:Nat→Nat. λn:Nat. if iszero n then 1 else n * f (n-1))
(λm:Nat. if iszero m then 1 else m * <blank> (m-1))

This expands to:

λn:Nat. if iszero n then 1
else n * (if iszero n-1 then 1 else (n-1) * <blank> (n-2))

We still have a <blank>. We could try to add one more layer in:

(λf:Nat→Nat. λn:Nat. if iszero n then 1 else n * f (n-1)
((λg:Nat→Nat. λm:Nat. if iszero n' then 1 else n' * g (m-1))
(λp:Nat. if iszero p then 1 else p * <blank> (p-1))))

->

λn:Nat. if iszero n then 1
else n * (if iszero n-1 then 1

else (n-1) * (if iszero n-2 then 1 else (n-2) * <blank>
(n-3)))

It’s pretty clear we’re never going to be able to get rid of this <blank>, no matter how
many levels of naming we add in. Never, that is, unless we use fix, which, in essence,
provides an object from which we can always unravel one more layer of recursion and still
have what we started off:

fix (λf:Nat→Nat. λn:Nat. if iszero n then 1 else n * f (n-1))

This is a perfect factorial function in the typed lambda calculus plus fix.

fix is actually slightly more interesting than that in the context of the typed lambda
calculus: if we introduce it into the language, then every type becomes inhabited, because
given some concrete type T, the following expression has type T:

fix (λx:T. x)

This, in Haskell-speak, is fix id, which is denotationally ⊥. So we see that as soon as
we introduce fix to the typed lambda calculus, the property that every well-typed term
reduces to a value is lost.

454

Fix as a data type

61.5 Fix as a data type

It is also possible to make a fix data type in Haskell.

There are three ways of defining it.

newtype Fix f = Fix (f (Fix f))

or using the RankNTypes extension

newtype Mu f=Mu (forall a.(f a->a)->a)
data Nu f=forall a.Nu a (a->f a)

Mu and Nu help generalize folds, unfolds and refolds.

fold :: (f a -> a) -> Mu f -> a
fold g (Mu f)=f g
unfold :: (a -> f a) -> a -> Nu f
unfold f x=Nu x f
refold :: (a -> f a) -> (g a-> a) -> Mu f -> Nu g
refold f g=unfold g . fold f

Mu and Nu are restricted versions of Fix. Mu is used for making inductive noninfinite data
and Nu is used for making coinductive infinite data. Eg)

newpoint Stream a=Stream (Nu ((,) a)) -- forsome b. (b,b->(a,b))
newpoint Void a=Void (Mu ((,) a)) -- forall b.((a,b)->b)->b

Unlike the fix point function the fix point types do not lead to bottom. In the following
code Bot is perfectly defined. It is equivalent to the unit type ().

newtype Id a=Id a
newtype Bot=Bot (Fix Id) -- equals newtype Bot=Bot Bot
-- There is only one allowable term. Bot $ Bot $ Bot $ Bot ..,

The Fix data type cannot model all forms of recursion. Take for instance this nonregular
data type.

data Node a=Two a a|Three a a a
data FingerTree a=U a|Up (FingerTree (Node a))

It is not easy to implement this using Fix.

455

62 Haskell Performance

457

63 Introduction

1. REDIRECT Haskell/Performance introduction1

1 Chapter 63 on page 459

459

64 Step by Step Examples

1. REDIRECT Haskell/Performance examples1

1 Chapter 64 on page 461

461

65 Graph reduction

65.1 Notes and TODOs

• TODO: Pour lazy evaluation explanation from ../Laziness/1 into this mold.
• TODO: better section names.
• TODO: ponder the graphical representation of graphs.
• No grapical representation, do it with let .. in. Pro: Reduction are easiest to perform
in that way anyway. Cons: no graphic.

• ASCII art / line art similar to the one in Bird&Wadler? Pro: displays only the relevant
parts truly as graph, easy to perform on paper. Cons: Ugly, no large graphs with that.

• Full blown graphs with @-nodes? Pro: look graphy. Cons: nobody needs to know @-
nodes in order to understand graph reduction. Can be explained in the implementation
section.

• Graphs without @-nodes. Pro: easy to understand. Cons: what about currying?
• ! Keep this chapter short. The sooner the reader knows how to evaluate Haskell programs
by hand, the better.

• First sections closely follow Bird&Wadler

65.2 Introduction

Programming is not only about writing correct programs, answered by denotational se-
mantics, but also about writing fast ones that require little memory. For that, we need to
know how they’re executed on a machine, commonly given by operational semantics. This
chapter explains how Haskell programs are commonly executed on a real computer and thus
serves as foundation for analyzing time and space usage. Note that the Haskell standard
deliberately does not give operational semantics, implementations are free to choose their
own. But so far, every implementation of Haskell more or less closely follows the execution
model of lazy evaluation.

In the following, we will detail lazy evaluation and subsequently use this execution model
to explain and exemplify the reasoning about time and memory complexity of Haskell
programs.

1 Chapter 66 on page 475

463

Graph reduction

65.3 Evaluating Expressions by Lazy Evaluation

65.3.1 Reductions

Executing a functional program, i.e. evaluating an expression, means to repeatedly apply
function definitions until all function applications have been expanded. Take for example
the expression pythagoras 3 4 together with the definitions

square x = x * x
pythagoras x y = square x + square y

One possible sequence of such reductions is

pythagoras 3 4
⇒ square 3 + square 4 (pythagoras)
⇒ (3*3) + square 4 (square)
⇒ 9 + square 4 (*)
⇒ 9 + (4*4) (square)
⇒ 9 + 16 (*)
⇒ 25

Every reduction replaces a subexpression, called reducible expression or redex for short,
with an equivalent one, either by appealing to a function definition like for square or by
using a built-in function like (+). An expression without redexes is said to be in normal
form. Of course, execution stops once reaching a normal form which thus is the result of
the computation.

Clearly, the fewer reductions that have to be performed, the faster the program runs. We
cannot expect each reduction step to take the same amount of time because its implemen-
tation on real hardware looks very different, but in terms of asymptotic complexity, this
number of reductions is an accurate measure.

65.3.2 Reduction Strategies

There are many possible reduction sequences and the number of reductions may depend
on the order in which reductions are performed. Take for example the expression fst
(square 3, square 4). One systematic possibility is to evaluate all function arguments
before applying the function definition

fst (square 3, square 4)
⇒ fst (3*3, square 4) (square)
⇒ fst (9 , square 4) (*)
⇒ fst (9 , 4*4) (square)
⇒ fst (9 , 16) (*)
⇒ 9 (fst)

This is called an innermost reduction strategy and an innermost redex is a redex that
has no other redex as subexpression inside.

464

Evaluating Expressions by Lazy Evaluation

Another systematic possibility is to apply all function definitions first and only then
evaluate arguments:

fst (square 3, square 4)
⇒ square 3 (fst)
⇒ 3*3 (square)
⇒ 9 (*)

which is named outermost reduction and always reduces outermost redexes that are
not inside another redex. Here, the outermost reduction uses fewer reduction steps than the
innermost reduction. Why? Because the function fst doesn’t need the second component
of the pair and the reduction of square 4 was superfluous.

65.3.3 Termination

For some expressions like

loop = 1 + loop

no reduction sequence may terminate and program execution enters a neverending loop,
those expressions do not have a normal form. But there are also expressions where some
reduction sequences terminate and some do not, an example being

fst (42, loop)
⇒ 42 (fst)

fst (42, loop)
⇒ fst (42,1+loop) (loop)
⇒ fst (42,1+(1+loop)) (loop)
⇒ ...

The first reduction sequence is outermost reduction and the second is innermost reduction
which tries in vain to evaluate the loop even though it is ignored by fst anyway. The
ability to evaluate function arguments only when needed is what makes outermost optimal
when it comes to termination:

Theorem (Church Rosser II)
If there is one terminating reduction, then outermost reduction will terminate, too.

65.3.4 Graph Reduction (Reduction + Sharing)

Despite the ability to discard arguments, outermost reduction doesn’t always take fewer
reduction steps than innermost reduction:

square (1+2)
⇒ (1+2)*(1+2) (square)
⇒ (1+2)*3 (+)

465

Graph reduction

⇒ 3*3 (+)
⇒ 9 (*)

Here, the argument (1+2) is duplicated and subsequently reduced twice. But because it
is one and the same argument, the solution is to share the reduction (1+2) ⇒ 3 with all
other incarnations of this argument. This can be achieved by representing expressions as
graphs. For example,

| | ↓
♢ * ♢ (1+2)

represents the expression (1+2)*(1+2). Now, the outermost graph reduction of square
(1+2) proceeds as follows

square (1+2)
⇒ __________ (square)

| | ↓
♢ * ♢ (1+2)

⇒ __________ (+)
| | ↓
♢ * ♢ 3

⇒ 9 (*)

and the work has been shared. In other words, outermost graph reduction now reduces
every argument at most once. For this reason, it always takes fewer reduction steps than
the innermost reduction, a fact we will prove when reasoning about time2.

Sharing of expressions is also introduced with let and where constructs. For instance,
consider Heron’s formula3 for the area of a triangle with sides a,b and c:

area a b c = let s = (a+b+c)/2 in
sqrt (s*(s-a)*(s-b)*(s-c))

Instantiating this to an equilateral triangle will reduce as

area 1 1 1
⇒ _____________________ (area)

| | | | ↓
sqrt (♢*(♢-a)*(♢-b)*(♢-c)) ((1+1+1)/2)

⇒ _____________________ (+),(+),(/)
| | | | ↓

sqrt (♢*(♢-a)*(♢-b)*(♢-c)) 1.5
⇒

...
⇒

0.433012702

2 Chapter 65.5 on page 472
3 https://en.wikipedia.org/wiki/Heron%27s%20formula

466

https://en.wikipedia.org/wiki/Heron%27s%20formula

Evaluating Expressions by Lazy Evaluation

which is
√

3/4. Put differently, let-bindings simply give names to nodes in the graph. In
fact, one can dispense entirely with a graphical notation and solely rely on let to mark
sharing and express a graph structure.4

Any implementation of Haskell is in some form based on outermost graph reduction which
thus provides a good model for reasoning about the asympotic complexity of time and
memory allocation. The number of reduction steps to reach normal form corresponds to
the execution time and the size of the terms in the graph corresponds to the memory used.

Exercises:

1. Reduce square (square 3) to normal form with innermost and outermost graph
reduction.

2. Consider the fast exponentiation algorithm

power x 0 = 1
power x n = x' * x' * (if n `mod` 2 == 0 then 1 else x)

where x' = power x (n `div` 2)

that takes x to the power of n. Reduce power 2 5 with innermost and outermost
graph reduction. How many reductions are performed? What is the asymptotic
time complexity for the general power 2 n? What happens to the algorithm if we
use ”graphless” outermost reduction?

65.3.5 Pattern Matching

So far, our description of outermost graph reduction is still underspecified when it comes to
pattern matching and data constructors. Explaining these points will enable the reader to
trace most cases of the reduction strategy that is commonly the base for implementing non-
strict functional languages like Haskell. It is called call-by-need or lazy evaluation in
allusion to the fact that it ”lazily” postpones the reduction of function arguments to the last
possible moment. Of course, the remaining details are covered in subsequent chapters.

To see how pattern matching needs specification, consider for example the boolean
disjunction

or True y = True
or False y = y

and the expression

4 John Maraist, Martin Odersky, and Philip Wadler . The call-by-need lambda calculus The
call-by-need lambda calculus ˆ{homepages.inf.ed.ac.uk/wadler/topics/call-{}by-{}need.html#
need-{}journal} . Journal of Functional Programming , 8 : 257-317 May 1998 http://homepages.
inf.ed.ac.uk/wadler/topics/call-by-need.html#need-journal

467

 homepages.inf.ed.ac.uk/wadler/topics/call-{}by-{}need.html#need-{}journal
 homepages.inf.ed.ac.uk/wadler/topics/call-{}by-{}need.html#need-{}journal
http://homepages.inf.ed.ac.uk/wadler/topics/call-by-need.html#need-journal
http://homepages.inf.ed.ac.uk/wadler/topics/call-by-need.html#need-journal

Graph reduction

or (1==1) loop

with a non-terminating loop = not loop. The following reduction sequence

or (1==1) loop
⇒ or (1==1) (not loop) (loop)
⇒ or (1==1) (not (not loop)) (loop)
⇒ ...

only reduces outermost redexes and therefore is an outermost reduction. But

or (1==1) loop
⇒ or True loop (or)
⇒ True

makes much more sense. Of course, we just want to apply the definition of or and are only
reducing arguments to decide which equation to choose. This intention is captured by the
following rules for pattern matching in Haskell:

• Left hand sides are matched from top to bottom
• When matching a left hand side, arguments are matched from left to right
• Evaluate arguments only as much as needed to decide whether they match or not.

Thus, for our example or (1==1) loop, we have to reduce the first argument to either
True or False, then evaluate the second to match a variable y pattern and then expand
the matching function definition. As the match against a variable always succeeds, the
second argument will not be reduced at all. It is the second reduction section above that
reproduces this behavior.

With these preparations, the reader should now be able to evaluate most Haskell expressions.
Here are some random encounters to test this ability:

Exercises:
Reduce the following expressions with lazy evaluation to normal form. Assume the
standard function definitions from the Prelude.
• length [42,42+1,42-1]
• head (map (2*) [1,2,3])
• head $ [1,2,3] ++ (let loop = tail loop in loop)
• zip [1..3] (iterate (+1) 0)
• head $ concatMap (\x -> [x,x+1]) [1,2,3]
• take (42-6*7) $ map square [2718..3146]

65.3.6 Higher Order Functions

The remaining point to clarify is the reduction of higher order functions and currying. For
instance, consider the definitions

468

Evaluating Expressions by Lazy Evaluation

id x = x
a = id (+1) 41

twice f = f . f
b = twice (+1) (13*3)

where both id and twice are only defined with one argument. The solution is to see
multiple arguments as subsequent applications to one argument, this is called currying

a = (id (+1)) 41
b = (twice (+1)) (13*3)

To reduce an arbitrary application expression1 expression2, call-by-need first reduce
expression1 until this becomes a function whose definition can be unfolded with the
argument expression2. Hence, the reduction sequences are

a
⇒ (id (+1)) 41 (a)
⇒ (+1) 41 (id)
⇒ 42 (+)

b
⇒ (twice (+1)) (13*3) (b)
⇒ ((+1).(+1)) (13*3) (twice)
⇒ (+1) ((+1) (13*3)) (.)
⇒ (+1) ((+1) 39) (*)
⇒ (+1) 40 (+)
⇒ 41 (+)

Admittedly, the description is a bit vague and the next section will detail a way to state it
clearly.

While it may seem that pattern matching is the workhorse of time intensive computations
and higher order functions are only for capturing the essence of an algorithm, functions are
indeed useful as data structures. One example are difference lists ([a] -> [a]) that permit
concatenation in O(1) time, another is the representation of a stream by a fold. In fact,
all data structures are represented as functions in the pure lambda calculus, the root of all
functional programming languages.

Exercises! Or not? Diff-Lists Best done with foldl (++) but this requires knowledge of
the fold example. Oh, where do we introduce the foldl VS. foldr example at all? Hm,
Bird&Wadler sneak in an extra section ”Meet again with fold” for the (++) example at the
end of ”Controlling reduction order and space requirements” :-/ The complexity of (++) is
explained when arguing about reverse.

65.3.7 Weak Head Normal Form

To formulate precisely how lazy evaluation chooses its reduction sequence, it is best to aban-
don equational function definitions and replace them with an expression-oriented approach.
In other words, our goal is to translate function definitions like f (x:xs) = ... into the

469

Graph reduction

form f = expression. This can be done with two primitives, namely case-expressions and
lambda abstractions.

In their primitive form, case-expressions only allow the discrimination of the outermost
constructor. For instance, the primitive case-expression for lists has the form

case expression of
[] -> ...
x:xs -> ...

Lambda abstractions are functions of one parameter, so that the following two definitions
are equivalent

f x = expression
f = \x -> expression

Here is a translation of the definition of zip

zip :: [a] -> [a] -> [(a,a)]
zip [] ys = []
zip xs [] = []
zip (x:xs') (y:ys') = (x,y):zip xs' ys'

to case-expressions and lambda-abstractions:

zip = \xs -> \ys ->
case xs of

[] -> []
x:xs' ->

case ys of
[] -> []
y:ys' -> (x,y):zip xs' ys'

Assuming that all definitions have been translated to those primitives, every redex now has
the form of either

• a function application (\variable->expression1) expression2
• or a case-expression case expression of { ... }

lazy evaluation.

Weak Head Normal Form
An expression is in weak head normal form, iff it is either

• a constructor (possibly applied to arguments) like True, Just (square 42) or (:) 1
• a built-in function applied to too few arguments (perhaps none) like (+) 2 or sqrt.
• or a lambda abstraction \x -> expression.

functions types cannot be pattern matched anyway, but the devious seq can evaluate them
to WHNF nonetheless. ”weak” = no reduction under lambdas. ”head” = first the function
application, then the arguments.

470

Controlling Space

65.3.8 Strict and Non-strict Functions

A non-strict function doesn’t need its argument. A strict function needs its argument in
WHNF, as long as we do not distinguish between different forms of non-termination (f x
= loop doesn’t need its argument, for example).

65.4 Controlling Space

”Space” here may be better visualized as traversal of a graph. Either a data structure,
or an induced dependencies graph. For instance : Fibonacci(N) depends on : Nothing if
N = 0 or N = 1 ; Fibonacci(N-1) and Fibonacci(N-2) else. As Fibonacci(N-1) depends
on Fibonacci(N-2), the induced graph is not a tree. Therefore, there is a correspondence
between implementation technique and data structure traversal :

Corresponding Implementation
technique

Data Structure Traversal

Memoization Depth First Search (keep every intermedi-
ary result in memory)

Parallel evaluation Breadth First Search (keep every interme-
diary result in memory, too)

Sharing Directed acyclic graph traversal (Maintain
only a ”frontier” in memory.)

Usual recursion Tree traversal (Fill a stack)
Tail recursion List traversal / Greedy Search (Constant

space)

The classical :

fibo 0 = 1
fibo 1 = 1
fibo n = fibo (n-1) + fibo (n-2)

Is a tree traversal applied to a directed acyclic graph for the worse. The optimized version
:

fibo n =
let f a b m =

if m = 0 then a
if m = 1 then b
f b (a+b) (m-1)

in f 1 1 n

Uses a DAG traversal. Luckily, the frontier size is constant, so it’s a tail recursive algorithm.

NOTE: The chapter ../Strictness5 is intended to elaborate on the stuff here.

5 Chapter 67 on page 487

471

Graph reduction

NOTE: The notion of strict function is to be introduced before this section.

Now’s the time for the space-eating fold example:

foldl (+) 0 [1..10]

Introduce seq and $! that can force an expression to WHNF. => foldl'.

Tricky space leak example:

(\xs -> head xs + last xs) [1..n]
(\xs -> last xs + head xs) [1..n]

The first version runs on O(1) space. The second in O(n).

65.4.1 Sharing and CSE

NOTE: overlaps with section about time. Hm, make an extra memoization section?

How to share

foo x y = -- s is not shared
foo x = \y -> s + y

where s = expensive x -- s is shared

”Lambda-lifting”, ”Full laziness”. The compiler should not do full laziness.

A classic and important example for the trade between space and time:

sublists [] = 6

sublists (x:xs) = sublists xs ++ map (x:) (sublists xs)
sublists' (x:xs) = let ys = sublists' xs in ys ++ map (x:) ys

That’s why the compiler should not do common subexpression elimination as optimization.
(Does GHC?).

65.4.2 Tail recursion

NOTE: Does this belong to the space section? I think so, it’s about stack space.

Tail recursion in Haskell looks different.

65.5 Reasoning about Time

Note: introducing strictness before the upper time bound saves some hassle with explanation?

472

Reasoning about Time

65.5.1 Lazy eval < Eager eval

When reasoning about execution time, naively performing graph reduction by hand to get
a clue on what’s going on is most often infeasible. In fact, the order of evaluation taken
by lazy evaluation is difficult to predict by humans, it is much easier to trace the path of
eager evaluation where arguments are reduced to normal form before being supplied to a
function. But knowing that lazy evaluation always performs fewer reduction steps than
eager evaluation (present the proof!), we can easily get an upper bound for the number of
reductions by pretending that our function is evaluated eagerly.

Example:

or = foldr (||) False
isPrime n = not $ or $ map (\k -> n `mod` k == 0) [2..n-1]

=> eager evaluation always takes n steps, lazy won’t take more than that. But it will
actually take fewer.

65.5.2 Throwing away arguments

Time bound exact for functions that examine their argument to normal form anyway. The
property that a function needs its argument can concisely be captured by denotational
semantics:

f ⊥ = ⊥

Argument in WHNF only, though. Operationally: non-termination -> non-termination.
(this is an approximation only, though because f anything = ⊥ doesn’t ”need” its argument).
Non-strict functions don’t need their argument and eager time bound is not sharp. But
the information whether a function is strict or not can already be used to great benefit in
the analysis.

isPrime n = not $ or $ (n `mod` 2 == 0) : (n `mod` 3 == 0) : ...

It’s enough to know or True ⊥ = True.

Other examples:

• foldr (:) [] vs. foldl (flip (:)) [] with ⊥.
• Can head . mergesort be analyzed only with ⊥? In any case, this example is too involed
and belongs to ../Laziness7.

7 Chapter 66 on page 475

473

Graph reduction

65.5.3 Persistence & Amortisation

NOTE: this section is better left to a data structures chapter because the subsections above
cover most of the cases a programmer not focussing on data structures / amortization will
encounter.

Persistence = no updates in place, older versions are still there. Amortisation = distribute
unequal running times across a sequence of operations. Both don’t go well together in a
strict setting. Lazy evaluation can reconcile them. Debit invariants. Example: incrementing
numbers in binary representation.

65.6 Implementation of Graph reduction

Small talk about G-machines and such. Main definition:

closure = thunk = code/data pair on the heap. What do they do? Consider (λx.λy.x+y)2.
This is a function that returns a function, namely λy.2+y in this case. But when you want
to compile code, it’s prohibitive to actually perform the substitution in memory and replace
all occurrences of x by 2. So, you return a closure that consists of the function code λy.x+y
and an environment {x = 2} that assigns values to the free variables appearing in there.

GHC (?, most Haskell implementations?) avoid free variables completely and use super-
combinators. In other words, they’re supplied as extra-parameters and the observation that
lambda-expressions with too few parameters don’t need to be reduced since their WHNF
is not very different.

Note that these terms are technical terms for implementation stuff, lazy evaluation happily
lives without them. Don’t use them in any of the sections above.

65.7 References

• Introduction to Functional Programming using Haskell . Prentice Hall , , 1998
• The Implementation of Functional Programming Languages . Prentice Hall , , 1987

474

66 Laziness

Quote:
Hard work pays off later. Laziness pays off now! – Steven Wright

66.1 Introduction

By now, you are aware that Haskell uses lazy evaluation in that nothing is evaluated until
necessary. But what exactly does ”until necessary” mean? In this chapter, we will see how
lazy evaluation works (how little black magic there is), what exactly it means for functional
programming, and how to make the best use of it.

First, let’s consider the reasons and implications of lazy evaluation. At first glance, we
might think that lazy evaluation makes programs more efficient. After all, what can be
more efficient than not doing anything? In practice, however, laziness often introduces an
overhead that leads programmers to hunt for places where they can make their code more
strict. The real benefit of laziness is in making the right things efficient enough. Lazy
evaluation allows us to write more simple, elegant code than we could in a strict environment.

66.1.1 Nonstrictness versus Laziness

There is a slight difference between laziness and nonstrictness. Nonstrict semantics refers
to a given property of Haskell programs that you can rely on: nothing will be evaluated
until it is needed. Lazy evaluation is how you implement nonstrictness using a device
called thunks which we explain in the next section. However, these two concepts are so
closely linked that it helps to explain them both together. Knowledge of thunks helps in
understanding nonstrictness, and the semantics of nonstrictness explains why we use lazy
evaluation in the first place. So, we’ll introduce the concepts simultaneously and make
no particular effort to keep them from intertwining (with the exception of getting the
terminology right).

66.2 Thunks and Weak head normal form

You need to understand two principles to see how programs execute in Haskell. First, we
have the property of nonstrictness: we evaluate as little as possible and delay evaluation as
long as possible. Second, Haskell values are highly layered; and ’evaluating’ a Haskell value
could mean evaluating down to any one of these layers. Let’s walk through a few examples
using a pair.

475

Laziness

let (x, y) = (length [1..5], reverse "olleh") in ...

Assume that in the ’in’ part, we use x and y somewhere — otherwise, we wouldn’t need
to evaluate the let-binding at all! The right-hand side could have been undefined, and it
would still work if the ’in’ part doesn’t mention x or y. This assumption will remain for all
the examples in this section.

What do we know about x? We can calculate that x must be 5 and y is ”hello”, but remem-
ber the first principle: we don’t evaluate the calls to length and reverse until we’re forced
to. So, we say that x and y are both thunks: that is, they are unevaluated values with a
recipe that explains how to evaluate them. For example, for x this recipe says ’Evaluate
length [1..5]’. However, we are actually doing some pattern matching on the left hand
side. What would happen if we removed that?

let z = (length [1..5], reverse "olleh") in ...

Although it’s still pretty obvious to us that z is a pair, the compiler sees that we’re not
trying to deconstruct the value on the right-hand side of the ’=’ sign at all, so it doesn’t
really care what’s there. It lets z be a thunk on its own. Later on, when we try to use z,
we’ll probably need one or both of the components, so we’ll have to evaluate z, but for now,
it can be a thunk.

Above, we said Haskell values were layered. We can see that at work if we pattern match
on z:

let z = (length [1..5], reverse "olleh")
(n, s) = z

in ...

After the first line has been executed, z is simply a thunk. We know nothing about the sort
of value it is because we haven’t been asked to find out yet. In the second line, however,
we pattern match on z using a pair pattern. The compiler thinks ’I better make sure that
pattern does indeed match z, and in order to do that, I need to make sure z is a pair.’
Be careful, though — we’re not yet doing anything with the component parts (the calls to
length and reverse), so they can remain unevaluated. In other words, z, which was just a
thunk, gets evaluated to something like (*thunk*, *thunk*), and n and s become thunks
which, when evaluated, will be the component parts of the original z.

Let’s try a slightly more complicated pattern match:

let z = (length [1..5], reverse "olleh")
(n, s) = z
'h':ss = s

in ...

The pattern match on the second component of z causes some evaluation. The compiler
wishes to check that the 'h':ss pattern matches the second component of the pair. So, it:

1. Evaluates the top level of s to ensure it’s a cons cell: s = *thunk* : *thunk*. (If
s had been an empty list we would encounter a pattern match failure error at this
point.)

2. Evaluates the first thunk it just revealed to make sure it’s 'h':ss = 'h' : *thunk*

476

Thunks and Weak head normal form

• The rest of the list stays unevaluated, and ss becomes a thunk which, when evaluated,
will be the rest of this list.

Figure 35 Evaluating the value (4, [1, 2]) step by step. The first stage is completely
unevaluated; all subsequent forms are in WHNF, and the last one is also in normal form.

We can ’partially evaluate’ (most) Haskell values. Also, there is some sense of the minimum
amount of evaluation we can do. For example, if we have a pair thunk, then the minimum
amount of evaluation takes us to the pair constructor with two unevaluated components:
(*thunk*, *thunk*). If we have a list, the minimum amount of evaluation takes us either
to a cons cell *thunk* : *thunk* or an empty list []. Note that in the empty list case,
no more evaluation can be performed on the value; it is said to be in normal form. If we
are at any of the intermediate steps so that we’ve performed at least some evaluation on
a value, it is in weak head normal form (WHNF). (There is also a ’head normal form’,
but it’s not used in Haskell.) Fully evaluating something in WHNF reduces it to something
in normal form; if at some point we needed to, say, print z out to the user, we’d need to
fully evaluate it, including those calls to length and reverse, to (5, "hello"), where

477

Laziness

it is in normal form. Performing any degree of evaluation on a value is sometimes called
forcing that value.
Note that for some values there is only one result. For example, you can’t partially evaluate
an integer. It’s either a thunk or it’s in normal form. Furthermore, if we have a constructor
with strict components (annotated with an exclamation mark, as with data MaybeS a =
NothingS | JustS !a), these components become evaluated as soon as we evaluate the
level above. I.e. we can never have JustS *thunk* — as soon as we get to this level, the
strictness annotation on the component of JustS forces us to evaluate the component part.

In this section we’ve explored the basics of laziness. We’ve seen that nothing gets evaluated
until it is needed (in fact, the only place that Haskell values get evaluated is in pattern
matches and inside certain primitive IO functions) . This principle even applies to evaluating
values — we do the minimum amount of work on a value that we need to compute our result.

66.3 Lazy and strict functions

Functions can be lazy or strict ’in an argument’. Most functions need to do something
with their arguments, and this will involve evaluating these arguments to different levels.
For example, length needs to evaluate only the cons cells in the argument you give it,
not the contents of those cons cells. length *thunk* might evaluate to something like
length (*thunk* : *thunk* : *thunk* : []), which in turn evaluates to 3. Others
need to evaluate their arguments fully, as in (length . show). If you had length $ show
thunk, there’s no way you can do anything other than evaluate that thunk to normal
form.

So, some functions evaluate their arguments more fully than others. Given two functions
of one parameter, f and g, we say f is stricter than g if f x evaluates x to a deeper level
than g x. Often, we only care about WHNF, so a function that evaluates its argument to
at least WHNF is called strict and one that performs no evaluation is lazy. What about
functions of more than one parameter? Well, we can talk about functions being strict in
one parameter, but lazy in another. For example, given a function like the following:

f x y = length $ show x

Clearly we need to perform no evaluation on y, but we need to evaluate x fully to normal
form, so f is strict in its first parameter but lazy in its second.

Exercises:

1. Why must we fully evaluate x to normal form in f x y = show x?
2. Which is the stricter function?

f x = length [head x]
g x = length (tail x)

478

Lazy and strict functions

In the original discussion about Folds1, we discussed memory problems with foldl that
are solved by the strictly-evaluated foldl'. Essentially, foldr (:) [] and foldl (flip
(:)) [] both evaluate their arguments to the same level of strictness, but foldr can start
producing values straight away, whereas foldl needs to evaluate cons cells all the way to
the end before it starts producing any output. So, there are times when strictness can be
valuable.

66.3.1 Black-box strictness analysis

Figure 36 If f returns an error when passed undefined, it must be strict. Otherwise, it’s
lazy.

Imagine we’re given some function f which takes a single parameter. We’re not allowed to
look at its source code, but we want to know whether f is strict or not. How might we do
this? Probably the easiest way is to use the standard Prelude value undefined. Forcing
undefined to any level of evaluation will halt our program and print an error, so all of
these print errors:

1 https://en.wikibooks.org/wiki/Haskell%2FList%20processing%23foldl

479

https://en.wikibooks.org/wiki/Haskell%2FList%20processing%23foldl

Laziness

let (x, y) = undefined in x
length undefined
head undefined
JustS undefined -- Using MaybeS as defined in the last section

So if a function is strict, passing it undefined will result in an error. Were the function
lazy, passing it undefined would print no error and we can carry on as normal. For example,
none of the following produce errors:

let (x, y) = (4, undefined) in x
length [undefined, undefined, undefined]
head (4 : undefined)
Just undefined

So we can say that f is a strict function if, and only if, f undefined results in an error
being printed and the halting of our program.

66.3.2 In the context of nonstrict semantics

What we’ve presented so far makes sense until you start to think about functions like id.
Is id strict? Our gut reaction is probably to say ”No! It doesn’t evaluate its argument,
therefore it’s lazy”. However, let’s apply our black-box strictness analysis from the last
section to id. Clearly, id undefined is going to print an error and halt our program, so
shouldn’t we say that id is strict? The reason for this mixup is that Haskell’s nonstrict
semantics makes the whole issue a bit murkier.

Nothing gets evaluated if it doesn’t need to be, according to nonstrictness. In the following
code, will length undefined be evaluated?

[4, 10, length undefined, 12]

If you type this into GHCi, it seems strict — you’ll get an error. However, our question was
something of a trick. It doesn’t make sense to state whether a value gets evaluated unless
we’re doing something to this value. Think about it: if we type in head [1, 2, 3] into
GHCi, the only reason we have to do any evaluation whatsoever is because GHCi has to
print us out the result. Typing [4, 10, length undefined, 12] again requires GHCi to
print that list back to us, so it must evaluate it to normal form. In your average Haskell
program, nothing at all will be evaluated until we come to perform the IO in main. So it
makes no sense to say whether something is evaluated or not unless we know what it’s being
passed to, one level up. One lesson here is: don’t blindly trust GHCi because everything in
GHCi is filtered through IO!

So when we say ”Does f x force x?” what we really mean is ”Given that we’re forcing f x,
does x get forced as a result?”. Now we can turn our attention back to id. If we force id
x to normal form, then x will be forced to normal form, so we conclude that id is strict.
id itself doesn’t evaluate its argument, it just hands it on to the caller who will. One way
to see this is in the following code:

-- We evaluate the right-hand of the let-binding to WHNF by pattern-matching
-- against it.
let (x, y) = undefined in x -- Error, because we force undefined.
let (x, y) = id undefined in x -- Error, because we force undefined.

480

Lazy pattern matching

id doesn’t ”stop” the forcing, so it is strict. Contrast this to a clearly lazy function, const
(3, 4):

let (x, y) = undefined in x -- Error, because we force undefined.
let (x, y) = const (3, 4) undefined -- No error, because const (3, 4) is lazy.

66.3.3 The denotational view on things

If you’re familiar with denotational semantics (perhaps you’ve read the wikibook chapter2?),
then the strictness of a function can be summed up very succinctly:

f ⊥= ⊥⇔f is strict

Assuming that, we can say that everything with type forall a. a, including undefined,
error "any string", throw and so on, has denotation ⊥.

66.4 Lazy pattern matching

You might have seen pattern matches like the following in Haskell sources.

-- From Control.Arrow
(***) f g ~(x, y) = (f x, g y)

The question is: what does the tilde sign (˜) mean in the above pattern match? ˜ makes
a lazy pattern or irrefutable pattern. Normally, if you pattern match using a constructor as
part of the pattern, you have to evaluate any argument passed into that function to make
sure it matches the pattern. For example, if you had a function like the above, the third
argument would be evaluated when you call the function to make sure the value matches the
pattern. (Note that the first and second arguments won’t be evaluated, because the patterns
f and g match anything. Also it’s worth noting that the components of the tuple won’t be
evaluated: just the ’top level’. Try let f (Just x) = 1 in f (Just undefined) to see
this.)

However, prepending a pattern with a tilde sign delays the evaluation of the value until the
component parts are actually used. But you run the risk that the value might not match
the pattern — you’re telling the compiler ’Trust me, I know it’ll work out’. (If it turns out
it doesn’t match the pattern, you get a runtime error.) To illustrate the difference:

Prelude> let f (x,y) = 1
Prelude> f undefined
*** Exception: Prelude.undefined

Prelude> let f ˜(x,y) = 1
Prelude> f undefined
1

2 Chapter 58 on page 405

481

Laziness

In the first example, the value is evaluated because it has to match the tuple pattern. You
evaluate undefined and get undefined, which stops the proceedings. In the latter example,
you don’t bother evaluating the parameter until it’s needed, which turns out to be never,
so it doesn’t matter you passed it undefined. To bring the discussion around in a circle
back to (***):

Prelude> (const 1 *** const 2) undefined
(1,2)

If the pattern weren’t irrefutable, the example would have failed.

66.4.1 When does it make sense to use lazy patterns?

Essentially, use lazy patterns when you only have the single constructor for the type, e.g.
tuples. Multiple equations won’t work nicely with irrefutable patterns. To see this, let’s
examine what would happen were we to make head have an irrefutable pattern:

head' :: [a] -> a
head' ˜[] = undefined
head' ˜(x:xs) = x

We’re using one of these patterns for sure, and we need not evaluate even the top level of
the argument until absolutely necessary, so we don’t know whether it’s an empty list or a
cons cell. As we’re using an irrefutable pattern for the first equation, this will match, and
the function will always return undefined.

Exercises:

• Why won’t changing the order of the equations to head' help here?
• If the first equation is changed to use an ordinary refutable pattern, will the behavior
of head' still be different from that of head? If so, how?

66.5 Benefits of nonstrict semantics

Why make Haskell a nonstrict language in the first place? What advantages are there?

66.5.1 Separation of concerns without time penalty

Lazy evaluation encourages a kind of ”what you see is what you get” mentality when it
comes to coding. For example, let’s say you wanted to find the lowest three numbers in
a long list. In Haskell this is achieved extremely naturally: take 3 (sort xs). However
a naïve translation of that code in a strict language would be a very bad idea! It would
involve computing the entire sorted list, then chopping off all but the first three elements.
However, with lazy evaluation we stop once we’ve sorted the list up to the third element, so
this natural definition turns out to be efficient (depending on the implementation of sort).

482

Benefits of nonstrict semantics

To give a second example, the function isInfixOf3 from Data.List allows you to see if one
string is a substring of another string. It’s easily definable as:

isInfixOf :: Eq a => [a] -> [a] -> Bool
isInfixOf x y = any (isPrefixOf x) (tails y)

Again, this would be suicide in a strict language as computing all the tails of a list would
be very time-consuming. However, here we only evaluate enough elements of each tail to
determine whether it has prefix x or not, and stop and return True once we found one with
prefix x.

There are many more examples along these lines.4 So we can write code that looks and
feels natural and doesn’t incur any time penalty.

However, as always in Computer Science (and in life), a tradeoff exists (in particular, a
space-time tradeoff). Using a thunk instead of a plain Int for a trivial calculation (like
2+2) can be a waste. For more examples, see the page on ../Strictness5.

66.5.2 Improved code reuse

Often code reuse is desireable.

For example, we’ll take again (but in more detail) isInfixOf6 from Data.List. Let’s look
at the full definition:

-- From the Prelude
or = foldr (||) False
any p = or . map p

-- From Data.List
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys

tails [] = [[]]
tails xss@(_:xs) = xss : tails xs

-- Our function
isInfixOf :: Eq a => [a] -> [a] -> Bool
isInfixOf x y = any (isPrefixOf x) (tails y)

Where any, isPrefixOf and tails are the functions taken from the Data.List library.
This function determines if its first parameter, x occurs as a subsequence of its second, y;
when applied on String’s (i.e. [Char]), it checks if x is a substring of y. Read in a strict
way, it forms the list of all the tails of y, then checks them all to see if any of them have x as
a prefix. In a strict language, writing this function this way (relying on the already-written
programs any, isPrefixOf, and tails) would be silly, because it would be far slower than
it needed to be. You’d end up doing direct recursion again, or in an imperative language,
a couple of nested loops. You might be able to get some use out of isPrefixOf, but you

3 http://haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html#v%3AisInfixOf
4 In general, expressions like prune . generate, where generate produces a list of items and prune cuts

them down, will be much more efficient in a nonstrict language.
5 Chapter 67 on page 487
6 http://haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html#v%3AisInfixOf

483

http://haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html#v%3AisInfixOf
http://haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html#v%3AisInfixOf

Laziness

certainly wouldn’t use tails. You might be able to write a usable shortcutting any, but it
would be more work, since you wouldn’t want to use foldr to do it.

Now, in a lazy language, all the shortcutting is done for you. You don’t end up rewriting
foldr to shortcut when you find a solution or rewriting the recursion done in tails so that
it will stop early again. You can reuse standard library code better. Laziness isn’t just a
constant-factor speed thing, it makes a qualitative impact on the code which is reasonable
to write. In fact, it’s commonplace to define infinite structures, and then only use as much
as is needed, rather than having to mix up the logic of constructing the data structure with
code that determines whether any part is needed. Code modularity is increased, as laziness
gives you more ways to chop up your code into small pieces, each of which does a simple
task of generating, filtering, or otherwise manipulating data.

Why Functional Programming Matters7 largely focuses on examples where laziness is crucial
and provides a strong argument for lazy evaluation being the default.

66.5.3 Infinite data structures

Examples:

fibs = 1:1:zipWith (+) fibs (tail fibs)
"rock-scissors-paper" example from Bird&Wadler
prune . generate

Infinite data structures usually tie a knot, too, but the Sci-Fi-Explanation of that is better
left to the next section. One could move the next section before this one but I think that
infinite data structures are simpler than tying general knots

66.6 Common nonstrict idioms

66.6.1 Tying the knot

More practical examples?

repMin

Sci-Fi-Explanation: ”You can borrow things from the future as long as you don’t try to change
them”. Advanced: the ”Blueprint”-technique. Examples: the one from the haskellwiki, the
one from the mailing list.

At first a pure functional language seems to have a problem with circular data structures.
Suppose I have a data type like this:

data Foo a = Foo {value :: a, next :: Foo a}

If I want to create two objects ”x” and ”y” where ”x” contains a reference to ”y” and ”y”
contains a reference to ”x” then in a conventional language this is straightforward: create

7 http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html

484

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html

Common nonstrict idioms

the objects and then set the relevant fields to point to each other:

-- Not Haskell code
x := new Foo;
y := new Foo;
x.value := 1;
x.next := y;
y.value := 2
y.next := x;

In Haskell this kind of modification is not allowed. So instead we depend on lazy evaluation:

circularFoo :: Foo Int
circularFoo = x

where
x = Foo 1 y
y = Foo 2 x

This depends on the fact that the ”Foo” constructor is a function, and like most functions
it gets evaluated lazily. Only when one of the fields is required does it get evaluated.

It may help to understand what happens behind the scenes here. When a lazy value is
created (for example, by a call to ”Foo”), the compiler generates an internal data structure
called a ”thunk” containing the function call and arguments. When the value of the function
is demanded, the function is called (as you would expect). But then the thunk data structure
is replaced with the return value. Thus, anything else that refers to that value gets it straight
away without the need to call the function.

(Note that the Haskell language standard makes no mention of thunks: they are an im-
plementation mechanism. From the mathematical point of view this is a straightforward
example of mutual recursion.)

So, when we call ”circularFoo” the result ”x” is actually a thunk. One of the arguments is a
reference to a second thunk representing ”y”. This in turn has a reference back to the thunk
representing ”x”. If we then use the value ”next x” this forces the ”x” thunk to be evaluated
and returns a reference to the ”y” thunk. If I use the value ”next $ next x” then I force the
evaluation of both thunks. So now both thunks have been replaced with the actual ”Foo”
structures, referring to each other. Which is what we wanted.

This is most often applied with constructor functions, but it isn’t limited just to construc-
tors. You can just as readily write:

x = f y
y = g x

The same logic applies.

66.6.2 Memoization, Sharing and Dynamic Programming

Dynamic programming with immutable arrays. DP with other finite maps, Hinze’s paper
”Trouble shared is Trouble halved”. Let-floating \x-> let z = foo x in \y ->

485

Laziness

66.7 Conclusions about laziness

<--! Move conclusions to the introduction? -->

Laziness:

• Can make qualitative improvements to performance!
• Can hurt performance in some other cases.
• Makes code simpler.
• Makes hard problems conceivable.
• Allows for separation of concerns with regard to generating and processing data.

66.8 References

• Laziness on the Haskell wiki8
• Lazy evaluation tutorial on the Haskell wiki9

8 http://www.haskell.org/haskellwiki/Performance/Laziness
9 http://www.haskell.org/haskellwiki/Haskell/Lazy_Evaluation

486

http://www.haskell.org/haskellwiki/Performance/Laziness
http://www.haskell.org/haskellwiki/Haskell/Lazy_Evaluation

67 Strictness

67.1 Difference between strict and lazy evaluation

Strict evaluation, or eager evaluation, is an evaluation strategy where expressions are eval-
uated as soon as they are bound to a variable. For example, with strict evaluation, when
x = 3 * 7 is read, 3 * 7 is immediately computed and 21 is bound to x. Conversely, with
lazy evaluation1 values are only computed when they are needed. In the example x = 3 *
7, 3 * 7 isn’t evaluated until it’s needed, like if you needed to output the value of x.

67.2 Why laziness can be problematic

Lazy evaluation often involves objects called thunks. A thunk is a placeholder object,
specifying not the data itself, but rather how to compute that data. An entity can be
replaced with a thunk to compute that entity. When an entity is copied, whether or not it
is a thunk doesn’t matter - it’s copied as is (on most implementations, a pointer to the data
is created). When an entity is evaluated, it is first checked if it is thunk; if it’s a thunk,
then it is executed, otherwise the actual data is returned. It is by the magic of thunks that
laziness can be implemented.

Generally, in the implementation the thunk is really just a pointer to a piece of (usually
static) code, plus another pointer to the data the code should work on. If the entity
computed by the thunk is larger than the pointer to the code and the associated data, then
a thunk wins out in memory usage. But if the entity computed by the thunk is smaller, the
thunk ends up using more memory.

As an example, consider an infinite length list generated using the expression iterate (+
1) 0. The size of the list is infinite, but the code is just an add instruction, and the two
pieces of data, 1 and 0, are just two Integers. In this case, the thunk representing that list
takes much less memory than the actual list, which would take infinite memory.

However, as another example consider the number generated using the expression 4 * 13
+ 2. The value of that number is 54, but in thunk form it is a multiply, an add, and three
numbers. In such a case, the thunk loses in terms of memory.

Often, the second case above will consume so much memory that it will consume the entire
heap and force the garbage collector. This can slow down the execution of the program
significantly. And that, in fact, is the main reason why laziness can be problematic.

1 Chapter 66 on page 475

487

Strictness

Additionally, if the resulting value is used, no computation is saved; instead, a slight over-
head (of a constant factor) for building the thunk is paid. However, this overhead is not
something the programmer should deal with most of the times; more important factors must
be considered and may give a much bigger improvements; additionally, optimizing Haskell
compilers like GHC can perform ’strictness analysis’ and remove that slight overhead.

67.3 Strictness annotations

67.4 seq

67.4.1 DeepSeq

67.5 References

• Strictness on the Haskell wiki2

2 http://www.haskell.org/haskellwiki/Performance/Strictness

488

http://www.haskell.org/haskellwiki/Performance/Strictness

68 Algorithm complexity

Complexity Theory is the study of how long a program will take to run, depending on
the size of its input. There are many good introductory books to complexity theory and
the basics are explained in any good algorithms book. I’ll keep the discussion here to a
minimum.

The idea is to say how well a program scales with more data. If you have a program that
runs quickly on very small amounts of data but chokes on huge amounts of data, it’s not
very useful (unless you know you’ll only be working with small amounts of data, of course).
Consider the following Haskell function to return the sum of the elements in a list:

sum [] = 0
sum (x:xs) = x + sum xs

How long does it take this function to complete? That’s a very difficult question; it would
depend on all sorts of things: your processor speed, your amount of memory, the exact way
in which the addition is carried out, the length of the list, how many other programs are
running on your computer, and so on. This is far too much to deal with, so we need to
invent a simpler model. The model we use is sort of an arbitrary ”machine step.” So the
question is ”how many machine steps will it take for this program to complete?” In this case,
it only depends on the length of the input list.

If the input list is of length 0, the function will take either 0 or 1 or 2 or some very small
number of machine steps, depending exactly on how you count them (perhaps 1 step to do
the pattern matching and 1 more to return the value 0). What if the list is of length 1?
Well, it would take however much time the list of length 0 would take, plus a few more
steps for doing the first (and only element).

If the input list is of length n, it will take however many steps an empty list would take
(call this value y) and then, for each element it would take a certain number of steps to do
the addition and the recursive call (call this number x). Then, the total time this function
will take is nx+y since it needs to do those additions n many times. These x and y values
are called constantvalues, since they are independent of n, and actually dependentonly on
exactly how we define a machine step, so we really don’t want to consider them all that
important. Therefore, we say that the complexity of this sum function is O(n) (read ”order
n”). Basically saying something is O(n) means that for some constant factors x and y, the
function takes nx+y machine steps to complete.

Consider the following sorting algorithm for lists (commonly called ”insertion sort”):

sort [] = []
sort [x] = [x]
sort (x:xs) = insert (sort xs)

where insert [] = [x]

489

Algorithm complexity

insert (y:ys) | x <= y = x : y : ys
| otherwise = y : insert ys

The way this algorithm works is as follow: if we want to sort an empty list or a list of just
one element, we return them as they are, as they are already sorted. Otherwise, we have a
list of the form x:xs. In this case, we sort xs and then want to insert x in the appropriate
location. That’s what the insertfunction does. It traverses the now-sorted tail and inserts
xwherever it naturally fits.

Let’s analyze how long this function takes to complete. Suppose it takes f(n) stepts to sort
a list of length n. Then, in order to sort a list of n-many elements, we first have to sort the
tail of the list first, which takes f(n−1) time. Then, we have to insert x into this new list.
If x has to go at the end, this will take O(n−1) = O(n) steps. Putting all of this together,
we see that we have to do O(n) amount of work O(n) many times, which means that the
entire complexity of this sorting algorithm is O(n2). Here, the squared is not a constant
value, so we cannot throw it out.

What does this mean? Simply that for really long lists, the sumfunction won’t take very
long, but that the sort function will take quite some time. Of course there are algorithms
that run much more slowly than simply O(n2) and there are ones that run more quickly
than O(n). (Also note that a O(n2) algorithm may actually be much faster than a O(n)
algorithm in practice, if it takes much less time to perform a single step of the O(n2)
algorithm.)

Consider the random access functions for lists and arrays. In the worst case, accessing an
arbitrary element in a list of length n will take O(n) time (think about accessing the last
element). However with arrays, you can access any element immediately, which is said to
be in constant time, or O(1), which is basically as fast an any algorithm can go.

There’s much more in complexity theory than this, but this should be enough to allow you
to understand all the discussions in this tutorial. Just keep in mind that O(1) is faster than
O(n) is faster than O(n2), etc.

68.1 Optimising

68.1.1 Profiling

490

69 Libraries Reference

491

70 The Hierarchical Libraries

1. REDIRECT Haskell/Libraries1

1 https://en.wikibooks.org/wiki/Haskell%2FLibraries

493

https://en.wikibooks.org/wiki/Haskell%2FLibraries

71 Lists

The List datatype (see Data.List1) is the fundamental data structure in Haskell — this is
the basic building-block of data storage and manipulation. In computer science terms it is a
singly-linked list. In the hierarchical library system the List module is stored in Data.List;
but this module only contains utility functions. The definition of list itself is integral to the
Haskell language.

71.1 Theory

A singly-linked list is a set of values in a defined order. The list can only be traversed in
one direction (i.e., you cannot move back and forth through the list like tape in a cassette
machine).

The list of the first 5 positive integers is written as

[1, 2, 3, 4, 5]

We can move through this list, examining and changing values, from left to right, but not
in the other direction. This means that the list

[5, 4, 3, 2, 1]

is not just a trivial change in perspective from the previous list, but the result of significant
computation (O(n) in the length of the list).

71.2 Definition

The polymorphic list datatype can be defined with the following recursive definition:

data [a] = []
| a : [a]

The ”base case” for this definition is [], the empty list. In order to put something into this
list, we use the (:) constructor

1 http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html

495

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html

Lists

emptyList = []
oneElem = 1:[]

The (:) (pronounced cons) is right-associative, so that creating multi-element lists can be
done like

manyElems = 1:2:3:4:5:[]

or even just

manyElems' = [1,2,3,4,5]

71.3 Basic list usage

71.3.1 Prepending

It’s easy to hard-code lists without cons, but run-time list creation will use cons. For
example, to push an argument onto a simulated stack, we would use:

push :: Arg -> [Arg] -> [Arg]
push arg stack = arg:stack

71.3.2 Pattern-matching

If we want to examine the top of the stack, we would typically use a peek function. We
can try pattern-matching for this.

peek :: [Arg] -> Maybe Arg
peek [] = Nothing
peek (a:as) = Just a

The a before the cons in the pattern matches the head of the list. The as matches the tail
of the list. Since we don’t actually want the tail (and it’s not referenced anywhere else in
the code), we can tell the compiler this explicitly, by using a wild-card match, in the form
of an underscore:

peek (a:_) = Just a

496

List utilities

71.4 List utilities

FIXME: is this not covered in the chapter on list manipulation2?

71.4.1 Maps

71.4.2 Folds, unfolds and scans

71.4.3 Length, head, tail etc.

Category:Haskell/Not in book3

2 Chapter 14 on page 85
3 https://en.wikibooks.org/wiki/Category%3AHaskell%2FNot%20in%20book

497

https://en.wikibooks.org/wiki/Category%3AHaskell%2FNot%20in%20book

72 Arrays

1. REDIRECT Haskell/Libraries/Arrays1

1 https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FArrays

499

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FArrays

73 Maybe

1. REDIRECT Haskell/Libraries/Maybe1

1 https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FMaybe

501

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FMaybe

74 Maps

1. REDIRECT Haskell/Libraries/Maps1

1 https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FMaps

503

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FMaps

75 IO

1. REDIRECT Haskell/Libraries/IO1

1 https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FIO

505

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FIO

76 Random Numbers

1. REDIRECT Haskell/Libraries/Random1

1 https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FRandom

507

https://en.wikibooks.org/wiki/Haskell%2FLibraries%2FRandom

77 General Practices

509

78 Building a standalone application

1. REDIRECT Haskell/Standalone programs1

1 https://en.wikibooks.org/wiki/Haskell%2FStandalone%20programs

511

https://en.wikibooks.org/wiki/Haskell%2FStandalone%20programs

79 Debugging

79.1 Debug prints with Debug.Trace

Debug prints are a common way to debug programs. In imperative languages, we can just
sprinkle the code with print statements to standard output or to some as log file in order
to track debug information (e.g. value of a particular variable, or some human-readable
message). In Haskell, however, we cannot output any information other than through the
IO monad; and we don’t want to introduce that just for debugging.

To deal with this problem, the standard library provides the Debug.Trace1. That module
exports a function called trace which provides a convenient way to attach debug print
statements anywhere in a program. For instance, this program prints every argument
passed to fib when not equal to 0 or 1:

module Main where
import Debug.Trace

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = trace ("n: " ++ show n) $ fib (n - 1) + fib (n - 2)

main = putStrLn $ "fib 4: " ++ show (fib 4)

Below is the resulting output:

n: 4
n: 3
n: 2
n: 2
fib 4: 3

Also, trace makes it possible to trace execution steps of program; that is, which function
is called first, second, etc. To do so, we annotate parts of functions we are interested in,
like this:

module Main where
import Debug.Trace

factorial :: Int -> Int
factorial n | n == 0 = trace ("branch 1") 1

| otherwise = trace ("branch 2") $ n * (factorial $ n - 1)

main = do
putStrLn $ "factorial 6: " ++ show (factorial 6)

1 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Debug-Trace.html

513

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Debug-Trace.html

Debugging

When a program annotated in such way is run, it will print the debug strings in the same
order the annotated statements were executed. That output might help to locate errors in
case of missing statements or similar things.

79.1.1 Some extra advice

As demonstrated above, trace can be used outside of the IO monad; and indeed its type
signature...

trace :: String -> a -> a

...indicates that it is a pure function. Yet surely trace is doing IO while printing useful
messages. What’s going on? In fact, trace uses a dirty trick of sorts to circumvent the
separation between IO and pure Haskell. That is reflected in the following disclaimer, found
in the documentation for trace2:

The trace function should only be used for debugging, or for monitoring execution. The
function is not referentially transparent: its type indicates that it is a pure function but
it has the side effect of outputting the trace message.

A common mistake in using trace: while trying to fit the debug traces into an existing
function, one accidentally includes the value being evaluated in the message to be printed
by trace; e.g. don’t do anything like this:

let foo = trace ("foo = " ++ show foo) $ bar
in baz

That leads to infinite recursion because trace message will be evaluated before bar expression
which will lead to evaluation of foo in terms of trace message and bar again and trace
message will be evaluated before bar and so forth to infinity. Instead of show foo, the
correct trace message should have show bar:

let foo = trace ("foo = " ++ show bar) $ bar
in baz

79.1.2 Useful idioms

A helper function that incorporates show can be convenient:

traceThis :: (Show a) => a -> a
traceThis x = trace (show x) x

In a similar vein, Debug.Trace defines a traceShow function, that ”prints” its first argument
and evaluates to the second one:

traceShow :: (Show a) => a -> b -> b
traceShow = trace . show

Finally, a function debug like this one may prove handy as well:

2 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Debug-Trace#v:trace.html

514

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Debug-Trace#v:trace.html

Incremental development with GHCi

debug = flip trace

This will allow you to write code like...

main = (1 + 2) `debug` "adding"

... making it easier to comment/uncomment debugging statements.

79.2 Incremental development with GHCi

79.3 Debugging with Hat

79.4 General tips

515

80 Testing

80.1 Quickcheck

Consider the following function:

getList = find 5 where
find 0 = return []
find n = do

ch <- getChar
if ch `elem` ['a'..'e'] then do

tl <- find (n-1)
return (ch : tl) else

find n

How would we effectively test this function in Haskell? We’ll use refactoring and
QuickCheck.

80.1.1 Keeping things pure

The getList function is hard to test because getChar does IO out in the world, so there’s
no internal way to verify things. The other statements in our do block are all wrapped up
with the IO.

Let’s untangle our function so we can at least test the referentially transparent parts with
QuickCheck. We can take advantage of lazy IO firstly, to avoid all the unpleasant low-level
IO handling.

So the first step is to factor out the IO part of the function into a thin ”skin” layer:

-- A thin monadic skin layer
getList :: IO [Char]
getList = fmap take5 getContents

-- The actual worker
take5 :: [Char] -> [Char]
take5 = take 5 . filter (`elem` ['a'..'e'])

80.1.2 Testing with QuickCheck

Now, we can test the ’guts’ of the algorithm, the take5 function, in isolation. Let’s use
QuickCheck. First we need an Arbitrary instance for the Char type — that takes care of
generating random Chars for us to test with. Restrict it to a range of nice chars just for
simplicity:

517

Testing

import Data.Char
import Test.QuickCheck

instance Arbitrary Char where
arbitrary = choose ('\32', '\128')
coarbitrary c = variant (ord c `rem` 4)

Let’s fire up GHCi and try some generic properties (it’s nice that we can use the QuickCheck
testing framework directly from the Haskell REPL). An easy one first, a [Char] is equal to
itself:

*A> quickCheck ((\s -> s == s) :: [Char] -> Bool)
OK, passed 100 tests.

What just happened? QuickCheck generated 100 random [Char] values, and applied our
property, checking the result was True for all cases. QuickCheck generated the test sets for
us!

A more interesting property now: reversing twice returns the identity:

*A> quickCheck ((\s -> (reverse.reverse) s == s) :: [Char] -> Bool)
OK, passed 100 tests.

Great!

80.1.3 Testing take5

The first step to testing with QuickCheck is to work out some properties that are true of
the function, for all inputs. That is, we need to find invariants.

A simple invariant might be: ∀s.length(take5s) = 5

So let’s write that as a QuickCheck property:

\s -> length (take5 s) == 5

Which we can then run in QuickCheck as:

*A> quickCheck (\s -> length (take5 s) == 5)
Falsifiable, after 0 tests:
""

Ah! QuickCheck caught us out. If the input string contains less than 5 filterable characters,
the resulting string will be no more than 5 characters long. So let’s weaken the property a
bit: ∀s.length(take5s) ≤ 5

That is, take5 returns a string of at most 5 characters long. Let’s test this:

*A> quickCheck (\s -> length (take5 s) <= 5)
OK, passed 100 tests.

Good!

518

Quickcheck

80.1.4 Another property

Another thing to check would be that the correct characters are returned. That is, for all
returned characters, those characters are members of the set [’a’,’b’,’c’,’d’,’e’].

We can specify that as: ∀s.∀e.(e ∈ take5s) ⇒ (e ∈ {a,b,c,d,e})

And in QuickCheck:

*A> quickCheck (\s -> all (`elem` ['a'..'e']) (take5 s))
OK, passed 100 tests.

Excellent. So we can have some confidence that the function neither returns strings that
are too long nor includes invalid characters.

80.1.5 Coverage

One issue with the default QuickCheck configuration, when testing [Char]: the standard 100
tests isn’t enough for our situation. In fact, QuickCheck never generates a String greater
than 5 characters long when using the supplied Arbitrary instance for Char! We can confirm
this:

*A> quickCheck (\s -> length (take5 s) < 5)
OK, passed 100 tests.

QuickCheck wastes its time generating different Chars, when what we really need is longer
strings. One solution to this is to modify QuickCheck’s default configuration to test deeper:

deepCheck p = check (defaultConfig { configMaxTest = 10000}) p

This instructs the system to find at least 10000 test cases before concluding that all is well.
Let’s check that it is generating longer strings:

*A> deepCheck (\s -> length (take5 s) < 5)
Falsifiable, after 125 tests:
";:iDˆ*NNi˜Y\\RegMob\DEL@krsx/=dcf7kub|EQi\DELD*"

We can check the test data QuickCheck is generating using the ’verboseCheck’ hook. Here,
testing on integers lists:

*A> verboseCheck (\s -> length s < 5)
0: []
1: [0]
2: []
3: []
4: []
5: [1,2,1,1]
6: [2]
7: [-2,4,-4,0,0]
Falsifiable, after 7 tests:
[-2,4,-4,0,0]

519

Testing

80.1.6 More information on QuickCheck

• http://haskell.org/haskellwiki/Introduction_to_QuickCheck
• http://haskell.org/haskellwiki/QuickCheck_as_a_test_set_generator

80.2 HUnit

Sometimes it is easier to give an example for a test than to define one from a general rule.
HUnit provides a unit testing framework which helps you to do just this. You could also
abuse QuickCheck by providing a general rule which just so happens to fit your example;
but it’s probably less work in that case to just use HUnit.

TODO: give an example of HUnit test, and a small tour of it

More details for working with HUnit can be found in its user’s guide1.

1 http://hunit.sourceforge.net/HUnit-1.0/Guide.html

520

http://haskell.org/haskellwiki/Introduction_to_QuickCheck
http://haskell.org/haskellwiki/QuickCheck_as_a_test_set_generator
http://hunit.sourceforge.net/HUnit-1.0/Guide.html

81 Packaging your software (Cabal)

A guide to the best practice for creating a new Haskell project or program.

81.1 Recommended tools

Almost all new Haskell projects use the following tools. Each is intrinsically useful, but
using a set of common tools also benefits everyone by increasing productivity, and you’re
more likely to get patches.

81.1.1 Revision control

Use darcs1, unless you have a specific reason not to, in which case use git2. If you don’t
like git, go back and look at darcs. It’s written in Haskell, and it’s used by many Haskell
developers. See the wikibook Understanding darcs3 to get started.

81.1.2 Build system

Use Cabal4. You should read at least the start of section 2 of the Cabal User’s Guide5.

81.1.3 Documentation

For libraries, use Haddock6. We recommend using recent versions of haddock (2.8 or above,
as of December 2010).

81.1.4 Testing

Pure code can be tested using QuickCheck7 or SmallCheck8, impure code with HUnit9.

1 http://darcs.net
2 http://git-scm.com
3 https://en.wikibooks.org/wiki/Understanding%20darcs
4 http://haskell.org/cabal
5 http://haskell.org/cabal/users-guide/index.html
6 http://haskell.org/haddock
7 http://www.md.chalmers.se/~rjmh/QuickCheck/
8 http://www.mail-archive.com/haskell@haskell.org/msg19215.html
9 http://hunit.sourceforge.net/

521

http://darcs.net
http://git-scm.com
https://en.wikibooks.org/wiki/Understanding%20darcs
http://haskell.org/cabal
http://haskell.org/cabal/users-guide/index.html
http://haskell.org/haddock
http://www.md.chalmers.se/~rjmh/QuickCheck/
http://www.mail-archive.com/haskell@haskell.org/msg19215.html
http://hunit.sourceforge.net/

Packaging your software (Cabal)

To get started, try Haskell/Testing10. For a slightly more advanced introduction, Simple
Unit Testing in Haskell11 is a blog article about creating a testing framework for QuickCheck
using some Template Haskell.

81.2 Structure of a simple project

The basic structure of a new Haskell project can be adopted from HNop12, the minimal
Haskell project. It consists of the following files, for the mythical project ”haq”.

• Haq.hs -- the main haskell source file
• haq.cabal -- the cabal build description
• Setup.hs -- build script itself
• _darcs or .git -- revision control
• README -- info
• LICENSE -- license

You can of course elaborate on this, with subdirectories and multiple modules.

Here is a transcript on how you’d create a minimal darcs-using and cabalised Haskell project,
for the cool new Haskell program ”haq”, build it, install it and release.

The command tool ’cabal init’ automates all this for you, but it’s important that you
understand all the parts first.

We will now walk through the creation of the infrastructure for a simple Haskell executable.
Advice for libraries follows after.

81.2.1 Create a directory

Create somewhere for the source:

$ mkdir haq
$ cd haq

81.2.2 Write some Haskell source

Write your program:

$ cat > Haq.hs
--
-- Copyright (c) 2006 Don Stewart - http://www.cse.unsw.edu.au/˜dons
-- GPL version 2 or later (see http://www.gnu.org/copyleft/gpl.html)
--
import System.Environment

10 Chapter 80 on page 517
11 http://blog.codersbase.com/2006/09/simple-unit-testing-in-haskell.html
12 http://semantic.org/hnop/

522

http://blog.codersbase.com/2006/09/simple-unit-testing-in-haskell.html
http://semantic.org/hnop/

Structure of a simple project

-- 'main' runs the main program
main :: IO ()
main = getArgs >>= print . haqify . head

haqify s = "Haq! " ++ s

81.2.3 Stick it in darcs

Place the source under revision control:

$ darcs init
$ darcs add Haq.hs
$ darcs record
addfile ./Haq.hs
Shall I record this change? (1/?) [ynWsfqadjkc], or ? for help: y
hunk ./Haq.hs 1
+--
+-- Copyright (c) 2006 Don Stewart - http://www.cse.unsw.edu.au/˜dons
+-- GPL version 2 or later (see http://www.gnu.org/copyleft/gpl.html)
+--
+import System.Environment
+
+-- | 'main' runs the main program
+main :: IO ()
+main = getArgs >>= print . haqify . head
+
+haqify s = "Haq! " ++ s
Shall I record this change? (2/?) [ynWsfqadjkc], or ? for help: y
What is the patch name? Import haq source
Do you want to add a long comment? [yn]n
Finished recording patch 'Import haq source'

And we can see that darcs is now running the show:

$ ls
Haq.hs _darcs

For git:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com
$ git init
$ git add *
$ git commit -m 'Import haq source'
$ ls -A
.git Haq.hs

81.2.4 Add a build system

Create a .cabal file describing how to build your project:

$ cat > haq.cabal
Name: haq
Version: 0.0
Synopsis: Super cool mega lambdas

523

Packaging your software (Cabal)

Description: My super cool, indeed, even mega lambdas
will demonstrate a basic project. You will marvel.

License: GPL
License-file: LICENSE
Author: Don Stewart
Maintainer: Don Stewart <dons@cse.unsw.edu.au>
Build-Depends: base

Executable: haq
Main-is: Haq.hs

(If your package uses other packages, e.g. array, you’ll need to add them to the Build-
Depends: field.) Add a Setup.lhs that will actually do the building:

$ cat > Setup.lhs
#! /usr/bin/env runhaskell

> import Distribution.Simple
> main = defaultMain

Cabal allows either Setup.hs or Setup.lhs; as long as the format is appropriate, it doesn’t
matter which one you choose. But it’s a good idea to always include the #! /usr/bin/env
runhaskell line; because it follows the shebang13 convention, you could execute the
Setup.hs directly in a Unix shell instead of always manually calling runhaskell (assuming
the Setup file is marked executable, of course).

Record your changes:

$ darcs add haq.cabal Setup.lhs
$ darcs record --all
What is the patch name? Add a build system
Do you want to add a long comment? [yn]n
Finished recording patch 'Add a build system'

Git:

$ git add haq.cabal Setup.lhs
$ git commit -m 'Add a build system'

81.2.5 Build your project

Now build it!

$ runhaskell Setup.lhs configure --prefix=$HOME --user
$ runhaskell Setup.lhs build
$ runhaskell Setup.lhs install

13 https://en.wikipedia.org/wiki/Shebang%20%28Unix%29

524

https://en.wikipedia.org/wiki/Shebang%20%28Unix%29

Structure of a simple project

81.2.6 Run it

And now you can run your cool project:

$ haq me
"Haq! me"

You can also run it in-place, avoiding the install phase:

$ dist/build/haq/haq you
"Haq! you"

81.2.7 Build some haddock documentation

Generate some API documentation into dist/doc/*

$ runhaskell Setup.lhs haddock

which generates files in dist/doc/ including:

$ w3m -dump dist/doc/html/haq/Main.html
haq Contents Index
Main

Synopsis
main :: IO ()

Documentation

main :: IO ()
main runs the main program

Produced by Haddock version 0.7

No output? Make sure you have actually installed haddock. It is a separate program, not
something that comes with the Haskell compiler, like Cabal.

81.2.8 Add some automated testing: QuickCheck

We’ll use QuickCheck to specify a simple property of our Haq.hs code. Create a tests
module, Tests.hs, with some QuickCheck boilerplate:

$ cat > Tests.hs
import Char
import List
import Test.QuickCheck
import Text.Printf

main = mapM_ (\(s,a) -> printf "%-25s: " s >> a) tests

instance Arbitrary Char where
arbitrary = choose ('\0', '\128')

525

Packaging your software (Cabal)

coarbitrary c = variant (ord c `rem` 4)

Now let’s write a simple property:

$ cat >> Tests.hs
-- reversing twice a finite list, is the same as identity
prop_reversereverse s = (reverse . reverse) s == id s

where _ = s :: [Int]

-- and add this to the tests list
tests = [("reverse.reverse/id", test prop_reversereverse)]

We can now run this test, and have QuickCheck generate the test data:

$ runhaskell Tests.hs
reverse.reverse/id : OK, passed 100 tests.

Let’s add a test for the ’haqify’ function:

-- Dropping the "Haq! " string is the same as identity
prop_haq s = drop (length "Haq! ") (haqify s) == id s

where haqify s = "Haq! " ++ s

tests = [("reverse.reverse/id", test prop_reversereverse)
,("drop.haq/id", test prop_haq)]

and let’s test that:

$ runhaskell Tests.hs
reverse.reverse/id : OK, passed 100 tests.
drop.haq/id : OK, passed 100 tests.

Great!

81.2.9 Running the test suite from darcs

We can arrange for darcs to run the test suite on every commit:

$ darcs setpref test "runhaskell Tests.hs"
Changing value of test from '' to 'runhaskell Tests.hs'

will run the full set of QuickChecks. (If your test requires it you may need to en-
sure other things are built too e.g.: darcs setpref test "alex Tokens.x;happy Gram-
mar.y;runhaskell Tests.hs").

Let’s commit a new patch:

$ darcs add Tests.hs
$ darcs record --all
What is the patch name? Add testsuite
Do you want to add a long comment? [yn]n
Running test...
reverse.reverse/id : OK, passed 100 tests.

526

Structure of a simple project

drop.haq/id : OK, passed 100 tests.
Test ran successfully.
Looks like a good patch.
Finished recording patch 'Add testsuite'

Excellent, now patches must pass the test suite before they can be committed.

81.2.10 Tag the stable version, create a tarball, and sell it!

Tag the stable version:

$ darcs tag
What is the version name? 0.0
Finished tagging patch 'TAG 0.0'

Advanced Darcs functionality: lazy get

As your repositories accumulate patches, new users can become annoyed at how long it takes
to accomplish the initial darcs get. (Some projects, like yi14 or GHC, can have thousands
of patches.) Darcs is quick enough, but downloading thousands of individual patches can
still take a while. Isn’t there some way to make things more efficient?

Darcs provides the --lazy option to darcs get. This enables to download only the latest
version of the repository. Patches are later downloaded on demand if needed.

Distribution

When distributing your Haskell program, you have roughly three options:

1. distributing via a Darcs repository
2. distributing a tarball

a) a Darcs tarball
b) a Cabal tarball

With a Darcs repository, if it is public, then you are done. However: perhaps you don’t have
a server with Darcs, or perhaps your computer isn’t set up for people to darcs pull from
it. In which case you’ll need to distribute the source via tarball.

Tarballs via darcs

Darcs provides a command where it will make a compressed tarball, and it will place a copy
of all the files it manages into it. (Note that nothing in _darcs will be included - it’ll just
be your source files, no revision history.)

$ darcs dist -d haq-0.0

14 https://en.wikipedia.org/wiki/Yi%20%28editor%29

527

https://en.wikipedia.org/wiki/Yi%20%28editor%29

Packaging your software (Cabal)

Created dist as haq-0.0.tar.gz

And you’re all set up!

Tarballs via Cabal

Since our code is cabalised, we can create a tarball with Cabal directly:

$ runhaskell Setup.lhs sdist
Building source dist for haq-0.0...
Source tarball created: dist/haq-0.0.tar.gz

This has advantages and disadvantages compared to a Darcs-produced tarball. The primary
advantage is that Cabal will do more checking of our repository, and more importantly, it’ll
ensure that the tarball has the structure needed by HackageDB and cabal-install.

However, it does have a disadvantage: it packages up only the files needed to build the
project. It will deliberately fail to include other files in the repository, even if they turn
out to be necessary at some point15. To include other files (such as Test.hs in the above
example), we need to add lines to the cabal file like:

extra-source-files: Tests.hs

If we had them, we could make sure files like AUTHORS or the README get included as
well:

data-files: AUTHORS, README

81.2.11 Summary

The following files were created:

$ ls
Haq.hs Tests.hs dist haq.cabal
Setup.lhs _darcs haq-0.0.tar.gz

81.3 Libraries

The process for creating a Haskell library is almost identical. The differences are as follows,
for the hypothetical ”ltree” library:

15 This is actually a good thing, since it allows us to do things like create an elaborate test suite which
doesn’t get included in the tarball, so users aren’t bothered by it. It also can reveal hidden assumptions
and omissions in our code - perhaps your code was only building and running because of a file accidentally
generated.

528

Libraries

81.3.1 Hierarchical source

The source should live under a directory path that fits into the existing module layout
guide16. So we would create the following directory structure, for the module Data.LTree:

$ mkdir Data
$ cat > Data/LTree.hs
module Data.LTree where

So our Data.LTree module lives in Data/LTree.hs

81.3.2 The Cabal file

Cabal files for libraries list the publically visible modules, and have no executable section:

$ cat ltree.cabal
Name: ltree
Version: 0.1
Description: Lambda tree implementation
License: BSD3
License-file: LICENSE
Author: Don Stewart
Maintainer: dons@cse.unsw.edu.au
Build-Depends: base
Exposed-modules: Data.LTree

We can thus build our library:

$ runhaskell Setup.lhs configure --prefix=$HOME --user
$ runhaskell Setup.lhs build
Preprocessing library ltree-0.1...
Building ltree-0.1...
[1 of 1] Compiling Data.LTree (Data/LTree.hs, dist/build/Data/LTree.o

)
/usr/bin/ar: creating dist/build/libHSltree-0.1.a

and our library has been created as a object archive. On *nix systems, you should probably
add the --user flag to the configure step (this means you want to update your local package
database during installation). Now install it:

$ runhaskell Setup.lhs install
Installing: /home/dons/lib/ltree-0.1/ghc-6.6 & /home/dons/bin ltree-0.1...
Registering ltree-0.1...
Reading package info from ".installed-pkg-config" ... done.
Saving old package config file... done.
Writing new package config file... done.

And we’re done! You can use your new library from, for example, ghci:

16 http://community.haskell.org/~simonmar/lib-hierarchy.html

529

http://community.haskell.org/~simonmar/lib-hierarchy.html

Packaging your software (Cabal)

$ ghci -package ltree
Prelude> :m + Data.LTree
Prelude Data.LTree>

The new library is in scope, and ready to go.

81.3.3 More complex build systems

For larger projects it is useful to have source trees stored in subdirectories. This can be
done simply by creating a directory, for example, ”src”, into which you will put your src
tree.

To have Cabal find this code, you add the following line to your Cabal file:

hs-source-dirs: src

Cabal can set up to also run configure scripts, along with a range of other features. For
more information consult the Cabal documentation17.

Internal modules

If your library uses internal modules that are not exposed, do not forget to list them in the
other-modules field:

other-modules: My.Own.Module

Failing to do so (as of GHC 6.8.3) may lead to your library deceptively building without
errors but actually being unusable from applications, which would fail at build time with a
linker error.

81.4 Automation

81.4.1 cabal init

A package management tool for Haskell called cabal-install provides a command line tool
to help developers create a simple cabal project. Just run and answer all the questions.
Default values are provided for each.

$ cabal init
Package name [default "test"]?
Package version [default "0.1"]?
Please choose a license:
...

17 http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

530

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Licenses

81.4.2 mkcabal

mkcabal is a tool that existed before cabal init, which also automatically populates a new
cabal project :

darcs get http://code.haskell.org/˜dons/code/mkcabal

N.B. This tool does not work in Windows. The Windows version of GHC does not
include the readline package that this tool needs.

Usage is:

$ mkcabal
Project name: haq
What license ["GPL","LGPL","BSD3","BSD4","PublicDomain","AllRightsReserved"]
["BSD3"]:
What kind of project [Executable,Library] [Executable]:
Is this your name? - "Don Stewart " [Y/n]:
Is this your email address? - "<dons@cse.unsw.edu.au>" [Y/n]:
Created Setup.lhs and haq.cabal
$ ls
Haq.hs LICENSE Setup.lhs _darcs dist haq.cabal

which will fill out some stub Cabal files for the project ’haq’.

To create an entirely new project tree:

$ mkcabal --init-project
Project name: haq
What license ["GPL","LGPL","BSD3","BSD4","PublicDomain","AllRightsReserved"]
["BSD3"]:
What kind of project [Executable,Library] [Executable]:
Is this your name? - "Don Stewart " [Y/n]:
Is this your email address? - "<dons@cse.unsw.edu.au>" [Y/n]:
Created new project directory: haq
$ cd haq
$ ls
Haq.hs LICENSE README Setup.lhs haq.cabal

81.5 Licenses

Code for the common base library package must be BSD licensed or something more
Free/Open. Otherwise, it is entirely up to you as the author.

Choose a licence (inspired by this18). Check the licences of things you use, both other
Haskell packages and C libraries, since these may impose conditions you must follow.

Use the same licence as related projects, where possible. The Haskell community is split
into 2 camps, roughly, those who release everything under BSD or public domain, and the
GPL/LGPLers (this split roughly mirrors the copyleft/noncopyleft divide in Free software

18 http://www.dina.dk/~abraham/rants/license.html

531

http://www.dina.dk/~abraham/rants/license.html

Packaging your software (Cabal)

communities). Some Haskellers recommend specifically avoiding the LGPL, due to cross
module optimisation issues. Like many licensing questions, this advice is controversial.
Several Haskell projects (wxHaskell, HaXml, etc.) use the LGPL with an extra permissive
clause to avoid the cross-module optimisation problem.

81.6 Releases

It’s important to release your code as stable, tagged tarballs. Don’t just rely on darcs for
distribution19.

• darcs dist generates tarballs directly from a darcs repository
For example:

$ cd fps
$ ls
Data LICENSE README Setup.hs TODO _darcs cbits dist
fps.cabal tests
$ darcs dist -d fps-0.8
Created dist as fps-0.8.tar.gz

You can now just post your fps-0.8.tar.gz

You can also have darcs do the equivalent of ’daily snapshots’ for you by using a post-hook.

put the following in _darcs/prefs/defaults:

apply posthook darcs dist
apply run-posthook

Advice:

• Tag each release using darcs tag. For example:
$ darcs tag 0.8
Finished tagging patch 'TAG 0.8'

Then people can darcs get --lazy --tag 0.8, to get just the tagged version (and not
the entire history).

81.7 Hosting

You can host public and private Darcs repositories on http://patch-tag.com/ for free.
Otherwise, a Darcs repository can be published simply by making it available from a
web page. Another option is to host on the Haskell Community Server at http://code.

19 http://web.archive.org/web/20070627103346/http://awayrepl.blogspot.com/2006/11/we-dont-do-releases.html

532

http://patch-tag.com/
http://code.haskell.org/.
http://code.haskell.org/.

Example

haskell.org/. You can request an account via http://community.haskell.org/admin/.
You can also use https://github.com/ for Git hosting.

81.8 Example

A complete example20 of writing, packaging and releasing a new Haskell library under this
process has been documented.

20 http://www.cse.unsw.edu.au/~dons/blog/2006/12/11#release-a-library-today

533

http://community.haskell.org/admin/.
https://github.com/
http://www.cse.unsw.edu.au/~dons/blog/2006/12/11#release-a-library-today

82 Using the Foreign Function Interface
(FFI)

Using Haskell is fine, but in the real world there are a large number of useful libraries in
other languages, especially C. To use these libraries, and let C code use Haskell functions,
there is the Foreign Function Interface (FFI).

82.1 Calling C from Haskell

82.1.1 Marshalling (Type Conversion)

When using C functions, it is necessary to convert Haskell types to the appropriate C
types. These are available in the Foreign.C.Types module; some examples are given in
the following table.

Haskell Foreign.C.Types C
Double CDouble double
Char CUChar unsigned char
Int CLong long int

The operation of converting Haskell types into C types is called marshalling (and the
opposite, predictably, unmarshalling). For basic types this is quite straightforward: for
floating-point one uses realToFrac (either way, as e.g. both Double and CDouble are in-
stances of classes Real and Fractional), for integers fromIntegral, and so on.

B Warning
If you are using GHC previous to 6.12.x, note that the CLDouble type does not really
represent a long double, but is just a synonym for CDouble: never use it, since it will
lead to silent type errors if the C compiler does not also consider long double a
synonym for double. Since 6.12.x CLDouble has been removed1, pending proper
implementation2.

82.1.2 Calling a pure C function

A pure function implemented in C does not present significant trouble in Haskell. The
sin function of the C standard library is a fine example:

535

Using the Foreign Function Interface (FFI)

{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import Foreign.C.Types

foreign import ccall unsafe "math.h sin"
c_sin :: CDouble -> CDouble

First, we specify a GHC extension for the FFI in the first line. We then import the
Foreign and Foreign.C.Types modules, the latter of which contains information about
CDouble, the representation of double-precision floating-point numbers in C.

We then specify that we are importing a foreign function, with a call to C. A ”safety level”
has to be specified with the keyword safe (the default) or unsafe. In general, unsafe is
more efficient, and safe is required only for C code that could call back a Haskell function.
Since that is a very particular case, it is actually quite safe to use the unsafe keyword in
most cases. Finally, we need to specify header and function name, separated by a space.

The Haskell function name is then given, in our case we use a standard c_sin, but it could
have been anything. Note that the function signature must be correct—GHC will not check
the C header to confirm that the function actually takes a CDouble and returns another,
and writing a wrong one could have unpredictable results.

It is then possible to generate a wrapper around the function using CDouble so that it looks
exactly like any Haskell function.

haskellSin :: Double -> Double
haskellSin = realToFrac . c_sin . realToFrac

Importing C’s sin is simple because it is a pure function that takes a plain double as input
and returns another as output: things will complicate with impure functions and pointers,
which are ubiquitous in more complicated C libraries.

82.1.3 Impure C Functions

A classic impure C function is rand, for the generation of pseudo-random numbers. Suppose
you do not want to use Haskell’s System.Random.randomIO, for example because you want
to replicate exactly the series of pseudo-random numbers output by some C routine. Then,
you could import it just like sin before:

{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import Foreign.C.Types

foreign import ccall unsafe "stdlib.h rand"
c_rand :: CUInt -- Oops!

If you try this naïve implementation in GHCI, you will notice that c_rand is returning
always the same value:

536

Calling C from Haskell

> c_rand
1714636915
> c_rand
1714636915

indeed, we have told GHC that it is a pure function, and GHC sees no point in calculating
twice the result of a pure function. Note that GHC did not give any error or warning
message.

In order to make GHC understand this is no pure function, we have to use the IO monad3:

{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import Foreign.C.Types

foreign import ccall unsafe "stdlib.h rand"
c_rand :: IO CUInt

foreign import ccall "stdlib.h srand"
c_srand :: CUInt -> IO ()

Here, we also imported the srand function, to be able to seed the C pseudo-random
generator.

> c_rand
1957747793
> c_rand
424238335
> c_srand 0
> c_rand
1804289383
> c_srand 0
> c_rand
1804289383

82.1.4 Working with C Pointers

The most useful C functions are often those that do complicated calculations with several
parameters, and with increasing complexity the need of returning control codes arises. This
means that a typical paradigm of C libraries is to give pointers of allocated memory as
”targets” in which the results may be written, while the function itself returns an integer
value (typically, if 0, computation was successful, otherwise there was a problem specified
by the number). Another possibility is that the function will return a pointer to a structure
(possibly defined in the implementation, and therefore unavailable to us).

As a pedagogical example, we consider the gsl_frexp function4 of the GNU Scientific
Library5, a freely available library for scientific computation. It is a simple C function with
prototype:

3 Chapter 34 on page 199
4 http://www.gnu.org/software/gsl/manual/html_node/Elementary-Functions.html
5 http://en.wikipedia.org/wiki/GNU_Scientific_Library

537

http://www.gnu.org/software/gsl/manual/html_node/Elementary-Functions.html
http://en.wikipedia.org/wiki/GNU_Scientific_Library

Using the Foreign Function Interface (FFI)

double gsl_frexp (double x, int * e)

The function takes a double x, and it returns its normalised fraction f and integer exponent
e so that:

x = f ×2e e ∈ Z, 0.5 ≤ f < 1

We interface this C function into Haskell with the following code:

{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import Foreign.Ptr
import Foreign.C.Types

foreign import ccall unsafe "gsl/gsl_math.h gsl_frexp"
gsl_frexp :: CDouble -> Ptr CInt -> IO CDouble

The new part is Ptr, which can be used with any instance of the Storable class, among
which all C types, but also several Haskell types.

Notice how the result of the gsl_frexp function is in the IO monad. This is typical when
working with pointers, be they used for input or output (as in this case); we will see shortly
what would happen had we used a simple CDouble for the function.

The frexp function is implemented in pure Haskell code as follows:

frexp :: Double -> (Double, Int)
frexp x = unsafePerformIO $

alloca $ \expptr -> do
f <- gsl_frexp (realToFrac x) expptr
e <- peek expptr
return (realToFrac f, fromIntegral e)

We know that, memory management details aside, the function is pure: that’s why the
signature returns a tuple with f and e outside of the IO monad. Yet, f is provided inside of
it: to extract it, we use the function unsafePerformIO, which extracts values from the
IO monad: obviously, it is legitimate to use it only when we know the function is pure, and
we can allow GHC to optimise accordingly.

To allocate pointers, we use the alloca function, which also takes responsibility for freeing
memory. As an argument, alloca takes a function of type Ptr a -> IO b, and returns the
IO b. In practice, this translates to the following usage pattern with λ functions:

... alloca $ \pointer -> do
c_function argument pointer
result <- peek pointer
return result

The pattern can easily be nested if several pointers are required:

... alloca $ \firstPointer ->
alloca $ \secondPointer -> do

c_function argument firstPointer secondPointer
first <- peek firstPointer

538

Calling C from Haskell

second <- peek secondPointer
return (first, second)

Back to our frexp function: in the λ function that is the argument to alloca, the func-
tion is evaluated and the pointer is read immediately afterwards with peek. Here we can
understand why we wanted the imported C function gsl_frexp to return a value in the
IO monad: if GHC could decide when to calculate the quantity f, it would likely decide not
to do it until it is necessary: that is at the last line when return uses it, and after e has
been read from an allocated, but yet uninitialised memory address, which will contain ran-
dom data. In short, we want gsl_frexp to return a monadic value because we want to
determine the sequence of computations ourselves.

If some other function had required a pointer to provide input instead of storing out-
put, one would have used the similar poke function to set the pointed value, obviously
before evaluating the function:

... alloca $ \inputPointer ->
alloca $ \outputPointer -> do

poke inputPointer value
c_function argument inputPointer outputPointer
result <- peek outputPointer
return result

In the final line, the results are arranged in a tuple and returned, after having been converted
from C types.

To test the function, remember to link GHC to the GSL; in GHCI, do:

$ ghci frexp.hs -lgsl

(Note that most systems do not come with the GSL preinstalled, and you may have to
download and install its development packages.)

82.1.5 Working with C Structures

Very often data are returned by C functions in form of structs or pointers to these. In
some rare cases, these structures are returned directly, but more often they are returned as
pointers; the return value is most often an int that indicates the correctness of execution.

We will consider another GSL function, gsl_sf_bessel_Jn_e6. This function provides
the regular cylindrical Bessel function for a given order n, and returns the result as a
gsl_sf_result structure pointer. The structure contains two doubles, one for the result
and one for the error. The integer error code returned by the function can be transformed
in a C string by the function gsl_strerror. The signature of the Haskell function we are
looking for is therefore:

BesselJn :: Int -> Double -> Either String (Double, Double)

6 http://www.gnu.org/software/gsl/manual/html_node/Regular-Cylindrical-Bessel-Functions.html

539

http://www.gnu.org/software/gsl/manual/html_node/Regular-Cylindrical-Bessel-Functions.html

Using the Foreign Function Interface (FFI)

where the first argument is the order of the cylindrical Bessel function, the second is the
function’s argument, and the returned value is either an error message or a tuple with result
and margin of error.

Making a New Instance of the Storable class

In order to allocate and read a pointer to a gsl_sf_result structure, it is necessary to
make it an instance of the Storable class.

In order to do that, it is useful to use the hsc2hs program: we create first a Bessel.hsc file,
with a mixed syntax of Haskell and C macros, which is later expanded into Haskell by the
command:

$ hsc2hs Bessel.hsc

After that, we simply load the Bessel.hs file in GHC.

This is the first part of file Bessel.hsc:

{-# LANGUAGE ForeignFunctionInterface #-}

module Bessel (besselJn) where

import Foreign
import Foreign.Ptr
import Foreign.C.String
import Foreign.C.Types

#include <gsl/gsl_sf_result.h>

data GslSfResult = GslSfResult { gsl_value :: CDouble, gsl_error :: CDouble }

instance Storable GslSfResult where
sizeOf _ = (#size gsl_sf_result)
alignment _ = alignment (undefined :: CDouble)
peek ptr = do

value <- (#peek gsl_sf_result, val) ptr
error <- (#peek gsl_sf_result, err) ptr
return GslSfResult { gsl_value = value, gsl_error = error }

poke ptr (GslSfResult value error) = do
(#poke gsl_sf_result, val) ptr value
(#poke gsl_sf_result, err) ptr error

We use the #include directive to make sure hsc2hs knows where to find information about
gsl_sf_result. We then define a Haskell data structure mirroring the GSL’s, with two
CDoubles: this is the class we make an instance of Storable. Strictly, we need only sizeOf,
alignment and peek for this example; poke is added for completeness.

• sizeOf is obviously fundamental to the allocation process, and is calculated by
hsc2hs with the #size macro.

• alignment is the size in bytes of the data structure alignment7. In general, it should be
the largest alignment of the elements of the structure; in our case, since the two elements

7 http://en.wikipedia.org/wiki/Data_structure_alignment

540

http://en.wikipedia.org/wiki/Data_structure_alignment

Calling C from Haskell

are the same, we simply use CDouble’s. The value of the argument to alignment is
inconsequential, what is important is the type of the argument.

• peek is implemented using a do-block and the #peek macros, as shown. val and err are
the names used for the structure fields in the GSL source code.

• Similarly, poke is implemented with the #poke macro.

Importing the C Functions

foreign import ccall unsafe "gsl/gsl_bessel.h gsl_sf_bessel_Jn_e"
c_besselJn :: CInt -> CDouble -> Ptr GslSfResult -> IO CInt

foreign import ccall unsafe "gsl/gsl_errno.h gsl_set_error_handler_off"
c_deactivate_gsl_error_handler :: IO ()

foreign import ccall unsafe "gsl/gsl_errno.h gsl_strerror"
c_error_string :: CInt -> IO CString

We import several functions from the GSL libraries: first, the Bessel function itself, which
will do the actual work. Then, we need a particular function, gsl_set_error_handler_off,
because the default GSL error handler will simply crash the program, even if called by
Haskell: we, instead, plan to deal with errors ourselves. The last function is the GSL-wide
interpreter that translates error codes in human-readable C strings.

Implementing the Bessel Function

Finally, we can implement the Haskell version of the GSL cylindrical Bessel function of
order n.

besselJn :: Int -> Double -> Either String (Double, Double)
besselJn n x = unsafePerformIO $

alloca $ \gslSfPtr -> do
c_deactivate_gsl_error_handler
status <- c_besselJn (fromIntegral n) (realToFrac x) gslSfPtr
if status == 0

then do
GslSfResult val err <- peek gslSfPtr
return $ Right (realToFrac val, realToFrac err)

else do
error <- c_error_string status
error_message <- peekCString error
return $ Left ("GSL error: "++error_message)

Again, we use unsafePerformIO because the function is pure, even though its nuts-and-
bolts implementation is not. After allocating a pointer to a GSL result structure, we
deactivate the GSL error handler to avoid crashes in case something goes wrong, and finally
we can call the GSL function. At this point, if the status returned by the function is 0,
we unmarshal the result and return it as a tuple. Otherwise, we call the GSL error-string
function, and pass the error as a Left result instead.

541

Using the Foreign Function Interface (FFI)

Examples

Once we are finished writing the Bessel.hsc function, we have to convert it to proper
Haskell and load the produced file:

$ hsc2hs Bessel.hsc
$ ghci Bessel.hs -lgsl

We can then call the Bessel function with several values:

> besselJn 0 10
Right (-0.2459357644513483,1.8116861737200453e-16)
> besselJn 1 0
Right (0.0,0.0)
> besselJn 1000 2
Left "GSL error: underflow"

82.1.6 Advanced Topics

This section contains an advanced example with some more complex features of the FFI.
We will import into Haskell one of the more complicated functions of the GSL, the one
used to calculate the integral of a function between two given points with an adaptive
Gauss-Kronrod algorithm8. The GSL function is gsl_integration_qag.

This example will illustrate function pointers, export of Haskell functions to C routines,
enumerations, and handling pointers of unknown structures.

Available C Functions and Structures

The GSL has three functions which are necessary to integrate a given function with the
considered method:

gsl_integration_workspace * gsl_integration_workspace_alloc (size_t n);
void gsl_integration_workspace_free (gsl_integration_workspace * w);
int gsl_integration_qag (const gsl_function * f, double a, double b,

double epsabs, double epsrel, size_t limit,
int key, gsl_integration_workspace * workspace,
double * result, double * abserr);

The first two deal with allocation and deallocation of a ”workspace” structure of which we
know nothing (we just pass a pointer around). The actual work is done by the last function,
which requires a pointer to a workspace.

To provide functions, the GSL specifies an appropriate structure for C:

struct gsl_function
{

double (* function) (double x, void * params);

8 http://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html

542

http://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html

Calling C from Haskell

void * params;
};

The reason for the void pointer is that it is not possible to define λ functions in C: param-
eters are therefore passed along with a parameter of unknown type. In Haskell, we do not
need the params element, and will consistently ignore it.

Imports and Inclusions

We start our qag.hsc file with the following:

{-# LANGUAGE ForeignFunctionInterface, EmptyDataDecls #-}

module Qag (qag,
gauss15,
gauss21,
gauss31,
gauss41,
gauss51,
gauss61) where

import Foreign
import Foreign.Ptr
import Foreign.C.Types
import Foreign.C.String

#include <gsl/gsl_math.h>
#include <gsl/gsl_integration.h>

foreign import ccall unsafe "gsl/gsl_errno.h gsl_strerror"
c_error_string :: CInt -> IO CString

foreign import ccall unsafe "gsl/gsl_errno.h gsl_set_error_handler_off"
c_deactivate_gsl_error_handler :: IO ()

We declare the EmptyDataDecls pragma, which we will use later for the Workspace data
type. Since this file will have a good number of functions that should not be available to the
outside world, we also declare it a module and export only the final function qag and the
gauss- flags. We also include the relevant C headers of the GSL. The import of C functions
for error messages and deactivation of the error handler was described before.

Enumerations

One of the arguments of gsl_integration_qag is key, an integer value that can have values
from 1 to 6 and indicates the integration rule. GSL defines a macro for each value, but in
Haskell it is more appropriate to define a type, which we call IntegrationRule. Also, to
have its values automatically defined by hsc2hs, we can use the enum macro:

newtype IntegrationRule = IntegrationRule { rule :: CInt }
#{enum IntegrationRule, IntegrationRule,

gauss15 = GSL_INTEG_GAUSS15,
gauss21 = GSL_INTEG_GAUSS21,
gauss31 = GSL_INTEG_GAUSS31,
gauss41 = GSL_INTEG_GAUSS41,
gauss51 = GSL_INTEG_GAUSS51,
gauss61 = GSL_INTEG_GAUSS61

}

543

Using the Foreign Function Interface (FFI)

hsc2hs will search the headers for the macros and give our variables the correct values.
The enum directive will define a function with an appropriate type signature for each of
the enum values. The above example will get translated to something like this (with the C
macros appropriately replaced by their values):

newtype IntegrationRule = IntegrationRule { rule :: CInt }

gauss15 :: IntegrationRule
gauss15 = IntegrationRule GSL_INTEG_GAUSS15
gauss21 :: IntegrationRule
gauss21 = IntegrationRule GSL_INTEG_GAUSS21
.
.
.

The variables cannot be modified and are essentially constant flags. Since we did not export
the IntegrationRule constructor in the module declaration, but only the gauss flags, it is
impossible for a user to even construct an invalid value. One thing less to worry about!

Haskell Function Target

We can now write down the signature of the function we desire:

qag :: IntegrationRule -- Algorithm type
-> Int -- Step limit
-> Double -- Absolute tolerance
-> Double -- Relative tolerance
-> (Double -> Double) -- Function to integrate
-> Double -- Integration interval start
-> Double -- Integration interval end
-> Either String (Double, Double) -- Result and (absolute) error estimate

Note how the order of arguments is different from the C version: indeed, since C does not
have the possibility of partial application, the ordering criteria are different than in Haskell.

As in the previous example, we indicate errors with a Either String (Double,
Double) result.

Passing Haskell Functions to the C Algorithm

type CFunction = CDouble -> Ptr () -> CDouble

data GslFunction = GslFunction (FunPtr CFunction) (Ptr ())
instance Storable GslFunction where

sizeOf _ = (#size gsl_function)
alignment _ = alignment (undefined :: Ptr ())
peek ptr = do

function <- (#peek gsl_function, function) ptr
return $ GslFunction function nullPtr

poke ptr (GslFunction fun nullPtr) = do
(#poke gsl_function, function) ptr fun

makeCfunction :: (Double -> Double) -> (CDouble -> Ptr () -> CDouble)
makeCfunction f = \x voidpointer -> realToFrac $ f (realToFrac x)

foreign import ccall "wrapper"
makeFunPtr :: CFunction -> IO (FunPtr CFunction)

544

Calling C from Haskell

We define a shorthand type, CFunction, for readability. Note that the void pointer has
been translated to a Ptr (), since we have no intention of using it. Then it is the turn
of the gsl_function structure: no surprises here. Note that the void pointer is always
assumed to be null, both in peek and in poke, and is never really read nor written.

To make a Haskell Double -> Double function available to the C algorithm, we make two
steps: first, we re-organise the arguments using a λ function in makeCfunction; then, in
makeFunPtr, we take the function with reordered arguments and produce a function pointer
that we can pass on to poke, so we can construct the GslFunction data structure.

Handling Unknown Structures

data Workspace
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_alloc"

c_qag_alloc :: CSize -> IO (Ptr Workspace)
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_free"

c_qag_free :: Ptr Workspace -> IO ()

foreign import ccall safe "gsl/gsl_integration.h gsl_integration_qag"
c_qag :: Ptr GslFunction -- Allocated GSL function structure

-> CDouble -- Start interval
-> CDouble -- End interval
-> CDouble -- Absolute tolerance
-> CDouble -- Relative tolerance
-> CSize -- Maximum number of subintervals
-> CInt -- Type of Gauss-Kronrod rule
-> Ptr Workspace -- GSL integration workspace
-> Ptr CDouble -- Result
-> Ptr CDouble -- Computation error
-> IO CInt -- Exit code

The reason we imported the EmptyDataDecls pragma is this: we are declaring the data
structure Workspace without providing any constructor. This is a way to make sure it will
always be handled as a pointer, and never actually instantiated.

Otherwise, we normally import the allocating and deallocating routines. We can now
import the integration function, since we have all the required pieces (GslFunction and
Workspace).

The Complete Function

It is now possible to implement a function with the same functionality as the GSL’s QAG
algorithm.

qag gauss steps abstol reltol f a b = unsafePerformIO $ do
c_deactivate_gsl_error_handler
workspacePtr <- c_qag_alloc (fromIntegral steps)
if workspacePtr == nullPtr

then
return $ Left "GSL could not allocate workspace"

else do
fPtr <- makeFunPtr $ makeCfunction f
alloca $ \gsl_f -> do

poke gsl_f (GslFunction fPtr nullPtr)

545

Using the Foreign Function Interface (FFI)

alloca $ \resultPtr -> do
alloca $ \errorPtr -> do

status <- c_qag gsl_f
(realToFrac a)
(realToFrac b)
(realToFrac abstol)
(realToFrac reltol)
(fromIntegral steps)
(rule gauss)
workspacePtr
resultPtr
errorPtr

c_qag_free workspacePtr
freeHaskellFunPtr fPtr
if status /= 0

then do
c_errormsg <- c_error_string status
errormsg <- peekCString c_errormsg
return $ Left errormsg

else do
c_result <- peek resultPtr
c_error <- peek errorPtr
let result = realToFrac c_result
let error = realToFrac c_error
return $ Right (result, error)

First and foremost, we deactivate the GSL error handler, that would crash the program
instead of letting us report the error.

We then proceed to allocate the workspace; notice that, if the returned pointer is null, there
was an error (typically, too large size) that has to be reported.

If the workspace was allocated correctly, we convert the given function to a function pointer
and allocate the GslFunction struct, in which we place the function pointer. Allocating
memory for the result and its error margin is the last thing before calling the main routine.

After calling, we have to do some housekeeping and free the memory allocated by the
workspace and the function pointer. Note that it would be possible to skip the bookkeeping
using ForeignPtr, but the work required to get it to work is more than the effort to
remember one line of cleanup.

We then proceed to check the return value and return the result, as was done for the Bessel
function.

82.1.7 Self-Deallocating Pointers

In the previous example, we manually handled the deallocation of the GSL integration
workspace, a data structure we know nothing about, by calling its C deallocation function.
It happens that the same workspace is used in several integration routines, which we may
want to import in Haskell.

Instead of replicating the same allocation/deallocation code each time, which could lead
to memory leaks when someone forgets the deallocation part, we can provide a sort of
”smart pointer”, which will deallocate the memory when it is not needed any more. This is
called ForeignPtr (do not confuse with Foreign.Ptr: this one’s qualified name is actually
Foreign.ForeignPtr!). The function handling the deallocation is called the finalizer.

546

Calling C from Haskell

In this section we will write a simple module to allocate GSL workspaces and provide
them as appropriately configured ForeignPtrs, so that users do not have to worry about
deallocation.

The module, written in file GSLWorkspace.hs, is as follows:

{-# LANGUAGE ForeignFunctionInterface, EmptyDataDecls #-}

module GSLWorkSpace (Workspace, createWorkspace) where

import Foreign.C.Types
import Foreign.Ptr
import Foreign.ForeignPtr

data Workspace
foreign import ccall unsafe "gsl/gsl_integration.h
gsl_integration_workspace_alloc"

c_ws_alloc :: CSize -> IO (Ptr Workspace)
foreign import ccall unsafe "gsl/gsl_integration.h
&gsl_integration_workspace_free"

c_ws_free :: FunPtr(Ptr Workspace -> IO ())

createWorkspace :: CSize -> IO (Maybe (ForeignPtr Workspace))
createWorkspace size = do

ptr <- c_ws_alloc size
if ptr /= nullPtr

then do
foreignPtr <- newForeignPtr c_ws_free ptr
return $ Just foreignPtr

else
return Nothing

We first declare our empty data structure Workspace, just like we did in the previous section.

The gsl_integration_workspace_alloc and gsl_integration_workspace_free functions
will no longer be needed in any other file: here, note that the deallocation function is
called with an ampersand (”&”), because we do not actually want the function, but rather
a pointer to it to set as a finalizer.

The workspace creation function returns a IO (Maybe) value, because there is still the
possibility that allocation is unsuccessful and the null pointer is returned. The GSL does
not specify what happens if the deallocation function is called on the null pointer, so for
safety we do not set a finalizer in that case and return IO Nothing; the user code will then
have to check for ”Just-ness” of the returned value.

If the pointer produced by the allocation function is non-null, we build a foreign pointer
with the deallocation function, inject into the Maybe and then the IO monad. That’s it, the
foreign pointer is ready for use!

B Warning
This function requires object code to be compiled, so if you load this module with
GHCI (which is an interpreter) you must indicate it:

$ ghci GSLWorkSpace.hs -fobject-code

Or, from within GHCI:

547

Using the Foreign Function Interface (FFI)

> :set -fobject-code
> :load GSLWorkSpace.hs

The qag.hsc file must now be modified to use the new module; the parts that change are:

{-# LANGUAGE ForeignFunctionInterface #-}

-- [...]

import GSLWorkSpace

import Data.Maybe(isNothing, fromJust)

-- [...]

qag gauss steps abstol reltol f a b = unsafePerformIO $ do
c_deactivate_gsl_error_handler
ws <- createWorkspace (fromIntegral steps)
if isNothing ws

then
return $ Left "GSL could not allocate workspace"

else do
withForeignPtr (fromJust ws) $ \workspacePtr -> do

-- [...]

Obviously, we do not need the EmptyDataDecls extension here any more; instead we import
the GSLWorkSpace module, and also a couple of nice-to-have functions from Data.Maybe.
We also remove the foreign declarations of the workspace allocation and deallocation func-
tions.

The most important difference is in the main function, where we (try to) allo-
cate a workspace ws, test for its Justness, and if everything is fine we use the
withForeignPtr function to extract the workspace pointer. Everything else is the same.

82.2 Calling Haskell from C

Sometimes it is also convenient to call Haskell from C, in order to take advantage of some
of Haskell’s features which are tedious to implement in C, such as lazy evaluation.

We will consider a typical Haskell example, Fibonacci numbers. These are produced in an
elegant, haskellian one-liner as:

fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)

Our task is to export the ability to calculate Fibonacci numbers from Haskell to C. However,
in Haskell, we typically use the Integer type, which is unbounded: this cannot be exported
to C, since there is no such corresponding type. To provide a larger range of outputs, we
specify that the C function shall output, whenever the result is beyond the bounds of its
integer type, an approximation in floating-point. If the result is also beyond the range
of floating-point, the computation will fail. The status of the result (whether it can be

548

Calling Haskell from C

represented as a C integer, a floating-point type or not at all) is signalled by the status
integer returned by the function. Its desired signature is therefore:

int fib(int index, unsigned long long* result, double* approx)

82.2.1 Haskell Source

The Haskell source code for file fibonacci.hs is:

{-# LANGUAGE ForeignFunctionInterface #-}

module Fibonacci where

import Foreign
import Foreign.C.Types

fibonacci :: (Integral a) => [a]
fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)

foreign export ccall fibonacci_c :: CInt -> Ptr CULLong -> Ptr CDouble -> IO
CInt
fibonacci_c :: CInt -> Ptr CULLong -> Ptr CDouble -> IO CInt
fibonacci_c n intPtr dblPtr

| badInt && badDouble = return 2
| badInt = do

poke dblPtr dbl_result
return 1

| otherwise = do
poke intPtr (fromIntegral result)
poke dblPtr dbl_result
return 0

where
result = fibonacci !! (fromIntegral n)
dbl_result = realToFrac result
badInt = result > toInteger (maxBound :: CULLong)
badDouble = isInfinite dbl_result

When exporting, we need to wrap our functions in a module (it is a good habit anyway).
We have already seen the Fibonacci infinite list, so let’s focus on the exported function:
it takes an argument, two pointers to the target unsigned long long and double, and
returns the status in the IO monad (since writing on pointers is a side effect).

The function is implemented with input guards, defined in the where clause at the bottom.
A successful computation will return 0, a partially successful 1 (in which we still can use the
floating-point value as an approximation), and a completely unsuccessful one will return 2.

Note that the function does not call alloca, since the pointers are assumed to have been
already allocated by the calling C function.

The Haskell code can then be compiled with GHC:

ghc -c fibonacci.hs

549

Using the Foreign Function Interface (FFI)

82.2.2 C Source

The compilation of fibonacci.hs has spawned several files, among which fi-
bonacci_stub.h, which we include in our C code in file fib.c:

#include <stdio.h>
#include <stdlib.h>
#include "fibonacci_stub.h"

int main(int argc, char *argv[]) {
if (argc < 2) {

printf("Usage: %s <number>\n", argv[0]);
return 2;

}

hs_init(&argc, &argv);

const int arg = atoi(argv[1]);
unsigned long long res;
double approx;
const int status = fibonacci_c(arg, &res, &approx);

hs_exit();
switch (status) {
case 0:

printf("F_%d: %llu\n", arg, res);
break;

case 1:
printf("Error: result is out of bounds\n");
printf("Floating-point approximation: %e\n", approx);
break;

case 2:
printf("Error: result is out of bounds\n");
printf("Floating-point approximation is infinite\n");
break;

default:
printf("Unknown error: %d\n", status);

}

return status;
}

The notable thing is that we need to initialise the Haskell environment with hs_init, which
we call passing it the command-line arguments of main; we also have to shut Haskell down
with hs_exit() when we are done. The rest is fairly standard C code for allocation and
error handling.

Note that you have to compile the C code with GHC, not your C compiler!

ghc -no-hs-main fib.c fibonacci.o fibonacci_stub.o -o fib

You can then proceed to test the algorithm:

./fib 42
F_42: 267914296
$./fib 666
Error: result is out of bounds
Floating-point approximation: 6.859357e+138
$./fib 1492

550

Calling Haskell from C

Error: result is out of bounds
Floating-point approximation is infinite
./fib -1
fib: Prelude.(!!): negative index

551

83 Generic Programming : Scrap your
boilerplate

The ”Scrap your boilerplate” approach, ”described” in http://www.cs.vu.nl/
boilerplate/, is a way to allow your data structures to be traversed by so-called
”generic” functions: that is, functions that abstract over the specific data constructors
being created or modified, while allowing for the addition of cases for specific types.

For instance if you want to serialize all the structures in your code, but you want to write
only one serialization function that operates over any instance of the Data.Data.Data class
(which can be derived with -XDeriveDataTypeable).

83.1 Serialization Example

The goal is to convert all our data into a format below:

data Tag = Con String | Val String

83.2 Comparing Haskell ASTs

The haskell-src-exts package1 parses Haskell into a quite complicated syntax tree. Let’s say
we want to check if two source files that are nearly identical are equivalent.

To start:

import System.Environment
import Language.Haskell.Exts

main = do
-- parse the filenames given by the first two command line arguments,
-- proper error handling is left as an exercise
[ParseOk moduleA, ParseOk moduleB] <- mapM parseFile . take 2 =<< getArgs

putStrLn $ if moduleA == moduleB
then "Your modules are equal"
else "Your modules differ"

From a bit of testing, it will be apparent that identical files with different names will not
be equal to (==). However, to correct the fact, without resorting to lots of boilerplate, we
can use generic programming:

1 http://hackage.haskell.org/package/haskell-src-exts

553

http://www.cs.vu.nl/boilerplate/
http://www.cs.vu.nl/boilerplate/
http://hackage.haskell.org/package/haskell-src-exts

Generic Programming : Scrap your boilerplate

83.3 TODO

describe using Data.Generics.Twins.gzip*? to write a function to find where there are
differences?

Or use it to write a variant of geq that ignores the specific cases that are unimportant
(the SrcLoc elements) (i.e. syb doesn’t allow generic extension... contrast it with other
libraries?).

Or just explain this hack (which worked well enough) to run before (==), or geq::

everyWhere (mkT $ \ _ -> SrcLoc "" 0 0) :: Data a => a -> a

Or can we develop this into writing something better than sim_mira (for hs code), found
here: http://dickgrune.com/Programs/similarity_tester/

554

http://dickgrune.com/Programs/similarity_tester/

84 Specialised Tasks

555

85 Graphical user interfaces (GUI)

Haskell has at least four toolkits for programming a graphical interface:

• wxHaskell1 - provides a Haskell interface to the cross-platform wxWidgets toolkit which
supports Windows, OS X, and Gtk+ on GNU/Linux, among others.

• Gtk2Hs2 - provides a Haskell interface to the GTK+ library
• hoc3 (documentation at sourceforge4) - provides a Haskell to Objective-C binding which
allows users to access to the Cocoa library on MacOS X

• qtHaskell5 - provides a set of Haskell bindings for the Qt Widget Library

In this tutorial, we will focus on the wxHaskell toolkit.

85.1 Getting and running wxHaskell

To install wxHaskell, look for your version of instructions at: GNU/Linux6 Mac7 Windows8

or the wxHaskell download page9 and follow the installation instructions provided on the
wxHaskell download page. Don’t forget to register wxHaskell with GHC, or else it won’t
run (automatically registered with Cabal). To compile source.hs (which happens to use
wxHaskell code), open a command line and type:

ghc -package wx source.hs -o bin

Code for GHCi is similar:

ghci -package wx

You can then load the files from within the GHCi interface. To test if everything works,
go to $wxHaskellDir/samples/wx ($wxHaskellDir is the directory where you installed it)
and load (or compile) HelloWorld.hs. It should show a window with title ”Hello World!”,

1 https://en.wikibooks.org/wiki/%3Aw%3AWxHaskell
2 http://www.haskell.org/haskellwiki/Gtk2Hs
3 http://code.google.com/p/hoc/
4 http://hoc.sourceforge.net/
5 http://qthaskell.berlios.de/
6 http://www.haskell.org/haskellwiki/WxHaskell/Linux
7 http://www.haskell.org/haskellwiki/WxHaskell/Mac
8 http://www.haskell.org/haskellwiki/WxHaskell/Windows
9 http://wxhaskell.sourceforge.net/download.html

557

https://en.wikibooks.org/wiki/%3Aw%3AWxHaskell
http://www.haskell.org/haskellwiki/Gtk2Hs
http://code.google.com/p/hoc/
http://hoc.sourceforge.net/
http://qthaskell.berlios.de/
http://www.haskell.org/haskellwiki/WxHaskell/Linux
http://www.haskell.org/haskellwiki/WxHaskell/Mac
http://www.haskell.org/haskellwiki/WxHaskell/Windows
http://wxhaskell.sourceforge.net/download.html

Graphical user interfaces (GUI)

a menu bar with File and About, and a status bar at the bottom, that says ”Welcome to
wxHaskell”.

If it doesn’t work, you might try to copy the contents of the $wxHaskellDir/lib directory to
the ghc install directory.

85.1.1 Shortcut for Debian and Ubuntu

If your operating system is Debian or Ubuntu, you can simply run these commands from
the terminal:

sudo apt-get install g++
sudo apt-get install libglu-dev
sudo apt-get install libwxgtk2.8-dev

85.2 Hello World

Here’s the basic Haskell ”Hello World” program:

module Main where

main :: IO ()
main = putStr "Hello World!"

It will compile just fine, but how do we actually do GUI work with this? First, you must
import the wxHaskell library Graphics.UI.WX. Graphics.UI.WXCore has some more stuff,
but we won’t need that now.

To start a GUI, use start gui. In this case, gui is the name of a function which we’ll use
to build the interface. It must have an IO type. Let’s see what we have:

module Main where

import Graphics.UI.WX

main :: IO ()
main = start gui

gui :: IO ()
gui = do

--GUI stuff

To make a frame, we use frame which has the type [Prop (Frame ())] -> IO (Frame
()). It takes a list of ”frame properties” and returns the corresponding frame. We’ll look
deeper into properties later, but a property is typically a combination of an attribute and
a value. What we’re interested in now is the title. This is in the text attribute and
has type (Textual w) => Attr w String. The most important thing here, is that it’s a
String attribute. Here’s how we code it:

gui :: IO ()
gui = do

frame [text := "Hello World!"]

558

Controls

The operator (:=) takes an attribute and a value and combines both into a property. Note
that frame returns an IO (Frame ()). You can change the type of gui to IO (Frame ()),
but it might be better just to add return (). Now we have our own GUI consisting of a
frame with title ”Hello World!”. Its source:

module Main where

import Graphics.UI.WX

main :: IO ()
main = start gui

gui :: IO ()
gui = do

frame [text := "Hello World!"]
return ()

The result should look like the screenshot. (It might look slightly different on Linux or
MacOS X, on which wxhaskell also runs)

85.3 Controls

i Information
From here on, its good practice to keep a browser window or tab open with the
wxHaskell documentation10. It’s also available in $wxHaskellDir/doc/index.html.

85.3.1 A text label

A simple frame doesn’t do much. In this section, we’re going to add some more elements.
Let’s start simple with a label. wxHaskell has a label, but that’s a layout thing. We
won’t be doing layout until next section. What we’re looking for is a staticText. It’s in
Graphics.UI.WX.Controls. The staticText function takes a Window as argument along
with a list of properties. Do we have a window? Yup! Look at Graphics.UI.WX.Frame.
There, we see that a Frame is merely a type-synonym of a special sort of window. We’ll
change the code in gui so it looks like this:

559

Graphical user interfaces (GUI)

Figure 37 Hello StaticText! (winXP)

gui :: IO ()
gui = do

f <- frame [text := "Hello World!"]
staticText f [text := "Hello StaticText!"]
return ()

Again, text is an attribute of a staticText object, so this works. Try it!

85.3.2 A button

Now for a little more interaction. A button. We’re not going to add functionality to it until
the section about events, but already something visible will happen when you click on it.

A button is a control, just like staticText. Look it up in Graphics.UI.WX.Controls.

Again, we need a window and a list of properties. We’ll use the frame again. text is also
an attribute of a button:

560

Layout

Figure 38 Overlapping button and StaticText (winXP)

gui :: IO ()
gui = do

f <- frame [text := "Hello World!"]
staticText f [text := "Hello StaticText!"]
button f [text := "Hello Button!"]
return ()

Load it into GHCi (or compile it with GHC) and... hey!? What’s that? The button’s been
covered up by the label! We’re going to fix that next.

85.4 Layout

The reason that the label and the button overlap, is that we haven’t set a layout for our
frame yet. Layouts are created using the functions found in the documentation of Graph-
ics.UI.WXCore.Layout. Note that you don’t have to import Graphics.UI.WXCore to use
layouts.

The documentation says we can turn a member of the widget class into a layout by us-
ing the widget function. Also, windows are a member of the widget class. But, wait a
minute... we only have one window, and that’s the frame! Nope... we have more, look
at Graphics.UI.WX.Controls and click on any occurrence of the word Control. You’ll be
taken to Graphics.UI.WXCore.WxcClassTypes, and it is there we see that a Control is also

561

Graphical user interfaces (GUI)

a type synonym of a special type of window. We’ll need to change the code a bit, but here
it is.

gui :: IO ()
gui = do

f <- frame [text := "Hello World!"]
st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
return ()

Now we can use widget st and widget b to create a layout of the staticText and the
button. layout is an attribute of the frame, so we’ll set it here:

Figure 39 StaticText with layout (winXP)

gui :: IO ()
gui = do

f <- frame [text := "Hello World!"]
st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
set f [layout := widget st]
return ()

The set function will be covered in the section below about attributes. Try the code, what’s
wrong? This only displays the staticText, not the button. We need a way to combine the
two. We will use layout combinators for that. row and column look nice. They take an
integer and a list of layouts. We can easily make a list of layouts of the button and the
staticText. The integer is the spacing between the elements of the list. Let’s try something:

562

Layout

Figure 40 A row layout (winXP)

Figure 41 Column layout with a spacing of 25 (winXP)

gui :: IO ()
gui = do

f <- frame [text := "Hello World!"]
st <- staticText f [text := "Hello StaticText!"]
b <- button f [text := "Hello Button!"]
set f [layout :=

563

Graphical user interfaces (GUI)

row 0 [widget st, widget b]
]

return ()

Play around with the integer and see what happens. Also, change row into column. Try to
change the order of the elements in the list to get a feeling of how it works. For fun, try to
add widget b several more times in the list. What happens?

Here are a few exercises to spark your imagination. Remember to use the documentation!

Exercises:

1. Add a checkbox control. It doesn’t have to do anything yet, just make sure it
appears next to the staticText and the button when using row-layout, or below
them when using column layout. text is also an attribute of the checkbox.

2. Notice that row and column take a list of layouts, and also generates a layout itself.
Use this fact to make your checkbox appear on the left of the staticText and the
button, with the staticText and the button in a column.

3. Can you figure out how the radiobox control works? Take the layout of the previ-
ous exercise and add a radiobox with two (or more) options below the checkbox,
staticText and button. Use the documentation!

4. Use the boxed combinator to create a nice looking border around the four con-
trols, and another one around the staticText and the button. (Note: the
boxed combinator might not be working on MacOS X - you might get widgets
that can’t be interacted with. This is likely just a bug in wxhaskell.)

After having completed the exercises, the end result should look like this:

564

Attributes

Figure 42 Answer to exercises

You could have used different spacing for row and column or have the options of the radiobox
displayed horizontally.

85.5 Attributes

After all this, you might be wondering: ”Where did that set function suddenly come from?”
and ”How would I know if text is an attribute of something?”. Both answers lie in the
attribute system of wxHaskell.

85.5.1 Setting and modifying attributes

In a wxHaskell program, you can set the properties of the widgets in two ways:

1. during creation: f <- frame [text := "Hello World!"]
2. using the set function: set f [layout := widget st]

565

Graphical user interfaces (GUI)

The set function takes two arguments: something of type w along with properties of w. In
wxHaskell, these will be the widgets and the properties of these widgets. Some properties
can only be set during creation, such as the alignment of a textEntry, but you can set
most others in any IO-function in your program — as long as you have a reference to it
(the f in set f [stuff]).

Apart from setting properties, you can also get them. This is done with the get function.
Here’s a silly example:

gui :: IO ()
gui = do

f <- frame [text := "Hello World!"]
st <- staticText f []
ftext <- get f text
set st [text := ftext]
set f [text := ftext ++ " And hello again!"]

Look at the type signature of get. It’s w -> Attr w a -> IO a. text is a
String attribute, so we have an IO String which we can bind to ftext. The last line
edits the text of the frame. Yep, destructive updates are possible in wxHaskell. We can
overwrite the properties using (:=) anytime with set. This inspires us to write a modify
function:

modify :: w -> Attr w a -> (a -> a) -> IO ()
modify w attr f = do

val <- get w attr
set w [attr := f val]

First it gets the value, then it sets it again after applying the function. Surely we’re not
the first one to think of that...

Look at this operator: (:˜). You can use it in set because it takes an attribute and a
function. The result is a property in which the original value is modified by the function.
That means we can write:

gui :: IO ()
gui = do

f <- frame [text := "Hello World!"]
st <- staticText f []
ftext <- get f text
set st [text := ftext]
set f [text :~ ++ " And hello again!"]

This is a great place to use anonymous functions with the lambda-notation.

There are two more operators we can use to set or modify properties: (::=) and (::˜).
They do almost the same as (:=) and (:˜) except a function of type w -> orig is expected,
where w is the widget type, and orig is the original ”value” type (a in case of (:=) and a
-> a in case of (:˜)). We won’t be using them now, as we’ve only encountered attributes
of non-IO types, and the widget needed in the function is generally only useful in IO-blocks.

85.5.2 How to find attributes

Now the second question. Where do we go to determine that text is an attribute of all
those things? Go to the documentation…

566

Events

Let’s see what attributes a button has: Go to Graphics.UI.WX.Controls11. Click the
link that says ”Button”12. You’ll see that a Button is a type synonym of a special kind of
Control, and a list of functions that can be used to create a button. After each function,
there’s a list of ”Instances”. For the normal button function, we see Commanding -- Textual,
Literate, Dimensions, Colored, Visible, Child, Able, Tipped, Identity, Styled, Reactive,
Paint. That’s the list of classes of which a button is an instance. Read through the ../Classes
and types/13 chapter. It means that there are some class-specific functions available for the
button. Textual, for example, adds the text and appendText functions. If a widget is an
instance of the Textual class, it means that it has a text attribute!

Note that while StaticText hasn’t got a list of instances, it’s still a Control, and that’s
a synonym for some kind of Window. When looking at the Textual class, it says that
Window is an instance of it. That’s an error on the side of the documentation!

Let’s take a look at the attributes of a frame. They can be found in Graphics.UI.WX.Frame.
Another error in the documentation here: It says Frame instantiates HasImage. This was
true in an older version of wxHaskell. It should say Pictured. Apart from that, we
have Form, Textual, Dimensions, Colored, Able and a few more. We’re already seen
Textual and Form. Anything that is an instance of Form has a layout attribute.

Dimensions adds (among others) the clientSize attribute. It’s an attribute of the
Size type, which can be made with sz. Please note that the layout attribute can also
change the size. If you want to use clientSize you should set it after the layout.

Colored adds the color and bgcolor attributes.

Able adds the Boolean enabled attribute. This can be used to enable or disable certain
form elements, which is often displayed as a greyed-out option.

There are lots of other attributes, read through the documentation for each class.

85.6 Events

There are a few classes that deserve special attention. They are the Reactive class and the
Commanding class. As you can see in the documentation of these classes, they don’t add at-
tributes (of the form Attr w a), but events. The Commanding class adds the command event.
We’ll use a button to demonstrate event handling.

Here’s a simple GUI with a button and a staticText:

11 http://hackage.haskell.org/packages/archive/wx/0.10.2/doc/html/Graphics-UI-WX-Controls.html
12 http://hackage.haskell.org/packages/archive/wx/0.10.2/doc/html/Graphics-UI-WX-Controls.html#4
13 Chapter 26 on page 155

567

http://hackage.haskell.org/packages/archive/wx/0.10.2/doc/html/Graphics-UI-WX-Controls.html
http://hackage.haskell.org/packages/archive/wx/0.10.2/doc/html/Graphics-UI-WX-Controls.html#4

Graphical user interfaces (GUI)

Figure 43 Before (winXP)

gui :: IO ()
gui = do

f <- frame [text := "Event Handling"]
st <- staticText f [text := "You haven\'t clicked the button yet."]
b <- button f [text := "Click me!"]
set f [layout := column 25 [widget st, widget b]]

We want to change the staticText when you press the button. We’ll need the on function:

b <- button f [text := "Click me!"
, on command := --stuff
]

The type of on: Event w a -> Attr w a. command is of type Event w (IO ()), so we
need an IO-function. This function is called the Event handler. Here’s what we get:

gui :: IO ()
gui = do

f <- frame [text := "Event Handling"]
st <- staticText f [text := "You haven\'t clicked the button yet."]
b <- button f [text := "Click me!"

, on command := set st [text := "You have clicked the button!"
]

]
set f [layout := column 25 [widget st, widget b]]

Insert text about event filters here

568

86 Databases

86.1 Introduction

Haskell’s most popular database module is HDBC1. HDBC provides an abstraction layer
between Haskell programs and SQL relational databases. This lets you write database code
once, in Haskell, and have it work with a number of backend SQL databases.

HDBC is modeled loosely on Perl’s DBI interface2, though it has also been influenced by
Python’s DB-API v2, JDBC in Java, and HSQL in Haskell. Like how DBI requires DBD
in Perl, HDBC requires a driver module beneath it to work.

These HDBC backend drivers exist: PostgreSQL, SQLite, and ODBC (for Windows and
Unix/Linux/Mac). MySQL is the most popular open-sourced databases, and there are two
drivers for MySQL: HDBC-mysql3 (native) and HDBC-odbc4 (ODBC). MySQL users can
use the ODBC driver on any MySQL-supported platform, including Linux.

An advantage of using ODBC is that the syntax of the SQL statement is insulated from the
different kinds of database engines. This increases the portability of the application should
you have to move from one database to another. The same argument for preferring ODBC
applies for other commercial databases (such as Oracle and DB2).

86.2 Installation

86.2.1 PostgreSQL or SQLite

See the HDBC FAQ5 for more information.

86.2.2 Native MySQL

The native ODBC-mysql library requires the C MySQL client library to be present.

You may need to wrap your database accesses6 to prevent runtime errors.

1 https://github.com/hdbc/hdbc/wiki
2 http://search.cpan.org/~timb/DBI/DBI.pm
3 http://hackage.haskell.org/package/HDBC-mysql
4 http://hackage.haskell.org/package/HDBC-odbc
5 https://github.com/hdbc/hdbc/wiki/FrequentlyAskedQuestions
6 http://www.serpentine.com/blog/2010/09/04/dealing-with-fragile-c-libraries-e-g-mysql-from-haskell/

569

https://github.com/hdbc/hdbc/wiki
http://search.cpan.org/~timb/DBI/DBI.pm
http://hackage.haskell.org/package/HDBC-mysql
http://hackage.haskell.org/package/HDBC-odbc
https://github.com/hdbc/hdbc/wiki/FrequentlyAskedQuestions
http://www.serpentine.com/blog/2010/09/04/dealing-with-fragile-c-libraries-e-g-mysql-from-haskell/

Databases

86.2.3 ODBC/MySQL

Making HDBC work with MySQL via ODBC is somewhat involved, especially if you do not
have root privileges.

• If your platform doesn’t already provide an ODBC library (and most do), install Unix-
ODBC. See here7 for more information.

• Install MySQL-ODBC Connector. See here8 for more information.
• Install Database.HDBC module
• Install Database.HDBC.ODBC module
• Add the mysql driver to odbcinst.ini file (under $ODBC_HOME/etc/) and your data
source in $HOME/.odbc.ini.

• Create a test program

Since the ODBC driver is installed using shared library by default, you will need the
following env:

export LD_LIBRARY_PATH=$ODBC_HOME/lib

If you do not like adding an additional env variables, you should try to compile ODBC with
static library option enabled.

The next task is to write a simple test program that connects to the database and print the
names of all your tables, as shown below.

You may need to wrap your database accesses9 in order to prevent runtime errors.

module Main where
import Database.HDBC.ODBC
import Database.HDBC
main =
do c <- connectODBC "DSN=PSPDSN"

xs <- getTables c
putStr $ "tables "++(foldr jn "." xs)++"\n"

where jn a b = a++" "++b

86.3 General Workflow

86.3.1 Connect and Disconnect

The first step of any database operation is to connect to the target database. This is done
via the driver-specific connect API, which has the type of:

String -> IO Connection

Given a connect string, the connect API will return Connection and put you in the IO
monad.

7 http://sourceforge.net/projects/unixodbc/
8 http://dev.mysql.com/downloads/connector/odbc/
9 http://www.serpentine.com/blog/2010/09/04/dealing-with-fragile-c-libraries-e-g-mysql-from-haskell/

570

http://sourceforge.net/projects/unixodbc/
http://dev.mysql.com/downloads/connector/odbc/
http://www.serpentine.com/blog/2010/09/04/dealing-with-fragile-c-libraries-e-g-mysql-from-haskell/

Running SQL Statements

Although most programs will garbage-collect your connections when they are out of scope
or when the program ends, it is a good practice to disconnect from the database explicitly.

conn->Disconnect

86.3.2 Running Queries

Running a query generally involves the following steps:

• Prepare a statement
• Execute a statement with bind variables
• Fetch the result set (if any)
• Finish the statement

HDBC provides two ways for bind variables and returning result set: [SqlValue] and [
Maybe String]. You need to use the functions with s prefix when using [Maybe String
], instead of [SqlValue]. [SqlValue] allows you to use strongly typed data if type
safety is very important in your application; otherwise, [Maybe String] is more handy
when dealing with lots of database queries. When you use [Maybe String], you assume
the database driver will perform automatic data conversion. Be aware there is a performance
price for this convenience.

Sometimes, when the query is simple, there are simplified APIs that wrap multiple steps into
one. For example, Run and sRun are wrappers of ”prepare and execute”. quickQuery is
a wrapper of ”prepare, execute, and fetch all rows”.

86.4 Running SQL Statements

86.4.1 Select

86.4.2 Insert

86.4.3 Update

86.4.4 Delete

86.5 Transaction

Database transaction is controlled by commit and rollback. However, be aware some
databases (such as mysql) do not support transaction. Therefore, every query is in its
atomic transaction.

HDBC provides withTransaction to allow you automate the transaction control over a
group of queries.

571

Databases

86.6 Calling Procedure

572

87 Web programming

An example web application, using the HAppS framework, is hpaste1, the Haskell paste bin.
Built around the core Haskell web framework, HAppS, with HaXmL for page generation,
and binary/zlib for state serialisation.

The HTTP and Browser modules2 exist, and might be useful.

Category:Haskell/Not in book3

1 http://hpaste.org
2 http://homepages.paradise.net.nz/warrickg/haskell/http/
3 https://en.wikibooks.org/wiki/Category%3AHaskell%2FNot%20in%20book

573

http://hpaste.org
http://homepages.paradise.net.nz/warrickg/haskell/http/
https://en.wikibooks.org/wiki/Category%3AHaskell%2FNot%20in%20book

88 Working with XML

There are several Haskell libraries for XML work, and additional ones for HTML. For more
web-specific work, you may want to refer to the Haskell/Web programming1 chapter.

88.0.1 Libraries for parsing XML

• The Haskell XML Toolbox (hxt)2 is a collection of tools for parsing XML, aiming at a
more general approach than the other tools.

• HaXml3 is a collection of utilities for parsing, filtering, transforming, and generating XML
documents using Haskell.

• HXML4 is a non-validating, lazy, space efficient parser that can work as a drop-in re-
placement for HaXml.

• xml-conduit5 provides parsing and rendering functions for XML. For a tutorial see http:
//www.yesodweb.com/book/xml.

88.0.2 Libraries for generating XML

• HSXML represents XML documents as statically typesafe s-expressions.

88.0.3 Other options

• tagsoup6 is a library for parsing unstructured HTML, i.e. it does not assume validity or
even well-formedness of the data.

88.1 Getting acquainted with HXT

In the following, we are going to use the Haskell XML Toolbox for our examples. You should
have a working installation of GHC7, including GHCi, and you should have downloaded and
installed HXT according to the instructions8.

1 Chapter 87 on page 573
2 http://www.fh-wedel.de/~si/HXmlToolbox/
3 http://projects.haskell.org/HaXml/
4 http://www.flightlab.com/~joe/hxml/
5 https://hackage.haskell.org/package/xml-conduit
6 http://www.cs.york.ac.uk/fp/darcs/tagsoup/tagsoup.htm
7 Chapter 2 on page 5
8 http://www.fh-wedel.de/~si/HXmlToolbox/#install

575

http://www.yesodweb.com/book/xml
http://www.yesodweb.com/book/xml
http://www.fh-wedel.de/~si/HXmlToolbox/
http://projects.haskell.org/HaXml/
http://www.flightlab.com/~joe/hxml/
https://hackage.haskell.org/package/xml-conduit
http://www.cs.york.ac.uk/fp/darcs/tagsoup/tagsoup.htm
http://www.fh-wedel.de/~si/HXmlToolbox/#install

Working with XML

With those in place, we are ready to start playing with HXT. Let’s bring the XML parser
into scope, and parse a simple XML-formatted string:

Prelude> :m + Text.XML.HXT.Parser.XmlParsec
Prelude Text.XML.HXT.Parser.XmlParsec> xread ”<foo>abc<bar/>def</foo>”
[NTree (XTag (QN {namePrefix = ””, localPart = ”foo”, namespaceUri = ””}) [])
[NTree (XText ”abc”) [],NTree (XTag (QN {namePrefix = ””, localPart = ”bar”,
namespaceUri = ””}) []) [],NTree (XText ”def”) []]]

We see that HXT represents an XML document as a list of trees, where the nodes can
be constructed as an XTag containing a list of subtrees, or an XText containing a string.
With GHCi, we can explore this in more detail:

Prelude> :m + Data.Tree.NTree.TypeDefs
Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> :i NTree
data NTree a = NTree a (NTrees a)

-- Defined in Data.Tree.NTree.TypeDefs
Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> :i NTrees
type NTrees a = [NTree a] -- Defined in Data.Tree.NTree.TypeDefs

As we can see, an NTree is a general tree structure where a node stores its children in a
list, and some more browsing around will tell us that XML documents are trees over an
XNode type, defined as:

data XNode
= XText String
| XCharRef Int
| XEntityRef String
| XCmt String
| XCdata String
| XPi QName XmlTrees
| XTag QName XmlTrees
| XDTD DTDElem Attributes
| XAttr QName
| XError Int String

Returning to our example, we notice that while HXT successfully parsed our input, one
might desire a more lucid presentation for human consumption. Lucky for us, the DOM
module supplies this. Notice that xread returns a list of trees, while the formatting function
works on a single tree.

Prelude Text.XML.HXT.Parser.XmlParsec> :m + Text.XML.HXT.DOM.FormatXmlTree
Prelude Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.DOM> putStrLn $ formatXmlTree $ head $ xread

”<foo>abc<bar/>def</foo>”
---XTag ”foo”
|
+---XText ”abc”
|
+---XTag ”bar”
|
+---XText ”def”

576

Getting acquainted with HXT

This representation makes the structure obvious, and it is easy to see the relationship to
our input string. Let’s proceed to extend our XML document with some attributes (taking
care to escape the quotes, of course):

Prelude Text.XML.HXT.Parser.XmlParsec> xread ”<foo a1=\”my\” b2=\”oh\”>abc<bar/>def</foo>”
[NTree (XTag (QN {namePrefix = ””, localPart = ”foo”, namespaceUri = ””})
[NTree (XAttr (QN
{namePrefix = ””, localPart = ”a1”, namespaceUri = ””})) [NTree (XText ”my”)
[]],NTree (XAttr
(QN {namePrefix = ””, localPart = ”b2”, namespaceUri = ””})) [NTree (XText
”oh”) []]]) [NTree
(XText ”abc”) [],NTree (XTag (QN {namePrefix = ””, localPart = ”bar”,
namespaceUri = ””}) [])
[],NTree (XText ”def”) []]]

Notice that attributes are stored as regular NTree nodes with the XAttr content type, and
(of course) no children. Feel free to pretty-print this expression, as we did above.

For a trivial example of data extraction, consider this small example using XPath9:

Prelude> :set prompt "> "
> :m + Text.XML.HXT.Parser.XmlParsec Text.XML.HXT.XPath.XPathEval
> let xml = "<foo>A<c>C</c></foo>"
> let xmltree = head $ xread xml
> let result = getXPath "//a" xmltree
> result
> [NTree (XTag (QN {namePrefix = "", localPart = "a", namespaceUri = ""}) [])
[NTree (XText "A") []]]
> :t result
> result :: NTrees XNode

9 http://en.wikipedia.org/wiki/XPath

577

http://en.wikipedia.org/wiki/XPath

89 Using Regular Expressions

Good tutorials where to start

• serpentine.com1
• Regular Expressions (Haskell Wiki)2

Category:Haskell/Not in book3

1 http://www.serpentine.com/blog/2007/02/27/a-haskell-regular-expression-tutorial/
2 http://www.haskell.org/haskellwiki/Regular_expressions
3 https://en.wikibooks.org/wiki/Category%3AHaskell%2FNot%20in%20book

579

http://www.serpentine.com/blog/2007/02/27/a-haskell-regular-expression-tutorial/
http://www.haskell.org/haskellwiki/Regular_expressions
https://en.wikibooks.org/wiki/Category%3AHaskell%2FNot%20in%20book

90 Parsing Mathematical Expressions

This chapter discusses how to turn strings of text such as ”3*sin x + y” into an abstract
syntactic representation like Plus (Times (Number 3) (Apply ”sin” (Variable ”x”))) (Variable
”y”).

We are going to use Text.ParserCombinators.ReadP1 throughout, so you will need to have
the reference open to refer to.

90.1 First Warmup

import Text.ParserCombinators.ReadP

For a warmup, to get started on the problem, we first try an easier problem. A language
where the symbols are just the letter ”o”, a single operator ”&” and brackets. First define a
data type for these trees:

data Tree = Branch Tree Tree | Leaf deriving Show

Now a parser for leaves is defined using the ReadP library:

leaf = do char 'o'
return Leaf

now to define a parser for the branches, made up by ”&” operator we need to choose an
associativity. That is, whether o&o&o should be the same as (o&o)&o or o&(o&o) - let us
pick the latter.

For a first approximation we can forget about brackets, adding them in after the first
”milestone”:

branch = do a <- leaf
char '&'
b <- tree
return (Branch a b)

tree = leaf +++ branch

1 http://hackage.haskell.org/packages/archive/base/latest/doc/html/Text-ParserCombinators-ReadP.html

581

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Text-ParserCombinators-ReadP.html

Parsing Mathematical Expressions

It’s now possible to test this out and see if it acts properly on a few inputs:

*Main> readP_to_S tree "o"
[(Leaf,"")]
*Main> readP_to_S tree "o&o"
[(Leaf,"&o"),(Branch Leaf Leaf,"")]
*Main> readP_to_S tree "o&o&o"
[(Leaf,"&o&o"),(Branch Leaf Leaf,"&o"),(Branch Leaf (Branch Leaf Leaf),"")]

Since that worked fine we can proceed to add support for parenthesis. Brackets are defined
generally, so that we can reuse it later on

brackets p = do char '('
r <- p
char ')'
return r

We can now update the branch and tree parsers to support brackets:

branch = do a <- leaf +++ brackets tree
char '&'
b <- tree
return (Branch a b)

tree = leaf +++ branch +++ brackets tree

A bit of testing shows that it seems to work

*Main> readP_to_S tree "((o&((o&o)))&o&((o&o)&o)&o)"
[(Branch (Branch Leaf (Branch Leaf Leaf)) (Branch Leaf (Branch (Branch

(Branch Leaf Leaf) Leaf) Leaf)),"")]

90.2 Adaptation

This gives a good starting point for adaptation. The first modification towards the ultimate
goal, which is quite easy to do, is changing the leaves from just ”o” to any string. To
do this we have change to ‘Leaf‘ to ‘Leaf String‘ in the data type and update the leaf function:

data Tree = Branch Tree Tree | Leaf String deriving Show

leaf = do s <- many1 (choice (map char ['a'..'z']))
return (Leaf s)

For the next adaptation we try and add a new operation ”|” which binders weaker than
”&”. I.e. ”foo&bar|baz” should parse as ”(foo&bar)|baz”. First we need to update the data
type representing syntax:

582

Adaptation

data Operator = And | Or deriving Show

data Tree = Branch Operator Tree Tree | Leaf String deriving Show

The obvious thing to do is duplicate the ‘branch‘ function and call it ‘andBranch‘ and
‘orBranch‘, and give or precedence using the left choice operator ‘<++‘:

andBranch = do a <- leaf +++ brackets tree
char '&'
b <- tree
return (Branch And a b)

orBranch = do a <- leaf +++ brackets tree
char '|'
b <- tree
return (Branch Or a b)

tree = leaf +++ (orBranch <++ andBranch) +++ brackets tree

This modification does not work though, if we think of an expression such as
”a&b&c&d|e&f&g&h|i&j&k|l&m&n&o|p&q&r|s” as a tree ”X|Y|Z|W|P|Q” (which we
already know how to parse!) except that the leaves are a more complicated form (but
again, one we already know how to parse) then we can compose a working parser:

andBranch = do a <- leaf +++ brackets tree
char '&'
b <- andTree
return (Branch And a b)

andTree = leaf +++ brackets tree +++ andBranch

orBranch = do a <- andTree +++ brackets tree
char '|'
b <- orTree
return (Branch Or a b)

orTree = andTree +++ brackets tree +++ orBranch

tree = orTree

While this approach does work, for example:

*Main> readP_to_S tree "(foo&bar|baz)"
[(Leaf "","(foo&bar|baz)"),(Branch Or (Branch And (Leaf "foo") (Leaf "bar"))

(Leaf "baz"),""),(Branch Or (Branch And (Leaf "foo") (Leaf "bar")) (Leaf
"baz"),"")]

*Main> readP_to_S tree "(foo|bar&baz)"
[(Leaf "","(foo|bar&baz)"),(Branch Or (Leaf "foo") (Branch And (Leaf "bar")

(Leaf "baz")),""),(Branch Or (Leaf "foo") (Branch And (Leaf "bar") (Leaf
"baz")),"")]

it parses ambiguously, which is undesirable for efficiency reasons as well as hinting that we
may have done something unnatural. Both ‘andTree‘ and ‘orTree‘ functions have ‘brackets
tree‘ in them, since ‘orTree‘ contains ‘andTree‘ this is where the ambiguity creeps in. To

583

Parsing Mathematical Expressions

solve it we simply delete from ‘orTree‘.

orTree = andTree +++ orBranch

90.3 Structure Emerges

All the previous fiddling and playing has actually caused a significant portion of the
structure of our final program to make its-self clear. Looking back at what was written
we could quite easily extend it to add another operator, and another after that (Exercise
for the reader: if it is not clear exactly how this would be done, figure it out and do it).
A moments meditation suggests that we might complete this pattern and abstract it out,
given an arbitrarily long list of operators

operators = [(Or,"|"),(And,"+")]

or perhaps

data Operator = Add | Mul | Exp deriving Show

operators = [(Add,"+"),(Mul,"*"),(Exp,"ˆ")]

the parser should be computed from it, nesting it (as we did manually in the past) so that
parses happen correctly without ambiguity.

The seasoned haskell programmer will have already seen, in her minds eye, the following:

tree = foldr (\(op,name) p ->
let this = p +++ do a <- p +++ brackets tree

char name
b <- this
return (Branch op a b)

in this)
(leaf +++ brackets tree)
operators

which is then tested.

*Main> readP_to_S tree "(xˆe*y+wˆe*zˆe)"
[(Leaf "","(xˆe*y+wˆe*zˆe)"),(Branch Add (Branch Mul (Branch Exp (Leaf "x")

(Leaf "e")) (Leaf "y")) (Branch Mul (Branch Exp (Leaf "w") (Leaf "e")) (Branch
Exp (Leaf "z") (Leaf "e"))),"")]

This is a good checkpoint to pause, in summary we have distilled the embryonic parser
down to the following script:

584

Whitespace and applicative notation

import Text.ParserCombinators.ReadP

brackets p = do char '('
r <- p
char ')'
return r

data Operator = Add | Mul | Exp deriving Show
operators = [(Add,'+'),(Mul,'*'),(Exp,'ˆ')]

data Tree = Branch Operator Tree Tree | Leaf String deriving Show

leaf = do s <- many1 (choice (map char ['a'..'z']))
return (Leaf s)

tree = foldr (\(op,name) p ->
let this = p +++ do a <- p +++ brackets tree

char name
b <- this
return (Branch op a b)

in this)
(leaf +++ brackets tree)
operators

90.4 Whitespace and applicative notation

Since both the functional/applicative notation and ignoring whitespace depend on some
of the same characters (space characters) it is a useful question to ask which should be
implemented first, or whether it is not important which should be programmed first.

Considering the expression ”f x”, suggests that we should find how to parse whitespace
before handling applicative notation, since once it has been dealt with function application
should just correspond to simple juxtaposition (as intended).

There is a technical difficultly making our current parser ignore whitespace: if we were
to make a ‘skipWhitespace‘ parser, and put it everywhere that whitespace could occur we
would be inundated with ambiguous parses. Hence it is necessary to skip whitespace only
in certain crucial places, for example we could pick the convention that whitespace is always
skipped *before* reading a token. Then ” a + b * c ” would be seen by the parser chunked in
the following way ”[a][+][b][*][c][]”. Which convention we choose is arbitrary, but ignoring
whitespace before seems slightly neater, since it handles ” a” without any complaints.

We define the following:

skipWhitespace = do many (choice (map char [' ','\n']))
return ()

and update all the parses written before, so that they follow the new convention

brackets p = do skipWhitespace
char '('
r <- p

585

Parsing Mathematical Expressions

skipWhitespace
char ')'
return r

leaf = do skipWhitespace
s <- many1 (choice (map char ['a'..'z']))
return (Leaf s)

tree = foldr (\(op,name) p ->
let this = p +++ do a <- p +++ brackets tree

skipWhitespace
char name
b <- this
return (Branch op a b)

in this)
(leaf +++ brackets tree)
operators

In order to add applicative support clearly the syntax needs to allow for it:

data Tree = Apply Tree Tree | Branch Operator Tree Tree | Leaf String
deriving Show

This syntax tree will allow for sentences such as ”(x + y) foo”, while this not correct other
sentences like ”(f . g) x” are commonplace in haskell - it should be the job of the type-
checker to decide which is meaningful and which is not: This separation of concerns lets
our problem (parsing) remain simple and homogeneous.

Our parser is essentially just two functions ‘leaf‘ and ‘tree‘ (‘skipWhitespace‘ and ‘brackets‘
being considered ”library” or helper functions). The function ‘tree‘ eats up all the operators
it can, attaching leaves onto them as it can. While the ‘leaf‘ function could be thought of
as reading in anything which doesn’t have operators in it. Given this view of the program it
is clear that to support applicative notation one needs to replace leaf with something that
parses a chain of functional applications.

The obvious thing to try is then,

leaf = chainl1 (do skipWhitespace
s <- many1 (choice (map char ['a'..'z']))
return (Leaf s))

(return Apply)

and it is easily extended to support the ”commonplace” compound sentences discussed
earlier:

leaf = chainl1 (brackets tree
+++ do skipWhitespace

s <- many1 (choice (map char ['a'..'z']))
return (Leaf s))

(return Apply)

This is the problem completely solved! Our original goal is completed, one only needs
to specify the operators they would like to have (in order) and write a traversal function

586

Whitespace and applicative notation

converts the ‘Tree‘ into say mathematical expressions -- giving errors if unknown functions
were used etc.

90.4.1 Making it Modular

The algorithms written are general enough to be useful in different circumstances, and even
if they only had a single use -- if we were planning on using them in a larger program it is
essential that we isolate the internals from the externals (its interface).

module Parser
(Tree(..), parseExpression
) where

import Data.Maybe
import Text.ParserCombinators.ReadP

skipWhitespace = do many (choice (map char [' ','\n']))
return ()

brackets p = do skipWhitespace
char '('
r <- p
skipWhitespace
char ')'
return r

data Tree op = Apply (Tree op) (Tree op) | Branch op (Tree op) (Tree op) | Leaf
String deriving Show

parseExpression operators = listToMaybe . map fst . filter (null .snd) .
readP_to_S tree where
leaf = chainl1 (brackets tree

+++ do skipWhitespace
s <- many1 (choice (map char ['a'..'z']))
return (Leaf s))

(return Apply)
tree = foldr (\(op,name) p ->

let this = p +++ do a <- p +++ brackets tree
skipWhitespace
char name
b <- this
return (Branch op a b)

in this)
(leaf +++ brackets tree)
operators

587

91 Contributors

Edits User
1 Aaronsteers˜enwikibooks1
1 Abdelazer2
3 Acangiano3
1 Adrianneumann4
11 Adrignola5
1 Aeinner6
1 Ahersen7
2 Albmont8
2 Alexanderaltman9
1 Alexandre.delanoe10
5 Alexey Feldgendler11
5 Alexey Muranov12
1 Alexvy8613
8 AllenZh14
2 Almkglor˜enwikibooks15
18 Amire8016
1 Ammon17
1 Anareth18
1 Anders Kaseorg19
6 Andrebolle20
1 Aniloadam21

1 https://en.wikibooks.org/w/index.php%3ftitle=User:Aaronsteers~enwikibooks&action=edit&redlink=1
2 https://en.wikibooks.org/wiki/User:Abdelazer
3 https://en.wikibooks.org/wiki/User:Acangiano
4 https://en.wikibooks.org/w/index.php%3ftitle=User:Adrianneumann&action=edit&redlink=1
5 https://en.wikibooks.org/wiki/User:Adrignola
6 https://en.wikibooks.org/w/index.php%3ftitle=User:Aeinner&action=edit&redlink=1
7 https://en.wikibooks.org/w/index.php%3ftitle=User:Ahersen&action=edit&redlink=1
8 https://en.wikibooks.org/wiki/User:Albmont
9 https://en.wikibooks.org/w/index.php%3ftitle=User:Alexanderaltman&action=edit&redlink=1
10 https://en.wikibooks.org/w/index.php%3ftitle=User:Alexandre.delanoe&action=edit&redlink=1
11 https://en.wikibooks.org/wiki/User:Alexey_Feldgendler
12 https://en.wikibooks.org/w/index.php%3ftitle=User:Alexey_Muranov&action=edit&redlink=1
13 https://en.wikibooks.org/w/index.php%3ftitle=User:Alexvy86&action=edit&redlink=1
14 https://en.wikibooks.org/wiki/User:AllenZh
15 https://en.wikibooks.org/w/index.php%3ftitle=User:Almkglor~enwikibooks&action=edit&redlink=1
16 https://en.wikibooks.org/wiki/User:Amire80
17 https://en.wikibooks.org/w/index.php%3ftitle=User:Ammon&action=edit&redlink=1
18 https://en.wikibooks.org/w/index.php%3ftitle=User:Anareth&action=edit&redlink=1
19 https://en.wikibooks.org/w/index.php%3ftitle=User:Anders_Kaseorg&action=edit&redlink=1
20 https://en.wikibooks.org/w/index.php%3ftitle=User:Andrebolle&action=edit&redlink=1
21 https://en.wikibooks.org/w/index.php%3ftitle=User:Aniloadam&action=edit&redlink=1

589

https://en.wikibooks.org/w/index.php%3ftitle=User:Aaronsteers~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Abdelazer
https://en.wikibooks.org/wiki/User:Acangiano
https://en.wikibooks.org/w/index.php%3ftitle=User:Adrianneumann&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Adrignola
https://en.wikibooks.org/w/index.php%3ftitle=User:Aeinner&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Ahersen&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Albmont
https://en.wikibooks.org/w/index.php%3ftitle=User:Alexanderaltman&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Alexandre.delanoe&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Alexey_Feldgendler
https://en.wikibooks.org/w/index.php%3ftitle=User:Alexey_Muranov&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Alexvy86&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:AllenZh
https://en.wikibooks.org/w/index.php%3ftitle=User:Almkglor~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Amire80
https://en.wikibooks.org/w/index.php%3ftitle=User:Ammon&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Anareth&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Anders_Kaseorg&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Andrebolle&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Aniloadam&action=edit&redlink=1

Contributors

4 Anton Lorenzen22
1 Apalamarchuk23

191 Apfelmus24
1 Asknell25
1 Astroman3D26
4 Atcovi27
1 AugPi28
1 Augustss˜enwikibooks29
20 Avicennasis30
1 Avijja˜enwikibooks31
1 Axa32
6 Axnicho33
1 Ayathustra34
1 B7j0c35
10 BCW36

143 Backfromquadrangle37
2 Bart Massey˜enwikibooks38
2 Bartosz39
1 Basvandijk40
2 Bhathaway41
13 BiT42
1 Billinghurst43
1 Billymac0044
1 BlackMeph45
39 Blackh46

22 https://en.wikibooks.org/w/index.php%3ftitle=User:Anton_Lorenzen&action=edit&redlink=1
23 https://en.wikibooks.org/w/index.php%3ftitle=User:Apalamarchuk&action=edit&redlink=1
24 https://en.wikibooks.org/wiki/User:Apfelmus
25 https://en.wikibooks.org/w/index.php%3ftitle=User:Asknell&action=edit&redlink=1
26 https://en.wikibooks.org/w/index.php%3ftitle=User:Astroman3D&action=edit&redlink=1
27 https://en.wikibooks.org/wiki/User:Atcovi
28 https://en.wikibooks.org/wiki/User:AugPi
29 https://en.wikibooks.org/w/index.php%3ftitle=User:Augustss~enwikibooks&action=edit&redlink=1
30 https://en.wikibooks.org/wiki/User:Avicennasis
31 https://en.wikibooks.org/w/index.php%3ftitle=User:Avijja~enwikibooks&action=edit&redlink=1
32 https://en.wikibooks.org/w/index.php%3ftitle=User:Axa&action=edit&redlink=1
33 https://en.wikibooks.org/w/index.php%3ftitle=User:Axnicho&action=edit&redlink=1
34 https://en.wikibooks.org/w/index.php%3ftitle=User:Ayathustra&action=edit&redlink=1
35 https://en.wikibooks.org/w/index.php%3ftitle=User:B7j0c&action=edit&redlink=1
36 https://en.wikibooks.org/wiki/User:BCW
37 https://en.wikibooks.org/w/index.php%3ftitle=User:Backfromquadrangle&action=edit&redlink=1
38 https://en.wikibooks.org/w/index.php%3ftitle=User:Bart_Massey~enwikibooks&action=edit&redlink=1
39 https://en.wikibooks.org/wiki/User:Bartosz
40 https://en.wikibooks.org/w/index.php%3ftitle=User:Basvandijk&action=edit&redlink=1
41 https://en.wikibooks.org/w/index.php%3ftitle=User:Bhathaway&action=edit&redlink=1
42 https://en.wikibooks.org/wiki/User:BiT
43 https://en.wikibooks.org/wiki/User:Billinghurst
44 https://en.wikibooks.org/w/index.php%3ftitle=User:Billymac00&action=edit&redlink=1
45 https://en.wikibooks.org/w/index.php%3ftitle=User:BlackMeph&action=edit&redlink=1
46 https://en.wikibooks.org/w/index.php%3ftitle=User:Blackh&action=edit&redlink=1

590

https://en.wikibooks.org/w/index.php%3ftitle=User:Anton_Lorenzen&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Apalamarchuk&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Apfelmus
https://en.wikibooks.org/w/index.php%3ftitle=User:Asknell&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Astroman3D&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Atcovi
https://en.wikibooks.org/wiki/User:AugPi
https://en.wikibooks.org/w/index.php%3ftitle=User:Augustss~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Avicennasis
https://en.wikibooks.org/w/index.php%3ftitle=User:Avijja~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Axa&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Axnicho&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Ayathustra&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:B7j0c&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:BCW
https://en.wikibooks.org/w/index.php%3ftitle=User:Backfromquadrangle&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Bart_Massey~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Bartosz
https://en.wikibooks.org/w/index.php%3ftitle=User:Basvandijk&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Bhathaway&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:BiT
https://en.wikibooks.org/wiki/User:Billinghurst
https://en.wikibooks.org/w/index.php%3ftitle=User:Billymac00&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:BlackMeph&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Blackh&action=edit&redlink=1

Whitespace and applicative notation

16 Blaisorblade47
4 Bli48
2 Blogscot49
1 Blue Penguin Toad Frog50
1 Bos˜enwikibooks51
1 Brandizzi52
1 Brateevsky53
3 Brennon˜enwikibooks54
8 Bsddeamon55
1 Bstpierre56
1 Bulldog9857
14 Byorgey58
2 Calvins59
8 Canadaduane60
11 Catamorphism61
1 Catofax˜enwikibooks62
1 Cdgarrett196663
1 Cdunn2001˜enwikibooks64
5 Cheshire˜enwikibooks65
9 Chief sequoya66
1 Chris Forno67
1 ChrisKuklewicz68
2 Christofian69
29 Cic70
4 Clj˜enwikibooks71

47 https://en.wikibooks.org/w/index.php%3ftitle=User:Blaisorblade&action=edit&redlink=1
48 https://en.wikibooks.org/w/index.php%3ftitle=User:Bli&action=edit&redlink=1
49 https://en.wikibooks.org/wiki/User:Blogscot
50 https://en.wikibooks.org/w/index.php%3ftitle=User:Blue_Penguin_Toad_Frog&action=edit&redlink=1
51 https://en.wikibooks.org/w/index.php%3ftitle=User:Bos~enwikibooks&action=edit&redlink=1
52 https://en.wikibooks.org/w/index.php%3ftitle=User:Brandizzi&action=edit&redlink=1
53 https://en.wikibooks.org/wiki/User:Brateevsky
54 https://en.wikibooks.org/w/index.php%3ftitle=User:Brennon~enwikibooks&action=edit&redlink=1
55 https://en.wikibooks.org/w/index.php%3ftitle=User:Bsddeamon&action=edit&redlink=1
56 https://en.wikibooks.org/w/index.php%3ftitle=User:Bstpierre&action=edit&redlink=1
57 https://en.wikibooks.org/wiki/User:Bulldog98
58 https://en.wikibooks.org/wiki/User:Byorgey
59 https://en.wikibooks.org/w/index.php%3ftitle=User:Calvins&action=edit&redlink=1
60 https://en.wikibooks.org/w/index.php%3ftitle=User:Canadaduane&action=edit&redlink=1
61 https://en.wikibooks.org/wiki/User:Catamorphism
62 https://en.wikibooks.org/w/index.php%3ftitle=User:Catofax~enwikibooks&action=edit&redlink=1
63 https://en.wikibooks.org/w/index.php%3ftitle=User:Cdgarrett1966&action=edit&redlink=1
64 https://en.wikibooks.org/w/index.php%3ftitle=User:Cdunn2001~enwikibooks&action=edit&redlink=1
65 https://en.wikibooks.org/w/index.php%3ftitle=User:Cheshire~enwikibooks&action=edit&redlink=1
66 https://en.wikibooks.org/w/index.php%3ftitle=User:Chief_sequoya&action=edit&redlink=1
67 https://en.wikibooks.org/w/index.php%3ftitle=User:Chris_Forno&action=edit&redlink=1
68 https://en.wikibooks.org/w/index.php%3ftitle=User:ChrisKuklewicz&action=edit&redlink=1
69 https://en.wikibooks.org/w/index.php%3ftitle=User:Christofian&action=edit&redlink=1
70 https://en.wikibooks.org/w/index.php%3ftitle=User:Cic&action=edit&redlink=1
71 https://en.wikibooks.org/w/index.php%3ftitle=User:Clj~enwikibooks&action=edit&redlink=1

591

https://en.wikibooks.org/w/index.php%3ftitle=User:Blaisorblade&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Bli&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Blogscot
https://en.wikibooks.org/w/index.php%3ftitle=User:Blue_Penguin_Toad_Frog&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Bos~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Brandizzi&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Brateevsky
https://en.wikibooks.org/w/index.php%3ftitle=User:Brennon~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Bsddeamon&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Bstpierre&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Bulldog98
https://en.wikibooks.org/wiki/User:Byorgey
https://en.wikibooks.org/w/index.php%3ftitle=User:Calvins&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Canadaduane&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Catamorphism
https://en.wikibooks.org/w/index.php%3ftitle=User:Catofax~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Cdgarrett1966&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Cdunn2001~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Cheshire~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Chief_sequoya&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Chris_Forno&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:ChrisKuklewicz&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Christofian&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Cic&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Clj~enwikibooks&action=edit&redlink=1

Contributors

2 Codeispoetry72
1 CommonsDelinker73
2 Crasshopper74
1 Damien Cassou75
2 Daniel5Ko76
1 DanielSchoepe77

242 DavidHouse78
1 Davorak79
1 Denny80
2 Derekmahar81
1 Dherington82
4 Diddymus83
44 Digichoron84
1 DimoneSem85
1 Dino˜enwikibooks86
20 Dirk Hünniger87
3 Dporter88
1 Dukedave˜enwikibooks89

1131 Duplode90
1 Długosz91
2 EddieTwo92
2 Edward Z. Yang93
1 Eihjia˜enwikibooks94
3 Erich˜enwikibooks95
2 ErikFK96

72 https://en.wikibooks.org/wiki/User:Codeispoetry
73 https://en.wikibooks.org/wiki/User:CommonsDelinker
74 https://en.wikibooks.org/wiki/User:Crasshopper
75 https://en.wikibooks.org/w/index.php%3ftitle=User:Damien_Cassou&action=edit&redlink=1
76 https://en.wikibooks.org/w/index.php%3ftitle=User:Daniel5Ko&action=edit&redlink=1
77 https://en.wikibooks.org/w/index.php%3ftitle=User:DanielSchoepe&action=edit&redlink=1
78 https://en.wikibooks.org/wiki/User:DavidHouse
79 https://en.wikibooks.org/w/index.php%3ftitle=User:Davorak&action=edit&redlink=1
80 https://en.wikibooks.org/wiki/User:Denny
81 https://en.wikibooks.org/w/index.php%3ftitle=User:Derekmahar&action=edit&redlink=1
82 https://en.wikibooks.org/w/index.php%3ftitle=User:Dherington&action=edit&redlink=1
83 https://en.wikibooks.org/w/index.php%3ftitle=User:Diddymus&action=edit&redlink=1
84 https://en.wikibooks.org/wiki/User:Digichoron
85 https://en.wikibooks.org/w/index.php%3ftitle=User:DimoneSem&action=edit&redlink=1
86 https://en.wikibooks.org/w/index.php%3ftitle=User:Dino~enwikibooks&action=edit&redlink=1
87 https://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger
88 https://en.wikibooks.org/w/index.php%3ftitle=User:Dporter&action=edit&redlink=1
89 https://en.wikibooks.org/w/index.php%3ftitle=User:Dukedave~enwikibooks&action=edit&redlink=1
90 https://en.wikibooks.org/wiki/User:Duplode
91 https://en.wikibooks.org/w/index.php%3ftitle=User:D%25C5%2582ugosz&action=edit&redlink=1
92 https://en.wikibooks.org/w/index.php%3ftitle=User:EddieTwo&action=edit&redlink=1
93 https://en.wikibooks.org/wiki/User:Edward_Z._Yang
94 https://en.wikibooks.org/w/index.php%3ftitle=User:Eihjia~enwikibooks&action=edit&redlink=1
95 https://en.wikibooks.org/w/index.php%3ftitle=User:Erich~enwikibooks&action=edit&redlink=1
96 https://en.wikibooks.org/w/index.php%3ftitle=User:ErikFK&action=edit&redlink=1

592

https://en.wikibooks.org/wiki/User:Codeispoetry
https://en.wikibooks.org/wiki/User:CommonsDelinker
https://en.wikibooks.org/wiki/User:Crasshopper
https://en.wikibooks.org/w/index.php%3ftitle=User:Damien_Cassou&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Daniel5Ko&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:DanielSchoepe&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:DavidHouse
https://en.wikibooks.org/w/index.php%3ftitle=User:Davorak&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Denny
https://en.wikibooks.org/w/index.php%3ftitle=User:Derekmahar&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Dherington&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Diddymus&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Digichoron
https://en.wikibooks.org/w/index.php%3ftitle=User:DimoneSem&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Dino~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger
https://en.wikibooks.org/w/index.php%3ftitle=User:Dporter&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Dukedave~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Duplode
https://en.wikibooks.org/w/index.php%3ftitle=User:D%25C5%2582ugosz&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:EddieTwo&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Edward_Z._Yang
https://en.wikibooks.org/w/index.php%3ftitle=User:Eihjia~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Erich~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:ErikFK&action=edit&redlink=1

Whitespace and applicative notation

2 EvanCarroll97
1 Favonia98
2 Felix C. Stegerman99
6 Fieryhydra100
1 Fluxion˜enwikibooks101
1 Freinn102
2 Froth103
1 Fshahriar104
11 GPhilip105
4 GRiba2010106
3 Gauthier˜enwikibooks107
1 Gdweber˜enwikibooks108
2 GeordieMcBain109
2 Gert˜enwikibooks110
1 Gerymate111
1 Ghostzart112
2 Gh˜enwikibooks113
1 Glaisher114
1 Glosser.ca115
2 GorgeUbuasha116
1 Gotoki no joe117
1 Gphilip118
1 Gracenotes119
2 Greenrd120
3 GreggHB121

97 https://en.wikibooks.org/wiki/User:EvanCarroll
98 https://en.wikibooks.org/w/index.php%3ftitle=User:Favonia&action=edit&redlink=1
99 https://en.wikibooks.org/w/index.php%3ftitle=User:Felix_C._Stegerman&action=edit&redlink=1
100 https://en.wikibooks.org/w/index.php%3ftitle=User:Fieryhydra&action=edit&redlink=1
101 https://en.wikibooks.org/w/index.php%3ftitle=User:Fluxion~enwikibooks&action=edit&redlink=1
102 https://en.wikibooks.org/w/index.php%3ftitle=User:Freinn&action=edit&redlink=1
103 https://en.wikibooks.org/w/index.php%3ftitle=User:Froth&action=edit&redlink=1
104 https://en.wikibooks.org/w/index.php%3ftitle=User:Fshahriar&action=edit&redlink=1
105 https://en.wikibooks.org/w/index.php%3ftitle=User:GPhilip&action=edit&redlink=1
106 https://en.wikibooks.org/w/index.php%3ftitle=User:GRiba2010&action=edit&redlink=1
107 https://en.wikibooks.org/w/index.php%3ftitle=User:Gauthier~enwikibooks&action=edit&redlink=1
108 https://en.wikibooks.org/w/index.php%3ftitle=User:Gdweber~enwikibooks&action=edit&redlink=1
109 https://en.wikibooks.org/w/index.php%3ftitle=User:GeordieMcBain&action=edit&redlink=1
110 https://en.wikibooks.org/w/index.php%3ftitle=User:Gert~enwikibooks&action=edit&redlink=1
111 https://en.wikibooks.org/w/index.php%3ftitle=User:Gerymate&action=edit&redlink=1
112 https://en.wikibooks.org/w/index.php%3ftitle=User:Ghostzart&action=edit&redlink=1
113 https://en.wikibooks.org/w/index.php%3ftitle=User:Gh~enwikibooks&action=edit&redlink=1
114 https://en.wikibooks.org/wiki/User:Glaisher
115 https://en.wikibooks.org/w/index.php%3ftitle=User:Glosser.ca&action=edit&redlink=1
116 https://en.wikibooks.org/wiki/User:GorgeUbuasha
117 https://en.wikibooks.org/w/index.php%3ftitle=User:Gotoki_no_joe&action=edit&redlink=1
118 https://en.wikibooks.org/w/index.php%3ftitle=User:Gphilip&action=edit&redlink=1
119 https://en.wikibooks.org/wiki/User:Gracenotes
120 https://en.wikibooks.org/wiki/User:Greenrd
121 https://en.wikibooks.org/w/index.php%3ftitle=User:GreggHB&action=edit&redlink=1

593

https://en.wikibooks.org/wiki/User:EvanCarroll
https://en.wikibooks.org/w/index.php%3ftitle=User:Favonia&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Felix_C._Stegerman&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Fieryhydra&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Fluxion~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Freinn&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Froth&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Fshahriar&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:GPhilip&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:GRiba2010&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Gauthier~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Gdweber~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:GeordieMcBain&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Gert~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Gerymate&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Ghostzart&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Gh~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Glaisher
https://en.wikibooks.org/w/index.php%3ftitle=User:Glosser.ca&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:GorgeUbuasha
https://en.wikibooks.org/w/index.php%3ftitle=User:Gotoki_no_joe&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Gphilip&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Gracenotes
https://en.wikibooks.org/wiki/User:Greenrd
https://en.wikibooks.org/w/index.php%3ftitle=User:GreggHB&action=edit&redlink=1

Contributors

1 Gregorias122
51 Gwern123
5 Gwideman124
2 Hairy Dude125
2 Hansix126
16 Hathal127
3 Henrylaxen128
1 Herbythyme129
1 HethrirBot130
4 Hkhooda131
1 HostileFork132
3 How Si Yu133
2 HowardBGolden134
1 Huwpuwynyty135
1 Igorrafaeldesousa136
12 Ihope127137
4 Immanuel.normann138
3 Indil˜enwikibooks139
1 Insanity140
2 Ithika˜enwikibooks141
1 IvarTJ142
1 JackPotte143
1 James.h.saunders144
1 Jas˜enwikibooks145
2 Jbalint˜enwikibooks146

122 https://en.wikibooks.org/w/index.php%3ftitle=User:Gregorias&action=edit&redlink=1
123 https://en.wikibooks.org/wiki/User:Gwern
124 https://en.wikibooks.org/w/index.php%3ftitle=User:Gwideman&action=edit&redlink=1
125 https://en.wikibooks.org/wiki/User:Hairy_Dude
126 https://en.wikibooks.org/w/index.php%3ftitle=User:Hansix&action=edit&redlink=1
127 https://en.wikibooks.org/w/index.php%3ftitle=User:Hathal&action=edit&redlink=1
128 https://en.wikibooks.org/w/index.php%3ftitle=User:Henrylaxen&action=edit&redlink=1
129 https://en.wikibooks.org/wiki/User:Herbythyme
130 https://en.wikibooks.org/wiki/User:HethrirBot
131 https://en.wikibooks.org/w/index.php%3ftitle=User:Hkhooda&action=edit&redlink=1
132 https://en.wikibooks.org/w/index.php%3ftitle=User:HostileFork&action=edit&redlink=1
133 https://en.wikibooks.org/w/index.php%3ftitle=User:How_Si_Yu&action=edit&redlink=1
134 https://en.wikibooks.org/wiki/User:HowardBGolden
135 https://en.wikibooks.org/w/index.php%3ftitle=User:Huwpuwynyty&action=edit&redlink=1
136 https://en.wikibooks.org/w/index.php%3ftitle=User:Igorrafaeldesousa&action=edit&redlink=1
137 https://en.wikibooks.org/wiki/User:Ihope127
138 https://en.wikibooks.org/w/index.php%3ftitle=User:Immanuel.normann&action=edit&redlink=1
139 https://en.wikibooks.org/w/index.php%3ftitle=User:Indil~enwikibooks&action=edit&redlink=1
140 https://en.wikibooks.org/w/index.php%3ftitle=User:Insanity&action=edit&redlink=1
141 https://en.wikibooks.org/w/index.php%3ftitle=User:Ithika~enwikibooks&action=edit&redlink=1
142 https://en.wikibooks.org/w/index.php%3ftitle=User:IvarTJ&action=edit&redlink=1
143 https://en.wikibooks.org/wiki/User:JackPotte
144 https://en.wikibooks.org/w/index.php%3ftitle=User:James.h.saunders&action=edit&redlink=1
145 https://en.wikibooks.org/w/index.php%3ftitle=User:Jas~enwikibooks&action=edit&redlink=1
146 https://en.wikibooks.org/w/index.php%3ftitle=User:Jbalint~enwikibooks&action=edit&redlink=1

594

https://en.wikibooks.org/w/index.php%3ftitle=User:Gregorias&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Gwern
https://en.wikibooks.org/w/index.php%3ftitle=User:Gwideman&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Hairy_Dude
https://en.wikibooks.org/w/index.php%3ftitle=User:Hansix&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Hathal&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Henrylaxen&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Herbythyme
https://en.wikibooks.org/wiki/User:HethrirBot
https://en.wikibooks.org/w/index.php%3ftitle=User:Hkhooda&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:HostileFork&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:How_Si_Yu&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:HowardBGolden
https://en.wikibooks.org/w/index.php%3ftitle=User:Huwpuwynyty&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Igorrafaeldesousa&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Ihope127
https://en.wikibooks.org/w/index.php%3ftitle=User:Immanuel.normann&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Indil~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Insanity&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Ithika~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:IvarTJ&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:JackPotte
https://en.wikibooks.org/w/index.php%3ftitle=User:James.h.saunders&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Jas~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Jbalint~enwikibooks&action=edit&redlink=1

Whitespace and applicative notation

1 Jbolden1517147
4 Jdgilbey148
6 Jeffwheeler149
2 Jfeltz150
36 Jguk151
3 Jjinux152
3 Jleedev153
4 Joee92˜enwikibooks154
1 Joeyadams155
1 JohnBeattie156
15 Jsnx157
1 Kbakalar158
3 Ketil159
1 Kiełek160
1 Knuton161

864 Kowey162
7 Laura huber163
2 Leaderboard164
1 Linopolus165
1 LokiClock166
3 Lord-Raizen167
7 LungZeno˜enwikibooks168
10 Lusum169
1 Lynnarddai170
1 MMF171

147 https://en.wikibooks.org/w/index.php%3ftitle=User:Jbolden1517&action=edit&redlink=1
148 https://en.wikibooks.org/wiki/User:Jdgilbey
149 https://en.wikibooks.org/w/index.php%3ftitle=User:Jeffwheeler&action=edit&redlink=1
150 https://en.wikibooks.org/w/index.php%3ftitle=User:Jfeltz&action=edit&redlink=1
151 https://en.wikibooks.org/wiki/User:Jguk
152 https://en.wikibooks.org/w/index.php%3ftitle=User:Jjinux&action=edit&redlink=1
153 https://en.wikibooks.org/w/index.php%3ftitle=User:Jleedev&action=edit&redlink=1
154 https://en.wikibooks.org/w/index.php%3ftitle=User:Joee92~enwikibooks&action=edit&redlink=1
155 https://en.wikibooks.org/w/index.php%3ftitle=User:Joeyadams&action=edit&redlink=1
156 https://en.wikibooks.org/w/index.php%3ftitle=User:JohnBeattie&action=edit&redlink=1
157 https://en.wikibooks.org/w/index.php%3ftitle=User:Jsnx&action=edit&redlink=1
158 https://en.wikibooks.org/w/index.php%3ftitle=User:Kbakalar&action=edit&redlink=1
159 https://en.wikibooks.org/wiki/User:Ketil
160 https://en.wikibooks.org/w/index.php%3ftitle=User:Kie%25C5%2582ek&action=edit&redlink=1
161 https://en.wikibooks.org/w/index.php%3ftitle=User:Knuton&action=edit&redlink=1
162 https://en.wikibooks.org/wiki/User:Kowey
163 https://en.wikibooks.org/w/index.php%3ftitle=User:Laura_huber&action=edit&redlink=1
164 https://en.wikibooks.org/w/index.php%3ftitle=User:Leaderboard&action=edit&redlink=1
165 https://en.wikibooks.org/w/index.php%3ftitle=User:Linopolus&action=edit&redlink=1
166 https://en.wikibooks.org/wiki/User:LokiClock
167 https://en.wikibooks.org/w/index.php%3ftitle=User:Lord-Raizen&action=edit&redlink=1
168 https://en.wikibooks.org/w/index.php%3ftitle=User:LungZeno~enwikibooks&action=edit&redlink=1
169 https://en.wikibooks.org/wiki/User:Lusum
170 https://en.wikibooks.org/w/index.php%3ftitle=User:Lynnarddai&action=edit&redlink=1
171 https://en.wikibooks.org/w/index.php%3ftitle=User:MMF&action=edit&redlink=1

595

https://en.wikibooks.org/w/index.php%3ftitle=User:Jbolden1517&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Jdgilbey
https://en.wikibooks.org/w/index.php%3ftitle=User:Jeffwheeler&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Jfeltz&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Jguk
https://en.wikibooks.org/w/index.php%3ftitle=User:Jjinux&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Jleedev&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Joee92~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Joeyadams&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:JohnBeattie&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Jsnx&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Kbakalar&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Ketil
https://en.wikibooks.org/w/index.php%3ftitle=User:Kie%25C5%2582ek&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Knuton&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Kowey
https://en.wikibooks.org/w/index.php%3ftitle=User:Laura_huber&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Leaderboard&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Linopolus&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:LokiClock
https://en.wikibooks.org/w/index.php%3ftitle=User:Lord-Raizen&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:LungZeno~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Lusum
https://en.wikibooks.org/w/index.php%3ftitle=User:Lynnarddai&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:MMF&action=edit&redlink=1

Contributors

1 MarSch172
4 Marc van Leeuwen173
3 Marky1991˜enwikibooks174
17 Marudubshinki175
1 Mathnerd314159176
1 Mattcox177
3 Matěj Grabovský178
1 Mgm7734179
2 Michael miceli180
1 Miegir181
1 Mike182
26 Mike Linksvayer183
1 Mikeyo˜enwikibooks184
2 Miroslav65185
1 Miyoko Moua186
1 Mjkaye187
1 Mk2366188
1 Mokendall189
9 Msouth190
5 Mvanier191
6 Mx4492192
5 Nabetse193
3 Narendraj9194
1 Nathanielvirgo195
8 Nattfodd196

172 https://en.wikibooks.org/wiki/User:MarSch
173 https://en.wikibooks.org/w/index.php%3ftitle=User:Marc_van_Leeuwen&action=edit&redlink=1
174 https://en.wikibooks.org/wiki/User:Marky1991~enwikibooks
175 https://en.wikibooks.org/wiki/User:Marudubshinki
176 https://en.wikibooks.org/w/index.php%3ftitle=User:Mathnerd314159&action=edit&redlink=1
177 https://en.wikibooks.org/w/index.php%3ftitle=User:Mattcox&action=edit&redlink=1
178 https://en.wikibooks.org/wiki/User:Mat%25C4%259Bj_Grabovsk%25C3%25BD
179 https://en.wikibooks.org/w/index.php%3ftitle=User:Mgm7734&action=edit&redlink=1
180 https://en.wikibooks.org/w/index.php%3ftitle=User:Michael_miceli&action=edit&redlink=1
181 https://en.wikibooks.org/w/index.php%3ftitle=User:Miegir&action=edit&redlink=1
182 https://en.wikibooks.org/wiki/User:Mike
183 https://en.wikibooks.org/wiki/User:Mike_Linksvayer
184 https://en.wikibooks.org/w/index.php%3ftitle=User:Mikeyo~enwikibooks&action=edit&redlink=1
185 https://en.wikibooks.org/w/index.php%3ftitle=User:Miroslav65&action=edit&redlink=1
186 https://en.wikibooks.org/w/index.php%3ftitle=User:Miyoko_Moua&action=edit&redlink=1
187 https://en.wikibooks.org/wiki/User:Mjkaye
188 https://en.wikibooks.org/w/index.php%3ftitle=User:Mk2366&action=edit&redlink=1
189 https://en.wikibooks.org/w/index.php%3ftitle=User:Mokendall&action=edit&redlink=1
190 https://en.wikibooks.org/wiki/User:Msouth
191 https://en.wikibooks.org/w/index.php%3ftitle=User:Mvanier&action=edit&redlink=1
192 https://en.wikibooks.org/w/index.php%3ftitle=User:Mx4492&action=edit&redlink=1
193 https://en.wikibooks.org/w/index.php%3ftitle=User:Nabetse&action=edit&redlink=1
194 https://en.wikibooks.org/w/index.php%3ftitle=User:Narendraj9&action=edit&redlink=1
195 https://en.wikibooks.org/w/index.php%3ftitle=User:Nathanielvirgo&action=edit&redlink=1
196 https://en.wikibooks.org/wiki/User:Nattfodd

596

https://en.wikibooks.org/wiki/User:MarSch
https://en.wikibooks.org/w/index.php%3ftitle=User:Marc_van_Leeuwen&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Marky1991~enwikibooks
https://en.wikibooks.org/wiki/User:Marudubshinki
https://en.wikibooks.org/w/index.php%3ftitle=User:Mathnerd314159&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Mattcox&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Mat%25C4%259Bj_Grabovsk%25C3%25BD
https://en.wikibooks.org/w/index.php%3ftitle=User:Mgm7734&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Michael_miceli&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Miegir&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Mike
https://en.wikibooks.org/wiki/User:Mike_Linksvayer
https://en.wikibooks.org/w/index.php%3ftitle=User:Mikeyo~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Miroslav65&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Miyoko_Moua&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Mjkaye
https://en.wikibooks.org/w/index.php%3ftitle=User:Mk2366&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Mokendall&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Msouth
https://en.wikibooks.org/w/index.php%3ftitle=User:Mvanier&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Mx4492&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Nabetse&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Narendraj9&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Nathanielvirgo&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Nattfodd

Whitespace and applicative notation

2 Neodymion˜enwikibooks197
1 Ner0x652198
1 Nikai199
1 Nikiriy200
1 Notnowplease201
2 Nyuszika7H202
1 Ob ivan203
1 Oblosys204
3 Obscaenvs205
2 Oddron206
2 Oligomous207
1 Ondra˜enwikibooks208
16 Orzetto˜enwikibooks209
2 Oxryly210
1 Pakanek211
2 PandaMittens212
13 Panic2k4213
1 Paolino˜enwikibooks214
2 Patriques82215
1 Paul.kline216
65 PaulJohnson217
1 Peterwhy218
4 Physis219
5 Pi zero220
1 Pingveno221

197 https://en.wikibooks.org/w/index.php%3ftitle=User:Neodymion~enwikibooks&action=edit&redlink=1
198 https://en.wikibooks.org/w/index.php%3ftitle=User:Ner0x652&action=edit&redlink=1
199 https://en.wikibooks.org/wiki/User:Nikai
200 https://en.wikibooks.org/w/index.php%3ftitle=User:Nikiriy&action=edit&redlink=1
201 https://en.wikibooks.org/w/index.php%3ftitle=User:Notnowplease&action=edit&redlink=1
202 https://en.wikibooks.org/wiki/User:Nyuszika7H
203 https://en.wikibooks.org/w/index.php%3ftitle=User:Ob_ivan&action=edit&redlink=1
204 https://en.wikibooks.org/w/index.php%3ftitle=User:Oblosys&action=edit&redlink=1
205 https://en.wikibooks.org/w/index.php%3ftitle=User:Obscaenvs&action=edit&redlink=1
206 https://en.wikibooks.org/w/index.php%3ftitle=User:Oddron&action=edit&redlink=1
207 https://en.wikibooks.org/w/index.php%3ftitle=User:Oligomous&action=edit&redlink=1
208 https://en.wikibooks.org/w/index.php%3ftitle=User:Ondra~enwikibooks&action=edit&redlink=1
209 https://en.wikibooks.org/w/index.php%3ftitle=User:Orzetto~enwikibooks&action=edit&redlink=1
210 https://en.wikibooks.org/w/index.php%3ftitle=User:Oxryly&action=edit&redlink=1
211 https://en.wikibooks.org/w/index.php%3ftitle=User:Pakanek&action=edit&redlink=1
212 https://en.wikibooks.org/w/index.php%3ftitle=User:PandaMittens&action=edit&redlink=1
213 https://en.wikibooks.org/wiki/User:Panic2k4
214 https://en.wikibooks.org/w/index.php%3ftitle=User:Paolino~enwikibooks&action=edit&redlink=1
215 https://en.wikibooks.org/wiki/User:Patriques82
216 https://en.wikibooks.org/w/index.php%3ftitle=User:Paul.kline&action=edit&redlink=1
217 https://en.wikibooks.org/w/index.php%3ftitle=User:PaulJohnson&action=edit&redlink=1
218 https://en.wikibooks.org/w/index.php%3ftitle=User:Peterwhy&action=edit&redlink=1
219 https://en.wikibooks.org/wiki/User:Physis
220 https://en.wikibooks.org/wiki/User:Pi_zero
221 https://en.wikibooks.org/wiki/User:Pingveno

597

https://en.wikibooks.org/w/index.php%3ftitle=User:Neodymion~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Ner0x652&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Nikai
https://en.wikibooks.org/w/index.php%3ftitle=User:Nikiriy&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Notnowplease&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Nyuszika7H
https://en.wikibooks.org/w/index.php%3ftitle=User:Ob_ivan&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Oblosys&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Obscaenvs&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Oddron&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Oligomous&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Ondra~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Orzetto~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Oxryly&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Pakanek&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:PandaMittens&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Panic2k4
https://en.wikibooks.org/w/index.php%3ftitle=User:Paolino~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Patriques82
https://en.wikibooks.org/w/index.php%3ftitle=User:Paul.kline&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:PaulJohnson&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Peterwhy&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Physis
https://en.wikibooks.org/wiki/User:Pi_zero
https://en.wikibooks.org/wiki/User:Pingveno

Contributors

5 Piojo˜enwikibooks222
1 Plattyaj223
1 Pmags224
1 Polypus74225
1 Prmaple226
1 Pseafield227
1 Pshook228
1 Punkouter229
2 Pupeno230
5 Qeny231
1 QrBh5nqqq0svWlVr232
1 Qrilka233
19 Quandle234
12 QuiteUnusual235
2 Qwertyus236
2 Rahiel?237
6 Randallbritten238
1 Raneksi239
7 Rastus Vernon240
1 Ravichandar84241
1 Rdragn242
2 Recent Runes243
1 Renick244
2 Revence27˜enwikibooks245
1 Robert Matthews246

222 https://en.wikibooks.org/w/index.php%3ftitle=User:Piojo~enwikibooks&action=edit&redlink=1
223 https://en.wikibooks.org/w/index.php%3ftitle=User:Plattyaj&action=edit&redlink=1
224 https://en.wikibooks.org/w/index.php%3ftitle=User:Pmags&action=edit&redlink=1
225 https://en.wikibooks.org/w/index.php%3ftitle=User:Polypus74&action=edit&redlink=1
226 https://en.wikibooks.org/w/index.php%3ftitle=User:Prmaple&action=edit&redlink=1
227 https://en.wikibooks.org/w/index.php%3ftitle=User:Pseafield&action=edit&redlink=1
228 https://en.wikibooks.org/w/index.php%3ftitle=User:Pshook&action=edit&redlink=1
229 https://en.wikibooks.org/w/index.php%3ftitle=User:Punkouter&action=edit&redlink=1
230 https://en.wikibooks.org/w/index.php%3ftitle=User:Pupeno&action=edit&redlink=1
231 https://en.wikibooks.org/w/index.php%3ftitle=User:Qeny&action=edit&redlink=1
232 https://en.wikibooks.org/w/index.php%3ftitle=User:QrBh5nqqq0svWlVr&action=edit&redlink=1
233 https://en.wikibooks.org/w/index.php%3ftitle=User:Qrilka&action=edit&redlink=1
234 https://en.wikibooks.org/w/index.php%3ftitle=User:Quandle&action=edit&redlink=1
235 https://en.wikibooks.org/wiki/User:QuiteUnusual
236 https://en.wikibooks.org/wiki/User:Qwertyus
237 https://en.wikibooks.org/w/index.php%3ftitle=User:Rahiel%253F&action=edit&redlink=1
238 https://en.wikibooks.org/w/index.php%3ftitle=User:Randallbritten&action=edit&redlink=1
239 https://en.wikibooks.org/w/index.php%3ftitle=User:Raneksi&action=edit&redlink=1
240 https://en.wikibooks.org/w/index.php%3ftitle=User:Rastus_Vernon&action=edit&redlink=1
241 https://en.wikibooks.org/wiki/User:Ravichandar84
242 https://en.wikibooks.org/w/index.php%3ftitle=User:Rdragn&action=edit&redlink=1
243 https://en.wikibooks.org/wiki/User:Recent_Runes
244 https://en.wikibooks.org/w/index.php%3ftitle=User:Renick&action=edit&redlink=1
245 https://en.wikibooks.org/w/index.php%3ftitle=User:Revence27~enwikibooks&action=edit&redlink=1
246 https://en.wikibooks.org/wiki/User:Robert_Matthews

598

https://en.wikibooks.org/w/index.php%3ftitle=User:Piojo~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Plattyaj&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Pmags&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Polypus74&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Prmaple&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Pseafield&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Pshook&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Punkouter&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Pupeno&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Qeny&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:QrBh5nqqq0svWlVr&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Qrilka&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Quandle&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:QuiteUnusual
https://en.wikibooks.org/wiki/User:Qwertyus
https://en.wikibooks.org/w/index.php%3ftitle=User:Rahiel%253F&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Randallbritten&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Raneksi&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Rastus_Vernon&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Ravichandar84
https://en.wikibooks.org/w/index.php%3ftitle=User:Rdragn&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Recent_Runes
https://en.wikibooks.org/w/index.php%3ftitle=User:Renick&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Revence27~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Robert_Matthews

Whitespace and applicative notation

1 RoelVanDijk247
2 Royote248
36 Rudis249
1 Ruud Koot250
1 Ryk251
3 S489252
1 Saibod253
1 Salah.khairy254
2 Sanyam255
1 Sapiens scriptor256
14 Sarabander257
1 Schoenfinkel258
1 Scvalex259
1 Sebastian Goll260
1 Seusschef261
1 Sgronblo262
1 Shenme263
1 Shock one264
1 Sibi.lam265
19 SimonMichael266
1 Siteswapper267
1 Smcpeak268
5 Snarius˜enwikibooks269
1 Snowolf270
2 Snoyberg271

247 https://en.wikibooks.org/w/index.php%3ftitle=User:RoelVanDijk&action=edit&redlink=1
248 https://en.wikibooks.org/w/index.php%3ftitle=User:Royote&action=edit&redlink=1
249 https://en.wikibooks.org/w/index.php%3ftitle=User:Rudis&action=edit&redlink=1
250 https://en.wikibooks.org/wiki/User:Ruud_Koot
251 https://en.wikibooks.org/w/index.php%3ftitle=User:Ryk&action=edit&redlink=1
252 https://en.wikibooks.org/w/index.php%3ftitle=User:S489&action=edit&redlink=1
253 https://en.wikibooks.org/w/index.php%3ftitle=User:Saibod&action=edit&redlink=1
254 https://en.wikibooks.org/w/index.php%3ftitle=User:Salah.khairy&action=edit&redlink=1
255 https://en.wikibooks.org/w/index.php%3ftitle=User:Sanyam&action=edit&redlink=1
256 https://en.wikibooks.org/w/index.php%3ftitle=User:Sapiens_scriptor&action=edit&redlink=1
257 https://en.wikibooks.org/w/index.php%3ftitle=User:Sarabander&action=edit&redlink=1
258 https://en.wikibooks.org/w/index.php%3ftitle=User:Schoenfinkel&action=edit&redlink=1
259 https://en.wikibooks.org/w/index.php%3ftitle=User:Scvalex&action=edit&redlink=1
260 https://en.wikibooks.org/wiki/User:Sebastian_Goll
261 https://en.wikibooks.org/w/index.php%3ftitle=User:Seusschef&action=edit&redlink=1
262 https://en.wikibooks.org/w/index.php%3ftitle=User:Sgronblo&action=edit&redlink=1
263 https://en.wikibooks.org/wiki/User:Shenme
264 https://en.wikibooks.org/w/index.php%3ftitle=User:Shock_one&action=edit&redlink=1
265 https://en.wikibooks.org/w/index.php%3ftitle=User:Sibi.lam&action=edit&redlink=1
266 https://en.wikibooks.org/w/index.php%3ftitle=User:SimonMichael&action=edit&redlink=1
267 https://en.wikibooks.org/w/index.php%3ftitle=User:Siteswapper&action=edit&redlink=1
268 https://en.wikibooks.org/w/index.php%3ftitle=User:Smcpeak&action=edit&redlink=1
269 https://en.wikibooks.org/wiki/User:Snarius~enwikibooks
270 https://en.wikibooks.org/wiki/User:Snowolf
271 https://en.wikibooks.org/w/index.php%3ftitle=User:Snoyberg&action=edit&redlink=1

599

https://en.wikibooks.org/w/index.php%3ftitle=User:RoelVanDijk&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Royote&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Rudis&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Ruud_Koot
https://en.wikibooks.org/w/index.php%3ftitle=User:Ryk&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:S489&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Saibod&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Salah.khairy&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Sanyam&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Sapiens_scriptor&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Sarabander&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Schoenfinkel&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Scvalex&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Sebastian_Goll
https://en.wikibooks.org/w/index.php%3ftitle=User:Seusschef&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Sgronblo&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Shenme
https://en.wikibooks.org/w/index.php%3ftitle=User:Shock_one&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Sibi.lam&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:SimonMichael&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Siteswapper&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Smcpeak&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Snarius~enwikibooks
https://en.wikibooks.org/wiki/User:Snowolf
https://en.wikibooks.org/w/index.php%3ftitle=User:Snoyberg&action=edit&redlink=1

Contributors

1 Some1˜enwikibooks272
9 Spammaxx273
2 Spockwang274
3 Spookylukey˜enwikibooks275
10 Sqdcn276
2 Stateless˜enwikibooks277
1 SteloKim˜enwikibooks278
1 Stereotype441279
13 Stevelihn˜enwikibooks280
5 Ste˜enwikibooks281
4 Stuhacking˜enwikibooks282
7 Stw283
10 Sudozero284
1 Sullivan-285
1 Sumant.nk286
8 Svick287
1 Swift288
1 TJ schulte289
1 Tanuki647290
1 Taylor561291
62 Tchakkazulu292
1 Tea2min293
1 Teval˜enwikibooks294
4 Thejoshwolfe295
1 Timp21337296

272 https://en.wikibooks.org/w/index.php%3ftitle=User:Some1~enwikibooks&action=edit&redlink=1
273 https://en.wikibooks.org/w/index.php%3ftitle=User:Spammaxx&action=edit&redlink=1
274 https://en.wikibooks.org/w/index.php%3ftitle=User:Spockwang&action=edit&redlink=1
275 https://en.wikibooks.org/w/index.php%3ftitle=User:Spookylukey~enwikibooks&action=edit&redlink=1
276 https://en.wikibooks.org/wiki/User:Sqdcn
277 https://en.wikibooks.org/w/index.php%3ftitle=User:Stateless~enwikibooks&action=edit&redlink=1
278 https://en.wikibooks.org/w/index.php%3ftitle=User:SteloKim~enwikibooks&action=edit&redlink=1
279 https://en.wikibooks.org/wiki/User:Stereotype441
280 https://en.wikibooks.org/w/index.php%3ftitle=User:Stevelihn~enwikibooks&action=edit&redlink=1
281 https://en.wikibooks.org/w/index.php%3ftitle=User:Ste~enwikibooks&action=edit&redlink=1
282 https://en.wikibooks.org/wiki/User:Stuhacking~enwikibooks
283 https://en.wikibooks.org/wiki/User:Stw
284 https://en.wikibooks.org/wiki/User:Sudozero
285 https://en.wikibooks.org/w/index.php%3ftitle=User:Sullivan-&action=edit&redlink=1
286 https://en.wikibooks.org/w/index.php%3ftitle=User:Sumant.nk&action=edit&redlink=1
287 https://en.wikibooks.org/w/index.php%3ftitle=User:Svick&action=edit&redlink=1
288 https://en.wikibooks.org/wiki/User:Swift
289 https://en.wikibooks.org/w/index.php%3ftitle=User:TJ_schulte&action=edit&redlink=1
290 https://en.wikibooks.org/w/index.php%3ftitle=User:Tanuki647&action=edit&redlink=1
291 https://en.wikibooks.org/w/index.php%3ftitle=User:Taylor561&action=edit&redlink=1
292 https://en.wikibooks.org/wiki/User:Tchakkazulu
293 https://en.wikibooks.org/w/index.php%3ftitle=User:Tea2min&action=edit&redlink=1
294 https://en.wikibooks.org/w/index.php%3ftitle=User:Teval~enwikibooks&action=edit&redlink=1
295 https://en.wikibooks.org/w/index.php%3ftitle=User:Thejoshwolfe&action=edit&redlink=1
296 https://en.wikibooks.org/w/index.php%3ftitle=User:Timp21337&action=edit&redlink=1

600

https://en.wikibooks.org/w/index.php%3ftitle=User:Some1~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Spammaxx&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Spockwang&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Spookylukey~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Sqdcn
https://en.wikibooks.org/w/index.php%3ftitle=User:Stateless~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:SteloKim~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Stereotype441
https://en.wikibooks.org/w/index.php%3ftitle=User:Stevelihn~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Ste~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Stuhacking~enwikibooks
https://en.wikibooks.org/wiki/User:Stw
https://en.wikibooks.org/wiki/User:Sudozero
https://en.wikibooks.org/w/index.php%3ftitle=User:Sullivan-&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Sumant.nk&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Svick&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Swift
https://en.wikibooks.org/w/index.php%3ftitle=User:TJ_schulte&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Tanuki647&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Taylor561&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Tchakkazulu
https://en.wikibooks.org/w/index.php%3ftitle=User:Tea2min&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Teval~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Thejoshwolfe&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Timp21337&action=edit&redlink=1

Whitespace and applicative notation

2 Tinmarks297
3 TittoAssini˜enwikibooks298
10 Toby Bartels299
2 TomFitzhenry˜enwikibooks300
1 Trannart301
1 Trinithis302
2 Turtur˜enwikibooks303
2 Twelvefifty304
21 Uchchwhash˜enwikibooks305
1 Unimaginable666˜enwikibooks306
2 Van der Hoorn307
1 VernonF308
2 Vesal309
2 Vincent cloutier310
1 Walkie311
3 Wapcaplet˜enwikibooks312
16 Wei2912313
1 Whym314
1 Will48315
17 WillNess316
1 Withinfocus317
2 Wrmorris318
1 Xnn319
1 Xrchz320
1 Zr40321

297 https://en.wikibooks.org/w/index.php%3ftitle=User:Tinmarks&action=edit&redlink=1
298 https://en.wikibooks.org/w/index.php%3ftitle=User:TittoAssini~enwikibooks&action=edit&redlink=1
299 https://en.wikibooks.org/wiki/User:Toby_Bartels
300 https://en.wikibooks.org/w/index.php%3ftitle=User:TomFitzhenry~enwikibooks&action=edit&redlink=1
301 https://en.wikibooks.org/w/index.php%3ftitle=User:Trannart&action=edit&redlink=1
302 https://en.wikibooks.org/w/index.php%3ftitle=User:Trinithis&action=edit&redlink=1
303 https://en.wikibooks.org/w/index.php%3ftitle=User:Turtur~enwikibooks&action=edit&redlink=1
304 https://en.wikibooks.org/w/index.php%3ftitle=User:Twelvefifty&action=edit&redlink=1
305 https://en.wikibooks.org/w/index.php%3ftitle=User:Uchchwhash~enwikibooks&action=edit&redlink=1
306 https://en.wikibooks.org/w/index.php%3ftitle=User:Unimaginable666~enwikibooks&action=edit&redlink=1
307 https://en.wikibooks.org/wiki/User:Van_der_Hoorn
308 https://en.wikibooks.org/w/index.php%3ftitle=User:VernonF&action=edit&redlink=1
309 https://en.wikibooks.org/w/index.php%3ftitle=User:Vesal&action=edit&redlink=1
310 https://en.wikibooks.org/wiki/User:Vincent_cloutier
311 https://en.wikibooks.org/w/index.php%3ftitle=User:Walkie&action=edit&redlink=1
312 https://en.wikibooks.org/w/index.php%3ftitle=User:Wapcaplet~enwikibooks&action=edit&redlink=1
313 https://en.wikibooks.org/w/index.php%3ftitle=User:Wei2912&action=edit&redlink=1
314 https://en.wikibooks.org/wiki/User:Whym
315 https://en.wikibooks.org/wiki/User:Will48
316 https://en.wikibooks.org/wiki/User:WillNess
317 https://en.wikibooks.org/wiki/User:Withinfocus
318 https://en.wikibooks.org/w/index.php%3ftitle=User:Wrmorris&action=edit&redlink=1
319 https://en.wikibooks.org/w/index.php%3ftitle=User:Xnn&action=edit&redlink=1
320 https://en.wikibooks.org/w/index.php%3ftitle=User:Xrchz&action=edit&redlink=1
321 https://en.wikibooks.org/w/index.php%3ftitle=User:Zr40&action=edit&redlink=1

601

https://en.wikibooks.org/w/index.php%3ftitle=User:Tinmarks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:TittoAssini~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Toby_Bartels
https://en.wikibooks.org/w/index.php%3ftitle=User:TomFitzhenry~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Trannart&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Trinithis&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Turtur~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Twelvefifty&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Uchchwhash~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Unimaginable666~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Van_der_Hoorn
https://en.wikibooks.org/w/index.php%3ftitle=User:VernonF&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Vesal&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Vincent_cloutier
https://en.wikibooks.org/w/index.php%3ftitle=User:Walkie&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Wapcaplet~enwikibooks&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Wei2912&action=edit&redlink=1
https://en.wikibooks.org/wiki/User:Whym
https://en.wikibooks.org/wiki/User:Will48
https://en.wikibooks.org/wiki/User:WillNess
https://en.wikibooks.org/wiki/User:Withinfocus
https://en.wikibooks.org/w/index.php%3ftitle=User:Wrmorris&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Xnn&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Xrchz&action=edit&redlink=1
https://en.wikibooks.org/w/index.php%3ftitle=User:Zr40&action=edit&redlink=1

Contributors

1 ���322

322 https://en.wikibooks.org/w/index.php%3ftitle=User:%25D7%25A4%25D7%25A8%25D7%2594&action=edit&redlink=1

602

https://en.wikibooks.org/w/index.php%3ftitle=User:%25D7%25A4%25D7%25A8%25D7%2594&action=edit&redlink=1

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.
html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://
creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://
creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://
creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://
creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.
org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.
org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.
org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.
html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

603

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de

List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.
php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses323. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

323 Chapter 92 on page 607

604

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 Dirk Hünniger
2 Gaz324 at en.wikipedia325 CC-BY-SA-3.0
3 Cyberpunk, Drilnoth, Emijrpbot, Hazard-Bot, JarektBot,

Juiced lemon, Mindmatrix
4 Randall Britten326, Randall Britten327 CC-BY-SA-3.0
5 Daniel Mlot328, Daniel Mlot329
6 No machine-readable author provided. Kowey330 assumed

(based on copyright claims)., No machine-readable author
provided. Kowey331 assumed (based on copyright claims).

CC-BY-SA-2.5

7 No machine-readable author provided. Kowey332 assumed
(based on copyright claims)., No machine-readable author
provided. Kowey333 assumed (based on copyright claims).

CC-BY-SA-2.5

8 No machine-readable author provided. Kowey334 assumed
(based on copyright claims)., No machine-readable author
provided. Kowey335 assumed (based on copyright claims).

CC-BY-SA-2.5

9 No machine-readable author provided. Kowey336 assumed
(based on copyright claims)., No machine-readable author
provided. Kowey337 assumed (based on copyright claims).

CC-BY-SA-2.5

10 No machine-readable author provided. Kowey338 assumed
(based on copyright claims)., No machine-readable author
provided. Kowey339 assumed (based on copyright claims).

CC-BY-SA-2.5

11 No machine-readable author provided. Kowey340 assumed
(based on copyright claims)., No machine-readable author
provided. Kowey341 assumed (based on copyright claims).

CC-BY-SA-2.5

12 Daniel Mlot342, Daniel Mlot343
13 Daniel Mlot344, Daniel Mlot345
14 Adrignola, Apfelmus
15 Adrignola, Apfelmus
16 Adrignola, Apfelmus
17 Adrignola, Apfelmus

324 https://en.wikipedia.org/wiki/User:Gaz
325 http://en.wikipedia.org
326 http://commons.wikimedia.org/w/index.php?title=User:Randallbritten&action=edit&redlink=1
327 https://commons.wikimedia.org/w/index.php?title=User:Randallbritten&action=edit&redlink=1
328 http://commons.wikimedia.org/wiki/User:Duplode
329 https://commons.wikimedia.org/wiki/User:Duplode
330 http://commons.wikimedia.org/wiki/User:Kowey
331 https://commons.wikimedia.org/wiki/User:Kowey
332 http://commons.wikimedia.org/wiki/User:Kowey
333 https://commons.wikimedia.org/wiki/User:Kowey
334 http://commons.wikimedia.org/wiki/User:Kowey
335 https://commons.wikimedia.org/wiki/User:Kowey
336 http://commons.wikimedia.org/wiki/User:Kowey
337 https://commons.wikimedia.org/wiki/User:Kowey
338 http://commons.wikimedia.org/wiki/User:Kowey
339 https://commons.wikimedia.org/wiki/User:Kowey
340 http://commons.wikimedia.org/wiki/User:Kowey
341 https://commons.wikimedia.org/wiki/User:Kowey
342 http://commons.wikimedia.org/wiki/User:Duplode
343 https://commons.wikimedia.org/wiki/User:Duplode
344 http://commons.wikimedia.org/wiki/User:Duplode
345 https://commons.wikimedia.org/wiki/User:Duplode

605

https://en.wikibooks.org/wiki/File:Classes.svg
https://en.wikibooks.org/wiki/File:Dice.jpg
https://en.wikibooks.org/wiki/File:Stone%20Dice%2017.JPG
https://en.wikibooks.org/wiki/File:State%20Monad%20Bind.svg
https://en.wikibooks.org/wiki/File:Monoids%20diagrams%20demo.svg
https://en.wikibooks.org/wiki/File:ArrowsConveyors%20arr.png
https://en.wikibooks.org/wiki/File:ArrowsConveyors%20bind2.png
https://en.wikibooks.org/wiki/File:ArrowsConveyors%20first2.png
https://en.wikibooks.org/wiki/File:ArrowsConveyors%20second2.png
https://en.wikibooks.org/wiki/File:ArrowsConveyors%20star2.png
https://en.wikibooks.org/wiki/File:ArrowsConveyors%20ampersand2.png
https://en.wikibooks.org/wiki/File:Understanding%20arrows%20mean1%20data%20flow.svg
https://en.wikibooks.org/wiki/File:Understanding%20arrows%20getWord%20data%20flow.svg
https://en.wikibooks.org/wiki/File:Labyrinth-Tree.png
https://en.wikibooks.org/wiki/File:Labyrinth-Thread.png
https://en.wikibooks.org/wiki/File:Labyrinth-Zipper.png
https://en.wikibooks.org/wiki/File:Labyrinth-TurnRight.png
https://en.wikipedia.org/wiki/User:Gaz
http://en.wikipedia.org
http://commons.wikimedia.org/w/index.php?title=User:Randallbritten&action=edit&redlink=1
https://commons.wikimedia.org/w/index.php?title=User:Randallbritten&action=edit&redlink=1
http://commons.wikimedia.org/wiki/User:Duplode
https://commons.wikimedia.org/wiki/User:Duplode
http://commons.wikimedia.org/wiki/User:Kowey
https://commons.wikimedia.org/wiki/User:Kowey
http://commons.wikimedia.org/wiki/User:Kowey
https://commons.wikimedia.org/wiki/User:Kowey
http://commons.wikimedia.org/wiki/User:Kowey
https://commons.wikimedia.org/wiki/User:Kowey
http://commons.wikimedia.org/wiki/User:Kowey
https://commons.wikimedia.org/wiki/User:Kowey
http://commons.wikimedia.org/wiki/User:Kowey
https://commons.wikimedia.org/wiki/User:Kowey
http://commons.wikimedia.org/wiki/User:Kowey
https://commons.wikimedia.org/wiki/User:Kowey
http://commons.wikimedia.org/wiki/User:Duplode
https://commons.wikimedia.org/wiki/User:Duplode
http://commons.wikimedia.org/wiki/User:Duplode
https://commons.wikimedia.org/wiki/User:Duplode

List of Figures

18 Adrignola, Apfelmus
19 Adrignola, Apfelmus
20 Adrignola, Apfelmus
21 en:Apfelmus346 CC-BY-SA-2.5
22 Adrignola, Apfelmus
23 Adrignola, Apfelmus
24 DavidHouse
25 DavidHouse
26 DavidHouse
27 DavidHouse
28 Svick347, Svick348 PD
29 DavidHouse
30 DavidHouse
31 DavidHouse
32 DavidHouse
33 DavidHouse
34 DavidHouse
35 DavidHouse349, DavidHouse350 CC-BY-SA-3.0
36 DavidHouse351, DavidHouse352 CC-BY-SA-3.0
37 Tchakkazulu
38 Tchakkazulu
39 Tchakkazulu
40 Tchakkazulu
41 Tchakkazulu
42 Tchakkazulu
43 Tchakkazulu

346 https://en.wikibooks.org/wiki/en:Apfelmus
347 http://commons.wikimedia.org/wiki/User:Svick
348 https://commons.wikimedia.org/wiki/User:Svick
349 http://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1
350 https://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1
351 http://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1
352 https://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1

606

https://en.wikibooks.org/wiki/File:Labyrinth-KeepStraightOn.png
https://en.wikibooks.org/wiki/File:Labyrinth-Finger.png
https://en.wikibooks.org/wiki/File:One-hole-context-Tree.png
https://en.wikibooks.org/wiki/File:One-hole-context-plug.png
https://en.wikibooks.org/wiki/File:One-hole-context-product.png
https://en.wikibooks.org/wiki/File:One-hole-context-composition.png
https://en.wikibooks.org/wiki/File:Int-graph.png
https://en.wikibooks.org/wiki/File:Bool-graph.png
https://en.wikibooks.org/wiki/File:Maybe-graph.png
https://en.wikibooks.org/wiki/File:Maybe-graph-strict.png
https://en.wikibooks.org/wiki/File:List%20domain%20graph.svg
https://en.wikibooks.org/wiki/File:Simple-cat.png
https://en.wikibooks.org/wiki/File:Composition-ex.png
https://en.wikibooks.org/wiki/File:Not-a-cat.png
https://en.wikibooks.org/wiki/File:Functor.png
https://en.wikibooks.org/wiki/File:Unit-join.png
https://en.wikibooks.org/wiki/File:Monad-law-1-lists.png
https://en.wikibooks.org/wiki/File:Thunk-layers.png
https://en.wikibooks.org/wiki/File:Black-box-strictness.png
https://en.wikibooks.org/wiki/File:WxHaskell2_winxp.png
https://en.wikibooks.org/wiki/File:WxHaskell3_winxp.png
https://en.wikibooks.org/wiki/File:WxHaskell4_winxp.png
https://en.wikibooks.org/wiki/File:WxHaskell5_row_winxp.png
https://en.wikibooks.org/wiki/File:WxHaskell5_col_winxp.PNG
https://en.wikibooks.org/wiki/File:WxHaskell6_winxp.png
https://en.wikibooks.org/wiki/File:WxHaskell7_before_winxp.png
https://en.wikibooks.org/wiki/en:Apfelmus
http://commons.wikimedia.org/wiki/User:Svick
https://commons.wikimedia.org/wiki/User:Svick
http://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1
https://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1
http://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1
https://commons.wikimedia.org/w/index.php?title=User:DavidHouse&action=edit&redlink=1

92 Licenses

92.1 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed. Preamble

The GNU General Public License is a free, copyleft license for software
and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By con-
trast, the GNU General Public License is intended to guarantee your
freedom to share and change all versions of a program–to make sure
it remains free software for all its users. We, the Free Software Foun-
dation, use the GNU General Public License for most of our software;
it applies also to any other work released this way by its authors. You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must pass on to the recipients the same freedoms that
you received. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run mod-
ified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of protect-
ing users’ freedom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals to use, which
is precisely where it is most unacceptable. Therefore, we have designed
this version of the GPL to prohibit the practice for those products. If
such problems arise substantially in other domains, we stand ready to
extend this provision to those domains in future versions of the GPL,
as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of soft-
ware on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modi-
fication follow. TERMS AND CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this Li-
cense. Each licensee is addressed as “you”. “Licensees” and “recipients”
may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work
based on the Program.

To “propagate” a work means to do anything with it that, without per-
mission, would make you directly or secondarily liable for infringement
under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution
(with or without modification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible fea-
ture that (1) displays an appropriate copyright notice, and (2) tells the
user that there is no warranty for the work (except to the extent that
warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Ma-
jor Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if
any) on which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for the
work, and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require, such as
by intimate data communication or control flow between those sub-
programs and other parts of the work.

The Corresponding Source need not include anything that users can re-
generate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work. 2. Basic Permissions.

All rights granted under this License are granted for the term of copy-
right on the Program, and are irrevocable provided the stated con-
ditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not con-
vey, without conditions so long as your license otherwise remains in
force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circum-
vention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit opera-
tion or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention
of technological measures. 4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice; keep in-
tact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all no-
tices of the absence of any warranty; and give all recipients a copy of
this License along with the Program.

You may charge any price or no price for each copy that you con-
vey, and you may offer support or warranty protection for a fee. 5.
Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

* a) The work must carry prominent notices stating that you modified
it, and giving a relevant date. * b) The work must carry prominent
notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and
all its parts, regardless of how they are packaged. This License gives
no permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it. * d) If
the work has interactive user interfaces, each must display Appropriate
Legal Notices; however, if the Program has interactive interfaces that
do not display Appropriate Legal Notices, your work need not make
them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation’s users beyond
what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of
the aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

* a) Convey the object code in, or embodied in, a physical product (in-
cluding a physical distribution medium), accompanied by the Corre-
sponding Source fixed on a durable physical medium customarily used
for software interchange. * b) Convey the object code in, or embodied
in, a physical product (including a physical distribution medium), ac-
companied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that prod-
uct model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the product
that is covered by this License, on a durable physical medium cus-
tomarily used for software interchange, for a price no more than your
reasonable cost of physically performing this conveying of source, or
(2) access to copy the Corresponding Source from a network server at
no charge. * c) Convey individual copies of the object code with a
copy of the written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with sub-
section 6b. * d) Convey the object code by offering access from a
designated place (gratis or for a charge), and offer equivalent access to
the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corre-
sponding Source along with the object code. If the place to copy the
object code is a network server, the Corresponding Source may be on a

different server (operated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source. Re-
gardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy
these requirements. * e) Convey the object code using peer-to-peer
transmission, provided you inform other peers where the object code
and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be in-
cluded in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorpora-
tion into a dwelling. In determining whether a product is a consumer
product, doubtful cases shall be resolved in favor of coverage. For a
particular product received by a particular user, “normally used” refers
to a typical or common use of that class of product, regardless of the
status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, pro-
cedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product
from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a fixed
term (regardless of how the transaction is characterized), the Corre-
sponding Source conveyed under this section must be accompanied by
the Installation Information. But this requirement does not apply if
neither you nor any third party retains the ability to install modi-
fied object code on the User Product (for example, the work has been
installed in ROM).

The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or up-
dates for a work that has been modified or installed by the recipient,
or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself ma-
terially and adversely affects the operation of the network or violates
the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information pro-
vided, in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying. 7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions. Ad-
ditional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that
they are valid under applicable law. If additional permissions apply
only to part of the Program, that part may be used separately under
those permissions, but the entire Program remains governed by this
License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:

* a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or * b) Requiring preser-
vation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works
containing it; or * c) Prohibiting misrepresentation of the origin of
that material, or requiring that modified versions of such material be
marked in reasonable ways as different from the original version; or *
d) Limiting the use for publicity purposes of names of licensors or au-
thors of the material; or * e) Declining to grant rights under trademark
law for use of some trade names, trademarks, or service marks; or *
f) Requiring indemnification of licensors and authors of that material
by anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any liability
that these contractual assumptions directly impose on those licensors
and authors.

All other non-permissive additional terms are considered “further re-
strictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you
may add to a covered work material governed by the terms of that li-
cense document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the additional
terms that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the above
requirements apply either way. 8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and finally terminates

your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by
some reasonable means, this is the first time you have received notice
of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10. 9. Acceptance Not Required for Having
Copies.

You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work oc-
curring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work,
you indicate your acceptance of this License to do so. 10. Automatic
Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically re-
ceives a license from the original licensors, to run, modify and prop-
agate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an or-
ganization, or substantially all assets of one, or subdividing an orga-
nization, or merging organizations. If propagation of a covered work
results from an entity transaction, each party to that transaction who
receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of
the work from the predecessor in interest, if the predecessor has it or
can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (in-
cluding a cross-claim or counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it. 11. Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or hereafter
acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a
manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to make,
use, sell, offer for sale, import and otherwise run, modify and propa-
gate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To “grant” such a patent license
to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent
with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the cov-
ered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrange-
ment, you convey, or propagate by procuring conveyance of, a covered
work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on the
non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are
a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection
with specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any
implied license or other defenses to infringement that may otherwise
be available to you under applicable patent law. 12. No Surrender of
Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot con-
vey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a con-
sequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you could satisfy

607

Licenses

both those terms and this License would be to refrain entirely from
conveying the Program. 13. Use with the GNU Affero General Public
License.

Notwithstanding any other provision of this License, you have permis-
sion to link or combine any covered work with a work licensed under
version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this Li-
cense will continue to apply to the part which is the covered work, but
the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new ver-
sions of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Pub-
lic License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copy-
right holder as a result of your choosing to follow a later version. 15.
Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION. 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATEWITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above
cannot be given local legal effect according to their terms, reviewing
courts shall apply local law that most closely approximates an abso-
lute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program
in return for a fee.

END OF TERMS AND CONDITIONS How to Apply These Terms
to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state the
exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper
mail.

If the program does terminal interaction, make it output a short notice
like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author> This program
comes with ABSOLUTELY NO WARRANTY; for details type ‘show
w’. This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, your pro-
gram’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or
school, if any, to sign a “copyright disclaimer” for the program, if nec-
essary. For more information on this, and how to apply and follow the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

92.2 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document ”free” in the sense of freedom: to as-
sure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Sec-
ondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free pro-
gram should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this Li-
cense principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can
be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The ”Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as ”you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter sec-
tion of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections
then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, that is suitable for revising the document straightfor-
wardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage sub-
sequent modification by readers is not Transparent. An image format
is not Transparent if used for any substantial amount of text. A copy
that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input for-
mat, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can
be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF pro-
duced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats
which do not have any title page as such, ”Title Page” means the text
near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The ”publisher” means any person or entity that distributes copies of
the Document to the public.

A section ”Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses

following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as ”Acknowl-
edgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve
the Title” of such a section when you modify the Document means that
it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These War-
ranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other impli-
cation that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License. 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copy-
ing of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transpar-
ent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-
using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document un-
der the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title dis-
tinct from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if
the original publisher of that version gives permission. * B. List on
the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless they release you
from this requirement. * C. State on the Title page the name of the
publisher of the Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add an appropriate
copyright notice for your modifications adjacent to the other copyright
notices. * F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum below.
* G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. *
H. Include an unaltered copy of this License. * I. Preserve the section
Entitled ”History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is no section Entitled ”History”
in the Document, create one stating the title, year, authors, and pub-
lisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence. *
J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the ”History” section. You may omit
a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it
refers to gives permission. * K. For any section Entitled ”Acknowledge-
ments” or ”Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor ac-
knowledgements and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered in their text and

in their titles. Section numbers or the equivalent are not considered
part of the section titles. * M. Delete any section Entitled ”Endorse-
ments”. Such a section may not be included in the Modified Version.
* N. Do not retitle any existing section to be Entitled ”Endorsements”
or to conflict in title with any Invariant Section. * O. Preserve any
Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it con-
tains nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this Li-
cense give permission to use their names for publicity for or to as-
sert or imply endorsement of any Modified Version. 5. COMBINING
DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the In-
variant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original au-
thor or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History”
in the various original documents, forming one section Entitled ”His-
tory”; likewise combine any sections Entitled ”Acknowledgements”, and
any sections Entitled ”Dedications”. You must delete all sections En-
titled ”Endorsements”. 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other doc-
uments released under this License, and replace the individual copies
of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document. 7.
AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an ”aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the
entire aggregate, the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invari-
ant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedi-
cations”, or ”History”, the requirement (section 4) to Preserve its Title

(section 1) will typically require changing the actual title. 9. TERMI-
NATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt oth-
erwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to no-
tify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by
some reasonable means, this is the first time you have received notice
of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it. 10. FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this License
can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.
11. RELICENSING

”Massive Multiauthor Collaboration Site” (or ”MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A ”Massive
Multiauthor Collaboration” (or ”MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

”CC-BY-SA” means the Creative Commons Attribution-Share Alike
3.0 license published by Creative Commons Corporation, a not-for-
profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published
by that same organization.

”Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is ”eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in
the site under CC-BY-SA on the same site at any time before August
1, 2009, provided the MMC is eligible for relicensing. ADDENDUM:
How to use this License for your documents

To use this License in a document you have written, include a copy
of the License in the document and put the following copyright and
license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the ”with … Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the sit-
uation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to per-
mit their use in free software.

608

GNU Lesser General Public License

92.3 GNU Lesser General Public License
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public Li-
cense, supplemented by the additional permissions listed below. 0.
Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the
GNU General Public License.

“The Library” refers to a covered work governed by this License, other
than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library. Defin-
ing a subclass of a class defined by the Library is deemed a mode of
using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source
code for portions of the Combined Work that, considered in isolation,
are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means
the object code and/or source code for the Application, including any
data and utility programs needed for reproducing the Combined Work
from the Application, but excluding the System Libraries of the Com-
bined Work. 1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL. 2. Conveying
Modified Versions.

If you modify a copy of the Library, and, in your modifications, a fa-
cility refers to a function or data to be supplied by an Application that
uses the facility (other than as an argument passed when the facility
is invoked), then you may convey a copy of the modified version:

* a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the function
or data, the facility still operates, and performs whatever part of its
purpose remains meaningful, or * b) under the GNU GPL, with none
of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated ma-
terial is not limited to numerical parameters, data structure layouts
and accessors, or small macros, inline functions and templates (ten or
fewer lines in length), you do both of the following:

* a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are covered by
this License. * b) Accompany the object code with a copy of the GNU
GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the portions
of the Library contained in the Combined Work and reverse engineer-
ing for debugging such modifications, if you also do each of the follow-
ing:

* a) Give prominent notice with each copy of the Combined Work
that the Library is used in it and that the Library and its use are
covered by this License. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. * c) For a Com-
bined Work that displays copyright notices during execution, include
the copyright notice for the Library among these notices, as well as a
reference directing the user to the copies of the GNU GPL and this
license document. * d) Do one of the following: o 0) Convey the
Minimal Corresponding Source under the terms of this License, and
the Corresponding Application Code in a form suitable for, and under
terms that permit, the user to recombine or relink the Application
with a modified version of the Linked Version to produce a modified
Combined Work, in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source. o 1) Use a suitable shared
library mechanism for linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Library already present
on the user’s computer system, and (b) will operate properly with a
modified version of the Library that is interface-compatible with the
Linked Version. * e) Provide Installation Information, but only if you
would otherwise be required to provide such information under section
6 of the GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the Combined
Work produced by recombining or relinking the Application with a
modified version of the Linked Version. (If you use option 4d0, the
Installation Information must accompany the Minimal Corresponding
Source and Corresponding Application Code. If you use option 4d1,
you must provide the Installation Information in the manner specified
by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library
side by side in a single library together with other library facilities that
are not Applications and are not covered by this License, and convey
such a combined library under terms of your choice, if you do both of
the following:

* a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library facilities,
conveyed under the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined
form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new ver-
sions of the GNU Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
as you received it specifies that a certain numbered version of the GNU
Lesser General Public License “or any later version” applies to it, you
have the option of following the terms and conditions either of that
published version or of any later version published by the Free Software
Foundation. If the Library as you received it does not specify a version
number of the GNU Lesser General Public License, you may choose
any version of the GNU Lesser General Public License ever published
by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License
shall apply, that proxy’s public statement of acceptance of any ver-
sion is permanent authorization for you to choose that version for the
Library.

609

	1 Haskell Basics
	2 Getting set up
	2.1 Installing Haskell
	2.2 First code

	3 Variables and functions
	3.1 Variables
	3.2 Haskell source files
	3.3 Comments
	3.4 Variables in imperative languages
	3.5 Functions
	3.6 Local definitions
	3.7 Summary

	4 Truth values
	4.1 Equality and other comparisons
	4.2 Boolean values
	4.3 Infix operators
	4.4 Boolean operations
	4.5 Guards

	5 Type basics
	5.1 Introduction
	5.2 Using the interactive [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttf:type [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf command
	5.3 Functional types
	5.4 Type signatures in code

	6 Lists and tuples
	7 Type basics II
	7.1 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfNum [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf class
	7.2 Numeric types
	7.3 Classes beyond numbers

	8 Building vocabulary
	8.1 Function composition
	8.2 The need for a vocabulary
	8.3 Prelude and the libraries
	8.4 One exhibit
	8.5 This book's use of the libraries
	8.6 Other resources

	9 Next steps
	9.1 if / then / else
	9.2 Introducing pattern matching
	9.3 Tuple and list patterns
	9.4 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttflet [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf bindings

	10 Simple input and output
	10.1 Back to the real world
	10.2 Sequencing actions with [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunti.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunti.ttfdo [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	10.3 Actions under the microscope
	10.4 Learn more

	11 Elementary Haskell
	12 Recursion
	12.1 Numeric recursion
	12.2 List-based recursion
	12.3 Don't get TOO excited about recursion...

	13 Lists II
	13.1 Rebuilding lists
	13.2 Generalizing even further
	13.3 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfmap [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf function
	13.4 Tips and Tricks

	14 Lists III
	14.1 Folds
	14.2 Scans
	14.3 filter
	14.4 List comprehensions

	15 Type declarations
	15.1 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfdata [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf and constructor functions
	15.2 Deconstructing types
	15.3 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttftype [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf for making type synonyms

	16 Pattern matching
	16.1 Analysing pattern matching
	16.2 The connection with constructors
	16.3 Matching literal values
	16.4 Syntax tricks
	16.5 Where we can use pattern matching

	17 Control structures
	17.1 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfif [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf and guards revisited
	17.2 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfcase [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf expressions
	17.3 Controlling actions, revisited

	18 More on functions
	18.1 let and where revisited
	18.2 Anonymous Functions - lambdas
	18.3 Operators

	19 Higher-order functions
	19.1 A sorting algorithm
	19.2 Choosing how to compare
	19.3 Higher-Order Functions and Types
	19.4 Function manipulation

	20 Using GHCi effectively
	20.1 User interface

	21 Intermediate Haskell
	22 Modules
	22.1 Modules
	22.2 Importing
	22.3 Exporting

	23 Indentation
	23.1 The golden rule of indentation
	23.2 Explicit characters in place of indentation
	23.3 Layout in action

	24 More on datatypes
	24.1 Enumerations
	24.2 Named Fields (Record Syntax)
	24.3 Parameterized Types

	25 Other data structures
	25.1 Trees
	25.2 Other datatypes

	26 Classes and types
	26.1 Classes and instances
	26.2 Deriving
	26.3 Class inheritance
	26.4 Standard classes
	26.5 Type constraints
	26.6 A concerted example

	27 The Functor class
	27.1 Motivation
	27.2 Introducing [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfFunctor [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	27.3 What did we gain?

	28 Monads
	29 Prologue: IO, an applicative functor
	29.1 Scene 1 : [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfApplicative [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	29.2 Scene 2 : [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfIO [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	29.3 The end of the beginning

	30 Understanding monads
	30.1 Definition
	30.2 Notions of Computation
	30.3 Monad Laws
	30.4 Monads and Category Theory
	30.5 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfliftM [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf and Friends

	31 The Maybe monad
	31.1 Safe functions
	31.2 Lookup tables
	31.3 Open monads
	31.4 Maybe and safety

	32 The List monad
	32.1 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfMonad [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf instance of lists
	32.2 Bunny invasion
	32.3 Board game example
	32.4 List comprehensions

	33 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfdo [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf Notation
	34 The IO monad
	34.1 Combining functions and I/O actions
	34.2 The universe as part of our program
	34.3 Pure and impure
	34.4 Functional and imperative
	34.5 I/O in the libraries
	34.6 Monadic control structures

	35 The State monad
	35.1 Pseudo-Random Numbers
	35.2 Introducing [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfState [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	35.3 Pseudo-random values of different types

	36 Alternative and MonadPlus
	36.1 Definition
	36.2 Example: parallel parsing
	36.3 MonadPlus
	36.4 Alternative and MonadPlus laws
	36.5 Useful functions
	36.6 Exercises
	36.7 Relationship with monoids
	36.8 Other suggested laws

	37 Monad transformers
	37.1 Passphrase validation
	37.2 A simple monad transformer: [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfMaybeT [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	37.3 A plethora of transformers
	37.4 Lifting
	37.5 Implementing transformers
	37.6 Acknowledgements

	38 Advanced Haskell
	39 Monoids
	39.1 What is a monoid?
	39.2 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfMonoid [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf class
	39.3 Uses
	39.4 Homomorphisms
	39.5 Further reading

	40 Applicative functors
	40.1 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfFunctor [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf recap
	40.2 Application in functors
	40.3 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfApplicative [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf class
	40.4 Déja vu
	40.5 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfZipList [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	40.6 Sequencing of effects
	40.7 A sliding scale of power
	40.8 The monoidal presentation

	41 Foldable
	41.1 Deconstructing [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttffoldr [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	41.2 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfFoldable [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf class
	41.3 List-like folding
	41.4 More facts about [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfFoldable [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf

	42 Traversable
	42.1 Functors made for walking
	42.2 Interpretations of [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfTraversable [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	42.3 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfTraversable [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf laws
	42.4 Recovering [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttffmap [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf and [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttffoldMap [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf

	43 Arrow tutorial
	43.1 Stephen's Arrow Tutorial
	43.2 Type definition for [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfCircuit [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	43.3 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfCircuit [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf primitives
	43.4 Arrow [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfproc [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf notation
	43.5 Hangman: Pick a word
	43.6 Hangman: Main program
	43.7 Advanced stuff

	44 Understanding arrows
	44.1 Pocket guide to [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfArrow [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	44.2 Using arrows
	44.3 Arrows in practice
	44.4 See also
	44.5 Acknowledgements

	45 Continuation passing style (CPS)
	45.1 What are continuations?
	45.2 Passing continuations
	45.3 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfCont [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf monad
	45.4 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfcallCC [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	45.5 Example: a complicated control structure
	45.6 Example: exceptions
	45.7 Example: coroutines
	45.8 Example: Implementing pattern matching

	46 Zippers
	46.1 Theseus and the Zipper
	46.2 Differentiation of data types
	46.3 See Also

	47 Lenses and functional references
	47.1 A taste of lenses
	47.2 The scenic route to lenses
	47.3 Composition
	47.4 Operators
	47.5 A swiss army knife
	47.6 Laws
	47.7 No strings attached
	47.8 Further reading

	48 Mutable objects
	48.1 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfIORef[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttfs
	48.2 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfST [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf monad
	48.3 Mutable data structures
	48.4 Further reading

	49 Concurrency
	49.1 Concurrency
	49.2 When do you need it?
	49.3 Example
	49.4 Software Transactional Memory

	50 Fun with Types
	51 Polymorphism basics
	51.1 Parametric Polymorphism
	51.2 System F
	51.3 Examples
	51.4 Other forms of Polymorphism
	51.5 Free Theorems
	51.6 See also

	52 Existentially quantified types
	52.1 The [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfforall [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf keyword
	52.2 Example: heterogeneous lists
	52.3 A Further Explanation
	52.4 Example: [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfrunST [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	52.5 Quantification as a primitive
	52.6 Further reading

	53 Advanced type classes
	53.1 Multi-parameter type classes
	53.2 Functional dependencies

	54 Phantom types
	54.1 Phantom types

	55 Generalised algebraic data-types (GADT)
	55.1 Introduction
	55.2 Understanding GADTs
	55.3 Summary
	55.4 Examples
	55.5 Discussion

	56 Type constructors & Kinds
	56.1 Kinds for C++ users

	57 Wider Theory
	58 Denotational semantics
	58.1 Introduction
	58.2 Bottom and Partial Functions
	58.3 Recursive Definitions as Fixed Point Iterations
	58.4 Strict and Non-Strict Semantics
	58.5 Algebraic Data Types
	58.6 Other Selected Topics
	58.7 External Links

	59 Category theory
	59.1 Introduction to categories
	59.2 Functors
	59.3 Monads
	59.4 The monad laws and their importance
	59.5 Summary

	60 The Curry-Howard isomorphism
	61 fix and recursion
	61.1 Introducing [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttffix [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	61.2 [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttffix [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf and fixed points
	61.3 Recursion
	61.4 The typed lambda calculus
	61.5 Fix as a data type

	62 Haskell Performance
	63 Introduction
	64 Step by Step Examples
	65 Graph reduction
	65.1 Notes and TODOs
	65.2 Introduction
	65.3 Evaluating Expressions by Lazy Evaluation
	65.4 Controlling Space
	65.5 Reasoning about Time
	65.6 Implementation of Graph reduction
	65.7 References

	66 Laziness
	66.1 Introduction
	66.2 Thunks and Weak head normal form
	66.3 Lazy and strict functions
	66.4 Lazy pattern matching
	66.5 Benefits of nonstrict semantics
	66.6 Common nonstrict idioms
	66.7 Conclusions about laziness
	66.8 References

	67 Strictness
	67.1 Difference between strict and lazy evaluation
	67.2 Why laziness can be problematic
	67.3 Strictness annotations
	67.4 seq
	67.5 References

	68 Algorithm complexity
	68.1 Optimising

	69 Libraries Reference
	70 The Hierarchical Libraries
	71 Lists
	71.1 Theory
	71.2 Definition
	71.3 Basic list usage
	71.4 List utilities

	72 Arrays
	73 Maybe
	74 Maps
	75 IO
	76 Random Numbers
	77 General Practices
	78 Building a standalone application
	79 Debugging
	79.1 Debug prints with [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmuntt.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmuntt.ttfDebug.Trace [Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]cmunrm.ttf[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]cmunrm.ttf
	79.2 Incremental development with GHCi
	79.3 Debugging with Hat
	79.4 General tips

	80 Testing
	80.1 Quickcheck
	80.2 HUnit

	81 Packaging your software (Cabal)
	81.1 Recommended tools
	81.2 Structure of a simple project
	81.3 Libraries
	81.4 Automation
	81.5 Licenses
	81.6 Releases
	81.7 Hosting
	81.8 Example

	82 Using the Foreign Function Interface (FFI)
	82.1 Calling C from Haskell
	82.2 Calling Haskell from C

	83 Generic Programming : Scrap your boilerplate
	83.1 Serialization Example
	83.2 Comparing Haskell ASTs
	83.3 TODO

	84 Specialised Tasks
	85 Graphical user interfaces (GUI)
	85.1 Getting and running wxHaskell
	85.2 Hello World
	85.3 Controls
	85.4 Layout
	85.5 Attributes
	85.6 Events

	86 Databases
	86.1 Introduction
	86.2 Installation
	86.3 General Workflow
	86.4 Running SQL Statements
	86.5 Transaction
	86.6 Calling Procedure

	87 Web programming
	88 Working with XML
	88.1 Getting acquainted with HXT

	89 Using Regular Expressions
	90 Parsing Mathematical Expressions
	90.1 First Warmup
	90.2 Adaptation
	90.3 Structure Emerges
	90.4 Whitespace and applicative notation

	91 Contributors
	List of Figures
	92 Licenses
	92.1 GNU GENERAL PUBLIC LICENSE
	92.2 GNU Free Documentation License
	92.3 GNU Lesser General Public License

document/images/dump

/tmp/MediaWiki2LaTeX14302/document/images/43.png PNG 312x158 312x158+0+0 8-bit sRGB 7.62KB 0.000u 0:00.000
/tmp/MediaWiki2LaTeX14302/document/images/43.png=>/tmp/MediaWiki2LaTeX14302/document/images/nullfile.bmp PNG 312x158 312x158+0+0 8-bit sRGB 148KB 0.000u 0:00.000

document/images/2.jpg

document/images/3.jpg

document/images/1.png

Eq
All except
10, (->)

Show
All except

10, (->)

Read
All except
10, (->)

Bounded
Int, Char, Bool, ()

Ordering,tuples,

Num
Int, Integer,

Ord
All except 10,
Float, Double

IOError, (->)

Enum

), Bool, Char, Ordering,
Int, Integer, Float,
Double

Real
Int, Integer,

Float, Double

(

Fractional
Float, Double

Integral
Int, Integer

Floating
Float, Double

RealFrac
Float, Double

RealFloat
Float, Double

Monad
10, [1, Maybe

Functor
10, [1, Maybe

MonadPlus
10, [1, Maybe

document/images/10.png

document/images/11.png

document/images/12.png

document/images/13.png

accum' Nothing mplus

pickWord rng
eHHHHI!’

const Nothing

document/images/14.png

Passage

Fork

DeadEnd

document/images/15.png

JumRight

KeepStraightOn

document/images/16.png

KeepStraighton

(TumAight

document/images/17.png

document/images/18.png

(/4,) iz

KeepStraighton

(TumAight

document/images/19.png

it o

document/images/20.png

document/images/21.png

document/images/22.png

document/images/23.png

document/images/24.png

N4

document/images/25.png

True False

\ /
\
\
\

1

document/images/26.png

Just True Just False

///
d

Nothing Just/J_

AN
AN /
\\
1

document/images/27.png

Nothing Just True Just False
- e

document/images/28.png

0:L:L L1:0:L L:1:] ded:d:1

I\ 2z

1:0] d1:1:1

NP

11

/

L

document/images/29.png

document/images/30.png

idp

ida

document/images/31.png

document/images/32.png

D

Flidc) = ide(c)

F(f)

= F(A)

()

document/images/33.png

document/images/34.png

1 [i23

[y

156)

(5, 6]
fmap join [n 8,9.101]w 8.9, 101
][]
join

[(23.0,

el o [r2seseras]

][] _/

ioin

document/images/35.png

document/images/36.png

Strict function

o -

Lazy function

- o

document/images/37.png

document/images/38.png

document/images/39.png

document/images/4.png

D Input and output
(states and results) pAB pA >>= f
state $ \ sl -> (v2, s3)

D Processor where

p_ State transition caused by a (vl, s2) = runState pA sl
—> processor p pB = f vl
(v2, s3) = runState pB s2

>»---¢ "Same value" (information flow)

document/images/40.png

document/images/41.png

document/images/42.png

document/images/43.png

m Event Ha... [C][E)X)
o havent lcked o buonsye.

Gk me!

document/images/5.png

document/images/6.png

document/images/7.png

document/images/8.png

document/images/9.png

document/images/nullfile.bmp

m Event Ha... [C][E)X)
o havent lcked o buonsye.

Gk me!

document/images/1.svg

 image/svg+xml

 Eq
 Ord
 Num
 Show
 Read
 Floating
 RealFrac
 Real
 Fractional
 Bounded
 RealFloat
 Functor
 MonadPlus
 Monad
 Integral
 Enum
 Int, Integer
 Float, Double
 Float, Double
 Float, Double
 Float, Double
 (), Bool, Char, Ordering, Int, Integer, Float, Double
 Int, Integer, Float, Double
 All except IO, IOError, (->)
 All except IO, (->)
 All except IO, (->)
 All except IO, (->)
 Int, Integer, Float, Double
 Int, Char, Bool, () Ordering,tuples
 IO, [], Maybe
 IO, [], Maybe
 IO, [], Maybe

document/images/12.svg

document/images/13.svg

document/images/28.svg

 _anonymous_0

 b
 ⊥

 e

 []

 b--e

 bb
 ⊥:⊥

 b--bb

 ub
 ():⊥

 bb--ub

 be
 ⊥:[]

 bb--be

 bbb
 ⊥:⊥:⊥

 bb--bbb

 ue

 ():[]

 ub--ue

 ubb
 ():⊥:⊥

 ub--ubb

 be--ue

 bbb--ubb

 bub
 ⊥:():⊥

 bbb--bub

 bbe
 ⊥:⊥:[]

 bbb--bbe

 bbbb
 ⊥:⊥:⊥:⊥

 bbb--bbbb

 ellip1
 …

 ubb--ellip1

 ellip2
 …

 bub--ellip2

 ellip3
 …

 bbe--ellip3

 ellip4
 …

 bbbb--ellip4

document/images/4.svg

 State Monad Bind in Haskell

 image/svg+xml

 State Monad Bind in Haskell

 Randall Britten

 Daniel Mlot

 2015/07/09

 s1
 (v1 ,s2)

 pA
 pB
 (v2 ,s3)
 pB = f v1
 pA >>= f
 pAB

 p

 Input and output (states and results)
 State transition caused by a processor p
 "Same value" (information flow)
 Processor
 pAB = pA >>= f = state $ \ s1 -> (v2, s3) where (v1, s2) = runState pA s1 pB = f v1 (v2, s3) = runState pB s2

document/images/5.svg

document/index.html

document/headers/babel.tex

\usepackage[english]{babel}
\newcommand{\mychapterbabel}{Chapter}
\newcommand{\mypagebabel}{on page}
\newcommand{\myfigurebabel}{Figure}
\newcommand{\mylangbabel}{english}

document/headers/commands.tex

% Syntax Highlightling

%\DefineShortVerb[commandchars=\\\{\}]{\|}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{\begin{scriptsize}}{\end{scriptsize}}
\newcommand{\KeywordTok}[1]{\textbf{{#1}}}
\newcommand{\DataTypeTok}[1]{\underline{{#1}}}
\newcommand{\DecValTok}[1]{{#1}}
\newcommand{\BaseNTok}[1]{{#1}}
\newcommand{\FloatTok}[1]{{#1}}
\newcommand{\CharTok}[1]{{#1}}
\newcommand{\StringTok}[1]{{#1}}
\newcommand{\CommentTok}[1]{\textit{{#1}}}
\newcommand{\OtherTok}[1]{{#1}}
\newcommand{\AlertTok}[1]{\textbf{{#1}}}
\newcommand{\FunctionTok}[1]{{#1}}
\newcommand{\RegionMarkerTok}[1]{{#1}}
\newcommand{\ErrorTok}[1]{\textbf{{#1}}}
\newcommand{\NormalTok}[1]{{#1}}
\newcommand{\myfigurewithoutcaption}[1]{{\bfseries \myfigurebabel{ }#1}}
\newcommand{\myfigurewithcaption}[2]{{\bfseries \myfigurebabel{ }#1{\quad}}#2}
\renewcommand{\iff}{\Longleftrightarrow}

% Definition der Fussnoten
% ------------------------
%\KOMAoptions{footnotes=multiple}

\DeclareTextSymbol{\textlongs}{TS1}{115}

\deffootnote[2.2em]{2.2em}{0em}{\makebox[2.2em][l]{\thefootnotemark}}

\newcommand{\badchar}[1]
{\textbf{?}}

\newcommand{\myplainurl}[1]
{{\ttfamily \url{#1}}}

\newcommand{\myfnhref}[2]
{{#2} \^{}{\{\ttfamily \url{#1}\}} }

\newcommand{\mymchref}[2]
{}

\newcommand{\mytabhref}[2]
{{#2}\protect\footnote{\ttfamily \url{#1} }}
%{\textsc{#2}}

\newcommand{\myfnlref}[2]
{{#2} \^{}\{\mychapterbabel \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}\}}

\newlength{\fnwidth}
\setlength{\fnwidth}{\linewidth}
\addtolength{\fnwidth}{-10mm}

\newcommand{\myhref}[2]
{{#2}\protect\footnote{ \begin{minipage}{\fnwidth} \ttfamily \url{#1} \end{minipage}}}

\newcommand{\mylref}[2]
{{#2}\protect\footnote{\mychapterbabel {$\text{}$} \ref{#1} \mypagebabel {$\text{}$} \pageref{#1}}}

\newcommand{\myfnsref}[2]
{\text{#2} \^{}\{\text{#1} \}}

\newcommand{\mysref}[2]
{\text{#2}\protect\footnote{#1}}

\newcommand{\TickYes}{\checkmark}

% Kompatibilität, damit myfootnote nichts ins Leere läuft
\newcommand{\myfootnote}[1]
%{\footnote{\quad{}#1}}
{\footnote{#1}}

% Auflistungen
% ------------
% Standardvorschlag für itemize
%\newenvironment{myitemize}{\begin{itemize}}{\end{itemize}}
%\newenvironment{myenumerate}{\begin{enumerate}}{\end{enumerate}}
\newenvironment{myquote}{\begin{itemize}[{}]}{\end{itemize}}
\newenvironment{myblockquote}{\begin{itemize}[{\quad}]}{\end{itemize}}

\newenvironment{mydescription}{

\begin{inparablank}}{\end{inparablank}}
% Alternativen ohne Einrückung
\newenvironment{myitemize}{\begin{compactitem}[\textbullet]}{\end{compactitem}}
\newenvironment{myenumerate}{\begin{compactenum}}{\end{compactenum}}

% einige weitere Festlegungen
% ---------------------------
% \breakslash is used for URLs to allow linebreaking
\newcommand{\mybreakslash}{\discretionary{/}{}{/}}

\newlength{\mylength}
\newlength{\myhight}
\newlength{\myshadingheight}
\newcommand{\myoverline}[1]
{\settowidth{\mylength}{#1} \settoheight{\myhight}{#1}
\makebox[-3pt][l]{#1}
\rule[\myhight+1pt]{\mylength}{0.15mm}}

% Teile von Büchern
\newcommand{\mypart}[1]
%{\part{#1}}
{\addtocontents{toc}{\protect\vspace{7.5mm} \textbf{\Large {#1}}}}

% minitoc vorbereiten, aber standardmäßig unterdrücken
\newcommand{\myminitoc}{}

% Haupttitel
% ----------
%\newcommand{\mymaintitle}[1]
%{\definecolor{shadecolor}{gray}{0.9}\begin{shaded}
%\begin{center}
%\Huge \bfseries
%#1
%\end{center}
%\end{shaded}}

%\newcommand{\mysubtitle}[1]
%{\begin{center}
%\LARGE \bfseries
%#1
%\end{center}}

\newcommand{\mysubtitle}[1]{\subtitle{#1}}
\newcommand{\mymaintitle}[1]{\title{#1}}
\newcommand{\myauthor}[1]{\author{#1}}

% this is for getting rid of a lintian complaint about
% the German translation of the English word resolution which
% I can not represent here literally according to lintian
\newcommand{\resdhunlongstring}[0]{Res}
\newcommand{\sourcedhunlongstring}[0]{source}
\newcommand{\redshunlongstringsource}[0]{\resdhunlongstring\sourcedhunlongstring}

% Metadaten
% ---------
\newcommand{\fetchurlcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen \redshunlongstringsource zur Abholung (O)}.}{URL zur Abholung}}

\newcommand{\bookcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Adresse der elektronischen \redshunlongstringsource (O)}.}{Buch (Hauptseite)}}

\newcommand{\functionalgroupcaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: DDC-Sachgruppe der Deutschen Nationalbibliografie oder Warengruppen-Systematik des Deutschen Buchhandels (O)}.}{Sachgruppe(n)} }

\newcommand{\futhertopicscaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Angaben zum Inhalt: weitere Klassifikationen / Thesauri (F)}.}{Weitere Themen}}

\newcommand{\mainauthorscaption}[0]
{Hauptautor(en)}

\newcommand{\projecttexniciancaption}[0]
{Betreuer}

\newcommand{\organizationscaptions}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Beteiligte Organisationen (F)}.}{Organisation(en)}}

\newcommand{\datecaption}[0]
{Erscheinungsdatum}

\newcommand{\issuecaption}[0]
{Ausgabebezeichnung}

\newcommand{\standardcodecaption}[0]
{Standardnummer }

\newcommand{\maintitlecaption}[0]
{Haupttitel}

\newcommand{\publishercaption}[0]
{\mysref{In den Metadaten erläutert unter: {\itshape Verlag / Verlegende Stelle (O)}.}{Verlegende Stelle} }

\newcommand{\publishercitycaption}[0]
{Verlagsort}

\newcommand{\shelfcaption}[0]
{Wikibooks-Regal}

\newcommand{\sizecaption}[0]
{Umfang}

\newcommand{\Alpha}{\mathrm{A}}
\newcommand{\Beta}{\mathrm{B}}
\newcommand{\Epsilon}{\mathrm{E}}
\newcommand{\Zeta}{\mathrm{Z}}
\newcommand{\Eta}{\mathrm{H}}
\newcommand{\Iota}{\mathrm{I}}
\newcommand{\Kappa}{\mathrm{K}}
\newcommand{\Mu}{\mathrm{M}}
\newcommand{\Nu}{\mathrm{N}}
\newcommand{\Rho}{\mathrm{P}}
\newcommand{\Tau}{\mathrm{T}}
\newcommand{\Chi}{\mathrm{X}}

document/headers/defaultcolors.tex

\definecolor{AliceBlue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{aliceblue}{rgb}{0.941176470588,0.972549019608,1.0}
\definecolor{AntiqueWhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{antiquewhite}{rgb}{0.980392156863,0.921568627451,0.843137254902}
\definecolor{Aqua}{rgb}{0.0,1.0,1.0}
\definecolor{aqua}{rgb}{0.0,1.0,1.0}
\definecolor{Aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{aquamarine}{rgb}{0.498039215686,1.0,0.83137254902}
\definecolor{Azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{azure}{rgb}{0.941176470588,1.0,1.0}
\definecolor{Beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{beige}{rgb}{0.960784313725,0.960784313725,0.862745098039}
\definecolor{Bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{bisque}{rgb}{1.0,0.894117647059,0.76862745098}
\definecolor{Black}{rgb}{0.0,0.0,0.0}
\definecolor{black}{rgb}{0.0,0.0,0.0}
\definecolor{BlanchedAlmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{blanchedalmond}{rgb}{1.0,0.921568627451,0.803921568627}
\definecolor{Blue}{rgb}{0.0,0.0,1.0}
%\definecolor{blue}{rgb}{0.0,0.0,1.0}
\definecolor{BlueViolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{blueviolet}{rgb}{0.541176470588,0.16862745098,0.886274509804}
\definecolor{Brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{brown}{rgb}{0.647058823529,0.164705882353,0.164705882353}
\definecolor{BurlyWood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{burlywood}{rgb}{0.870588235294,0.721568627451,0.529411764706}
\definecolor{CadetBlue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{cadetblue}{rgb}{0.372549019608,0.619607843137,0.627450980392}
\definecolor{Chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{chartreuse}{rgb}{0.498039215686,1.0,0.0}
\definecolor{Chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{chocolate}{rgb}{0.823529411765,0.411764705882,0.117647058824}
\definecolor{Coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{coral}{rgb}{1.0,0.498039215686,0.313725490196}
\definecolor{CornflowerBlue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{cornflowerblue}{rgb}{0.392156862745,0.58431372549,0.929411764706}
\definecolor{Cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{cornsilk}{rgb}{1.0,0.972549019608,0.862745098039}
\definecolor{Crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{crimson}{rgb}{0.862745098039,0.078431372549,0.235294117647}
\definecolor{Cyan}{rgb}{0.0,1.0,1.0}
%\definecolor{cyan}{rgb}{0.0,1.0,1.0}
\definecolor{DarkBlue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{darkblue}{rgb}{0.0,0.0,0.545098039216}
\definecolor{DarkCyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{darkcyan}{rgb}{0.0,0.545098039216,0.545098039216}
\definecolor{DarkGoldenRod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{darkgoldenrod}{rgb}{0.721568627451,0.525490196078,0.043137254902}
\definecolor{DarkGray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{darkgray}{rgb}{0.662745098039,0.662745098039,0.662745098039}
\definecolor{DarkGreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{darkgreen}{rgb}{0.0,0.392156862745,0.0}
\definecolor{DarkKhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{darkkhaki}{rgb}{0.741176470588,0.717647058824,0.419607843137}
\definecolor{DarkMagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{darkmagenta}{rgb}{0.545098039216,0.0,0.545098039216}
\definecolor{DarkOliveGreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{darkolivegreen}{rgb}{0.333333333333,0.419607843137,0.18431372549}
\definecolor{Darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{darkorange}{rgb}{1.0,0.549019607843,0.0}
\definecolor{DarkOrchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{darkorchid}{rgb}{0.6,0.196078431373,0.8}
\definecolor{DarkRed}{rgb}{0.545098039216,0.0,0.0}
\definecolor{darkred}{rgb}{0.545098039216,0.0,0.0}
\definecolor{DarkSalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{darksalmon}{rgb}{0.913725490196,0.588235294118,0.478431372549}
\definecolor{DarkSeaGreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{darkseagreen}{rgb}{0.560784313725,0.737254901961,0.560784313725}
\definecolor{DarkSlateBlue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{darkslateblue}{rgb}{0.282352941176,0.239215686275,0.545098039216}
\definecolor{DarkSlateGray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{darkslategray}{rgb}{0.18431372549,0.309803921569,0.309803921569}
\definecolor{DarkTurquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{darkturquoise}{rgb}{0.0,0.807843137255,0.819607843137}
\definecolor{DarkViolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{darkviolet}{rgb}{0.580392156863,0.0,0.827450980392}
\definecolor{DeepPink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{deeppink}{rgb}{1.0,0.078431372549,0.576470588235}
\definecolor{DeepSkyBlue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{deepskyblue}{rgb}{0.0,0.749019607843,1.0}
\definecolor{DimGray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{dimgray}{rgb}{0.411764705882,0.411764705882,0.411764705882}
\definecolor{DodgerBlue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{dodgerblue}{rgb}{0.117647058824,0.564705882353,1.0}
\definecolor{FireBrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{firebrick}{rgb}{0.698039215686,0.133333333333,0.133333333333}
\definecolor{FloralWhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{floralwhite}{rgb}{1.0,0.980392156863,0.941176470588}
\definecolor{ForestGreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{forestgreen}{rgb}{0.133333333333,0.545098039216,0.133333333333}
\definecolor{Fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{fuchsia}{rgb}{1.0,0.0,1.0}
\definecolor{Gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{gainsboro}{rgb}{0.862745098039,0.862745098039,0.862745098039}
\definecolor{GhostWhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{ghostwhite}{rgb}{0.972549019608,0.972549019608,1.0}
\definecolor{Gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{gold}{rgb}{1.0,0.843137254902,0.0}
\definecolor{GoldenRod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{goldenrod}{rgb}{0.854901960784,0.647058823529,0.125490196078}
\definecolor{Gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{gray}{rgb}{0.501960784314,0.501960784314,0.501960784314}
\definecolor{Green}{rgb}{0.0,0.501960784314,0.0}
%\definecolor{green}{rgb}{0.0,0.501960784314,0.0}
\definecolor{GreenYellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{greenyellow}{rgb}{0.678431372549,1.0,0.18431372549}
\definecolor{HoneyDew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{honeydew}{rgb}{0.941176470588,1.0,0.941176470588}
\definecolor{HotPink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{hotpink}{rgb}{1.0,0.411764705882,0.705882352941}
\definecolor{IndianRed}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{indianred}{rgb}{0.803921568627,0.360784313725,0.360784313725}
\definecolor{Indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{indigo}{rgb}{0.294117647059,0.0,0.509803921569}
\definecolor{Ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{ivory}{rgb}{1.0,1.0,0.941176470588}
\definecolor{Khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{khaki}{rgb}{0.941176470588,0.901960784314,0.549019607843}
\definecolor{Lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{lavender}{rgb}{0.901960784314,0.901960784314,0.980392156863}
\definecolor{LavenderBlush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{lavenderblush}{rgb}{1.0,0.941176470588,0.960784313725}
\definecolor{LawnGreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{lawngreen}{rgb}{0.486274509804,0.988235294118,0.0}
\definecolor{LemonChiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{lemonchiffon}{rgb}{1.0,0.980392156863,0.803921568627}
\definecolor{LightBlue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{lightblue}{rgb}{0.678431372549,0.847058823529,0.901960784314}
\definecolor{LightCoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{lightcoral}{rgb}{0.941176470588,0.501960784314,0.501960784314}
\definecolor{LightCyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{lightcyan}{rgb}{0.878431372549,1.0,1.0}
\definecolor{LightGoldenRodYellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{lightgoldenrodyellow}{rgb}{0.980392156863,0.980392156863,0.823529411765}
\definecolor{LightGrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{lightgrey}{rgb}{0.827450980392,0.827450980392,0.827450980392}
\definecolor{LightGreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{lightgreen}{rgb}{0.564705882353,0.933333333333,0.564705882353}
\definecolor{LightPink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{lightpink}{rgb}{1.0,0.713725490196,0.756862745098}
\definecolor{LightSalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{lightsalmon}{rgb}{1.0,0.627450980392,0.478431372549}
\definecolor{LightSeaGreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{lightseagreen}{rgb}{0.125490196078,0.698039215686,0.666666666667}
\definecolor{LightSkyBlue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{lightskyblue}{rgb}{0.529411764706,0.807843137255,0.980392156863}
\definecolor{LightSlateGray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{lightslategray}{rgb}{0.466666666667,0.533333333333,0.6}
\definecolor{LightSteelBlue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{lightsteelblue}{rgb}{0.690196078431,0.76862745098,0.870588235294}
\definecolor{LightYellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{lightyellow}{rgb}{1.0,1.0,0.878431372549}
\definecolor{Lime}{rgb}{0.0,1.0,0.0}
\definecolor{lime}{rgb}{0.0,1.0,0.0}
\definecolor{LimeGreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{limegreen}{rgb}{0.196078431373,0.803921568627,0.196078431373}
\definecolor{Linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{linen}{rgb}{0.980392156863,0.941176470588,0.901960784314}
\definecolor{Magenta}{rgb}{1.0,0.0,1.0}
%\definecolor{magenta}{rgb}{1.0,0.0,1.0}
\definecolor{Maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{maroon}{rgb}{0.501960784314,0.0,0.0}
\definecolor{MediumAquaMarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{mediumaquamarine}{rgb}{0.4,0.803921568627,0.666666666667}
\definecolor{MediumBlue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{mediumblue}{rgb}{0.0,0.0,0.803921568627}
\definecolor{MediumOrchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{mediumorchid}{rgb}{0.729411764706,0.333333333333,0.827450980392}
\definecolor{MediumPurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{mediumpurple}{rgb}{0.576470588235,0.439215686275,0.847058823529}
\definecolor{MediumSeaGreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{mediumseagreen}{rgb}{0.235294117647,0.701960784314,0.443137254902}
\definecolor{MediumSlateBlue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{mediumslateblue}{rgb}{0.482352941176,0.407843137255,0.933333333333}
\definecolor{MediumSpringGreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{mediumspringgreen}{rgb}{0.0,0.980392156863,0.603921568627}
\definecolor{MediumTurquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{mediumturquoise}{rgb}{0.282352941176,0.819607843137,0.8}
\definecolor{MediumVioletRed}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{mediumvioletred}{rgb}{0.780392156863,0.0823529411765,0.521568627451}
\definecolor{MidnightBlue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{midnightblue}{rgb}{0.0980392156863,0.0980392156863,0.439215686275}
\definecolor{MintCream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{mintcream}{rgb}{0.960784313725,1.0,0.980392156863}
\definecolor{MistyRose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{mistyrose}{rgb}{1.0,0.894117647059,0.882352941176}
\definecolor{Moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{moccasin}{rgb}{1.0,0.894117647059,0.709803921569}
\definecolor{NavajoWhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{navajowhite}{rgb}{1.0,0.870588235294,0.678431372549}
\definecolor{Navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{navy}{rgb}{0.0,0.0,0.501960784314}
\definecolor{OldLace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{oldlace}{rgb}{0.992156862745,0.960784313725,0.901960784314}
\definecolor{Olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{olive}{rgb}{0.501960784314,0.501960784314,0.0}
\definecolor{OliveDrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{olivedrab}{rgb}{0.419607843137,0.556862745098,0.137254901961}
\definecolor{OliveGreen}{rgb}{0.0,0.6,0.0}
\definecolor{olivegreen}{rgb}{0.0,0.6,0.0}
\definecolor{Orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{orange}{rgb}{1.0,0.647058823529,0.0}
\definecolor{OrangeRed}{rgb}{1.0,0.270588235294,0.0}
\definecolor{orangered}{rgb}{1.0,0.270588235294,0.0}
\definecolor{Orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{orchid}{rgb}{0.854901960784,0.439215686275,0.839215686275}
\definecolor{PaleGoldenRod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{palegoldenrod}{rgb}{0.933333333333,0.909803921569,0.666666666667}
\definecolor{PaleGreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{palegreen}{rgb}{0.596078431373,0.98431372549,0.596078431373}
\definecolor{PaleTurquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{paleturquoise}{rgb}{0.686274509804,0.933333333333,0.933333333333}
\definecolor{PaleVioletRed}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{palevioletred}{rgb}{0.847058823529,0.439215686275,0.576470588235}
\definecolor{PapayaWhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{papayawhip}{rgb}{1.0,0.937254901961,0.835294117647}
\definecolor{PeachPuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{peachpuff}{rgb}{1.0,0.854901960784,0.725490196078}
\definecolor{Peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{peru}{rgb}{0.803921568627,0.521568627451,0.247058823529}
\definecolor{Pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{pink}{rgb}{1.0,0.752941176471,0.796078431373}
\definecolor{Plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{plum}{rgb}{0.866666666667,0.627450980392,0.866666666667}
\definecolor{PowderBlue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{powderblue}{rgb}{0.690196078431,0.878431372549,0.901960784314}
\definecolor{Purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{purple}{rgb}{0.501960784314,0.0,0.501960784314}
\definecolor{Red}{rgb}{1.0,0.0,0.0}
%\definecolor{red}{rgb}{1.0,0.0,0.0}
\definecolor{RosyBrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{rosybrown}{rgb}{0.737254901961,0.560784313725,0.560784313725}
\definecolor{RoyalBlue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{royalblue}{rgb}{0.254901960784,0.411764705882,0.882352941176}
\definecolor{SaddleBrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{saddlebrown}{rgb}{0.545098039216,0.270588235294,0.0745098039216}
\definecolor{Salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{salmon}{rgb}{0.980392156863,0.501960784314,0.447058823529}
\definecolor{SandyBrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{sandybrown}{rgb}{0.956862745098,0.643137254902,0.376470588235}
\definecolor{SeaGreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{seagreen}{rgb}{0.180392156863,0.545098039216,0.341176470588}
\definecolor{SeaShell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{seashell}{rgb}{1.0,0.960784313725,0.933333333333}
\definecolor{Sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{sienna}{rgb}{0.627450980392,0.321568627451,0.176470588235}
\definecolor{Silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{silver}{rgb}{0.752941176471,0.752941176471,0.752941176471}
\definecolor{SkyBlue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{skyblue}{rgb}{0.529411764706,0.807843137255,0.921568627451}
\definecolor{SlateBlue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{slateblue}{rgb}{0.41568627451,0.352941176471,0.803921568627}
\definecolor{SlateGray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{slategray}{rgb}{0.439215686275,0.501960784314,0.564705882353}
\definecolor{Snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{snow}{rgb}{1.0,0.980392156863,0.980392156863}
\definecolor{SpringGreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{springgreen}{rgb}{0.0,1.0,0.498039215686}
\definecolor{SteelBlue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{steelblue}{rgb}{0.274509803922,0.509803921569,0.705882352941}
\definecolor{Tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{tan}{rgb}{0.823529411765,0.705882352941,0.549019607843}
\definecolor{Teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{teal}{rgb}{0.0,0.501960784314,0.501960784314}
\definecolor{Thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{thistle}{rgb}{0.847058823529,0.749019607843,0.847058823529}
\definecolor{Tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{tomato}{rgb}{1.0,0.388235294118,0.278431372549}
\definecolor{Turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{turquoise}{rgb}{0.250980392157,0.878431372549,0.81568627451}
\definecolor{Violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{violet}{rgb}{0.933333333333,0.509803921569,0.933333333333}
\definecolor{Wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{wheat}{rgb}{0.960784313725,0.870588235294,0.701960784314}
\definecolor{White}{rgb}{1.0,1.0,1.0}
%\definecolor{white}{rgb}{1.0,1.0,1.0}
\definecolor{WhiteSmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{whitesmoke}{rgb}{0.960784313725,0.960784313725,0.960784313725}
\definecolor{Yellow}{rgb}{1.0,1.0,0.0}
%\definecolor{yellow}{rgb}{1.0,1.0,0.0}
\definecolor{YellowGreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}
\definecolor{yellowgreen}{rgb}{0.603921568627,0.803921568627,0.196078431373}

\definecolor{shadecolor}{gray}{0.9}
\definecolor{mydarkgreen}{rgb}{0.0,0.5625,0.0}

document/headers/formattings.tex

% PDF-Links vorbereiten
\hypersetup{%a5paper,
	linkcolor=black, % Für Links in der gleichen Seite
	urlcolor=black, % Für Links auf URLs
	breaklinks=true, % Links dürfen umgebrochen werden
	colorlinks=false,
	citebordercolor=0 0 0, % Farbe für \cite
	filebordercolor=0 0 0,
	linkbordercolor=0 0 0,
	menubordercolor=0 0 0,
	urlbordercolor=0 0 0,
	pdfhighlight=/I,
	pdfborder=0 0 0, % keine Box um die Links!
	bookmarksopen=true,
	bookmarksnumbered=true,
	frenchlinks=false
}

% nicht zu viele Silbentrennungen
\sloppy

% Waisen, Hurenkinder
\clubpenalty = 10000
\widowpenalty = 10000
\displaywidowpenalty = 10000

% verschiedene Einstellungen
\addtolength{\skip\footins}{2ex} % Länge zwischen Fußnotenbereich und Text

document/headers/hyphenation.tex

\hyphenation{NASA}
\hyphenation{Unter-schenkel-vorder-innen-seite}
\hyphenation{Unter-schenkel-vorder-au\ss en-seite}
\hyphenation{Auge}
\hyphenation{ohne}
\hyphenation{eine}
\hyphenation{come}
\hyphenation{zero}
\hyphenation{also}
\hyphenation{five}
\hyphenation{many}
\hyphenation{copy}
\hyphenation{year}
\hyphenation{same}
\hyphenation{make}
\hyphenation{time}
\hyphenation{made}
\hyphenation{glei-che}
\hyphenation{Zucker-wasser}
\hyphenation{Makro-phagen-stimulation}
\hyphenation{Revo-lution}
\hyphenation{Reich}
\hyphenation{Gebiet}
\hyphenation{ethnische}
\hyphenation{Sow-jet-uni-on}
\hyphenation{NATO}
\hyphenation{Amts-sprache}
\hyphenation{Amts-sprachen}
\hyphenation{Otto}
\hyphenation{Ab-sorptions-ko-effizient}
\hyphenation{Reich}
\hyphenation{Trier}
\hyphenation{Butter-worth}
\hyphenation{Rausch-unter-dr\"uckung}

document/headers/imageheader.tex

\begin{small}
Auf den folgenden Seiten stehen für alle Bilder die Quellen, Autoren und Lizenzen. Das Verzeichnis wurde erstellt mit Hilfe der \myhref{http://de.wikipedia.org/wiki/MediaWiki}{Wikimedia-Software} und an Layout und Gliederung dieses Buches angepasst.

Zu den Lizenzen gibt es hier weitere Informationen:

\begin{itemize}
\item GNU Free Documentation License (GFDL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/old-licenses/gpl-1.0.txt}

\item GNU General Public License Version 2 (GPL). Text dieser Lizenz: \newline{}\url{http://www.gnu.org/licenses/gpl-2.0.txt}

\item Creative Commons Attribution ShareAlike 1.0 License (cc-by-sa-1.0). Text dieser Lizenz: \newline{}\url{http://creativecommons.org/licenses/by-sa/1.0/}

\item Creative Commons Attribution ShareAlike 2.0 License (cc-by-sa-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version: \newline{}\url{http://creativecommons.org/licenses/by-sa/2.0/}

\item Creative Commons Attribution ShareAlike 2.5 License (cc-by-sa-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/2.5/}

\item Creative Commons Attribution ShareAlike 3.0 License (cc-by-sa-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by-sa/3.0/}

\item Creative Commons Attribution 2.0 License (cc-by-2.0). Damit werden auch die Versionen f\"ur andere Sprachen bezeichnet. Text der englischen Version:\newline{}\url{http://creativecommons.org/licenses/by/2.0/}

\item Creative Commons Attribution 2.5 License (cc-by-2.5). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Creative Commons Attribution 3.0 License (cc-by-3.0). Text dieser Lizenz:\newline{}\url{http://creativecommons.org/licenses/by/2.5/deed.en}

\item Public Domain (PD): This image is in the public domain. Dieses Bild ist gemeinfrei.

\item ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.

\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\end{itemize}

Den an weiteren Einzelheiten interessierten Leser verweisen wir auf die Onlineversion dieses Buches und die Beschreibungsseiten der Dateien.

\end{small}

\pagebreak

document/headers/license.tex

\chapter{Zu diesem Buch}
\section{Hinweise zu den Lizenzen}
\label{Lizenzhinweise}

Dieses Werk ist entstanden bei \myhref{http://de.wikibooks.org/wiki/Einf\%C3\%BChrung_in_SQL}{Wikibooks}, einer Online-Bibliothek im Internet mit Lehr-, Sach- und Fachbüchern. Jeder kann und darf diese Bücher frei nutzen und bearbeiten. Alle Inhalte stehen unter den Lizenzen „Creative Commons Attribution/Share-Alike“ (CC-BY-SA 3.0) und GNU-Lizenz für freie Dokumentation (GFDL).

Das Konvertierungsprogramm \myhref{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}{wb2pdf} steht unter GNU General Public License (GPL).

Das Textsatzprogramm \myhref{http://de.wikipedia.org/wiki/LaTeX} {\LaTeX{}} steht unter der LaTeX Project Public License (LPPL).

Hinweise zur Nutzung und für Zitate sind zu finden unter:
\begin{itemize}
\item Originalversion der Lizenz CC-BY-SA 3.0 \newline \url{http://creativecommons.org/licenses/by-sa/3.0}
\item Deutsche Version der Lizenz mit Ergänzungen \newline{} \url{http://creativecommons.org/licenses/by-sa/3.0/deed.de}
\item Originalversion der Lizenz GFDL \newline{} \url{http://www.gnu.org/copyleft/fdl.html}
\item Originalversion der Lizenz GPL \newline{} \url{http://www.gnu.org/licenses/gpl-3.0.html}
\item Version der LaTeX PPL \newline{} \url{http://www.opensource.org/licenses/lppl}
\item Nutzungsbedingungen der Wikimedia Foundation (deutsch) \newline{} \url{http://wikimediafoundation.org/wiki/Nutzungsbedingungen}
\item Zitieren aus Wikibooks \newline{} \url{http://de.wikibooks.org/wiki/Hilfe:Zitieren#Zitieren_aus_Wikibooks}
\end{itemize}

document/main/main.tex

\RequirePackage{hyphsubst}
\documentclass[fontsize=11pt,paper=A4,BCOR=12mm,DIV=13,open=any,listof=totoc]{scrbook}
\input{../headers/paper}
\input{../headers/packages1}
\input{../headers/babel}
\input{../headers/svg}
\input{../headers/packages2}
\input{../headers/defaultcolors}
\input{../headers/hyphenation}
\input{../headers/commands}
\input{../headers/title}
\input{../headers/options}
\input{../headers/formattings}
\input{../headers/unicodes}
\input{../headers/templates}
\input{../headers/templates-dirk}
\input{../headers/templates-chemie}

\usepackage{lmodern}
\usepackage{xltxtra}
\usepackage{fontspec}

\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}
\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}

\begin{document}
\allowdisplaybreaks
\usetocstyle{standard}
\raggedbottom
\thispagestyle{empty}
\pagestyle{empty}
%\include{coverfrontpage}

%\cleardoublepage
\pagenumbering{Roman}
\maketitle
\pagestyle{scrheadings}

\setcounter{tocdepth}{\mytocdepth}
\tableofcontents

%\cleardoublepage
\pagenumbering{arabic}

%\include{kap-vorwort}

\LaTeXNullTemplate{}

\chapter{Haskell Basics}

\myminitoc
\label{0}

\chapter{Getting set up}

\myminitoc
\label{1}

\label{2}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

This chapter describes how to install the programs you\textquotesingle{}ll need to start coding in Haskell.
\section{Installing Haskell}
\label{3}
Haskell is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape programming language}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, i.e. a language in which humans can express how computers should behave. It\textquotesingle{}s like writing a cooking recipe: you write the recipe and the computer executes it.

To use Haskell programs, you need a special program called a Haskell {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape compiler}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A compiler takes code written in Haskell and translates it into {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape machine code}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a more elementary language that the computer understands. Using the cooking analogy, you write a recipe (your Haskell program) and a cook (a compiler program) does the work of putting together actual ingredients into an edible dish (an executable file). Of course, you can\textquotesingle{}t easily get the recipe from a final dish (and you can\textquotesingle{}t get the Haskell program code from executable after it\textquotesingle{}s compiled).

To get started, see \myhref{https://www.haskell.org/downloads}{haskell.org/downloads} for the latest instructions including the \symbol{34}Glasgow Haskell Compiler\symbol{34} (GHC) and everything else you need.

To just test some Haskell basics without downloading and installing, the \myhref{https://www.haskell.org/}{Haskell.org home page} includes a simplified interpreter right on the website. The instructions here in the Wikibook assume the full GHC install, but some of the basics can work in the website version.

\LaTeXbodynoteTemplate{UNIX users:

If you are a person who prefers to compile from source: This might be a bad idea with GHC, especially if it\textquotesingle{}s the first time you install it. GHC is itself mostly written in Haskell, so trying to bootstrap it by hand from source is very tricky. Besides, the build takes a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape very}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} long time and consumes a lot of disk space. If you are sure that you want to build GHC from the source, see \myhref{http://hackage.haskell.org/trac/ghc/wiki/Building}{Building and Porting GHC at the GHC homepage}.}
\section{First code}
\label{4}

After installation, we will do our first Haskell coding with the program called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries GHCi}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the \textquotesingle{}i\textquotesingle{} stands for \textquotesingle{}interactive\textquotesingle{}). Depending on your operating system, perform the following steps:

\begin{myitemize}
\item{} On Windows: Click Start, then Run, then type \textquotesingle{}cmd\textquotesingle{} and hit Enter, then type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ghci}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and hit Enter once more.
\item{} On MacOS: Open the application \symbol{34}Terminal\symbol{34} found in the \symbol{34}Applications/Utilities\symbol{34} folder, type the letters {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ghci}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into the window that appears, and hit the Enter key.
\item{} On Linux: Open a terminal and run {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ghci}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

You should get output that looks something like the following:
\TemplatePreformat{ \newline{}
GHCi, {}version {}7.10.1: {}http://www.haskell.org/ghc/ {} {}:? {}for {}help \newline{}
Loading {}package {}ghc-{}prim {}... {}linking {}... {}done. \newline{}
Loading {}package {}integer-{}gmp {}... {}linking {}... {}done. \newline{}
Loading {}package {}base {}... {}linking {}... {}done. \newline{}
Prelude>{} {} \newline{}
}

The first bit is GHCi\textquotesingle{}s version. It then informs you that it\textquotesingle{}s loading the base package, so you\textquotesingle{}ll have access to most of the built-{}in functions and modules that come with GHC. Finally, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prelude{\mbox{$>$}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bit is known as the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape prompt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is where you enter commands, and GHCi will respond with their results.

Now let\textquotesingle{}s try some basic arithmetic:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}2 {}+ {}2 \newline{}
4 \newline{}
Prelude>{} {}5 {}+ {}4 {}* {}3 \newline{}
17 \newline{}
Prelude>{} {}2 {}\^{} {}5 \newline{}
32 \newline{}

\end{TemplateCodeInside}

These operators match most other programming languages: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily +}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is addition, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily *}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is multiplication, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \^{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is exponentiation (raising to the power of, or {$a ^ b$}). As shown in the second example, Haskell follows standard order of math operations (e.g. multiplication before addition).

Now you know how to use Haskell as a calculator. Actually, Haskell is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape always}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a calculator — just a really powerful one, able to deal not only with numbers but also with other objects like characters, lists, functions, trees, and even other programs (if you aren\textquotesingle{}t familiar with these terms yet, don\textquotesingle{}t worry).

GHCi is a powerful development environment. As we progress, we will learn how to load files with source code into GHCi and evaluate different parts of them.

Assuming you\textquotesingle{}re clear on everything so far (if not, use the talk page and help us improve this Wikibook!), then you are ready for next chapter where we will introduce some of the basic concepts of Haskell and make our first Haskell functions.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Variables and functions}

\myminitoc
\label{5}

\label{6}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape All the examples in this chapter can be saved into a Haskell source file and then evaluated by loading that file into GHC. Do not include the \symbol{34}Prelude>{}\symbol{34} prompts part of any example. When that prompt is shown, it means you can type the following code into an environment like GHCi. Otherwise, you should put the code in a file and run it.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{Variables}
\label{7}

In the last chapter, we used GHCi as a calculator. Of course, that\textquotesingle{}s only practical for short calculations. For longer calculations and for writing Haskell programs, we want to keep track of intermediate results.

We can store intermediate results by assigning them names. These names are called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape variables}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. When a program runs, each variable is substituted for the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape value}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to which it refers. For instance, consider the following calculation

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}3.141592653 {}* {}5\^{}2 \newline{}
78.539816325 \newline{}

\end{TemplateCodeInside}

That is the approximate area of a circle with radius {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, according to the formula {$A = \pi r^2$}. Of course, it is cumbersome to type in the digits of {$\pi \approx 3.141592653$}, or even to remember more than the first few. Programming helps us avoid mindless repetition and rote memorization by delegating these tasks to a machine. That way, our minds stay free to deal with more interesting ideas. For the present case, Haskell already includes a variable named {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pi}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that stores over a dozen digits of {π} for us. This allows for not just clearer code, but also greater precision.

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}pi \newline{}
3.141592653589793 \newline{}
Prelude>{} {}pi {}* {}5\^{}2 \newline{}
78.53981633974483 \newline{}

\end{TemplateCodeInside}

Note that the variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pi}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and its value, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 3.141592653589793}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, can be used interchangeably in calculations.
\section{Haskell source files}
\label{8}

Beyond momentary operations in GHCi, you will save your code in Haskell source files (basically plain text) with the extension {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily .hs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Work with these files using a text editor appropriate for coding (see the \myhref{https://en.wikipedia.org/wiki/text\%20editor}{Wikipedia article on text editors}). Proper source code editors will provide {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape syntax highlighting}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which colors the code in relevant ways to make reading and understanding easier. Vim and Emacs are popular choices among Haskell programmers.

To keep things tidy, create a directory (i.e. a folder) in your computer to save the Haskell files you will create while doing the exercises in this book. Call the directory something like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily HaskellWikibook}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Then, create a new file in that directory called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Varfun.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with the following code:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{5.0}\newline
\end{Highlighting}
\end{Shaded}

That code defines the variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5.0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Note: make sure that there are no spaces at the beginning of the line because Haskell is sensitive to whitespace.

Next, with your terminal at the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily HaskellWikibook}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} directory, start GHCi and load the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Varfun.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} file using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :load}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} command:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}:load {}Varfun.hs \newline{}
{[}1 {}of {}1{]} {}Compiling {}Main {} {} {} {} {} {} {} {} {} {} {} {} {}({}Varfun.hs, {}interpreted {}) \newline{}
Ok, {}modules {}loaded: {}Main. \newline{}

\end{TemplateCodeInside}

Note that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :load}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be abbreviated as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :l}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (as in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :l Varfun.hs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

If GHCi gives an error like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Could not find module \textquotesingle{}Varfun.hs\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you probably running GHCi in the wrong directory or saved your file in the wrong directory. You can use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :cd}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} command to change directories within GHCi (for instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :cd HaskellWikibook}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

With the file loaded, GHCi\textquotesingle{}s prompt changes from \symbol{34}Prelude\symbol{34} to \symbol{34}*Main\symbol{34}. You can now use the newly defined variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in your calculations.

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} r
5.0
\item{} Main>{} pi * r\^{}2
78.53981633974483

\end{myitemize}

\end{TemplateCodeInside}

So, we calculated the area of a circle with radius of 5.0 using the well-{}known formula {πr^2}. This worked because we defined {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in our Varfun.hs file and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pi}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comes from the standard Haskell libraries.

Next, we\textquotesingle{}ll make the area formula easier to quickly access by defining a variable name for it. Change the contents of the source file to:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{5.0}\newline
\NormalTok{area\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pi\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

Save the file. Then, assuming you kept GHCi running with the file still loaded, type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :reload}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (or abbreviate version {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} :reload
Compiling Main (Varfun.hs, interpreted)
Ok, modules loaded: Main.
\item{} Main>{}

\end{myitemize}

\end{TemplateCodeInside}

Now we have two variables {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily area}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} area
78.53981633974483
\item{} Main>{} area / r
15.707963267948966

\end{myitemize}

\end{TemplateCodeInside}

\LaTeXbodynoteTemplate{Note: The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape keyword}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (a word with a special meaning) lets us define variables directly at the GHCi prompt without a source file. This looks like:\\

\TemplateSpaceIndent{ {}Prelude>{} let area = pi * 5 \^{} 2}

Although sometimes convenient, assigning variables entirely in GHCi this way is impractical for any complex tasks. We will usually want to use saved source files.}
\section{Comments}
\label{9}
Besides the working code itself, source files may contain text {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape comments}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In Haskell there are two types of comment. The first starts with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and continues until the end of the line:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}x\ensuremath{\text{ }}is\ensuremath{\text{ }}5.}\newline
\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{6}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}y\ensuremath{\text{ }}is\ensuremath{\text{ }}6.}\newline
\CommentTok{--\ensuremath{\text{ }}z\ensuremath{\text{ }}=\ensuremath{\text{ }}7\ensuremath{\text{ }}\ensuremath{\text{ }}--\ensuremath{\text{ }}z\ensuremath{\text{ }}is\ensuremath{\text{ }}not\ensuremath{\text{ }}defined.}\newline
\end{Highlighting}
\end{Shaded}

In this case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are defined in actual Haskell code, but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not.

The second type of comment is denoted by an enclosing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{-{} ... -{}\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and can span multiple lines:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{answer\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\CommentTok{\{-}\newline
\CommentTok{\ensuremath{\text{ }}\ensuremath{\text{ }}block\ensuremath{\text{ }}comment,\ensuremath{\text{ }}crossing\ensuremath{\text{ }}lines\ensuremath{\text{ }}and...}\newline
\CommentTok{\ensuremath{\text{ }}\ensuremath{\text{ }}-\}}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\CommentTok{\{-\ensuremath{\text{ }}inline\ensuremath{\text{ }}comment.\ensuremath{\text{ }}-\}}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{7}\newline
\end{Highlighting}
\end{Shaded}

We use comments for explaining parts of a program or making other notes in context. Beware of comment overuse as too many comments can make programs harder to read. Also, we must carefully update comments whenever we change the corresponding code. Outdated comments can cause significant confusion.
\section{Variables in imperative languages}
\label{10}
Readers familiar with imperative programming will notice that variables in Haskell seem quite different from variables in languages like C.
If you have no programming experience, you could skip this section, but it will help you understand the general situation when encountering the many cases (most Haskell textbooks, for example) where people discuss Haskell in reference to other programming languages.

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Imperative programming}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} treats variables as changeable locations in a computer\textquotesingle{}s memory. That approach connects to the basic operating principles of computers. Imperative programs explicitly tell the computer what to do. Higher-{}level imperative languages are quite removed from direct computer assembly code instructions, but they retain the same step-{}by-{}step way of thinking. In contrast, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functional programming}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} offers a way to think in higher-{}level mathematical terms, defining how variables relate to one another, leaving the compiler to translate these to the step-{}by-{}step instructions that the computer can process.

Let\textquotesingle{}s look at an example. The following code does not work in Haskell:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\newline
\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

An imperative programmer may read this as first setting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r = 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and then changing it to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r = 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In Haskell, however, the compiler will respond to the code above with an error: \symbol{34}multiple declarations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34}. Within a given scope, a variable in Haskell gets defined only once and cannot change.

The variables in Haskell seem almost {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape invariable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but they work like variables in mathematics. In a math classroom, you never see a variable change its value within a single problem.

In precise terms, Haskell variables are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape immutable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. They vary only based on the data we enter into a program. We can\textquotesingle{}t define {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} two ways in the same code, but we could change the value by changing the file. Let\textquotesingle{}s update our code from above:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\newline
\NormalTok{area\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pi\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

Of course, that works just fine. We can change {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the one place where it is defined, and that will automatically update the value of all the rest of the code that uses the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable.

Real-{}world Haskell programs work by leaving {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape some}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variables unspecified in the code. The values then get defined when the program gets data from an external file, a database, or user input. For now, however, we will stick to defining variables internally. We will cover interaction with external data in later chapters.

Here\textquotesingle{}s one more example of a major difference from imperative languages:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{1}\newline
\end{Highlighting}
\end{Shaded}

Instead of \symbol{34}incrementing the variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34} (i.e. updating the value in memory), this Haskell code is a recursive definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (i.e. defining it in terms of itself). We will explain \mylref{78}{recursion} in detail later on. For this specific case, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} had been defined with any value beforehand, then {\ttfamily { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r = r + 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Haskell would bring an error message. {\ttfamily { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r = r + 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is akin to saying, in a mathematical context, that {$5 = 5 + 1$}, which is plainly wrong.

Because their values do not change within a program, variables can be defined in any order. For example, the following fragments of code do exactly the same thing:

{\scalefont{0.52741}\begin{longtable}{>{\RaggedRight}p{0.47143\linewidth}>{\RaggedRight}p{0.47143\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{} {}y {}= {}x {}* {}2\newline{} {}x {}= {}3}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{} {}x {}= {}3\newline{} {}y {}= {}x {}* {}2}
\end{longtable}
}

In Haskell, there is no notion of \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being declared before {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34} or the other way around. Of course, using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will still require a value for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but this is unimportant until you need a specific numeric value.
\section{Functions}
\label{11}
Changing our program every time we want to calculate the area of new circle is both tedious and limited to one circle at a time. We could calculate two circles by duplicating all the code using new variables {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily area2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the second circle:\myfootnote{As this example shows, the names of variables may contain numbers as well as letters. Variables in Haskell {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape must}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} begin with a lowercase letter but may then have any string consisting of letter, numbers, underscore (_) or tick (\textquotesingle{}).}

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{r\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\newline
\NormalTok{area\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pi\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\newline
\NormalTok{r2\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{3}\newline
\NormalTok{area2\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pi\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{r2\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

Of course, to eliminate this mindless repetition, we would prefer to have simply one {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape function}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for area and then apply it to different radii.

A {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape function}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape argument}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value (or {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape parameter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and gives a result value (essentially the same as in mathematical functions). Defining functions in Haskell is like defining a variable, except that we take note of the function argument that we put on the left hand side. For instance, the following defines a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily area}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which depends on an argument named {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{area\ensuremath{\text{ }}r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pi\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

Look closely at the syntax: the function name comes first ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily area}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in our example), followed by a space and then the argument ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the example). Following the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily =}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} sign, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape function definition}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a formula that uses the argument in context with other already defined terms.

Now, we can plug in different values for the argument in a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape call}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the function. Save the code above in a file, load it into GHCi, and try the following:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} area 5
78.53981633974483
\item{} Main>{} area 3
28.274333882308138
\item{} Main>{} area 17
907.9202768874502

\end{myitemize}

\end{TemplateCodeInside}

Thus, we can {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape call}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} this function with different radii to calculate the area of any circle.

Our function here is defined mathematically as
\begin{myquote}
\item{} \begin{equation*}A(r) = \pi \cdot r^2\end{equation*}
\end{myquote}

In mathematics, the parameter is enclosed between parentheses, as in {$A(5) = 78.54$} or {$A(3) = 28.27$}. Haskell code will also work with parentheses, but we omit them as a convention. Haskell uses functions all the time, and whenever possible we want to minimize extra symbols.

We still use parentheses for grouping {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape expressions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (any code that gives a value) that must be evaluated together. Note how the following expressions are parsed differently:

\begin{Shaded}
\begin{Highlighting}[]

\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}15\ensuremath{\text{ }}+\ensuremath{\text{ }}2\ensuremath{\text{ }}=\ensuremath{\text{ }}17\ensuremath{\text{ }}(multiplication\ensuremath{\text{ }}is\ensuremath{\text{ }}done\ensuremath{\text{ }}before\ensuremath{\text{ }}addition)}\newline
\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}5\ensuremath{\text{ }}*\ensuremath{\text{ }}5\ensuremath{\text{ }}=\ensuremath{\text{ }}25\ensuremath{\text{ }}(thanks\ensuremath{\text{ }}to\ensuremath{\text{ }}the\ensuremath{\text{ }}parentheses)}\newline
\NormalTok{area\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}(area\ensuremath{\text{ }}5)\ensuremath{\text{ }}*\ensuremath{\text{ }}3}\newline
\NormalTok{area\ensuremath{\text{ }}(}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}area\ensuremath{\text{ }}15}\newline
\end{Highlighting}
\end{Shaded}

Note that Haskell functions take {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape precedence}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} over all other operators such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily +}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily *}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, in the same way that, for instance, multiplication is done before addition in mathematics.
\subsection{Evaluation}
\label{12}
What exactly happens when you enter an expression into GHCi? After you press the enter key, GHCi will {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape evaluate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the expression you have given. That means it will replace each function with its definition and calculate the results until a single value remains. For example, the evaluation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily area 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} proceeds as follows:
\\

\TemplateSpaceIndent{ {} {} {} {}area {}5 \newline{}
 {}=>{} {} {} {} {}\{ {}replace {}the {}left-{}hand {}side {} {}area {}r {}= {}... {} {}by {}the {}right-{}hand {}side {} {}... {}= \newline{}
 {}pi {}* {}r\^{}2 {}\} \newline{}
 {} {} {} {}pi {}* {}5 {}\^{} {}2 \newline{}
 {}=>{} {} {} {} {}\{ {}replace {} {}pi {} {}by {}its {}numerical {}value {}\} \newline{}
 {} {} {} {}3.141592653589793 {}* {}5 {}\^{} {}2 \newline{}
 {}=>{} {} {} {} {}\{ {}apply {}exponentiation {}(\^{}) {}\} \newline{}
 {} {} {} {}3.141592653589793 {}* {}25 \newline{}
 {}=>{} {} {} {} {}\{ {}apply {}multiplication {}(*) {}\} \newline{}
 {} {} {} {}78.53981633974483}

As this shows, to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape apply}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape call}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a function means to replace the left-{}hand side of its definition by its right-{}hand side. When using GHCi, the results of a function call will then show on the screen.

Some more functions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{double\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{quadruple\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{double\ensuremath{\text{ }}(double\ensuremath{\text{ }}x)}\newline
\NormalTok{square\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{half\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myitemize}
\item{} Explain how GHCi evaluates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quadruple 5}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Define a function that subtracts 12 from half its argument.
\end{myitemize}}
\subsection{Multiple parameters}
\label{13}

Functions can also take more than one argument. For example, a function for calculating the area of a rectangle given its length and width:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{areaRect\ensuremath{\text{ }}l\ensuremath{\text{ }}w\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{l\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{w}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} areaRect 5 10
50

\end{myitemize}

\end{TemplateCodeInside}

Another example that calculates the area of a triangle {$\left(A = \frac{bh}{2}\right)$}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{areaTriangle\ensuremath{\text{ }}b\ensuremath{\text{ }}h\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{h)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} areaTriangle 3 9
13.5

\end{myitemize}

\end{TemplateCodeInside}

As you can see, multiple arguments are separated by spaces. That\textquotesingle{}s also why you sometimes have to use parentheses to group expressions. For instance, to quadruple a value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you can\textquotesingle{}t write

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{quadruple\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{double\ensuremath{\text{ }}double\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}error}\newline
\end{Highlighting}
\end{Shaded}

That would apply a function named {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the two arguments {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functions can be arguments to other functions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (you will see why later). To make this example work, we need to put parentheses around the argument:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{quadruple\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{double\ensuremath{\text{ }}(double\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

Arguments are always passed in the order given. For example:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{minus\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{y}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} minus 10 5
5
\item{} Main>{} minus 5 10
-{}5

\end{myitemize}

\end{TemplateCodeInside}

Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily minus 10 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 10 -{} 5}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily minus 5 10}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5 -{} 10}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because the order changes.

\LaTeXExercisesTemplate{\begin{myitemize}
\item{} Write a function to calculate the volume of a box.
\item{} Approximately how many stones are the famous pyramids at Giza made up of? Hint: you will need estimates for the volume of the pyramids and the volume of each block.

\end{myitemize}}
\subsection{On combining functions}
\label{14}

Of course, you can use functions that you have already defined to define new functions, just like you can use the predefined functions like addition {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or multiplication {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (operators are defined as functions in Haskell). For example, to calculate the area of a square, we can reuse our function that calculates the area of a rectangle:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{areaRect\ensuremath{\text{ }}l\ensuremath{\text{ }}w\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{l\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{w}\newline
\NormalTok{areaSquare\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{areaRect\ensuremath{\text{ }}s\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} areaSquare 5
25

\end{myitemize}

\end{TemplateCodeInside}

After all, a square is just a rectangle with equal sides.

\LaTeXExercisesTemplate{\begin{myitemize}
\item{} Write a function to calculate the volume of a cylinder. The volume of a cylinder is the area of the base, which is a circle (you already programmed this function in this chapter, so reuse it) multiplied by the height.

\end{myitemize}}
\section{Local definitions}
\label{15}\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clauses}
\label{16}
When defining a function, we sometimes want to define intermediate results that are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape local}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the function. For instance, consider \myhref{https://en.wikipedia.org/wiki/Heron\%27s\%20formula}{Heron\textquotesingle{}s formula} {$A = \sqrt{s(s-a)(s-b)(s-c)}$} for calculating the area of a triangle with sides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{heron\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sqrt\ensuremath{\text{ }}(s\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{c))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

The variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is half the perimeter of the triangle and it would be tedious to write it out four times in the argument of the square root function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sqrt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Simply writing the definitions in sequence does not work...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{heron\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sqrt\ensuremath{\text{ }}(s\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{c))}\newline
\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}a,\ensuremath{\text{ }}b,\ensuremath{\text{ }}and\ensuremath{\text{ }}c\ensuremath{\text{ }}are\ensuremath{\text{ }}not}\newline
\ensuremath{\text{ }}\NormalTok{defined\ensuremath{\text{ }}here}\newline
\end{Highlighting}
\end{Shaded}

... because the variables {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are only available in the right-{}hand side of the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily heron}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as written here is not part of the right-{}hand side of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily heron}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To make it part of the right-{}hand side, we use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword.

Note that both the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the local definitions are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape indented}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by 4 spaces, to distinguish them from subsequent definitions. Here is another example that shows a mix of local and top-{}level definitions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{areaTriangleTrig\ensuremath{\text{ }}\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{height\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}use\ensuremath{\text{ }}trigonometry}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{cosa\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sina\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sqrt\ensuremath{\text{ }}(}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{cosa\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{height\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{sina}\newline
\NormalTok{areaTriangleHeron\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}use\ensuremath{\text{ }}Heron\textquotesingle{}s\ensuremath{\text{ }}formula}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sqrt\ensuremath{\text{ }}(s\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{c))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Scope}
\label{17}
If you look closely at the previous example, you\textquotesingle{}ll notice that we have used the variable names {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} twice, once for each of the two area functions. How does that work?

Consider the following GHCi sequence:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}let {}r {}= {}0 \newline{}
Prelude>{} {}let {}area {}r {}= {}pi {}* {}r {}\^{} {}2 \newline{}
Prelude>{} {}area {}5 \newline{}
78.53981633974483 \newline{}

\end{TemplateCodeInside}

It would have been an unpleasant surprise to return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the area because of the earlier {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let r = 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition getting in the way. That does not happen because when you defined {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the second time you are talking about a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape different}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This may seem confusing, but consider how many people have the name John, and yet for any context with only one John, we can talk about \symbol{34}John\symbol{34} with no confusion. Programming has a notion similar to context, called {\itshape \myhref{https://en.wikipedia.org/wiki/Scope\%20\%28programming\%29}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape scope}}.

We will not explain the technicalities behind scope right now. Just keep in mind that the value of a parameter is strictly what you pass in when you call the function, regardless of what the variable was called in the function\textquotesingle{}s definition. That said, appropriately unique names for variables do make the code easier for human readers to understand.
\section{Summary}
\label{18}

\begin{myenumerate}
\item{} Variables store values (which can be any arbitrary Haskell expression).
\item{} Variables do not change within a scope.
\item{} Functions help you write reusable code.
\item{} Functions can accept more than one parameter.
\end{myenumerate}

We also learned about non-{}code text comments within a source file.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Truth values}

\myminitoc
\label{19}

\label{20}
\LaTeXNullTemplate{}
\section{Equality and other comparisons}
\label{21}

In the last chapter, we used the equals sign to define variables and functions in Haskell as in the following code:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\newline
\end{Highlighting}
\end{Shaded}

That means that the evaluation of the program replaces all occurrences of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (within the scope of the definition). Similarly, evaluating the code

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{3}\newline
\end{Highlighting}
\end{Shaded}

replaces all occurrences of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} followed by a number ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s argument) with that number plus three.

Mathematics also uses the equals sign in an important and subtly different way. For instance, consider this simple problem:

\HaskellExampleTemplate{Solve the following equation:}{{$x+3=5$}}

Our interest here isn\textquotesingle{}t about representing the value {5} as {$x+3$}, or vice-{}versa. Instead, we read the {$x+3=5$} equation as a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape proposition}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that some number {x} gives 5 as result when added to 3. Solving the equation means finding which, if any, values of {x} make that proposition true. In this example, elementary algebra tells us that {$x=2$} (i.e. 2 is the number that will make the equation true, giving {$2+3=5$}).

Comparing values to see if they are equal is also useful in programming. In Haskell, such tests look just like an equation. Since the equals sign is already used for defining things, Haskell uses a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equals sign, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ==}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead. Enter our proposition above in GHCi:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}2 {}+ {}3 {}== {}5 \newline{}
True \newline{}

\end{TemplateCodeInside}

GHCi returns \symbol{34}True\symbol{34} because {$2 + 3$} is equal to 5. What if we use an equation that is not true?

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}7 {}+ {}3 {}== {}5 \newline{}
False \newline{}

\end{TemplateCodeInside}

Nice and coherent. Next, we will use our own functions in these tests. Let\textquotesingle{}s try the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we mentioned at the start of the chapter:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}let {}f {}x {}= {}x {}+ {}3 \newline{}
Prelude>{} {}f {}2 {}== {}5 \newline{}
True \newline{}

\end{TemplateCodeInside}

This works as expected because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 + 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

We can also compare two numerical values to see which one is larger. Haskell provides a number of tests including: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (less than), {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (greater than), {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (less than or equal to) and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (greater than or equal to). These tests work comparably to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ==}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (equal to). For example, we could use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} alongside the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily area}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function from the previous module to see whether a circle of a certain radius would have an area smaller than some value.

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}let {}area {}r {}= {}pi {}* {}r {}\^{} {}2 \newline{}
Prelude>{} {}area {}5 {}<{} {}50 \newline{}
False \newline{}

\end{TemplateCodeInside}

\section{Boolean values}
\label{22}

What is actually going on when GHCi determines whether these arithmetical propositions are true or false? Consider a different but related issue. If we enter an arithmetical expression in GHCi the expression gets {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape evaluated}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and the resulting numerical value is displayed on the screen:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}2 {}+ {}2 \newline{}
4 \newline{}

\end{TemplateCodeInside}

If we replace the arithmetical expression with an equality comparison, something similar seems to happen:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}2 {}== {}2 \newline{}
True \newline{}

\end{TemplateCodeInside}

Whereas the \symbol{34}4\symbol{34} returned earlier is a number which represents some kind of count, quantity, etc., \symbol{34}True\symbol{34} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape value}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that stands for the truth of a proposition. Such values are called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries truth values}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries boolean values}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{The term is a tribute to the mathematician and philosopher \myfnhref{https://en.wikipedia.org/wiki/George\%20Boole}{George Boole}.} Naturally, only two possible boolean values exist: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Introduction to types}
\label{23}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are real values, not just an analogy. Boolean values have the same status as numerical values in Haskell, and you can manipulate them in similar ways. One trivial example:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}True {}== {}True \newline{}
True \newline{}
Prelude>{} {}True {}== {}False \newline{}
False \newline{}

\end{TemplateCodeInside}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is indeed equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now: can you answer whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}2 {}== {}True \newline{}
 {} \newline{}
<{}interactive>{}:1:0:\TemplateSpaceIndent{ {} {} {} {}No {}instance {}for {}(Num {}Bool) \newline{}
 {} {} {} {} {} {}arising {}from {}the {}literal {}‘2’ {}at {}<{}interactive>{}:1:0 \newline{}
 {} {} {} {}Possible {}fix: {}add {}an {}instance {}declaration {}for {}(Num {}Bool) \newline{}
 {} {} {} {}In {}the {}first {}argument {}of {}‘(==)’, {}namely {}‘2’ \newline{}
 {} {} {} {}In {}the {}expression: {}2 {}== {}True \newline{}
 {} {} {} {}In {}an {}equation {}for {}‘it’: {}it {}= {}2 {}== {}True}
 \newline{}

\end{TemplateCodeInside}

Error! The question just does not make sense. We cannot compare a number with a non-{}number or a boolean with a non-{}boolean. Haskell incorporates that notion, and the ugly error message complains about this. Ignoring much of the clutter, the message says that there was a number ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) on the left side of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ==}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so some kind of number was expected on the right side; however, a boolean value ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) is not a number, and so the equality test failed.

So, values have {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries types}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and these types define limits to what we can or cannot do with the values. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is complicated because there are many different types of numbers, so we will defer that explanation until later. Overall, types provide great power because they regulate the behavior of values with rules that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape make sense}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, making it easier to write programs that work correctly. We will come back to the topic of types many times as they are very important to Haskell.
\section{Infix operators}
\label{24}

An equality test like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 == 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an expression just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 + 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; it evaluates to a value in pretty much the same way. The ugly error message we got on the previous example even says so:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
\TemplateSpaceIndent{ {} {} {} {}In {}the {}expression: {}2 {}== {}True}
 \newline{}

\end{TemplateCodeInside}

When we type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 == 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the prompt and GHCi \symbol{34}answers\symbol{34} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it is simply evaluating an expression. In fact, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ==}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is itself a function which takes two arguments (which are the left side and the right side of the equality test), but the syntax is notable: Haskell allows two-{}argument functions to be written as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape infix operators}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} placed {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape between}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} their arguments. When the function name uses only non-{}alphanumeric characters, this infix approach is the common use case. If you wish to use such a function in the \symbol{34}standard\symbol{34} way (writing the function name before the arguments, as a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape prefix operator}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) the function name must be enclosed in parentheses. So the following expressions are completely equivalent:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}4 {}+ {}9 {}== {}13 \newline{}
True \newline{}
Prelude>{} {}(==) {}(4 {}+ {}9) {}13 \newline{}
True \newline{}

\end{TemplateCodeInside}

Thus, we see how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works as a function similarly to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily areaRect}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the previous module. The same considerations apply to the other {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape relational operators}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we mentioned ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}=}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}=}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and to the arithmetical operators ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily +}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily *}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, etc.) – all are functions that take two arguments and are normally written as infix operators.

In general, we can say that tangible things in Haskell are either values or functions.
\section{Boolean operations}
\label{25}

Haskell provides three basic functions for further manipulation of truth values as in logic propositions:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&\&)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} performs the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape and}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operation. Given two boolean values, it evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if both the first and the second are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} otherwise.
\end{myitemize}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}(3 {}<{} {}8) {}\&\& {}(False {}== {}False) \newline{}
True \newline{}
Prelude>{} {}(\&\&) {}(6 {}<{}= {}5) {}(1 {}== {}1) {} \newline{}
False \newline{}

\end{TemplateCodeInside}

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (||)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} performs the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape or}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operation. Given two boolean values, it evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if either the first or the second are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (or if both are true), and to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} otherwise.
\end{myitemize}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}(2 {}+ {}2 {}== {}5) {}|| {}(2 {}>{} {}0) \newline{}
True \newline{}
Prelude>{} {}(||) {}(18 {}== {}17) {}(9 {}>{}= {}11) \newline{}
False \newline{}

\end{TemplateCodeInside}

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} performs the negation of a boolean value; that is, it converts {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and vice-{}versa.
\end{myitemize}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}not {}(5 {}* {}2 {}== {}10) \newline{}
False \newline{}

\end{TemplateCodeInside}

Haskell libraries already include the relational operator function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not equal to}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but we could easily implement it ourselves as:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{/=}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{y)}\newline
\end{Highlighting}
\end{Shaded}

Note that we can write operators infix even when defining them. Completely new operators can also be created out of ASCII symbols (which means mostly the common symbols used on a keyboard).
\section{Guards}
\label{26}

Haskell programs often use boolean operators in convenient and abbreviated syntax. When the same logic is written in alternative styles, we call this {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape syntactic sugar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because it sweetens the code from the human perspective. We\textquotesingle{}ll start with {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape guards}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a feature that relies on boolean values and allows us to write simple but powerful functions.

Let\textquotesingle{}s implement the absolute value function. The absolute value of a real number is the number with its sign discarded; so if the number is negative (that is, smaller than zero) the sign is inverted; otherwise it remains unchanged. We could write the definition as:

{$|x| = \begin{cases} x, & \mbox{if } x \ge 0 \\ -x, & \mbox{if } x < 0. \end{cases} $}

Here, the actual expression to be used for calculating {$|x|$} depends on a set of propositions made about {x}. If {$x \ge 0$} is true, then we use the first expression, but if {$x < 0$} is the case, then we use the second expression instead. To express this decision process in Haskell using guards, the implementation could look like this:\myfootnote{This function is already provided by Haskell with the name {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily abs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so in a real-{}world situation you don\textquotesingle{}t need to provide an implementation yourself.}

\HaskellExampleTemplate{The absolute value function.}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{absolute\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}}

Remarkably, the above code is about as readable as the corresponding mathematical definition. Let us dissect the components of the definition:

\begin{myitemize}
\item{} We start just like a normal function definition, providing a name for the function, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily absolute}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and saying it will take a single argument, which we will name {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

\begin{myitemize}
\item{} Instead of just following with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily =}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the right-{}hand side of the definition, we enter the two alternatives placed below on separate lines.\myfootnote{We {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape could}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} have joined the lines and written everything in a single line, but it would be less readable.} These alternatives are the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape guards}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} proper. Note that the whitespace (the indentation of the second and third lines) is not just for aesthetic reasons; it is necessary for the code to be parsed correctly.
\end{myitemize}

\begin{myitemize}
\item{} Each of the guards begins with a pipe character, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily |}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. After the pipe, we put an expression which evaluates to a boolean (also called a boolean condition or a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape predicate}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), which is followed by the rest of the definition. The function only uses the equals sign and the right-{}hand side from a line if the predicate evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

\begin{myitemize}
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} case is used when none of the preceding predicates evaluate to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In this case, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not smaller than zero, it must be greater than or equal to zero, so the final predicate could have just as easily been {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x >{}= 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works just as well.
\end{myitemize}

\LaTeXbodynoteTemplate{There is no syntactical magic behind {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily otherwise}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It is defined alongside the default variables and functions of Haskell as simply

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\end{Highlighting}
\end{Shaded}

This definition makes {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a catch-{}all guard. As evaluation of the guard predicates is sequential, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} predicate will only be reached if none of the previous cases evaluate to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (so make sure you always place {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the last guard!). In general, it is a good idea to always provide an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} guard, because a rather ugly runtime error will be produced if none of the predicates is true for some input.}

\LaTeXbodynoteTemplate{You might wonder why we wrote {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 -{} x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and not simply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to denote the sign inversion. Well, we could have written the first guard as

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{-}\NormalTok{x\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

and that would work, but this way of expressing sign inversion is one of a few \symbol{34}special cases\symbol{34} in Haskell; the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a function that takes one argument and evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 -{} x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it\textquotesingle{}s a syntactical abbreviation. While very handy, this shortcut occasionally conflicts with the usage of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as an actual function (the subtraction operator), which is a potential source of annoyance (for example, try writing three minus negative-{}four without using any parentheses for grouping). So, we wrote {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 -{} x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} explicitly so that we could point out this issue.}
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and Guards}
\label{27}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clauses work well along with guards. For instance, consider a function which computes the number of (real) solutions for a \myhref{https://en.wikipedia.org/wiki/Quadratic\%20equation}{quadratic equation}, {$ax^2 + bx + c = 0$}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{numOfRealSolutions\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{disc\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{disc\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{disc\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{b}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{4}\FunctionTok{*}\NormalTok{a}\FunctionTok{*}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition is within the scope of all of the guards, sparing us from repeating the expression for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily disc}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Type basics}

\myminitoc
\label{28}

\label{29}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

In programming, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Types}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are used to group similar values into categories. In Haskell, the type system is a powerful way of reducing the number of mistakes in your code.
\section{Introduction}
\label{30}
Programming deals with different sorts of entities. For example, consider adding two numbers together:

{$2 + 3$}

What are 2 and 3? Well, they are numbers. What about the plus sign in the middle? That\textquotesingle{}s certainly not a number, but it stands for an operation which we can do with two numbers – namely, addition.

Similarly, consider a program that asks you for your name and then greets you with a \symbol{34}Hello\symbol{34} message. Neither your name nor the word Hello are numbers. What are they then? We might refer to all words and sentences and so forth as text. It\textquotesingle{}s normal in programming to use a slightly more esoteric word: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is short for \symbol{34}string of characters\symbol{34}.

\LaTeXsideNoteTemplate{Haskell has a rule that all type names have to begin with a capital letter. We shall adhere to this convention henceforth.}

Databases illustrate clearly the concept of types. For example, say we had a table in a database to store details about a person\textquotesingle{}s contacts; a kind of personal telephone book. The contents might look like this:

\begin{longtable}{|>{\RaggedRight}p{0.14858\linewidth}|>{\RaggedRight}p{0.14508\linewidth}|>{\RaggedRight}p{0.36657\linewidth}|>{\RaggedRight}p{0.22548\linewidth}|} \hline
\hspace*{0pt}\ignorespaces{}\hspace*{0pt} First Name&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Last Name&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Address&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Telephone number\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Sherlock&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Holmes&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 221B Baker Street London&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 743756\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Bob&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Jones&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 99 Long Road Street Villestown&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} 655523\\ \hline
\end{longtable}

The fields in each entry contain values. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Sherlock}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a value as is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 99 Long Road Street Villestown}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 655523}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Let\textquotesingle{}s classify the values in this example in terms of types. \symbol{34}First Name\symbol{34} and \symbol{34}Last Name\symbol{34} contain text, so we say that the values are of type String.

At first glance, we might classify address as a String. However, the semantics behind an innocent address are quite complex. Many human conventions dictate how we interpret addresses. For example, if the beginning of the address text contains a number it is likely the number of the house. If not, then it\textquotesingle{}s probably the name of the house – except if it starts with \symbol{34}PO Box\symbol{34}, in which case it\textquotesingle{}s just a postal box address and doesn\textquotesingle{}t indicate where the person lives at all. Each part of the address has its own meaning.

In principle, we can indeed say that addresses are Strings, but that doesn\textquotesingle{}t capture many important features of addresses. When we describe something as a String, all that we are saying is that it is a sequence of characters (letters, numbers, etc). Recognizing something as a specialized type is far more meaningful. If we know something is an Address, we instantly know much more about the piece of data – for instance, that we can interpret it using the \symbol{34}human conventions\symbol{34} that give meaning to addresses.

We might also apply this rationale to the telephone numbers. We could specify a TelephoneNumber type. Then, if we were to come across some arbitrary sequence of digits which happened to be of type TelephoneNumber we would have access to a lot more information than if it were just a Number – for instance, we could start looking for things such as area and country codes on the initial digits.

Another reason not to consider the telephone numbers as Numbers is that doing arithmetics with them makes no sense. What is the meaning and expected effect of, say, multiplying a TelephoneNumber by 100? It would not allow calling anyone by phone. Also, each digit comprising a telephone number is important; we cannot accept losing some of them by rounding or even by omitting leading zeros.
\subsection{Why types are useful}
\label{31}

How does it help us program well to describe and categorize things? Once we define a type, we can specify what we can or cannot do with it. That makes it far easier to manage larger programs and avoid errors.
\section{Using the interactive {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} command}
\label{32}

Let\textquotesingle{}s explore how types work using GHCi. The type of any expression can be checked with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (or shortened to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) command. Try this on the boolean values from the previous module:

\LaTeXDoubleBoxTemplate{Example:}{Exploring the types of boolean values in GHCi\newline Prelude>{} {}:type {}True \newline{}
True {}:: {}Bool \newline{}
Prelude>{} {}:type {}False \newline{}
False {}:: {}Bool \newline{}
Prelude>{} {}:t {}(3 {}<{} {}5) \newline{}
(3 {}<{} {}5) {}:: {}Bool \newline{}
}

The symbol {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ::}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which will appear in a couple other places, can be read as simply \symbol{34}is of type\symbol{34}, and indicates a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type signature}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} reveals that truth values in Haskell are of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as illustrated above for the two possible values, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as well as for a sample expression that will evaluate to one of them. Note that boolean values are not just for value comparisons. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} captures the semantics of a yes/no answer, so it can represent any information of such kind – say, whether a name was found in a spreadsheet, or whether a user has toggled an on/off option.
\subsection{Characters and strings}
\label{33}

Now let\textquotesingle{}s try {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on something new. Literal characters are entered by enclosing them with single quotation marks. For instance, this is the single letter H:

\LaTeXDoubleBoxTemplate{Example:}{Using the :type command in GHCi on a literal character\newline Prelude>{} {}:t {}\textquotesingle{}H\textquotesingle{} \newline{}
\textquotesingle{}H\textquotesingle{} {}:: {}Char \newline{}
}

So, literal character values have type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (short for \symbol{34}character\symbol{34}). Now, single quotation marks only work for individual characters, so if we need to enter longer text – that is, a string of characters – we use {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} quotation marks instead:

\LaTeXDoubleBoxTemplate{Example:}{Using the :t command in GHCi on a literal string\newline Prelude>{} {}:t {}\symbol{34}Hello {}World\symbol{34} \newline{}
\symbol{34}Hello {}World\symbol{34} {}:: {}{[}Char{]} \newline{}
}

Why did we get {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} again? The difference is the square brackets. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Char{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means a number of characters chained together, forming a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape list}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of characters. Haskell considers all Strings to be lists of characters. Lists in general are important entities in Haskell, and we will cover them in more detail in a little while.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Try using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the literal value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}H\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (notice the double quotes). What happens? Why?
\item{} Try using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the literal value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}Hello World\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (notice the single quotes). What happens? Why?
\end{myenumerate}}

Incidentally, Haskell allows for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type synonyms}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which work pretty much like synonyms in human languages (words that mean the same thing – say, \textquotesingle{}big\textquotesingle{} and \textquotesingle{}large\textquotesingle{}). In Haskell, type synonyms are alternative names for types. For instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is defined as a synonym of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Char{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so we can freely substitute one with the other. Therefore, to say:

\begin{Shaded}
\begin{Highlighting}[]

\StringTok{"Hello\ensuremath{\text{ }}World"}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

is also perfectly valid, and in many cases a lot more readable. From here on we\textquotesingle{}ll mostly refer to text values as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, rather than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Char{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Functional types}
\label{34}
So far, we have seen how values (strings, booleans, characters, etc.) have types and how these types help us to categorize and describe them. Now, the big twist that makes Haskell\textquotesingle{}s type system truly powerful: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Functions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} have types as well.\myfootnote{The deeper truth is that functions {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape are}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values, just like all the others.} Let\textquotesingle{}s look at some examples to see how that works.
\subsection{Example: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{35}

We can negate boolean values with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and vice-{}versa). To figure out the type of a function, we consider two things: the type of values it takes as its input and the type of value it returns. In this example, things are easy. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to be negated), and returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the negated {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). The notation for writing that down is:

\HaskellExampleTemplate{Type signature for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not}}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{not}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\end{Highlighting}
\end{Shaded}}

You can read this as \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function from things of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to things of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34}.

Using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on a function will work just as expected:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}:t {}not \newline{}
not {}:: {}Bool {}-{}>{} {}Bool \newline{}

\end{TemplateCodeInside}

The description of a function\textquotesingle{}s type is in terms of the types of argument(s) it takes and the type of value it evaluates to.
\subsection{Example: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{36}
Text presents a problem to computers. At its lowest level, a computer only knows binary 1s and 0s. To represent text, every character is first converted to a number, then that number is converted to binary and stored. That\textquotesingle{}s how a piece of text (which is just a sequence of characters) is encoded into binary. Normally, we\textquotesingle{}re only interested in how to encode characters into their numerical representations, because the computer takes care of the conversion to binary numbers without our intervention.

The easiest way to convert characters to numbers is simply to write all the possible characters down, then number them. For example, we might decide that \textquotesingle{}a\textquotesingle{} corresponds to 1, then \textquotesingle{}b\textquotesingle{} to 2, and so on. This is what something called the ASCII standard is: take 128 commonly-{}used characters and number them (ASCII doesn\textquotesingle{}t actually start with \textquotesingle{}a\textquotesingle{}, but the general idea is the same). Of course, it would be quite a chore to sit down and look up a character in a big lookup table every time we wanted to encode it, so we\textquotesingle{}ve got two functions that do it for us, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (pronounced \textquotesingle{}char\textquotesingle{}) and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ord}\myfootnote{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}This isn\textquotesingle{}t quite what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do, but that description fits our purposes well, and it\textquotesingle{}s close enough.}:

\HaskellExampleTemplate{Type signatures for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ord}}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{chr}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Char}\newline
\NormalTok{ord}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\end{Highlighting}
\end{Shaded}}

We already know what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means. The new type on the signatures above, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, refers to integer numbers, and is one of quite a few different types of numbers.\myfootnote{In fact, it is not even the only type for integers! We will meet its relatives in a short while.} The type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tells us that it takes an argument of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, an integer number, and evaluates to a result of type Char. The converse is the case with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ord}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: It takes things of type Char and returns things of type Int. With the info from the type signatures, it becomes immediately clear which of the functions encodes a character into a numeric code ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ord}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and which does the decoding back to a character ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

To make things more concrete, here are a few examples. Notice that the two functions aren\textquotesingle{}t available by default; so before trying them in GHCi you need to use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :module Data.Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :m Data.Char}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) command to load the Data.Char module where they are defined.

\LaTeXDoubleBoxTemplate{Example:}{Function calls to <{}code>{}chr<{}/code>{} and <{}code>{}ord<{}/code>{}\newline Prelude>{} {}:m {}Data.Char \newline{}
Prelude {}Data.Char>{} {}chr {}97 \newline{}
\textquotesingle{}a\textquotesingle{} \newline{}
Prelude {}Data.Char>{} {}chr {}98 \newline{}
\textquotesingle{}b\textquotesingle{} \newline{}
Prelude {}Data.Char>{} {}ord {}\textquotesingle{}c\textquotesingle{} \newline{}
99 \newline{}
}

\subsection{Functions with more than one argument}
\label{37}

What would be the type of a function that takes more than one argument?

\HaskellExampleTemplate{A function with more than one argument}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{xor\ensuremath{\text{ }}p\ensuremath{\text{ }}q\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(p\ensuremath{\text{ }}}\FunctionTok{||}\ensuremath{\text{ }}\NormalTok{q)\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}(p\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{q)}\newline
\end{Highlighting}
\end{Shaded}}

({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the exclusive-{}or function, which evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if either one or the other argument is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape but not both}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} otherwise.)

The general technique for forming the type of a function that accepts more than one argument is simply to write down all the types of the arguments in a row, in order (so in this case {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily p}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} first then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily q}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), then link them all with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Finally, add the type of the result to the end of the row and stick a final {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in just before it.\myfootnote{This method might seem just a trivial hack by now, but actually there are very deep reasons behind it, which we\textquotesingle{}ll cover in the chapter on \myfnlref{140}{higher-{}order functions}.} In this example, we have:

\begin{myenumerate}
\item{}
Write down the types of the arguments. In this case, the use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (||)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&\&)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives away that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily p}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily q}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} have to be of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\TemplatePreformat{ \newline{}
Bool {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}Bool \newline{}
\^{}\^{} {}p {}is {}a {}Bool {} {} {} {} {} {} {} {} {}\^{}\^{} {}q {}is {}a {}Bool {}as {}well \newline{}
}

\item{}Fill in the gaps with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\TemplatePreformat{Bool {}-{}>{} {}Bool}

\item{}Add in the result type and a final {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In our case, we\textquotesingle{}re just doing some basic boolean operations so the result remains a Bool.
\TemplatePreformat{ \newline{}
Bool {}-{}>{} {}Bool {}-{}>{} {}Bool \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\^{}\^{} {}We\textquotesingle{}re {}returning {}a {}Bool \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}\^{}\^{} {}This {}is {}the {}extra {}-{}>{} {}that {}got {}added {}in {}}

\end{myenumerate}

The final signature, then, is:

\HaskellExampleTemplate{The signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xor}}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{xor\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\end{Highlighting}
\end{Shaded}}
\subsection{Real world example: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily openWindow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{38}
\LaTeXSideNoteTemplate{A library is a collection of common code used by many programs.} As you\textquotesingle{}ll learn in the Haskell in Practice section of the course, one popular group of Haskell libraries are the GUI ({\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries G}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}raphical {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries U}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}ser {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries I}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}nterface) ones. These provide functions for dealing with the visual things computer users are familiar with: menus, buttons, application windows, moving the mouse around, etc. One function from one of these libraries is called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily openWindow}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and you can use it to open a new window in your application. For example, say you\textquotesingle{}re writing a word processor, and the user has clicked on the \textquotesingle{}Options\textquotesingle{} button. You need to open a new window which contains all the options that they can change. Let\textquotesingle{}s look at the type signature for this function:\myfootnote{This has been somewhat simplified to fit our purposes. Don\textquotesingle{}t worry, the essence of the function is there.}

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily openWindow}}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{openWindow\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{WindowTitle}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{WindowSize}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Window}\newline
\end{Highlighting}
\end{Shaded}}

You don\textquotesingle{}t know these types, but they\textquotesingle{}re quite simple. All three of the types there, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily WindowTitle}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily WindowSize}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Window}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are defined by the GUI library that provides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily openWindow}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As we saw earlier, the two arrows mean that the first two types are the types of the parameters, and the last is the type of the result. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily WindowTitle}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} holds the title of the window (which typically appears in a title bar at the very top of the window), and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily WindowSize}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} specifies how big the window should be. The function then returns a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Window}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which represents the actual window.

So, even if you have never seen a function before or don\textquotesingle{}t know how it actually works, a type signature can give you a general idea of what the function does. Make a habit of testing every new function you meet with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If you start doing that now, you\textquotesingle{}ll not only learn about the standard library Haskell functions but also develop a useful kind of intuition about functions in Haskell.

\LaTeXExercisesTemplate{What are the types of the following functions? For any functions involving numbers, you can just pretend the numbers are Ints.

\begin{myenumerate}
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily negate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, which takes an Int and returns that Int with its sign swapped. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily negate 4 = -{}4}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily negate (-{}2) = 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (||)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, pronounced \textquotesingle{}or\textquotesingle{}, that takes two Bools and returns a third Bool which is True if either of the arguments were, and False otherwise.
\item{} A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily monthLength}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function which takes a Bool which is True if we are considering a leap year and False otherwise, and an Int which is the number of a month; and returns another Int which is the number of days in that month.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f x y = not x \&\& y}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g x = (2*x -{} 1)\^{}2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}}
\section{Type signatures in code}
\label{39}

We have explored the basic theory behind types and how they apply to Haskell. Now, we will see how type signatures are used for annotating functions in source files. Consider the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function from an earlier example:

\HaskellExampleTemplate{A function with its signature}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{xor\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{xor\ensuremath{\text{ }}p\ensuremath{\text{ }}q\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(p\ensuremath{\text{ }}}\FunctionTok{||}\ensuremath{\text{ }}\NormalTok{q)\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}(p\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{q)}\newline
\end{Highlighting}
\end{Shaded}}

That is all we have to do. For maximum clarity, type signatures go above the corresponding function definition.

The signatures we add in this way serve a dual role: they clarify the type of the functions both to human readers and to the compiler/interpreter.
\subsection{Type inference}
\label{40}
If type signatures tell the interpreter (or compiler) about the function type, how did we write our earliest Haskell code without type signatures? Well, when you don\textquotesingle{}t tell Haskell the types of your functions and variables it figures them out through a process called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type inference}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In essence, the compiler starts with the types of things it knows and then works out the types of the rest of the values. Consider a general example:

\HaskellExampleTemplate{Simple type inference}{\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}We\textquotesingle{}re\ensuremath{\text{ }}deliberately\ensuremath{\text{ }}not\ensuremath{\text{ }}providing\ensuremath{\text{ }}a\ensuremath{\text{ }}type\ensuremath{\text{ }}signature\ensuremath{\text{ }}for\ensuremath{\text{ }}this\ensuremath{\text{ }}function}\newline
\NormalTok{isL\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\CharTok{\textquotesingle{}l\textquotesingle{}}\newline
\end{Highlighting}
\end{Shaded}}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isL}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function that takes an argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and returns the result of evaluating {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c == \textquotesingle{}l\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Without a type signature, the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the type of the result are not specified. In the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c == \textquotesingle{}l\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, the compiler knows that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}l\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}l\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are being compared with equality with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and both arguments of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must have the same type,\myfootnote{As discussed in \myfnlref{20}{Truth values}. That fact is actually stated by the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – if you are curious you can check it, although you will have to wait a little bit more for a full explanation of the notation used in that.} it follows that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must be a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Finally, since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isL c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it must be a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. And thus we have a signature for the function:

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isL}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a type}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{isL\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{isL\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\CharTok{\textquotesingle{}l\textquotesingle{}}\newline
\end{Highlighting}
\end{Shaded}}

Indeed, if you leave out the type signature, the Haskell compiler will discover it through this process. You can verify that by using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isL}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with or without a signature.

So why write type signatures if they will be inferred anyway? In some cases, the compiler lacks information to infer the type, and so the signature becomes obligatory. In some other cases, we can use a type signature to influence to a certain extent the final type of a function or value. These cases needn\textquotesingle{}t concern us for now, but we have a few other reasons to include type signatures:

\begin{myitemize}
\item{} {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Documentation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: type signatures make your code easier to read. With most functions, the name of the function along with the type of the function is sufficient to guess what the function does. Of course, commenting your code helps, but having the types clearly stated helps too.
\item{} {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Debugging}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: when you annotate a function with a type signature and then make a typo in the body of the function which changes the type of a variable, the compiler will tell you, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape at compile-{}time}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that your function is wrong. Leaving off the type signature might allow your erroneous function to compile, and the compiler would assign it the wrong type. You wouldn\textquotesingle{}t know until you ran your program that you made this mistake.
\end{myitemize}

\subsection{Types and readability}
\label{41}

A somewhat more realistic example will help us understand better how signatures can help documentation. The piece of code quoted below is a tiny {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape module}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (modules are the typical way of preparing a library), and this way of organizing code is like that in the libraries bundled with GHC.

\LaTeXbodynoteTemplate{Do not go crazy trying to understand how the functions here actually work; that is beside the point as we still have not covered many of the features being used. Just keep reading and play along.}
\HaskellExampleTemplate{Module with type signatures}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{StringManip}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Char}\newline
\ensuremath{\text{ }}\newline
\NormalTok{uppercase,}\OtherTok{\ensuremath{\text{ }}lowercase\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{uppercase\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}toUpper}\newline
\NormalTok{lowercase\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}toLower}\newline
\ensuremath{\text{ }}\newline
\OtherTok{capitalize\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{capitalize\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{capWord\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{capWord\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{toUpper\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{xs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{unwords\ensuremath{\text{ }}(map\ensuremath{\text{ }}capWord\ensuremath{\text{ }}(words\ensuremath{\text{ }}x))}\newline
\end{Highlighting}
\end{Shaded}}

This tiny library provides three string manipulation functions. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uppercase}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} converts a string to upper case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lowercase}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to lower case, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily capitalize}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} capitalizes the first letter of every word. Each of these functions takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as argument and evaluates to another {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Even if we do not understand how these functions work, looking at the type signatures allows us to immediately know the types of the arguments and return values. Paired with sensible function names, we have enough information to figure out how we can use the functions.

Note that when functions have the same type we have the option of writing just one signature for all of them, by separating their names with commas, as above with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uppercase}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lowercase}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Types prevent errors}
\label{42}

The role of types in preventing errors is central to typed languages. When passing expressions around you have to make sure the types match up like they did here. If they don\textquotesingle{}t, you\textquotesingle{}ll get {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type errors}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when you try to compile; your program won\textquotesingle{}t pass the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape typecheck}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This helps reduce bugs in your programs. To take a very trivial example:

\HaskellExampleTemplate{A non-{}typechecking program}{\begin{Shaded}
\begin{Highlighting}[]

\StringTok{"hello"}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}world"}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}type\ensuremath{\text{ }}error}\newline
\end{Highlighting}
\end{Shaded}}

That line will cause a program to fail when compiling. You can\textquotesingle{}t add two strings together. In all likelihood, the programmer intended to use the similar-{}looking concatenation operator, which can be used to join two strings together into a single one:

\HaskellExampleTemplate{Our erroneous program, fixed}{\begin{Shaded}
\begin{Highlighting}[]

\StringTok{"hello"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}world"}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}"hello\ensuremath{\text{ }}world"}\newline
\end{Highlighting}
\end{Shaded}}

An easy typo to make, but Haskell catches the error when you tried to compile. You don\textquotesingle{}t have to wait until you run the program for the bug to become apparent.

Updating a program commonly involves changes to types. If a change is unintended, or has unforeseen consequences, then it will show up when compiling. Haskell programmers often remark that once they have fixed all the type errors, and their programs compile, that they tend to \symbol{34}just work\symbol{34}. The behavior may not always match the intention, but the program won\textquotesingle{}t crash. Haskell has far fewer {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape run-{}time errors}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (where your program goes wrong when you run it rather than when you compile) than other languages.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Lists and tuples}

\myminitoc
\label{43}

\chapter{Type basics II}

\myminitoc
\label{44}

\label{45}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
In this chapter, we will show how numerical types are handled in Haskell and introduce some important features of the type system. Before diving into the text, though, pause for a moment and consider the following question: what should be the type of the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?\myfootnote{If you followed our recommendations in \symbol{34}Type basics\symbol{34}, chances are you have already seen the rather exotic answer by testing with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}... if that is the case, consider the following analysis as a path to understanding the meaning of that signature.}
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class}
\label{46}

Mathematics puts restrictions on the kind of numbers we can add together. {$2 + 3$} (two natural numbers), {$(-7) + 5.12$} (a negative integer and a rational number), {$\frac{1}{7} + \pi$} (a rational and an irrational). All of these are valid. In fact any two real numbers can be added together. In order to capture such generality in the simplest way possible we need a general {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Number}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type in Haskell, so that the signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be simply

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(+)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Number}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Number}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Number}\newline
\end{Highlighting}
\end{Shaded}

However, that design fits poorly with the way computers perform arithmetic. While computers can handle integers as a sequence of bits in memory, that approach does not work for real numbers,\myfootnote{Among other issues, between any two real numbers there are uncountably many real numbers – and that fact can\textquotesingle{}t be directly mapped into a representation in memory no matter what we do.} thus making it necessary for a less than perfect encoding for them: \myhref{https://en.wikipedia.org/wiki/Floating\%20point}{floating point numbers}. While floating point provides a reasonable way to deal with real numbers in general, it has some inconveniences (most notably, loss of precision) which makes using the simpler encoding worthwhile for integer values. So, we have at least two different ways of storing numbers: one for integers and another for general real numbers. Each approach should correspond to different Haskell types. Furthermore, computers are only able to perform operations like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on a pair of numbers if they are in the same format.

So much for having a universal {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Number}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type – it seems that we can\textquotesingle{}t even have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} mix integers and floating-{}point numbers. However, Haskell {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape can}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at least use the same {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function with either integers or floating point numbers. Check this yourself in GHCi:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{}3 {}+ {}4 \newline{}
7 \newline{}
Prelude>{}4.34 {}+ {}3.12 \newline{}
7.46 \newline{}

\end{TemplateCodeInside}

When discussing lists and tuples, we saw that functions can accept arguments of different types if they are made {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape polymorphic}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In that spirit, here\textquotesingle{}s a possible type signature for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that would account for the facts above:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(+)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

With that type signature, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would take two arguments of the same type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (which could be integers or floating-{}point numbers) and evaluate to a result of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (as long as both arguments are the same type). But this type signature indicates {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape any}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type at all, and we know that we can\textquotesingle{}t use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values, or two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values. What would adding two letters or two truth-{}values mean? So, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape actual}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uses a language feature that allows us to express the semantic restriction that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be any type {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape as long as it is a number type}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(+)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries typeclass}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — a group of types which includes all types which are regarded as numbers.\myfootnote{This is a loose definition, but will suffice until we discuss typeclasses in more detail.} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Num a) =>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} part of the signature restricts {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to number types – or, in Haskell terminology, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape instances}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Numeric types}
\label{47}

So, which are the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape actual}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} number types (that is, the instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the signature may stand for)? The most important numeric types are
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} corresponds to the plain integer type found in most languages. It has fixed maximum and minimum values that depend on a computer\textquotesingle{}s processor. (In 32-{}bit machines the range goes from -{}2147483648 to 2147483647).
\end{myitemize}

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} also is used for integer numbers, but it supports arbitrarily large values – at the cost of some efficiency.
\end{myitemize}

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the double-{}precision floating point type, a good choice for real numbers in the vast majority of cases. (Haskell also has {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Float}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the single-{}precision counterpart of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is usually less attractive due to further loss of precision.)
\end{myitemize}

Several other number types are available, but these cover most in everyday tasks.
\subsection{Polymorphic guesswork}
\label{48}

If you\textquotesingle{}ve read carefully this far, you know that we don\textquotesingle{}t need to specify types always because the compiler can {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape infer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} types. You also know that we cannot mix types when functions require matched types. Combine this with our new understanding of numbers to understand how Haskell handles basic arithmetic like this:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}(-{}7) {}+ {}5.12 \newline{}
-{}1.88 \newline{}

\end{TemplateCodeInside}

This may seem to add two numbers of different types – an integer and a non-{}integer. Let\textquotesingle{}s see what the types of the numbers we entered actually are:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}:t {}(-{}7) \newline{}
(-{}7) {}:: {}(Num {}a) {}=>{} {}a \newline{}

\end{TemplateCodeInside}

So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}7)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is neither {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} nor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}! Rather, it is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape polymorphic constant}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which can \symbol{34}morph\symbol{34} into any number type. Now, let\textquotesingle{}s look at the other number:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}:t {}5.12 \newline{}
5.12 {}:: {}(Fractional {}t) {}=>{} {}t \newline{}

\end{TemplateCodeInside}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5.12}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also a polymorphic constant, but one of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, which is a subset of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but not every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; for instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are not {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

When a Haskell program evaluates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}7) + 5.12}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it must settle for an actual matching type for the numbers. The type inference accounts for the class specifications: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}7)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but there are extra restrictions for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5.12}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that\textquotesingle{}s the limiting factor. With no other restrictions, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5.12}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will assume the default {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}7)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will become a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well. Addition then proceeds normally and returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape .\myfootnote{For seasoned programmers:}}\myfootnote{{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} This appears to have the same effect that programs in C (and many other languages) manage with an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape implicit cast}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (where an integer literal is silently converted to a double). In C, however, the conversion is done behind your back, while in Haskell it only occurs if the variable/literal is a polymorphic constant. This distinction will become clearer shortly, when we show a counter-{}example.}

The following test will give you a better feel of this process. In a source file, define

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

Then load the file in GHCi and check the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Then, change the file to add a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable,

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\newline
\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{3}\newline
\end{Highlighting}
\end{Shaded}

reload it and check the types of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Finally, modify {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\newline
\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\FloatTok{3.1}\newline
\end{Highlighting}
\end{Shaded}

and see what happens with the types of both variables.
\subsection{Monomorphic trouble}
\label{49}

The sophistication of the numerical types and classes occasionally leads to some complications. Consider, for instance, the common division operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It has the following type signature:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(/)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Fractional}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

Restricting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to fractional types is a must because the division of two integer numbers will often result in a non-{}integer. Nevertheless, we can still write something like

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}4 {}/ {}3 \newline{}
1.3333333333333333 \newline{}

\end{TemplateCodeInside}

because the literals {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 4}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 3}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are polymorphic constants and therefore assume the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the behest of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Suppose, however, we want to divide a number by the length of a list.\myfootnote{A reasonable scenario – think of computing an average of the values in a list.} The obvious thing to do would be using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}4 {}/ {}length {}{[}1,2,3{]} \newline{}

\end{TemplateCodeInside}

Unfortunately, that blows up:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
<{}interactive>{}:1:0:\TemplateSpaceIndent{ {} {} {} {}No {}instance {}for {}(Fractional {}Int) \newline{}
 {} {} {} {} {} {}arising {}from {}a {}use {}of {}`/\textquotesingle{} {}at {}<{}interactive>{}:1:0-{}17 \newline{}
 {} {} {} {}Possible {}fix: {}add {}an {}instance {}declaration {}for {}(Fractional {}Int) \newline{}
 {} {} {} {}In {}the {}expression: {}4 {}/ {}length {}{[}1, {}2, {}3{]} \newline{}
 {} {} {} {}In {}the {}definition {}of {}`it\textquotesingle{}: {}it {}= {}4 {}/ {}length {}{[}1, {}2, {}3{]}}
 \newline{}

\end{TemplateCodeInside}

As usual, the problem can be understood by looking at the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{length}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\end{Highlighting}
\end{Shaded}

The result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, not a polymorphic constant. As an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, Haskell won\textquotesingle{}t let us use it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

To escape this problem, we have a special function. Before following on with the text, try to guess what this does only from the name and signature:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fromIntegral}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Integral}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fromIntegral}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes an argument of some {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integral}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type (like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and makes it a polymorphic constant. By combining it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can make the length of the list fit into the signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}4 {}/ {}fromIntegral {}(length {}{[}1,2,3{]}) \newline{}
1.3333333333333333 \newline{}

\end{TemplateCodeInside}

In some ways, this issue is annoying and tedious, but it is an inevitable side-{}effect of having a rigorous approach to manipulating numbers. In Haskell, if you define a function with an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument, it will never be converted to an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, unless you explicitly use a function like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fromIntegral}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As a direct consequence of its refined type system, Haskell has a surprising diversity of classes and functions dealing with numbers.
\section{Classes beyond numbers}
\label{50}

Haskell has typeclasses beyond arithmetic. For example, the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(==)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\end{Highlighting}
\end{Shaded}

Like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a polymorphic function. It compares two values of the same type, which must belong to the class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is simply the class for types of values which can be compared for equality, and it includes all of the basic non-{}functional types.\myfootnote{Comparing two functions for equality is considered intractable}

Typeclasses add a lot to the power of the type system. We will return to this topic later to see how to use them in custom ways.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Building vocabulary}

\myminitoc
\label{51}

\label{52}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

This chapter will be a bit of an interlude with some advice for studying and using Haskell. We will discuss the importance of acquiring a vocabulary of functions and how this book and other resources can help. First, however, we need to understand function composition.
\section{Function composition}
\label{53}

Function composition means applying one function to a value and then applying another function to the result. Consider these two functions:

\HaskellExampleTemplate{Simple functions}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{3}\newline
\NormalTok{square\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}}

We can compose them in two different ways, depending on which one we apply first:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}square {}(f {}1) \newline{}
16 \newline{}
Prelude>{} {}square {}(f {}2) \newline{}
25 \newline{}
Prelude>{} {}f {}(square {}1) \newline{}
4 \newline{}
Prelude>{} {}f {}(square {}2) \newline{}
7 \newline{}

\end{TemplateCodeInside}

The parentheses around the inner function are necessary; otherwise, the interpreter would think that you were trying to get the value of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily square f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f square}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; and both of those would give type errors.

The composition of two functions results in a function in its own right. If we regularly apply f and then square (or vice-{}versa), we should generate a new variable name for the resulting combinations:

\HaskellExampleTemplate{Composed functions}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{squareOfF\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{square\ensuremath{\text{ }}(f\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{fOfSquare\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(square\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}}

There is a second, nifty way of writing composed functions. It uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the function composition operator and is as simple as putting a period between the two functions:

\HaskellExampleTemplate{Composing functions with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{squareOfF\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(square\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\newline
\NormalTok{fOfSquare\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{square)\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}}

Note that functions are still applied from right to left, so that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g(f(x)) == (g . f) x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is modeled after the mathematical operator {\circ}, which works in the same way: {$(g \circ f)(x) = g(f(x))$}.

Incidentally, our function definitions {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape are}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} effectively mathematical equations, so we can take

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{squareOfF\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(square\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

and cancel the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from both sides, leaving:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{squareOfF\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{square\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f}\newline
\end{Highlighting}
\end{Shaded}

We will later learn more about such cases of functions without arguments shown. For now, understand we can simply substitute our defined variable name for any case of the composed functions.
\section{The need for a vocabulary}
\label{54}

Haskell makes it simple to write composed functions and to define variables, so we end up with relatively simple, elegant, and expressive code. Of course, to use function composition, we first need to have functions to compose. While functions we write ourselves will always be available, every installation of GHC comes with a vast assortment of libraries (i.e. packaged code), which provide functions for many common tasks. For that reason, effective Haskell programmers need some familiarity with the essential libraries. At the least, you should know how to find useful functions in the libraries when you need them.

Given only the Haskell syntax we will cover through the \mylref{78}{Recursion} chapter, we will, in principle, have enough knowledge to write nearly any list manipulation program we want. However, writing full programs with only these basics would be terribly inefficient because we would end up rewriting large parts of the standard libraries. So, much of our study going forward will involve studying and understanding these valuable tools the Haskell community has already built.
\section{Prelude and the libraries}
\label{55}

Here are a few basic facts about Haskell libraries:

First and foremost, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Prelude}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the core library loaded by default in every Haskell program. Alongside with the basic types, it provides a set of ubiquitous and useful functions. We will refer to Prelude and its functions all the time throughout these introductory chapters.

GHC includes a large set of core libraries that provide a wide range of tools, but only Prelude is loaded automatically. The other libraries are available as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape modules}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which you can {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape import}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into your program. Later on, we will explain the minutiae of how modules work. For now, just know that your source file needs lines near the top to import any desired modules. For example, to use the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily permutations}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the module {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, add the line {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily import Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the top of your .hs file. Here\textquotesingle{}s a full source file example:

\HaskellExampleTemplate{Importing a module in a source file}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.List}\newline
\ensuremath{\text{ }}\newline
\NormalTok{testPermutations\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{permutations\ensuremath{\text{ }}}\StringTok{"Prelude"}\newline
\end{Highlighting}
\end{Shaded}}

For quick GHCi tests, just enter {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :m +Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the command line to load that module.

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}:m {}+Data.List \newline{}
Prelude {}Data.List>{} {}:t {}permutations \newline{}
permutations {}:: {}{[}a{]} {}-{}>{} {}\myhref{https://en.wikibooks.org/wiki/a}{a} \newline{}

\end{TemplateCodeInside}

\section{One exhibit}
\label{56}

Before continuing, let us see one (slightly histrionic, we admit) example of what familiarity with a few basic functions from Prelude can bring us.\myfootnote{The example here is inspired by the \myfnhref{http://www.haskell.org/haskellwiki/Simple_unix_tools}{Simple Unix tools} demo in the HaskellWiki.} Suppose we need a function which takes a string composed of words separated by spaces and returns that string with the order of the words reversed, so that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}Mary had a little lamb\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}lamb little a had Mary\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape could}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} solve this problem using only the basics we have already covered along with a few insights in the upcoming Recursion chapter. Below is one messy, complicated solution. Don\textquotesingle{}t stare at it for too long!

\HaskellExampleTemplate{There be dragons}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{monsterRevWords\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{monsterRevWords\ensuremath{\text{ }}input\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{rejoinUnreversed\ensuremath{\text{ }}(divideReversed\ensuremath{\text{ }}input)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{divideReversed\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}[]\ensuremath{\text{ }}s}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}divided\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{divided}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}[]\ensuremath{\text{ }}(c}\FunctionTok{:}\NormalTok{cs)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{testSpace\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}[]\ensuremath{\text{ }}cs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}[[]]\ensuremath{\text{ }}(c}\FunctionTok{:}\NormalTok{cs)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}(w}\FunctionTok{:}\NormalTok{ws)\ensuremath{\text{ }}[c]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{testSpace\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(w}\FunctionTok{:}\NormalTok{ws)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{((c}\FunctionTok{:}\NormalTok{w)}\FunctionTok{:}\NormalTok{ws)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}(w}\FunctionTok{:}\NormalTok{ws)\ensuremath{\text{ }}(c}\FunctionTok{:}\NormalTok{c\textquotesingle{}}\FunctionTok{:}\NormalTok{cs)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{testSpace\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{testSpace\ensuremath{\text{ }}c\textquotesingle{}}\newline
\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}(w}\FunctionTok{:}\NormalTok{ws)\ensuremath{\text{ }}(c\textquotesingle{}}\FunctionTok{:}\NormalTok{cs)}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}([c\textquotesingle{}]}\FunctionTok{:}\NormalTok{w}\FunctionTok{:}\NormalTok{ws)\ensuremath{\text{ }}cs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go1\ensuremath{\text{ }}((c}\FunctionTok{:}\NormalTok{w)}\FunctionTok{:}\NormalTok{ws)\ensuremath{\text{ }}(c\textquotesingle{}}\FunctionTok{:}\NormalTok{cs)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{testSpace\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\CharTok{\textquotesingle{}\ensuremath{\text{ }}\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{rejoinUnreversed\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{rejoinUnreversed\ensuremath{\text{ }}[w]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{reverseList\ensuremath{\text{ }}w}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{rejoinUnreversed\ensuremath{\text{ }}strings\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go2\ensuremath{\text{ }}(}\CharTok{\textquotesingle{}\ensuremath{\text{ }}\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{reverseList\ensuremath{\text{ }}newFirstWord)\ensuremath{\text{ }}(otherWords)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(newFirstWord\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{otherWords)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{reverseList\ensuremath{\text{ }}strings}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go2\ensuremath{\text{ }}rejoined\ensuremath{\text{ }}([]}\FunctionTok{:}\NormalTok{[])\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{rejoined}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go2\ensuremath{\text{ }}rejoined\ensuremath{\text{ }}([]}\FunctionTok{:}\NormalTok{(w\textquotesingle{}}\FunctionTok{:}\NormalTok{ws\textquotesingle{}))\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go2\ensuremath{\text{ }}(rejoined)\ensuremath{\text{ }}((}\CharTok{\textquotesingle{}\ensuremath{\text{ }}\textquotesingle{}}\FunctionTok{:}\NormalTok{w\textquotesingle{})}\FunctionTok{:}\NormalTok{ws\textquotesingle{})}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go2\ensuremath{\text{ }}rejoined\ensuremath{\text{ }}((c}\FunctionTok{:}\NormalTok{cs)}\FunctionTok{:}\NormalTok{ws)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go2\ensuremath{\text{ }}(c}\FunctionTok{:}\NormalTok{rejoined)\ensuremath{\text{ }}(cs}\FunctionTok{:}\NormalTok{ws)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{reverseList\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{reverseList\ensuremath{\text{ }}w\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go3\ensuremath{\text{ }}[]\ensuremath{\text{ }}w}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go3\ensuremath{\text{ }}rev\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{rev}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go3\ensuremath{\text{ }}rev\ensuremath{\text{ }}(c}\FunctionTok{:}\NormalTok{cs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go3\ensuremath{\text{ }}(c}\FunctionTok{:}\NormalTok{rev)\ensuremath{\text{ }}cs}\newline
\end{Highlighting}
\end{Shaded}}

There are too many problems with this {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape thing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; so let us consider just three of them:
\begin{myitemize}
\item{} To see whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily monsterRevWords}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does what you expect, you could either take our word for it, test it exhaustively on all sorts of possible inputs, or attempt to understand it and get an awful headache (please don\textquotesingle{}t).
\item{} Furthermore, if we write a function this ugly and have to fix a bug or slightly modify it later on,\myfootnote{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Co-{}author\textquotesingle{}s note}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: \symbol{34}Later on? I wrote that half an hour ago, and I\textquotesingle{}m not totally sure about how it works already...\symbol{34}} we are set for an awful time.
\item{} Finally, we have at least one easy-{}to-{}spot potential problem: if you have another glance at the definition, about halfway down there is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily testSpace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} helper function which checks if a character is a space or not. The test, however, only includes the common space character (that is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{} \textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), and no other whitespace characters (tabs, newlines, etc.).\myfootnote{A reliable way of checking whether a character is whitespace is with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isSpace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, which is in the module {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Char}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}
\end{myitemize}

We can do much better than the junk above if we use the following Prelude functions:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily words}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which reliably breaks down a string in whitespace delimited words, returning a list of strings;
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which reverses a list (incidentally, that is exactly what the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverseList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} above does); and
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unwords}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which does the opposite of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily words}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf};
\end{myitemize}

then function composition means our problem is instantly solved.

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily revWords}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} done the Haskell way}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{revWords\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{revWords\ensuremath{\text{ }}input\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(unwords\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{reverse\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{words)\ensuremath{\text{ }}input}\newline
\end{Highlighting}
\end{Shaded}}

That\textquotesingle{}s short, simple, readable and (since Prelude is reliable) bug-{}free.\myfootnote{In case you are wondering, many other functions from Prelude or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} could help to make {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily monsterRevWords}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} somewhat saner — to name a few: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily groupBy}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily intersperse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — but no use of those would compare to the one-{}liner above.} So, any time some program you are writing begins to look like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily monsterRevWords}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, look around and reach for your toolbox — the libraries.
\section{This book\textquotesingle{}s use of the libraries}
\label{57}

After the stern warnings above, you might expect us to continue diving deep into the standard libraries. However, the Beginner\textquotesingle{}s Track is meant to cover Haskell functionality in a conceptual, readable, and reasonably compact manner. A systematic study of the libraries would not help us, but we will introduce functions from the libraries as appropriate to each concept we cover.

\begin{myitemize}
\item{} In the Elementary Haskell section, several of the exercises (mainly, among those about list processing) involve writing equivalent definitions for Prelude functions. For each of these exercises you do, one more function will be added to your repertoire.
\item{} Every now and then we will introduce more library functions; maybe within an example, or just with a mention in passing. Whenever we do so, take a minute to test the function and do some experiments. Remember to extend that habitual curiosity about types we mentioned in \mylref{29}{Type basics} to the functions themselves.
\item{} While the first few chapters are quite tightly-{}knit, later parts of the book are more independent. Haskell in Practice includes chapters on the \mylref{582}{Hierarchical libraries}, and most of their content can be understood soon after having completed Elementary Haskell.
\item{} As we reach the later parts of the Beginner\textquotesingle{}s track, the concepts we will discuss (monads in particular) will naturally lead to exploration of important parts of the core libraries.
\end{myitemize}

\section{Other resources}
\label{58}

\begin{myitemize}
\item{} First and foremost, all modules have basic documentation. You may not be ready to read that directly yet, but we\textquotesingle{}ll get there. You can read the \myhref{http://www.haskell.org/onlinereport/standard-prelude.html}{Prelude specification} on-{}line as well as the \myhref{http://www.haskell.org/ghc/docs/latest/html/libraries/index.html}{documentation of the libraries bundled with GHC}, with nice navigation and source code just one click away.
\item{} \myhref{http://www.haskell.org/hoogle}{Hoogle} is a great way to search through the documentation. It is a Haskell search engine which covers the core libraries. You can search for everything from function names to type definitions and more.
\item{} Beyond the libraries included with GHC, there is a large ecosystem of libraries, made available through \myhref{https://hackage.haskell.org/}{Hackage} and installable with a tool called \myhref{http://www.haskell.org/cabal/users-guide/}{cabal}. The Hackage site has documentation for its libraries. We will not venture outside of the core libraries in the Beginner\textquotesingle{}s Track, but you should certainly use Hackage once you begin your own projects. A second Haskell search engine called \myhref{http://holumbus.fh-wedel.de/hayoo/hayoo.html}{Hayoo!} covers all of Hackage.
\item{} When appropriate, we will give pointers to other useful learning resources, especially when we move towards intermediate and advanced topics.
\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Next steps}

\myminitoc
\label{59}

\label{60}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

This chapter introduces {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape pattern matching}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and two new pieces of syntax: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings.
\section{if / then / else}
\label{61}

Haskell syntax supports garden-{}variety conditional expressions of the form {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape if... then... else ...}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For instance, consider a function that returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}1)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if its argument is less than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if its argument {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if its argument is greater than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The predefined {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily signum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function does that job already; but for the sake of illustration, let\textquotesingle{}s define a version of our own:

\HaskellExampleTemplate{The signum function.}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mySignum\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\FunctionTok{-}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}

You can experiment with this:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} mySignum 5
1
\item{} Main>{} mySignum 0
0
\item{} Main>{} mySignum (5 -{} 10)
-{}1
\item{} Main>{} mySignum (-{}1)
-{}1

\end{myitemize}

\end{TemplateCodeInside}}

The parentheses around \symbol{34}-{}1\symbol{34} in the last example are required; if missing, Haskell will think that you are trying to subtract {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mySignum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (which would give a type error).

In an if/then/else construct, first the condition (in this case {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x <{} 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) is evaluated. If it results {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the whole construct evaluates to the {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries then}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression; otherwise (if the condition is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), the construct evaluates to the {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries else}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression. All of that is pretty intuitive. If you have programmed in an imperative language before, however, it might seem surprising to know that Haskell always requires {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape both}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries then}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape and}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries else}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause. The construct has to result in a value in both cases and, specifically, a value of the same type in both cases.

Function definitions using if / then / else like the one above can be rewritten using \mylref{26}{Guards}.

\HaskellExampleTemplate{From if to guards}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mySignum\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{-}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}}

Similarly, the absolute value function defined in \mylref{26}{Truth values} can be rendered with an if/then/else:

\HaskellExampleTemplate{From guards to if}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{absolute\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\FunctionTok{-}\NormalTok{x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}}

Why use if/then/else versus guards? As you will see with later examples and in your own programming, either way of handling conditionals may be more readable or convenient depending on the circumstances. In many cases, both options work equally well.
\section{Introducing pattern matching}
\label{62}

Consider a program which tracks statistics from a racing competition in which racers receive points based on their classification in each race, the scoring rules being:
\begin{myitemize}
\item{} 10 points for the winner;
\item{} 6 for second-{}placed;
\item{} 4 for third-{}placed;
\item{} 3 for fourth-{}placed;
\item{} 2 for fifth-{}placed;
\item{} 1 for sixth-{}placed;
\item{} no points for other racers.
\end{myitemize}

We can write a simple function which takes a classification (represented by an integer number: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for first place, etc.\myfootnote{Here we will not be much worried about what happens if a nonsensical value (say, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}4)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) is passed to the function. In general, however, it is a good idea to give some thought to such \symbol{34}strange\symbol{34} cases, in order to avoid nasty surprises down the road.}) and returns how many points were earned. One possible solution uses if/then/else:

\HaskellExampleTemplate{Computing points with if/then/else}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{pts\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{pts\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{10}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{6}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{3}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{4}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{4}\newline
\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{3}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{5}\newline
\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{2}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{6}\newline
\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}}

Yuck! Admittedly, it wouldn\textquotesingle{}t look this hideous had we used guards instead of if/then/else, but it still would be tedious to write (and read!) all those equality tests. We can do better, though:

\HaskellExampleTemplate{Computing points with a piece-{}wise definition}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{pts\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{10}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{6}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{4}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{3}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{6}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\NormalTok{pts\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Much}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} better. However, even though defining {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in this style (which we will arbitrarily call {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape piece-{}wise definition}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from now on) shows to a reader of the code what the function does in a clear way, the syntax looks odd given what we have seen of Haskell so far. Why are there seven equations for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? What are those numbers doing in their left-{}hand sides? What about variable arguments?

This feature of Haskell is called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape pattern matching}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. When we call {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the argument is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape matched}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} against the numbers on the left side of each of the equations, which in turn are the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape patterns}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The matching is done in the order we wrote the equations. First, the argument is matched against the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the first equation. If the argument is indeed {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we have a match and the first equation is used; so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 10}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as expected. Otherwise, the other equations are tried in order following the same procedure. The final one, though, is rather different: the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a special pattern, often called a \symbol{34}wildcard\symbol{34}, that might be read as \symbol{34}whatever\symbol{34}: it matches with anything; and therefore if the argument doesn\textquotesingle{}t match any of the previous patterns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will return zero.

As for the lack of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or any other variable standing for the argument, we simply don\textquotesingle{}t need that to write the definitions. All possible return values are constants. Besides, variables are used to express relationships on the right side of the definition, so the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is unnecessary in our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function.

However, we could use a variable to make {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} even more concise. The points given to a racer decrease regularly from third place to sixth place, at a rate of one point per position. After noticing that, we can eliminate three of the seven equations as follows:

\HaskellExampleTemplate{Mixing styles}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{pts\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{10}\newline
\NormalTok{pts\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{6}\newline
\NormalTok{pts\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<=}\ensuremath{\text{ }}\DecValTok{6}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{7}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}}

So, we can mix both styles of definitions. In fact, when we write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the left side of an equation we are using pattern matching too! As a pattern, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (or any other variable name) matches anything just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; the only difference being that it also gives us a name to use on the right side (which, in this case, is necessary to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 7 -{} x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

\LaTeXExercisesTemplate{We cheated a little when moving from the second version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the third one: they do not do exactly the same thing. Can you spot what the difference is?}

Beyond integers, pattern matching works with values of various other types. One handy example is booleans. For instance, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (||)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} logical-{}or operator we met in \mylref{27}{Truth values} could be defined as:

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (||)}}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(||)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\DataTypeTok{False}\ensuremath{\text{ }}\FunctionTok{||}\ensuremath{\text{ }}\DataTypeTok{False}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{||}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\end{Highlighting}
\end{Shaded}}

Or:

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (||)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, done another way}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(||)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\DataTypeTok{True}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{||}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\DataTypeTok{False}\ensuremath{\text{ }}\FunctionTok{||}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{y}\newline
\end{Highlighting}
\end{Shaded}}

When matching two or more arguments at once, the equation will only be used if all of them match.

Now, let\textquotesingle{}s discuss a few things that might go wrong when using pattern matching:

\begin{myitemize}
\item{} If we put a pattern which matches anything (such as the final patterns in each of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pts}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example) {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape before}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the more specific ones the latter will be ignored. GHC(i) will typically warn us that \symbol{34}Pattern match(es) are overlapped\symbol{34} in such cases.
\item{} If no patterns match, an error will be triggered. Generally, it is a good idea to ensure the patterns cover all cases, in the same way that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} guard is not mandatory but highly recommended.
\item{} Finally, while you can play around with various ways of (re)defining {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&\&),}\myfootnote{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}If you are going to experiment with it in GHCi, call your version something else to avoid a name clash; say, (\&!\&).} here is one version that will {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} work:
\end{myitemize}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(\&\&)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}oops!}\newline
\NormalTok{_\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\end{Highlighting}
\end{Shaded}

\begin{myquote}
\item{} The program won\textquotesingle{}t test whether the arguments are equal just because we happened to use the same name for both. As far as the matching goes, we could just as well have written {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _ \&\& _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the first case. And even worse: because we gave the same name to both arguments, GHC(i) will refuse the function due to \symbol{34}Conflicting definitions for `x\textquotesingle{}\symbol{34}.
\end{myquote}

\section{Tuple and list patterns}
\label{63}

While the examples above show that pattern matching helps in writing more elegant code, that does not explain why it is so important. So, let\textquotesingle{}s consider the problem of writing a definition for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the function which extracts the first element of a pair. At this point, that appears to be an impossible task, as the only way of accessing the first value of the pair is by using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself... The following function, however, does the same thing as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (confirm it in GHCi):

\HaskellExampleTemplate{A definition for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{fst\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{fst\textquotesingle{}\ensuremath{\text{ }}(x,\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}}

It\textquotesingle{}s magic! Instead of using a regular variable in the left side of the equation, we specified the argument with the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape pattern}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the 2-{}tuple -{} that is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (,)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} filled with a variable and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern. Then the variable was automatically associated with the first component of the tuple, and we used it to write the right side of the equation. The definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily snd}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is, of course, analogous.

Furthermore, the trick demonstrated above can be done with lists as well. Here are the actual definitions of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and patterns}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{head}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{head\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{_)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{head\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}}\StringTok{"Prelude.head:\ensuremath{\text{ }}empty\ensuremath{\text{ }}list"}\newline
\ensuremath{\text{ }}\newline
\NormalTok{tail}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{tail\ensuremath{\text{ }}(_}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{xs}\newline
\NormalTok{tail\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}}\StringTok{"Prelude.tail:\ensuremath{\text{ }}empty\ensuremath{\text{ }}list"}\newline
\end{Highlighting}
\end{Shaded}}

The only essential change in relation to the previous example was replacing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (,)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with the pattern of the cons operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. These functions also have an equation using the pattern of the empty list, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; however, since empty lists have no head or tail there is nothing to do other than use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily error}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to print a prettier error message.

In summary, the power of pattern matching comes from its use in accessing the parts of a complex value. Pattern matching on lists, in particular, will be extensively deployed in \mylref{78}{Recursion} and the chapters that follow it. Later on, we will explore what is happening behind this seemingly magical feature.
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings}
\label{64}

To conclude this chapter, a brief word about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings (an alternative to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clauses for making local declarations). For instance, take the problem of finding the roots of a polynomial of the form {ax^2+bx+c} (in other words, the solution to a second degree equation — think back to your middle school math courses). Its solutions are given by:
\begin{myquote}
\item{} \begin{equation*}x = \frac {-b \pm \sqrt{b^2-4ac}} {2a}\end{equation*}
\end{myquote}

We could write the following function to compute the two values of {x}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{roots\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{((}\FunctionTok{-}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{sqrt(b\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c))\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a),}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{-}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{sqrt(b\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c))\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a))}\newline
\end{Highlighting}
\end{Shaded}

Writing the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sqrt(b * b -{} 4 * a * c)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} term in both cases is annoying, though; we can use a local binding instead, using either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or, as will be demonstrated below, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{roots\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{sdisc\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sqrt\ensuremath{\text{ }}(b\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{((}\FunctionTok{-}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{sdisc)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a),}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{-}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{sdisc)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a))}\newline
\end{Highlighting}
\end{Shaded}

We put the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword before the declaration, and then use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily in}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to signal we are returning to the \symbol{34}main\symbol{34} body of the function. It is possible to put multiple declarations inside a single {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily in}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block — just make sure they are indented the same amount or there will be syntax errors:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{roots\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{sdisc\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sqrt\ensuremath{\text{ }}(b\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{twice_a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{((}\FunctionTok{-}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{sdisc)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{twice_a,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{-}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{sdisc)\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{twice_a)}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateInfo}{\danger}{Warning}
Because indentation matters syntactically in Haskell, you need to be careful about whether you are using tabs or spaces. By far the best solution is to configure your text editor to insert two or four spaces in place of tabs. If you insist on keeping tabs as distinct, at least ensure that your tabs always have the same length.
\end{TemplateInfo}

\LaTeXbodynoteTemplate{The \mylref{169}{Indentation} chapter has a full account of indentation rules.}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Simple input and output}

\myminitoc
\label{65}

\label{66}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\section{Back to the real world}
\label{67}

Beyond internally calculating values, we want our programs to interact with the world. The most common beginners\textquotesingle{} program in any language simply displays a \symbol{34}hello world\symbol{34} greeting on the screen. Here\textquotesingle{}s a Haskell version:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Hello,\ensuremath{\text{ }}World!"}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is one of the standard Prelude tools. As the \symbol{34}putStr\symbol{34} part of the name suggests, it takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as an argument and prints it to the screen. We could use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on its own, but we usually include the \symbol{34}Ln\symbol{34} part so to also print a line break. Thus, whatever else is printed next will appear on a new line.

So now you should be thinking, \symbol{34}what is the type of the putStrLn function?\symbol{34} It takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and gives… um… what? What do we call that? The program doesn\textquotesingle{}t get something back that it can use in another function. Instead, the result involves having the computer change the screen. In other words, it does something in the world outside of the program. What type could that have? Let\textquotesingle{}s see what GHCi tells us:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}putStrLn}\newline
\NormalTok{putStrLn}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\end{Highlighting}
\end{Shaded}

\symbol{34}IO\symbol{34} stands for \symbol{34}input and output\symbol{34}. Wherever there is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in a type, interaction with the world outside the program is involved. We\textquotesingle{}ll call these {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape actions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The other part of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type, in this case {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is the type of the return value of the action; that is, the type of what it gives back to the program (as opposed to what it does outside the program). {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (pronounced as \symbol{34}unit\symbol{34}) is a type that only contains one value also called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (effectively a tuple with zero elements). Since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} sends output to the world but doesn\textquotesingle{}t return anything to the program, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used as a placeholder. We might read {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as \symbol{34}action which returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34}.

A few more examples of when we use IO:

\begin{myitemize}
\item{} print a string to the screen
\item{} read a string from a keyboard
\item{} write data to a file
\item{} read data from a file
\end{myitemize}

What makes IO actually work? Lots of things happen behind the scenes to take us from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to pixels in the screen, but we don\textquotesingle{}t need to understand any of the details to write our programs. A complete Haskell program is actually a big IO action. In a compiled program, this action is called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily main}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. From this point of view, to write a Haskell program is to combine actions and functions to form the overall action {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily main}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that will be executed when the program is run. The compiler takes care of instructing the computer on how to do this.

\LaTeXExercisesTemplate{Back in the Type Basics chapter, we mentioned that the type of the \mylref{31}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily openWindow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function} had been simplified. Can you guess what the simplification was?}
\section{Sequencing actions with {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{68}

{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation provides a convenient means of putting actions together (which is essential in doing useful things with Haskell). Consider the following program:

\HaskellExampleTemplate{What is your name?}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Please\ensuremath{\text{ }}enter\ensuremath{\text{ }}your\ensuremath{\text{ }}name:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello,\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{",\ensuremath{\text{ }}how\ensuremath{\text{ }}are\ensuremath{\text{ }}you?"}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}}

\LaTeXbodynoteTemplate{Even though {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation looks very different from the Haskell code we have seen so far, it is just syntactic sugar for a handful of functions, the most important of them being the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator. We could explain how those functions work and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} introduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation. However, there are several topics we would need to cover before we can give a convincing explanation. Jumping in with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} right now is a pragmatic short cut that will allow you to start writing complete programs with IO right away. We will see how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works later in the book, beginning with the \mylref{221}{../Understanding monads/} chapter.}

Before we get into how {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works, take a look at {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It goes to the outside world (to the terminal in this case) and brings back a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. What is its type?

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}getLine}\newline
\NormalTok{getLine}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

That means {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an IO action that, when run, will return a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But what about the input? While functions have types like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which reflect that they take arguments and give back results, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t actually take an argument. It takes as input whatever is in the line in the terminal. However, that line in the outside world isn\textquotesingle{}t a defined value with a type until we bring it into the Haskell program.

The program doesn\textquotesingle{}t know the state of the outside world until runtime, so it cannot predict the exact results of IO actions. To manage the relationship of these IO actions to other aspects of a program, the actions must be executed in a predictable sequence defined in advance in the code. With regular functions that do not perform IO, the exact sequencing of execution is less of an issue — as long as the results eventually go to the right places.

In our name program, we\textquotesingle{}re sequencing three actions: a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a greeting, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and another {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. With the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation which assigns a variable name to stand for the returned value. We cannot know what the value will be in advance, but we know it will use the specified variable name, so we can then use the variable elsewhere (in this case, to prepare the final message being printed). The final action defines the type of the whole {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block. Here, the final action is the result of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so our whole program has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXExercisesTemplate{Write a program which asks the user for the base and height of a right angled triangle, calculates its area, and prints it to the screen.
The interaction should look something like:
\TemplatePreformat{ \newline{}
The {}base? \newline{}
3.3 \newline{}
The {}height? \newline{}
5.4 \newline{}
The {}area {}of {}that {}triangle {}is {}8.91 \newline{}
}
You will need to use the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily read}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to convert user strings like \symbol{34}3.3\symbol{34} into numbers like 3.3 and the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to convert a number into string.}
\subsection{Left arrow clarifications}
\label{69}

While actions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are almost always used to get values, we are not obliged to actually get them. For example, we could write something like this:

\HaskellExampleTemplate{executing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} directly}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Please\ensuremath{\text{ }}enter\ensuremath{\text{ }}your\ensuremath{\text{ }}name:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Hello,\ensuremath{\text{ }}how\ensuremath{\text{ }}are\ensuremath{\text{ }}you?"}\newline
\end{Highlighting}
\end{Shaded}}

In this case, we don\textquotesingle{}t use the input at all, but we still give the user the experience of entering their name. By omitting the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the action will happen, but the data won\textquotesingle{}t be stored or accessible to the program.
\subsubsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used with any action except the last}
\label{70}

There are very few restrictions on which actions can have values
obtained from them. Consider the following example where we put the
results of each action into a variable (except the last... more on that
later):

\HaskellExampleTemplate{putting all results into a variable}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Please\ensuremath{\text{ }}enter\ensuremath{\text{ }}your\ensuremath{\text{ }}name:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello,\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{",\ensuremath{\text{ }}how\ensuremath{\text{ }}are\ensuremath{\text{ }}you?"}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}}

The variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gets the value out
of its action, but that isn\textquotesingle{}t useful in this case because
the action returns the unit value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So while we could technically get the value out
of any action, it isn\textquotesingle{}t always worth it.

So, what about the final action? Why can\textquotesingle{}t we get a value out of that? Let\textquotesingle{}s see what happens
when we try:

\HaskellExampleTemplate{getting the value out of the last action}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Please\ensuremath{\text{ }}enter\ensuremath{\text{ }}your\ensuremath{\text{ }}name:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello,\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{",\ensuremath{\text{ }}how\ensuremath{\text{ }}are\ensuremath{\text{ }}you?"}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Whoops! Error!
\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
HaskellWikibook.hs:5:2:\TemplateSpaceIndent{ {} {} {} {}The {}last {}statement {}in {}a {}\textquotesingle{}do\textquotesingle{} {}construct {}must {}be {}an {}expression}
 \newline{}

\end{TemplateCodeInside}}

Making sense of this requires a somewhat deeper understanding of Haskell than we currently have. Suffice it to
say, whenever you use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to get the value of an action, Haskell is always expecting another action to follow it.
So the final action cannot have any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s.
\subsection{Controlling actions}
\label{71}

Normal Haskell constructions like {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries if/then/else}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
can be used within the {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries do}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation, but you need to take some
care here. For instance, in a simple \symbol{34}guess the number\symbol{34} program, we have:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doGuessing\ensuremath{\text{ }}num\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}guess:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guess\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\NormalTok{num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}low!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}high!"}\newline
\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"You\ensuremath{\text{ }}Win!"}\newline
\end{Highlighting}
\end{Shaded}

Remember that the {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries if/then/else}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} construction takes three arguments:
the condition, the \symbol{34}then\symbol{34} branch, and the \symbol{34}else\symbol{34} branch. The condition needs to have type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf},
and the two branches can have any type, provided that they have the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape same}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type. The type of the entire {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries if/then/else}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
construction is then the type of the two branches.

In the outermost comparison, we have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (read guess) <{} num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the condition.
That has the correct type. Let\textquotesingle{}s now consider the \symbol{34}then\symbol{34} branch. The code here is:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}low!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\end{Highlighting}
\end{Shaded}

Here, we are sequencing two actions: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doGuessing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The first has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is fine. The
second also has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is fine. The type result of the
entire computation is precisely the type of the final computation.
Thus, the type of the \symbol{34}then\symbol{34} branch is also {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A similar
argument shows that the type of the \symbol{34}else\symbol{34} branch is also {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
This means the type of the entire {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries if/then/else}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
construction is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is what we want.

Note: be careful if you find yourself thinking, \symbol{34}Well, I already started
a {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries do}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block; I don\textquotesingle{}t need another one.\symbol{34} We can\textquotesingle{}t have code like:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\NormalTok{num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}low!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\FunctionTok{...}\newline
\end{Highlighting}
\end{Shaded}

Here, since we didn\textquotesingle{}t repeat the {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries do}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the compiler doesn\textquotesingle{}t know
that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doGuessing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} calls are supposed to be
sequenced, and the compiler will think you\textquotesingle{}re trying to call
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with three arguments: the string, the function
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doGuessing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the integer {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and thus reject the program.

\LaTeXExercisesTemplate{Write a program that asks the user for his or her name. If the name is
one of Simon, John or Phil, tell the user that you think Haskell is a
great programming language. If the name is Koen, tell them that you
think debugging Haskell is fun (Koen Classen is one of the people who
works on Haskell debugging); otherwise, tell the user that you don\textquotesingle{}t know who he or she is.
(As far as syntax goes there are a few different ways to do it; write at least a version using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} / {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} / {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.)}
\section{Actions under the microscope}
\label{72}

Actions may look easy up to now, but they are a common stumbling block for new Haskellers. If you have run into trouble working with actions, see if any of your problems or questions match any of the cases below. We suggest skimming this section now, then come back here when you actually experience trouble.
\subsection{Mind your action types}
\label{73}

One temptation might be to simplify our program for getting a name and printing it back out. Here is one unsuccessful attempt:

\HaskellExampleTemplate{Why doesn\textquotesingle{}t this work?}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"What\ensuremath{\text{ }}is\ensuremath{\text{ }}your\ensuremath{\text{ }}name?\ensuremath{\text{ }}"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{getLine)}\newline
\end{Highlighting}
\end{Shaded}

Ouch! Error!

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
HaskellWikiBook.hs:3:26:\TemplateSpaceIndent{ {} {} {} {}Couldn\textquotesingle{}t {}match {}expected {}type {}`{[}Char{]}\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {}against {}inferred {}type {}`IO {}String\textquotesingle{}}
 \newline{}

\end{TemplateCodeInside}}

Let us boil the example above down to its simplest form. Would you expect this program to compile?

\HaskellExampleTemplate{This still does not work}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}getLine}\newline
\end{Highlighting}
\end{Shaded}}

For the most part, this is the same (attempted) program, except that we\textquotesingle{}ve stripped off the superfluous \symbol{34}What is your name\symbol{34} prompt as well as the polite \symbol{34}Hello\symbol{34}. One trick to understanding this is to reason about it in terms of types. Let us compare:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}putStrLn\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\OtherTok{\ensuremath{\text{ }}getLine\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

We can use the same mental machinery we learned in \mylref{29}{../Type basics/} to figure how this went wrong. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is expecting a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as input. We do not have a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; we have something tantalisingly close: an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This represents an action that will {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape give}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} us a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when it\textquotesingle{}s run. To obtain the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wants, we need to run the action, and we do that with the ever-{}handy left arrow, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\HaskellExampleTemplate{This time it works}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}name}\newline
\end{Highlighting}
\end{Shaded}

Working our way back up to the fancy example:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"What\ensuremath{\text{ }}is\ensuremath{\text{ }}your\ensuremath{\text{ }}name?\ensuremath{\text{ }}"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{name)}\newline
\end{Highlighting}
\end{Shaded}}

Now the name is the String we are looking for and everything is rolling again.
\subsection{Mind your expression types too}
\label{74}

So, we\textquotesingle{}ve made a big deal out of the idea that you can\textquotesingle{}t use actions in situations that don\textquotesingle{}t call for them. The converse of this is that you can\textquotesingle{}t use non-{}actions in situations that expect actions. Say we want to greet the user, but this time we\textquotesingle{}re so excited to meet them, we just have to SHOUT their name out:
\HaskellExampleTemplate{Exciting but incorrect. Why?}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Char}\ensuremath{\text{ }}\NormalTok{(toUpper)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{loudName\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{makeLoud\ensuremath{\text{ }}name}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{loudName\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"!"}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Oh\ensuremath{\text{ }}boy!\ensuremath{\text{ }}Am\ensuremath{\text{ }}I\ensuremath{\text{ }}excited\ensuremath{\text{ }}to\ensuremath{\text{ }}meet\ensuremath{\text{ }}you,\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{loudName)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Don\textquotesingle{}t\ensuremath{\text{ }}worry\ensuremath{\text{ }}too\ensuremath{\text{ }}much\ensuremath{\text{ }}about\ensuremath{\text{ }}this\ensuremath{\text{ }}function;\ensuremath{\text{ }}it\ensuremath{\text{ }}just\ensuremath{\text{ }}converts\ensuremath{\text{ }}a\ensuremath{\text{ }}String\ensuremath{\text{ }}to}\newline
\ensuremath{\text{ }}\NormalTok{uppercase}\newline
\OtherTok{makeLoud\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{makeLoud\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}toUpper\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

This goes wrong...
\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
\TemplateSpaceIndent{ {} {} {} {}Couldn\textquotesingle{}t {}match {}expected {}type {}`IO\textquotesingle{} {}against {}inferred {}type {}`{[}{]}\textquotesingle{} \newline{}
 {} {} {} {} {} {}Expected {}type: {}IO {}t \newline{}
 {} {} {} {} {} {}Inferred {}type: {}String \newline{}
 {} {} {} {}In {}a {}\textquotesingle{}do\textquotesingle{} {}expression: {}loudName {}<{}-{} {}makeLoud {}name}
 \newline{}

\end{TemplateCodeInside}}

This is similar to the problem we ran into above: we\textquotesingle{}ve got a mismatch between something expecting an IO type and something which does not produce IO. This time, the trouble is the left arrow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; we\textquotesingle{}re trying to left-{}arrow a value of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLoud name}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which really isn\textquotesingle{}t left arrow material. It\textquotesingle{}s basically the same mismatch we saw in the previous section, except now we\textquotesingle{}re trying to use regular old String (the loud name) as an IO String. The latter is an action, something to be run, whereas the former is just an expression minding its own business. We cannot simply use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loudName = makeLoud name}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} sequences {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape actions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loudName = makeLoud name}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not an action.

So how do we extricate ourselves from this mess? We have a number of options:
\begin{myitemize}
\item{} We could find a way to turn {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLoud}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into an action, to make it return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However, we don\textquotesingle{}t want to make actions go out into the world for no reason. Within our program, we can reliably verify how everything is working. When actions engage the outside world, our results are much less predictable. An IO {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLoud}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be misguided. Consider another issue too: what if we wanted to use makeLoud from some other, non-{}IO, function? We really don\textquotesingle{}t want to engage IO actions except when absolutely necessary.
\item{} We could use a special code called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to promote the loud name into an action, writing something like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loudName <{}-{} return (makeLoud name)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is slightly better. We at least leave the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLoud}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function itself nice and IO-{}free whilst using it in an IO-{}compatible fashion. That\textquotesingle{}s still moderately clunky because, by virtue of left arrow, we\textquotesingle{}re implying that there\textquotesingle{}s action to be had -{}-{} how exciting! -{}-{} only to let our reader down with a somewhat anticlimactic {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (note: we will learn more about appropriate uses for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in later chapters).
\item{} Or we could use a let binding...
\end{myitemize}

It turns out that Haskell has a special extra-{}convenient syntax for let bindings in actions. It looks a little like this:

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks.}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{loudName\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{makeLoud\ensuremath{\text{ }}name}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{loudName\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"!"}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Oh\ensuremath{\text{ }}boy!\ensuremath{\text{ }}Am\ensuremath{\text{ }}I\ensuremath{\text{ }}excited\ensuremath{\text{ }}to\ensuremath{\text{ }}meet\ensuremath{\text{ }}you,\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{loudName)}\newline
\end{Highlighting}
\end{Shaded}}

If you\textquotesingle{}re paying attention, you might notice that the let binding above is missing an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily in}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings inside {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks do not require the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily in}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword. You could very well use it, but then you\textquotesingle{}d have messy extra do blocks. For what it\textquotesingle{}s worth, the following two blocks of code are equivalent.

{\scalefont{0.52741}\begin{longtable}{|>{\RaggedRight}p{0.47143\linewidth}|>{\RaggedRight}p{0.47143\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}sweet}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}unsweet}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{} {}do {}name {}<{}-{} {}getLine\newline{} {} {} {} {}let {}loudName {}= {}makeLoud {}name\newline{} {} {} {} {}putStrLn {}(\symbol{34}Hello {}\symbol{34} {}++ {}loudName {}++ {}\symbol{34}!\symbol{34})\newline{} {} {} {} {}putStrLn {}(\newline{} {} {} {} {} {} {} {} {}\symbol{34}Oh {}boy! {}Am {}I {}excited {}to {}meet {}you, {}\symbol{34}\newline{} {} {} {} {} {} {} {} {} {} {} {} {}++ {}loudName)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{} {}do {}name {}<{}-{} {}getLine\newline{} {} {} {} {}let {}loudName {}= {}makeLoud {}name\newline{} {} {} {} {}in {} {}do {}putStrLn {}(\symbol{34}Hello {}\symbol{34} {}++ {}loudName {}++ {}\symbol{34}!\symbol{34})\newline{} {} {} {} {} {} {} {} {} {} {} {}putStrLn {}(\newline{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\symbol{34}Oh {}boy! {}Am {}I {}excited {}to {}meet {}you, {}\symbol{34}\newline{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}++ {}loudName)}\\ \hline
\end{longtable}
}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Why does the unsweet version of the let binding require an extra {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword?
\item{} Do you always need the extra {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?
\item{} (extra credit) Curiously, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily in}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is exactly how we wrote things when we were playing with the interpreter in the beginning of this book. Why is it ok to omit the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily in}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword in the interpreter but needed (outside of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks) in a source file?

\end{myenumerate}}
\section{Learn more}
\label{75}

At this point, you have the fundamentals needed to do some fancier input/output. Here are some IO-{}related topics you may want to check in parallel with the main track of this course.
\begin{myitemize}
\item{} You could continue the sequential track, learning more about \mylref{107}{types} and eventually \mylref{221}{monads}.
\item{} Alternately: you could start learning about building graphical user interfaces in the \mylref{691}{../GUI/} chapter
\item{} For more IO-{}related functionality, you could also consider learning more about the \mylref{601}{System.IO library}
\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Elementary Haskell}

\myminitoc
\label{76}

\chapter{Recursion}

\myminitoc
\label{77}

\label{78}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Recursion}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} plays a central role in Haskell (and computer science and mathematics in general). Recursion is merely a form of repetition, but sometimes it is taught in confusing or obscure ways. To understand recursion, you should separate the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape meaning}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of a recursive function from its {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape behaviour}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

A function is recursive when one part of its definition includes the function itself again. Along with the recursive condition, these functions generally also contain at least one {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape base case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} condition that stops (i.e. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape terminates}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) the function without calling the function again. Without a terminating condition, recursive functions would lead to infinite regress (i.e. an infinite loop).
\section{Numeric recursion}
\label{79}
\subsection{The factorial function}
\label{80}
Mathematics (specifically combinatorics) has a function called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries factorial}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{In mathematics, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}! normally means the factorial of a non-{}negative integer {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but that syntax is impossible in Haskell, so we don\textquotesingle{}t use it here.} It takes a single non-{}negative integer as an argument, finds all the positive integers less than or equal to \symbol{34}n\symbol{34}, and multiplies them all together. For example, the factorial of 6 (denoted as {$6!$}) is {$1 \times 2 \times 3 \times 4 \times 5 \times 6 = 720$}. We can use a recursive style to define this in Haskell:

Let\textquotesingle{}s look at the factorials of two adjacent numbers:

\HaskellExampleTemplate{Factorials of consecutive numbers}{\TemplatePreformat{ \newline{}
Factorial {}of {}6 {}= {}6 {}× {}5 {}× {}4 {}× {}3 {}× {}2 {}× {}1 \newline{}
Factorial {}of {}5 {}= {} {} {} {} {}5 {}× {}4 {}× {}3 {}× {}2 {}× {}1 \newline{}
}}

Notice how we\textquotesingle{}ve lined things up. You can see here that the {$6!$} includes the {$5!$}. In fact, {$6!$} is just {$6 \times 5!$}. Let\textquotesingle{}s continue:

\HaskellExampleTemplate{Factorials of consecutive numbers}{\TemplatePreformat{ \newline{}
Factorial {}of {}4 {}= {}4 {}× {}3 {}× {}2 {}× {}1 \newline{}
Factorial {}of {}3 {}= {} {} {} {} {}3 {}× {}2 {}× {}1 \newline{}
Factorial {}of {}2 {}= {} {} {} {} {} {} {} {} {}2 {}× {}1 \newline{}
Factorial {}of {}1 {}= {} {} {} {} {} {} {} {} {} {} {} {} {}1 \newline{}
}}

The factorial of any number is just that number multiplied by the factorial of the number one less than it. There\textquotesingle{}s one exception: if we ask for the factorial of 0, we don\textquotesingle{}t want to multiply 0 by the factorial of -{}1 (factorial is only for positive numbers). In fact, we just say the factorial of 0 is 1 (we {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape define}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it to be so. Just take our word for it that this is right.\myfootnote{Actually, defining the factorial of 0 to be 1 is not just arbitrary; it\textquotesingle{}s because the factorial of 0 represents an \myfnhref{https://en.wikipedia.org/wiki/empty\%20product}{empty product}.}). So, 0 is the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape base case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the recursion: when we get to 0 we can immediately say that the answer is 1, no recursion needed. We can summarize the definition of the factorial function as follows:

\begin{myitemize}
\item{} The factorial of 0 is 1.
\item{} The factorial of any other number is that number multiplied by the factorial of the number one less than it.
\end{myitemize}

We can translate this directly into Haskell:

\HaskellExampleTemplate{Factorial function}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{factorial\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\NormalTok{factorial\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{factorial\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}}

This defines a new function called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The first line says that the factorial of 0 is 1, and the second line says that the factorial of any other number {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} times the factorial of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n -{} 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note the parentheses around the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n -{} 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; without them this would have been parsed as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (factorial n) -{} 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; remember that function application (applying a function to a value) takes precedence over anything else when grouping isn\textquotesingle{}t specified otherwise (we say that function application {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape binds more tightly}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} than anything else).

\LaTeXbodynoteTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function above is best defined in a file, but since it is a small function, it is feasible to write it in GHCi as a one-{}liner. To do this, we need to add a semicolon to separate the lines:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{factorial\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{;\ensuremath{\text{ }}factorial\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{factorial\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Haskell actually uses line separation and other whitespace as a substitute for separation and grouping characters such as semicolons. Haskell programmers generally prefer the clean look of separate lines and appropriate indentation; still, explicit use of semicolons and other markers is always an alternative.}

The example above demonstrate the simple relationship between factorial of a number, n, and the factorial of a slightly smaller number, n -{} 1.

Think of a function call as delegation. The instructions for a recursive function delegate a sub-{}task. It just so happens that the delegate function uses the same instructions as the delegator; it\textquotesingle{}s only the input data that changes. The only really confusing thing about recursive functions is the fact that each function call uses the same parameter names, so it can be tricky to keep track of the many delegations.

Let\textquotesingle{}s look at what happens when you execute {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{myitemize}
\item{} 3 isn\textquotesingle{}t 0, so we calculate the factorial of 2
\begin{myitemize}
\item{} 2 isn\textquotesingle{}t 0, so we calculate the factorial of 1
\begin{myitemize}
\item{} 1 isn\textquotesingle{}t 0, so we calculate the factorial of 0
\begin{myitemize}
\item{} 0 {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} 0, so we return 1.
\end{myitemize}

\item{} To complete the calculation for factorial 1, we multiply the current number, 1, by the factorial of 0, which is 1, obtaining 1 (1 × 1).
\end{myitemize}

\item{} To complete the calculation for factorial 2, we multiply the current number, 2, by the factorial of 1, which is 1, obtaining 2 (2 × 1 × 1).
\end{myitemize}

\item{} To complete the calculation for factorial 3, we multiply the current number, 3, by the factorial of 2, which is 2, obtaining 6 (3 × 2 × 1 × 1).
\end{myitemize}

(Note that we end up with the one appearing twice, since the base case is 0 rather than 1; but that\textquotesingle{}s okay since multiplying by 1 has no effect. We could have designed {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to stop at 1 if we had wanted to, but the convention (which is often useful) is to define the factorial of 0.)

When reading or composing recursive functions, you\textquotesingle{}ll rarely need to \symbol{34}unwind\symbol{34} the recursion bit by bit — we leave that to the compiler.

One more note about our recursive definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: the order of the two declarations (one for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and one for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} important. Haskell decides which function definition to use by starting at the top and picking the first one that matches. If we had the general case ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) before the \textquotesingle{}base case\textquotesingle{} ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), then the general {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would match {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape anything}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} passed into it – including 0. The compiler would then conclude that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equals {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 * factorial (-{}1)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so on to negative infinity (clearly not what we want). So, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries always list multiple function definitions starting with the most specific and proceeding to the most general.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Type the factorial function into a Haskell source file and load it into GHCi.
\item{} Try examples like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial 1000}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{Interestingly, older scientific calculators can\textquotesingle{}t handle things like factorial of 1000 because they run out of memory with that many digits!}
\begin{myitemize}
\item{} What about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial (-{}1)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Why does this happen?
\end{myitemize}

\item{} The {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape double factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of a number n is the product of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape every other}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} number from 1 (or 2) up to n. For example, the double factorial of 8 is 8 × 6 × 4 × 2 = 384, and the double factorial of 7 is 7 × 5 × 3 × 1 = 105. Define a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doublefactorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function in Haskell.

\end{myenumerate}}
\subsection{Loops, recursion, and accumulating parameters}
\label{81}

Imperative languages use {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape loops}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the same sorts of contexts where Haskell programs use recursion. For example, an idiomatic way of writing a factorial function in C, a typical imperative language, would be using a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape for}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} loop, like this:

\HaskellExampleTemplate{The factorial function in an imperative language}{\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{factorial(}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{res\ensuremath{\text{ }}=\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{for}\ensuremath{\text{ }}\NormalTok{(\ensuremath{\text{ }};\ensuremath{\text{ }}n\ensuremath{\text{ }}>\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{;\ensuremath{\text{ }}n--)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{res\ensuremath{\text{ }}*=\ensuremath{\text{ }}n;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{res;}\newline
\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}}

Here, the for loop causes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily res}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to be multiplied by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} repeatedly. After each repetition, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is subtracted from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (that is what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n-{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does). The repetitions stop when {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is no longer greater than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

A straightforward translation of such a function to Haskell is not possible, since changing the value of the variables {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily res}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (a destructive update) would not be allowed. However, you can always translate a loop into an equivalent recursive form by making each loop variable into an argument of a recursive function. For example, here is a recursive \symbol{34}translation\symbol{34} of the above loop into Haskell:

\HaskellExampleTemplate{Using recursion to simulate a loop}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{factorial\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go\ensuremath{\text{ }}n\ensuremath{\text{ }}}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{go\ensuremath{\text{ }}n\ensuremath{\text{ }}res}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{go\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}(res\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{n)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{res}\newline
\end{Highlighting}
\end{Shaded}}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily go}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an auxiliary function which actually performs the factorial calculation. It takes an extra argument, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily res}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is used as an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape accumulating parameter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to build up the final result.

\LaTeXbodynoteTemplate{Depending on the languages you are familiar with, you might have concerns about performance problems caused by recursion. However, compilers for Haskell and other functional programming languages include a number of optimizations for recursion, (not surprising given how often recursion is needed). Also, Haskell is lazy — calculations are only performed once their results are required by other calculations, and that helps to avoid some of the performance problems. We\textquotesingle{}ll discuss such issues and some of the subtleties they involve further in later chapters.}
\subsection{Other recursive functions}
\label{82}
As it turns out, there is nothing particularly special about the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function; a great many numeric functions can be defined recursively in a natural way. For example, let\textquotesingle{}s think about multiplication. When you were first learning multiplication (remember that moment? :)), it may have been through a process of \textquotesingle{}repeated addition\textquotesingle{}. That is, 5 × 4 is the same as summing four copies of the number 5. Of course, summing four copies of 5 is the same as summing three copies, and then adding one more – that is, 5 × 4 = 5 × 3 + 5. This leads us to a natural recursive definition of multiplication:

\HaskellExampleTemplate{Multiplication defined recursively}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mult\ensuremath{\text{ }}_\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}anything\ensuremath{\text{ }}times\ensuremath{\text{ }}0\ensuremath{\text{ }}is\ensuremath{\text{ }}zero}\newline
\NormalTok{mult\ensuremath{\text{ }}n\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}anything\ensuremath{\text{ }}times\ensuremath{\text{ }}1\ensuremath{\text{ }}is\ensuremath{\text{ }}itself}\newline
\NormalTok{mult\ensuremath{\text{ }}n\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(mult\ensuremath{\text{ }}n\ensuremath{\text{ }}(m\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{))\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}recurse:\ensuremath{\text{ }}multiply\ensuremath{\text{ }}by\ensuremath{\text{ }}one\ensuremath{\text{ }}less,\ensuremath{\text{ }}and\ensuremath{\text{ }}add\ensuremath{\text{ }}an}\newline
\ensuremath{\text{ }}\NormalTok{extra\ensuremath{\text{ }}copy}\newline
\end{Highlighting}
\end{Shaded}}

Stepping back a bit, we can see how numeric recursion fits into the general recursive pattern. The base case for numeric recursion usually consists of one or more specific numbers (often 0 or 1) for which the answer can be immediately given. The recursive case computes the result by calling the function recursively with a smaller argument and using the result in some manner to produce the final answer. The \textquotesingle{}smaller argument\textquotesingle{} used is often one less than the current argument, leading to recursion which \textquotesingle{}walks down the number line\textquotesingle{} (like the examples of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mult}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} above). However, the prototypical pattern is not the only possibility; the smaller argument could be produced in some other way as well.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Expand out the multiplication 5 × 4 similarly to the expansion we used above for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Define a recursive function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily power}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} such that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily power x y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} raises {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} power.
\item{} You are given a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily plusOne x = x + 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Without using any other {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, define a recursive function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addition}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} such that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addition x y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} adds {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} together.
\item{} (Harder) Implement the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily log2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which computes the integer log (base 2) of its argument. That is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily log2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computes the exponent of the largest power of 2 which is less than or equal to its argument. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily log2 16 = 4}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily log2 11 = 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily log2 1 = 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (Small hint: read the last phrase of the paragraph immediately preceding these exercises.)

\end{myenumerate}}
\section{List-{}based recursion}
\label{83}

Haskell has many recursive functions, especially concerning lists.\myfootnote{This is no coincidence; without mutable variables, recursion is the only way to implement control structures. This might sound like a limitation until you get used to it.} Consider the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function that finds the length of a list:

\HaskellExampleTemplate{The recursive definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{length}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{length\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\NormalTok{length\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}}

So, the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tells us that it takes any type of list and produces an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The next line says that the length of an empty list is 0 (this is the base case). The final line is the recursive case: if a list isn\textquotesingle{}t empty, then it can be broken down into a first element (here called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and the rest of the list (which will just be the empty list if there are no more elements) which will, by convention, be called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (i.e. plural of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). The length of the list is 1 (accounting for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) plus the length of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (as in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example in \mylref{60}{Next steps}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is set when the argument list matches the (:) pattern).

Consider the concatenation function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which joins two lists together:

\HaskellExampleTemplate{The recursive {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}{[}1,2,3{]} {}++ {}{[}4,5,6{]} \newline{}
{[}1,2,3,4,5,6{]} \newline{}
Prelude>{} {}\symbol{34}Hello {}\symbol{34} {}++ {}\symbol{34}world\symbol{34} {}-{}-{} {}Strings {}are {}lists {}of {}Chars \newline{}
\symbol{34}Hello {}world\symbol{34} \newline{}

\end{TemplateCodeInside}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(++)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{[]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{ys\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{ys}\newline
\NormalTok{(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{ys\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{xs\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{ys}\newline
\end{Highlighting}
\end{Shaded}}

This is a little more complicated than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The type says that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two lists of the same type and produces another list of the same type. The base case says that concatenating the empty list with a list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ys}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the same as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ys}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself. Finally, the recursive case breaks the first list into its head ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and tail ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and says that to concatenate the two lists, concatenate the tail of the first list with the second list, and then tack the head {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the front.

There\textquotesingle{}s a pattern here: with list-{}based functions, the base case usually involves an empty list, and the recursive case involves passing the tail of the list to our function again, so that the list becomes progressively smaller.

\LaTeXExercisesTemplate{Give recursive definitions for the following list-{}based functions. In each case, think what the base case would be, then think what the general case would look like, in terms of everything smaller than it. (Note that all of these functions are available in Prelude, so you will want to give them different names when testing your definitions in GHCi.)
\begin{myenumerate}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicate :: Int -{}>{} a -{}>{} {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which takes a count and an element and returns the list which is that element repeated that many times. E.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicate 3 \textquotesingle{}a\textquotesingle{} = \symbol{34}aaa\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (Hint: think about what replicate of anything with a count of 0 should be; a count of 0 is your \textquotesingle{}base case\textquotesingle{}.)
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (!!) :: {[}a{]} -{}>{} Int -{}>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns the element at the given \textquotesingle{}index\textquotesingle{}. The first element is at index 0, the second at index 1, and so on. Note that with this function, you\textquotesingle{}re recursing {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape both}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} numerically and down a list\myfootnote{Incidentally, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (!!)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provides a reasonable solution for the problem of the fourth exercise in \myfnhref{https://en.wikibooks.org/wiki/..\%2FLists\%20and\%20tuples\%23Pending\%20questions}{Lists and tuples/Retrieving values}.}.
\item{} (A bit harder.) {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zip :: {[}a{]} -{}>{} {[}b{]} -{}>{} {[}(a, b){]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which takes two lists and \textquotesingle{}zips\textquotesingle{} them together, so that the first pair in the resulting list is the first two elements of the two lists, and so on. E.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zip {[}1,2,3{]} \symbol{34}abc\symbol{34} = {[}(1, \textquotesingle{}a\textquotesingle{}), (2, \textquotesingle{}b\textquotesingle{}), (3, \textquotesingle{}c\textquotesingle{}){]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If either of the lists is shorter than the other, you can stop once either list runs out. E.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zip {[}1,2{]} \symbol{34}abc\symbol{34} = {[}(1, \textquotesingle{}a\textquotesingle{}), (2, \textquotesingle{}b\textquotesingle{}){]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\begin{myquote}
\item{} \newline{}

\end{myquote}

\item{} Define {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using an auxiliary function and an accumulating parameter, as in the loop-{}like alternate version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\end{myenumerate}}

Recursion is used to define nearly all functions to do with lists and numbers. The next time you need a list-{}based algorithm, start with a case for the empty list and a case for the non-{}empty list and see if your algorithm is recursive.
\section{Don\textquotesingle{}t get TOO excited about recursion...}
\label{84}
Despite its ubiquity in Haskell, one rarely has to write functions that are explicitly recursive. Instead, standard library functions perform recursion for us in various ways. For example, a simpler way to implement the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is:

\HaskellExampleTemplate{Implementing factorial with a standard library function}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{factorial\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{product\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\NormalTok{n]}\newline
\end{Highlighting}
\end{Shaded}}

Almost seems like cheating, doesn\textquotesingle{}t it? :) This is the version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that most experienced Haskell programmers would write, rather than the explicitly recursive version we started out with. Of course, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily product}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function uses some list recursion behind the scenes,\myfootnote{Actually, it uses a function called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which actually does the recursion.} but writing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in this way means you, the programmer, don\textquotesingle{}t have to worry about it.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Lists II}

\myminitoc
\label{85}

\label{86}
\LaTeXNullTemplate{}

Earlier, we learned that Haskell builds lists via the cons operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the empty list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We saw how we can work on lists bit by bit using a combination of recursion and pattern matching. In this chapter and the next, we will consider more in-{}depth techniques for list processing and discover some new notation. We will get our first taste of Haskell features like infinite lists, list comprehensions, and higher-{}order functions.

\LaTeXbodynoteTemplate{Throughout this chapter, you will read and write functions which sum, subtract, and multiply elements of lists. For simplicity\textquotesingle{}s sake, we will pretend that list elements are of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However, as you will recall from the discussions on \mylref{45}{Type basics II}, there are many different types with the Num typeclass. As an exercise of sorts, you could figure out what the type signatures of such functions would be if we made them polymorphic, allowing for the list elements to have any type in the class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To check your signatures, just omit them temporarily, load the functions into GHCi, use :t and let type inference guide you.}
\section{Rebuilding lists}
\label{87}

Here\textquotesingle{}s a function that doubles every element from a list of integers:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{doubleList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{doubleList\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{doubleList\ensuremath{\text{ }}(n}\FunctionTok{:}\NormalTok{ns)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{doubleList\ensuremath{\text{ }}ns}\newline
\end{Highlighting}
\end{Shaded}

Here, the base case is the empty list which evaluates to an empty list. In the recursive case, doubleList {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape builds up a new list}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The first element of this new list is twice the head of the argument, and we obtain the rest of the result by recursively calling doubleList on the tail of the argument. When the tail gets to an empty list, the base case will be invoked and recursion will stop.\myfootnote{Had we forgotten the base case, once the recursion got to an empty list the (x:xs) pattern match would fail, and we would get an error.}

Let\textquotesingle{}s study the evaluation of an example expression:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doubleList\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

We can work it out longhand by substituting the argument into the function definition, just like schoolbook algebra:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doubleList\ensuremath{\text{ }}}\DecValTok{1}\FunctionTok{:}\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{1}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{doubleList\ensuremath{\text{ }}(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{])}\newline
\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{1}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{doubleList\ensuremath{\text{ }}(}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{4}\NormalTok{])}\newline
\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{1}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{3}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{doubleList\ensuremath{\text{ }}(}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{[])}\newline
\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{1}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{3}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{4}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{doubleList\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{1}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{3}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{4}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\DecValTok{6}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\DecValTok{8}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{6}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{8}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

Thus, we rebuilt the original list replacing every element by its double.

In this longhand evaluation exercise, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape moment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at which we choose to evaluate the multiplications does not affect the result. We could just as well have evaluated the doublings immediately after each recursive call of doubleList.\myfootnote{…as long as none of the calculations result in an error or nontermination, which are not problems in this case.}

Haskell uses this flexibility on evaluation order in some important ways. As a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functional programming language, the compiler makes most of the decisions about when to actually evaluate things. As a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} language, Haskell usually defers evaluation until a final value is needed (which may sometimes never occur).\myfootnote{The compiler may sometimes evaluate things sooner in order to improve efficiency.} From the programmer\textquotesingle{}s point of view, evaluation order rarely matters.\myfootnote{One exception is the case of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape infinite lists}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (!) which we will consider in a short while.}
\subsection{Generalizing}
\label{88}

To triple each element in a list, we could follow the same strategy as with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doubleList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{tripleList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{tripleList\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{tripleList\ensuremath{\text{ }}(n}\FunctionTok{:}\NormalTok{ns)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{tripleList\ensuremath{\text{ }}ns}\newline
\end{Highlighting}
\end{Shaded}

But we don\textquotesingle{}t want to write a new list-{}multiplying function for every different multiplier (such as multiplying the elements of a list by 4, 8, 17 etc.). So, let\textquotesingle{}s make a general function to allow multiplication by {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape any}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} number. Our new function will take two arguments: the multiplicand as well as a list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s to multiply:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{multiplyList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{multiplyList\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{multiplyList\ensuremath{\text{ }}m\ensuremath{\text{ }}(n}\FunctionTok{:}\NormalTok{ns)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(m\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{multiplyList\ensuremath{\text{ }}m\ensuremath{\text{ }}ns}\newline
\end{Highlighting}
\end{Shaded}

This example deploys {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a \symbol{34}don\textquotesingle{}t care\symbol{34} pattern. The multiplicand is not used for the base case, so we ignore that argument instead of giving it a name (like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ns}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

We can test {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to see that it works as expected:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}multiplyList {}17 {}{[}1,2,3,4{]} \newline{}
{[}17,34,51,68{]} \newline{}

\end{TemplateCodeInside}

\LaTeXExercisesTemplate{Write the following functions and test them out. Don\textquotesingle{}t forget the type signatures.

\begin{myenumerate}
\item{} takeInt returns the first {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} items in a list. So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily takeInt 4 {[}11,21,31,41,51,61{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}11,21,31,41{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} dropInt drops the first {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} items in a list and returns the rest. So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily dropInt 3 {[}11,21,31,41,51{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}41,51{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} sumInt returns the sum of the items in a list.
\item{} scanSum adds the items in a list and returns a list of the running totals. So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanSum {[}2,3,4,5{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}2,5,9,14{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} diffs returns a list of the differences between adjacent items. So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily diffs {[}3,5,6,8{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}2,1,2{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (Hints: one solution involves writing an auxiliary function which takes two lists and calculates the difference between corresponding elements. Alternatively, you might explore the fact that lists with at least two elements can be matched to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x:y:ys)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern.)
The first three functions are in Prelude under the names {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily drop}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\end{myenumerate}}
\section{Generalizing even further}
\label{89}

In this chapter, we started with a function constrained to multiplying the elements by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Then, we recognized that we could avoid hard-{}coding a new function for each multiplicand by making {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to easily use any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now, what if we wanted a different operator such as addition or to compute the square of each element?

We can generalize still further using a key functionality of Haskell. However, because the solution can seem surprising, we will approach it in a somewhat roundabout way. Consider the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{multiplyList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The first thing to know is that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} arrow in type signatures is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape right associative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That means we can read this signature as:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{multiplyList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{([}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{])}\newline
\end{Highlighting}
\end{Shaded}

How should we understand that? It tells us that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function that takes {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape one}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument and evaluates to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape another function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The function it returns happens to take a list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s and return another list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s.

Consider our old {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doubleList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function redefined in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{doubleList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{doubleList\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{multiplyList\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{xs}\newline
\end{Highlighting}
\end{Shaded}

Writing this way, we can clearly cancel out the `xs`:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doubleList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{multiplyList\ensuremath{\text{ }}}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

This definition style (with no argument variables) is called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape point-{}free}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} style. Our definition now says that applying only one argument to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t fail to evaluate, rather it gives us a more specific function of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Integer{]} -{}>{} {[}Integer{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of finishing with a final {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Integer{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value.

We now see that functions in Haskell behave much like any other value. Functions can return other functions, and functions can stand alone as objects without mentioning their arguments. Functions seem almost like normal constants. Can we use functions themselves as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape arguments}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} even? Yes, and that\textquotesingle{}s the key to the next step in generalizing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We need a function that takes any other appropriate function and applies the given function to the elements of a list:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{applyToIntegers\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Integer}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Integer}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{applyToIntegers\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{applyToIntegers\ensuremath{\text{ }}f\ensuremath{\text{ }}(n}\FunctionTok{:}\NormalTok{ns)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}n)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{applyToIntegers\ensuremath{\text{ }}f\ensuremath{\text{ }}ns}\newline
\end{Highlighting}
\end{Shaded}

With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily applyToIntegers}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can take {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape any}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function and apply it to the elements of a list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s. We can thus use this generalized function to redefine {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{multiplyList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{multiplyList\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{applyToIntegers\ensuremath{\text{ }}((}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}m)}\newline
\end{Highlighting}
\end{Shaded}

That uses the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function with a single initial argument to create a new function which is ready to take one more argument (which, in this use case, will come from the numbers in a given list).
\subsection{Currying}
\label{90}

If all this abstraction confuses you, consider a concrete example: When we multiply 5 * 7 in Haskell, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function doesn\textquotesingle{}t just take two arguments at once, it actually first takes the 5 and returns a new {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape 5*}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function; and that new function {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a second argument and multiplies that by 5. So, for our example, we then give the 7 as an argument to the 5* function, and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape that}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns us our final evaluated number (35).

So, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries all functions in Haskell really take only one argument}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However, when we know how many intermediate functions we will generate to reach a final result, we can {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape treat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape as if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} they take many arguments. The number of arguments we generally talk about functions taking is actually the number of one-{}argument functions we get between the first argument and a final, non-{}functional result value.

The process of creating intermediate functions when feeding arguments into a complex function is called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape currying}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (named after Haskell Curry, also the namesake of the Haskell programming language).
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function}
\label{91}

While {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily applyToIntegers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Integer -{}>{} Integer) -{}>{} {[}Integer{]} -{}>{} {[}Integer{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the definition itself contains nothing specific to integers. To use the same logic with other types of lists, we could define versions such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily applyToChars}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily applyToStrings}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so on. They would all have the same definition but different type signatures. We can avoid all that redundancy with the final step in generalizing: making a fully polymorphic version with signature {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} b) -{}>{} {[}a{]} -{}>{} {[}b{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Prelude already has this function, and it is called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{map}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{map\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can effortlessly implement functions as different as...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{multiplyList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{multiplyList\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}((}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}m)}\newline
\end{Highlighting}
\end{Shaded}

... and...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{heads\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[[a]]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{heads\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}head}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}heads {}{[}{[}1,2,3,4{]},{[}4,3,2,1{]},{[}5,10,15{]}{]} \newline{}
{[}1,4,5{]} \newline{}

\end{TemplateCodeInside}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the general solution for applying a function to each and every element of a list. Our original {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doubleList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} problem was simply a specific version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which take other functions as arguments are called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape higher-{}order functions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We will learn about more higher-{}order functions for list processing in the next chapter.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to build functions that, given a list xs of Ints, return:
\begin{myitemize}
\item{} A list that is the element-{}wise negation of xs.
\item{} A list of lists of Ints xss that, for each element of xs, contains the divisors of xs. You can use the following function to get the divisors: \TemplatePreformat{divisors {}p {}= {}{[} {}f {}| {}f {}<{}-{} {}{[}1..p{]}, {}p {}`mod` {}f {}== {}0 {}{]}}
\item{} The element-{}wise negation of xss.
\end{myitemize}

\item{} Implement a Run Length Encoding (RLE) encoder and decoder.
\begin{myitemize}
\item{} The idea of RLE is simple; given some input:\TemplatePreformat{\symbol{34}aaaabbaaa\symbol{34}} compress it by taking the length of each run of characters:{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (4,\textquotesingle{}a\textquotesingle{}), (2, \textquotesingle{}b\textquotesingle{}), (3, \textquotesingle{}a\textquotesingle{})}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily group}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions might be helpful. In order to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily group}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, import the Data.List module by typing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :m Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the ghci prompt or by adding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily import Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to your Haskell source code file.
\item{} What is the type of your {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily encode}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily decode}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions?
\item{} How would you convert the list of tuples (e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}(4,\textquotesingle{}a\textquotesingle{}), (6,\textquotesingle{}b\textquotesingle{}){]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) into a string (e.g. \symbol{34}4a6b\symbol{34})?
\item{} (bonus) Assuming numeric characters are forbidden in the original string, how would you parse that string back into a list of tuples?

\end{myitemize}

\end{myenumerate}}
\section{Tips and Tricks}
\label{92}

A few miscellaneous notes about lists in Haskell:
\subsection{Dot Dot Notation}
\label{93}
Haskell has a convenient shorthand for writing ordered lists of regularly-{}spaced integers. Some examples to illustrate it:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Code}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Result}\newline
\FunctionTok{----}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{------}\newline
\NormalTok{[}\DecValTok{1}\FunctionTok{..}\DecValTok{10}\NormalTok{]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{9}\NormalTok{,}\DecValTok{10}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{4}\FunctionTok{..}\DecValTok{10}\NormalTok{]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}[}\DecValTok{2}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{10}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{5}\NormalTok{,}\DecValTok{4}\FunctionTok{..}\DecValTok{1}\NormalTok{]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}[}\DecValTok{5}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{1}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{3}\FunctionTok{..}\DecValTok{10}\NormalTok{]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{7}\NormalTok{,}\DecValTok{9}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The same notation works with characters and even with floating point numbers. Unfortunately, floating-{}point numbers are problematic due to rounding errors. Try this:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{[}\DecValTok{0}\NormalTok{,}\FloatTok{0.1}\ensuremath{\text{ }}\FunctionTok{..}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ..}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape only}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works with sequences with fixed differences between consecutive elements. For instance, you cannot write...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{8}\FunctionTok{..}\DecValTok{100}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

... and expect to magically get back the rest of the Fibonacci series.\myfootnote{\myplainurl{http://en.wikipedia.org/wiki/Fibonacci_number}}}
\subsection{Infinite Lists}
\label{94}
Thanks to lazy evaluation, Haskell lists can be {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape infinite}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For example, the following generates the infinite list of integers starting with 1:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

(If you try this in GHCi, remember you can stop an evaluation with Ctrl-{}c).

The same effect could be achieved with a recursive function:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{intsFrom\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{intsFrom\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}note\ensuremath{\text{ }}there\ensuremath{\text{ }}is\ensuremath{\text{ }}no\ensuremath{\text{ }}base\ensuremath{\text{ }}case!}\newline
\NormalTok{positiveInts\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{intsFrom\ensuremath{\text{ }}}\DecValTok{1}\newline
\end{Highlighting}
\end{Shaded}

Infinite lists are useful in practice because Haskell\textquotesingle{}s lazy evaluation never actually evaluates more than it needs at any given moment. In most cases, we can treat an infinite list like an ordinary one. The program will only go into an infinite loop when evaluation requires all the values in the list. So, we can\textquotesingle{}t sort or print an infinite list, but:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{evens\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{doubleList\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

will define \symbol{34}evens\symbol{34} to be the infinite list {[}2,4,6,8..{]}, and we can {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pass \symbol{34}evens\symbol{34} into other functions that only need to evaluate part of the list for their {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape final}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} result. Haskell will know to only use the portion of the infinite list needed in the end.

Compared to hard-{}coding a long finite list, it\textquotesingle{}s often more convenient to define an infinite list and then take the first few items. An infinite list can also be a handy alternative to the traditional endless loop at the top level of an interactive program.
\subsection{A note about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}}
\label{95}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

Given the choice of using either the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}/{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to split lists, pattern matching is almost always preferable. It may be tempting to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} due to simplicity and terseness, but it is too easy to forget that they fail on empty lists (and runtime crashes are never good). We do have a Prelude function, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily null :: {[}a{]} -{}>{} Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for empty lists and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} otherwise, so that provides a sane way of checking for empty lists without pattern matching; but matching an empty list tends to be cleaner and clearer than the corresponding if-{}then-{}else expression using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily null}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} With respect to your solutions to the first set of exercises in this chapter, is there any difference between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanSum (takeInt 10 {[}1..{]})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily takeInt 10 (scanSum {[}1..{]})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?
\item{} Write functions that, when applied to lists, give the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape last}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} element of the list and the list with the last element dropped. \newline{}
This functionality is provided by Prelude through the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily last}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily init}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions. Like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, they blow up when given empty lists.

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Lists III}

\myminitoc
\label{96}

\label{97}
\LaTeXNullTemplate{}
\section{Folds}
\label{98}

Like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a higher order function that takes a function and a list. However, instead of applying the function element by element, the fold uses it to combine the list elements into a result value.

Let\textquotesingle{}s look at a few concrete examples. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} could be implemented as:

\HaskellExampleTemplate{sum}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sum}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\NormalTok{sum\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\NormalTok{sum\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{sum\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}}

and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily product}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as:

\HaskellExampleTemplate{product}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{product}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\NormalTok{product\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\NormalTok{product\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{product\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which takes a list of lists and joins (concatenates) them into one:

\HaskellExampleTemplate{concat}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{concat}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[[a]]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{concat\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{concat\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{concat\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}}

All these examples show a pattern of recursion known as a fold. Think of the name referring to a list getting \symbol{34}folded up\symbol{34} into a single value or to a function being \symbol{34}folded between\symbol{34} the elements of the list.

Prelude defines four {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{foldr}
\label{99}

The {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape right-{}associative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} folds up a list from the right to left. As it proceeds, foldr uses the given function to combine each of the elements with the running value called the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape accumulator}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. When calling foldr, the initial value of the accumulator is set as an argument.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldr}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{acc}\newline
\NormalTok{foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}(foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}xs)}\newline
\end{Highlighting}
\end{Shaded}

The first argument to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function with two arguments. The second argument is value for the accumulator (which often starts at a neutral \symbol{34}zero\symbol{34} value). The third argument is the list to be folded.

In {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily acc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily acc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In many cases (like all of our examples so far), the function passed to a fold will be one that takes two arguments of the same type, but this is not necessarily the case (as we can see from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} b -{}>{} b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} part of the type signature — if the types {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape had}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to be the same, the first two letters in the type signature would have matched).

Remember, a list in Haskell written as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a, b, c{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an alternative (syntactic sugar) style for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a : b : c : {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Now, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr f acc xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition simply replaces each cons (:) in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} list with the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} while replacing the empty list at the end with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily acc}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}(a}\FunctionTok{:}\NormalTok{b}\FunctionTok{:}\NormalTok{c}\FunctionTok{:}\NormalTok{[])\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}(f\ensuremath{\text{ }}b\ensuremath{\text{ }}(f\ensuremath{\text{ }}c\ensuremath{\text{ }}acc))}\newline
\end{Highlighting}
\end{Shaded}

Note how the parentheses nest around the right end of the list.

An elegant visualisation is given by picturing the list data structure as a tree:\\

\TemplateSpaceIndent{ {} {} {}: {}f \newline{}
 {} {}/ {}\textbackslash{} {}/ {}\textbackslash{} \newline{}
 {}a {} {} {}: {} {} {} {} {} {} {}foldr {}f {}acc {} {} {}a {} {} {}f \newline{}
 {} {} {} {}/ {}\textbackslash{} {} {} {} {}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}>{} {} {} {} {} {}/ {}\textbackslash{} \newline{}
 {} {} {}b {} {} {}: {}b {} {} {}f \newline{}
 {} {} {} {} {} {}/ {}\textbackslash{} {}/ {}\textbackslash{} \newline{}
 {} {} {} {} {}c {} {}{[}{]} {}c {} {} {}acc}

We can see here that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr (:) {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will return the list completely unchanged. That sort of function that has no effect is called an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape identity function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You should start building a habit of looking for identity functions in different cases, and we\textquotesingle{}ll discuss them more later when we learn about {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monoids}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{foldl}
\label{100}

The {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape left-{}associative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} processes the list in the opposite direction, starting at the left side with the first element.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldl}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{foldl\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{acc}\newline
\NormalTok{foldl\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}f\ensuremath{\text{ }}(f\ensuremath{\text{ }}acc\ensuremath{\text{ }}x)\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

So, brackets in the resulting expression accumulate around the left end of the list:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldl\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}(a}\FunctionTok{:}\NormalTok{b}\FunctionTok{:}\NormalTok{c}\FunctionTok{:}\NormalTok{[])\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(f\ensuremath{\text{ }}(f\ensuremath{\text{ }}acc\ensuremath{\text{ }}a)\ensuremath{\text{ }}b)\ensuremath{\text{ }}c}\newline
\end{Highlighting}
\end{Shaded}

The corresponding trees look like:\\

\TemplateSpaceIndent{ {} {} {}: {}f \newline{}
 {} {}/ {}\textbackslash{} {}/ {}\textbackslash{} \newline{}
 {}a {} {} {}: {} {} {} {} {} {} {}foldl {}f {}acc {} {} {} {} {} {}f {} {} {}c \newline{}
 {} {} {} {}/ {}\textbackslash{} {} {} {} {}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}>{} {} {} {} {}/ {}\textbackslash{} \newline{}
 {} {} {}b {} {} {}: {}f {} {} {}b {} \newline{}
 {} {} {} {} {} {}/ {}\textbackslash{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}/ {}\textbackslash{} \newline{}
 {} {} {} {} {}c {} {}{[}{]} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}acc {}a}

Because all folds include both left and right elements, beginners can get confused by the names. You could think of foldr as short for fold-{}right-{}to-{}left and foldl as fold-{}left-{}to-{}right. The names refer to where the fold starts.

\LaTeXbodynoteTemplate{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Technical Note}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: foldl is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape tail-{}recursive}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is, it recurses
immediately, calling itself. For this reason the compiler will optimise it to a
simple loop for efficiency. However, Haskell is a lazy language, so the calls to
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be left unevaluated by default, thus building up an unevaluated
expression in memory that includes the entire length of the list. To avoid
running out of memory, we have a version of foldl called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
that is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape strict}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — it forces the evaluation of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} immediately at each step.

An apostrophe at the end of a function name is pronounced \symbol{34}tick\symbol{34} as in
\symbol{34}fold-{}L-{}tick\symbol{34}. A tick is a valid character in Haskell identifiers.
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be found in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} library module
(imported by adding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily import Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the beginning of a source
file). As a rule of thumb, you should use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on lists that might
be infinite or where the fold is building up a data structure and use
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if the list is known to be finite and comes down to a single
value. There is almost never a good reason to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (without
the tick), though it might just work if the lists fed to it are not too long.}

{\itshape }
\subsection{foldr1 and foldl1}
\label{101}

As previously noted, the type declaration for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes it quite possible for the list elements and result to be of different types. For example, \symbol{34}read\symbol{34} is a function that takes a string and converts it into some type (the type system is smart enough to figure out which one). In this case we convert it into a float.

\HaskellExampleTemplate{The list elements and results can have different types}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{addStr\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Float}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Float}\newline
\NormalTok{addStr\ensuremath{\text{ }}str\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{read\ensuremath{\text{ }}str\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{sumStr\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{String}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Float}\newline
\NormalTok{sumStr\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}addStr\ensuremath{\text{ }}}\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}}

There is also a variant called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\symbol{34}fold -{} R -{} one\symbol{34}) which dispenses with an explicit \symbol{34}zero\symbol{34} for an accumulator by taking the last element of the list instead:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldr1}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{foldr1\ensuremath{\text{ }}f\ensuremath{\text{ }}[x]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{foldr1\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}(foldr1\ensuremath{\text{ }}f\ensuremath{\text{ }}xs)}\newline
\NormalTok{foldr1\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}}\StringTok{"Prelude.foldr1:\ensuremath{\text{ }}empty\ensuremath{\text{ }}list"}\newline
\end{Highlighting}
\end{Shaded}

And {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldl1}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{foldl1\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}f\ensuremath{\text{ }}x\ensuremath{\text{ }}xs}\newline
\NormalTok{foldl1\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}}\StringTok{"Prelude.foldl1:\ensuremath{\text{ }}empty\ensuremath{\text{ }}list"}\newline
\end{Highlighting}
\end{Shaded}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Note: Just like for foldl, the Data.List library includes foldl1\textquotesingle{} as a strict version of foldl1.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

With foldl1 and foldr1, all the types have to be the same, and an empty list is an error. These variants are useful when there is no obvious candidate for the initial accumulator value and we are sure that the list is not going to be empty. When in doubt, stick with foldr or foldl\textquotesingle{}.
\subsection{folds and laziness}
\label{102}

One reason that right-{}associative folds are more natural in Haskell than left-{}associative ones is that right folds can operate on infinite lists. A fold that returns an infinite list is perfectly usable in a larger context that doesn\textquotesingle{}t need to access the entire infinite result. In that case, foldr can move along as much as needed and the compiler will know when to stop. However, a left fold necessarily calls itself recursively until it reaches the end of the input list (because the recursive call is not made in an argument to f). Needless to say, no end will be reached if an input list to foldl is infinite.

As a toy example, consider a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily echoes}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that takes a list of integers and produces a list such that wherever the number n occurs in the input list, it is replicated n times in the output list. To create our echoes function, we will use the prelude function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicate n x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a list of length n with x the value of every element.

We can write echoes as a foldr quite handily:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{echoes\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}(\textbackslash{}\ensuremath{\text{ }}x\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(replicate\ensuremath{\text{ }}x\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}[]}\newline
\NormalTok{take\ensuremath{\text{ }}}\DecValTok{10}\ensuremath{\text{ }}\NormalTok{(echoes\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\NormalTok{])\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}[1,2,2,3,3,3,4,4,4,4]}\newline
\end{Highlighting}
\end{Shaded}

({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Note:}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} This definition is compact thanks to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{} x xs -{}>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
syntax. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, meant to look like a lambda (λ), works as an
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unnamed}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function for cases where we won\textquotesingle{}t use the function again anywhere
else. Thus, we provide the definition of our one-{}time function {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape in situ}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In
this case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are the arguments, and the
right-{}hand side of the definition is what comes after the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.)

We could have instead used a foldl:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{echoes\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}(\textbackslash{}xs\ensuremath{\text{ }}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{xs\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(replicate\ensuremath{\text{ }}x\ensuremath{\text{ }}x))\ensuremath{\text{ }}[]}\newline
\NormalTok{take\ensuremath{\text{ }}}\DecValTok{10}\ensuremath{\text{ }}\NormalTok{(echoes\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\NormalTok{])\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}not\ensuremath{\text{ }}terminating}\newline
\end{Highlighting}
\end{Shaded}

but only the foldr version works on an infinite lists. What would happen if you just evaluate
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily echoes {[}1..{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Try it! (If you try this in GHCi or a terminal, remember you can stop an evaluation with Ctrl-{}c, but you have to be quick and keep an eye on the system monitor or your memory will be consumed in no time and your system will hang.)

As a final example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself can be implemented as a fold:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}(\textbackslash{}x\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}[]}\newline
\end{Highlighting}
\end{Shaded}

Folding takes some time to get used to, but it is a fundamental pattern in functional programming and eventually becomes very natural. Any time you want to traverse a list and build up a result from its members, you likely want a fold.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Define the following functions recursively (like the definitions for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily product}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} above), then turn them into a fold:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily and :: {[}Bool{]} -{}>{} Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns True if a list of Bools are all True, and False otherwise.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or :: {[}Bool{]} -{}>{} Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns True if any of a list of Bools are True, and False otherwise.
\end{myitemize}

\item{} Define the following functions using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maximum :: Ord a =>{} {[}a{]} -{}>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns the maximum element of a list (hint: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily max :: Ord a =>{} a -{}>{} a -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns the maximum of two values).
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily minimum :: Ord a =>{} {[}a{]} -{}>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns the minimum element of a list (hint: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily min :: Ord a =>{} a -{}>{} a -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns the minimum of two values).
\end{myitemize}

\item{} Use a fold ({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape which one?}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) to define {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse :: {[}a{]} -{}>{} {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns a list with the elements in reverse order.

\end{myenumerate}

\begin{myquote}
\item{} Note that all of these are Prelude functions, so they will be always close at hand when you need them. (Also, that means you must use slightly different names in order to test your answers in GHCi.)

\end{myquote}}
\section{Scans}
\label{103}

A \symbol{34}scan\symbol{34} is like a cross between a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a fold. Folding a list accumulates a single return value, whereas mapping puts each item through a function returning a separate result for each item. A scan does both: it accumulates a value like a fold, but instead of returning only a final value it returns a list of all the intermediate values.

Prelude contains four scan functions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{scanl}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}	}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} accumulates the list from the left, and the second argument becomes the first item in the resulting list. So, \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl (+) 0 {[}1,2,3{]} = {[}0,1,3,6{]}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{scanl1}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uses the first item of the list as a zero parameter. It is what you would typically use if the input and output items are the same type. Notice the difference in the type signatures between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl1 (+) {[}1,2,3{]} = {[}1,3,6{]}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{scanr}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{scanr\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{6}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{0}\NormalTok{]}\newline
\NormalTok{scanr1}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{scanr1\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{6}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

These two functions are the counterparts of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that accumulate the totals from the right.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Write your own definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, first using recursion, and then using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Do the same for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} first using recursion then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Define the following functions:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factList :: Integer -{}>{} {[}Integer{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which returns a list of factorials from 1 up to its argument. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factList 4 = {[}1,2,6,24{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape More to be added}
\end{myitemize}

\end{myenumerate}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{filter}
\label{104}

A common operation performed on lists is \myhref{https://en.wikipedia.org/wiki/Filter\%20\%28mathematics\%29}{filtering} — generating a new list composed only of elements of the first list that meet a certain condition. A simple example: making a list of only even numbers from a list of integers.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{retainEven\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Int}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Int}\NormalTok{]}\newline
\NormalTok{retainEven\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{retainEven\ensuremath{\text{ }}(n}\FunctionTok{:}\NormalTok{ns)\ensuremath{\text{ }}}\FunctionTok{=}\newline
\CommentTok{--\ensuremath{\text{ }}mod\ensuremath{\text{ }}n\ensuremath{\text{ }}2\ensuremath{\text{ }}computes\ensuremath{\text{ }}the\ensuremath{\text{ }}remainder\ensuremath{\text{ }}for\ensuremath{\text{ }}the\ensuremath{\text{ }}integer\ensuremath{\text{ }}division\ensuremath{\text{ }}of\ensuremath{\text{ }}n\ensuremath{\text{ }}by\ensuremath{\text{ }}2.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(mod\ensuremath{\text{ }}n\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(retainEven\ensuremath{\text{ }}ns)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{retainEven\ensuremath{\text{ }}ns}\newline
\end{Highlighting}
\end{Shaded}

This definition is somewhat verbose and specific. Prelude provides a concise and general {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function with type signature:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{filter}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\end{Highlighting}
\end{Shaded}

So, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} Bool)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function tests an elements for some condition, we then feed in a list to be filtered, and we get back the filtered list.

To write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily retainEven}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we need to state the
condition as an auxiliary {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} Bool)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, like this one:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{isEven\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\newline
\NormalTok{isEven\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(mod\ensuremath{\text{ }}n\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}

And then retainEven becomes simply:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{retainEven\ensuremath{\text{ }}ns\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}isEven\ensuremath{\text{ }}ns}\newline
\end{Highlighting}
\end{Shaded}

We used ns instead of xs to indicate that we know these are numbers and not just anything, but we can ignore that and use a more terse point-{}free definition:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{retainEven\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}isEven}\newline
\end{Highlighting}
\end{Shaded}

This is like what we demonstrated before for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the folds. Like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, those take another function as argument; and using them point-{}free emphasizes this \symbol{34}functions-{}of-{}functions\symbol{34} aspect.
\section{List comprehensions}
\label{105}

List comprehensions are syntactic sugar for some common list operations, such as filtering. For instance, instead of using the Prelude {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we could write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily retainEven}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} like this:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{retainEven\ensuremath{\text{ }}es\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[n\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{es,\ensuremath{\text{ }}isEven\ensuremath{\text{ }}n]}\newline
\end{Highlighting}
\end{Shaded}

This compact syntax may look intimidating, but it is simple to break down. One interpretation is:

\begin{myitemize}
\item{} (Starting from the middle) Take the list {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape es}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and draw (the \symbol{34}<{}-{}\symbol{34}) each of its elements as a value {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} (After the comma) For each drawn {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} test the boolean condition {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isEven n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} (Before the vertical bar) If (and only if) the boolean condition is satisfied, append {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the new list being created (note the square brackets around the whole expression).
\end{myitemize}

Thus, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily es}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {[}1,2,3,4{]}, then we would get back the list {[}2,4{]}. 1 and 3 were not drawn because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (isEven n) == False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

The power of list comprehensions comes from being easily extensible. Firstly, we
can use as many tests as we wish (even zero!). Multiple conditions are written
as a comma-{}separated list of expressions (which should evaluate to a Boolean, of
course). For a simple example, suppose we want to modify {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily retainEven}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that only numbers larger than 100 are retained:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{retainLargeEvens\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Int}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Int}\NormalTok{]}\newline
\NormalTok{retainLargeEvens\ensuremath{\text{ }}es\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[n\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{es,\ensuremath{\text{ }}isEven\ensuremath{\text{ }}n,\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{100}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

Furthermore, we are not limited to using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the element to be appended when generating a new list. Instead, we could place any expression before the vertical bar (if it is compatible with the type of the list, of course). For instance, if we wanted to subtract one from every even number, all it would take is:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{evensMinusOne\ensuremath{\text{ }}es\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[n\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{es,\ensuremath{\text{ }}isEven\ensuremath{\text{ }}n]}\newline
\end{Highlighting}
\end{Shaded}

In effect, that means the list comprehension syntax incorporates the
functionalities of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

To further sweeten things, the left arrow notation in list comprehensions can be combined with pattern matching. For example, suppose we had a list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Int, Int)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tuples, and we would like to construct a list with the first element of every tuple whose second element is even. Using list comprehensions, we might write it as follows:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{firstForEvenSeconds\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Int}\NormalTok{]}\newline
\NormalTok{firstForEvenSeconds\ensuremath{\text{ }}ps\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[fst\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{p\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{ps,\ensuremath{\text{ }}isEven\ensuremath{\text{ }}(snd\ensuremath{\text{ }}p)]\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}here,\ensuremath{\text{ }}p\ensuremath{\text{ }}is\ensuremath{\text{ }}for}\newline
\ensuremath{\text{ }}\NormalTok{pairs}\FunctionTok{.}\newline
\end{Highlighting}
\end{Shaded}

Patterns can make it much more readable:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{firstForEvenSeconds\ensuremath{\text{ }}ps\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[x\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{ps,\ensuremath{\text{ }}isEven\ensuremath{\text{ }}y]}\newline
\end{Highlighting}
\end{Shaded}

As in other cases, arbitrary expressions may be used before the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily |}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If we wanted a list with the double of those first elements:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{doubleOfFirstForEvenSeconds\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Int}\NormalTok{]}\newline
\NormalTok{doubleOfFirstForEvenSeconds\ensuremath{\text{ }}ps\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{ps,\ensuremath{\text{ }}isEven\ensuremath{\text{ }}y]}\newline
\end{Highlighting}
\end{Shaded}

Not counting spaces, that function code is shorter than its descriptive name!

There are even more possible tricks:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{allPairs\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)]}\newline
\NormalTok{allPairs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\DecValTok{4}\NormalTok{],\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{5}\FunctionTok{..}\DecValTok{8}\NormalTok{]]}\newline
\end{Highlighting}
\end{Shaded}

This comprehension draws from {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} lists, and generates all possible {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x, y)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pairs with the first element drawn from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}1..4{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the second from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}5..8{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In the final list of pairs, the first elements will be those generated with the first element of the first list (here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), then those with the second element of the first list, and so on. In this example, the full list is (linebreaks added for clarity):

\TemplatePreformat{ \newline{}
Prelude>{} {}{[}(x, {}y) {}| {}x {}<{}-{} {}{[}1..4{]}, {}y {}<{}-{} {}{[}5..8{]}{]} \newline{}
{[}(1,5),(1,6),(1,7),(1,8), \newline{}
 {}(2,5),(2,6),(2,7),(2,8), \newline{}
 {}(3,5),(3,6),(3,7),(3,8), \newline{}
 {}(4,5),(4,6),(4,7),(4,8){]} \newline{}
}

We could easily add a condition to restrict the combinations that go into the final list:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{somePairs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\DecValTok{4}\NormalTok{],\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{5}\FunctionTok{..}\DecValTok{8}\NormalTok{],\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{8}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

This list only has the pairs with the sum of elements larger than 8; starting with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (1,8)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (2,7)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so forth.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Write a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily returnDivisible :: Int -{}>{} {[}Int{]} -{}>{} {[}Int{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function which filters a list of integers retaining only the numbers divisible by the integer passed as first argument. For integers x and n, x is divisible by n if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (mod x n) == 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (note that the test for evenness is a specific case of that).
\item{}
\item{} Write a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily choosingTails :: {[}{[}Int{]}{]} -{}>{} {[}{[}Int{]}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using list comprehension syntax with appropriate guards (filters) for empty lists returning a list of tails following a head bigger than 5:
\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{choosingTails\ensuremath{\text{ }}\ensuremath{\text{ }}[[}\DecValTok{7}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{3}\NormalTok{],[],[}\DecValTok{6}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{9}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{3}\NormalTok{],[}\DecValTok{5}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{5}\NormalTok{]]}\newline
\CommentTok{--\ensuremath{\text{ }}[[6,3],[4,2],[4,3]]}\newline
\end{Highlighting}
\end{Shaded}

\item{}
\item{} Does the order of guards matter? You may find it out by playing with the function of the preceding exercise.
\item{}
\item{} Over this section we\textquotesingle{}ve seen how list comprehensions are essentially syntactic sugar for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now work in the opposite direction and define alternative versions of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using the list comprehension syntax.
\item{}
\item{} Rewrite {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doubleOfFirstForEvenSeconds}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of list comprehension.

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Type declarations}

\myminitoc
\label{106}

\label{107}
\LaTeXNullTemplate{}
You\textquotesingle{}re not restricted to working with just the types provided by default with the language. There are many benefits to defining your own types:

\begin{myitemize}
\item{} Code can be written in terms of the problem being solved, making programs easier to design, write and understand.
\item{} Related pieces of data can be brought together in ways more convenient and meaningful than simply putting and getting values from lists or tuples.
\item{} Pattern matching and the type system can be used to their fullest extent by making them work with your custom types.
\end{myitemize}

Haskell has three basic ways to declare a new type:

\begin{myitemize}
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration, which defines new data types.
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration for type synonyms, that is, alternative names for existing types.
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration, which defines new data types equivalent to existing ones.
\end{myitemize}

In this chapter, we will study {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In a later chapter, we will discuss {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and see where it can be useful.
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and constructor functions}
\label{108}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used to define new data types mostly using existing ones as building blocks. Here\textquotesingle{}s a data structure for elements in a simple list of anniversaries:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Birthday}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}name,\ensuremath{\text{ }}year,\ensuremath{\text{ }}month,\ensuremath{\text{ }}day}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Wedding}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}spouse\ensuremath{\text{ }}name\ensuremath{\text{ }}1,\ensuremath{\text{ }}spouse}\newline
\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}year,\ensuremath{\text{ }}month,\ensuremath{\text{ }}day}\newline
\end{Highlighting}
\end{Shaded}

This declares a new data type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Anniversary}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which can be either a Birthday or a Wedding. A Birthday {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape contains}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} one string and three integers and a Wedding {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape contains}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} two strings and three integers. The definitions of the two possibilities are separated by the vertical bar. The comments explain to readers of the code about the intended use of these new types. Moreover, with the declaration we also get two {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape constructor functions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Anniversary}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; appropriately enough, they are called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Birthday}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Wedding}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. These functions provide a way to build a new {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Anniversary}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Types defined by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations are often referred to as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape algebraic data types}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is something we will address further in later chapters.

As usual with Haskell, the case of the first letter is important: type names and constructor functions must start with capital letters. Other than this syntactic detail, constructor functions work pretty much like the \symbol{34}conventional\symbol{34} functions we have met so far. In fact, if you use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in GHCi to query the type of, say, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Birthday}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you\textquotesingle{}ll get:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} :t Birthday
Birthday :: String -{}>{} Int -{}>{} Int -{}>{} Int -{}>{} Anniversary

\end{myitemize}

\end{TemplateCodeInside}

Meaning it\textquotesingle{}s just a function which takes one String and three Int as arguments and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape evaluates to}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Anniversary}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This anniversary will contain the four arguments we passed as specified by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Birthday}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor.

Calling constructors is no different from calling other functions. For example, suppose we have John Smith born on 3rd July 1968:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{johnSmith\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\newline
\NormalTok{johnSmith\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Birthday}\ensuremath{\text{ }}\StringTok{"John\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\DecValTok{1968}\ensuremath{\text{ }}\DecValTok{7}\ensuremath{\text{ }}\DecValTok{3}\newline
\end{Highlighting}
\end{Shaded}

He married Jane Smith on 4th March 1987:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{smithWedding\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\newline
\NormalTok{smithWedding\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Wedding}\ensuremath{\text{ }}\StringTok{"John\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\StringTok{"Jane\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\DecValTok{1987}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\DecValTok{4}\newline
\end{Highlighting}
\end{Shaded}

These two anniversaries can, for instance, be put in a list:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{anniversariesOfJohnSmith\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Anniversary}\NormalTok{]}\newline
\NormalTok{anniversariesOfJohnSmith\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[johnSmith,\ensuremath{\text{ }}smithWedding]}\newline
\end{Highlighting}
\end{Shaded}

Or you could just as easily have called the constructors straight away when building the list (although the resulting code looks a bit cluttered).

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{anniversariesOfJohnSmith\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Birthday}\ensuremath{\text{ }}\StringTok{"John\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\DecValTok{1968}\ensuremath{\text{ }}\DecValTok{7}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Wedding}\ensuremath{\text{ }}\StringTok{"John\ensuremath{\text{ }}Smith"}\newline
\ensuremath{\text{ }}\StringTok{"Jane\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\DecValTok{1987}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\DecValTok{4}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

\section{Deconstructing types}
\label{109}

To use our new data types, we must have a way to access their contents. For instance, one very basic operation with the anniversaries defined above would be extracting the names and dates they contain as a String. So we need a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showAnniversary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function (for the sake of code clarity, we used an auxiliary {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showDate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function but let\textquotesingle{}s ignore it for a moment):

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{showDate\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{showDate\ensuremath{\text{ }}y\ensuremath{\text{ }}m\ensuremath{\text{ }}d\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"-"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"-"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}d}\newline
\ensuremath{\text{ }}\newline
\OtherTok{showAnniversary\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\newline
\NormalTok{showAnniversary\ensuremath{\text{ }}(}\DataTypeTok{Birthday}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}year\ensuremath{\text{ }}month\ensuremath{\text{ }}day)\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}born\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{showDate\ensuremath{\text{ }}year\ensuremath{\text{ }}month\ensuremath{\text{ }}day}\newline
\ensuremath{\text{ }}\newline
\NormalTok{showAnniversary\ensuremath{\text{ }}(}\DataTypeTok{Wedding}\ensuremath{\text{ }}\NormalTok{name1\ensuremath{\text{ }}name2\ensuremath{\text{ }}year\ensuremath{\text{ }}month\ensuremath{\text{ }}day)\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name1\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}married\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{name2\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}on\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{showDate\ensuremath{\text{ }}year\ensuremath{\text{ }}month\ensuremath{\text{ }}day}\newline
\end{Highlighting}
\end{Shaded}

This example shows how we can deconstruct the values built in our data types. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showAnniversary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a single argument of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Anniversary}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Instead of just providing a name for the argument on the left side of the definition, however, we specify one of the constructor functions and give names to each argument of the constructor (which correspond to the contents of the Anniversary). A more formal way of describing this \symbol{34}giving names\symbol{34} process is to say we are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape binding variables}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. \symbol{34}Binding\symbol{34} is being used in the sense of assigning a variable to each of the values so that we can refer to them on the right side of the function definition.

To handle both \symbol{34}Birthday\symbol{34} and \symbol{34}Wedding\symbol{34} Anniversaries, we needed to provide {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function definitions, one for each constructor. When {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showAnniversary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is called, if the argument is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Birthday}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Anniversary, the first definition is used and the variables {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily name}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily month}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily year}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are bound to its contents. If the argument is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Wedding}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Anniversary, then the second definition is used and the variables are bound in the same way. This process of using a different version of the function depending on the type of constructor is pretty much like what happens when we use a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement or define a function piece-{}wise.

Note that the parentheses around the constructor name and the bound variables are mandatory; otherwise the compiler or interpreter would not take them as a single argument. Also, it is important to have it absolutely clear that the expression inside the parentheses is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a call to the constructor function, even though it may look just like one.

\LaTeXExercisesTemplate{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Note: The solution of this exercise is given near the end of the chapter, so we recommend that you attempt it before getting there.} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
Reread the function definitions above. Then look closer at the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showDate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} helper function. We said it was provided \symbol{34}for the sake of code clarity\symbol{34}, but there is a certain clumsiness in the way it is used. You have to pass three separate Int arguments to it, but these arguments are always linked to each other as part of a single date. It would make no sense to do things like passing the year, month and day values of the Anniversary in a different order, or to pass the month value twice and omit the day.
\begin{myitemize}
\item{} Could we use what we\textquotesingle{}ve seen in this chapter so far to reduce this clumsiness?
\item{} Declare a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type which is composed of three Int, corresponding to year, month and day. Then, rewrite {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showDate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that it uses the new Date data type. What changes will then be needed in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showAnniversary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Anniversary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for them to make use of Date?.

\end{myitemize}}
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for making type synonyms}
\label{110}

As mentioned in the introduction of this module, code clarity is one of the motivations for using custom types. In that spirit, it could be nice to make it clear that the Strings in the Anniversary type are being used as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape names}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} while still being able to manipulate them like ordinary Strings. This calls for a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Name}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

The code above says that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Name}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is now a synonym for a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Any function that takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will now take a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Name}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well (and vice-{}versa: functions that take {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Name}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will accept any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). The right hand side of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration can be a more complex type as well. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself is defined in the standard libraries as

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Char}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

We can do something similar for the list of anniversaries we made use of:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{AnniversaryBook}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Anniversary}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

Type synonyms are mostly just a convenience. They help make the roles of types clearer or provide an alias to such things as complicated list or tuple types. It is largely a matter of personal discretion to decide how type synonyms should be deployed. Abuse of synonyms could make code confusing (for instance, picture a long program using multiple names for common types like Int or String simultaneously).

Incorporating the suggested type synonyms and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type we proposed in the exercise(*) of the previous section the code we\textquotesingle{}ve written so far looks like this:

((*) {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries last chance to try that exercise without looking at the spoilers.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf})

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Name}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Birthday}\ensuremath{\text{ }}\DataTypeTok{Name}\ensuremath{\text{ }}\DataTypeTok{Date}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Wedding}\ensuremath{\text{ }}\DataTypeTok{Name}\ensuremath{\text{ }}\DataTypeTok{Name}\ensuremath{\text{ }}\DataTypeTok{Date}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Date}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Date}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Year,\ensuremath{\text{ }}Month,\ensuremath{\text{ }}Day}\newline
\ensuremath{\text{ }}\newline
\OtherTok{johnSmith\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\newline
\NormalTok{johnSmith\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Birthday}\ensuremath{\text{ }}\StringTok{"John\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Date}\ensuremath{\text{ }}\DecValTok{1968}\ensuremath{\text{ }}\DecValTok{7}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{smithWedding\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\newline
\NormalTok{smithWedding\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Wedding}\ensuremath{\text{ }}\StringTok{"John\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\StringTok{"Jane\ensuremath{\text{ }}Smith"}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Date}\ensuremath{\text{ }}\DecValTok{1987}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\DecValTok{4}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{AnniversaryBook}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Anniversary}\NormalTok{]}\newline
\ensuremath{\text{ }}\newline
\OtherTok{anniversariesOfJohnSmith\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{AnniversaryBook}\newline
\NormalTok{anniversariesOfJohnSmith\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[johnSmith,\ensuremath{\text{ }}smithWedding]}\newline
\ensuremath{\text{ }}\newline
\OtherTok{showDate\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Date}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{showDate\ensuremath{\text{ }}(}\DataTypeTok{Date}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}m\ensuremath{\text{ }}d)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"-"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"-"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}d\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\newline
\OtherTok{showAnniversary\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{showAnniversary\ensuremath{\text{ }}(}\DataTypeTok{Birthday}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}date)\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}born\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{showDate\ensuremath{\text{ }}date}\newline
\NormalTok{showAnniversary\ensuremath{\text{ }}(}\DataTypeTok{Wedding}\ensuremath{\text{ }}\NormalTok{name1\ensuremath{\text{ }}name2\ensuremath{\text{ }}date)\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{name1\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}married\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{name2\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}on\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{showDate\ensuremath{\text{ }}date}\newline
\end{Highlighting}
\end{Shaded}

Even in a simple example like this one, there is a noticeable gain in simplicity and clarity compared to the same task using only Ints, Strings, and corresponding lists.

Note that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type has a constructor function which is called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well. That is perfectly valid and indeed giving the constructor the same name of the type when there is just one constructor is good practice, as a simple way of making the role of the function obvious.

\LaTeXbodynoteTemplate{After these initial examples, the mechanics of using constructor functions may look a bit unwieldy, particularly if you\textquotesingle{}re familiar with analogous features in other languages. There are syntactical constructs that make dealing with constructors more convenient. These will be dealt with later on, when we return to the topic of constructors and data types to explore them in detail.}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Pattern matching}

\myminitoc
\label{111}

\label{112}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

In the previous modules, we introduced and made occasional reference to pattern matching. Now that we have developed some familiarity with the language, it is time to take a proper, deeper look. We will kick-{}start the discussion with a condensed description, which we will expand upon throughout the chapter:

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape In pattern matching, we attempt to {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbi.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbi.ttf}\bfseries \itshape match}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape values against {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbi.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbi.ttf}\bfseries \itshape patterns}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape and, if so desired, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbi.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbi.ttf}\bfseries \itshape bind}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape variables to successful matches}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Analysing pattern matching}
\label{113}
Pattern matching is virtually everywhere. For example, consider this definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{map\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

At surface level, there are four different patterns involved, two per equation.

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a pattern which matches {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape anything at all}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and binds the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable to whatever is matched.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x:xs)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a pattern that matches a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape non-{}empty list}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which is formed by something (which gets bound to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable) which was cons\textquotesingle{}d (by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function) onto something else (which gets bound to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a pattern that matches {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape the empty list}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It doesn\textquotesingle{}t bind any variables.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the pattern which matches anything without binding (wildcard, \symbol{34}don\textquotesingle{}t care\symbol{34} pattern).
\end{myitemize}

In the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x:xs)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be seen as sub-{}patterns used to match the parts of the list. Just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, they match anything -{} though it is evident that if there is a successful match and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will have type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Finally, these considerations imply that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will also match an empty list, and so a one-{}element list matches {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x:xs)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

From the above dissection, we can say pattern matching gives us a way to:

\begin{myitemize}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape recognize values}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For instance, when {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is called and the second argument matches {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the first equation for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used instead of the second one.
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape bind variables}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the recognized values. In this case, the variables {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are assigned to the values passed as arguments to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when the second equation is used, and so we can use these values through the variables in the right-{}hand side of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily =}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} show, binding is not an essential part of pattern matching, but just a side effect of using variable names as patterns.
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape break down values into parts}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x:xs)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern does by binding two variables to parts (head and tail) of a matched argument (the non-{}empty list).
\end{myitemize}

\section{The connection with constructors}
\label{114}

Despite the detailed analysis above, it may seem a little too magical how we break down a list as if we were undoing the effects of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator. Be careful: this process will not work with any arbitrary operator. For example, one might think of defining a function which uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to chop off the first three elements of a list:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{dropThree\ensuremath{\text{ }}([x,y,z]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{xs}\newline
\end{Highlighting}
\end{Shaded}

But that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape will not work}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not allowed in patterns. In fact, most other functions that act on lists are similarly prohibited from pattern matching. Which functions, then, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape are}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allowed?

In one word, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape constructors}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – the functions used to build values of algebraic data types. Let us consider a random example:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Bar}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Baz}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\end{Highlighting}
\end{Shaded}

Here {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Baz}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are constructors for the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape can}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} use them for pattern matching {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values and bind variables to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value contained in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructed with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Baz}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{f\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{f\ensuremath{\text{ }}}\DataTypeTok{Bar}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\NormalTok{f\ensuremath{\text{ }}(}\DataTypeTok{Baz}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\newline
\end{Highlighting}
\end{Shaded}

This is exactly like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showAnniversary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showDate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the Type declarations module. For instance:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Date}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Date}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Year,\ensuremath{\text{ }}Month,\ensuremath{\text{ }}Day}\newline
\OtherTok{showDate\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Date}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{showDate\ensuremath{\text{ }}(}\DataTypeTok{Date}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}m\ensuremath{\text{ }}d)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"-"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"-"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}d}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Date y m d)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern in the left-{}hand side of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily showDate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition matches a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (built with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor) and binds the variables {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily d}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the contents of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Date}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value.
\subsection{Why does it work with lists?}
\label{115}

As for lists, they are no different from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}defined algebraic data types as far as pattern matching is concerned. It works as if lists were defined with this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration (note that the following isn\textquotesingle{}t actually valid syntax: lists are actually too deeply ingrained into Haskell to be defined like this):

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\end{Highlighting}
\end{Shaded}

So the empty list, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function are constructors of the list datatype, and so you can pattern match with them. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes no arguments, and therefore no variables can be bound when it is used for pattern matching. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two arguments, the list head and tail, which may then have variables bound to them when the pattern is recognized.

\TemplatePreformat{ \newline{}
Prelude>{} {}:t {}{[}{]} \newline{}
{[}{]} {}:: {}{[}a{]} \newline{}
Prelude>{} {}:t {}(:) \newline{}
(:) {}:: {}a {}-{}>{} {}{[}a{]} {}-{}>{} {}{[}a{]} \newline{}
}

Furthermore, since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}x, y, z{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just syntactic sugar for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x:y:z:{[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can achieve something like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily dropThree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using pattern matching alone:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{dropThree\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{dropThree\ensuremath{\text{ }}(_}\FunctionTok{:}\NormalTok{_}\FunctionTok{:}\NormalTok{_}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{xs}\newline
\NormalTok{dropThree\ensuremath{\text{ }}_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\end{Highlighting}
\end{Shaded}

The first pattern will match any list with at least three elements. The catch-{}all second definition provides a reasonable default\myfootnote{Reasonable {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape for this particular task}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and only because it makes sense to expect that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily dropThree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will give {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when applied to a list of, say, two elements. With a different problem, it might not be reasonable to return {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape any}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} list if the first match failed. In a later chapter, we will consider one simple way of dealing with such cases.} when lists fail to match the main pattern, and thus prevents runtime crashes due to pattern match failure.

\LaTeXbodynoteTemplate{From the fact that we {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape could}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} write a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily dropThree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function with bare pattern matching it doesn\textquotesingle{}t follow that we {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape should}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do so! Even though the solution is simple, it is still a waste of effort to code something this specific when we could just use Prelude and settle it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily drop 3 xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead. Mirroring what was said before about baking bare recursive functions, we might say: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape don\textquotesingle{}t get too excited about pattern matching either...}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\subsection{Tuple constructors}
\label{116}

Analogous considerations are valid for tuples. Our access to their components via pattern matching...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{fstPlusSnd\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{fstPlusSnd\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y}\newline
\ensuremath{\text{ }}\newline
\OtherTok{norm3D\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Floating}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}a,\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{norm3D\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y,\ensuremath{\text{ }}z)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sqrt\ensuremath{\text{ }}(x}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{z}\FunctionTok{^}\DecValTok{2}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

... is granted by the existence of tuple constructors. For pairs, the constructor is the comma operator, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (,)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; for larger tuples there are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (,,)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (,,,)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so on. These operators are slightly unusual in that we can\textquotesingle{}t use them infix in the regular way; so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5 , 3}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not a valid way to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (5, 3)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. All of them, however, can be used prefix, which is occasionally useful.

\TemplatePreformat{ \newline{}
Prelude>{} {}(,) {}5 {}3 \newline{}
(5,3) \newline{}
Prelude>{} {}(,,,) {}\symbol{34}George\symbol{34} {}\symbol{34}John\symbol{34} {}\symbol{34}Paul\symbol{34} {}\symbol{34}Ringo\symbol{34} \newline{}
(\symbol{34}George\symbol{34},\symbol{34}John\symbol{34},\symbol{34}Paul\symbol{34},\symbol{34}Ringo\symbol{34}) \newline{}
}
\section{Matching literal values}
\label{117}

As discussed earlier in the book, a simple piece-{}wise function definition like this one

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{f\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{f\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\NormalTok{f\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\newline
\NormalTok{f\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\newline
\NormalTok{f\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{-}\DecValTok{1}\newline
\end{Highlighting}
\end{Shaded}

is performing pattern matching as well, matching the argument of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} literals 0, 1 and 2, and finally with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} . In general, numeric and character literals can be used in pattern matching on their own\myfootnote{As perhaps could be expected, this kind of matching with literals is not constructor-{}based. Rather, there is an equality comparison behind the scenes} as well as together with constructor patterns. For instance, this function

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{g\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Int}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{g\ensuremath{\text{ }}(}\DecValTok{0}\FunctionTok{:}\NormalTok{[])\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\NormalTok{g\ensuremath{\text{ }}(}\DecValTok{0}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\NormalTok{g\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\end{Highlighting}
\end{Shaded}

will evaluate to False for the {[}0{]} list, to True if the list has 0 as first element and a non-{}empty tail and to False in all other cases. Also, lists with literal elements like {[}1,2,3{]}, or even \symbol{34}abc\symbol{34} (which is equivalent to {[}\textquotesingle{}a\textquotesingle{},\textquotesingle{}b\textquotesingle{},\textquotesingle{}c\textquotesingle{}{]}) can be used for pattern matching as well, since these forms are only syntactic sugar for the (:) constructor.

The above considerations are only valid for literal values, so the following will {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} work:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{k\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\CommentTok{--again,\ensuremath{\text{ }}this\ensuremath{\text{ }}won\textquotesingle{}t\ensuremath{\text{ }}work\ensuremath{\text{ }}as\ensuremath{\text{ }}expected}\newline
\OtherTok{h\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{h\ensuremath{\text{ }}k\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\NormalTok{h\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Test the flawed {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily h}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function above in GHCi, with arguments equal to and different from 1. Then, explain what goes wrong.
\item{} In this section about pattern matching with literal values, we made no mention of the boolean values {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but we can do pattern matching with them as well, as demonstrated in the \mylref{62}{Next steps} chapter. Can you guess why we omitted them? (Hint: is there anything distinctive about the way we write boolean values?)

\end{myenumerate}}

\section{Syntax tricks}
\label{118}\subsection{As-{}patterns}
\label{119}

Sometimes, when matching a pattern with a value, it may be useful to bind a name to the whole value being matched. As-{}patterns allow exactly this: they are of the form {\itshape {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape var@pattern}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and have the additional effect to bind the name {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily var}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the whole value being matched by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pattern}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For instance, here is a toy variation on the map theme:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{contrivedMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{([a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{contrivedMap\ensuremath{\text{ }}f\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{contrivedMap\ensuremath{\text{ }}f\ensuremath{\text{ }}list}\FunctionTok{@}\NormalTok{(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}list\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{contrivedMap\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily contrivedMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} passes to the parameter function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} not only {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but also the undivided list used as argument of each recursive call. Writing it without as-{}patterns would have been a bit clunky because we would have to either use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or needlessly {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape reconstruct}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the original value of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily list}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, i.e. actually evaluate {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x:xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the right side:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{contrivedMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{([a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{contrivedMap\ensuremath{\text{ }}f\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{contrivedMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{contrivedMap\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as in the exercise in \mylref{103}{Lists III}, but this time using an as-{}pattern.}
\subsection{Introduction to records}
\label{120}

For constructors with many elements, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape records}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provide a way of naming values in a datatype using the following syntax:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foo2}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Bar2}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Baz2}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{bazNumber::}\DataTypeTok{Int}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}bazName::}\DataTypeTok{String}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

Using records allows doing matching and binding only for the variables relevant to the function we\textquotesingle{}re writing, making code much clearer:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{h\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Foo2}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{h\ensuremath{\text{ }}}\DataTypeTok{Baz2}\ensuremath{\text{ }}\NormalTok{\{bazName}\FunctionTok{=}\NormalTok{name\}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}name}\newline
\NormalTok{h\ensuremath{\text{ }}}\DataTypeTok{Bar2}\ensuremath{\text{ }}\NormalTok{\{\}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\newline
\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Baz2}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\StringTok{"Haskell"}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}construct\ensuremath{\text{ }}by\ensuremath{\text{ }}declaration\ensuremath{\text{ }}order,\ensuremath{\text{ }}try\ensuremath{\text{ }}":t\ensuremath{\text{ }}Baz2"\ensuremath{\text{ }}in}\newline
\ensuremath{\text{ }}\DataTypeTok{GHCi}\newline
\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Baz2}\ensuremath{\text{ }}\NormalTok{\{bazName\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Curry"}\NormalTok{,\ensuremath{\text{ }}bazNumber\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{\}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}construct\ensuremath{\text{ }}by\ensuremath{\text{ }}name}\newline
\ensuremath{\text{ }}\newline
\NormalTok{h\ensuremath{\text{ }}x\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}7}\newline
\NormalTok{h\ensuremath{\text{ }}y\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}5}\newline
\end{Highlighting}
\end{Shaded}

Also, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern can be used for matching a constructor regardless of the datatype elements even if you don\textquotesingle{}t use records in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Bar}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Baz}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\OtherTok{g\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{g\ensuremath{\text{ }}}\DataTypeTok{Bar}\ensuremath{\text{ }}\NormalTok{\{\}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\NormalTok{g\ensuremath{\text{ }}}\DataTypeTok{Baz}\ensuremath{\text{ }}\NormalTok{\{\}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\end{Highlighting}
\end{Shaded}

The function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not have to be changed if we modify the number or the type of elements of the constructors {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Baz}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

There are further advantages to using record syntax which we will cover in more details in the \mylref{178}{Named fields} section of the More on datatypes chapter.
\section{Where we can use pattern matching}
\label{121}

The short answer is that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape wherever you can bind variables, you can pattern match}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Let us have a glance at such places we have seen before; a few more will be introduced in the following chapters.
\subsection{Equations}
\label{122}

The most obvious use case is the left-{}hand side of function definition equations, which were the subject of our examples so far.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{map\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

In the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition we\textquotesingle{}re doing pattern matching on the left hand side of both equations, and also binding variables on the second one.
\subsection{let expressions and where clauses}
\label{123}
Both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are ways of doing local variable bindings. As such, you can also use pattern matching in them. A simple example:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(x}\FunctionTok{:}\NormalTok{_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}(}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{5}\newline
\end{Highlighting}
\end{Shaded}

Or, equivalently,

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{5}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(x}\FunctionTok{:}\NormalTok{_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}(}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be bound to the first element of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map ((*) 2) {[}1,2,3{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, therefore, will evaluate to {$2 + 5 = 7$}.
\subsection{List comprehensions}
\label{124}
After the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily |}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in list comprehensions you can pattern match. This is actually extremely useful, and adds a lot to the expressiveness of comprehensions. Let\textquotesingle{}s see how that works with a slightly more sophisticated example. Prelude provides a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type which has the following constructors:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

It is typically used to hold values resulting from an operation which may or may not succeed; if the operation succeeds, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor is used and the value is passed to it; otherwise {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used.\myfootnote{The canonical example of such an operation is looking up values in a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape dictionary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} which might just be a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}(a, b){]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} list with the tuples being key-{}value pairs, or a more sophisticated implementation. In any case, if we, given an arbitrary key, try to retrieve a value there is no guarantee we will actually find a value associated to the key.} The utility function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily catMaybes}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (which is available from Data.Maybe library module) takes a list of Maybes (which may contain both \symbol{34}Just\symbol{34} and \symbol{34}Nothing\symbol{34} Maybes), and retrieves the contained values by filtering out the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values and getting rid of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wrappers of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Writing it with list comprehensions is very straightforward:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{catMaybes\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{catMaybes\ensuremath{\text{ }}ms\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{ms\ensuremath{\text{ }}]}\newline
\end{Highlighting}
\end{Shaded}

Another nice thing about using a list comprehension for this task is that if the pattern match fails (that is, it meets a Nothing) it just moves on to the next element in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ms}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, thus avoiding the need of explicitly handling constructors we are not interested in with alternate function definitions.\myfootnote{The reason why it works this way instead of crashing out on a pattern matching failure has to do with the real nature of list comprehensions: They are actually wrappers for the list monad. We will eventually explain what that means when we discuss monads.}
\subsection{do blocks}
\label{125}

Within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block like the ones we used in the \mylref{66}{Simple input and output} chapter, we can pattern match with the left-{}hand side of the left arrow variable bindings:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{putFirstChar\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(c}\FunctionTok{:}\NormalTok{_)\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}[c]}\newline
\end{Highlighting}
\end{Shaded}

Furthermore, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks are, as far as pattern matching is concerned, just the same as the \symbol{34}real\symbol{34} let expressions.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Control structures}

\myminitoc
\label{126}

\label{127}
\LaTeXNullTemplate{}

Haskell offers several ways of expressing a choice between different values. We explored some of them in the Haskell Basics chapters. This section will bring together what we have seen thus far, discuss some finer points, and introduce a new control structure.
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and guards revisited}
\label{128}

We have already met these constructs. The syntax for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions is:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{if}\ensuremath{\text{ }}\FunctionTok{<}\NormalTok{condition}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\FunctionTok{<}\NormalTok{true}\FunctionTok{-}\NormalTok{value}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\FunctionTok{<}\NormalTok{false}\FunctionTok{-}\NormalTok{value}\FunctionTok{>}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}condition>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an expression which evaluates to a boolean. If the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}condition>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} then the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}true-{}value>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is returned, otherwise the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}false-{}value>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is returned. Note that in Haskell {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an expression (which is converted to a value) and not a statement (which is executed) as in many imperative languages.\myfootnote{If you have programmed in C or Java, you will recognize Haskell\textquotesingle{}s if/then/else as an equivalent to the ternary conditional operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ?:}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} .} As a consequence, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape mandatory}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Haskell. Since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an expression, it must evaluate to a result whether the condition is true or false, and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ensures this. Furthermore, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}true-{}value>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}false-{}value>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must evaluate to the same type, which will be the type of the whole if expression.

When {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions are split across multiple lines, they are usually indented by aligning {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily then}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, rather than with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s. A common style looks like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{describeLetter\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{describeLetter\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{>=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}a\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{<=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}z\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\StringTok{"Lower\ensuremath{\text{ }}case"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{>=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}A\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{<=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}Z\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\StringTok{"Upper\ensuremath{\text{ }}case"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\StringTok{"Not\ensuremath{\text{ }}an\ensuremath{\text{ }}ASCII\ensuremath{\text{ }}letter"}\newline
\end{Highlighting}
\end{Shaded}

Guards and top-{}level {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions are mostly interchangeable. With guards, the example above is a little neater:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{describeLetter\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{describeLetter\ensuremath{\text{ }}c}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{>=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}a\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{<=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}z\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Lower\ensuremath{\text{ }}case"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{>=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}A\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{<=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}Z\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Upper\ensuremath{\text{ }}case"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Not\ensuremath{\text{ }}an\ensuremath{\text{ }}ASCII\ensuremath{\text{ }}letter"}\newline
\end{Highlighting}
\end{Shaded}

Remember that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily otherwise}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just an alias to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and thus the last guard is a catch-{}all, playing the role of the final {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression.

Guards are evaluated in the order they appear. Consider a set up like the following:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}(pattern1)\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{predicate1\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{w}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{predicate2\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\NormalTok{f\ensuremath{\text{ }}(pattern2)\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{predicate3\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{y}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{predicate4\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{z}\newline
\end{Highlighting}
\end{Shaded}

Here, the argument of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be pattern-{}matched against pattern1. If it succeeds, then we proceed to the first set of guards: if predicate1 evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is returned. If not, then predicate2 is evaluated; and if it is true {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is returned. Again, if not, then we proceed to the next case and try to match the argument against pattern2, repeating the guards procedure with predicate3 and predicate4. (Of course, if neither pattern matches or neither predicate is true for the matching pattern there will be a runtime error. Regardless of the chosen control structure, it is important to ensure all cases are covered.)
\subsection{Embedding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions}
\label{129}

A handy consequence of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructs being {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape expressions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is that they can be placed anywhere a Haskell expression could be, allowing us to write code like this:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{g\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{sin\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{y}\newline
\end{Highlighting}
\end{Shaded}

Note that we wrote the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression without line breaks for maximum terseness. Unlike {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions, guard blocks are not expressions; and so a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition is the closest we can get to this style when using them. Needless to say, more complicated one-{}line {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions would be hard to read, making {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attractive options in such cases.
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions}
\label{130}

One control structure we haven\textquotesingle{}t talked about yet are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions. They are to piece-{}wise function definitions what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions are to guards. Take this simple piece-{}wise definition:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{18}\newline
\NormalTok{f\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{15}\newline
\NormalTok{f\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{12}\newline
\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{12}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

It is equivalent to -{} and, indeed, syntactic sugar for:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{18}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{15}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{12}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{12}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

Whatever definition we pick, the same happens when {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is called: The argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is matched against all of the patterns in order; and on the first match the expression on the right-{}hand side of the corresponding equal sign (in the piece-{}wise version) or arrow (in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} version) is evaluated. Note that in this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression there is no need to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the pattern; the wildcard pattern {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives the same effect.\myfootnote{To see why this is so, consider our discussion of matching and binding in the \myfnlref{112}{../Pattern matching/} section}

Indentation is important when using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The cases must be indented further to the right than the beginning of the line containing the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily of}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword, and all cases must have the same indentation. For the sake of illustration, here are two other valid layouts for a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{18}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{15}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{12}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{12}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{18}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{15}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{12}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{12}\ensuremath{\text{ }}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

Since the left hand side of any case branch is just a pattern, it can also be used for binding, exactly like in piece-{}wise function definitions:\myfootnote{Thus, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statements are a lot more versatile than most of the superficially similar switch/case statements in imperative languages which are typically restricted to equality tests on integral primitive types.}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{describeString\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{describeString\ensuremath{\text{ }}str\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{str\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"The\ensuremath{\text{ }}first\ensuremath{\text{ }}character\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}string\ensuremath{\text{ }}is:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{[x]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{";\ensuremath{\text{ }}and\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\StringTok{"there\ensuremath{\text{ }}are\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}(length\ensuremath{\text{ }}xs)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}more\ensuremath{\text{ }}characters\ensuremath{\text{ }}in\ensuremath{\text{ }}it."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"This\ensuremath{\text{ }}is\ensuremath{\text{ }}an\ensuremath{\text{ }}empty\ensuremath{\text{ }}string."}\newline
\end{Highlighting}
\end{Shaded}

This function describes some properties of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily str}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using a human-{}readable string. Using case syntax to bind variables to the head and tail of our list is convenient here, but you could also do this with an if-{}statement (with a condition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily null str}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to pick the empty string case).

Finally, just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions (and unlike piece-{}wise definitions), {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions can be embedded anywhere another expression would fit:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Colour}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Black}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{White}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{RGB}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\newline
\OtherTok{describeBlackOrWhite\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Colour}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{describeBlackOrWhite\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\StringTok{"This\ensuremath{\text{ }}colour\ensuremath{\text{ }}is"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Black}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}black"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{White}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}white"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{RGB}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}black"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{RGB}\ensuremath{\text{ }}\DecValTok{255}\ensuremath{\text{ }}\DecValTok{255}\ensuremath{\text{ }}\DecValTok{255}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}white"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"...\ensuremath{\text{ }}uh...\ensuremath{\text{ }}something\ensuremath{\text{ }}else"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{",\ensuremath{\text{ }}yeah?"}\newline
\end{Highlighting}
\end{Shaded}

The case block above fits in as any string would. Writing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily describeBlackOrWhite}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} this way makes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}/{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} unnecessary (although the resulting definition is not as readable).

\LaTeXExercisesTemplate{Use a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement to implement a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fakeIf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function which could be used as a replacement to the familiar {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions.}
\section{Controlling actions, revisited}
\label{131}

In the final part of this chapter, we will introduce a few extra points about control structures while revisiting the discussions in the \symbol{34}Simple input and output\symbol{34} chapter. There, in the \mylref{71}{Controlling actions} section, we used the following function to show how to execute actions conditionally within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doGuessing\ensuremath{\text{ }}num\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}guess:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guess\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\NormalTok{num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}low!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}high!"}\newline
\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"You\ensuremath{\text{ }}Win!"}\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

We can write the same {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doGuessing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function using a {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries case}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
statement. To do this, we first introduce the Prelude function
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which takes two values of the same type (in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
class) and returns a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ordering}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — namely one of
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily LT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily EQ}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, depending on
whether the first is greater than, less than, or equal to the second.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doGuessing\ensuremath{\text{ }}num\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}guess:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guess\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{compare\ensuremath{\text{ }}(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}num\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{LT}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}low!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{GT}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}high!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{EQ}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"You\ensuremath{\text{ }}Win!"}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries do}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s after the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are necessary on the
first two options, because we are sequencing actions within each case.
\subsection{A note about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{132}

Now, we are going to dispel a possible source of confusion. In a typical imperative
language (C, for example) an implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doGuessing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might look like the following
(if you don\textquotesingle{}t know C, don\textquotesingle{}t worry with the details, just follow the if-{}else chain):

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{void}\ensuremath{\text{ }}\NormalTok{doGuessing(}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{num)\ensuremath{\text{ }}\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}guess:"}\NormalTok{);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{guess\ensuremath{\text{ }}=\ensuremath{\text{ }}atoi(readLine());}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(guess\ensuremath{\text{ }}==\ensuremath{\text{ }}num)\ensuremath{\text{ }}\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"You\ensuremath{\text{ }}win!}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{();}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{//\ensuremath{\text{ }}we\ensuremath{\text{ }}won\textquotesingle{}t\ensuremath{\text{ }}get\ensuremath{\text{ }}here\ensuremath{\text{ }}if\ensuremath{\text{ }}guess\ensuremath{\text{ }}==\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(guess\ensuremath{\text{ }}<\ensuremath{\text{ }}num)\ensuremath{\text{ }}\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Too\ensuremath{\text{ }}low!}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing(num);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Too\ensuremath{\text{ }}high!}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing(num);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

This {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doGuessing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} first tests the equality case, which does not lead to
a new call of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily doGuessing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has no accompanying
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If the guess was right, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement is used to
exit the function at once, skipping the other cases. Now, going back to Haskell, action
sequencing in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks looks a lot like imperative code, and furthermore
there actually {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Prelude. Then, knowing that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
statements (unlike {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statements) do not force us to cover all cases, one
might be tempted to write a literal translation of the C code above (try running it if
you are curious)...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doGuessing\ensuremath{\text{ }}num\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}guess:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guess\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{compare\ensuremath{\text{ }}(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}num\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{EQ}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"You\ensuremath{\text{ }}win!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}we\ensuremath{\text{ }}don\textquotesingle{}t\ensuremath{\text{ }}expect\ensuremath{\text{ }}to\ensuremath{\text{ }}get\ensuremath{\text{ }}here\ensuremath{\text{ }}if\ensuremath{\text{ }}guess\ensuremath{\text{ }}==\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(read\ensuremath{\text{ }}guess\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\NormalTok{num)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}low!"}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}high!"}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\end{Highlighting}
\end{Shaded}

... but it won\textquotesingle{}t work! If you guess correctly, the function
will first print \symbol{34}You win!,\symbol{34} but it {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape will not exit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Instead, the program will continue to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression and check whether
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guess}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is less than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Of course it is
not, so the else branch is taken, and it will print \symbol{34}Too high!\symbol{34} and
then ask you to guess again. Things aren\textquotesingle{}t any better with an incorrect guess:
it will try to evaluate the case statement and get either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily LT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the result of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In either case,
it won\textquotesingle{}t have a pattern that matches, and the program will fail immediately
with an exception (as usual, the incomplete {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} alone should be
enough to raise suspicion).

The problem here is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not at all equivalent to the
C (or Java etc.) statement with the same name. For our immediate purposes,
we can say that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Superfluous note}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: somewhat
closer to a proper explanation, we might
say {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function which takes a value and makes it into an
action which, when evaluated, gives the original value. A
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return \symbol{34}strawberry\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within one of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks
we are dealing with would have type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} the same type as
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Do not worry if that doesn\textquotesingle{}t make sense for now; you will
understand what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} really does when we {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape actually}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} start
discussing monads further ahead on the book.}
The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in particular evaluates to an action which does nothing.
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape does not affect the control flow at all}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In the correct guess
case, the case statement evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, an action of type
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and execution just follows along normally.

The bottom line is that while actions and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks resemble imperative
code, they must be dealt with on their own terms -{} Haskell terms.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Redo the \symbol{34}Haskell greeting\symbol{34} exercise in \mylref{71}{Simple input and output/Controlling actions}, this time using a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement.
\item{} What does the following program print out? And why?

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getX}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\newline
\NormalTok{getX\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"My\ensuremath{\text{ }}Shangri-La"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"beneath"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"the\ensuremath{\text{ }}summer\ensuremath{\text{ }}moon"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"I\ensuremath{\text{ }}will"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"return"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"again"}\newline
\end{Highlighting}
\end{Shaded}

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{More on functions}

\myminitoc
\label{133}

\label{134}
\LaTeXNullTemplate{}

Here are several nice features that make using functions easier.
\section{let and where revisited}
\label{135}

As discussed in earlier chapters, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are useful in local function definitions. Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sumStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} calls {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{addStr\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Float}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Float}\newline
\NormalTok{addStr\ensuremath{\text{ }}x\ensuremath{\text{ }}str\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{read\ensuremath{\text{ }}str}\newline
\ensuremath{\text{ }}\newline
\OtherTok{sumStr\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{String}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Float}\newline
\NormalTok{sumStr\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}addStr\ensuremath{\text{ }}}\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}

But what if we never need {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} anywhere else? Then we could rewrite {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sumStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using local bindings. We can do that either with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} binding...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sumStr\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{addStr\ensuremath{\text{ }}x\ensuremath{\text{ }}str\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{read\ensuremath{\text{ }}str}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}addStr\ensuremath{\text{ }}}\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}

... or with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sumStr\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}addStr\ensuremath{\text{ }}}\FloatTok{0.0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\ensuremath{\text{ }}\NormalTok{addStr\ensuremath{\text{ }}x\ensuremath{\text{ }}str\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{read\ensuremath{\text{ }}str}\newline
\end{Highlighting}
\end{Shaded}

... and the difference appears to be just a question of style: Do we prefer the bindings to come before or after the rest of the definition?

However, there is another important difference between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let...in}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} construct is an expression just like if/then/else. In contrast, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clauses are like guards and so are not expressions. Thus, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings can be used within complex expressions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{(}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{lsq\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(log\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{tan\ensuremath{\text{ }}lsq)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{sin\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}

The expression within the outer parentheses is self-{}contained, and evaluates to the tangent of the square of the logarithm of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that the scope of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lsq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not extend beyond the parentheses; so changing the then-{}branch to

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{(}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{lsq\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(log\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{tan\ensuremath{\text{ }}lsq)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(sin\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{lsq)}\newline
\end{Highlighting}
\end{Shaded}

does not work without dropping the parentheses around the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Despite not being full expressions, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clauses {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape can}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be incorporated into {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{describeColour\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\StringTok{"This\ensuremath{\text{ }}colour\ensuremath{\text{ }}"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Black}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"is\ensuremath{\text{ }}black"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{White}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"is\ensuremath{\text{ }}white"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{RGB}\ensuremath{\text{ }}\NormalTok{red\ensuremath{\text{ }}green\ensuremath{\text{ }}blue\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}has\ensuremath{\text{ }}an\ensuremath{\text{ }}average\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}components\ensuremath{\text{ }}of\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show}\newline
\ensuremath{\text{ }}\NormalTok{av}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\ensuremath{\text{ }}\NormalTok{av\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(red\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{green\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{blue)\ensuremath{\text{ }}}\OtherTok{`div`}\ensuremath{\text{ }}\DecValTok{3}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{",\ensuremath{\text{ }}yeah?"}\newline
\end{Highlighting}
\end{Shaded}

In this example, the indentation of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause sets the scope of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily av}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable so that it only exists as far as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily RGB red green blue}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} case is concerned. Placing it at the same indentation of the cases would make it available for all cases. Here is an example with guards:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{doStuff\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{doStuff\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{report\ensuremath{\text{ }}}\StringTok{"less\ensuremath{\text{ }}than\ensuremath{\text{ }}three"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{report\ensuremath{\text{ }}}\StringTok{"normal"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{report\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"the\ensuremath{\text{ }}input\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{y}\newline
\end{Highlighting}
\end{Shaded}

Note that since there is one equals sign for each guard there is no place we could put a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression which would be in scope of all guards in the manner of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause. So this is a situation in which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is particularly convenient.
\section{Anonymous Functions -{} lambdas}
\label{136}

Why create a formal name for a function like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when it only exists within another function\textquotesingle{}s definition, never to be used again? Instead, we can make it an anonymous function also known as a \symbol{34}lambda function\symbol{34}. Then, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sumStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} could be defined like this:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sumStr\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}(\textbackslash{}\ensuremath{\text{ }}x\ensuremath{\text{ }}str\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{read\ensuremath{\text{ }}str)\ensuremath{\text{ }}}\FloatTok{0.0}\newline
\end{Highlighting}
\end{Shaded}

The expression in the parentheses is a lambda function. The backslash is used as the nearest ASCII equivalent to the Greek letter lambda ({\mbox{λ}}). This lambda function takes two arguments, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily str}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and it evaluates to \symbol{34}x + read str\symbol{34}. So, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sumStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} presented just above is precisely the same as the one that used {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addStr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in a let binding.

Lambdas are handy for writing one-{}off functions to be used with maps, folds and their siblings, especially where the function in question is simple (beware of cramming complicated expressions in a lambda — it can hurt readability).

Since variables are being bound in a lambda expression (to the arguments, just like in a regular function definition), pattern matching can be used in them as well. A trivial example would be redefining {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a lambda:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{tail\textquotesingle{}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}\ensuremath{\text{ }}(_}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{xs)}\newline
\end{Highlighting}
\end{Shaded}

Note: Since lambdas are a special character in Haskell, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on its own will be treated as the function and whatever non-{}space character is next will be the variable for the first argument. It is still good form to put a space between the lambda and the argument as in normal function syntax (especially to make things clearer when a lambda takes more than one argument).
\section{Operators}
\label{137}

In Haskell, any function that takes two arguments and has a name consisting entirely of non-{}alphanumeric characters is considered an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape operator}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The most common examples are the arithmetical ones like addition (+) and subtraction (-{}). Unlike other functions, operators are normally used infix (written between the two arguments). All operators can also be surrounded with parentheses and then used prefix like other functions:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}these\ensuremath{\text{ }}are\ensuremath{\text{ }}the\ensuremath{\text{ }}same:}\newline
\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{4}\newline
\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\DecValTok{4}\newline
\end{Highlighting}
\end{Shaded}

We can define new operators in the usual way as other functions — just don\textquotesingle{}t use any alphanumeric characters in their names. For example, here\textquotesingle{}s the set-{}difference definition from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(\textbackslash{}\textbackslash{})}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{xs\ensuremath{\text{ }}\textbackslash{}\textbackslash{}\ensuremath{\text{ }}ys\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}(\textbackslash{}zs\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{delete\ensuremath{\text{ }}y\ensuremath{\text{ }}zs)\ensuremath{\text{ }}xs\ensuremath{\text{ }}ys}\newline
\end{Highlighting}
\end{Shaded}

As the example above shows, operators can be defined infix as well. The same definition written as prefix also works:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(\textbackslash{}\textbackslash{})\ensuremath{\text{ }}xs\ensuremath{\text{ }}ys\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldl\ensuremath{\text{ }}(\textbackslash{}zs\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{delete\ensuremath{\text{ }}y\ensuremath{\text{ }}zs)\ensuremath{\text{ }}xs\ensuremath{\text{ }}ys}\newline
\end{Highlighting}
\end{Shaded}

Note that the type declarations for operators have no infix version and must be written with the parentheses.
\subsection{Sections}
\label{138}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Sections}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are a nifty piece of syntactical sugar that can be used with operators. An operator within parentheses and flanked by one of its arguments...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(}\DecValTok{2}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{4}\newline
\NormalTok{(}\FunctionTok{+}\DecValTok{4}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

... is a new function in its own right. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (2+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for instance, has the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Num a) =>{} a -{}>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We can pass sections to other functions, e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map (+2) {[}1..4{]} == {[}3..6{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For another example, we can add an extra flourish to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily multiplyList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function we wrote back in More about lists:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{multiplyList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Integer}\NormalTok{]}\newline
\NormalTok{multiplyList\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}(m}\FunctionTok{*}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

If you have a \symbol{34}normal\symbol{34} prefix function and want to use it as an operator, simply surround it with backticks:

\begin{Shaded}
\begin{Highlighting}[]

\DecValTok{1}\ensuremath{\text{ }}\OtherTok{`elem`}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\DecValTok{4}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

This is called making the function {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape infix}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It\textquotesingle{}s normally done for readability purposes: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1 `elem` {[}1..4{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} reads better than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily elem 1 {[}1..4{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You can also define functions infix:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{elem}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{x\ensuremath{\text{ }}}\OtherTok{`elem`}\ensuremath{\text{ }}\NormalTok{xs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{any\ensuremath{\text{ }}(}\FunctionTok{==}\NormalTok{x)\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

But once again notice that the type signature stays with the prefix style.

Sections even work with infix functions:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(}\DecValTok{1}\ensuremath{\text{ }}\OtherTok{`elem`}\NormalTok{)\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{4}\NormalTok{]}\newline
\NormalTok{(}\OtherTok{`elem`}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\DecValTok{4}\NormalTok{])\ensuremath{\text{ }}}\DecValTok{1}\newline
\end{Highlighting}
\end{Shaded}

Of course, remember that you can only make binary functions (that is, those that take two arguments) infix.

\LaTeXExercisesTemplate{\begin{myitemize}
\item{} Lambdas are a nice way to avoid defining unnecessary separate functions. Convert the following let-{} or where-{}bindings to lambdas:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map f xs where f x = x * 2 + 3}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let f x y = read x + y in foldr f 1 xs}
\end{myitemize}

\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Sections are just syntactic sugar for lambda operations. I.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+2)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}x -{}>{} x + 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. What would the following sections \textquotesingle{}desugar\textquotesingle{} to? What would be their types?
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (4+)}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (1 `elem`)}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (`notElem` \symbol{34}abc\symbol{34})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myitemize}

\end{myitemize}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Higher-{}order functions}

\myminitoc
\label{139}

\label{140}
\LaTeXNullTemplate{}

At the heart of functional programming is the idea that functions are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape just like any other value}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The power of functional style comes from handling functions themselves as regular values, i.e. by passing functions to other functions and returning them from functions. A function that takes another function (or several functions) as an argument is called a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape higher-{}order function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. They can be found pretty much anywhere in a Haskell program; and indeed we have already met some of them, such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the various folds. We saw commonplace examples of higher-{}order functions when discussing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in \mylref{86}{Lists II}. Now, we are going to explore some common ways of writing code that manipulates functions.
\section{A sorting algorithm}
\label{141}

For a concrete example, we will consider the task of sorting a list. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Quicksort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a well-{}known recursive sorting algorithm. To apply its sorting strategy to a list, we first choose one element and then divide the rest of the list into (A) those elements that should go before the chosen element, (B) those elements equal to the chosen one, and (C) those that should go after. Then, we apply the same algorithm to the unsorted (A) and (C) lists. After enough recursive sorting, we concatenate everything back together and have a final sorted list. That strategy can be translated into a Haskell implementation in a very simple way.

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Type\ensuremath{\text{ }}signature:\ensuremath{\text{ }}any\ensuremath{\text{ }}list\ensuremath{\text{ }}with\ensuremath{\text{ }}elements\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}Ord\ensuremath{\text{ }}class\ensuremath{\text{ }}can\ensuremath{\text{ }}be\ensuremath{\text{ }}sorted.}\newline
\OtherTok{quickSort\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\CommentTok{--\ensuremath{\text{ }}Base\ensuremath{\text{ }}case:}\newline
\CommentTok{--\ensuremath{\text{ }}If\ensuremath{\text{ }}the\ensuremath{\text{ }}list\ensuremath{\text{ }}is\ensuremath{\text{ }}empty,\ensuremath{\text{ }}there\ensuremath{\text{ }}is\ensuremath{\text{ }}nothing\ensuremath{\text{ }}to\ensuremath{\text{ }}do.}\newline
\NormalTok{quickSort\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}recursive\ensuremath{\text{ }}case:}\newline
\CommentTok{--\ensuremath{\text{ }}We\ensuremath{\text{ }}pick\ensuremath{\text{ }}the\ensuremath{\text{ }}first\ensuremath{\text{ }}element\ensuremath{\text{ }}as\ensuremath{\text{ }}our\ensuremath{\text{ }}"pivot",\ensuremath{\text{ }}the\ensuremath{\text{ }}rest\ensuremath{\text{ }}is\ensuremath{\text{ }}to\ensuremath{\text{ }}be\ensuremath{\text{ }}sorted.}\newline
\CommentTok{--\ensuremath{\text{ }}Note\ensuremath{\text{ }}how\ensuremath{\text{ }}the\ensuremath{\text{ }}pivot\ensuremath{\text{ }}itself\ensuremath{\text{ }}ends\ensuremath{\text{ }}up\ensuremath{\text{ }}included\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}middle\ensuremath{\text{ }}part.}\newline
\NormalTok{quickSort\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(quickSort\ensuremath{\text{ }}less)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{equal)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(quickSort\ensuremath{\text{ }}more)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{less\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(}\FunctionTok{<}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{equal\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{more\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

It should be pointed out that our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is rather naïve. A more efficient implementation would avoid the three passes through {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at each recursive step and not use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to build the sorted list. Furthermore, unlike our implementation, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape original}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} quicksort algorithm does the sorting in-{}place using mutability.\myfootnote{The \symbol{34}true\symbol{34}, in-{}place quicksort {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape can}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be done in Haskell, but it requires some rather advanced tools that we will not discuss in the Beginners\textquotesingle{} Track.} We will ignore such concerns for now, as we are more interested in the usage patterns of sorting functions, rather than in exact implementation.
\subsection{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class}
\label{142}

Almost all the basic data types in Haskell are members of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, which is for ordering tests what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is for equality tests. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class defines which ordering is the \symbol{34}natural\symbol{34} one for a given type. It provides a function called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with type:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{compare}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ordering}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two values and compares them, returning an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ordering}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value, which is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily LT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if the first value is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape less than}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the second, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily EQ}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if it is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape equal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if it is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape greater than}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be seen as shortcuts to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that check for one of the three possibilities and return a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to indicate whether the specified ordering is true according to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} specification for that type. Note that each of the tests we use with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} corresponds to one of the possible results of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so we might have written, for instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily less}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily less = filter (\textbackslash{}y -{}>{} y `compare` x == LT) xs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Choosing how to compare}
\label{143}

With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, sorting any list with elements in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class is easy. Suppose we have a list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and we want to sort them; we just apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the list. For the rest of this chapter, we will use a pseudo-{}dictionary of just a few words (but dictionaries with thousands of words would work just as well):

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{dictionary\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\StringTok{"I"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"have"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"a"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"thing"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"for"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"Linux"}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort dictionary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{[}\StringTok{"I"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"Linux"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"a"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"for"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"have"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"thing"}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

As you can see, capitalization is considered for sorting by default. Haskell {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are lists of Unicode characters. Unicode (and almost all other encodings of characters) specifies that the character code for capital letters are less than the lower case letters. So \symbol{34}Z\symbol{34} is less than \symbol{34}a\symbol{34}.

To get a proper dictionary-{}like sorting, we need a case insensitive {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To achieve that, we can take a hint from the discussion of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} just above. The recursive case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be rewritten as:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{quickSort\ensuremath{\text{ }}compare\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(quickSort\ensuremath{\text{ }}compare\ensuremath{\text{ }}less)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{equal)\ensuremath{\text{ }}}\FunctionTok{++}\newline
\ensuremath{\text{ }}\NormalTok{(quickSort\ensuremath{\text{ }}compare\ensuremath{\text{ }}more)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{less\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(\textbackslash{}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{`compare`}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DataTypeTok{LT}\NormalTok{)\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{equal\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(\textbackslash{}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{`compare`}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DataTypeTok{EQ}\NormalTok{)\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{more\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(\textbackslash{}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{`compare`}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DataTypeTok{GT}\NormalTok{)\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

While this version is less tidy than the original one, it makes it obvious that the ordering of the elements hinges entirely on the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. That means we only need to replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with an \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Ord a) =>{} a -{}>{} a -{}>{} Ordering}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function of our choice. Therefore, our updated {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a higher-{}order function which takes a comparison function along with the list to sort.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{quickSort\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ordering}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\CommentTok{--\ensuremath{\text{ }}No\ensuremath{\text{ }}matter\ensuremath{\text{ }}how\ensuremath{\text{ }}we\ensuremath{\text{ }}compare\ensuremath{\text{ }}two\ensuremath{\text{ }}things\ensuremath{\text{ }}the\ensuremath{\text{ }}base\ensuremath{\text{ }}case\ensuremath{\text{ }}doesn\textquotesingle{}t\ensuremath{\text{ }}change,}\newline
\CommentTok{--\ensuremath{\text{ }}so\ensuremath{\text{ }}we\ensuremath{\text{ }}use\ensuremath{\text{ }}the\ensuremath{\text{ }}_\ensuremath{\text{ }}"wildcard"\ensuremath{\text{ }}to\ensuremath{\text{ }}ignore\ensuremath{\text{ }}the\ensuremath{\text{ }}comparison\ensuremath{\text{ }}function.}\newline
\NormalTok{quickSort\textquotesingle{}\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}c\ensuremath{\text{ }}is\ensuremath{\text{ }}our\ensuremath{\text{ }}comparison\ensuremath{\text{ }}function}\newline
\NormalTok{quickSort\textquotesingle{}\ensuremath{\text{ }}c\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(quickSort\textquotesingle{}\ensuremath{\text{ }}c\ensuremath{\text{ }}less)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{equal)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(quickSort\textquotesingle{}\ensuremath{\text{ }}c}\newline
\ensuremath{\text{ }}\NormalTok{more)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{less\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(\textbackslash{}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{`c`}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DataTypeTok{LT}\NormalTok{)\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{equal\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(\textbackslash{}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{`c`}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DataTypeTok{EQ}\NormalTok{)\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{more\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(\textbackslash{}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{`c`}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DataTypeTok{GT}\NormalTok{)\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

We can reuse our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function to serve many different purposes.

If we wanted a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape descending}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} order, we could just reverse our original sorted list with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse (quickSort dictionary)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Yet to actually do the initial sort descending, we could supply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a comparison function that returns the opposite of the usual {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ordering}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}usual\ensuremath{\text{ }}ordering\ensuremath{\text{ }}uses\ensuremath{\text{ }}the\ensuremath{\text{ }}compare\ensuremath{\text{ }}function\ensuremath{\text{ }}from\ensuremath{\text{ }}the\ensuremath{\text{ }}Ord\ensuremath{\text{ }}class}\newline
\NormalTok{usual\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{compare}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}descending\ensuremath{\text{ }}ordering,\ensuremath{\text{ }}note\ensuremath{\text{ }}we\ensuremath{\text{ }}flip\ensuremath{\text{ }}the\ensuremath{\text{ }}order\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}arguments\ensuremath{\text{ }}to\ensuremath{\text{ }}compare}\newline
\NormalTok{descending\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{compare\ensuremath{\text{ }}y\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}case-insensitive\ensuremath{\text{ }}version\ensuremath{\text{ }}is\ensuremath{\text{ }}left\ensuremath{\text{ }}as\ensuremath{\text{ }}an\ensuremath{\text{ }}exercise!}\newline
\NormalTok{insensitive\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{...}\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}How\ensuremath{\text{ }}can\ensuremath{\text{ }}we\ensuremath{\text{ }}do\ensuremath{\text{ }}case-insensitive\ensuremath{\text{ }}comparisons\ensuremath{\text{ }}without\ensuremath{\text{ }}making\ensuremath{\text{ }}a\ensuremath{\text{ }}big\ensuremath{\text{ }}list\ensuremath{\text{ }}of\ensuremath{\text{ }}all}\newline
\ensuremath{\text{ }}\NormalTok{possible\ensuremath{\text{ }}cases}\FunctionTok{?}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} offers a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function for sorting lists. It does not use quicksort; rather, it uses an efficient implementation of an algorithm called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape mergesort}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} also includes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sortBy}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which takes a custom comparison function just like our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\LaTeXExercisesTemplate{Write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily insensitive}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, such that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{} insensitive dictionary}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}\symbol{34}a\symbol{34}, \symbol{34}for\symbol{34}, \symbol{34}have\symbol{34}, \symbol{34}I\symbol{34}, \symbol{34}Linux\symbol{34}, \symbol{34}thing\symbol{34}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}
\section{Higher-{}Order Functions and Types}
\label{144}

The concept of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape currying}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the generating of intermediate functions on the way toward a final result) was first introduced in the earlier chapter \symbol{34}More about lists\symbol{34}. This is a good place to revisit how currying works.

Our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} a -{}>{} Ordering) -{}>{} {[}a{]} -{}>{} {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Most of the time, the type of a higher-{}order function provides a guideline about how to use it. A straightforward way of reading the type signature would be \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes, as its first argument, a function that gives an ordering of two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s. Its second argument is a list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s. Finally, it returns a new list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s\symbol{34}. This is enough to correctly guess that it uses the given ordering function to sort the list.

Note that the parentheses surrounding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a -{}>{} Ordering}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are mandatory. They specify that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a -{}>{} Ordering}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} forms a single argument that happens to be a function.

Without the parentheses, we would get {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a -{}>{} Ordering -{}>{} {[}a{]} -{}>{} {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which accepts four arguments (none of which are themselves functions) instead of the desired two, and that wouldn\textquotesingle{}t work as desired.

Remember that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator is right-{}associative. Thus, our erroneous type signature {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a -{}>{} Ordering -{}>{} {[}a{]} -{}>{} {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means the same thing as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} (a -{}>{} (Ordering -{}>{} ({[}a{]} -{}>{} {[}a{]})))}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is right-{}associative, the explicitly grouped version of the correct {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} signature is actually {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} a -{}>{} Ordering) -{}>{} ({[}a{]} -{}>{} {[}a{]})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This makes perfect sense. Our original {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} lacking the adjustable comparison function argument was of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]} -{}>{} {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It took a list and sorted it. Our new {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is simply a function that generates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} style functions! If we plug in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} a -{}>{} Ordering)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} part, then we just return our original simple {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. If we use a different comparison function for the argument, we generate a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape different}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variety of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function.

Of course, if we not only give a comparison function as an argument but also feed in an actual list to sort, then the final result is not the new {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quickSort}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}style function; instead, it continues on and passes the list to the new function and returns the sorted list as our final result.

\LaTeXExercisesTemplate{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape (Challenging)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} The following exercise combines what you have learned about higher order functions, recursion and I/O. We are going to recreate what is known in imperative languages as a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape for loop}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Implement a function
\TemplatePreformat{for {}:: {}a {}-{}>{} {}(a {}-{}>{} {}Bool) {}-{}>{} {}(a {}-{}>{} {}a) {}-{}>{} {}(a {}-{}>{} {}IO {}()) {}-{}>{} {}IO {}() \newline{}
for {}i {}p {}f {}job {}= {}-{}-{} {}???}
An example of how this function would be used might be
\TemplatePreformat{for {}1 {}(<{}10) {}(+1) {}print}
which prints the numbers 1 to 9 on the screen.

The desired behaviour of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily for}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is: starting from an initial value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily i}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily for}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} executes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily job i}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It then uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to modify this value and checks to see if the modified value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f i}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} satisfies some condition {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily p}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If it doesn\textquotesingle{}t, it stops; otherwise, the for loop continues, using the modified {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f i}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in place of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily i}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\begin{myenumerate}
\item{} Implement the for loop in Haskell.
\item{} The paragraph just above gives an imperative description of the for loop. Describe your implementation in more functional terms.

Some more challenging exercises you could try
\item{} Consider a task like \symbol{34}print the list of numbers from 1 to 10\symbol{34}. Given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily print}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function, and we can apply it to a list of numbers, using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} sounds like the natural thing to do. But would it actually work?
\item{} Implement a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceIO :: {[}IO a{]} -{}>{} IO {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Given a list of actions, this function runs each of the actions in order and returns all their results as a list.
\item{} Implement a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapIO :: (a -{}>{} IO b) -{}>{} {[}a{]} -{}>{} IO {[}b{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which given a function of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} IO b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a list of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, runs that action on each item in the list, and returns the results.

This exercise was inspired from a blog post by osfameron. No peeking!

\end{myenumerate}}
\section{Function manipulation}
\label{145}

We will close the chapter by discussing a few examples of common and useful general-{}purpose higher-{}order functions. Familiarity with these will greatly enhance your skill at both writing and reading Haskell code.
\subsection{Flipping arguments}
\label{146}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a handy little Prelude function. It takes a function of two arguments and returns a version of the same function with the arguments swapped.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{flip}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in use:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}(flip {}(/)) {}3 {}1 \newline{}
0.3333333333333333 \newline{}
Prelude>{} {}(flip {}map) {}{[}1,2,3{]} {}(*2) \newline{}
{[}2,4,6{]} \newline{}

\end{TemplateCodeInside}

We could have used flip to write a point-{}free version of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily descending}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comparing function from the quickSort example:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{descending\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{flip\ensuremath{\text{ }}compare}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is particularly useful when we want to pass a function with two arguments of different types to another function and the arguments are in the wrong order with respect to the signature of the higher-{}order function.
\subsection{Composition}
\label{147}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} composition operator is another higher-{}order function. It has the signature:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(.)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two functions as arguments and returns a new function which applies both the second argument and then the first.

Composition and higher-{}order functions provide a range of powerful tricks. For a tiny sample, first consider the
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily inits}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, defined in the module {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Quoting the documentation, it \symbol{34}returns all initial segments of the argument, shortest first\symbol{34}, so that:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude {}Data.List>{} {}inits {}{[}1,2,3{]} \newline{}
{[}{[}{]},{[}1{]},{[}1,2{]},{[}1,2,3{]}{]} \newline{}

\end{TemplateCodeInside}

We can provide a one-{}line implementation for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily inits}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (written point-{}free for extra dramatic effect) using only the following higher-{}order functions from Prelude: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanl}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{myInits\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[[a]]}\newline
\NormalTok{myInits\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}reverse\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{scanl\ensuremath{\text{ }}(flip\ensuremath{\text{ }}(}\FunctionTok{:}\NormalTok{))\ensuremath{\text{ }}[]}\newline
\end{Highlighting}
\end{Shaded}

Swallowing a definition so condensed may look daunting at first, so analyze it slowly, bit by bit, recalling what each function does and using the type signatures as a guide.

The definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily myInits}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is super concise and clean with use of parentheses kept to a bare minimum. Naturally, if one goes overboard with composition by writing mile-{}long {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} chains, things will get confusing; but, when deployed reasonably, these point-{}free styles shine. Furthermore, the implementation is quite \symbol{34}high level\symbol{34}: we do not deal explicitly with details like pattern matching or recursion; the functions we deployed — both the higher-{}order ones and their functional arguments — take care of such plumbing.
\subsection{Application}
\label{148}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a curious higher-{}order operator. Its type is:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(\$)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

It takes a function as its first argument, and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape all}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it does is to apply the function to the second argument, so that, for instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (head \${} \symbol{34}abc\symbol{34}) == (head \symbol{34}abc\symbol{34})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

You might think that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is completely useless! However, there are two interesting points about it. First, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has very low precedence,\myfootnote{As a reminder, precedence here is meant in the same sense that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily *}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has higher precedence (i.e. is evaluated first) than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily +}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in mathematics.} unlike regular function application which has the highest precedence. In effect, that means we can avoid confusing nesting of parentheses by breaking precedence with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \${}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We write a non-{}point-{}free version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily myInits}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without adding new parentheses:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{myInits\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[[a]]}\newline
\NormalTok{myInits\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}reverse\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{scanl\ensuremath{\text{ }}(flip\ensuremath{\text{ }}(}\FunctionTok{:}\NormalTok{))\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{xs}\newline
\end{Highlighting}
\end{Shaded}

Furthermore, as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just a function which happens to apply functions, and functions are just values, we can write intriguing expressions such as:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{map\ensuremath{\text{ }}(}\FunctionTok{\$}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),\ensuremath{\text{ }}(}\DecValTok{4}\FunctionTok{*}\NormalTok{),\ensuremath{\text{ }}(}\DecValTok{8}\FunctionTok{*}\NormalTok{)]}\newline
\end{Highlighting}
\end{Shaded}

(Yes, that is a list of functions, and it is perfectly legal.)
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily curry}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{149}

As the name suggests, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function that undoes currying; that is, it converts a function of two arguments into a function that takes a pair as its only argument.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{uncurry}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}let {}addPair {}= {}uncurry {}(+) \newline{}
Prelude>{} {}addPair {}(2, {}3) \newline{}
5 \newline{}

\end{TemplateCodeInside}

One interesting use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} occasionally seen in the wild is in combination with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that the first element of a pair is applied to the second.

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}uncurry {}(\${})$\text{ }${}(reverse,$\text{ }${}\symbol{34}stressed\symbol{34}) \newline{}
\symbol{34}desserts\symbol{34} \newline{}

\end{TemplateCodeInside}

There is also {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily curry}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is the opposite of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{curry}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{((a,\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}curry {}addPair {}2 {}3 {}-{}-{} {}addPair {}as {}in {}the {}earlier {}example. \newline{}
5 \newline{}

\end{TemplateCodeInside}

Because most Haskell functions are already curried, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily curry}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is nowhere near as common as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{150}

Finally, we should mention two functions which, while not higher-{}order functions themselves, are most often used as arguments to higher-{}order functions. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, is a function with type \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that returns its argument unchanged.

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}id {}\symbol{34}Hello\symbol{34} \newline{}
\symbol{34}Hello\symbol{34} \newline{}

\end{TemplateCodeInside}

Similar in spirit to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b -{}>{} a}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function that works like this:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}
Prelude>{} {}const {}\symbol{34}Hello\symbol{34} {}\symbol{34}world\symbol{34} \newline{}
\symbol{34}Hello\symbol{34} \newline{}

\end{TemplateCodeInside}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two arguments, discards the second and returns the first. Seen as a function of one argument, \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} (b -{}>{} a)}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it returns a constant function, which always returns the same value no matter what argument it is given.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might appear worthless at first. However, when dealing with higher-{}order functions it is sometimes necessary to pass a dummy function, be it one that does nothing with its argument or one that always returns the same value. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} give us convenient dummy functions for such cases.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Write implementations for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily curry}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Describe what the following functions do without testing them:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry const}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily curry fst}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily curry swap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily swap :: (a, b) -{}>{} (b, a)}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} swaps the elements of a pair. ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily swap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be found in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Tuple}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.)
\end{myitemize}

\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape (Very hard)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Hint: begin by reviewing the sections about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in \mylref{99}{Lists III}. There are two solutions; one is easier but relatively boring and the other is truly interesting. For the interesting one, think carefully about how you would go about composing all functions in a list.

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Using GHCi effectively}

\myminitoc
\label{151}

\label{152}
\LaTeXNullTemplate{}

GHCi assists in several ways toward more efficient work. Here, we will discuss some of the best practices for using GHCi.
\section{User interface}
\label{153}
\subsection{Tab completion}
\label{154}

As in many other terminal programs, you can enter some starting text in GHCi and then hit the Tab key to be presented with a list of all possibilities that start with what you\textquotesingle{}ve written so far. When there is only one possibility, using Tab will auto-{}complete the string. For example {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fol}{\ttfamily <{}Tab>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will append letter \symbol{34}d\symbol{34} (since nothing exists with \symbol{34}fol\symbol{34} other than items that start with \symbol{34}fold\symbol{34}). A second {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tab}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will list the four functions included in Prelude: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. More options may show if you have already imported additional modules.

Tab completion works also when you are loading a file with your program into GHCi. For example, after typing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :l fi}{\ttfamily <{}Tab>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you will be presented with all files that start with \symbol{34}fi\symbol{34} that are present in the current directory (the one you were in when you launched GHCi).

The same also applies when you are importing modules, after typing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :m +Da}{\ttfamily <{}Tab>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily import Da}{\ttfamily <{}Tab>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you will be presented with all modules that start with \symbol{34}Da\symbol{34} present in installed packages.
\subsection{\symbol{34}: commands\symbol{34}}
\label{155}

On GHCi command line, commands for the interpreter start with the character \symbol{34}:\symbol{34} (colon).
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :help}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :h}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{}-{} prints a list of all available commands.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :load}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :l}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{}-{} loads a given file into GHCi (you must include the filename with the command).
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :reload}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{}-{} reloads whatever file had been loaded most recently (useful after changes to the file).
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{}-{} prints the type of a given expression included with the command
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :module}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{}-{} loads a given module (include the module name with the command). You can also {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape un}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}load a module by adding a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} symbol before the module name.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :browse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{}-{} gives the type signatures for all functions available from a given module.
\end{myitemize}

Here again, you can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tab}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to see the list of commands, type :{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tab}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to see all possible commands.
\subsection{Timing Functions in GHCi}
\label{156}

GHCi provides a basic way to measure how much time a function takes to run, which can be useful for to find out which version of a function runs fastest (such as when there are multiple ways to define something to get the same effective result).
\begin{myenumerate}
\item{} Type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :set +s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into the ghci command line.
\item{} run the function(s) you are testing. The time the function took to run will be displayed after GHCi outputs the results of the function.
\end{myenumerate}

\subsection{Multi-{}line Input}
\label{157}
If you are trying to define a function that takes up multiple lines, or if you want to type a do block into ghci (without writing a file that you then import), there is an easy way to do this:
\begin{myenumerate}
\item{} Begin a new line with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :\{}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Type in your code. Press enter when you need a new line.
\item{} Type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to end the multi-{}line input.
\end{myenumerate}

For example:
\\

\TemplateSpaceIndent{ {} {} {} {}*Main>{} {}:\{ \newline{}
 {} {} {} {}*Main| {}let {}askname {}= {}do \newline{}
 {} {} {} {}*Main| {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}putStrLn {}\symbol{34}What {}is {}your {}name?\symbol{34} \newline{}
 {} {} {} {}*Main| {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}name {}<{}-{} {}getLine \newline{}
 {} {} {} {}*Main| {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}putStrLn {}\${}$\text{ }${}\symbol{34}Hello$\text{ }${}\symbol{34}$\text{ }${}++$\text{ }${}name$\text{ }$\newline{}
 {} {} {} {}*Main| {}:\} \newline{}
 {} {} {} {}*Main>{}}

The same can be accomplished by using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :set +m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} command (allow multi-{}line commands). In this case, an empty line will end the block.

In addition, line breaks in ghci commands can be separated by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ;}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, like this:
\\

\TemplateSpaceIndent{ {} {} {} {}*Main>{} {}let {}askname1 {}= {}do {}; {}putStrLn {}\symbol{34}what {}is {}your {}name?\symbol{34} {}; {}name {}<{}-{} {}getLine {}; \newline{}
 {}putStrLn {}\${}$\text{ }${}\symbol{34}Hello$\text{ }${}\symbol{34}$\text{ }${}++$\text{ }${}name}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Intermediate Haskell}

\myminitoc
\label{158}

\chapter{Modules}

\myminitoc
\label{159}

\label{160}
\LaTeXNullTemplate{}

Modules are the primary means of organizing Haskell code. We met them in passing when using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily import}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statements to put library functions into scope. Beyond allowing us to make better use of libraries, knowledge of modules will help us to shape our own programs and create standalone programs which can be executed independently of GHCi (incidentally, that is the topic of the very next chapter, \myhref{https://en.wikibooks.org/wiki/..\%2FStandalone\%20programs\%2F}{../Standalone programs/}).
\section{Modules}
\label{161}

Haskell modules\myfootnote{See the Haskell report for \myfnhref{http://www.haskell.org/onlinereport/modules.html}{more details on the module system}.} are a useful way to group a set of related functionalities into a single package and manage different functions that may have the same names. The module definition is the first thing that goes in your Haskell file.

A basic module definition looks like:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{YourModule}\ensuremath{\text{ }}\KeywordTok{where}\newline
\end{Highlighting}
\end{Shaded}

Note that
\begin{myenumerate}
\item{} the name of the module begins with a capital letter;
\item{} each file contains only one module.
\end{myenumerate}

The name of the file is the name of the module plus the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily .hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} file extension. Any dots \textquotesingle{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily .}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{} in the module name are changed for directories.\myfootnote{In Haskell98, the last standardised version of Haskell before Haskell 2010, the module system was fairly conservative, but recent common practice consists of employing a hierarchical module system, using periods to section off namespaces.} So the module {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily YourModule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be in the file {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily YourModule.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} while a module {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo.Bar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be in the file {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo/Bar.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo\textbackslash{}Bar.hs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Since the module name must begin with a capital letter, the file name must also start with a capital letter.
\section{Importing}
\label{162}

Modules can themselves import functions from other modules. That is, in between the module declaration and the rest of your code, you may include some import declarations such as

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Char}\ensuremath{\text{ }}\NormalTok{(toLower,\ensuremath{\text{ }}toUpper)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}import\ensuremath{\text{ }}only\ensuremath{\text{ }}the\ensuremath{\text{ }}functions\ensuremath{\text{ }}toLower\ensuremath{\text{ }}and}\newline
\ensuremath{\text{ }}\NormalTok{toUpper\ensuremath{\text{ }}from\ensuremath{\text{ }}}\DataTypeTok{Data.Char}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.List}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}import\ensuremath{\text{ }}everything\ensuremath{\text{ }}exported\ensuremath{\text{ }}from\ensuremath{\text{ }}Data.List}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyModule}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}import\ensuremath{\text{ }}everything\ensuremath{\text{ }}exported\ensuremath{\text{ }}from\ensuremath{\text{ }}MyModule}\newline
\end{Highlighting}
\end{Shaded}

Imported datatypes are specified by their name, followed by a list of imported constructors in parenthesis. For example:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Tree}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Tree}\NormalTok{(}\DataTypeTok{Node}\NormalTok{))\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}import\ensuremath{\text{ }}only\ensuremath{\text{ }}the\ensuremath{\text{ }}Tree\ensuremath{\text{ }}data\ensuremath{\text{ }}type\ensuremath{\text{ }}and\ensuremath{\text{ }}its\ensuremath{\text{ }}Node}\newline
\ensuremath{\text{ }}\NormalTok{constructor\ensuremath{\text{ }}from\ensuremath{\text{ }}}\DataTypeTok{Data.Tree}\newline
\end{Highlighting}
\end{Shaded}

What if you import some modules that have overlapping definitions? Or if you import a module but want to overwrite a function yourself? There are three ways to handle these cases: Qualified imports, hiding definitions, and renaming imports.
\subsection{Qualified imports}
\label{163}

Say MyModule and MyOtherModule both have a definition for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily remove_e}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which removes all instances of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from a string. However, MyModule only removes lower-{}case e\textquotesingle{}s, and MyOtherModule removes both upper and lower case. In this case the following code is ambiguous:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyModule}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyOtherModule}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}someFunction\ensuremath{\text{ }}puts\ensuremath{\text{ }}a\ensuremath{\text{ }}c\ensuremath{\text{ }}in\ensuremath{\text{ }}front\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}text,\ensuremath{\text{ }}and\ensuremath{\text{ }}removes\ensuremath{\text{ }}all\ensuremath{\text{ }}e\textquotesingle{}s\ensuremath{\text{ }}from\ensuremath{\text{ }}the\ensuremath{\text{ }}rest}\newline
\OtherTok{someFunction\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{someFunction\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{remove_e\ensuremath{\text{ }}text}\newline
\end{Highlighting}
\end{Shaded}

It isn\textquotesingle{}t clear which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is meant! To avoid this, use the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries qualified}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{MyModule}\newline
\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{MyOtherModule}\newline
\ensuremath{\text{ }}\newline
\NormalTok{someFunction\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{MyModule.remove_e\ensuremath{\text{ }}text\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Will\ensuremath{\text{ }}work,\ensuremath{\text{ }}removes\ensuremath{\text{ }}lower}\newline
\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{e\textquotesingle{}s}\newline
\NormalTok{someOtherFunction\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{MyOtherModule.remove_e\ensuremath{\text{ }}text\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Will\ensuremath{\text{ }}work,\ensuremath{\text{ }}removes}\newline
\ensuremath{\text{ }}\NormalTok{all\ensuremath{\text{ }}e\textquotesingle{}s}\newline
\NormalTok{someIllegalFunction\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{remove_e\ensuremath{\text{ }}text\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Won\textquotesingle{}t\ensuremath{\text{ }}work\ensuremath{\text{ }}as\ensuremath{\text{ }}there\ensuremath{\text{ }}is\ensuremath{\text{ }}no}\newline
\ensuremath{\text{ }}\NormalTok{remove_e\ensuremath{\text{ }}defined}\newline
\end{Highlighting}
\end{Shaded}

In the latter code snippet, no function named {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is available at all. When we do qualified imports, all the imported values include the module names as a prefix. Incidentally, you can also use the same prefixes even if you did a regular import (in our example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyModule.remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works even if the \symbol{34}qualified\symbol{34} keyword isn\textquotesingle{}t included).

\LaTeXbodynoteTemplate{There is an ambiguity between a qualified name like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyModule.remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the function composition operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Writing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse.MyModule.remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is bound to confuse your Haskell compiler. One solution is stylistic: always use spaces for function composition, for example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse . remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just . remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or even {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just . MyModule.remove_e}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\subsection{Hiding definitions}
\label{164}

Now suppose we want to import both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyModule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyOtherModule}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but we know for sure we want to remove all e\textquotesingle{}s, not just the lower cased ones. It will become really tedious to add {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyOtherModule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} before every call to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily remove_e}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Can\textquotesingle{}t we just exclude the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyModule}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyModule}\ensuremath{\text{ }}\KeywordTok{hiding}\ensuremath{\text{ }}\NormalTok{(remove_e)}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyOtherModule}\newline
\ensuremath{\text{ }}\newline
\NormalTok{someFunction\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{remove_e\ensuremath{\text{ }}text}\newline
\end{Highlighting}
\end{Shaded}

This works because of the word {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries hiding}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the import line. Whatever follows the \symbol{34}hiding\symbol{34} keyword will not be imported. Hide multiple items by listing them with parentheses and comma-{}separation:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyModule}\ensuremath{\text{ }}\KeywordTok{hiding}\ensuremath{\text{ }}\NormalTok{(remove_e,\ensuremath{\text{ }}remove_f)}\newline
\end{Highlighting}
\end{Shaded}

Note that algebraic datatypes and type synonyms cannot be hidden. These are always imported. If you have a datatype defined in multiple imported modules, you must use qualified names.
\subsection{Renaming imports}
\label{165}

This is not really a technique to allow for overwriting, but it is often used along with the qualified flag. Imagine:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{MyModuleWithAVeryLongModuleName}\newline
\ensuremath{\text{ }}\newline
\NormalTok{someFunction\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{MyModuleWithAVeryLongModuleName.remove_e\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{text}\newline
\end{Highlighting}
\end{Shaded}

Especially when using qualified, this gets irritating. We can improve things by using the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries as}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{MyModuleWithAVeryLongModuleName}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{Shorty}\newline
\ensuremath{\text{ }}\newline
\NormalTok{someFunction\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{Shorty.remove_e\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{text}\newline
\end{Highlighting}
\end{Shaded}

This allows us to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Shorty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyModuleWithAVeryLongModuleName}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as prefix for the imported functions. This renaming works with both qualified and regular importing.

As long as there are no conflicting items, we can import multiple modules and rename them the same:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyModule}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{My}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{MyCompletelyDifferentModule}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{My}\newline
\end{Highlighting}
\end{Shaded}

In this case, both the functions in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyModule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the functions in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyCompletelyDifferentModule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be prefixed with My.
\subsection{Combining renaming with limited import}
\label{166}

Sometimes it is convenient to use the import directive twice for the same module. A typical scenario is as follows:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{Data.Set}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{Set}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Set}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Set}\NormalTok{,\ensuremath{\text{ }}empty,\ensuremath{\text{ }}insert)}\newline
\end{Highlighting}
\end{Shaded}

This give access to all of the Data.Set module via the alias \symbol{34}Set\symbol{34}, and also lets you access a few selected functions (empty, insert, and the constructor) without using the \symbol{34}Set\symbol{34} prefix.
\section{Exporting}
\label{167}

In the examples at the start of this article, the words \symbol{34}import {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape everything exported}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from MyModule\symbol{34} were used.\myfootnote{A module may export functions that it imports. Mutually recursive modules are possible but need \myfnhref{http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html\#mutual-recursion}{some special treatment}.} This raises a question. How can we decide which functions are exported and which stay \symbol{34}internal\symbol{34}? Here\textquotesingle{}s how:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{MyModule}\ensuremath{\text{ }}\NormalTok{(remove_e,\ensuremath{\text{ }}add_two)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\NormalTok{add_one\ensuremath{\text{ }}blah\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{blah\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\newline
\NormalTok{remove_e\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(}\FunctionTok{/=}\ensuremath{\text{ }}\CharTok{\textquotesingle{}e\textquotesingle{}}\NormalTok{)\ensuremath{\text{ }}text}\newline
\ensuremath{\text{ }}\newline
\NormalTok{add_two\ensuremath{\text{ }}blah\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{add_one\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{add_one\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{blah}\newline
\end{Highlighting}
\end{Shaded}

In this case, only {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily remove_e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily add_two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are exported. While {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily add_two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is allowed to make use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily add_one}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, functions in modules that import {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MyModule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} cannot use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily add_one}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} directly, as it isn\textquotesingle{}t exported.

Datatype export specifications are written similarly to import. You name the type, and follow with the list of constructors in parenthesis:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{MyModule2}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Tree}\NormalTok{(}\DataTypeTok{Branch}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Leaf}\NormalTok{))\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{\{left,}\OtherTok{\ensuremath{\text{ }}right\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

In this case, the module declaration could be rewritten \symbol{34}MyModule2 (Tree(..))\symbol{34}, declaring that all constructors are exported.

Maintaining an export list is good practice not only because it reduces namespace pollution but also because it enables certain \myhref{http://www.haskell.org/haskellwiki/Performance/GHC\#Inlining}{compile-{}time optimizations} which are unavailable otherwise.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Indentation}

\myminitoc
\label{168}

\label{169}
\LaTeXNullTemplate{}

Haskell relies on indentation to reduce the verbosity of your code. Despite some complexity in practice, there are really only a couple fundamental layout rules.\myfootnote{See section 2.7 of \myfnhref{http://www.haskell.org/onlinereport/lexemes.html\#sect2.7}{The Haskell Report (lexemes)} on layout.}
\section{The golden rule of indentation}
\label{170}

{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Code which is part of some expression should be indented further in than the beginning of that expression}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (even if the expression is not the leftmost element of the line).

The easiest example is a \textquotesingle{}let\textquotesingle{} binding group. The equations binding the variables are part of the \textquotesingle{}let\textquotesingle{} expression, and so should be indented further in than the beginning of the binding group: the \textquotesingle{}let\textquotesingle{} keyword. When you start the expression on a separate line, you only need to indent by one space (although more than one space is also acceptable and may be clearer).

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\newline
\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

You may also place the first clause alongside the \textquotesingle{}let\textquotesingle{} as long as you indent the rest to line up:

{\scalefont{0.39662}\begin{longtable}{>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}wrong}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}wrong}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}right}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}let {}x {}= {}a\newline{} {}y {}= {}b}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}let {}x {}= {}a\newline{} {} {} {} {} {}y {}= {}b}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}let {}x {}= {}a\newline{} {} {} {} {}y {}= {}b}
\end{longtable}
}
This tends to trip up a lot of beginners: All {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape grouped}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions must be exactly aligned. On the first line, Haskell counts everything to the left of the expression as indent, even though it is not whitespace.

Here are some more examples:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foo}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bar}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{baz}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{foo}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bar}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{baz}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{where}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{b}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{p\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{foo}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{p\textquotesingle{}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{baz}\newline
\end{Highlighting}
\end{Shaded}

Note that with \textquotesingle{}case\textquotesingle{} it is less common to place the first subsidiary expression on the same line as the \textquotesingle{}case\textquotesingle{} keyword (although it would still be valid code). Hence, the subsidiary expressions in a case expression tend to be indented only one step further than the \textquotesingle{}case\textquotesingle{} line. Also note how we lined up the arrows here: this is purely aesthetic and is not counted as different layout; only {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape indentation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (i.e. whitespace beginning on the far-{}left edge) makes a difference to the interpretation of the layout.

Things get more complicated when the beginning of an expression is not at the start of a line. In this case, it\textquotesingle{}s safe to just indent further than the line containing the expression\textquotesingle{}s beginning. In the following example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comes at the end of a line, so the subsequent parts of the expression simply need to be indented relative to the line that contains the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, not relative to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{myFunction\ensuremath{\text{ }}firstArgument\ensuremath{\text{ }}secondArgument\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foo}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bar}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{baz}\newline
\end{Highlighting}
\end{Shaded}

Here are some alternative layouts which all work:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{myFunction\ensuremath{\text{ }}firstArgument\ensuremath{\text{ }}secondArgument\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{foo}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bar}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{baz}\newline
\ensuremath{\text{ }}\newline
\NormalTok{myFunction\ensuremath{\text{ }}firstArgument\ensuremath{\text{ }}secondArgument\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{foo}\newline
\ensuremath{\text{ }}\NormalTok{bar}\newline
\ensuremath{\text{ }}\NormalTok{baz}\newline
\NormalTok{myFunction\ensuremath{\text{ }}firstArgument\ensuremath{\text{ }}secondArgument\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foo}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bar}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{baz}\newline
\end{Highlighting}
\end{Shaded}

\section{Explicit characters in place of indentation}
\label{171}

Indentation is actually optional if you instead use semicolons and curly braces for grouping and separation, as in \symbol{34}one-{}dimensional\symbol{34} languages like C. Even though the consensus among Haskell programmers is that meaningful indentation leads to better-{}looking code, understanding how to convert from one style to the other can help understand the indentation rules. The entire layout process can be summed up in three translation rules (plus a fourth one that doesn\textquotesingle{}t come up very often):

\begin{myenumerate}
\item{} If you see one of the layout keywords, ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily of}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), insert an open curly brace (right before the stuff that follows it)
\item{} If you see something indented to the SAME level, insert a semicolon
\item{} If you see something indented LESS, insert a closing curly brace
\item{} If you see something unexpected in a list, like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, insert a closing brace before instead of a semicolon.
\end{myenumerate}

For instance, this definition...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{foo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\NormalTok{foo\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sin\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cos\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

...can be rewritten without caring about the indentation rules as:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{foo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\NormalTok{;}\newline
\NormalTok{foo\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sin\ensuremath{\text{ }}x;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cos\ensuremath{\text{ }}x;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

One circumstance in which explicit braces and semicolons can be convenient is when writing one-{}liners in GHCi:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\OtherTok{\ensuremath{\text{ }}foo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\NormalTok{;\ensuremath{\text{ }}foo\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sin\ensuremath{\text{ }}x;\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cos\ensuremath{\text{ }}x\ensuremath{\text{ }}\}\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\DecValTok{2}\newline
\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{Rewrite this snippet from the Control Structures chapter using explicit braces and semicolons:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{doGuessing\ensuremath{\text{ }}num\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Enter\ensuremath{\text{ }}your\ensuremath{\text{ }}guess:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guess\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{compare\ensuremath{\text{ }}(read\ensuremath{\text{ }}guess)\ensuremath{\text{ }}num\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{LT}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}low!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{GT}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Too\ensuremath{\text{ }}high!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doGuessing\ensuremath{\text{ }}num}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{EQ}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"You\ensuremath{\text{ }}Win!"}\newline
\end{Highlighting}
\end{Shaded}}
\section{Layout in action}
\label{172}

{\scalefont{0.32028}\begin{longtable}{>{\RaggedRight}p{0.22143\linewidth}>{\RaggedRight}p{0.22143\linewidth}>{\RaggedRight}p{0.22143\linewidth}>{\RaggedRight}p{0.22143\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}wrong}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}wrong}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}right}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}right}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}do {}first {}thing\newline{}second {}thing\newline{}third {}thing}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}do {}first {}thing\newline{} {}second {}thing\newline{} {}third {}thing}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}do {}first {}thing\newline{} {} {} {}second {}thing\newline{} {} {} {}third {}thing}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}do\newline{} {} {}first {}thing\newline{} {} {}second {}thing\newline{} {} {}third {}thing}
\end{longtable}
}
\subsection{Indent to the first}
\label{173}

Due to the \symbol{34}golden rule of indentation\symbol{34} described above, a curly brace within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block depends not on the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself but the thing that immediately follows it. For example, this weird-{}looking block of code is totally acceptable:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\newline
\NormalTok{first\ensuremath{\text{ }}thing}\newline
\NormalTok{second\ensuremath{\text{ }}thing}\newline
\NormalTok{third\ensuremath{\text{ }}thing}\newline
\end{Highlighting}
\end{Shaded}

As a result, you could also write combined if/do combination like this:

{\scalefont{0.39662}\begin{longtable}{>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Wrong}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Right}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Right}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}if {}foo\newline{} {} {} {}then {}do {}first {}thing\newline{} {} {} {} {} {} {} {} {}second {}thing\newline{} {} {} {} {} {} {} {} {}third {}thing\newline{} {} {} {}else {}do {}something_else}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}if {}foo\newline{} {} {} {}then {}do {}first {}thing\newline{} {} {} {} {} {} {} {} {} {} {} {}second {}thing\newline{} {} {} {} {} {} {} {} {} {} {} {}third {}thing\newline{} {} {} {}else {}do {}something_else}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}if {}foo\newline{} {} {} {}then {}do\newline{} {} {} {} {} {}first {}thing\newline{} {} {} {} {} {}second {}thing\newline{} {} {} {} {} {}third {}thing\newline{} {} {} {}else {}do {}\newline{} {} {} {} {} {}something_else}
\end{longtable}
}

It isn\textquotesingle{}t about the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it\textquotesingle{}s about lining up all the items that are at the same level within the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Thus, all of the following are acceptable:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{first\ensuremath{\text{ }}thing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{second\ensuremath{\text{ }}thing}\newline
\end{Highlighting}
\end{Shaded}

or

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{first\ensuremath{\text{ }}thing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{second\ensuremath{\text{ }}thing}\newline
\end{Highlighting}
\end{Shaded}

or

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{first\ensuremath{\text{ }}thing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{second\ensuremath{\text{ }}thing}\newline
\end{Highlighting}
\end{Shaded}

\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{174}

This is a combination which trips up many Haskell programmers. Why does the following block of code not work?

{\scalefont{0.52741}\begin{longtable}{>{\RaggedRight}p{0.47143\linewidth}>{\RaggedRight}p{0.47143\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}sweet but wrong}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}unsweet and wrong}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}-{}-{} {}why {}is {}this {}bad?\newline{}do {}first {}thing\newline{} {} {} {}if {}condition\newline{} {} {} {}then {}foo\newline{} {} {} {}else {}bar\newline{} {} {} {}third {}thing}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}-{}-{} {}still {}bad, {}just {}explicitly {}so\newline{}do {}\{ {}first {}thing\newline{} {} {} {}; {}if {}condition\newline{} {} {} {}; {}then {}foo\newline{} {} {} {}; {}else {}bar\newline{} {} {} {}; {}third {}thing {}\}}
\end{longtable}
}

Naturally, the Haskell compiler is confused because it thinks that you never finished writing your {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression, before writing a new statement. The compiler sees that you have written something like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if condition;}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is bad because it is unfinished. In order to fix this, we need to indent the bottom parts of this if block so that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} become part of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement.

{\scalefont{0.52741}\begin{longtable}{>{\RaggedRight}p{0.47143\linewidth}>{\RaggedRight}p{0.47143\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}sweet and correct}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}unsweet and correct}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}-{}-{} {}whew, {}fixed {}it!\newline{}do {}first {}thing\newline{} {} {} {}if {}condition\newline{} {} {} {} {} {}then {}foo\newline{} {} {} {} {} {}else {}bar\newline{} {} {} {}third {}thing}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}-{}-{} {}the {}fixed {}version {}without {}sugar\newline{}do {}\{ {}first {}thing\newline{} {} {} {}; {}if {}condition\newline{} {} {} {} {} {} {}then {}foo\newline{} {} {} {} {} {} {}else {}bar\newline{} {} {} {}; {}third {}thing {}\}}
\end{longtable}
}

Now, the do block sees the whole if statement as one item. When if-{}then-{}else statements are not within do blocks, this specific indentation isn\textquotesingle{}t technically necessary, but it never hurts, so it is a good habit to always indent if-{}then-{}else in this way.

\LaTeXExercisesTemplate{The if-{}within-{}do issue has tripped up so many Haskellers that one programmer has posted a \myhref{http://hackage.haskell.org/trac/haskell-prime/ticket/23}{proposal} to the Haskell prime initiative to add optional semicolons between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if then else}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. How would that help?}

Issues with indentation are explained further in connection with showing how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is syntactic sugar for the monadic operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. See \mylref{247}{Translating the bind operator} and the associated \mylref{247}{footnote about indentation}.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{More on datatypes}

\myminitoc
\label{175}

\label{176}
\LaTeXNullTemplate{}
\section{Enumerations}
\label{177}

One special case of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration is the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape enumeration}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — a data type where none of the constructor functions have any arguments:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Month}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{January}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{February}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{March}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{April}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{May}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{June}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{July}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{August}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{September}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{October}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{November}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{December}\newline
\end{Highlighting}
\end{Shaded}

You can mix constructors that do and do not have arguments, but then the result is not called an enumeration. The following example is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an enumeration because the last constructor takes three arguments:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Colour}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Black}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Red}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Green}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Blue}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Cyan}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Yellow}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Magenta}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{White}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{RGB}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\end{Highlighting}
\end{Shaded}

As you will see further on when we discuss classes and derivation, there are practical reasons to distinguish between what is and isn\textquotesingle{}t an enumeration.

Incidentally, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} datatype is an enumeration:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Bounded}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Enum}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Eq}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Ord}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Read}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Show}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\section{Named Fields (Record Syntax)}
\label{178}

Consider a datatype whose purpose is to hold configuration settings.
Usually, when you extract members from this type, you really only care
about one or two of the many settings. Moreover, if many of
the settings have the same type, you might often find yourself
wondering \symbol{34}wait, was this the fourth or {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape fifth}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} element?\symbol{34} One
way to clarify is to write accessor functions. Consider the
following made-{}up configuration type for a terminal program:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Configuration}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}User\ensuremath{\text{ }}name}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Local\ensuremath{\text{ }}host}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Remote\ensuremath{\text{ }}host}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Is\ensuremath{\text{ }}guest?}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Is\ensuremath{\text{ }}superuser?}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Current\ensuremath{\text{ }}directory}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Home\ensuremath{\text{ }}directory}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Integer}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Time\ensuremath{\text{ }}connected}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Eq}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Show}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

You could then write accessor functions, such as:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{getUserName\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{un\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{un}\newline
\NormalTok{getLocalHost\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}lh\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{lh}\newline
\NormalTok{getRemoteHost\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}_\ensuremath{\text{ }}rh\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{rh}\newline
\NormalTok{getIsGuest\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}ig\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{ig}\newline
\CommentTok{--\ensuremath{\text{ }}And\ensuremath{\text{ }}so\ensuremath{\text{ }}on...}\newline
\end{Highlighting}
\end{Shaded}

You could also write update functions to update a single element.
Of course, if you add or remove an element in the configuration later,
all of these functions now have to take a different number of
arguments. This is quite annoying and is an easy place for bugs to
slip in. Thankfully, there\textquotesingle{}s a solution: we simply give names to the
fields in the datatype declaration, as follows:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Configuration}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}username\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}localHost\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}remoteHost\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}isGuest\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}isSuperuser\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}currentDir\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}homeDir\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}timeConnected\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

This will automatically generate the following accessor functions for
us:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{username\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\OtherTok{localHost\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\end{Highlighting}
\end{Shaded}

This also gives us a convenient update method. Here is a short
example for a \symbol{34}post working directory\symbol{34} and \symbol{34}change directory\symbol{34}
functions that work on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Configuration}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{changeDir\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Configuration}\newline
\NormalTok{changeDir\ensuremath{\text{ }}cfg\ensuremath{\text{ }}newDir\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{directoryExists\ensuremath{\text{ }}newDir\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}make\ensuremath{\text{ }}sure\ensuremath{\text{ }}the\ensuremath{\text{ }}directory\ensuremath{\text{ }}exists}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{cfg\ensuremath{\text{ }}\{\ensuremath{\text{ }}currentDir\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{newDir\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}}\StringTok{"Directory\ensuremath{\text{ }}does\ensuremath{\text{ }}not\ensuremath{\text{ }}exist"}\newline
\ensuremath{\text{ }}\newline
\OtherTok{postWorkingDir\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{postWorkingDir\ensuremath{\text{ }}cfg\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{currentDir\ensuremath{\text{ }}cfg}\newline
\end{Highlighting}
\end{Shaded}

So, in general, to update the field {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in a datatype {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y \{ x = z \}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You can change more than one; each
should be separated by commas, for instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y \{x = z, a = b, c = d \}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXbodynoteTemplate{Those of you familiar with object-{}oriented languages might be tempted, after all of this talk about \symbol{34}accessor functions\symbol{34} and \symbol{34}update methods\symbol{34}, to think of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y\{x=z\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} construct as a setter method, which modifies the value of x in a pre-{}existing y. It is {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} like that – remember that in Haskell \mylref{10}{variables are immutable}. Therefore, using the example above, if you do something like
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily conf2 = changeDir conf1 \symbol{34}/opt/foo/bar\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily conf2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be defined as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Configuration}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which is just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily conf1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} except for having {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}/opt/foo/bar\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as its {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily currentDir}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily conf1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will remain unchanged.}
\subsection{It\textquotesingle{}s only sugar}
\label{179}

You can, of course, continue to pattern match against
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Configuration}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s as you did before. The named fields are simply
syntactic sugar; you can still write something like:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{getUserName\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{un\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{un}\newline
\end{Highlighting}
\end{Shaded}

But there is no need to do this.

Finally, you can pattern match against named fields as in:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{getHostData\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}localHost\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{lh,\ensuremath{\text{ }}remoteHost\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{rh\ensuremath{\text{ }}\})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(lh,\ensuremath{\text{ }}rh)}\newline
\end{Highlighting}
\end{Shaded}

This matches the variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lh}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} against the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily localHost}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} field in
the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Configuration}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rh}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} against the
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily remoteHost}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} field. These matches will succeed, of course.
You could also constrain the matches by putting values instead of
variable names in these positions, as you would for standard datatypes.

If you are using GHC, then, with the language extension {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily NamedFieldPuns}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it is also possible to use this form:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{getHostData\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}localHost,\ensuremath{\text{ }}remoteHost\ensuremath{\text{ }}\})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(localHost,\ensuremath{\text{ }}remoteHost)}\newline
\end{Highlighting}
\end{Shaded}

It can be mixed with the normal form like this:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{getHostData\ensuremath{\text{ }}(}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}localHost,\ensuremath{\text{ }}remoteHost\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{rh\ensuremath{\text{ }}\})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(localHost,\ensuremath{\text{ }}rh)}\newline
\end{Highlighting}
\end{Shaded}

(To use this language extension, enter {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :set -{}XNamedFieldPuns}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the interpreter, or use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{-{}\# LANGUAGE NamedFieldPuns \#-{}\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pragma at the beginning of a source file, or pass the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}XNamedFieldPuns}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} command-{}line flag to the compiler.)

You can create values of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Configuration}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the old way as shown in
the first definition below, or in the named field\textquotesingle{}s type, as shown in
the second definition:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{initCFG\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\StringTok{"nobody"}\ensuremath{\text{ }}\StringTok{"nowhere"}\ensuremath{\text{ }}\StringTok{"nowhere"}\ensuremath{\text{ }}\DataTypeTok{False}\ensuremath{\text{ }}\DataTypeTok{False}\ensuremath{\text{ }}\StringTok{"/"}\ensuremath{\text{ }}\StringTok{"/"}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\newline
\NormalTok{initCFG\textquotesingle{}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Configuration}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}username\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"nobody"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}localHost\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"nowhere"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}remoteHost\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"nowhere"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}isguest\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}issuperuser\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}currentdir\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"/"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}homedir\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"/"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}timeConnected\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

The first way is much shorter, but the second is much clearer.

WARNING: The second style will allow you to write code that omits fields but will still compile, such as:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{cfgFoo\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}username\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Foo"}\ensuremath{\text{ }}\NormalTok{\}}\newline
\NormalTok{cfgBar\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}localHost\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Bar"}\NormalTok{,\ensuremath{\text{ }}remoteHost\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Baz"}\ensuremath{\text{ }}\NormalTok{\}}\newline
\NormalTok{cfgUndef\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Configuration}\ensuremath{\text{ }}\NormalTok{\{\}}\newline
\end{Highlighting}
\end{Shaded}

Trying to evaluate the unspecified fields will then result in a runtime error!
\section{Parameterized Types}
\label{180}

Parameterized types are similar to \symbol{34}generic\symbol{34} or \symbol{34}template\symbol{34} types in other languages. A parameterized type takes one or more type parameters. For example, the Standard Prelude type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is defined as follows:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

This says that the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a type parameter {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You can use this to declare, for example:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{lookupBirthday\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Anniversary}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Anniversary}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lookupBirthday}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function takes a list of birthday records and a string and returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe Anniversary}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The usual interpretation of such a type is that if the name given through the string is found in the list of anniversaries the result will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the corresponding record; otherwise, it will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the simplest and most common way of indicating failure in Haskell. It is also sometimes seen in the types of function arguments, as a way to make them optional (the intent being that passing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} amounts to omitting the argument).

You can parameterize {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations in exactly the same way. Furthermore you can combine parameterized types in arbitrary ways to construct new types.
\subsection{More than one type parameter}
\label{181}

We can also have more than one type parameter. An example of this is the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

For example:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{pairOff\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Either}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{pairOff\ensuremath{\text{ }}people}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{people\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\StringTok{"Can\textquotesingle{}t\ensuremath{\text{ }}pair\ensuremath{\text{ }}off\ensuremath{\text{ }}negative\ensuremath{\text{ }}number\ensuremath{\text{ }}of\ensuremath{\text{ }}people."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{people\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{30}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\StringTok{"Too\ensuremath{\text{ }}many\ensuremath{\text{ }}people\ensuremath{\text{ }}for\ensuremath{\text{ }}this\ensuremath{\text{ }}activity."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{even\ensuremath{\text{ }}people\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{(people\ensuremath{\text{ }}}\OtherTok{`div`}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\StringTok{"Can\textquotesingle{}t\ensuremath{\text{ }}pair\ensuremath{\text{ }}off\ensuremath{\text{ }}an\ensuremath{\text{ }}odd\ensuremath{\text{ }}number\ensuremath{\text{ }}of\ensuremath{\text{ }}people."}\newline
\ensuremath{\text{ }}\newline
\OtherTok{groupPeople\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{groupPeople\ensuremath{\text{ }}people\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{pairOff\ensuremath{\text{ }}people\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{groups\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"We\ensuremath{\text{ }}have\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}groups\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}group(s)."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{problem\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"Problem!\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{problem}\newline
\end{Highlighting}
\end{Shaded}

In this example {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pairOff}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} indicates how many groups you would have if you paired off a certain number of people for your activity. It can also let you know if you have too many people for your activity or if somebody will be left out. So {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pairOff}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will return either an Int representing the number of groups you will have, or a String describing the reason why you can\textquotesingle{}t create your groups.
\subsection{Kind Errors}
\label{182}

The flexibility of Haskell parameterized types can lead to errors in type declarations that are somewhat like type errors, except that they occur in the type declarations rather than in the program proper. Errors in these \symbol{34}types of types\symbol{34} are known as \symbol{34}kind\symbol{34} errors. You don\textquotesingle{}t program with kinds: the compiler infers them for itself. But if you get parameterized types wrong then the compiler will report a kind error.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Other data structures}

\myminitoc
\label{183}

\label{184}
\LaTeXNullTemplate{}

In this chapter, we will work through examples of how the techniques we have studied thus far can be used to deal with more complex data types. In particular, we will see examples of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape recursive data structures}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which are data types that can contain values of the same type. Recursive data structures play a vital role in many programming techniques, and so even if you are not going to need defining a new one often (as opposed to using the ones available from the libraries) it is important to be aware of what they are and how they can be manipulated. Besides that, following closely the implementations in this chapter is a good exercise for your budding Haskell abilities.

\LaTeXbodynoteTemplate{The Haskell library ecosystem provides a wealth of data structures (recursive and otherwise), covering a wide range of practical needs. Beyond lists, there are maps, sets, finite sequences and arrays, among many others. A good place to begin learning about the main ones is the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FData\%20structures\%20primer}{Data structures primer} in the Haskell in Practice track. We recommend you to at least skim it once you finish the next few Intermediate Haskell chapters.}
\section{Trees}
\label{185}

One of the most important types of recursive data structures are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape trees}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. There are several different kinds of trees, so we will arbitrarily choose a simple one to use as an example. Here is its definition:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}(}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a)}\newline
\end{Highlighting}
\end{Shaded}

As you can see, it\textquotesingle{}s parameterized; i.e. we can have trees of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, trees of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, trees of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, trees of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Int, String)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pairs and so forth. What makes this data type special is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} appears in the definition of itself. A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is either a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape leaf}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, containing a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape branch}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, from which hang two other trees of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Lists as Trees}
\label{186}

As we have seen in \myhref{https://en.wikibooks.org/wiki/Haskell\%2FMore\%20about\%20lists}{More about lists} and \myhref{https://en.wikibooks.org/wiki/Haskell\%2FList_Processing}{List Processing}, we break lists down into two cases: An empty list (denoted by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), and an element of the specified type plus another list (denoted by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x:xs)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). That means the definition of the list data type might look like this:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Pseudo-Haskell,\ensuremath{\text{ }}will\ensuremath{\text{ }}not\ensuremath{\text{ }}actually\ensuremath{\text{ }}work\ensuremath{\text{ }}(because\ensuremath{\text{ }}lists\ensuremath{\text{ }}have\ensuremath{\text{ }}special\ensuremath{\text{ }}syntax).}\newline
\KeywordTok{data}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{(a}\FunctionTok{:}\NormalTok{[a])}\newline
\end{Highlighting}
\end{Shaded}

An equivalent definition you can actually play with is:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{List}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nil}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Cons}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}(}\DataTypeTok{List}\ensuremath{\text{ }}\NormalTok{a)}\newline
\end{Highlighting}
\end{Shaded}

Like trees, lists are also recursive. For lists, the constructor functions are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. They correspond to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Leaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Branch}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition above. That implies we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Leaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Branch}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for pattern matching just as we did with the empty list and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x:xs)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Maps and Folds}
\label{187}

We already know about maps and folds for lists. Now, we can write map and fold functions for our new {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type. To recap:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}(}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{)}\newline
\KeywordTok{data}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{:}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}a\ensuremath{\text{ }}[a]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}(:)\ensuremath{\text{ }}a\ensuremath{\text{ }}[a]\ensuremath{\text{ }}is\ensuremath{\text{ }}the\ensuremath{\text{ }}same\ensuremath{\text{ }}as\ensuremath{\text{ }}(a:[a])\ensuremath{\text{ }}with\ensuremath{\text{ }}prefix\ensuremath{\text{ }}instead\ensuremath{\text{ }}of\ensuremath{\text{ }}infix\ensuremath{\text{ }}notation.}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{Deriving is explained later on in the section \mylref{196}{Class Declarations}. For now, understand it as telling Haskell (and by extension your interpreter) how to display a Tree instance.}
\subsubsection{Map}
\label{188}

Let\textquotesingle{}s take a look at the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{map}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{map\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

If we were to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, what would its type be? Defining the function is easier if you have an idea of what its type should be.

We want {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to work on a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of some type and return another {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of some type by applying a function on each element of the tree.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

This is just like the list example.

Now, when talking about a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, each {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Leaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only contains a single value, so all we have to do is apply the given function to that value and then return a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Leaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with the altered value:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

This looks a lot like the empty list case with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now, if we have a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Branch}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it will include two subtrees; what do we do with those? The list-{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uses a call to itself on the tail of the list, so we also shall do that with the two subtrees. The complete definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is as follows:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\NormalTok{treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{left\ensuremath{\text{ }}right)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}left)\ensuremath{\text{ }}(treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}right)}\newline
\end{Highlighting}
\end{Shaded}

We can make this a bit more readable by noting that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is itself a function with type \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree a -{}>{} Tree b}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This gives us the following revised definition:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{left\ensuremath{\text{ }}right)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(g\ensuremath{\text{ }}left)\ensuremath{\text{ }}(g\ensuremath{\text{ }}right)}\newline
\end{Highlighting}
\end{Shaded}

If you didn\textquotesingle{}t follow that immediately, try re-{}reading it. This use of pattern matching may seem weird at first, but it is essential to the use of datatypes. Remember that pattern matching happens on constructor functions.

When you\textquotesingle{}re ready, read on for folds over Trees.
\subsubsection{Fold}
\label{189}

As with map, let\textquotesingle{}s first review the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldr}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{acc}\newline
\NormalTok{foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}(foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}acc\ensuremath{\text{ }}xs)}\newline
\end{Highlighting}
\end{Shaded}

Recall that lists have two constructors:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(:)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}takes\ensuremath{\text{ }}an\ensuremath{\text{ }}element\ensuremath{\text{ }}and\ensuremath{\text{ }}combines\ensuremath{\text{ }}it\ensuremath{\text{ }}with\ensuremath{\text{ }}the\ensuremath{\text{ }}rest\ensuremath{\text{ }}of\ensuremath{\text{ }}the}\newline
\ensuremath{\text{ }}\NormalTok{list}\newline
\NormalTok{[]}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}empty\ensuremath{\text{ }}list\ensuremath{\text{ }}takes\ensuremath{\text{ }}zero\ensuremath{\text{ }}arguments}\newline
\end{Highlighting}
\end{Shaded}

Thus {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two arguments corresponding to the two constructors:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{f\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}a\ensuremath{\text{ }}function\ensuremath{\text{ }}takes\ensuremath{\text{ }}two\ensuremath{\text{ }}elements\ensuremath{\text{ }}and\ensuremath{\text{ }}operates\ensuremath{\text{ }}on\ensuremath{\text{ }}them\ensuremath{\text{ }}to}\newline
\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}a\ensuremath{\text{ }}single\ensuremath{\text{ }}result}\newline
\OtherTok{acc\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}accumulator\ensuremath{\text{ }}defines\ensuremath{\text{ }}what\ensuremath{\text{ }}happens\ensuremath{\text{ }}with\ensuremath{\text{ }}the\ensuremath{\text{ }}empty\ensuremath{\text{ }}list}\newline
\end{Highlighting}
\end{Shaded}

Let\textquotesingle{}s take a moment to make this clear. If the initial {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is given an empty list, then the default accumulator is returned. For functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the initial accumulator will be 0. With a non-{}empty list, the value returned by each fold is used in the next fold. When the list runs out, we are back at the empty list, so foldr returns whatever is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the accumulator value from the last fold.

Like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists, we want {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeFold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to transform a tree of some type into a value of some other type; so in place of \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]} -{}>{} b}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we will have \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree a -{}>{} b}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. How do we specify the transformation? First note that \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree a}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has two constructors (just like lists have two constructors):

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Branch}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a}\newline
\DataTypeTok{Leaf}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

So {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeFold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will have two arguments corresponding to the two constructors:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{fbranch\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\OtherTok{fleaf\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

Putting it all together we get the following type definition:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeFold\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

That is, the first argument, of type \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (b -{}>{} b -{}>{} b)}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is a function specifying how to combine subtrees into a single result; the second argument, of type \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is a function specifying what to do with leaves (which are the end of recursion, just like empty-{}list for lists); and the third argument, of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is the whole tree we want to fold.

As with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we\textquotesingle{}ll avoid repeating the arguments {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fbranch}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fleaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by introducing a local function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeFold\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{treeFold\ensuremath{\text{ }}fbranch\ensuremath{\text{ }}fleaf\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}definition\ensuremath{\text{ }}of\ensuremath{\text{ }}g\ensuremath{\text{ }}goes\ensuremath{\text{ }}here}\newline
\end{Highlighting}
\end{Shaded}

The argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fleaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tells us what to do with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Leaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} subtrees:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fleaf\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

The argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fbranch}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tells us how to combine the results of \symbol{34}folding\symbol{34} two subtrees:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{left\ensuremath{\text{ }}right)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fbranch\ensuremath{\text{ }}(g\ensuremath{\text{ }}left)\ensuremath{\text{ }}(g\ensuremath{\text{ }}right)}\newline
\end{Highlighting}
\end{Shaded}

Our full definition becomes:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeFold\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{treeFold\ensuremath{\text{ }}fbranch\ensuremath{\text{ }}fleaf\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fleaf\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{left\ensuremath{\text{ }}right)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fbranch\ensuremath{\text{ }}(g\ensuremath{\text{ }}left)\ensuremath{\text{ }}(g\ensuremath{\text{ }}right)}\newline
\end{Highlighting}
\end{Shaded}

For examples of how these work, copy the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} data definition and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeFold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions to a Haskell file, along with the following example Tree and example functions to fold over.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{tree1\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\NormalTok{tree1\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Branch}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Branch}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Branch}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)))\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Branch}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{4}\NormalTok{)\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{6}\NormalTok{))))\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Branch}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{7}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{8}\NormalTok{))\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\DecValTok{9}\NormalTok{))}\newline
\ensuremath{\text{ }}\newline
\NormalTok{doubleTree\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{treeMap\ensuremath{\text{ }}(}\FunctionTok{*}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}doubles\ensuremath{\text{ }}each\ensuremath{\text{ }}value\ensuremath{\text{ }}in\ensuremath{\text{ }}tree}\newline
\NormalTok{sumTree\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{treeFold\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}id\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}sum\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}leaf\ensuremath{\text{ }}values\ensuremath{\text{ }}in\ensuremath{\text{ }}tree}\newline
\NormalTok{fringeTree\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{treeFold\ensuremath{\text{ }}(}\FunctionTok{++}\NormalTok{)\ensuremath{\text{ }}(}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{[])\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}list\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}leaves\ensuremath{\text{ }}of\ensuremath{\text{ }}tree}\newline
\end{Highlighting}
\end{Shaded}

Then load it into GHCi and evaluate:

\TemplatePreformat{ \newline{}
doubleTree {}tree1 \newline{}
sumTree {}tree1 \newline{}
fringeTree {}tree1 \newline{}
}
\section{Other datatypes}
\label{190}

Map and fold functions can be defined for any kind of data type. In order to generalize the strategy applied for lists and trees, in this final section we will work out a map and a fold for a very strange, intentionally-{}contrived datatype:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{[(a,b)]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b)}\newline
\end{Highlighting}
\end{Shaded}

It can be a useful exercise to write the functions as you follow the examples, trying to keep the coding one step ahead of your reading.
\subsection{General Map}
\label{191}

The first important difference in working with this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type is that it has {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type parameters. For that reason, we will want the map function to take two functions as arguments, one to be applied on the elements of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and another for the elements of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. With that accounted for, we can write the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{weirdMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{d)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}d}\newline
\end{Highlighting}
\end{Shaded}

Next step is defining {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The key point is that maps preserve the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape structure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of a datatype, so the function must evaluate to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which uses the same constructor as the one used for the original {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For that reason, we need one definition to handle each constructor, and these constructors are used as patterns for writing them. As before, to avoid repeating the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument list over and over again a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause comes in handy. A sketch of the function is below:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{weirdMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{d)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}d}\newline
\NormalTok{weirdMap\ensuremath{\text{ }}fa\ensuremath{\text{ }}fb\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--More\ensuremath{\text{ }}to\ensuremath{\text{ }}follow}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--More\ensuremath{\text{ }}to\ensuremath{\text{ }}follow}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--More\ensuremath{\text{ }}to\ensuremath{\text{ }}follow}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--More\ensuremath{\text{ }}to\ensuremath{\text{ }}follow}\newline
\end{Highlighting}
\end{Shaded}

The first two cases are fairly straightforward, as there is just a single element of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type inside the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{weirdMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{d)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}d}\newline
\NormalTok{weirdMap\ensuremath{\text{ }}fa\ensuremath{\text{ }}fb\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{(fa\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{(fb\ensuremath{\text{ }}y)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--More\ensuremath{\text{ }}to\ensuremath{\text{ }}follow}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--More\ensuremath{\text{ }}to\ensuremath{\text{ }}follow}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Third}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is trickier because it contains a list whose elements are themselves data structures (the tuples). So we need to navigate the nested data structures, apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fa}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fb}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on all elements of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and eventually (as a map must preserve structure) produce a list of tuples – {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}(c,d){]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – to be used with the constructor. The simplest approach might seem to be just breaking down the list inside the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and playing with the patterns:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{[])\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{((x,y)}\FunctionTok{:}\NormalTok{zs))\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{(\ensuremath{\text{ }}(fa\ensuremath{\text{ }}x,\ensuremath{\text{ }}fb\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{(\ensuremath{\text{ }}(\textbackslash{}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}(g\ensuremath{\text{ }}(}\DataTypeTok{Third}\newline
\ensuremath{\text{ }}\NormalTok{zs))\ensuremath{\text{ }})\ensuremath{\text{ }})}\newline
\end{Highlighting}
\end{Shaded}

This appears to be written as a typical recursive function for lists. We start by applying the functions of interest to the first element in order to obtain the head of the new list, \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (fa x, fb y)}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But what will we cons it to? As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} requires a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument, we need to make a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using the list tail in order to make the recursive call. But then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will give a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and not a list, so we have to retrieve the modified list from that – that\textquotesingle{}s the role of the lambda function. Finally, there is also the empty list base case to be defined as well.

After all of that, we are left with a messy function. Every recursive call of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} requires wrapping {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, while what we really wanted to do was to build a list with \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (fa x, fb y)}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the modified {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The problem with this solution is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can (thanks to pattern matching) act directly on the list head but (due to its type signature) can\textquotesingle{}t be called directly on the list tail. For that reason, it would be better to apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fa}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fb}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without breaking down the list with pattern matching (as far as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is directly concerned, at least). But there {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape was}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a way to directly modify a list element-{}by-{}element...

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{(\ensuremath{\text{ }}map\ensuremath{\text{ }}(\textbackslash{}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(fa\ensuremath{\text{ }}x,\ensuremath{\text{ }}fb\ensuremath{\text{ }}y)\ensuremath{\text{ }})\ensuremath{\text{ }}z)}\newline
\end{Highlighting}
\end{Shaded}

...our good old {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, which modifies all tuples in the list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using a lambda function. In fact, the first attempt at writing the definition looked just like an application of the list map except for the spurious {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} packing and unpacking. We got rid of these by having the pattern splitting of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} done by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which works directly with regular lists. You could find it useful to expand the map definition inside {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to see the difference more clearly. Finally, you may prefer to write this new version in an alternative and clean way using list comprehension syntax:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{[\ensuremath{\text{ }}(fa\ensuremath{\text{ }}x,\ensuremath{\text{ }}fb\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{(x,y)\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}]\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

Adding the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Third}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, we only have the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fourth}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} left to define:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{weirdMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{d)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}d}\newline
\NormalTok{weirdMap\ensuremath{\text{ }}fa\ensuremath{\text{ }}fb\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{(fa\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{(fb\ensuremath{\text{ }}y)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{(\ensuremath{\text{ }}map\ensuremath{\text{ }}(\textbackslash{}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(fa\ensuremath{\text{ }}x,\ensuremath{\text{ }}fb\ensuremath{\text{ }}y)\ensuremath{\text{ }})\ensuremath{\text{ }}z)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--More\ensuremath{\text{ }}to\ensuremath{\text{ }}follow}\newline
\end{Highlighting}
\end{Shaded}

All we need to do is apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} recursively:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{weirdMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{d)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}d}\newline
\NormalTok{weirdMap\ensuremath{\text{ }}fa\ensuremath{\text{ }}fb\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{(fa\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{(fb\ensuremath{\text{ }}y)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{(\ensuremath{\text{ }}map\ensuremath{\text{ }}(\textbackslash{}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(fa\ensuremath{\text{ }}x,\ensuremath{\text{ }}fb\ensuremath{\text{ }}y)\ensuremath{\text{ }})\ensuremath{\text{ }}z)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{(g\ensuremath{\text{ }}w)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{General Fold}
\label{192}

While we were able to define a map by specifying as arguments a function for every separate type, this isn\textquotesingle{}t enough for a fold. For a fold, we\textquotesingle{}ll need a function for every constructor function. With lists, the constructors are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily acc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function corresponds to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function corresponds to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} datatype has four constructors, so we need four functions – one for handling the internal structure of the datatype specified by each constructor. Next, we have an argument of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type, and finally we want the whole fold function to evaluate to a value of some other, arbitrary, type. Additionally, each individual function we pass to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdFold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must evaluate to the same type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdFold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does. That allows us to make a mock type signature and sketch the definition:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{weirdFold\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(something1\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(something2\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(something3\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{(something4\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c}\newline
\NormalTok{weirdFold\ensuremath{\text{ }}f1\ensuremath{\text{ }}f2\ensuremath{\text{ }}f3\ensuremath{\text{ }}f4\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--Something\ensuremath{\text{ }}of\ensuremath{\text{ }}type\ensuremath{\text{ }}c\ensuremath{\text{ }}here}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--Something\ensuremath{\text{ }}of\ensuremath{\text{ }}type\ensuremath{\text{ }}c\ensuremath{\text{ }}here}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--Something\ensuremath{\text{ }}of\ensuremath{\text{ }}type\ensuremath{\text{ }}c\ensuremath{\text{ }}here}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--Something\ensuremath{\text{ }}of\ensuremath{\text{ }}type\ensuremath{\text{ }}c\ensuremath{\text{ }}here}\newline
\end{Highlighting}
\end{Shaded}

Now, we need to figure out to which types {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily something1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily something2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily something3}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily something4}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} correspond to. That is done by analyzing the constructors, since the functions must take as arguments the elements of the datatype (whose types are specified by the constructor type signature). Again, the types and definitions of the first two functions are easy enough. The third one isn\textquotesingle{}t too difficult either because, for the purposes of folding the list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a,b)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, tuples are no different from a simple type (unlike in the map example, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape internal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structure does not concern us now). The fourth constructor, however, is recursive, and we have to be careful. As with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we also need to recursively call the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. This brings us to the final definition:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{weirdFold\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{([(a,b)]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{c}\newline
\NormalTok{weirdFold\ensuremath{\text{ }}f1\ensuremath{\text{ }}f2\ensuremath{\text{ }}f3\ensuremath{\text{ }}f4\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{First}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f1\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Second}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f2\ensuremath{\text{ }}y}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Third}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f3\ensuremath{\text{ }}z}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Fourth}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f4\ensuremath{\text{ }}(g\ensuremath{\text{ }}w)}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{If you were expecting very complex expressions in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdFold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} above and are surprised by the immediacy of the solution, it might be helpful to have a look on what the common {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would look like if we wrote it in this style and didn\textquotesingle{}t have the special square-{}bracket syntax of lists to distract us:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}List\ensuremath{\text{ }}a\ensuremath{\text{ }}is\ensuremath{\text{ }}[a],\ensuremath{\text{ }}Cons\ensuremath{\text{ }}is\ensuremath{\text{ }}(:)\ensuremath{\text{ }}and\ensuremath{\text{ }}Nil\ensuremath{\text{ }}is\ensuremath{\text{ }}[]}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{List}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Cons}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}(}\DataTypeTok{List}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Nil}\newline
\ensuremath{\text{ }}\newline
\OtherTok{listFoldr\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{List}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{listFoldr\ensuremath{\text{ }}fCons\ensuremath{\text{ }}fNil\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Cons}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fCons\ensuremath{\text{ }}x\ensuremath{\text{ }}(g\ensuremath{\text{ }}xs)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\DataTypeTok{Nil}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fNil}\newline
\end{Highlighting}
\end{Shaded}

Now it is easier to see the parallels. The extra complications are that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cons}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (that is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) takes two arguments (and, for that reason, so does {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fCons}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and is recursive, requiring a call to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Also, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fNil}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is of course not really a function, as it takes no arguments.}
\subsubsection{Folds on recursive datatypes}
\label{193}

As far as folds are concerned, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} was a fairly nice datatype to deal with. Just one recursive constructor, which isn\textquotesingle{}t even nested inside other structures. What would happen if we added a truly complicated fifth constructor?

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Fifth}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b]\ensuremath{\text{ }}a\ensuremath{\text{ }}(}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a,\ensuremath{\text{ }}}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b))}\newline
\end{Highlighting}
\end{Shaded}

This is a valid and yet tricky question. In general, the following rules apply:

\begin{myitemize}
\item{} A function to be supplied to a fold has the same number of arguments as the corresponding constructor.
\item{} The type of the arguments of such a function match the types of the constructor arguments, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape except}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if the constructor is recursive (that is, takes an argument of its own type).
\item{} If a constructor is recursive, any recursive argument of the constructor will correspond to an argument of the type the fold evaluates to.\myfootnote{This sort of recursiveness, in which the function used for folding can take the result of another fold as an argument, is what confers the folds of data structures such as lists and trees their \symbol{34}accumulating\symbol{34} functionality.}
\item{} If a constructor is recursive, the complete fold function should be (recursively) applied to the recursive constructor arguments.
\item{} If a recursive element appears inside another data structure, the appropriate map function for that data structure should be used to apply the fold function to it.
\end{myitemize}

So {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would have the type:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{f5\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[c]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a,\ensuremath{\text{ }}}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

as the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fifth}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Fifth}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a,\ensuremath{\text{ }}}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Weird}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

The definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fifth}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor will be:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}(}\DataTypeTok{Fifth}\ensuremath{\text{ }}\NormalTok{list\ensuremath{\text{ }}x\ensuremath{\text{ }}(waa,\ensuremath{\text{ }}mc))\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f5\ensuremath{\text{ }}(map\ensuremath{\text{ }}g\ensuremath{\text{ }}list)\ensuremath{\text{ }}x\ensuremath{\text{ }}(waa,\ensuremath{\text{ }}maybeMap\ensuremath{\text{ }}g\ensuremath{\text{ }}mc)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{maybeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{maybeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}w)}\newline
\end{Highlighting}
\end{Shaded}

Note that nothing strange happens with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird a a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} part. No {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gets called. What\textquotesingle{}s up? This is recursion, right? Well, not really. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird a a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Weird a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are different types, so it isn\textquotesingle{}t a real recursion. It isn\textquotesingle{}t guaranteed that, for example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will work with something of type \textquotesingle{}a\textquotesingle{}, where it expects a type \textquotesingle{}b\textquotesingle{}. It can be true for some cases but is not reliable for every case.

Also look at the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybeMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Verify that it is indeed a map function as:

\begin{myitemize}
\item{} It preserves structure.
\item{} Only types are changed.
\end{myitemize}

\subsubsection{A nice sounding word}
\label{194}

The folds we have defined here are examples of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape catamorphisms}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A catamorphism is a general way to collapse a data structure into a single value. There is deep theory associated with catamorphisms and related recursion schemes; however, we won\textquotesingle{}t go through any of it now, as our main goal here was exercising the mechanics of data structure manipulation in Haskell with believable examples.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Classes and types}

\myminitoc
\label{195}

\label{196}
\LaTeXNullTemplate{}

Back in \mylref{45}{Type basics II} we had a brief encounter with type classes as the mechanism used with number types. As we hinted back then, however, classes have many other uses.

Broadly speaking, the point of type classes is to ensure that certain operations will be available for values of chosen types. For example, if we know a type belongs to (or, to use the jargon, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape instantiates}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) the class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then we are guaranteed to, among other things, be able to perform real division with its values.\myfootnote{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape To programmers coming from object-{}oriented languages}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: A class in Haskell in all likelihood is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} what you expect -{} don\textquotesingle{}t let the terms confuse you. While some of the uses of type classes resemble what is done with abstract classes or Java interfaces, there are fundamental differences which will become clear as we advance.}
\section{Classes and instances}
\label{197}

Up to now we have seen how existing type classes appear in signatures such as:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(==)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\end{Highlighting}
\end{Shaded}

Now it is time to switch perspectives. First, we quote the definition of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class from Prelude:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{==}\NormalTok{),}\OtherTok{\ensuremath{\text{ }}(/=)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Minimal\ensuremath{\text{ }}complete\ensuremath{\text{ }}definition:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(==)\ensuremath{\text{ }}or\ensuremath{\text{ }}(/=)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{/=}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{y)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{/=}\ensuremath{\text{ }}\NormalTok{y)}\newline
\end{Highlighting}
\end{Shaded}

The definition states that if a type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is to be made an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape instance}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it must support the functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape class methods}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} both of them having type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a -{}>{} Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Additionally, the class provides default definitions for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape in terms of each other}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As a consequence, there is no need for a type in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to provide both definitions -{} given one of them, the other will be generated automatically.

With a class defined, we proceed to make existing types instances of it. Here is an arbitrary example of an algebraic data type made into an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape instance declaration}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{x\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}str\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{x1\ensuremath{\text{ }}str1)\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{x2\ensuremath{\text{ }}str2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(x1\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{x2)\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{(str1\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{str2)}\newline
\end{Highlighting}
\end{Shaded}

And now we can apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values in the usual way:

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} Foo 3 \symbol{34}orange\symbol{34} == Foo 6 \symbol{34}apple\symbol{34}
False
\item{} Main>{} Foo 3 \symbol{34}orange\symbol{34} /= Foo 6 \symbol{34}apple\symbol{34}
True

\end{myitemize}

\end{TemplateCodeInside}

A few important remarks:

\begin{myitemize}
\item{} The class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is defined in the Standard Prelude. This code sample defines the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and then declares it to be an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The three definitions (class, data type, and instance) are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape completely separate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and there is no rule about how they are grouped. This works both ways: you could just as easily create a new class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and then declare the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to be an instance of it.
\end{myitemize}

\begin{myitemize}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Classes are not types}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but categories of types; and so the instances of a class are types instead of values.\myfootnote{This is a key difference from most OO languages, where a class is also itself a type.}
\end{myitemize}

\begin{myitemize}
\item{} The definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} relies on the fact that the values of its fields (namely {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) are also members of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In fact, almost all types in Haskell are members of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the most notable exception being functions).
\end{myitemize}

\begin{myitemize}
\item{} Type synonyms defined with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword cannot be made instances of a class.
\end{myitemize}

\section{Deriving}
\label{198}

Since equality tests between values are commonplace, in all likelihood most of the data types you create in any real program should be members of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A lot of them will also be members of other Prelude classes such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To avoid large amounts of boilerplate for every new type, Haskell has a convenient way to declare the \symbol{34}obvious\symbol{34} instance definitions using the keyword {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily deriving}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be written as:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{x\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}str\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\NormalTok{\}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Eq}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Ord}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Show}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

This makes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with an automatically generated definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ==}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} exactly equivalent to the one we just wrote, and also makes it an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for good measure.

You can only use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily deriving}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a limited set of built-{}in classes, which are described {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape very}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} briefly below:
{\bfseries
\begin{mydescription} Eq
\end{mydescription}
}
\begin{myquote}\item{} Equality operators {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ==}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily /=}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
{\bfseries
\begin{mydescription} Ord
\end{mydescription}
}
\begin{myquote}\item{} Comparison operators {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{} <{}= >{} >{}=}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily min}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily max}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily compare}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myquote}

{\bfseries
\begin{mydescription} Enum
\end{mydescription}
}
\begin{myquote}\item{} For enumerations only. Allows the use of list syntax such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Blue .. Green{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myquote}

{\bfseries
\begin{mydescription} Bounded
\end{mydescription}
}
\begin{myquote}\item{} Also for enumerations, but can also be used on types that have only one constructor. Provides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily minBound}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maxBound}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the lowest and highest values that the type can take.
\end{myquote}

{\bfseries
\begin{mydescription} Show
\end{mydescription}
}
\begin{myquote}\item{} Defines the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which converts a value into a string, and other related functions.
\end{myquote}

{\bfseries
\begin{mydescription} Read
\end{mydescription}
}
\begin{myquote}\item{} Defines the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily read}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which parses a string into a value of the type, and other related functions.
\end{myquote}

The precise rules for deriving the relevant functions are given in the language report. However, they can generally be relied upon to be the \symbol{34}right thing\symbol{34} for most cases. The types of elements inside the data type must also be instances of the class you are deriving.

This provision of special \symbol{34}magic\symbol{34} function synthesis for a limited set of predefined classes goes against the general Haskell philosophy that \symbol{34}built in things are not special\symbol{34}, but it does save a lot of typing. Besides that, deriving instances stops us from writing them in the wrong way (an example: an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} such that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x == y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would not be equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y == x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be flat out wrong). \myfootnote{There are ways to make the magic apply to other classes. GHC extensions allow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily deriving}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for a few other common classes for which there is only one correct way of writing the instances, and the GHC generics machinery make it possible to generate instances automatically for custom classes.}
\section{Class inheritance}
\label{199}

Classes can inherit from other classes. For example, here is the main part of the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Prelude:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}compare\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ordering}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{<}\NormalTok{),\ensuremath{\text{ }}(}\FunctionTok{<=}\NormalTok{),\ensuremath{\text{ }}(}\FunctionTok{>=}\NormalTok{),}\OtherTok{\ensuremath{\text{ }}(>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{max,}\OtherTok{\ensuremath{\text{ }}min\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

The actual definition is rather longer and includes default implementations for most of the functions. The point here is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} inherits from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is indicated by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily =>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation in the first line, which mirrors the way classes appear in type signatures. Here, it means that for a type to be an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it must also be an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and hence needs to implement the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ==}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily /=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operations.\myfootnote{If you check the full definition in the \myfnhref{http://hackage.haskell.org/packages/archive/base/4.1.0.0/doc/html/Prelude.html}{Prelude} specification, the reason for that becomes clear: the default implementations involve applying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (==)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the values being compared.}

A class can inherit from several other classes: just put all of its superclasses in the parentheses before the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily =>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Let us illustrate that with yet another Prelude quote:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Real}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}the\ensuremath{\text{ }}rational\ensuremath{\text{ }}equivalent\ensuremath{\text{ }}of\ensuremath{\text{ }}its\ensuremath{\text{ }}real\ensuremath{\text{ }}argument\ensuremath{\text{ }}with\ensuremath{\text{ }}full\ensuremath{\text{ }}precision}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}toRational\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Rational}\newline
\end{Highlighting}
\end{Shaded}

\section{Standard classes}
\label{200}

This diagram, copied from the Haskell Report, shows the relationships between the classes and types in the Standard Prelude. The names in bold are the classes, while the non-{}bold text stands for the types that are instances of each class ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} refers to functions and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, to lists). The arrows linking classes indicate the inheritance relationships, pointing to the inheriting class.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/1.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{1}
\end{minipage}\vspace{0.75cm}

\section{Type constraints}
\label{201}

With all pieces in place, we can go full circle by returning to the very first example involving classes in this book:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(+)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Num a) =>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type constraint}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which restricts the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to instances of the class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In fact, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a method of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, along with quite a few other functions (notably, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; but not {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

You can put several limits into a type signature like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{foo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Show}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Show}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{foo\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}t\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}plus\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}(x}\FunctionTok{+}\NormalTok{y)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{".\ensuremath{\text{ }}\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}t}\newline
\end{Highlighting}
\end{Shaded}

Here, the arguments {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must be of the same type, and that type must be an instance of both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Furthermore, the final argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must be of some (possibly different) type that is also an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This example also displays clearly how constraints propagate from the functions used in a definition (in this case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) to the function being defined.
\subsection{Other uses}
\label{202}

Beyond simple type signatures, type constraints can be introduced in a number of other places:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily instance}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations (typical with parametrized types);
\end{myitemize}

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily class}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations (constraints can be introduced in the method signatures in the usual way for any type variable other than the one defining the class\myfootnote{Constraints for the type defining the class should be set via class inheritance.});
\end{myitemize}

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations,\myfootnote{And {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations as well, but not {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.} where they act as constraints for the constructor signatures.
\end{myitemize}

\LaTeXbodynoteTemplate{Type constraints in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations are less useful than it might seem at first. Consider:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{F1}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{F2}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a type with two constructors, both taking an argument of a type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which must be in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Num a) =>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint is only effective for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily F1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily F2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructors, and not for other functions involving {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Therefore, in the following example...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{fooSquared\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{fooSquared\ensuremath{\text{ }}(}\DataTypeTok{F1}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{F1}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{x)}\newline
\NormalTok{fooSquared\ensuremath{\text{ }}(}\DataTypeTok{F2}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{F2}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

... even though the constructors ensure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be some type in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we can\textquotesingle{}t avoid duplicating the constraint in the signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fooSquared}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Extra note for the curious}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: This issue is related to some of the problems tackled by the advanced features discussed in the \symbol{34}Fun with types\symbol{34} chapter of the Advanced Track.}}
\section{A concerted example}
\label{203}

To provide a better view of the interplay between types, classes, and constraints, we will present a very simple and somewhat contrived example. We will define a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Located}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Movable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class which inherits from it, and a function with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Movable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint implemented using the methods of the parent class, i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Located}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Location,\ensuremath{\text{ }}in\ensuremath{\text{ }}two\ensuremath{\text{ }}dimensions.}\newline
\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Located}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}getLocation\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Located}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Movable}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}setLocation\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}An\ensuremath{\text{ }}example\ensuremath{\text{ }}type,\ensuremath{\text{ }}with\ensuremath{\text{ }}accompanying\ensuremath{\text{ }}instances.}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{NamedPoint}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{NamedPoint}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}pointName\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}pointX\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}pointY\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Located}\ensuremath{\text{ }}\DataTypeTok{NamedPoint}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{getLocation\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(pointX\ensuremath{\text{ }}p,\ensuremath{\text{ }}pointY\ensuremath{\text{ }}p)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Movable}\ensuremath{\text{ }}\DataTypeTok{NamedPoint}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{setLocation\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{p\ensuremath{\text{ }}\{\ensuremath{\text{ }}pointX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x,\ensuremath{\text{ }}pointY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Moves\ensuremath{\text{ }}a\ensuremath{\text{ }}value\ensuremath{\text{ }}of\ensuremath{\text{ }}a\ensuremath{\text{ }}Movable\ensuremath{\text{ }}type\ensuremath{\text{ }}by\ensuremath{\text{ }}the\ensuremath{\text{ }}specified\ensuremath{\text{ }}displacement.}\newline
\CommentTok{--\ensuremath{\text{ }}This\ensuremath{\text{ }}works\ensuremath{\text{ }}for\ensuremath{\text{ }}any\ensuremath{\text{ }}movable,\ensuremath{\text{ }}including\ensuremath{\text{ }}NamedPoint.}\newline
\OtherTok{move\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Movable}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{move\ensuremath{\text{ }}(dx,\ensuremath{\text{ }}dy)\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{setLocation\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{dx,\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{dy)\ensuremath{\text{ }}p}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{getLocation\ensuremath{\text{ }}p}\newline
\end{Highlighting}
\end{Shaded}

\subsection{A word of advice}
\label{204}

Do not read too much into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Movable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example just above; it is merely a demonstration of class-{}related language features. It would be a mistake to think that every single functionality which might be conceivably generalized, such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily setLocation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, needs a type class of its own. In particular, if all your {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Located}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances should be able to be moved as well then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Movable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is unnecessary -{} and if there is just one instance there is no need for type classes at all! Classes are best used when there are several types instantiating it (or if you expect others to write additional instances) and you do not want users to know or care about the differences between the types. An extreme example would be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: general-{}purpose functionality implemented by an immense number of types, about which you do not need to know a thing about before calling {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In the following chapters, we will explore a number of important type classes in the libraries; they provide good examples of the sort of functionality which fits comfortably into a class.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{The Functor class}

\myminitoc
\label{205}

\label{206}
\LaTeXNullTemplate{}

In this chapter, we will introduce the important {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class.
\section{Motivation}
\label{207}

In \mylref{184}{Other data structures}, we saw operations that apply to all elements of some grouped value. The prime example is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which works on lists. Another example we worked through was the following Tree datatype:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}(}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

The map function we wrote for Tree was:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{treeMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\NormalTok{treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{left\ensuremath{\text{ }}right)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}left)\ensuremath{\text{ }}(treeMap\ensuremath{\text{ }}f\ensuremath{\text{ }}right)}\newline
\end{Highlighting}
\end{Shaded}

As discussed before, we can conceivably define a map-{}style function for any arbitrary data structure.

When we first introduced {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in \mylref{86}{Lists II}, we went through the process of taking a very specific function for list elements and generalizing to show how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combines any appropriate function with all sorts of lists. Now, we will generalize still {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape further}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Instead of map-{}for-{}lists and map-{}for-{}trees and other distinct maps, how about a general concept of maps for all sorts of mappable types?
\section{Introducing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{208}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a Prelude class for types which can be mapped over. It has a single method, called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The class is defined as follows:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}fmap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

The usage of the type variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can look a little strange at first. Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a parametrized data type; in the signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a type parameter in one of its appearances and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the other. Let\textquotesingle{}s consider an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: By replacing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we get the following signature for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

... which fits the natural definition:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\DataTypeTok{Nothing}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

(Incidentally, this definition is in Prelude; so we didn\textquotesingle{}t really need to implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybeMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for that example in the \symbol{34}Other data structures\symbol{34} chapter.)

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance for lists (also in Prelude) is simple:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map}\newline
\end{Highlighting}
\end{Shaded}

... and if we replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} signature, we get the familiar type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a generalization of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for any parametrized data type.\myfootnote{Data structures provide the most intuitive examples; however, there are functors which cannot reasonably be seen as data structures. A commonplace metaphor consists in thinking of functors as containers; like all metaphors, however, it can be stretched only so far.}

Naturally, we can provide {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances for our own data types. In particular, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be promptly relocated to an instance:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\DataTypeTok{Tree}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Leaf}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Leaf}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{left\ensuremath{\text{ }}right)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Branch}\ensuremath{\text{ }}\NormalTok{(fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}left)\ensuremath{\text{ }}(fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}right)}\newline
\end{Highlighting}
\end{Shaded}

Here\textquotesingle{}s a quick demo of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in action with the instances above (to reproduce it, you only need to load the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily instance}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declarations for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; the others are already in Prelude):

\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{}

\begin{myitemize}
\item{} Main>{} fmap (2*) {[}1,2,3,4{]}
{[}2,4,6,8{]}
\item{} Main>{} fmap (2*) (Just 1)
Just 2
\item{} Main>{} fmap (fmap (2*)) {[}Just 1, Just 2, Just 3, Nothing{]}
{[}Just 2, Just 4, Just 6, Nothing{]}
\item{} Main>{} fmap (2*) (Branch (Branch (Leaf 1) (Leaf 2)) (Branch (Leaf 3) (Leaf 4)))
Branch (Branch (Leaf 2) (Leaf 4)) (Branch (Leaf 6) (Leaf 8))

\end{myitemize}

\end{TemplateCodeInside}

\LaTeXbodynoteTemplate{Beyond {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there are many other {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances already defined. Those made available from the Prelude can are listed in the \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor.html}{Data.Functor} module.}
\subsection{The functor laws}
\label{209}

When providing a new instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you should ensure it satisfies the two functor laws. There is nothing mysterious about these laws; their role is to guarantee {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} behaves sanely and actually performs a mapping operation (as opposed to some other nonsense). \myfootnote{Some examples of nonsense that the laws rule out: removing or adding elements from a list, reversing a list, changing a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}value into a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.} The first law is:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}id\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the identity function, which returns its argument unaltered. The first law states that mapping {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} over a functorial value must return the functorial value unchanged.

Next, the second law:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}(g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f}\newline
\end{Highlighting}
\end{Shaded}

It states that it should not matter whether we map a composed function or first map one function and then the other (assuming the application order remains the same in both cases).
\section{What did we gain?}
\label{210}

At this point, we can ask what benefit we get from the extra layer of generalization brought by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class. There are two significant advantages:

\begin{myitemize}
\item{} The availability of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} method relieves us from having to recall, read, and write a plethora of differently named mapping methods ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybeMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily weirdMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape ad infinitum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). As a consequence, code becomes both cleaner and easier to understand. On spotting a use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we instantly have a general idea of what is going on.\myfootnote{This is analogous to the gain in clarity provided by replacing explicit recursive algorithms on lists with implementations based on higher-{}order functions.} Thanks to the guarantees given by the functor laws, this general idea is surprisingly precise.
\end{myitemize}

\begin{myitemize}
\item{} Using the type class system, we can write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}based algorithms which work out of the box with {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape any}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functor -{} be it {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or whichever you need. Indeed, a number of useful classes in the core libraries inherit from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

Type classes make it possible to create general solutions to whole categories of problems. Depending on what you use Haskell for, you may not need to define new classes often, but you will certainly be {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape using}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type classes all the time. Many of the most powerful features and sophisticated capabilities of Haskell rely on type classes (residing either in the standard libraries or elsewhere). From this point on, classes will be a prominent presence in our studies.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Monads}

\myminitoc
\label{211}

\chapter{Prologue: IO, an applicative functor}

\myminitoc
\label{212}

\label{213}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

\begin{TemplateInfo}{}{}For shorter links to this chapter, be them within the book or off-{}wiki, you can use the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue}{Haskell/Applicative prologue} redirect.\end{TemplateInfo}

The emergence of functors is a watershed in the course of this book. The reasons for that will begin to reveal themselves in this prologue, as we set the stage for the next several chapters of the book. While the code examples we will work with here are very simple, we will use them to bring several new and important ideas into play, ideas that will be revisited and further developed later in the book. That being so, we recommend you to study this chapter at a gentle pace, which gives you space for thinking about the implications of each step, as well as trying out the code samples in GHCi.
\section{Scene 1 : {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{214}

Our initial examples will use the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is provided by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Text.Read}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} module.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{+}\DataTypeTok{Text.Read}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}readMaybe}\newline
\OtherTok{readMaybe\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Read}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provides a simple way of converting strings into Haskell values. If the provided string has the correct format to be read as a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives back the converted value wrapped in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; otherwise, the result is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}}\StringTok{"3"}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}}\StringTok{"foo"}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\DataTypeTok{Nothing}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}}\StringTok{"3.5"}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\DataTypeTok{Nothing}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}}\StringTok{"3.5"}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\FloatTok{3.5}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{To use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we need to specify which type we are trying to read. Most of the time, that would be done through a combination of type inference and the signatures in our code. Occasionally, however, it is more convenient to just slap in a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type annotation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} rather than writing down a proper signature. For instance, in the first example above the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :: Maybe Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe \symbol{34}3\symbol{34} :: Maybe Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} says that the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe \symbol{34}3\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}

We can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to write a little program in the style of those in the \mylref{66}{Simple input and output} chapter that:

\begin{myitemize}
\item{} Gets a string given by the user through the command line;
\item{} Tries to read it into a number (let\textquotesingle{}s use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the type); and
\item{} If the read succeeds, prints the double of the number; otherwise, prints an explanatory message and starts over.
\end{myitemize}

\LaTeXbodynoteTemplate{Before continuing, we suggest you try writing the program. Beyond {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you will likely find {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} useful. Have a look at the \mylref{66}{Simple input and output} chapter if you need a reminder about how to do reading from and printing to the console.}

Here is a possible implementation:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Text.Read}\newline
\ensuremath{\text{ }}\newline
\NormalTok{interactiveDoubling\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}a\ensuremath{\text{ }}number:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{readMaybe}\OtherTok{\ensuremath{\text{ }}s\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"The\ensuremath{\text{ }}double\ensuremath{\text{ }}of\ensuremath{\text{ }}your\ensuremath{\text{ }}number\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}(}\DecValTok{2}\FunctionTok{*}\NormalTok{x))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"This\ensuremath{\text{ }}is\ensuremath{\text{ }}not\ensuremath{\text{ }}a\ensuremath{\text{ }}valid\ensuremath{\text{ }}number.\ensuremath{\text{ }}Retrying..."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{interactiveDoubling}\newline
\end{Highlighting}
\end{Shaded}

\TemplateSource{ \newline{}
GHCi>{} {}interactiveDoubling {} \newline{}
Choose {}a {}number: \newline{}
foo \newline{}
This {}is {}not {}a {}valid {}number. {}Retrying... \newline{}
Choose {}a {}number: \newline{}
3 \newline{}
The {}double {}of {}your {}number {}is {}6.0}

Nice and simple. A variation of this solution might take advantage of how, given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can double the value before unwrapping {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mx}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the case statement:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{interactiveDoubling\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}a\ensuremath{\text{ }}number:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{readMaybe}\OtherTok{\ensuremath{\text{ }}s\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}(}\DecValTok{2}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}mx\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{d\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"The\ensuremath{\text{ }}double\ensuremath{\text{ }}of\ensuremath{\text{ }}your\ensuremath{\text{ }}number\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}d)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"This\ensuremath{\text{ }}is\ensuremath{\text{ }}not\ensuremath{\text{ }}a\ensuremath{\text{ }}valid\ensuremath{\text{ }}number.\ensuremath{\text{ }}Retrying..."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{interactiveDoubling}\newline
\end{Highlighting}
\end{Shaded}

In this case, there is no real advantage in doing that. Still, keep this possibility in mind.
\subsection{Application in functors}
\label{215}

Now, let\textquotesingle{}s do something slightly more sophisticated: reading two numbers with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and printing their sum (we suggest that you attempt writing this one as well before continuing).

Here is one solution:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{interactiveSumming\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}two\ensuremath{\text{ }}numbers:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sx\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sy\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{readMaybe}\OtherTok{\ensuremath{\text{ }}sx\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{my\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}sy}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{my\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"The\ensuremath{\text{ }}sum\ensuremath{\text{ }}of\ensuremath{\text{ }}your\ensuremath{\text{ }}numbers\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}(x}\FunctionTok{+}\NormalTok{y))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{retry}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{retry}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{retry\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Invalid\ensuremath{\text{ }}number.\ensuremath{\text{ }}Retrying..."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{interactiveSumming}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{interactiveSumming}\newline
\DataTypeTok{Choose}\ensuremath{\text{ }}\NormalTok{two\ensuremath{\text{ }}numbers}\FunctionTok{:}\newline
\NormalTok{foo}\newline
\DecValTok{4}\newline
\DataTypeTok{Invalid}\ensuremath{\text{ }}\NormalTok{number}\FunctionTok{.}\ensuremath{\text{ }}\FunctionTok{Retrying...}\newline
\DataTypeTok{Choose}\ensuremath{\text{ }}\NormalTok{two\ensuremath{\text{ }}numbers}\FunctionTok{:}\newline
\DecValTok{3}\newline
\NormalTok{foo}\newline
\DataTypeTok{Invalid}\ensuremath{\text{ }}\NormalTok{number}\FunctionTok{.}\ensuremath{\text{ }}\FunctionTok{Retrying...}\newline
\DataTypeTok{Choose}\ensuremath{\text{ }}\NormalTok{two\ensuremath{\text{ }}numbers}\FunctionTok{:}\newline
\DecValTok{3}\newline
\DecValTok{4}\newline
\DataTypeTok{The}\ensuremath{\text{ }}\NormalTok{sum\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{your\ensuremath{\text{ }}numbers\ensuremath{\text{ }}is\ensuremath{\text{ }}}\FloatTok{7.0}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveSumming}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works, but it is somewhat annoying to write. In particular, the nested {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statements are not pretty, and make reading the code a little difficult. If only there was a way of summing the numbers before unwrapping them, analogously to what we did with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the second version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveDoubling}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we would be able to get away with just one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Wishful\ensuremath{\text{ }}thinking...}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{somehowSumMaybes\ensuremath{\text{ }}mx\ensuremath{\text{ }}my\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"The\ensuremath{\text{ }}sum\ensuremath{\text{ }}of\ensuremath{\text{ }}your\ensuremath{\text{ }}numbers\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}(x}\FunctionTok{+}\NormalTok{y))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Invalid\ensuremath{\text{ }}number.\ensuremath{\text{ }}Retrying..."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{interactiveSumming}\newline
\end{Highlighting}
\end{Shaded}

But what should we put in place of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily somehowSumMaybes}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for one, is not enough. While {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works just fine to partially apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the value wrapped by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{3}\newline
\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{3}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}fmap\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)}\newline
\NormalTok{fmap\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)}\newline
\end{Highlighting}
\end{Shaded}

... we don\textquotesingle{}t know how to apply a function wrapped in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the second value. For that, we would need a function with a signature like this one...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(<*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

... which would then be used like this:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{4}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{7}\newline
\end{Highlighting}
\end{Shaded}

The GHCi prompt in this example, however, is not wishful thinking: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actually exists, and if you try it in GHCi, it will actually work! The expression looks even neater if we use the infix synonym of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}\${}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{4}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{7}\newline
\end{Highlighting}
\end{Shaded}

The actual type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is more general than what we just wrote. Checking it...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}(}\FunctionTok{<*>}\NormalTok{)}\newline
\OtherTok{(<*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

... introduces us to a new type class: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the type class of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape applicative functors}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For an initial explanation, we can say that an applicative functor is a functor which supports applying functions within the functor, thus allowing for smooth usage of partial application (and therefore functions of multiple arguments). All instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, and besides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there are many other common {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s which are also {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

This is the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

The definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is actually quite simple: if neither of the values are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, apply the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and wrap the result with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; otherwise, give back {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that the logic is exactly equivalent to what the nested {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveSumming}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does.

Note that beyond {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} there is a second method in the instance above, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}pure}\newline
\OtherTok{pure\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a value and brings it into the functor in a default, trivial way. In the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the trivial way amounts to wrapping the value with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – the nontrivial alternative would be discarding the value and giving back {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we might rewrite the three-{}plus-{}four example above as...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{7}\newline
\end{Highlighting}
\end{Shaded}

... or even:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{7}\newline
\end{Highlighting}
\end{Shaded}

Just like the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class has laws which specify how sensible instance should behave, there is a set of laws for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Among other things, these laws specify what the \symbol{34}trivial\symbol{34} way of bringing values into the functor through {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} amounts to. Since there is a lot going on in this stretch of the book, we will not discuss the laws now; however, we will return to this important topic in a not too distant future.

\LaTeXbodynoteTemplate{In any case, if you are curious feel free to make a detour though the \mylref{305}{Applicative functors} chapter and read its \symbol{34}Applicative functor laws\symbol{34} subsection. If you choose to go there, you might as well have a look at the \symbol{34}ZipList\symbol{34} section, which provides an additional example of a common applicative functor that can be grasped using only what we have seen so far.}

To wrap things up, here is a version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveSumming}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} enhanced by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{interactiveSumming\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}two\ensuremath{\text{ }}numbers:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sx\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sy\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{readMaybe}\OtherTok{\ensuremath{\text{ }}sx\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{my\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}sy}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{my\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"The\ensuremath{\text{ }}sum\ensuremath{\text{ }}of\ensuremath{\text{ }}your\ensuremath{\text{ }}numbers\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}z)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Invalid\ensuremath{\text{ }}number.\ensuremath{\text{ }}Retrying..."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{interactiveSumming}\newline
\end{Highlighting}
\end{Shaded}

\section{Scene 2 : {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{216}

In the examples above, we have been taking I/O actions such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for granted. We now find ourselves at an auspicious moment to revisit a question first raised many chapters ago: what is the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?

Back in the \mylref{66}{Simple input and output} chapter, we saw the answer to that question is:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}getLine}\newline
\NormalTok{getLine}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

Using what we learned since then, we can now see that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a type constructor with one type variable, which happens to be instantiated as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That, however, doesn\textquotesingle{}t get to the root of the issue: what does {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} really mean, and what is the difference between that and plain old {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?
\subsection{Referential transparency}
\label{217}

A key feature of Haskell is that all expressions we can write are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape referentially transparent}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That means we can replace any expression whatsoever by its value without changing the behaviour of the program. For instance, consider this very simple program:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{addExclamation\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{addExclamation\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"!"}\newline
\ensuremath{\text{ }}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(addExclamation\ensuremath{\text{ }}}\StringTok{"Hello"}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Its behaviour is wholly unsurprising:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{main}\newline
\DataTypeTok{Hello}\FunctionTok{!}\newline
\end{Highlighting}
\end{Shaded}

Given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addExclamation s = s ++ \symbol{34}!\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can rewrite {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily main}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that it doesn\textquotesingle{}t mention {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addExclamation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. All we have to do is replacing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}Hello\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the right-{}hand side of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addExclamation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition and then replacing \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addExclamation \symbol{34}Hello!\symbol{34}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by the resulting expression. As advertised, the program behaviour does not change:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"Hello"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"!"}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{main}\newline
\DataTypeTok{Hello}\FunctionTok{!}\newline
\end{Highlighting}
\end{Shaded}

Referential transparency ensures that this sort of substitution works. This guarantee extends to anywhere in any Haskell program, which goes a long way towards making programs easier to understand, and their behaviour easier to predict.

Now, suppose that the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} were {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In that case, we would be able to use it as the argument to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily addExclamation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as in:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Not\ensuremath{\text{ }}actual\ensuremath{\text{ }}code.}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(addExclamation\ensuremath{\text{ }}getLine)}\newline
\end{Highlighting}
\end{Shaded}

In that case, however, a new question would spring forth: if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is it? There is no satisfactory answer: it could be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}Hello\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}Goodbye\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or whatever else the user chooses to type at the terminal. And yet, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape replacing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} breaks the program, as the user would not be able to type the input string at the terminal any longer. Therefore {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} having type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would cause referential transparency to be broken. The same goes for all other I/O actions: their results are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape opaque}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, in that it is impossible to tell them in advance, as they depend on factors external to the program.
\subsection{Cutting through the fog}
\label{218}

As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} illustrates, there is a fundamental indeterminacy associated with I/O actions. Respecting this indeterminacy is necessary for preserving referential transparency. In Haskell, that is achieved through the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type constructor. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means that it is not any actual {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but both a placeholder for a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that will only materialise when the program is executed and a promise that this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will indeed be delivered (in the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, by slurping it from the terminal). As a consequence, when we manipulate an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we are setting up plans for what {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape will}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be done once this unknown {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comes into being. There are quite a few ways of achieving that. In this section, we will consider two of them; to which we will add a third one in the next few chapters.

The idea of dealing a value which isn\textquotesingle{}t really there might seem bizarre at first. However, we have already discussed at least one example of something not entirely unlike it without batting an eyelid. If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mx}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe Double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap (2*) mx}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doubles the value {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape if it is there}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and works regardless of whether the value actually exists.\myfootnote{The key difference between the two situations is that with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the indeterminacy is only apparent, and it is possible to figure out in advance whether there is an actual {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} behind {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mx}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – or, more precisely, it is possible as long as the value of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mx}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not depend on I/O!} Both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} imply, for different reasons, a layer of indirection in reaching the corresponding values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That being so, it comes as no surprise that, like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\itshape {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape Functor}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being the most elementary way of getting across the indirection.

To begin with, we can exploit the fact of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to replace the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definitions in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveSumming}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the end of the previous section by something more compact:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{interactiveSumming\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{interactiveSumming\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}two\ensuremath{\text{ }}numbers:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{getLine\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}equivalently:\ensuremath{\text{ }}fmap\ensuremath{\text{ }}readMaybe\ensuremath{\text{ }}getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{my\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{readMaybe\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\FunctionTok{<*>}\OtherTok{\ensuremath{\text{ }}my\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(}\StringTok{"The\ensuremath{\text{ }}sum\ensuremath{\text{ }}of\ensuremath{\text{ }}your\ensuremath{\text{ }}numbers\ensuremath{\text{ }}is\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}z)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Invalid\ensuremath{\text{ }}number.\ensuremath{\text{ }}Retrying..."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{interactiveSumming}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe <{}\${}>{} getLine}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be read as \symbol{34}once {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} delivers a string, whatever it turns out to be, apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on it\symbol{34}. Referential transparency is not compromised: the value behind {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readMaybe <{}\${}>{} getLine}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just as opaque as that of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and its type (in this case {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO (Maybe Double)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) disallows us from replacing it with any determinate value (say, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) that would violate referential transparency.

Beyond being a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which provides us a second way of manipulating the values delivered by I/O actions. We will illustrate it with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveConcatenating}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} action, similar in spirit to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveSumming}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A first version is just below. Can you anticipate how to simplify it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{interactiveConcatenating\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{interactiveConcatenating\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}two\ensuremath{\text{ }}strings:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sx\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sy\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Let\textquotesingle{}s\ensuremath{\text{ }}concatenate\ensuremath{\text{ }}them:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(sx\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{sy)}\newline
\end{Highlighting}
\end{Shaded}

Here is a version exploiting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{interactiveConcatenating\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{interactiveConcatenating\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}two\ensuremath{\text{ }}strings:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sz\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{++}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{getLine\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Let\textquotesingle{}s\ensuremath{\text{ }}concatenate\ensuremath{\text{ }}them:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}sz}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++) <{}\${}>{} getLine <{}*>{} getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an I/O action which is made out of two other I/O actions (the two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). When it is executed, these two I/O actions are executed and the strings they deliver are concatenated. One important thing to notice is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} maintains a consistent order of execution between the actions it combines. Order of execution matters when dealing with I/O – examples of that are innumerable, but for starters consider this question: if we replace the second {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the example above with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take 3 <{}\${}>{} getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which of the strings entered at the terminal will be cut down to three characters?

As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} respects the order of actions, it provides a way of sequencing them. In particular, if we are only interested in sequencing and don\textquotesingle{}t care about the result of the first action we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}_ y -{}>{} y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to discard it:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}_\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"First!"}\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Second!"}\newline
\DataTypeTok{First}\FunctionTok{!}\newline
\DataTypeTok{Second}\FunctionTok{!}\newline
\end{Highlighting}
\end{Shaded}

This is such a common usage pattern that there is an operator specifically for it: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}_\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}(}\FunctionTok{*>}\NormalTok{)}\newline
\OtherTok{(*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"First!"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Second!"}\newline
\DataTypeTok{First}\FunctionTok{!}\newline
\DataTypeTok{Second}\FunctionTok{!}\newline
\end{Highlighting}
\end{Shaded}

It can be readily applied to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily interactiveConcatenating}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{interactiveConcatenating\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{interactiveConcatenating\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}two\ensuremath{\text{ }}strings:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sz\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{++}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{getLine\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Let\textquotesingle{}s\ensuremath{\text{ }}concatenate\ensuremath{\text{ }}them:"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}sz}\newline
\end{Highlighting}
\end{Shaded}

Or, going even further:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{interactiveConcatenating\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{interactiveConcatenating\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sz\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Choose\ensuremath{\text{ }}two\ensuremath{\text{ }}strings:"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{((}\FunctionTok{++}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{getLine\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getLine)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Let\textquotesingle{}s\ensuremath{\text{ }}concatenate\ensuremath{\text{ }}them:"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}sz}\newline
\end{Highlighting}
\end{Shaded}

Note that each of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} replaces one of the magical line breaks of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block that lead actions to be executed one after the other. In fact, that is all there is to the replaced line breaks: they are just syntactic sugar for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Earlier, we said that a functor brings in a layer of indirection for accessing the values within it. The flip side of that observation is that the indirection is caused by a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape context}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, within which the values are found. For {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the indirection is that the values are only determined when the program is executed, and the context consists in the series of instructions that will be used to produce these values (in the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, these instructions amount to \symbol{34}slurp a line of text from the terminal\symbol{34}). From this perspective, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two functorial values and combines not only the values within but also the contexts themselves. In the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combining the contexts means appending the instructions of one I/O action to those of the other, thus sequencing the actions.
\section{The end of the beginning}
\label{219}

This chapter was a bit of a whirlwind! Let\textquotesingle{}s recapitulate the key points we discussed in it:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a subclass of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape applicative functors}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which are functors that support function application without leaving the functor.
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} method of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used as a generalisation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to multiple arguments.
\item{} An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not a tangible value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but a placeholder for an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value that will only come into being when the program is executed and a promise that this value will be delivered through some means. That makes referential transparency possible even when dealing with I/O actions.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a functor, and more specifically an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That provides means to modify the value produced by an I/O action in spite of its indeterminacy.
\item{} A functorial value can be seen as being made of values in a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape context}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} cuts through the context to modify the underlying values. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combines both the contexts and the underlying values of two functorial values.
\item{} In the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and the closely related {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, combine contexts by sequencing I/O actions.
\item{} A large part of the role of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks is simply providing syntactic sugar for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

As a final observation, note that there is still a major part of the mystery behind {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks left to explain: what does the left arrow do? In a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}block line such as...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sx\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\end{Highlighting}
\end{Shaded}

... it looks like we are extracting the value produced by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} context. Thanks to the discussion about referential transparency, we now know that must be an illusion. But what is going on behind the scenes? Feel free to place your bets, as we are about to find out!

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Understanding monads}

\myminitoc
\label{220}

\label{221}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

There is a certain mystique about monads, and even about the word \symbol{34}monad\symbol{34} itself. While one of our goals of this set of chapters is removing the shroud of mystery that is often wrapped around them, it is not difficult to understand how it comes about. Monads are very useful in Haskell, but the concept is often difficult to grasp at first. Since monads have so many applications, people often explain them from a particular point of view, which can derail your efforts towards understanding them in their full glory.

Historically, monads were introduced into Haskell to perform input and output – that is, I/O operations of the sort we dealt with in the \mylref{66}{Simple input and output} chapter and the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue}{prologue to this unit}. A predetermined execution order is crucial for things like reading and writing files, and monadic operations lend themselves naturally to sequencing. However, monads are by no means limited to input and output. They can be used to provide a whole range of features, such as exceptions, state, non-{}determinism, continuations, coroutines, and more. In fact, thanks to the versatility of monads, none of these constructs needed to be built into Haskell as a language; rather, they are defined by the standard libraries.

In the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue}{Prologue} chapter, we began with an example and used it to steadily introduce several new ideas. Here, we will do it the other way around, starting with a definition of monad and, from that, building connections with what we already know.
\section{Definition}
\label{222}

A {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is defined by three things:
\begin{myitemize}
\item{} a \mylref{180}{ type constructor} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf};
\item{} a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf};\myfootnote{This {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function has nothing to do with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword found in imperative languages like C or Java; don\textquotesingle{}t conflate these two.}
\item{} an operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which is pronounced \symbol{34}bind\symbol{34}.
\end{myitemize}

The function and operator are methods of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class and have types

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}return\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(>>=)\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

and are required to obey \mylref{227}{three laws} that will be explained later on.

For a concrete example, take the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad. The type constructor is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m = Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, while {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are defined like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}return\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(>>=)\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the monad, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} brings a value into it by wrapping it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m :: Maybe a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value and a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g :: a -{}>{} Maybe b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there is nothing to do and the result is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Otherwise, in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is applied to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the underlying value wrapped in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, to give a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} result. Note that this result may or may not be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, depending on what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To sum it all up, if there is an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape underlying value}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to it, which brings the underlying value back into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad.

The key first step to understand how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} work is tracking which values and arguments are monadic and which ones aren\textquotesingle{}t. As in so many other cases, type signatures are our guide to the process.
\subsection{Motivation: Maybe}
\label{223}

To see the usefulness of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad, consider the following example: Imagine a family database that provides two functions:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}father\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Person}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Person}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}mother\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Person}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Person}\newline
\end{Highlighting}
\end{Shaded}

These look up the name of someone\textquotesingle{}s father or mother. In case our database is missing some relevant information, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows us to return a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value to indicate that the lookup failed, rather than crashing the program.

Let\textquotesingle{}s combine our functions to query various grandparents. For instance, the following function looks up the maternal grandfather (the father of one\textquotesingle{}s mother):

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{maternalGrandfather\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Person}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Person}\newline
\NormalTok{maternalGrandfather\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{mother\ensuremath{\text{ }}p\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{mom\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}mom}\newline
\end{Highlighting}
\end{Shaded}

Or consider a function that checks whether both grandfathers are in the database:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}bothGrandfathers\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Person}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Person}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Person}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bothGrandfathers\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}p\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{dad\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}dad\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{gf1\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}found\ensuremath{\text{ }}first}\newline
\ensuremath{\text{ }}\NormalTok{grandfather}\newline
\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{mother\ensuremath{\text{ }}p\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{mom\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}mom\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{gf2\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}found\ensuremath{\text{ }}second}\newline
\ensuremath{\text{ }}\NormalTok{grandfather}\newline
\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(gf1,\ensuremath{\text{ }}gf2)\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

What a mouthful! Every single query might fail by returning {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the whole function must fail with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if that happens.

Clearly there has to be a better way to write that instead of repeating the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} again and again! Indeed, that\textquotesingle{}s what the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad is set out to do. For instance, the function retrieving the maternal grandfather has exactly the same structure as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator, so we can rewrite it as:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{maternalGrandfather\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mother\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{father}\newline
\end{Highlighting}
\end{Shaded}

With the help of lambda expressions and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can rewrite the two grandfathers function as well:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bothGrandfathers\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}dad\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}dad\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}gf1\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{mother\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}gf1\ensuremath{\text{ }}is\ensuremath{\text{ }}only\ensuremath{\text{ }}used\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}final\ensuremath{\text{ }}return}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}mom\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}mom\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\NormalTok{(\textbackslash{}gf2\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(gf1,gf2)\ensuremath{\text{ }}))))}\newline
\end{Highlighting}
\end{Shaded}

While these nested lambda expressions may look confusing to you, the thing to take away here is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} releases us from listing all the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, shifting the focus back to the interesting part of the code.

To be a little more precise: The result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily father p}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a monadic value (in this case, either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just dad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, depending on whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily p}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s father is in the database). As the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily father}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function takes a regular (non-{}monadic value), the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} feeds {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily p}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily dad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to it {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape as a non-{}monadic}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value. The result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily father dad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is then monadic again, and the process continues.

So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} helps us pass non-{}monadic values to functions without actually leaving a monad. In the case of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad, the monadic aspect is the qualifier that we don\textquotesingle{}t know with certainty whether the value will be found.
\subsection{Type class}
\label{224}

In Haskell, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class is used to implement monads. It is provided by the \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad.html}{Control.Monad} module and included in the Prelude. The class has the following methods:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}return\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(>>=)\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(>>)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}fail\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

Aside from return and bind, there are two additional methods, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fail}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Both of them have default implementations, and so you don\textquotesingle{}t need to provide them when writing an instance.

The operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, spelled \symbol{34}then\symbol{34}, is a mere convenience and commonly implemented as

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{n}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} sequences two monadic actions when the second action does not involve the result of the first, which is a common scenario for monads such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}printSomethingTwice\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printSomethingTwice\ensuremath{\text{ }}str\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}str\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}str}\newline
\end{Highlighting}
\end{Shaded}

The function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} handles pattern match failures in \mylref{246}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation}. It\textquotesingle{}s an unfortunate technical necessity and doesn\textquotesingle{}t really have anything to do with monads. You are advised not to call {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} directly in your code.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{225}

An important thing to note is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a superclass of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{This important superclass relationship was, thanks to historic accidents, only implemented quite recently (early 2015) in GHC (version 7.10). If you are using a GHC version older than that, this class constraint will not exist, and so some of the practical considerations we will make next will not apply.} That has a few consequences worth highlighting. First of all, every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can all be used with monads. Secondly, actually writing a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance also requires providing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances. We will discuss ways of doing that later in this chapter. Thirdly, if you have worked through the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue}{Prologue}, the types and roles of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should look familiar...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\OtherTok{(>>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\newline
\OtherTok{pure\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\NormalTok{return}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

The only difference between the types of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is that the constraint changes from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In fact, that is the only difference between the methods: if you are dealing with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you can always replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and vice-{}versa. The same goes for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}/{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – in fact, it is not even necessary to implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if there is an independent definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance, as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return = pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is provided as a default definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Notions of Computation}
\label{226}

We have seen how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are very handy for removing boilerplate code that crops up when using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That, however, is not enough to justify why monads matter so much. Our next step towards that will be rewriting the two-{}grandfathers function in a quite different-{}looking style: using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation with \mylref{171}{explicit braces and semicolons}. Depending on your experience with other programming languages, you may find this very suggestive:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bothGrandfathers\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dad\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}p;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gf1\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}dad;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mom\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{mother\ensuremath{\text{ }}p;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gf2\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}mom;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(gf1,\ensuremath{\text{ }}gf2);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

If this looks like a code snippet of an imperative programming language to you, that\textquotesingle{}s because it is. In particular, this imperative language supports {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape exceptions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} : {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily father}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mother}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are functions that might fail to produce results, i.e. raise an exception, and when that happens, the whole {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}block will fail, i.e. terminate with an exception.

In other words, the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily father p}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe Person}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is interpreted as a statement of an imperative language that returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Person}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as result. This is true for all monads: a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily M a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is interpreted as a statement of an imperative language that returns a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as result; and the semantics of this language are determined by the monad {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily M}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{By \symbol{34}semantics\symbol{34}, we mean what the language allows you to say. In the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the semantics allow us to express failure, as statements may fail to produce a result, leading to the statements that follow it being skipped.}

Under this interpretation, the bind operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is simply a function version of the semicolon. Just like a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression can be written as a function application,
\\

\TemplateSpaceIndent{ {} {} {} {}let {}x {}= {}foo {}in {}x {}+ {}3 {} {} {} {} {} {} {} {} {} {}corresponds {}to {} {} {} {} {} {}(\textbackslash{}x {}-{}>{} {}x {}+ {}3) {}foo}

an assignment and semicolon can be written as the bind operator:
\\

\TemplateSpaceIndent{ {} {} {} {}x {}<{}-{} {}foo; {}return {}(x {}+ {}3) {} {} {} {} {} {}corresponds {}to {} {} {} {} {} {}foo {}>{}>{}= {}(\textbackslash{}x {}-{}>{} {}return {}(x {}+ \newline{}
 {}3))}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function lifts a plain value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily M a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a statement of the imperative language corresponding to the monad {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily M}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXbodynoteTemplate{The fact that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}\LaTeXEquals{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and therefore {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, lies behind the left arrows in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}blocks explains why we were not able to explain them in the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue\%23The\%20end\%20of\%20the\%20beginning}{Prologue}, when we only knew about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be enough to provide some, but not all, of the functionality of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}block.}

Different semantics of the imperative language correspond to different monads. The following table shows the classic selection that every Haskell programmer should know. If the idea behind monads is still unclear to you, studying each of the examples in the following chapters will not only give you a well-{}rounded toolbox but also help you understand the common abstraction behind them.

\begin{longtable}{|>{\RaggedRight}p{0.11858\linewidth}|>{\RaggedRight}p{0.34833\linewidth}|>{\RaggedRight}p{0.44738\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Monad}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Imperative Semantics}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Wikibook chapter}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Exception (anonymous) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \mylref{234}{Haskell/Understanding monads/Maybe}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Error}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Exception (with error description) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{https://en.wikibooks.org/wiki/Haskell\%2FUnderstanding\%20monads\%2FError}{Haskell/Understanding monads/Error}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Global state &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \mylref{257}{Haskell/Understanding monads/State}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Input/Output &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \mylref{248}{Haskell/Understanding monads/IO}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (lists) &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Nondeterminism &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \mylref{240}{Haskell/Understanding monads/List}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Reader}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Environment &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{https://en.wikibooks.org/wiki/Haskell\%2FUnderstanding\%20monads\%2FReader}{Haskell/Understanding monads/Reader}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Writer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Logger &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{https://en.wikibooks.org/wiki/Haskell\%2FUnderstanding\%20monads\%2FWriter}{Haskell/Understanding monads/Writer}\\ \hline
\end{longtable}

Furthermore, these different semantics need not occur in isolation. As we will see in a few chapters, it is possible to mix and match them by using \mylref{284}{monad transformers} to combine the semantics of multiple monads in a single monad.
\section{Monad Laws}
\label{227}
In Haskell, every instance of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class (and thus all implementations of bind {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) must obey the following three laws:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}right\ensuremath{\text{ }}unit}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}left\ensuremath{\text{ }}unit}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(m\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}associativity}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Return as neutral element}
\label{228}
The behavior of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is specified by the left and right unit laws. They state that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t perform any computation, it just collects values. For instance,

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{maternalGrandfather\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mom\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{mother\ensuremath{\text{ }}p}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gf\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}mom}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}gf}\newline
\end{Highlighting}
\end{Shaded}

is exactly the same as

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{maternalGrandfather\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mom\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{mother\ensuremath{\text{ }}p}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{father\ensuremath{\text{ }}mom}\newline
\end{Highlighting}
\end{Shaded}

by virtue of the right unit law.
\subsection{Associativity of bind}
\label{229}
The law of associativity makes sure that (like the semicolon) the bind operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only cares about the order of computations, not about their nesting; e.g. we could have written {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bothGrandfathers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} like this (compare with our earliest version without {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}):

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bothGrandfathers\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(father\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{father)\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}gf1\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(mother\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{father)\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}gf2\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(gf1,gf2)\ensuremath{\text{ }}))}\newline
\end{Highlighting}
\end{Shaded}

The associativity of the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a special case:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(m\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{o\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{(n\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{o)}\newline
\end{Highlighting}
\end{Shaded}

\subsubsection{Monadic composition}
\label{230}

It is easier to picture the associativity of bind by recasting the law as

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}}\FunctionTok{>=>}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}}\FunctionTok{>=>}\ensuremath{\text{ }}\NormalTok{h\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{>=>}\ensuremath{\text{ }}\NormalTok{(g\ensuremath{\text{ }}}\FunctionTok{>=>}\ensuremath{\text{ }}\NormalTok{h)}\newline
\end{Highlighting}
\end{Shaded}

where {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}=>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monad composition operator}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a close analogue of the function composition operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, only with flipped arguments. It is defined as:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(>=>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}c}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{>=>}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{g}\newline
\end{Highlighting}
\end{Shaded}

There is also {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}=<{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is flipped version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}=>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. When using it, the order of composition matches that of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (f <{}=<{} g)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comes first.\myfootnote{Of course, the functions in regular function composition are non-{}monadic functions whereas monadic composition takes only monadic functions.}
\section{Monads and Category Theory}
\label{231}
Monads originally come from a branch of mathematics called Category Theory. Fortunately, it is entirely unnecessary to understand category theory in order to understand and use monads in Haskell. The definition of monads in Category Theory actually uses a slightly different presentation. Translated into Haskell, this presentation gives an alternative yet equivalent definition of a monad which can give us some additional insight.\myfootnote{Deep into the Advanced Track, we will cover the theoretical side of the story in the \myfnlref{505}{chapter on Category Theory}.}

So far, we have defined monads in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The alternative definition, instead, treats monads as functors with two additional combinators:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}fmap\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{M}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{M}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}functor}\newline
\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}return\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{M}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}join\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{M}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{M}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{M}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

For the purposes of this discussion, we will use the functors-{}as-{}containers metaphor discussed in the \mylref{206}{chapter on the functor class}. According to it, a functor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily M}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be thought of as container, so that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily M a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \symbol{34}contains\symbol{34} values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with a corresponding mapping function, i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that allows functions to be applied to values inside it.

Under this interpretation, the functions behave as follows:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} applies a given function to every element in a container
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} packages an element into a container,
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a container of containers and flattens it into a single container.
\end{myitemize}

With these functions, the bind combinator can be defined as follows:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{join\ensuremath{\text{ }}(fmap\ensuremath{\text{ }}g\ensuremath{\text{ }}m)}\newline
\end{Highlighting}
\end{Shaded}

Likewise, we could give a definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{(return\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{join\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{id}\newline
\end{Highlighting}
\end{Shaded}

\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and Friends}
\label{232}

Earlier, we pointed out that every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and therefore also a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. One of the consequences of that was {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being monad-{}only versions of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} respectively. It doesn\textquotesingle{}t stop there, though. For one, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} defines {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a function with a strangely familiar type signature...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{liftM\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a1\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a1\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}r}\newline
\end{Highlighting}
\end{Shaded}

As you might suspect, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is merely {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} implemented with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, just as we have done in the previous section. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are therefore interchangeable.

Another {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function with an uncanny type is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{ap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

Analogously to the other cases, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a monad-{}only version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

There are quite a few more examples of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions that have versions {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape specialised}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and other base library modules. Their existence is primarily due to historical reasons: several years went by between the introductions of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Haskell, and it took an even longer time for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to become a superclass of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, thus making usage of the specialised variants optional. While in principle there is little need for using the monad-{}only versions nowadays, in practice you will see {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} all the time in other people\textquotesingle{}s code – at this point, their usage is well established thanks to more than two decades of Haskell praxis without {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being a superclass of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXbodynoteTemplate{Given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a superclass of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the most obvious way of implementing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} begins by writing the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance and then moving down the class hierarchy:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{<*>}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{>>=}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\end{Highlighting}
\end{Shaded}

While following the next few chapters, you will likely want to write instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and try them out, be it to run the examples in the book or to do other experiments you might think of. However, writing the instances in the manner shown above requires implementing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is not a comfortable task at this point of the book as we haven\textquotesingle{}t covered the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws yet (we will only do so at the \mylref{305}{applicative functors chapter}). Fortunately, there is a workaround: implementing just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, thus providing a self-{}sufficient {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance, and then using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to fill in the other instances:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{>>=}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{<*>}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{ap}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{liftM}\newline
\end{Highlighting}
\end{Shaded}

The examples and exercises in this initial series of chapters about monads will not demand writing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances, and so you can use this workaround until we discuss {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in detail.}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{The Maybe monad}

\myminitoc
\label{233}

\label{234}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

We introduced monads using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as an example. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad represents computations which might \symbol{34}go wrong\symbol{34} by not returning a value. For reference, here are the definitions of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as we saw in the last chapter:\myfootnote{The definitions in the actual instance in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are written a little differently, but are fully equivalent to these.}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}return\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(>>=)\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{>>=}\NormalTok{)\ensuremath{\text{ }}m\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

\section{Safe functions}
\label{235}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} datatype provides a way to make a safety wrapper around {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape partial functions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is, functions which can fail to work for a range of arguments. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only work with non-{}empty lists. Another typical case, which we will explore in this section, are mathematical functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sqrt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily log}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; (as far as real numbers are concerned) these are only defined for non-{}negative arguments.

\TemplatePreformat{ \newline{}
>{} {}log {}1000 \newline{}
6.907755278982137 \newline{}
>{} {}log {}(-{}1000) \newline{}
\textquotesingle{}\textquotesingle{}ERROR\textquotesingle{}\textquotesingle{} {}-{}-{} {}runtime {}error \newline{}
}

To avoid this crash, a \symbol{34}safe\symbol{34} implementation of log could be:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{safeLog\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Floating}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{safeLog\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(log\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

\TemplatePreformat{ \newline{}
>{} {}safeLog {}1000 \newline{}
Just {}6.907755278982137 \newline{}
>{} {}safeLog {}-{}1000 \newline{}
Nothing \newline{}
}

We could write similar \symbol{34}safe functions\symbol{34} for all functions with limited domains such as division, square-{}root, and inverse trigonometric functions ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeDiv}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeSqrt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeArcSin}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, etc. all of which would have the same {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeLog}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but definitions specific to their constraints)

If we wanted to combine these monadic functions, the cleanest approach is with monadic composition (which was mentioned briefly near the end of \mylref{229}{the last chapter}) and point-{}free style:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{safeLogSqrt\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{safeLog\ensuremath{\text{ }}}\FunctionTok{<=<}\ensuremath{\text{ }}\NormalTok{safeSqrt}\newline
\end{Highlighting}
\end{Shaded}

Written in this way, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeLogSqrt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} resembles a lot its unsafe, non-{}monadic counterpart:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{unsafeLogSqrt\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{log\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{sqrt}\newline
\end{Highlighting}
\end{Shaded}

\section{Lookup tables}
\label{236}

A lookup table relates {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape keys}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape values}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape look up}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a value by knowing its key and using the lookup table. For example, you might have a phone book application with a lookup table where contact names are keys to corresponding phone numbers. An elementary way of implementing lookup tables in Haskell is to use a list of pairs: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}(a, b){]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Here {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the type of the keys, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the type of the values.\myfootnote{Check \myfnlref{599}{the chapter about maps} in Haskell in Practice for a different, and potentially more useful, implementation.} Here\textquotesingle{}s how the phone book lookup table might look:

\TemplatePreformat{ \newline{}
phonebook {}:: {}{[}(String, {}String){]} \newline{}
phonebook {}= {}{[} {}(\symbol{34}Bob\symbol{34}, {} {} {}\symbol{34}01788 {}665242\symbol{34}), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}(\symbol{34}Fred\symbol{34}, {} {}\symbol{34}01624 {}556442\symbol{34}), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}(\symbol{34}Alice\symbol{34}, {}\symbol{34}01889 {}985333\symbol{34}), \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}(\symbol{34}Jane\symbol{34}, {} {}\symbol{34}01732 {}187565\symbol{34}) {}{]} \newline{}
}

The most common thing you might do with a lookup table is look up values. Everything is fine if we try to look up \symbol{34}Bob\symbol{34}, \symbol{34}Fred\symbol{34}, \symbol{34}Alice\symbol{34} or \symbol{34}Jane\symbol{34} in our phone book, but what if we were to look up \symbol{34}Zoe\symbol{34}? Zoe isn\textquotesingle{}t in our phone book, so the lookup would fail. Hence, the Haskell function to look up a value from the table is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation (it is available from Prelude):

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{lookup}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}a\ensuremath{\text{ }}key}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[(a,\ensuremath{\text{ }}b)]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}lookup\ensuremath{\text{ }}table\ensuremath{\text{ }}to\ensuremath{\text{ }}use}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}result\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}lookup}\newline
\end{Highlighting}
\end{Shaded}

Let us explore some of the results from lookup:

\TemplatePreformat{ \newline{}
Prelude>{} {}lookup {}\symbol{34}Bob\symbol{34} {}phonebook \newline{}
Just {}\symbol{34}01788 {}665242\symbol{34} \newline{}
Prelude>{} {}lookup {}\symbol{34}Jane\symbol{34} {}phonebook \newline{}
Just {}\symbol{34}01732 {}187565\symbol{34} \newline{}
Prelude>{} {}lookup {}\symbol{34}Zoe\symbol{34} {}phonebook \newline{}
Nothing \newline{}
}

Now let\textquotesingle{}s expand this into using the full power of the monadic interface. Say, we\textquotesingle{}re now working for the government, and once we have a phone number from our contact, we want to look up this phone number in a big, government-{}sized lookup table to find out the registration number of their car. This, of course, will be another {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}computation. But if the person we\textquotesingle{}re looking for isn\textquotesingle{}t in our phone book, we certainly won\textquotesingle{}t be able to look up their registration number in the governmental database. What we need is a function that will take the results from the first computation and put it into the second lookup {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape only}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if we get a successful value in the first lookup. Of course, our final result should be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if we get {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from either of the lookups.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{getRegistrationNumber\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}their\ensuremath{\text{ }}name}\newline
\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}their\ensuremath{\text{ }}registration\ensuremath{\text{ }}number}\newline
\NormalTok{getRegistrationNumber\ensuremath{\text{ }}name\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}name\ensuremath{\text{ }}phonebook\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}number\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}number\ensuremath{\text{ }}governmentDatabase)}\newline
\end{Highlighting}
\end{Shaded}

If we then wanted to use the result from the governmental database lookup in a third lookup (say we want to look up their registration number to see if they owe any car tax), then we could extend our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getRegistrationNumber}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{getTaxOwed\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}their\ensuremath{\text{ }}name}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}amount\ensuremath{\text{ }}of\ensuremath{\text{ }}tax\ensuremath{\text{ }}they\ensuremath{\text{ }}owe}\newline
\NormalTok{getTaxOwed\ensuremath{\text{ }}name\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}name\ensuremath{\text{ }}phonebook\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}number\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}number\ensuremath{\text{ }}governmentDatabase)\ensuremath{\text{ }}}\FunctionTok{>>=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}registration\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}registration\ensuremath{\text{ }}taxDatabase)}\newline
\end{Highlighting}
\end{Shaded}

Or, using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}block style:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{getTaxOwed\ensuremath{\text{ }}name\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{number\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}name\ensuremath{\text{ }}phonebook}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{registration\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}number\ensuremath{\text{ }}governmentDatabase}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lookup\ensuremath{\text{ }}registration\ensuremath{\text{ }}taxDatabase}\newline
\end{Highlighting}
\end{Shaded}

Let\textquotesingle{}s just pause here and think about what would happen if we got a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} anywhere. By definition, when the first argument to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}>{}=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it just returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} while ignoring whatever function it is given. Thus, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape any stage}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the large computation will result in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} overall, regardless of the other functions. After the first {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} hits, all {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}>{}=}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s will just pass it to each other, skipping the other function arguments. The technical description says that the structure of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape propagates failures}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Open monads}
\label{237}

Another trait of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad is that it is \symbol{34}open\symbol{34}: if we have a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value, we can see the contents and extract the associated values through pattern matching.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{zeroAsDefault\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{zeroAsDefault\ensuremath{\text{ }}mx\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{mx\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

This usage pattern of replacing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a default is captured by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fromMaybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{zeroAsDefault\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{zeroAsDefault\ensuremath{\text{ }}mx\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fromMaybe\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\NormalTok{mx}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Prelude function allows us to do it in a more general way, by supplying a function to modify the extracted value.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{displayResult\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{displayResult\ensuremath{\text{ }}mx\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{maybe\ensuremath{\text{ }}}\StringTok{"There\ensuremath{\text{ }}was\ensuremath{\text{ }}no\ensuremath{\text{ }}result"}\ensuremath{\text{ }}\NormalTok{((}\StringTok{"The\ensuremath{\text{ }}result\ensuremath{\text{ }}was\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{show)}\newline
\ensuremath{\text{ }}\NormalTok{mx}\newline
\end{Highlighting}
\end{Shaded}

\TemplatePreformat{ \newline{}
Prelude>{} {}:t {}maybe \newline{}
maybe {}:: {}b {}-{}>{} {}(a {}-{}>{} {}b) {}-{}>{} {}Maybe {}a {}-{}>{} {}b \newline{}
Prelude>{} {}displayResult {}(Just {}10) \newline{}
\symbol{34}The {}result {}was {}10\symbol{34} \newline{}
Prelude>{} {}displayResult {}Nothing \newline{}
\symbol{34}There {}was {}no {}result\symbol{34} \newline{}
}

This possibility makes sense for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as it allows us to recover from failures. Not all monads are open in this way; often, they are designed to hide unnecessary details. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} alone do not allow us to extract the underlying value from a monadic computation, and so it is perfectly possible to make a \symbol{34}no-{}exit\symbol{34} monad, from which it is never possible to extract values. The most obvious example of that is the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad.
\section{Maybe and safety}
\label{238}

We have seen how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can make code safer by providing a graceful way to deal with failure that does not involve runtime errors. Does that mean we should always use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape everything}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Not really.

When you write a function, you are able to tell whether it might fail to produce a result during normal operation of the program,\myfootnote{With \symbol{34}normal operation\symbol{34} we mean to exclude failure caused by uncontrollable circumstances in the real world, such as memory exhaustion or a dog chewing the printer cable.} either because the functions you use might fail (as in the examples in this chapter) or because you know some of the argument or intermediate result values do not make sense (for instance, imagine a calculation that is only meaningful if its argument is less than 10). If that is the case, by all means use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to signal failure; it is far better than returning an arbitrary default value or throwing an error.

Now, adding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a result type without a reason would only make the code more confusing and no safer. The type signature of a function with unnecessary Maybe would tell users of the code that the function could fail when it actually can\textquotesingle{}t. Of course, that is not as bad a lie as the opposite one (that is, claiming that a function will not fail when it actually can), but we really want honest code in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape all}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} cases. Furthermore, using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} forces us to propagate failure (with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or monadic code) and eventually handle the failure cases (using pattern matching, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fromMaybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). If the function cannot actually fail, coding for failure is an unnecessary complication.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{The List monad}

\myminitoc
\label{239}

\label{240}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

Lists are a fundamental part of Haskell, and we\textquotesingle{}ve used them extensively before getting to this chapter. The novel insight is that the list type is a monad too!

As monads, lists are used to model {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape nondeterministic}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computations which may return an arbitrary number of results. There is a certain parallel with how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} represented computations which could return zero or one value; but with lists, we can return zero, one, or many values (the number of values being reflected in the length of the list).
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance of lists}
\label{241}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function for lists simply injects a value into a list:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{return\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[x]}\newline
\end{Highlighting}
\end{Shaded}

In other words, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} here makes a list containing one element, namely the single argument it took. The type of the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape list return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return{\mbox{$~$}}::{\mbox{$~$}}a{\mbox{$~$}}-{}>{}{\mbox{$~$}}{[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or, equivalently, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return{\mbox{$~$}}::{\mbox{$~$}}a{\mbox{$~$}}-{}>{}{\mbox{$~$}}{[}{]}{\mbox{$~$}}a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The latter style of writing it makes it more obvious that we are replacing the generic type constructor in the signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (which we had called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily M}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in \mylref{221}{Understanding monads}) by the list type constructor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (which is distinct from but easy to confuse with the empty list!).

The binding operator is less trivial. We will begin by considering its type, which for the case of lists should be:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b])\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\end{Highlighting}
\end{Shaded}

This is just what we\textquotesingle{}d expect: it pulls out the values from the list to give them to a function that produces a new list.

The actual process here involves first {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}ping a given function over a given list to get back a list of lists, i.e. type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{[}b{]}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (of course, many functions which you might use in mapping do not return lists; but, as shown in the type signature above, monadic binding for lists only works with functions that return lists). To get back to a regular list, we then concatenate the elements of our list of lists to get a final result of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}b{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Thus, we can define the list version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{xs\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{concat\ensuremath{\text{ }}(map\ensuremath{\text{ }}f\ensuremath{\text{ }}xs)}\newline
\end{Highlighting}
\end{Shaded}

The bind operator is key to understanding how different monads do their jobs, as its definition specifies the chaining strategy used when working with the monad. In the case of the list monad, the strategy allows us to model non-{}determinism: an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} {[}b{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function can be seen as a way of generating, from an input of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, an unspecified number of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape possible}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} outputs of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, without settling on any one of them in particular. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, from that perspective, does that for multiple inputs and combines all output possibilities in a single result list.
\section{Bunny invasion}
\label{242}

It is easy to incorporate the familiar list processing functions in monadic code. Consider this example: rabbits raise an average of six kits in each litter, half of which will be female. Starting with a single mother, we can model the number of female kits in each successive generation (i.e. the number of new kits after the rabbits grow up and have their own litters):

\TemplatePreformat{ \newline{}
Prelude>{} {}let {}generation {}= {}replicate {}3 \newline{}
Prelude>{} {}{[}\symbol{34}bunny\symbol{34}{]} {}>{}>{}= {}generation \newline{}
{[}\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34}{]} \newline{}
Prelude>{} {}{[}\symbol{34}bunny\symbol{34}{]} {}>{}>{}= {}generation {}>{}>{}= {}generation \newline{}
{[}\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34},\symbol{34}bunny\symbol{34}{]} \newline{}
}

In this silly example all elements are equal, but the same overall logic could be used to model \myhref{http://en.wikipedia.org/wiki/Decay_chain}{radioactive decay}, or chemical reactions, or any phenomena that produces a series of elements starting from a single one.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Predict what should be the result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}\symbol{34}bunny\symbol{34}, \symbol{34}rabbit\symbol{34}{]} >{}>{}= generation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily themselvesTimes :: {[}Int{]} -{}>{} {[}Int{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which takes each number {n} in the argument list and generates {n} copies of it in the result list.

\end{myenumerate}}
\section{Board game example}
\label{243}

Suppose we are modeling a turn-{}based board game and want to find all the possible ways the game could progress. We would need a function to calculate the list of options for the next turn, given a current board state:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{nextConfigs\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Board}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Board}\NormalTok{]}\newline
\NormalTok{nextConfigs\ensuremath{\text{ }}bd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{undefined\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}details\ensuremath{\text{ }}not\ensuremath{\text{ }}important}\newline
\end{Highlighting}
\end{Shaded}

To figure out all the possibilities after two turns, we would again apply our function to each of the elements of our new list of board states. Our function takes a single board state and returns a list of possible new states. Thus, we can use monadic binding to map the function over each element from the list:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{nextConfigs\ensuremath{\text{ }}bd\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{nextConfigs}\newline
\end{Highlighting}
\end{Shaded}

In the same fashion, we could bind the result back to the function yet again (ad infinitum) to generate the next turn\textquotesingle{}s possibilities. Depending on the particular game\textquotesingle{}s rules, we may reach board states that have no possible next-{}turns; in those cases, our function will return the empty list.

On a side note, we could translate several turns into a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block (like we did for the grandparents example in \mylref{221}{Understanding monads}):

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{threeTurns\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Board}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Board}\NormalTok{]}\newline
\NormalTok{threeTurns\ensuremath{\text{ }}bd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bd1\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}bd1\ensuremath{\text{ }}refers\ensuremath{\text{ }}to\ensuremath{\text{ }}a\ensuremath{\text{ }}board\ensuremath{\text{ }}configuration\ensuremath{\text{ }}after\ensuremath{\text{ }}1\ensuremath{\text{ }}turn}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bd2\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd2}\newline
\end{Highlighting}
\end{Shaded}

If the above looks too magical, keep in mind that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation is syntactic sugar for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operations. To the right of each left-{}arrow, there is a function with arguments that evaluate to a list; the variable to the left of the arrow stands for the list elements. After a left-{}arrow assignment line, there can be later lines that call the assigned variable as an argument for a function. This later function will be performed for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape each}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the elements from within the list that came from the left-{}arrow line\textquotesingle{}s function. This per-{}element process corresponds to the `map` in the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A resulting list of lists (one per element of the original list) will be flattened into a single list (the `concat` in the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\section{List comprehensions}
\label{244}

The list monad works in a way that has uncanny similarity to list comprehensions. Let\textquotesingle{}s slightly modify the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block we just wrote for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily threeTurns}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that it ends with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{threeTurns\ensuremath{\text{ }}bd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bd1\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bd2\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{bd3\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}bd3}\newline
\end{Highlighting}
\end{Shaded}

This mirrors exactly the following list comprehension:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{threeTurns\ensuremath{\text{ }}bd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[\ensuremath{\text{ }}bd3\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{bd1\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd,\ensuremath{\text{ }}bd2\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd1,\ensuremath{\text{ }}bd3\ensuremath{\text{ }}}\OtherTok{<-}\newline
\ensuremath{\text{ }}\NormalTok{nextConfigs\ensuremath{\text{ }}bd2\ensuremath{\text{ }}]}\newline
\end{Highlighting}
\end{Shaded}

(In a list comprehension, it is perfectly legal to use the elements drawn from one list to define the following ones, like we did here.)

The resemblance is no coincidence: list comprehensions are, behind the scenes, defined in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concatMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a function available from the Prelude that is defined as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concatMap f xs = concat (map f xs)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That\textquotesingle{}s just the list monad binding definition again! To summarize the nature of the list monad: binding for the list monad {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a combination of concatenation and mapping, and so the combined function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concatMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} effectively the same as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}>{}=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists (except for different syntactic order).

For the correspondence between list monad and list comprehension to be complete, we need a way to reproduce the filtering that list comprehensions can do. We will explain how that can be achieved a little later in the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FMonadPlus}{Additive monads} chapter.

\LaTeXExercisesTemplate{As discussed in \mylref{221}{Understanding monads}, all {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s also have an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In particular, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for that instance might be defined as:
\begin{myquote}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fs <{}*>{} xs = concatMap (\textbackslash{}f -{}>{} map f xs) fs}
\end{myquote}

\begin{myenumerate}
\item{} \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Explain briefly what this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does.
\item{} Write an alternative definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using a list comprehension. Do not use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concatMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} explicitly.

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Notation}

\myminitoc
\label{245}

\label{246}
\begin{myenumerate}
\item{} REDIRECT \mylref{246}{Haskell/do notation}
\end{myenumerate}

\chapter{The IO monad}

\myminitoc
\label{247}

\label{248}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

Two defining features of Haskell are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape pure functions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy evaluation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. All Haskell functions are pure, which means that, when given the same arguments, they return the same results. Lazy evaluation means that, by default, Haskell values are only evaluated when some part of the program requires them – perhaps never, if they are never used – and repeated evaluation of the same value is avoided wherever possible.

Pure functions and lazy evaluation bring forth a number of advantages. In particular, pure functions are reliable and predictable; they ease debugging and validation. Test cases can also be set up easily since we can be sure that nothing other than the arguments will influence a function\textquotesingle{}s result. Being entirely contained within the program, the Haskell compiler can evaluate functions thoroughly in order to optimize the compiled code. However, input and output operations, which involve interaction with the world outside the confines of the program, can\textquotesingle{}t be expressed through pure functions. Furthermore, in most cases I/O can\textquotesingle{}t be done lazily. Since lazy computations are only performed when their values become necessary, unfettered lazy I/O would make the order of execution of the real world effects unpredictable.

There is no way to ignore this issue, as any useful program needs to do I/O, even if it is only to display a result. That being so, how do we manage actions like opening a network connection, writing a file, reading input from the outside world, or anything else that goes beyond calculating a value? The main insight is: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape actions are not functions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type constructor provides a way to represent actions as Haskell values, so that we can manipulate them with pure functions. In the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue}{Prologue} chapter, we anticipated some of the key features of this solution. Now that we also know that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a monad, we can wrap up the discussion we started there.
\section{Combining functions and I/O actions}
\label{249}

Let\textquotesingle{}s combine functions with I/O to create a full program that will:

\begin{myenumerate}
\item{} Ask the user to insert a string
\item{} Read their string
\item{} Use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to apply a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily shout}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that capitalizes all the letters from the string
\item{} Write the resulting string
\end{myenumerate}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Char}\ensuremath{\text{ }}\NormalTok{(toUpper)}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad}\newline
\ensuremath{\text{ }}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Write\ensuremath{\text{ }}your\ensuremath{\text{ }}string:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}shout\ensuremath{\text{ }}getLine\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{putStrLn}\newline
\ensuremath{\text{ }}\newline
\NormalTok{shout\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}toUpper}\newline
\end{Highlighting}
\end{Shaded}

We have a full-{}blown program, but we didn\textquotesingle{}t include any type definitions. Which parts are functions and which are IO actions or other values? We can load our program in GHCi and check the types:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{main\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{putStrLn}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\StringTok{"Write\ensuremath{\text{ }}your\ensuremath{\text{ }}string:\ensuremath{\text{ }}"}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Char}\NormalTok{]}\newline
\OtherTok{(>>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\NormalTok{fmap}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\OtherTok{shout\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Char}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Char}\NormalTok{]}\newline
\NormalTok{getLine}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\OtherTok{(>>=)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

Whew, that is a lot of information there. We\textquotesingle{}ve seen all of this before, but let\textquotesingle{}s review.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily main}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That\textquotesingle{}s not a function. Functions are of types {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Our entire program is an IO action.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function, but it results in an IO action. The \symbol{34}Write your string: \symbol{34} text is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (remember, that\textquotesingle{}s just a synonym for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Char{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). It is used as an argument for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and is incorporated into the IO action that results. So, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function, but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates to an IO action. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} part of the IO type indicates that nothing is available to be passed on to any later functions or actions.

That last part is key. We sometimes say informally that an IO action \symbol{34}returns\symbol{34} something; however, taking that too literally leads to confusion. It is clear what we mean when we talk about {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returning results, but IO actions are not functions. Let\textquotesingle{}s skip down to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — an IO action that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape does}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provide a value. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not a function that returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because {\itshape {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape isn\textquotesingle{}t a function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Rather, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an IO action which, when evaluated, will materialize a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which can then be passed to later functions through, for instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

When we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to get a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the value is monadic because it is wrapped in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functor (which happens to be a monad). We cannot pass the value directly to a function that takes plain (non-{}monadic, or non-{}functorial) values. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does the work of taking a non-{}monadic function while passing in and returning monadic values.

As we\textquotesingle{}ve seen already, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does the work of passing a monadic value into a function that takes a non-{}monadic value and returns a monadic value. It may seem inefficient for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to take the non-{}monadic result of its given function and return a monadic value only for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to then pass the underlying non-{}monadic value to the next function. It is precisely this sort of chaining, however, that creates the reliable sequencing that make monads so effective at integrating pure functions with IO actions.
\subsection{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation review}
\label{250}

Given the emphasis on sequencing, the \mylref{246}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation} can be especially appealing with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad. Our program

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Write\ensuremath{\text{ }}your\ensuremath{\text{ }}string:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}shout\ensuremath{\text{ }}getLine\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{putStrLn}\newline
\end{Highlighting}
\end{Shaded}

could be written as:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Write\ensuremath{\text{ }}your\ensuremath{\text{ }}string:\ensuremath{\text{ }}"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{string\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}(shout\ensuremath{\text{ }}string)}\newline
\end{Highlighting}
\end{Shaded}

\section{The universe as part of our program}
\label{251}

One way of viewing the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad is to consider {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a computation which provides a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} while changing {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape the state of the world}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by doing input and output. Obviously, you cannot literally set the state of the world; it is hidden from you, as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functor is abstract (that is, you cannot dig into it to see the underlying values; it is closed in a way opposite to that in which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be said to be \mylref{237}{open}).

Understand that this idea of the universe as an object affected and affecting Haskell values through {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is only a metaphor; a loose interpretation at best. The more mundane fact is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} simply brings some very base-{}level operations into the Haskell language.\myfootnote{The technical term is \symbol{34}primitive\symbol{34}, as in primitive operations.} Remember that Haskell is an abstraction, and that Haskell programs must be compiled to machine code in order to actually run. The actual workings of IO happen at a lower level of abstraction, and are wired into the very definition of the Haskell language.\myfootnote{The same can be said about all higher-{}level programming languages, of course. Incidentally, Haskell\textquotesingle{}s IO operations can actually be extended via the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Foreign Function Interface}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (FFI) which can make calls to C libraries. As C can use inline assembly code, Haskell can indirectly engage with anything a computer can do. Still, Haskell functions manipulate such outside operations only {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape indirectly}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as values in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functors.}
\section{Pure and impure}
\label{252}

The adjectives \symbol{34}pure\symbol{34} and \symbol{34}impure\symbol{34} often crop up while talking about I/O in Haskell. To clarify what is meant by them, we will revisit the discussion about referential transparency from the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue\%23Referential\%20transparency}{Prologue chapter}. Consider the following snippet:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{speakTo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{speakTo\ensuremath{\text{ }}fSentence\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}fSentence\ensuremath{\text{ }}getLine}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Usage\ensuremath{\text{ }}example.}\newline
\OtherTok{sayHello\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{sayHello\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{speakTo\ensuremath{\text{ }}(\textbackslash{}name\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"Hello,\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{name\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"!"}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

In most other programming languages, which do not have separate types for I/O actions, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily speakTo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would have a type akin to:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{speakTo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

With such a type, however, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily speakTo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would not be a function at all! Functions produce the same results when given the same arguments; the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} delivered by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily speakTo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, also depends on whatever is typed at the terminal prompt. In Haskell, we avoid that pitfall by returning an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is not a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but a promise that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape some}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be delivered by carrying out certain instructions involving I/O (in this case, the I/O consists of getting a line of input from the terminal). Though the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be different each time {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily speakTo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is evaluated, the I/O instructions are always the same.

When we say Haskell is a purely functional language, we mean that all of its functions are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape really}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions – or, in other words, that Haskell expressions are always referentially transparent. If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily speakTo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} had the problematic type we mentioned above, referential transparency would be violated: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sayHello}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and yet replacing it by any specific string would break the program.

In spite of Haskell being purely functional, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actions can be said to be {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape impure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because their impact on the outside world are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape side effects}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (as opposed to the regular effects that are entirely contained within Haskell). Programming languages that lack purity may have side-{}effects in many other places connected with various calculations. Purely functional languages, however, assure that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape even expressions with impure values are referentially transparent}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That means we can talk about, reason about and handle impurity in a purely functional way, using purely functional machinery such as functors and monads. While {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actions are impure, all of the Haskell functions that manipulate them remain pure.

Functional purity, coupled to the fact that I/O shows up in types, benefit Haskell programmers in various ways. The guarantees about referential transparency increase a lot the potential for compiler optimizations. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values being distinguishable through types alone make it possible to immediately tell where we are engaging with side effects or opaque values. As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself is just another functor, we maintain to the fullest extent the predictability and ease of reasoning associated with pure functions.
\section{Functional and imperative}
\label{253}

When we \mylref{226}{introduced monads}, we said that a monadic expression can be interpreted as a statement of an imperative language. That interpretation is immediately compelling for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as the language around IO actions looks a lot like a conventional imperative language. It must be clear, however, that we are talking about an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape interpretation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We are not saying that monads or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation turn Haskell into an imperative language. The point is merely that you can view and understand monadic code in terms of imperative statements. The semantics may be imperative, but the implementation of monads and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is still purely functional. To make this distinction clear, let\textquotesingle{}s look at a little illustration:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{x;}\newline
\NormalTok{scanf(}\StringTok{"\%d"}\NormalTok{,\ensuremath{\text{ }}\&x);}\newline
\NormalTok{printf(}\StringTok{"\%d}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{,\ensuremath{\text{ }}x);}\newline
\end{Highlighting}
\end{Shaded}

This is a snippet of C, a typical imperative language. In it, we declare a variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, read its value from user input with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scanf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and then print it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily printf}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We can, within an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do block, write a Haskell snippet that performs the same function and looks quite similar:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{readLn}\newline
\NormalTok{print\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

Semantically, the snippets are nearly equivalent.\myfootnote{One difference is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a mutable variable in C, and so it is possible to declare it in one statement and set its value in the next; Haskell never allows such mutability. If we wanted to imitate the C code even more closely, we could have used an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is a cell that contains a value which can be destructively updated. For obvious reasons, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s can only be used within the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad.} In the C code, however, the statements directly correspond to instructions to be carried out by the program. The Haskell snippet, on the other hand, is desugared to:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{readLn\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{print\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

The desugared version has no statements, only functions being applied. We tell the program the order of the operations indirectly as a simple consequence of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape data dependencies}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: when we chain monadic computations with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we get the later results by applying functions to the results of the earlier ones. It just happens that, for instance, evaluating {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily print x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} leads to a string to be printed in the terminal.

When using monads, Haskell allows us to write code with imperative semantics while keeping the advantages of functional programming.
\section{I/O in the libraries}
\label{254}

So far the only I/O primitives we have used were {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and small variations thereof. The standard libraries, however, offer many other useful functions and actions involving {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We present some of the most important ones in the \mylref{601}{IO chapter in Haskell in Practice}, including the basic functionality needed for reading from and writing to files.
\section{Monadic control structures}
\label{255}

Given that monads allow us to express sequential execution of actions in a wholly general way, could we use them to implement common iterative patterns, such as loops? In this section, we will present a few of the functions from the standard libraries which allow us to do precisely that. While the examples are presented here applied to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, keep in mind that the following ideas apply to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape every}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad.

Remember, there is nothing magical about monadic values; we can manipulate them just like any other values in Haskell. Knowing that, we might think to try the following function to get five lines of user input:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fiveGetLines\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{replicate\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\end{Highlighting}
\end{Shaded}

That won\textquotesingle{}t do, however (try it in GHCi!). The problem is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} produces, in this case, a list of actions, while we want an action which returns a list (that is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO {[}String{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} rather than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}IO String{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). What we need is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to run down the list of actions, executing them and combining the results into a single list. As it happens, there is a Prelude function which does that: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequence}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sequence}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[m\ensuremath{\text{ }}a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}[a]}\newline
\end{Highlighting}
\end{Shaded}

And so, we get the desired action with:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fiveGetLines\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sequence\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{replicate\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequence}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} form an appealing combination; so \myhref{http://hackage.haskell.org/packages/archive/base/4.1.0.0/doc/html/Control-Monad.html}{Control.Monad} offers a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicateM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function for repeating an action an arbitrary number of times. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provides a number of other convenience functions in the same spirit -{} monadic zips, folds, and so forth.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fiveGetLinesAlt\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{replicateM\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\end{Highlighting}
\end{Shaded}

A particularly important combination is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequence}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Together, they allow us to make actions from a list of values, run them sequentially, and collect the results. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a Prelude function, captures this pattern:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mapM}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}[b]}\newline
\end{Highlighting}
\end{Shaded}

We also have variants of the above functions with a trailing underscore in the name, such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequence_}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM_}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily replicateM_}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. These discard any final values and so are appropriate when you are only interested in performing actions. Compared with their underscore-{}less counterparts, these functions are like the distinction between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM_}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for instance has the following type:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mapM_}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

Finally, it is worth mentioning that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} also provides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forM_}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which are flipped versions of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM_}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forM_}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} happens to be the idiomatic Haskell counterpart to the imperative for-{}each loop; and the type signature suggests that neatly:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{forM_\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Using the monadic functions we have just introduced, write a function which prints an arbitrary list of values.
\item{} Generalize the \mylref{242}{bunny invasion example} in the list monad chapter for an arbitrary number of generations.
\item{} What is the expected behavior of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequence}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad?

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{The State monad}

\myminitoc
\label{256}

\label{257}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

If you have programmed in any other language before, you likely wrote some functions that \symbol{34}kept state\symbol{34}. For those new to the concept, a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape state}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is one or more variables that are required to perform some computation but are not among the arguments of the relevant function. Object-{}oriented languages, like C++, suggest extensive use of state variables within objects in the form of member variables. Programs written in procedural languages, like C, typically use variables declared outside the current scope to keep track of state.

In Haskell, however, such techniques are not as straightforward to apply. They require mutable variables and imply functions will have hidden dependencies, which is at odds with Haskell\textquotesingle{}s functional purity. Fortunately, in most cases it is possible to avoid such extra complications and keep track of state in a functionally pure way. We do so by passing the state information from one function to the next, thus making the hidden dependencies explicit. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type is a tool crafted to make this process of threading state through functions more convenient. In this chapter, we will see how it can assist us in a typical problem involving state: generating pseudo-{}random numbers.
\section{Pseudo-{}Random Numbers}
\label{258}
\myhref{https://en.wikibooks.org/wiki/\%3Awikipedia\%3ARandom\%20number\%20generation}{Generating actual random numbers} is far from easy. Computer programs almost always use \myhref{https://en.wikibooks.org/wiki/\%3Awikipedia\%3APseudorandom\%20number\%20generator}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape pseudo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}random numbers} instead.
They are called \symbol{34}pseudo\symbol{34} because they are not truly random. Rather, they are genererated by algorithms (the pseudo-{}random number generators) which take an initial state (commonly called the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape seed}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and produce from it a sequence of numbers that have the appearance of being random.\myfootnote{A common source of seeds is the current date and time as given by the internal clock of the computer. Assuming the clock is functioning correctly, it can provide unique seeds suitable for most day-{}to-{}day needs (as opposed to applications which demand high-{}quality randomness, as in cryptography or statistics).} Every time a pseudo-{}random number is requested, state somewhere must be updated, so that the generator can be ready for producing a fresh, different random number.
Sequences of pseudo-{}random numbers can be replicated exactly if the initial seed and the generating algorithm are known.
\subsection{Implementation in Haskell}
\label{259}
Producing a pseudo-{}random number in most programming languages is very simple: there is a function somewhere in the libraries that provides a pseudo-{}random value (perhaps even a truly random one, depending on how it is implemented). Haskell has a similar one in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily System.Random}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} module from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{m\ensuremath{\text{ }}}\DataTypeTok{System.Random}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}randomIO}\newline
\OtherTok{randomIO\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Random}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{a}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{randomIO}\newline
\FunctionTok{-}\DecValTok{1557093684}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{randomIO}\newline
\DecValTok{1342278538}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomIO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} action. It couldn\textquotesingle{}t be otherwise, as it makes use of mutable state, which is kept out of reach from our Haskell programs. Thanks to this hidden dependency, the pseudo-{}random values it gives back can be different every time.
\subsection{Example: Rolling Dice}
\label{260}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/2.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{2}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomRIO (1,6)}}
\end{minipage}\vspace{0.75cm}

Suppose we are coding a game in which at some point we need an element of chance. In real-{}life games that is often obtained by means of dice. So, let\textquotesingle{}s create a dice-{}throwing function. We\textquotesingle{}ll use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomRIO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which allows us to specify a range from which the pseudo-{}random values will be taken. For a 6 die, the call will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomRIO (1,6)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Applicative}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{System.Random}\newline
\ensuremath{\text{ }}\newline
\OtherTok{rollDiceIO\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\NormalTok{rollDiceIO\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{liftA2\ensuremath{\text{ }}(,)\ensuremath{\text{ }}(randomRIO\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{6}\NormalTok{))\ensuremath{\text{ }}(randomRIO\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{6}\NormalTok{))}\newline
\end{Highlighting}
\end{Shaded}

That function rolls two dice. Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftA2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used to make the two-{}argument function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (,)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} work within a monad or applicative functor, in this case {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{If you need a refresher on applicative functors, have a look at the \myfnhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20prologue\%23Scene\%201\%3A\%20Applicative}{first section of the Prologue}.} It can be easily defined in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{liftA2\ensuremath{\text{ }}f\ensuremath{\text{ }}u\ensuremath{\text{ }}v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v}\newline
\end{Highlighting}
\end{Shaded}

As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (,)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it is the non-{}infix version of the tuple constructor. That being so, the two die rolls will be returned as a tuple in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Implement a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollNDiceIO :: Int -{}>{} IO {[}Int{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that, given an integer (a number of die rolls), returns a list of that number of pseudo-{}random integers between 1 and 6.
\end{myenumerate}}
\subsection{Getting Rid of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{261}

A disadvantage of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomIO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is that it requires us to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and store our state outside the program, where we can\textquotesingle{}t control what happens to it. We would rather only use I/O when there is an unavoidable reason to interact with the outside world.

To avoid bringing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into play, we can build a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape local}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} generator. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mkStdGen}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily System.Random}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allow us to generate tuples containing a pseudo-{}random number together with an updated generator to use the next time the function is called.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{m\ensuremath{\text{ }}}\DataTypeTok{System.Random}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{generator\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}"0"\ensuremath{\text{ }}is\ensuremath{\text{ }}our\ensuremath{\text{ }}seed}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}generator}\newline
\OtherTok{generator\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{StdGen}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{generator}\newline
\DecValTok{1}\ensuremath{\text{ }}\DecValTok{1}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}random}\newline
\OtherTok{random\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{RandomGen}\ensuremath{\text{ }}\NormalTok{g,\ensuremath{\text{ }}}\DataTypeTok{Random}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}g)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{random}\OtherTok{\ensuremath{\text{ }}generator\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{StdGen}\NormalTok{)}\newline
\NormalTok{(}\DecValTok{2092838931}\NormalTok{,}\DecValTok{1601120196}\ensuremath{\text{ }}\DecValTok{1655838864}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{In {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random generator :: (Int, StdGen)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ::}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to introduce a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type annotation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is essentially a type signature that we can put in the middle of an expression. Here, we are saying that the expression to the right, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random generator}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Int, StdGen)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It makes sense to use a type annotation here because, as we will discuss later, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can produce values of different types, so if we want it to give us an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we\textquotesingle{}d better specify it in some way.}

While we managed to avoid {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there are new problems. First and foremost, if we want to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily generator}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to get random numbers, the obvious definition...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{randInt\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fst\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{random\ensuremath{\text{ }}}\FunctionTok{\$}\OtherTok{\ensuremath{\text{ }}generator\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{randInt}\newline
\DecValTok{2092838931}\newline
\end{Highlighting}
\end{Shaded}

... is useless. It will always give back the same value, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2092838931}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as the same generator in the same state will be used every time. To solve that, we can take the second member of the tuple (that is, the new generator) and feed it to a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape new}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} call to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(randInt,\ensuremath{\text{ }}generator\textquotesingle{})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{random}\OtherTok{\ensuremath{\text{ }}generator\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{StdGen}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{randInt\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Same\ensuremath{\text{ }}value}\newline
\DecValTok{2092838931}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{random}\OtherTok{\ensuremath{\text{ }}generator\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{StdGen}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Using\ensuremath{\text{ }}new\ensuremath{\text{ }}generator\textquotesingle{}\ensuremath{\text{ }}returned\ensuremath{\text{ }}from}\newline
\ensuremath{\text{ }}\NormalTok{“random\ensuremath{\text{ }}generator”}\newline
\NormalTok{(}\FunctionTok{-}\DecValTok{2143208520}\NormalTok{,}\DecValTok{439883729}\ensuremath{\text{ }}\DecValTok{1872071452}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

That, of course, is clumsy and rather tedious, as we now need to deal with the fuss of carefully passing the generator around.
\subsection{Dice without IO}
\label{262}

We can re-{}do our dice throw with our new approach using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{randomR\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{6}\NormalTok{)\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\newline
\NormalTok{(}\DecValTok{6}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{40014}\ensuremath{\text{ }}\DecValTok{40692}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

The resulting tuple combines the result of throwing a single die with a new generator.
A simple implementation for throwing two dice is then:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{clumsyRollDice\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\NormalTok{clumsyRollDice\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(n,\ensuremath{\text{ }}m)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(n,\ensuremath{\text{ }}g)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{randomR\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{6}\NormalTok{)\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(m,\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{randomR\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{6}\NormalTok{)\ensuremath{\text{ }}g}\newline
\end{Highlighting}
\end{Shaded}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/3.jpg}
\end{center}
\raggedright{}\myfigurewithcaption{3}{\myhref{http://en.wikipedia.org/wiki/Boxcars_\%28slang\%29}{Boxcars!}}
\end{minipage}\vspace{0.75cm}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Implement a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollDice :: StdGen -{}>{} ((Int, Int), StdGen)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that, given a generator, return a tuple with our random numbers as first element and the last generator as the second.
\end{myenumerate}}

The implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily clumsyRollDice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works as an one-{}off, but we have to manually pass the generator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause to the other. This approach becomes increasingly cumbersome as our programs get more complex, which means we have more values to shift around. It is also error-{}prone: what if we pass one of the middle generators to the wrong line in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause?

What we really need is a way to automate the extraction of the second member of the tuple (i.e. the new generator) and feed it to a new call to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is where the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comes into the picture.
\section{Introducing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{263}

\LaTeXbodynoteTemplate{In this chapter we will use the state monad provided by the module {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad.Trans.State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily transformers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package. By reading Haskell code in the wild, you will soon meet {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad.State}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a module of the closely related {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mtl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package. The differences between these two modules need not concern us at the moment; everything we discuss here also applies to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mtl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variant.}

The Haskell type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} describes {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that consume a state and produce both a result and an updated state, which are given back in a tuple.

The state function is wrapped by a data type definition which comes along with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} accessor so that pattern matching becomes unnecessary. For our current purposes, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type might be defined as:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}runState\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}s)\ensuremath{\text{ }}\}}\newline
\end{Highlighting}
\end{Shaded}

Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the type of the state, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the type of the produced result. Calling the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is arguably a bit of a misnomer because the wrapped value is not the state itself but a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape state processor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{newtype}
\label{264}

Note that we defined the data type with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword, rather than the usual {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used only for types with just one constructor and just one field. It ensures that the trivial wrapping and unwrapping of the single field is eliminated by the compiler. For that reason, simple wrapper types such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are usually defined with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Would defining a synonym with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be enough in such cases? Not really, because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not allow us to define instances for the new data type, which is what we are about to do...
\subsection{Where did the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor go?}
\label{265}

When you start using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad.Trans.State}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you will quickly notice there is no {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor available. That was the reason for the \symbol{34}for our current purposes\symbol{34} caveat a few paragraphs ago, when introducing the type. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily transformers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package implements the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type in a somewhat different way. The differences do not affect how we use or understand {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; except that, instead of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad.Trans.State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} exports a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily state}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function,

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{state\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}s))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

which does the same job. As for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape why}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the implementation is not the obvious one we presented above, we will get back to that a few chapters down the road.
\subsection{Instantiating the Monad}
\label{266}

So far, all we have done was to wrap a function type and give it a name. There is another ingredient, however: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a monad, and that gives us very handy ways of using it. Unlike the instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we have seen so far, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type parameters. Since the type class only allows one parametrised parameter, the last one, we have to indicate the other one, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, will be fixed.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\end{Highlighting}
\end{Shaded}

That means there are actually {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape many}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} different {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monads, one for each possible type of state -{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State SomeLargeDataStructure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so forth. Naturally, we only need to write one implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; the methods will be able to deal with all choices of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is implemented as:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{return}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a}\newline
\NormalTok{return\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{state\ensuremath{\text{ }}(\ensuremath{\text{ }}\textbackslash{}\ensuremath{\text{ }}st\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}st)\ensuremath{\text{ }})}\newline
\end{Highlighting}
\end{Shaded}

Giving a value ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} produces a function which takes a state ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily st}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and returns it unchanged, together with value we want to be returned. As a finishing step, the function is wrapped up with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily state}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function.

Binding is a bit intricate:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(>>=)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}b}\newline
\NormalTok{pr\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{state\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}\ensuremath{\text{ }}st\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}st\textquotesingle{})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runState\ensuremath{\text{ }}pr\ensuremath{\text{ }}st\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Running\ensuremath{\text{ }}the\ensuremath{\text{ }}first\ensuremath{\text{ }}processor\ensuremath{\text{ }}on\ensuremath{\text{ }}st.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{runState\ensuremath{\text{ }}(k\ensuremath{\text{ }}x)\ensuremath{\text{ }}st\textquotesingle{}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Running\ensuremath{\text{ }}the\ensuremath{\text{ }}second\ensuremath{\text{ }}processor\ensuremath{\text{ }}on\ensuremath{\text{ }}st\textquotesingle{}.}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is given a state processor ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and a function ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) that is used to create another processor from the result of the first one. The two processors are combined into a function that takes the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape initial}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} state ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily st}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and returns the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape second}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} result and the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape third}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} state (i.e. the output of the second processor). Overall, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} here allows us to run two state processors in sequence, while allowing the result of the first stage to influence what happens in the second one.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/4.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithcaption{4}{Schematic representation of how bind creates a new state processor ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pAB}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) from a state processor ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pA}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and a processor-{}making function ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s3}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are states. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily v1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily v2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are values. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pA}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pB}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pAB}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are state processors. The wrapping and unwrapping by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily state}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}/{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is implicit.}
\end{minipage}\vspace{0.75cm}

One detail in the implementation is how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used to undo the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wrapping, so that we can reach the function that will be applied to the states. The type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runState pr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for instance, is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} (a, s)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Another way to understand this derivation of the bind operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}>{}=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is to consider once more the explicit but cumbersome way to simulate a stateful function of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by using functions of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a, s) -{}>{} (b, s)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or, said another way: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} s -{}>{} (b,s) = a -{}>{} (s -{}>{} (b,s))}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. These classes of functions pass the state on from function to function. Note that this last signature already suggests the right-{}hand side type in a bind operation where the abstract type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily S b = (s -{}>{} (b, s))}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Now that we have seen how the types seem to suggest the monadic signatures, lets consider a much more concrete question: Given two functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f :: s -{}>{} (a, s)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g:: a -{}>{} s -{}>{} (b, s)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, how do we chain them to produce a new function that passes on the intermediate state?

This question does not require thinking about monads: one option is to simply use function composition. It helps our exposition if we just write it down explicitly as a lambda expression:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{compose\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a,s))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{\{-\ensuremath{\text{ }}first\ensuremath{\text{ }}function\ensuremath{\text{ }}-\}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b,s))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{\{-\ensuremath{\text{ }}second\ensuremath{\text{ }}function,\ensuremath{\text{ }}\ensuremath{\text{ }}note\ensuremath{\text{ }}type\ensuremath{\text{ }}is\ensuremath{\text{ }}similar\ensuremath{\text{ }}to\ensuremath{\text{ }}}\newline
\CommentTok{\ensuremath{\text{ }}(a,s)\ensuremath{\text{ }}->\ensuremath{\text{ }}(b,s)\ensuremath{\text{ }}-\}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b,s)\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{\{-\ensuremath{\text{ }}composed\ensuremath{\text{ }}function\ensuremath{\text{ }}-\}}\newline
\NormalTok{compose\ensuremath{\text{ }}f\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}s0\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(a1,\ensuremath{\text{ }}s1)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}s0\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{(g\ensuremath{\text{ }}a1)\ensuremath{\text{ }}s1\ensuremath{\text{ }}}\newline
\CommentTok{\{-This\ensuremath{\text{ }}lambda\ensuremath{\text{ }}expression\ensuremath{\text{ }}threads\ensuremath{\text{ }}both\ensuremath{\text{ }}intermediate\ensuremath{\text{ }}results\ensuremath{\text{ }}produced\ensuremath{\text{ }}by\ensuremath{\text{ }}f\ensuremath{\text{ }}into}\newline
\CommentTok{\ensuremath{\text{ }}those\ensuremath{\text{ }}required\ensuremath{\text{ }}by\ensuremath{\text{ }}g\ensuremath{\text{ }}-\}}\newline
\end{Highlighting}
\end{Shaded}

Now, if in addition to chaining the input functions, we find that the functions of signature {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} (a,s)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} were all wrapped in an abstract datatype {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Wrapped a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and that therefore we need to call some other provided functions{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily wrap :: (s -{}>{} (a,s)) -{}>{} Wrapped a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unwrap :: Wrapped a -{}>{} (s -{}>{} (a,s))}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in order to get to the inner function, then the code changes slightly:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{\{-\ensuremath{\text{ }}what\ensuremath{\text{ }}happens\ensuremath{\text{ }}if\ensuremath{\text{ }}the\ensuremath{\text{ }}type\ensuremath{\text{ }}\ensuremath{\text{ }}s\ensuremath{\text{ }}->\ensuremath{\text{ }}(a,s)\ensuremath{\text{ }}is\ensuremath{\text{ }}wrapped\ensuremath{\text{ }}and\ensuremath{\text{ }}this\ensuremath{\text{ }}new\ensuremath{\text{ }}type\ensuremath{\text{ }}is\ensuremath{\text{ }}\ensuremath{\text{ }}called}\newline
\CommentTok{\ensuremath{\text{ }}Wrapped\ensuremath{\text{ }}a\ensuremath{\text{ }}-\}}\newline
\OtherTok{composeWrapped\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Wrapped}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Wrapped}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Wrapped}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{composeWrapped\ensuremath{\text{ }}wrappedf\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{wrap\ensuremath{\text{ }}(\textbackslash{}s0\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(a1,s1)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(unwrap\ensuremath{\text{ }}wf)\ensuremath{\text{ }}s0\ensuremath{\text{ }}}\KeywordTok{in}\newline
\ensuremath{\text{ }}\NormalTok{(unwrap\ensuremath{\text{ }}(g\ensuremath{\text{ }}a1))\ensuremath{\text{ }}s1)}\newline
\end{Highlighting}
\end{Shaded}

This code is the implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} shown above, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily wrap = state}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unwrap = runState}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so we can now see how the definition of bind given earlier is the standard function composition for this special kind of stateful function.

This explanation does not address yet where the original functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Wrapped a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} Wrapped b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} come from in the first place, but they do explain what you can do with them once you have them.
\subsection{Setting and Accessing the State}
\label{267}

The monad instance allows us to manipulate various state processors, but you may at this point wonder where exactly the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape original}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} state comes from in the first place. That issue is handily dealt with by the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{put\ensuremath{\text{ }}newState\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{state\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((),\ensuremath{\text{ }}newState)}\newline
\end{Highlighting}
\end{Shaded}

Given a state (the one we want to introduce), {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} generates a state processor which ignores whatever state it receives, and gives back the state we originally provided to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Since we don\textquotesingle{}t care about the result of this processor (all we want to do is to replace the state), the first element of the tuple will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the universal placeholder value.\myfootnote{The technical term for both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and its type is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unit}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}

As a counterpart to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{get\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{state\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}st\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(st,\ensuremath{\text{ }}st)}\newline
\end{Highlighting}
\end{Shaded}

The resulting state processor gives back the state {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily st}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it is given in both as a result and as a state. That means the state will remain unchanged, and that a copy of it will be made available for us to manipulate.
\subsection{Getting Values and State}
\label{268}

As we have seen in the implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used to unwrap the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value to get the actual state processing function, which is then applied to some initial state. Other functions which are used in similar ways are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily evalState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily execState}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Given a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and an initial state, the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily evalState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will give back only the result value of the state processing, whereas {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily execState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will give back just the new state.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{evalState\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{evalState\ensuremath{\text{ }}pr\ensuremath{\text{ }}st\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fst\ensuremath{\text{ }}(runState\ensuremath{\text{ }}pr\ensuremath{\text{ }}st)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{execState\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s}\newline
\NormalTok{execState\ensuremath{\text{ }}pr\ensuremath{\text{ }}st\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{snd\ensuremath{\text{ }}(runState\ensuremath{\text{ }}pr\ensuremath{\text{ }}st)}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Dice and state}
\label{269}

Time to use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad for our dice throw examples.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.Trans.State}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{System.Random}\newline
\end{Highlighting}
\end{Shaded}

We want to generate {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} dice throw results from a pseudo-{}random generator of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StdGen}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Therefore, the type of our state processors will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State StdGen Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StdGen -{}>{} (Int, StdGen)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bar the wrapping.

We can now implement a processor that, given a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StdGen}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} generator, produces a number between 1 and 6. Now, the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}StdGen\ensuremath{\text{ }}type\ensuremath{\text{ }}we\ensuremath{\text{ }}are\ensuremath{\text{ }}using\ensuremath{\text{ }}is\ensuremath{\text{ }}an\ensuremath{\text{ }}instance\ensuremath{\text{ }}of\ensuremath{\text{ }}RandomGen.}\newline
\OtherTok{randomR\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Random}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{RandomGen}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}g)}\newline
\end{Highlighting}
\end{Shaded}

Doesn\textquotesingle{}t it look familiar? If we assume {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StdGen}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it becomes:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{randomR\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{6}\NormalTok{)}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{StdGen}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

We already have a state processing function! All that is missing is to wrap it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily state}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{rollDie\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{rollDie\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{state\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{randomR\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{6}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

For illustrative purposes, we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and do-{}notation to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollDie}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in a very verbose way which displays explicitly each step of the state processing:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{rollDie\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{rollDie\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{generator\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{get}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(value,\ensuremath{\text{ }}newGenerator)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{randomR\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{6}\NormalTok{)\ensuremath{\text{ }}generator}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{put\ensuremath{\text{ }}newGenerator}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}value}\newline
\end{Highlighting}
\end{Shaded}

Let\textquotesingle{}s go through each of the steps:
\begin{myenumerate}
\item{} First, we take out the pseudo-{}random generator from the monadic context with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that we can manipulate it.
\item{} Then, we use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function to produce an integer between 1 and 6 using the generator we took. We also store the new generator graciously returned by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} We then set the state to be the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newGenerator}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that any further {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the do-{}block, or further on in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} chain, will use a different pseudo-{}random generator.
\item{} Finally, we inject the result back into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State StdGen}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myenumerate}

We can finally use our monadic die. As before, the initial generator state itself is produced by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mkStdGen}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{evalState\ensuremath{\text{ }}rollDie\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\newline
\DecValTok{6}\newline
\end{Highlighting}
\end{Shaded}

Why have we involved monads and built such an intricate framework only to do exactly what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst \${} randomR (1,6)}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} already does? Well, consider the following function:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{rollDice\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\NormalTok{rollDice\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{liftA2\ensuremath{\text{ }}(,)\ensuremath{\text{ }}rollDie\ensuremath{\text{ }}rollDie}\newline
\end{Highlighting}
\end{Shaded}

We obtain a function producing {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pseudo-{}random numbers in a tuple. Note that these are in general different:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{evalState\ensuremath{\text{ }}rollDice\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{666}\NormalTok{)}\newline
\ensuremath{\text{ }}\NormalTok{(}\DecValTok{6}\NormalTok{,}\DecValTok{1}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Under the hood, state is being passed through {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollDie}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation to the other. Doing that was previously very clunky using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR (1,6)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} alone because we had to pass state manually. Now, the monad instance is taking care of that for us. Assuming we know how to use the lifting functions, constructing intricate combinations of pseudo-{}random numbers (tuples, lists, whatever) has suddenly become much easier.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Similarly to what was done for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollNDiceIO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, implement a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollNDice :: Int -{}>{} State StdGen {[}Int{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that, given an integer, returns a list with that number of pseudo-{}random integers between 1 and 6.
\item{} Write an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Your final answer should not use anything that mentions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in its type (that is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, etc.). Then, explain in a few words what the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you wrote does.(Hint: If you get stuck, have another look at the comments about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the very end of \mylref{232}{Understanding monads}.)
\item{} Besides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there are also \newline{}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily modify :: (s -{}>{} s) -{}>{} State s ()} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}which modifies the current state using a function, and \newline{}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gets :: (s -{}>{} a) -{}>{} State s a} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}which produces a modified copy of the state while leaving the state itself unchanged. Write implementations for them.
\end{myenumerate}}
\section{Pseudo-{}random values of different types}
\label{270}

Until now, we have used only {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as type of the value produced by the pseudo-{}random generator. However, looking at the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} shows we are not restricted to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It can generate values of any type in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Random}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class from \myhref{http://hackage.haskell.org/packages/archive/random/latest/doc/html/System-Random.html}{System.Random}. There already are instances for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Float}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so you can immediately generate any of those.

Because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State StdGen}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is \symbol{34}agnostic\symbol{34} in regard to the type of the pseudo-{}random value it produces, we can write a similarly \symbol{34}agnostic\symbol{34} function that provides a pseudo-{}random value of unspecified type (as long as it is an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Random}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}):

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{getRandom\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Random}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{getRandom\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{state\ensuremath{\text{ }}random}\newline
\end{Highlighting}
\end{Shaded}

Compared to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollDie}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, this function does not specify the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type in its signature and uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily random}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily randomR}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; otherwise, it is just the same. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getRandom}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used for any instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Random}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{evalState\ensuremath{\text{ }}getRandom\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\DataTypeTok{True}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{evalState\ensuremath{\text{ }}getRandom\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\newline
\CharTok{\textquotesingle{}\textbackslash{}64685\textquotesingle{}}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{evalState\ensuremath{\text{ }}getRandom\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\FloatTok{0.9872770354820595}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{evalState\ensuremath{\text{ }}getRandom\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Integer}\newline
\DecValTok{2092838931}\newline
\end{Highlighting}
\end{Shaded}

Indeed, it becomes quite easy to conjure all these at once:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{someTypes\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Float}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Char}\NormalTok{)}\newline
\NormalTok{someTypes\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{liftA3\ensuremath{\text{ }}(,,)\ensuremath{\text{ }}getRandom\ensuremath{\text{ }}getRandom\ensuremath{\text{ }}getRandom}\newline
\ensuremath{\text{ }}\newline
\OtherTok{allTypes\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Float}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Char}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Integer}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Bool}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\NormalTok{allTypes\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(,,,,,,)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\end{Highlighting}
\end{Shaded}

For writing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily allTypes}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there is no {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftA7}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf},\myfootnote{Beyond {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftA3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the standard libraries only provide the monad-{}only {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM4}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.} and so we resort to plain old {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead. Using it, we can apply the tuple constructor to each of the seven random values in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State StdGen}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monadic context.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily allTypes}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provides pseudo-{}random values for all default instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Random}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; an additional {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is inserted at the end to prove that the generator is not the same, as the two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s will be different.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{evalState\ensuremath{\text{ }}allTypes\ensuremath{\text{ }}(mkStdGen\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\newline
\NormalTok{(}\DecValTok{2092838931}\NormalTok{,}\FloatTok{9.953678e-4}\NormalTok{,}\CharTok{\textquotesingle{}\textbackslash{}825586\textquotesingle{}}\NormalTok{,}\FunctionTok{-}\DecValTok{868192881}\NormalTok{,}\FloatTok{0.4188001483955421}\NormalTok{,}\DataTypeTok{False}\NormalTok{,}\DecValTok{316817438}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} If you are not convinced that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is worth using, try to implement a function equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily evalState allTypes}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without making use of monads, i.e. with an approach similar to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily clumsyRollDice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} above.
\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Alternative and MonadPlus}

\myminitoc
\label{271}

\label{272}
\LaTeXNullTemplate{}

In our studies so far, we saw that both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and lists can represent computations with a varying number of results. We use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to indicate a computation can fail somehow (that is, it can have either zero results or one result), and we use lists for computations that can have many possible results (ranging from zero to arbitrarily many results). In both of these cases, one useful operation is amalgamating {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape all}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} possible results from multiple computations into a single computation. With lists, for instance, that would amount to concatenating lists of possible results. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class captures this amalgamation in a general way.
\section{Definition}
\label{273}

\LaTeXbodynoteTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class and its methods can be found in the \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html}{Control.Applicative} module.}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a subclass of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} whose instances must define, at a minimum, the following two methods:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Alternative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}empty\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}(<|>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an applicative computation with zero results, while {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a binary function which combines two computations.

Here are the two instance definitions for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and lists:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Alternative}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{empty\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Note\ensuremath{\text{ }}that\ensuremath{\text{ }}this\ensuremath{\text{ }}could\ensuremath{\text{ }}have\ensuremath{\text{ }}been\ensuremath{\text{ }}written\ensuremath{\text{ }}more\ensuremath{\text{ }}compactly.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{<|>}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}0\ensuremath{\text{ }}results\ensuremath{\text{ }}+\ensuremath{\text{ }}0\ensuremath{\text{ }}results\ensuremath{\text{ }}=\ensuremath{\text{ }}0\ensuremath{\text{ }}results}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}1\ensuremath{\text{ }}result\ensuremath{\text{ }}\ensuremath{\text{ }}+\ensuremath{\text{ }}0\ensuremath{\text{ }}results\ensuremath{\text{ }}=\ensuremath{\text{ }}1\ensuremath{\text{ }}result}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{<|>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}0\ensuremath{\text{ }}results\ensuremath{\text{ }}+\ensuremath{\text{ }}1\ensuremath{\text{ }}result\ensuremath{\text{ }}\ensuremath{\text{ }}=\ensuremath{\text{ }}1\ensuremath{\text{ }}result}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}1\ensuremath{\text{ }}result\ensuremath{\text{ }}\ensuremath{\text{ }}+\ensuremath{\text{ }}1\ensuremath{\text{ }}result\ensuremath{\text{ }}\ensuremath{\text{ }}=\ensuremath{\text{ }}1\ensuremath{\text{ }}result:}\newline
\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Maybe\ensuremath{\text{ }}can\ensuremath{\text{ }}only\ensuremath{\text{ }}hold\ensuremath{\text{ }}up\ensuremath{\text{ }}to\ensuremath{\text{ }}one\ensuremath{\text{ }}result,}\newline
\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}so\ensuremath{\text{ }}we\ensuremath{\text{ }}discard\ensuremath{\text{ }}the\ensuremath{\text{ }}second\ensuremath{\text{ }}one.}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Alternative}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{empty\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{<|>}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{++}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}length\ensuremath{\text{ }}xs\ensuremath{\text{ }}+\ensuremath{\text{ }}length\ensuremath{\text{ }}ys\ensuremath{\text{ }}=\ensuremath{\text{ }}length\ensuremath{\text{ }}(xs\ensuremath{\text{ }}++\ensuremath{\text{ }}ys)}\newline
\end{Highlighting}
\end{Shaded}

\section{Example: parallel parsing}
\label{274}

Traditional input parsing involves functions which consume an input one character at a time. That is, a parsing function takes an input string and chops off (i.e. \symbol{34}consumes\symbol{34}) characters from the front if they satisfy certain criteria. For example, you could write a function which consumes one uppercase character. If the characters on the front of the string don\textquotesingle{}t satisfy the given criteria, the parser has {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape failed}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In the example below, for instance, we consume a digit in the input and return the digit that was parsed. The possibility of failure is expressed by using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{digit\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{digit\ensuremath{\text{ }}i\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{9}\ensuremath{\text{ }}\FunctionTok{||}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(c}\FunctionTok{:}\NormalTok{_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{s}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{[c]\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}i\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}}\KeywordTok{else}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

The guards assure that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we are checking for is a single digit. Otherwise, we are just checking that the first character of our String matches the digit we are checking for. If it passes, we return the digit wrapped in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The do-{}block assures that any failed pattern match will result in returning {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Now, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used to run two parsers {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape in parallel}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That is, we use the result of the first one if it succeeds, and otherwise, we use the result of the second. If both fail, then the combined parser returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily digit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to, for instance, parse strings of binary digits:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{binChar\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{binChar\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{digit\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{digit\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{s}\newline
\end{Highlighting}
\end{Shaded}

Parser libraries often make use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in this way. Two examples are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Text-ParserCombinators-ReadP.html}{Text.ParserCombinators.ReadP} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in \myhref{http://hackage.haskell.org/packages/archive/parsec/latest/doc/html/Text-ParserCombinators-Parsec-Prim.html}{Text.ParserCombinators.Parsec.Prim}. This usage pattern can be described in terms of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape choice}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For instance, if we want to give {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily binChar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a string that will be successfully parsed, we have two choices: either to begin the string with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}0\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}1\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{MonadPlus}
\label{275}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a class which is closely related to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{MonadPlus}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}mzero\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}mplus\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

This definition is exactly like that of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, only with different method names and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint being changed into {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Unsurprisingly, for types that have instances of both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mzero}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mplus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should be equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} respectively.

One might legitimately wonder why the seemingly redundant {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class exists. Part of the reason is historical: just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} existed in Haskell long before {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} was introduced, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is much older than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Beyond such accidents, there are also additional expectations about how the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} methods should interact with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ones that do not apply to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so saying something is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a stronger claim than saying it is both an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We will make some additional considerations about this issue in the following section.
\section{Alternative and MonadPlus laws}
\label{276}

Like most general-{}purpose classes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are expected to follow a handful of laws. However, there isn\textquotesingle{}t universal agreement on what the full set of laws should look like. The most commonly adopted laws, and the most crucial for providing intuition about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} say that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} form a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monoid}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. By that, we mean:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}empty\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}neutral\ensuremath{\text{ }}element}\newline
\NormalTok{empty\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{u}\newline
\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{empty\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{u}\newline
\CommentTok{--\ensuremath{\text{ }}(<|>)\ensuremath{\text{ }}is\ensuremath{\text{ }}associative}\newline
\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{(v\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(u\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{v)\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{w}\newline
\end{Highlighting}
\end{Shaded}

There is nothing fancy about \symbol{34}forming a monoid\symbol{34}: in the above, \symbol{34}neutral element\symbol{34} and \symbol{34}associative\symbol{34} here is just like how addition of integer numbers is said to be associative and to have zero as neutral element. In fact, this analogy is the source of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} methods, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mzero}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mplus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, at a minimum there usually are the monoid laws, which correspond exactly to the ones just above...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mzero\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{m\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{mzero\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{m\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{(n\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{o)\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(m\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{o}\newline
\end{Highlighting}
\end{Shaded}

... plus the additional two laws, quoted by the \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad.html}{Control.Monad} documentation:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mzero\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mzero\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}left\ensuremath{\text{ }}zero}\newline
\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{mzero\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mzero\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}right\ensuremath{\text{ }}zero}\newline
\end{Highlighting}
\end{Shaded}

If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mzero}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is interpreted as a failed computation, these laws state that a failure within a chain of monadic computations leads to the failure of the whole chain.

We will touch upon some additional suggestions of laws for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the end of the chapter.
\section{Useful functions}
\label{277}

In addition to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there are two other general-{}purpose functions in the base libraries involving {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{asum}
\label{278}

A common task when working with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is taking a list of alternative values, e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Maybe a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{[}a{]}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and folding it down with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily asum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} fulfills this role:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{asum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Alternative}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Foldable}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}(f\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\NormalTok{asum\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}(}\FunctionTok{<|>}\NormalTok{)\ensuremath{\text{ }}empty}\newline
\end{Highlighting}
\end{Shaded}

In a sense, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily asum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} generalizes the list-{}specific {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operation. Indeed, the two are equivalent when the lists are the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being used. For Maybe, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily asum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} finds the first {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the list and returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if there aren\textquotesingle{}t any.

It should also be mentioned that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily msum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, available from both `Data.Foldable` and `Control.Monad`, is just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily asum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} specialised to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{msum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{MonadPlus}\ensuremath{\text{ }}\NormalTok{m,\ensuremath{\text{ }}}\DataTypeTok{Foldable}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}(m\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

\subsection{guard}
\label{279}

When discussing the \mylref{240}{list monad} we noted how similar it was to list comprehensions, but we didn\textquotesingle{}t discuss how to mirror list comprehension filtering. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows us to do exactly that.

Consider the following comprehension which retrieves all \myhref{https://en.wikipedia.org/wiki/Pythagorean_triple}{pythagorean triples} (i.e. trios of integer numbers which work as the lengths of the sides for a right triangle). First we\textquotesingle{}ll examine the brute-{}force approach. We\textquotesingle{}ll use a boolean condition for filtering; namely, Pythagoras\textquotesingle{} theorem:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pythags\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y,\ensuremath{\text{ }}z)\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{],\ensuremath{\text{ }}x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{z],\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[x}\FunctionTok{..}\NormalTok{z],\ensuremath{\text{ }}x}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{z}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The translation of the comprehension above to a list monad do-{}block is:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pythags\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{z]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{[x}\FunctionTok{..}\NormalTok{z]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guard\ensuremath{\text{ }}(x}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{z}\FunctionTok{^}\DecValTok{2}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y,\ensuremath{\text{ }}z)}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function can be defined for all {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{guard\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Alternative}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}()}\newline
\NormalTok{guard\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\NormalTok{guard\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{empty}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will reduce a do-{}block to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if its predicate is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Given the left zero law...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mzero\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mzero}\newline
\CommentTok{--\ensuremath{\text{ }}Or,\ensuremath{\text{ }}equivalently:}\newline
\NormalTok{empty\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{empty}\newline
\end{Highlighting}
\end{Shaded}

... an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the left-{}hand side of an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}>{}=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operation will produce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} again. As do-{}blocks are decomposed to lots of expressions joined up by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at any point will cause the entire do-{}block to become {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Let\textquotesingle{}s examine in detail what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythags}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. First, here is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} defined for the list monad:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}guard\ensuremath{\text{ }}::\ensuremath{\text{ }}Bool\ensuremath{\text{ }}->\ensuremath{\text{ }}[()]}\newline
\NormalTok{guard\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[()]}\newline
\NormalTok{guard\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\end{Highlighting}
\end{Shaded}

Basically, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape blocks off}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a route. In {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythags}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we want to block off all the routes (or combinations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) where {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x\^{}2 + y\^{}2 == z\^{}2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Let\textquotesingle{}s look at the expansion of the above {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}block to see how it works:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pythags\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}z\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{z]\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{[x}\FunctionTok{..}\NormalTok{z]\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}y\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guard\ensuremath{\text{ }}(x}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{z}\FunctionTok{^}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}_\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y,\ensuremath{\text{ }}z)}\newline
\end{Highlighting}
\end{Shaded}

Replacing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily >{}>{}=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with their definitions for the list monad (and using some let-{}bindings to keep it readable), we obtain:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pythags\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{ret\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}z\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[(x,\ensuremath{\text{ }}y,\ensuremath{\text{ }}z)]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gd\ensuremath{\text{ }}\ensuremath{\text{ }}z\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{concatMap\ensuremath{\text{ }}(\textbackslash{}_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{ret\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}z)\ensuremath{\text{ }}(guard\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{x}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y}\FunctionTok{^}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{z}\FunctionTok{^}\DecValTok{2}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doY\ensuremath{\text{ }}z\ensuremath{\text{ }}x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{concatMap\ensuremath{\text{ }}(gd\ensuremath{\text{ }}\ensuremath{\text{ }}z\ensuremath{\text{ }}x)\ensuremath{\text{ }}[x}\FunctionTok{..}\NormalTok{z]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doX\ensuremath{\text{ }}z\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{concatMap\ensuremath{\text{ }}(doY\ensuremath{\text{ }}z\ensuremath{\text{ }}\ensuremath{\text{ }})\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\NormalTok{z]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{doZ\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{concatMap\ensuremath{\text{ }}(doX\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }})\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\NormalTok{]}\newline
\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{doZ}\newline
\end{Highlighting}
\end{Shaded}

Remember that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns the empty list in the case of its argument being {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Mapping across the empty list produces the empty list, no matter what function you pass in. So an empty list produced by the call to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gd}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will cause {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gd}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to produce an empty list, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}_ -{}>{} ret x y z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which would otherwise add a result, not being actually called.

To understand why this matters, think about list-{}computations as a tree. With our Pythagorean triple algorithm, we need a branch starting from the top for every choice of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then a branch from each of these branches for every value of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then from each of these, a branch for every value of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So the tree looks like this:
\\

\TemplateSpaceIndent{ {} {} {} {}start \newline{}
 {} {} {} {}|_________________________... \newline{}
 {} {} {} {}| {} {} {} {}| {} {} {} {} {} {} {} {} {}| \newline{}
 {}z {} {}1 {} {} {} {}2 {} {} {} {} {} {} {} {} {}3 \newline{}
 {} {} {} {}| {} {} {} {}|____ {} {} {} {} {}|____________ \newline{}
 {} {} {} {}| {} {} {} {}| {} {} {} {}| {} {} {} {}| {} {} {} {} {} {} {}| {} {} {} {}| \newline{}
 {}x {} {}1 {} {} {} {}1 {} {} {} {}2 {} {} {} {}1 {} {} {} {} {} {} {}2 {} {} {} {}3 \newline{}
 {} {} {} {}| {} {} {} {}|_ {} {} {}| {} {} {} {}|___ {} {} {} {}|_ {} {} {}| \newline{}
 {} {} {} {}| {} {} {} {}| {}| {} {}| {} {} {} {}| {}| {}| {} {} {}| {}| {} {}| \newline{}
 {}y {} {}1 {} {} {} {}1 {}2 {} {}2 {} {} {} {}1 {}2 {}3 {} {} {}2 {}3 {} {}3}

Each combination of z, x and y represents a route through the tree. Once all the functions have been applied, the results of each branch are concatenated together, starting from the bottom. Any route where our predicate doesn\textquotesingle{}t hold evaluates to an empty list, and so has no impact on this concatenation.
\section{Exercises}
\label{280}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}Prove the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monoid laws for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and lists.
\item{} We could augment the parser from the parallel parsing example so that it would handle any character, in the following manner:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}Consume\ensuremath{\text{ }}a\ensuremath{\text{ }}given\ensuremath{\text{ }}character\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}input,\ensuremath{\text{ }}and\ensuremath{\text{ }}return\ensuremath{\text{ }}}\newline
\CommentTok{--\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}the\ensuremath{\text{ }}character\ensuremath{\text{ }}we\ensuremath{\text{ }}just\ensuremath{\text{ }}consumed,\ensuremath{\text{ }}paired\ensuremath{\text{ }}with\ensuremath{\text{ }}rest\ensuremath{\text{ }}of\ensuremath{\text{ }}}\newline
\CommentTok{--\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}the\ensuremath{\text{ }}string.\ensuremath{\text{ }}We\ensuremath{\text{ }}use\ensuremath{\text{ }}a\ensuremath{\text{ }}do-block\ensuremath{\text{ }}\ensuremath{\text{ }}so\ensuremath{\text{ }}that\ensuremath{\text{ }}if\ensuremath{\text{ }}the}\newline
\CommentTok{--\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}pattern\ensuremath{\text{ }}match\ensuremath{\text{ }}fails\ensuremath{\text{ }}at\ensuremath{\text{ }}any\ensuremath{\text{ }}point,\ensuremath{\text{ }}\textquotesingle{}fail\textquotesingle{}\ensuremath{\text{ }}of\ensuremath{\text{ }}the}\newline
\CommentTok{--\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}Maybe\ensuremath{\text{ }}monad\ensuremath{\text{ }}(i.e.\ensuremath{\text{ }}Nothing)\ensuremath{\text{ }}is\ensuremath{\text{ }}returned.}\newline
\OtherTok{char\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Char}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{String}\NormalTok{)}\newline
\NormalTok{char\ensuremath{\text{ }}c\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(c\textquotesingle{}}\FunctionTok{:}\NormalTok{s\textquotesingle{})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{s}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{c\textquotesingle{}\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(c,\ensuremath{\text{ }}s\textquotesingle{})\ensuremath{\text{ }}}\KeywordTok{else}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

It would then be possible to write a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hexChar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function which parses any valid hexadecimal character (0-{}9 or a-{}f). Try writing this function (hint: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map digit {[}0..9{]} :: {[}String -{}>{} Maybe Int{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\item{}Use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combinators ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, etc.) to implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeLog}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from \mylref{234}{the Maybe monad chapter}. Do not use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combinators ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, etc.).

\end{myenumerate}}
\section{Relationship with monoids}
\label{281}

When discussing the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws, we alluded to the mathematical concept of monoids. It turns out that there is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class in Haskell, defined in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data.Monoid.html}{Data.Monoid}. A fuller presentation of will be given in \mylref{297}{a later chapter}. For now, it suffices to say that a minimal definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} implements two methods; namely, a neutral element (or \textquotesingle{}zero\textquotesingle{}) and an associative binary operation (or \textquotesingle{}plus\textquotesingle{}).

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\KeywordTok{where}\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}mempty\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}mappend\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\end{Highlighting}
\end{Shaded}

For example, lists form a simple monoid:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mempty\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mappend\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{++}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Looks familiar, doesn\textquotesingle{}t it? In spite of the uncanny resemblance to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there is a key difference. Note the use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the instance declaration. Monoids are not necessarily \symbol{34}wrappers\symbol{34} of anything, or parametrically polymorphic. For instance, the integer numbers on form a monoid under addition with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as neutral element. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a separate type class because it captures a specific sort of monoid with distinctive properties − for instance, a binary operation \mbox{(<{}} that is intrinsically linked to an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} context.
\section{Other suggested laws}
\label{282}

\LaTeXbodynoteTemplate{Consider this as a bonus section. While it is good to be aware of there being various takes on these laws, the whole issue is, generally speaking, not one worth losing sleep over.}

Beyond the commonly assumed laws mentioned a few sections above, there are a handful of others which make sense from certain perspectives, but do not hold for all existing instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The current {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, in particular, might be seen as an intersection between a handful of hypothetical classes that would have additional laws.

The following two additional laws are commonly suggested for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. While they do hold for both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and lists, there are counterexamples in the core libraries. Also note that, for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s that are also {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mzero}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws mentioned earlier are not a consequence of these laws.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(f\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{(g\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}right\ensuremath{\text{ }}distributivity\ensuremath{\text{ }}(of\ensuremath{\text{ }}<*>)}\newline
\NormalTok{empty\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{empty\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}right\ensuremath{\text{ }}absorption\ensuremath{\text{ }}(for\ensuremath{\text{ }}<*>)}\newline
\end{Highlighting}
\end{Shaded}

As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a common suggestion is the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape left distribution}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} law, which holds for lists, but not for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(m\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(m\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{k)\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{(n\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{k)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}left\ensuremath{\text{ }}distribution}\newline
\end{Highlighting}
\end{Shaded}

Conversely, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape left catch}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} law holds for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but not for lists:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{return\ensuremath{\text{ }}x\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}m\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}left\ensuremath{\text{ }}catch}\newline
\end{Highlighting}
\end{Shaded}

It is generally assumed that at least one of left distribution and left catch will hold for any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance.

Finally, it is worth noting that there are divergences even about the monoid laws. One case sometimes raised against them is that for certain non-{}determinism monads typically expressed in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the key laws are left zero and left distribution, while the monoid laws in such cases lead to difficulties and should be relaxed or dropped entirely.

Some entirely optional further reading, for the curious reader:

\begin{myitemize}
\item{} \myhref{http://www.haskell.org/haskellwiki/MonadPlus}{The Haskell Wiki on MonadPlus} (note that this debate long predates the existence of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\item{} \myhref{http://stackoverflow.com/q/10167879/2751851}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Distinction between typeclasses MonadPlus, Alternative, and Monoid?}} and \myhref{http://stackoverflow.com/q/13080606/2751851}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Confused by the meaning of the \textquotesingle{}Alternative\textquotesingle{} type class and its relationship to other type classes}} at Stack Overflow (detailed overviews of the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape status quo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} reflected by the documentation of the relevant libraries as of GHC 7.x/8.x − as opposed to the 2010 Haskell Report, which is less prescriptive on this matter.)
\item{} \myhref{https://lirias.kuleuven.be/handle/123456789/499951}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape From monoids to near-{}semirings: the essence of MonadPlus and Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by Rivas, Jaskelioff and Schrijvers} (a formulation that includes, beyond the monoid laws, right distribution and right absorption for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as well as left zero and left distribution for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\item{} \myhref{http://winterkoninkje.dreamwidth.org/90905.html}{Wren Romano on MonadPlus and seminearrings} (argues that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} right zero law is too strong).
\item{} \myhref{http://okmij.org/ftp/Computation/monads.html\#monadplus}{Oleg Kiselyov on the MonadPlus laws} (argues against the monoid laws in the case of non-{}determinism monads).
\item{} \myhref{http://stackoverflow.com/q/15722906/2751851}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Must mplus always be associative?}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at Stack Overflow} (a discussion about the merits of the monoid laws of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Monad transformers}

\myminitoc
\label{283}

\label{284}
\LaTeXNullTemplate{}

We have seen how monads can help handling {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actions, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, lists, and state.
With monads providing a common way to use such useful general-{}purpose tools, a natural thing we might want to do is using the capabilities of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape several}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monads at once. For instance, a function could use both I/O and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} exception handling. While a type like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO (Maybe a)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would work just fine, it would force us to do pattern matching within {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do-{}blocks to extract values, something that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad was meant to spare us from.

Enter {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries monad transformers}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: special types that allow us to roll two monads into a single one that shares the behavior of both.
\section{Passphrase validation}
\label{285}

Consider a real-{}life problem for IT staff worldwide: getting users to create strong passphrases.
One approach: force the user to enter a minimum length with various irritating requirements (such as at least one capital letter, one number, one non-{}alphanumeric character, etc.)

Here\textquotesingle{}s a Haskell function to acquire a passphrase from a user:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{getPassphrase\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{String}\NormalTok{)}\newline
\NormalTok{getPassphrase\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getLine}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{isValid\ensuremath{\text{ }}s\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{s}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}validation\ensuremath{\text{ }}test\ensuremath{\text{ }}could\ensuremath{\text{ }}be\ensuremath{\text{ }}anything\ensuremath{\text{ }}we\ensuremath{\text{ }}want\ensuremath{\text{ }}it\ensuremath{\text{ }}to\ensuremath{\text{ }}be.}\newline
\OtherTok{isValid\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{isValid\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{>=}\ensuremath{\text{ }}\DecValTok{8}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{any\ensuremath{\text{ }}isAlpha\ensuremath{\text{ }}s}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{any\ensuremath{\text{ }}isNumber\ensuremath{\text{ }}s}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{any\ensuremath{\text{ }}isPunctuation\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

First and foremost, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getPassphrase}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} action, as it needs to get input from the user. We also use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as we intend to return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in case the password does not pass the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isValid}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note, however, that we aren\textquotesingle{}t actually using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a monad here: the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block is in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad, and we just happen to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value into it.

Monad transformers not only make it easier to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getPassphrase}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but also simplify all the code instances. Our passphrase acquisition program could continue like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{askPassphrase\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{askPassphrase\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Insert\ensuremath{\text{ }}your\ensuremath{\text{ }}new\ensuremath{\text{ }}passphrase:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{maybe_value\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getPassphrase}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{isJust\ensuremath{\text{ }}maybe_value}\newline
\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Storing\ensuremath{\text{ }}in\ensuremath{\text{ }}database..."}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}do\ensuremath{\text{ }}stuff}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Passphrase\ensuremath{\text{ }}invalid."}\newline
\end{Highlighting}
\end{Shaded}

The code uses one line to generate the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybe_value}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable followed by further validation of the passphrase.

With monad transformers, we will be able to extract the passphrase in one go — without any pattern matching or equivalent bureaucracy like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isJust}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The gains for our simple example might seem small but will scale up for more complex situations.
\section{A simple monad transformer: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{286}

To simplify {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getPassphrase}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and all the code that uses it, we will define a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monad transformer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that gives the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad some characteristics of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad; we will call it {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That follows a convention where monad transformers have a \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34} appended to the name of the monad whose characteristics they provide.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a wrapper around {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m (Maybe a)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be any monad ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in our example):

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}runMaybeT\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}(}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}\}}\newline
\end{Highlighting}
\end{Shaded}

This data type definition specifies a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type constructor, parameterized over {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with a term constructor, also called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and a convenient accessor function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runMaybeT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with which we can access the underlying representation.

The whole point of monad transformers is that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape they are monads themselves}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; and so we need to make {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an instance of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Just}\newline
\end{Highlighting}
\end{Shaded}

It would also have been possible (though arguably less readable) to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return = MaybeT . return . return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

As in all monads, the bind operator is the heart of the transformer.

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}signature\ensuremath{\text{ }}of\ensuremath{\text{ }}(>>=),\ensuremath{\text{ }}specialized\ensuremath{\text{ }}to\ensuremath{\text{ }}MaybeT\ensuremath{\text{ }}m}\newline
\OtherTok{(>>=)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\newline
\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{maybe_value\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{runMaybeT\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{maybe_value\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{value\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{runMaybeT\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}value}\newline
\end{Highlighting}
\end{Shaded}

Starting from the first line of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block:
\begin{myitemize}
\item{} First, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runMaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} accessor unwraps {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m (Maybe a)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation. That shows us that the whole {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block is in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Still in the first line, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} extracts a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value from the unwrapped computation.
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement tests {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybe_value}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\begin{myitemize}
\item{} With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf};
\item{} With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily value}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the Just. Since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT m b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as result type, we need an extra {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runMaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to put the result back into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad.
\end{myitemize}

\item{} Finally, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block as a whole has {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m (Maybe b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type; so it is wrapped with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor.
\end{myitemize}

It may look a bit complicated; but aside from the copious amounts of wrapping and unwrapping, the implementation does the same as the familiar bind operator of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}(>>=)\ensuremath{\text{ }}for\ensuremath{\text{ }}the\ensuremath{\text{ }}Maybe\ensuremath{\text{ }}monad}\newline
\NormalTok{maybe_value\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{maybe_value\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{value\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}value}\newline
\end{Highlighting}
\end{Shaded}

Why use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor before the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block while we have the accessor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runMaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Well, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block must be in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad, not in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (which lacks a defined bind operator at this point).

\LaTeXbodynoteTemplate{The chained functions in the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} suggest a metaphor, which you may find either useful or confusing. Consider the combined monad as a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape sandwich}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This metaphor might suggest three layers of monads in action, but there are only two really: the inner monad and the combined monad (there are no binds or returns done in the base monad; it only appears as part of the implementation of the transformer). If you like this metaphor at all, think of the transformer and the base monad as two parts of the same thing -{} the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape bread}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} which wraps the inner monad.}

Technically, this is all we need; however, it is convenient to make {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an instance of a few other classes:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Alternative}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{empty\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{maybe_value\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{runMaybeT\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{maybe_value\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{runMaybeT\ensuremath{\text{ }}y}\newline
\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}maybe_value}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{MonadPlus}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\KeywordTok{where}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mzero\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{empty}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mplus\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{<|>}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{MonadTrans}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(liftM\ensuremath{\text{ }}}\DataTypeTok{Just}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadTrans}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} implements the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, so we can take functions from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad and bring them into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad in order to use them in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} blocks. As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an instance of those class it makes sense to make the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an instance too.
\subsection{Application to the passphrase example}
\label{287}

With all this done, here is what the previous example of passphrase management looks like:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{getValidPassphrase\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{getValidPassphrase\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}getLine}\newline
\ensuremath{\text{ }}\NormalTok{guard\ensuremath{\text{ }}(isValid\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Alternative\ensuremath{\text{ }}provides\ensuremath{\text{ }}guard.}\newline
\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}s}\newline
\ensuremath{\text{ }}\newline
\OtherTok{askPassphrase\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{askPassphrase\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Insert\ensuremath{\text{ }}your\ensuremath{\text{ }}new\ensuremath{\text{ }}passphrase:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{value\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getValidPassphrase}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Storing\ensuremath{\text{ }}in\ensuremath{\text{ }}database..."}\newline
\end{Highlighting}
\end{Shaded}

The code is now simpler, especially in the user function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily askPassphrase}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Most importantly, we do not have to manually check whether the result is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: the bind operator takes care of that for us.

Note how we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to bring the functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getLine}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily putStrLn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad. Also, since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Alternative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, checking for passphrase validity can be taken care of by a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily guard}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statement, which will return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) in case of a bad passphrase.

Incidentally, with the help of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it also becomes very easy to ask the user {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape ad infinitum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for a valid passphrase:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{askPassword\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{askPassword\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Insert\ensuremath{\text{ }}your\ensuremath{\text{ }}new\ensuremath{\text{ }}password:"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{value\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{msum\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{repeat\ensuremath{\text{ }}getValidPassphrase}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\StringTok{"Storing\ensuremath{\text{ }}in\ensuremath{\text{ }}database..."}\newline
\end{Highlighting}
\end{Shaded}

\section{A plethora of transformers}
\label{288}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily transformers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package provides modules with transformers for many common monads ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for instance, can be found in \myhref{http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-Trans-Maybe.html}{Control.Monad.Trans.Maybe}). These are defined consistently with their non-{}transformer versions; that is, the implementation is basically the same except with the extra wrapping and unwrapping needed to thread the other monad. From this point on, we will use {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries base monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to refer to the non-{}transformer monad (e.g. Maybe in MaybeT) on which a transformer is based and {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries inner monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to refer to the other monad (e.g. IO in MaybeT IO) on which the transformer is applied.

To pick an arbitrary example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ReaderT Env IO String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a computation which involves reading values from some environment of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Env}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the semantics of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Reader}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the base monad) and performing some {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in order to give a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Since the bind operator and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the transformer mirror the semantics of the base monad, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ReaderT Env IO String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will, from the outside, look a lot like a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Reader}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad, except that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actions become trivial to embed by using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Type juggling}
\label{289}

We have seen that the type constructor for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a wrapper for a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value in the inner monad. So, the corresponding accessor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runMaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives us a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m{\mbox{$~$}}(Maybe a)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} i.e. a value of the base monad returned in the inner monad. Similarly, for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ListT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ExceptT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} transformers, which are built around lists and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} respectively:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{runListT\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{ListT}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}[a]}\newline
\end{Highlighting}
\end{Shaded}

and

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{runExceptT\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{ExceptT}\ensuremath{\text{ }}\NormalTok{e\ensuremath{\text{ }}m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{e\ensuremath{\text{ }}a)}\newline
\end{Highlighting}
\end{Shaded}

Not all transformers are related to their base monads in this way, however. Unlike the base monads in the two examples above, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Writer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Reader}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monads have neither multiple constructors nor constructors with multiple arguments. For that reason, they have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily run...}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions which act as simple unwrappers, analogous to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily run...T}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the transformer versions. The table below shows the result types of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily run...}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily run...T}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions in each case, which may be thought of as the types wrapped by the base and transformed monads respectively.\myfootnote{The wrapping interpretation is only literally true for versions of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mtl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package older than 2.0.0.0 .}

\begin{longtable}{>{\RaggedRight}p{0.16632\linewidth}>{\RaggedRight}p{0.17005\linewidth}>{\RaggedRight}p{0.23632\linewidth}>{\RaggedRight}p{0.31302\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Base Monad}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Transformer }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Original Type\newline{}{\small (\symbol{34}wrapped\symbol{34} by base)}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Combined Type\newline{}{\small (\symbol{34}wrapped\symbol{34} by transformer)}}\endhead \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Writer &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}WriterT &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a, w)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m (a, w)}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Reader &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ReaderT &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r -{}>{} m a}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}State &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} StateT &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} (a, s)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} m (a, s)}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Cont &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} ContT &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} r) -{}>{} r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} m r) -{}>{} m r}
\end{longtable}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

Notice that the base monad is absent in the combined types. Without interesting constructors (of the sort for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or lists), there is no reason to retain the base monad type after unwrapping the transformed monad. It is also worth noting that in the latter three cases we have function types being wrapped. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for instance, turns state-{}transforming functions of the form {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} (a, s)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into state-{}transforming functions of the form {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} m (a, s)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; only the result type of the wrapped function goes into the inner monad. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ReaderT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is analogous.{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ContT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is different because of the semantics of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape continuation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad): the result types of both the wrapped function and its function argument must be the same, and so the transformer puts both into the inner monad. In general, there is no magic formula to create a transformer version of a monad; the form of each transformer depends on what makes sense in the context of its non-{}transformer type.
\section{Lifting}
\label{290}

We will now have a more detailed look at the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, which is critical in day-{}to-{}day use of monad transformers. The first thing to clarify is the name \symbol{34}lift\symbol{34}. One function with a similar name that we already know is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As we have seen in \mylref{232}{Understanding monads}, it is a monad-{}specific version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{liftM\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} applies a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a value within a monad {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We can also look at it as a function of just one argument:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{liftM\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} converts a plain function into one that acts within {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. By \symbol{34}lifting\symbol{34}, we refer to bringing something into something else — in this case, a function into a monad.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows us to apply a plain function to a monadic value without needing do-{}blocks or other such tricks:

{\scalefont{0.52741}\begin{longtable}{>{\RaggedRight}p{0.47143\linewidth}>{\RaggedRight}p{0.47143\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}do notation}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}liftM}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}do {}x {}<{}-{} {}monadicValue\newline{} {} {} {}return {}(f {}x)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}liftM {}f {}monadicValue}
\end{longtable}
}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function plays an analogous role when working with monad transformers. It brings (or, to use another common word for that, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape promotes}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) inner monad computations to the combined monad. By doing so, it allows us to easily insert inner monad computations as part of a larger computation in the combined monad.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the single method of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadTrans}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, found in \myhref{http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-Trans-Class.html}{Control.Monad.Trans.Class}. All monad transformers are instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadTrans}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is available for them all.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{MonadTrans}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}lift\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

There is a variant of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} specific to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operations, called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftIO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is the single method of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadIO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class in \myhref{http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Monad-IO-Class.html}{Control.Monad.IO.Class}.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{MonadIO}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}liftIO\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftIO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be convenient when multiple transformers are stacked into a single combined monad. In such cases, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is always the innermost monad, and so we typically need more than one lift to bring {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values to the top of the stack. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftIO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is defined for the instances in a way that allows us to bring an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value from any depth while writing the function a single time.
\subsection{Implementing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{291}

Implementing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is usually pretty straightforward. Consider the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} transformer:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{MonadTrans}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}m\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MaybeT}\ensuremath{\text{ }}\NormalTok{(liftM\ensuremath{\text{ }}}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{m)}\newline
\end{Highlighting}
\end{Shaded}

We begin with a monadic value of the inner monad. With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would have worked just as fine), we slip the base monad (through the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor) underneath, so that we go from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m (Maybe a)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). Finally, we use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor to wrap up the monadic sandwich. Note that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} here works in the inner monad, just like the do-{}block wrapped by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we saw early on was in the inner monad.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}Why is it that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function has to be defined separately for each monad, where as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be defined in a universal way?
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a trivial functor, defined in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Functor.Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as:\TemplatePreformat{newtype {}Identity {}a {}= {}Identity {}\{ {}runIdentity {}:: {}a {}\}}It has the following {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance:
\TemplatePreformat{ \newline{}
instance {}Monad {}Identity {}where \newline{}
 {} {} {} {}return {}a {}= {}Identity {}a \newline{}
 {} {} {} {}m {}>{}>{}= {}k {} {}= {}k {}(runIdentity {}m) \newline{}
}Implement a monad transformer {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IdentityT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, analogous to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but wrapping values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} rather than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Write at least its {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadTrans}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances.

\end{myenumerate}}
\section{Implementing transformers}
\label{292}
\subsection{The State transformer}
\label{293}

As an additional example, we will now have a detailed look at the implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You might want to review the section on the \mylref{257}{State monad} before continuing.

Just as the State monad might have been built upon the definition {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype State s a = State \{ runState :: (s -{}>{} (a,s)) \}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the StateT transformer is built upon the definition:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{StateT}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{StateT}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}runStateT\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}(a,s))\ensuremath{\text{ }}\}}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT{\mbox{$~$}}s{\mbox{$~$}}m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will have the following {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance, here shown alongside the one for the base state monad:

{\scalefont{0.52741}\begin{longtable}{>{\RaggedRight}p{0.47143\linewidth}>{\RaggedRight}p{0.47143\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}State}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}StateT}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}newtype {}State {}s {}a {}=\newline{} {} {}State {}\{ {}runState {}:: {}(s {}-{}>{} {}(a,s)) {}\}\newline{} {}\newline{}instance {}Monad {}(State {}s) {}where\newline{} {} {}return {}a {} {} {} {} {} {} {} {}= {}State {}\${}$\text{ }${}\textbackslash{}s$\text{ }${}-{}>{}$\text{ }${}(a,s)\newline{}$\text{ }${}$\text{ }${}(State$\text{ }${}x)$\text{ }${}>{}>{}=$\text{ }${}f$\text{ }${}=$\text{ }${}State$\text{ }${}\${} {}\textbackslash{}s {}-{}>{}\newline{} {} {} {} {}let {}(v,s\textquotesingle{}) {}= {}x {}s\newline{} {} {} {} {}in {}runState {}(f {}v) {}s\textquotesingle{}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}newtype {}StateT {}s {}m {}a {}=\newline{} {} {}StateT {}\{ {}runStateT {}:: {}(s {}-{}>{} {}m {}(a,s)) {}\}\newline{} {}\newline{}instance {}(Monad {}m) {}=>{} {}Monad {}(StateT {}s {}m) {}where\newline{} {} {}return {}a {} {} {} {} {} {} {} {} {}= {}StateT {}\${}$\text{ }${}\textbackslash{}s$\text{ }${}-{}>{}$\text{ }${}return$\text{ }${}(a,s)\newline{}$\text{ }${}$\text{ }${}(StateT$\text{ }${}x)$\text{ }${}>{}>{}=$\text{ }${}f$\text{ }${}=$\text{ }${}StateT$\text{ }${}\${} {}\textbackslash{}s {}-{}>{} {}do\newline{} {} {} {} {}(v,s\textquotesingle{}) {}<{}-{} {}x {}s {} {} {} {} {} {} {} {} {} {}-{}-{} {}get {}new {}value {}and {}state\newline{} {} {} {} {}runStateT {}(f {}v) {}s\textquotesingle{} {} {} {} {} {}-{}-{} {}pass {}them {}to {}f}
\end{longtable}
}

Our definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes use of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function of the inner monad. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uses a do-{}block to perform a computation in the inner monad.

\LaTeXbodynoteTemplate{Incidentally, we can now finally explain why, \mylref{264}{back in the chapter about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}}, there was a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily state}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function instead of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor. In the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily transformers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mtl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} packages, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is implemented as a type synonym for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT s Identity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being the dummy monad introduced in an exercise of the previous section. The resulting monad is equivalent to the one defined using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that we have used up to now.}

If the combined monads {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT s m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are to be used as state monads, we will certainly want the all-{}important {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operations. Here, we will show definitions in the style of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mtl package. In addition to the monad transformers themselves,}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}mtl provides type classes for the essential operations of common monads. For instance, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, found in \myhref{http://hackage.haskell.org/packages/archive/mtl/latest/doc/html/Control-Monad-State.html}{Control.Monad.State}, has {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as methods:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{MonadState}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}(}\DataTypeTok{StateT}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}m)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{get\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{StateT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(s,s)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{put\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{StateT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}((),s)}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily instance (Monad m) =>{} MonadState s (StateT s m)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should be read as: \symbol{34}For any type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and any instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT s m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} together form an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadState}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} correspond to the state and the inner monad, respectively. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an independent part of the instance specification so that the methods can refer to it − for instance, the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} StateT s m ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}

There are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances for state monads wrapped by other transformers, such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadState s m =>{} MonadState s (MaybeT m)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. They bring us extra convenience by making it unnecessary to lift uses of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} explicitly, as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadState}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance for the combined monads handles the lifting for us.

It can also be useful to lift instances that might be available for the inner monad to the combined monad. For instance, all combined monads in which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used with an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be made instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadPlus}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{MonadPlus}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{MonadPlus}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{StateT}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}m)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mzero\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{StateT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{mzero}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{StateT}\ensuremath{\text{ }}\NormalTok{x1)\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{StateT}\ensuremath{\text{ }}\NormalTok{x2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{StateT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(x1\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\OtherTok{`mplus`}\ensuremath{\text{ }}\NormalTok{(x2\ensuremath{\text{ }}s)}\newline
\end{Highlighting}
\end{Shaded}

The implementations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mzero}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mplus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do the obvious thing; that is, delegating the actual work to the instance of the inner monad.

Lest we forget, the monad transformer must have a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadTrans}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{MonadTrans}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{StateT}\ensuremath{\text{ }}\NormalTok{s)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{StateT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(x,s))}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function creates a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} state transformation function that binds the computation in the inner monad to a function that packages the result with the input state. If, for instance, we apply StateT to the List monad, a function that returns a list (i.e., a computation in the List monad) can be lifted
into {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT{\mbox{$~$}}s{\mbox{$~$}}{[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} where it becomes a function that returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT{\mbox{$~$}}(s{\mbox{$~$}}-{}>{}{\mbox{$~$}}{[}(a,s){]})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. I.e. the lifted computation produces {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape multiple}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (value,state) pairs from its input state. This \symbol{34}forks\symbol{34} the computation in StateT, creating a different branch of the computation for each value in the list returned by the lifted function. Of course, applying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a different monad will produce different semantics for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lift}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily state :: MonadState s m =>{} (s -{}>{} (a, s)) -{}>{} m a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{}Are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MaybeT (State s)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StateT s Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equivalent? (Hint: one approach is comparing what the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily run...T}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} unwrappers produce in each case.)

\end{myenumerate}}
\section{Acknowledgements}
\label{294}
This module uses a number of excerpts from \myhref{http://www.haskell.org/haskellwiki/All_About_Monads}{All About Monads}, with permission from its author Jeff Newbern.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\myhref{https://ru.wikibooks.org/wiki/Haskell\%2FMonad\%20transformers}{ru:Haskell/Monad transformers}

\chapter{Advanced Haskell}

\myminitoc
\label{295}

\chapter{Monoids}

\myminitoc
\label{296}

\label{297}
\LaTeXNullTemplate{}

In earlier parts of the book, we have made a few passing allusions to monoids and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class (most notably when discussing \myhref{https://en.wikibooks.org/wiki/Haskell\%2FMonadPlus\%23Relationship\%20with\%20monoids}{MonadPlus}). Here we\textquotesingle{}ll give them a more detailed look and show what makes them useful.
\section{What is a monoid?}
\label{298}

The operation of adding numbers has a handful of properties which are so elementary we don\textquotesingle{}t even think about them when summing numbers up. One of them is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape associativity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: when adding three or more numbers it doesn\textquotesingle{}t matter how we group the terms.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{6}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{10}\newline
\DecValTok{21}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{6}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{10}\NormalTok{)}\newline
\DecValTok{21}\newline
\end{Highlighting}
\end{Shaded}

Another one is that it has an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape identity element}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which can be added to any other number without changing its value. That element is the number zero:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{255}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{0}\newline
\DecValTok{255}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{255}\newline
\DecValTok{255}\newline
\end{Highlighting}
\end{Shaded}

Addition is not the only binary operation which is associative and has an identity element. Multiplication does too, albeit with a different identity.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{6}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{10}\newline
\DecValTok{300}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{6}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{10}\NormalTok{)}\newline
\DecValTok{300}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{255}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{1}\newline
\DecValTok{255}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\DecValTok{255}\newline
\DecValTok{255}\newline
\end{Highlighting}
\end{Shaded}

We needn\textquotesingle{}t restrict ourselves to arithmetic either. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the appending operation for Haskell lists, is another example. It has the empty list as its identity element.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{([}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{])\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{9}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{9}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{([}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{9}\NormalTok{])}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{9}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

It turns out there are a great many associative binary operations with an identity. All of them, by definition, give us examples of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monoids}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We say, for instance, that the integer numbers form a monoid under addition with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as identity element.
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class}
\label{299}

Monoids show up very often in Haskell, and so it is not surprising to find there is a type class for them in the core libraries. Here it is:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}mempty\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}mappend\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}mconcat\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mconcat\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}mappend\ensuremath{\text{ }}mempty}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} method is the binary operation, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mempty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is its identity. The third method, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mconcat}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is provided as a bonus; it runs down a list and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s its elements together in order.

\symbol{34}mappend\symbol{34} is a somewhat long and unwieldy name for a binary function so general, even more so for one which is often used infix. Fortunately, \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html}{Data.Monoid} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ({\mbox{$<$}}{\mbox{$>$}})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a convenient operator synonym for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In what follows, we will use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ({\mbox{$<$}}{\mbox{$>$}})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} interchangeably.

As an example, this is the monoid instance for lists:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mempty\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mappend\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{++}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Note that, in this case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mconcat = foldr (++) {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which explains the name of the method.

It is legitimate to think of monoids as types which support {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape appending}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in some sense, though a dose of poetic licence is required. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition is extremely general and not at all limited to data structures, so \symbol{34}appending\symbol{34} will be just a metaphor at times.

As we suggested earlier on, numbers (i.e. instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Num}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) form monoids under both addition and multiplication. That leads to the awkward question of which one to choose when writing the instance. In situations like this one, in which there is no good reason to choose one possibility over the other, the dilemma is averted by creating one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for each instance:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}Monoid\ensuremath{\text{ }}under\ensuremath{\text{ }}addition.}\newline
\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}getSum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}Monoid\ensuremath{\text{ }}under\ensuremath{\text{ }}multiplication.}\newline
\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Product}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Product}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}getProduct\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mempty\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{`mappend`}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Product}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mempty\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Product}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Product}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{`mappend`}\ensuremath{\text{ }}\DataTypeTok{Product}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Product}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{y)}\newline
\end{Highlighting}
\end{Shaded}

Here is a quick demonstration of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Sum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Product}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Monoid}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{<>}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{6}\ensuremath{\text{ }}\FunctionTok{<>}\ensuremath{\text{ }}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{10}\newline
\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{\{getSum\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{21}\NormalTok{\}}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{mconcat\ensuremath{\text{ }}[}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{6}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{10}\NormalTok{]}\newline
\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{\{getSum\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{21}\NormalTok{\}}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{getSum\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{mconcat\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}}\DataTypeTok{Sum}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{5}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{6}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{10}\NormalTok{]}\newline
\DecValTok{21}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{getProduct\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{mconcat\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}}\DataTypeTok{Product}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{5}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{6}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{10}\NormalTok{]}\newline
\DecValTok{300}\newline
\end{Highlighting}
\end{Shaded}

\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws}
\label{300}

The laws which all instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must follow simply state the properties we already know: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is associative and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mempty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is its identity element.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(x\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{(y\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{z)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}associativity}\newline
\NormalTok{mempty\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}left\ensuremath{\text{ }}identity}\newline
\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{mempty\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}right\ensuremath{\text{ }}identity}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} There are several possible monoid instances for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Write at least two of them using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, as in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Sum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Product}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} examples. Be sure to verify the monoid laws hold for your instances \myfootnote{You will later find that two of those instances are defined in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} already.}.

\end{myenumerate}}
\section{Uses}
\label{301}

Which advantages are there in having a class with a pompous name for such a simple concept? As usual in such cases, the key gains are in two associated dimensions: recognisability and generality. Whenever, for instance, you see {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ({\mbox{$<$}}{\mbox{$>$}})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being used you know that, however the specific instance was defined, the operation being done is associative and has an identity element. Moreover, you also know that if there is an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for a type you can take advantage of functions written to deal with monoids in general. As a toy example of such a function, we might take this function that concatenates three lists..

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{threeConcat\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{threeConcat\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

... and replace all {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ({\mbox{$<$}}{\mbox{$>$}})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mthreeConcat\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{mthreeConcat\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{c}\newline
\end{Highlighting}
\end{Shaded}

... thus making it work with any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. When used on other types the generalised function will behave in an analogous way to the original one, as specified by the monoid laws.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{mthreeConcat\ensuremath{\text{ }}}\StringTok{"Hello"}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}"}\ensuremath{\text{ }}\StringTok{"world!"}\newline
\StringTok{"Hello\ensuremath{\text{ }}world!"}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{mthreeConcat\ensuremath{\text{ }}(}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{6}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Sum}\ensuremath{\text{ }}\DecValTok{10}\NormalTok{)}\newline
\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{\{getSum\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{21}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

Monoids are extremely common, and have many interesting practical applications.
{\bfseries
\begin{mydescription} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Writer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad
\end{mydescription}
}
\begin{myquote}\item{} A computation of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Writer w a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} while producing extra output of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A typical use case would be logging, in which each computation produces a log entry for later inspection. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type must be an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and the bind operator of the monad uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to accumulate the extra output. In the logging use case, that would mean all entries generated during a series of computations are automatically combined into a single log output.
\end{myquote}

{\bfseries
\begin{mydescription} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class
\end{mydescription}
}
\begin{myquote}\item{} Monoids play an important role in generalising list-{}like folding to other data structures. We will study that in detail in the upcoming \mylref{316}{chapter about the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class}.
\end{myquote}

{\bfseries
\begin{mydescription} Finger trees
\end{mydescription}
}
\begin{myquote}\item{} Moving on from operations on data structures to data structure implementations, monoids can be used to implement {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape finger trees}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, an efficient and versatile data structure. Its implementation makes use of monoidal values as tags for the tree nodes; and different data structures (such as sequences, priority queues, and search trees) can be obtained simply by changing the involved {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance.\myfootnote{\myfnhref{http://apfelmus.nfshost.com/articles/monoid-fingertree.html}{This blog post}, based on a \myfnhref{http://www.soi.city.ac.uk/~ross/papers/FingerTree.html}{paper by Ralf Hinze and Ross Patterson}, contains a brief and accessible explanation on how monoids are used in finger trees.}
\end{myquote}

{\bfseries
\begin{mydescription} Options and settings
\end{mydescription}
}
\begin{myquote}\item{} In a wholly different context, monoids can be a handy way of treating application options and settings. Two examples are Cabal, the Haskell packaging system (\symbol{34}Package databases are monoids. Configuration files are monoids. Command line flags and sets of command line flags are monoids. Package build information is a monoid.\symbol{34}) and \myhref{http://xmonad.org}{XMonad}, a tiling window manager implemented in Haskell (\symbol{34}xmonad configuration hooks are monoidal.\symbol{34}) \myfootnote{Sources of the quotes (Haskell Cafe mailing list): \myplainurl{http://www.haskell.org/pipermail/haskell-cafe/2009-January/053602.html}, \myplainurl{http://www.haskell.org/pipermail/haskell-cafe/2009-January/053603.html}.}. Below are snippets from a XMonad configuration file (which is just a Haskell program) showing the monoidal hooks in action \myfootnote{The snippets were taken from \myfnhref{https://wiki.haskell.org/Xmonad/Config_archive/ivy-foster-xmonad.hs}{Ivy Foster\textquotesingle{}s example config in the HaskellWiki} and XMonad\textquotesingle{}s \myfnhref{http://hackage.haskell.org/packages/archive/xmonad/0.11/doc/html/XMonad-ManageHook.html}{XMonad.ManageHook} module as of version 0.11.}.
\end{myquote}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}ManageHook\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}rule,\ensuremath{\text{ }}or\ensuremath{\text{ }}a\ensuremath{\text{ }}combination\ensuremath{\text{ }}of\ensuremath{\text{ }}rules,\ensuremath{\text{ }}for}\newline
\CommentTok{--\ensuremath{\text{ }}automatically\ensuremath{\text{ }}handling\ensuremath{\text{ }}specific\ensuremath{\text{ }}kinds\ensuremath{\text{ }}of\ensuremath{\text{ }}windows.\ensuremath{\text{ }}It}\newline
\CommentTok{--\ensuremath{\text{ }}is\ensuremath{\text{ }}applied\ensuremath{\text{ }}on\ensuremath{\text{ }}window\ensuremath{\text{ }}creation.}\newline
\ensuremath{\text{ }}\newline
\OtherTok{myManageHook\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{ManageHook}\newline
\NormalTok{myManageHook\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{composeAll}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{[\ensuremath{\text{ }}manageConkeror}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageDocs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageEmacs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageGimp}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageImages}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageTerm}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageTransient}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageVideo}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageWeb}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}myNSManageHook\ensuremath{\text{ }}scratchpads}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}manageEmacs,\ensuremath{\text{ }}for\ensuremath{\text{ }}instance,\ensuremath{\text{ }}makes\ensuremath{\text{ }}a\ensuremath{\text{ }}duplicate\ensuremath{\text{ }}of\ensuremath{\text{ }}an\ensuremath{\text{ }}Emacs}\newline
\CommentTok{--\ensuremath{\text{ }}window\ensuremath{\text{ }}in\ensuremath{\text{ }}workspace\ensuremath{\text{ }}3\ensuremath{\text{ }}and\ensuremath{\text{ }}sets\ensuremath{\text{ }}its\ensuremath{\text{ }}opacity\ensuremath{\text{ }}to\ensuremath{\text{ }}90\%.\ensuremath{\text{ }}It}\newline
\CommentTok{--\ensuremath{\text{ }}looks\ensuremath{\text{ }}like\ensuremath{\text{ }}this:}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}liftX\ensuremath{\text{ }}lifts\ensuremath{\text{ }}a\ensuremath{\text{ }}normal\ensuremath{\text{ }}X\ensuremath{\text{ }}action\ensuremath{\text{ }}into\ensuremath{\text{ }}a\ensuremath{\text{ }}Query\ensuremath{\text{ }}(as\ensuremath{\text{ }}expected\ensuremath{\text{ }}by\ensuremath{\text{ }}-->)}\newline
\CommentTok{--\ensuremath{\text{ }}idHook\ensuremath{\text{ }}ensures\ensuremath{\text{ }}the\ensuremath{\text{ }}proper\ensuremath{\text{ }}return\ensuremath{\text{ }}type}\newline
\OtherTok{manageEmacs\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{ManageHook}\newline
\NormalTok{manageEmacs\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{className\ensuremath{\text{ }}}\FunctionTok{=?}\ensuremath{\text{ }}\StringTok{"Emacs"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{-->}\ensuremath{\text{ }}\NormalTok{(ask\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{doF\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{\textbackslash{}w\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(copyWindow\ensuremath{\text{ }}w\ensuremath{\text{ }}}\StringTok{"3:emacs"}\NormalTok{))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{<+>}\ensuremath{\text{ }}\NormalTok{(ask\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}w\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{liftX\ensuremath{\text{ }}(setOpacity\ensuremath{\text{ }}w\ensuremath{\text{ }}}\FloatTok{0.9}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{idHook)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}hooks\ensuremath{\text{ }}are\ensuremath{\text{ }}used\ensuremath{\text{ }}as\ensuremath{\text{ }}fields\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}XMonad\ensuremath{\text{ }}configuration,}\newline
\CommentTok{--\ensuremath{\text{ }}which\ensuremath{\text{ }}is\ensuremath{\text{ }}passed\ensuremath{\text{ }}to\ensuremath{\text{ }}the\ensuremath{\text{ }}IO\ensuremath{\text{ }}action\ensuremath{\text{ }}that\ensuremath{\text{ }}starts\ensuremath{\text{ }}XMonad.}\newline
\ensuremath{\text{ }}\newline
\NormalTok{myConfig\ensuremath{\text{ }}xmproc\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{defaultConfig}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Among\ensuremath{\text{ }}other\ensuremath{\text{ }}fields...}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}manageHook\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{myManageHook}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}idHook,\ensuremath{\text{ }}(<+>),\ensuremath{\text{ }}composeAll\ensuremath{\text{ }}and\ensuremath{\text{ }}(-->)\ensuremath{\text{ }}are\ensuremath{\text{ }}just\ensuremath{\text{ }}user-friendly}\newline
\CommentTok{--\ensuremath{\text{ }}synonyms\ensuremath{\text{ }}for\ensuremath{\text{ }}monoid\ensuremath{\text{ }}operations,\ensuremath{\text{ }}defined\ensuremath{\text{ }}in\ensuremath{\text{ }}the}\newline
\CommentTok{--\ensuremath{\text{ }}XMonad.ManageHook\ensuremath{\text{ }}module\ensuremath{\text{ }}thusly:}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}The\ensuremath{\text{ }}identity\ensuremath{\text{ }}hook\ensuremath{\text{ }}that\ensuremath{\text{ }}returns\ensuremath{\text{ }}the\ensuremath{\text{ }}WindowSet\ensuremath{\text{ }}unchanged.}\newline
\OtherTok{idHook\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{idHook\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mempty}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}Infix\ensuremath{\text{ }}\textquotesingle{}mappend\textquotesingle{}.\ensuremath{\text{ }}Compose\ensuremath{\text{ }}two\ensuremath{\text{ }}\textquotesingle{}ManageHook\textquotesingle{}\ensuremath{\text{ }}from\ensuremath{\text{ }}right\ensuremath{\text{ }}to\ensuremath{\text{ }}left.}\newline
\OtherTok{(<+>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{(}\FunctionTok{<+>}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mappend}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}Compose\ensuremath{\text{ }}the\ensuremath{\text{ }}list\ensuremath{\text{ }}of\ensuremath{\text{ }}\textquotesingle{}ManageHook\textquotesingle{}s.}\newline
\OtherTok{composeAll\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[m]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{composeAll\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mconcat}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}@p\ensuremath{\text{ }}-->\ensuremath{\text{ }}x@.\ensuremath{\text{ }}\ensuremath{\text{ }}If\ensuremath{\text{ }}@p@\ensuremath{\text{ }}returns\ensuremath{\text{ }}\textquotesingle{}True\textquotesingle{},\ensuremath{\text{ }}execute\ensuremath{\text{ }}the\ensuremath{\text{ }}\textquotesingle{}ManageHook\textquotesingle{}.}\newline
\FunctionTok{--}\newline
\CommentTok{--\ensuremath{\text{ }}>\ensuremath{\text{ }}(-->)\ensuremath{\text{ }}::\ensuremath{\text{ }}Monoid\ensuremath{\text{ }}m\ensuremath{\text{ }}=>\ensuremath{\text{ }}Query\ensuremath{\text{ }}Bool\ensuremath{\text{ }}->\ensuremath{\text{ }}Query\ensuremath{\text{ }}m\ensuremath{\text{ }}->\ensuremath{\text{ }}Query\ensuremath{\text{ }}m\ensuremath{\text{ }}--\ensuremath{\text{ }}a\ensuremath{\text{ }}simpler\ensuremath{\text{ }}type}\newline
\OtherTok{(-->)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m,\ensuremath{\text{ }}}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\NormalTok{p\ensuremath{\text{ }}}\FunctionTok{-->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{p\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}mempty}\newline
\end{Highlighting}
\end{Shaded}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/5.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithcaption{5}{A simple {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily diagrams}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example. The code for it is:
\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{mconcat\ensuremath{\text{ }}\ensuremath{\text{ }}(fmap}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(circle\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{/}\DecValTok{20}\NormalTok{))\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{5}\NormalTok{])}\newline
\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{triangle\ensuremath{\text{ }}(sqrt\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{/}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{#}\ensuremath{\text{ }}\NormalTok{lwL\ensuremath{\text{ }}}\FloatTok{0.01}\ensuremath{\text{ }}\FunctionTok{#}\ensuremath{\text{ }}\NormalTok{fc\ensuremath{\text{ }}yellow\ensuremath{\text{ }}}\newline
\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{circle\ensuremath{\text{ }}}\FloatTok{0.5}\ensuremath{\text{ }}\FunctionTok{#}\ensuremath{\text{ }}\NormalTok{lwL\ensuremath{\text{ }}}\FloatTok{0.02}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{#}\ensuremath{\text{ }}\NormalTok{fc\ensuremath{\text{ }}deepskyblue}\newline
\end{Highlighting}
\end{Shaded}
}
\end{minipage}\vspace{0.75cm}

{\bfseries
\begin{mydescription} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily diagrams}
\end{mydescription}
}
\begin{myquote}\item{}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} The \myhref{http://projects.haskell.org/diagrams}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily diagrams}} package provides a powerful library for generating vectorial images programatically. On a basic level, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ({\mbox{$<$}}{\mbox{$>$}})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} appears often in code using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily diagrams}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because squares, rectangles and other such graphic elements have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances which are used to put them on the top of each other. On a deeper level, most operations with graphic elements are internally defined in terms of monoids, and the implementation takes full advantage of their mathematical properties.
\end{myquote}

\section{Homomorphisms}
\label{302}

A function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f :: a -{}>{} b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} between two monoids {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is called a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries monoid homomorphism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if it preserves the monoid structure, so that:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}mempty\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mempty}\newline
\NormalTok{f\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\OtherTok{`mappend`}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\OtherTok{`mappend`}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}y}\newline
\end{Highlighting}
\end{Shaded}

For instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an homomorphism between ({[}{]},++) and (0,+)

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{length\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\NormalTok{length\ensuremath{\text{ }}(xs\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{ys)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}ys}\newline
\end{Highlighting}
\end{Shaded}

An interesting example \symbol{34}in the wild\symbol{34} of monoids and homomorphisms was identified by Chris Kuklewicz amidst the Google Protocol Buffers API documentation \myfootnote{Source (Haskell Cafe): \myplainurl{http://www.haskell.org/pipermail/haskell-cafe/2009-January/053709.html}} Based on the quotes provided in the referenced comment, we highlight that the property that (in Python)...

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{MyMessage\ensuremath{\text{ }}message}\OperatorTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{message.ParseFromString(str1\ensuremath{\text{ }}}\OperatorTok{+}\ensuremath{\text{ }}\NormalTok{str2)}\OperatorTok{;}\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

... is equivalent to...

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{MyMessage\ensuremath{\text{ }}message,\ensuremath{\text{ }}message2}\OperatorTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{message.ParseFromString(str1)}\OperatorTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{message2.ParseFromString(str2)}\OperatorTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{message.MergeFrom(message2)}\OperatorTok{;}\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

... means that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ParseFromString}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a monoid homomorphism. In a hypothetical Haskell implementation, the following equations would hold:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{parse\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Message}\newline
\CommentTok{--\ensuremath{\text{ }}these\ensuremath{\text{ }}are\ensuremath{\text{ }}just\ensuremath{\text{ }}equations,\ensuremath{\text{ }}not\ensuremath{\text{ }}actual\ensuremath{\text{ }}code.}\newline
\NormalTok{parse\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mempty}\newline
\NormalTok{parse\ensuremath{\text{ }}(xs\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{ys)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{parse\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\OtherTok{`mergeFrom`}\ensuremath{\text{ }}\NormalTok{parse\ensuremath{\text{ }}ys}\newline
\end{Highlighting}
\end{Shaded}

(They wouldn\textquotesingle{}t hold {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape perfectly}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as parsing might fail, but roughly so.)

Recognising an homomorphism can lead to useful refactorings. For instance, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mergeFrom}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} turned out to be an expensive operation it might be advantageous in terms of performance to concatenate the strings before parsing them. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily parse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being a monoid homomorphism would then guarantee the same results would be obtained.
\section{Further reading}
\label{303}

\begin{myitemize}
\item{} Dan Piponi (Sigfpe) on monoids: \myhref{http://sigfpe.blogspot.com/2009/01/haskell-monoids-and-their-uses.html}{a blog post overview}; \myhref{http://www.haskell.org/pipermail/haskell-cafe/2009-January/053798.html}{a comment about intuition on associativity}.
\end{myitemize}

\begin{myitemize}
\item{} \myhref{http://groups.google.com/group/bahaskell/browse_thread/thread/4cf0164263e0fd6b/42b621f5a4da6019}{Many monoid related links}
\end{myitemize}

\begin{myitemize}
\item{} Additional comment on finger trees (Haskell Cafe): \myhref{http://www.haskell.org/pipermail/haskell-cafe/2009-January/053689.html}{FingerTrees}.
\end{myitemize}

\begin{myitemize}
\item{} Additional comments on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} usage in Cabal (Haskell Cafe): \myplainurl{http://www.haskell.org/pipermail/haskell-cafe/2009-January/053626.html}; \myplainurl{http://www.haskell.org/pipermail/haskell-cafe/2009-January/053721.html}.
\end{myitemize}

\begin{myitemize}
\item{} On {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily diagrams}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and monoids: \myhref{http://dept.cs.williams.edu/~byorgey/publications.html}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Monoids: Theme and Variations (Functional Pearl)}}, by Brent Yorgey.
\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Applicative functors}

\myminitoc
\label{304}

\label{305}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

When covering the vital {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type classes, we glossed over a third type class: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the class for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape applicative functors}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Like monads, applicative functors are functors with extra laws and operations; in fact, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an intermediate class between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are a widely used class with a wealth of applications (pardon the pun). It enables the eponymous {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape applicative style}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a convenient way of structuring functorial computations, and also provides means to express a number of important patterns.
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} recap}
\label{306}

We will begin with a quick review of \mylref{206}{the Functor class} chapter. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is characterised by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}fmap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

If a type has an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to apply a function to values in it. Another way of describing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is saying that it promotes functions to act on functorial values. To ensure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works sanely, any instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must comply with the following two laws:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}id\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}1st\ensuremath{\text{ }}functor\ensuremath{\text{ }}law}\newline
\NormalTok{fmap\ensuremath{\text{ }}(g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}2nd\ensuremath{\text{ }}functor\ensuremath{\text{ }}law}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for example, has a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance, and so we can easily modify the value inside it...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}negate\ensuremath{\text{ }}(}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{-}\DecValTok{2}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

...as long as it exists, of course.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}negate\ensuremath{\text{ }}}\DataTypeTok{Nothing}\newline
\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

For extra convenience, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has an infix synonym, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}\${}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It often helps readability, and also suggests how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be seen as a different kind of function application.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{negate\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{-}\DecValTok{2}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{Define instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the following types:
\begin{myenumerate}
\item{} A rose tree, defined as: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data Tree a = Node a {[}Tree a{]}}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for a fixed {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily e}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} The function type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ((-{}>{}) r)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In this case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (r -{}>{} a)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}}
\section{Application in functors}
\label{307}

As useful as it is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} isn\textquotesingle{}t much help if we want to apply a function of two arguments to functorial values. For instance, how could we sum {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? The brute force approach would be extracting the values from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wrapper. That, however, would mean having to do tedious checks for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Even worse: in a different {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} extracting the value might not even be an option (just think about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

We could use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to partially apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the first argument:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\newline
\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)}\newline
\end{Highlighting}
\end{Shaded}

But now we are stuck: we have a function and a value both wrapped in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and no way of applying one to the other. What we would like to have is an operator with a type akin to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f (a -{}>{} b) -{}>{} f a -{}>{} f b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to apply functions in the context of a functor. If that operator was called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we would be able to write:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\newline
\end{Highlighting}
\end{Shaded}

Lo and behold -{} if you try that in GHCi it will just work!

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{5}\newline
\end{Highlighting}
\end{Shaded}

The type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}(}\FunctionTok{<*>}\NormalTok{)}\newline
\OtherTok{(<*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is one of the methods of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the type class of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape applicative functors}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} functors that support function application within their contexts. Expressions such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+) <{}\${}>{} Just 2 <{}*>{} Just 3}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are said to be written in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape applicative style}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is as close as we can get to regular function application while working with a functor. If you pretend for a moment the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}\${}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} aren\textquotesingle{}t there, our example looks just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+) 2 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class}
\label{308}

The definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}pure\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(<*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

Beyond {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the class has a second method, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which brings arbitrary values into the functor. As an example, let\textquotesingle{}s have a look at the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

It doesn\textquotesingle{}t do anything surprising: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wraps the value with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} applies the function to the value if both exist, and results in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} otherwise.
\subsection{Applicative functor laws}
\label{309}

\LaTeXbodynoteTemplate{For the lack of a better shorthand, in what follows we will use the jargony word {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape morphism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to refer to the values to the left of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which fit the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative f =>{} f (a -{}>{} b)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; that is, the function-{}like things inserted into an applicative functor. \symbol{34}Morphism\symbol{34} is a term which comes from category theory and which has a much wider meaning, but that needn\textquotesingle{}t concern us now.}

Just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has a set of laws which reasonable instances should follow. They are:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pure\ensuremath{\text{ }}id\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Identity}\newline
\NormalTok{pure\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}(f\ensuremath{\text{ }}x)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Homomorphism}\newline
\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}(}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Interchange}\newline
\NormalTok{pure\ensuremath{\text{ }}(}\FunctionTok{.}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{w\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{(v\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Composition}\newline
\end{Highlighting}
\end{Shaded}

Those laws are a bit of a mouthful. They become easier to understand if you think of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a way to inject values into the functor in a default, featureless way, so that the result is as close as possible to the plain value. Thus:

\begin{myitemize}
\item{} The identity law says that applying the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} morphism does nothing, exactly like with the plain {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function.
\item{} The homomorphism law says that applying a \symbol{34}pure\symbol{34} function to a \symbol{34}pure\symbol{34} value is the same as applying the function to the value in the normal way and then using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the result. In a sense, that means {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} preserves function application.
\item{} The interchange law says that applying a morphism to a \symbol{34}pure\symbol{34} value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the same as applying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure (\${} y)}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the morphism. No surprises there -{} as we have seen in the \mylref{148}{higher order functions chapter}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${} y)}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the function that supplies {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as argument to another function.
\item{} The composition law says that if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used to compose morphisms the composition is associative, like plain function composition \myfootnote{With plain functions, we have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily h . g . f = (h . g) . f = h . (g . f)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That is why we never bother to use parentheses in the middle of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} chains.}.
\end{myitemize}

There is also a bonus law about the relation between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}fmap}\newline
\end{Highlighting}
\end{Shaded}

Applying a \symbol{34}pure\symbol{34} function with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equivalent to using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This law is a consequence of the other ones, so you need not bother with proving it when writing instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Check that the Applicative laws hold for this instance for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances for \newline{}
a. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either e}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for a fixed {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily e} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}b. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ((-{}>{}) r)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for a fixed {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}}
\section{Déja vu}
\label{310}

Does {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} remind you of anything?

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{pure\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

The only difference between that and...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{return}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

... is the class constraint. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} serve the same purpose; that is, bringing values into functors. The uncanny resemblances do not stop here. Back in the \mylref{257}{chapter about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}} we mentioned a function called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{ap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

... which could be used to make functions with many arguments less painful to handle in monadic code:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{allTypes\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{GeneratorState}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Float}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Char}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Integer}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Bool}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\NormalTok{allTypes\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{liftM\ensuremath{\text{ }}(,,,,,,)\ensuremath{\text{ }}getRandom}\newline
\ensuremath{\text{ }}\OtherTok{`ap`}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\OtherTok{`ap`}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\OtherTok{`ap`}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\OtherTok{`ap`}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\OtherTok{`ap`}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\ensuremath{\text{ }}\OtherTok{`ap`}\ensuremath{\text{ }}\NormalTok{getRandom}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} looks a lot like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Those, of course, are not coincidences. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} inherits from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}}\DataTypeTok{Monad}\newline
\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{(}\OtherTok{m\ensuremath{\text{ }}::}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\CommentTok{--etc.}\newline
\end{Highlighting}
\end{Shaded}

... because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are enough to implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{And if the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance follows the monad laws, the resulting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will automatically follow the applicative laws.}.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pure\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return}\newline
\NormalTok{(}\FunctionTok{<*>}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{ap}\newline
\ensuremath{\text{ }}\newline
\NormalTok{ap\ensuremath{\text{ }}u\ensuremath{\text{ }}v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{u}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{v}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(f\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

Several other monadic functions have more general applicative versions. Here are a few of them:

\begin{longtable}{>{\RaggedRight}p{0.13407\linewidth}>{\RaggedRight}p{0.14669\linewidth}>{\RaggedRight}p{0.63353\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Monadic}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Applicative }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Module \newline{}{\small (where to find the applicative version)}}\endhead \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Prelude (GHC 7.10+); \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html}{Control.Applicative}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftA2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html}{Control.Applicative}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Prelude (GHC 7.10+); \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html}{Data.Traversable}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequence}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html}{Data.Traversable}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forM_}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily for_}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html}{Data.Foldable}
\end{longtable}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Write a definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Do not use do-{}notation.
\item{} Implement \newline{}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftA5 :: Applicative f =>{} (a -{}>{} b -{}>{} c -{}>{} d -{}>{} e -{}>{} k) \newline{}
-{}>{} f a -{}>{} f b -{}>{} f c -{}>{} f d -{}>{} f e -{}>{} f k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}}
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ZipList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{311}

Lists are applicative functors as well. Specialised to lists, the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{[a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\end{Highlighting}
\end{Shaded}

... and so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} applies a list of functions to another list. But exactly how is that done?

The standard instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists, which follows from \mylref{240}{the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance}, applies every function to every element, like an explosive version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{5}\FunctionTok{*}\NormalTok{),(}\DecValTok{9}\FunctionTok{*}\NormalTok{)]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{7}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{14}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{20}\NormalTok{,}\DecValTok{35}\NormalTok{,}\DecValTok{9}\NormalTok{,}\DecValTok{36}\NormalTok{,}\DecValTok{63}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

Interestingly, there is another reasonable way of applying a list of functions. Instead of using every combination of functions and values, we can match each function with the value in the corresponding position in the other list. A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prelude}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function which can be used for that is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zipWith}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}zipWith}\newline
\NormalTok{zipWith}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{c)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[c]}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{zipWith\ensuremath{\text{ }}(}\FunctionTok{\$}\NormalTok{)\ensuremath{\text{ }}[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{5}\FunctionTok{*}\NormalTok{),(}\DecValTok{9}\FunctionTok{*}\NormalTok{)]\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{7}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{20}\NormalTok{,}\DecValTok{63}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

When there are two useful possible instances for a single type, the dilemma is averted by creating a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which implements one of them. In this case, we have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ZipList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which lives in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control.Applicative.html}{Control.Applicative}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}getZipList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}\}}\newline
\end{Highlighting}
\end{Shaded}

We have already seen what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}*>{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should be for zip-{}lists; all that is needed is to add the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wrappers:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{fs)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{(zipWith\ensuremath{\text{ }}(}\FunctionTok{\$}\NormalTok{)\ensuremath{\text{ }}fs\ensuremath{\text{ }}xs)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{undefined\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}TODO}\newline
\end{Highlighting}
\end{Shaded}

As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it is tempting to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure x = ZipList {[}x{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, following the standard list instance. We can\textquotesingle{}t do that, however, as it violates the applicative laws. According to the identity law:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pure\ensuremath{\text{ }}id\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{v}\newline
\end{Highlighting}
\end{Shaded}

Substituting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the suggested {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we get:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[id]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{xs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{xs}\newline
\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{(zipWith\ensuremath{\text{ }}(}\FunctionTok{\$}\NormalTok{)\ensuremath{\text{ }}[id]\ensuremath{\text{ }}xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{xs}\newline
\end{Highlighting}
\end{Shaded}

Now, suppose {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the infinite list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}1..{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{(zipWith\ensuremath{\text{ }}(}\FunctionTok{\$}\NormalTok{)\ensuremath{\text{ }}[id]\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\NormalTok{])\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{]}\newline
\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\NormalTok{]\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Obviously\ensuremath{\text{ }}false!}\newline
\end{Highlighting}
\end{Shaded}

The problem is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zipWith}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} produces lists whose length is that of the shortest list passed as argument, and so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (ZipList {[}id{]} <{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will cut off all elements of the other zip-{}list after the first. The only way to ensure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zipWith (\${}) fs}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} never removes elements is making {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} infinite. The correct {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} follows from that:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{fs)\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{(zipWith\ensuremath{\text{ }}(}\FunctionTok{\$}\NormalTok{)\ensuremath{\text{ }}fs\ensuremath{\text{ }}xs)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{(repeat\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ZipList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} applicative instance offers an alternative to all the zipN and zipWithN functions in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-List.html}{Data.List} which can be extended to any number of arguments:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{>>>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Applicative}\newline
\FunctionTok{>>>}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{5}\FunctionTok{*}\NormalTok{),(}\DecValTok{9}\FunctionTok{*}\NormalTok{)]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{7}\NormalTok{]}\newline
\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{\{getZipList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{20}\NormalTok{,}\DecValTok{63}\NormalTok{]\}}\newline
\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{(,,)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{9}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{1}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{9}\NormalTok{]}\newline
\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{\{getZipList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{0}\NormalTok{),(}\DecValTok{4}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{0}\NormalTok{),(}\DecValTok{9}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{9}\NormalTok{)]\}}\newline
\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{liftA3\ensuremath{\text{ }}(,,)\ensuremath{\text{ }}(}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{9}\NormalTok{])\ensuremath{\text{ }}(}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{1}\NormalTok{])\ensuremath{\text{ }}(}\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{9}\NormalTok{])}\newline
\DataTypeTok{ZipList}\ensuremath{\text{ }}\NormalTok{\{getZipList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{0}\NormalTok{),(}\DecValTok{4}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{0}\NormalTok{),(}\DecValTok{9}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{9}\NormalTok{)]\}}\newline
\end{Highlighting}
\end{Shaded}

\section{Sequencing of effects}
\label{312}

As we have just seen, the standard {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance for lists applies every function in one list to every element of the other. That, however, does not specify {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} unambiguously. To see why, try to guess what is the result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}(2*),(3*){]}<{}*>{}{[}4,5{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without looking at the example above or the answer just below.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{3}\FunctionTok{*}\NormalTok{)]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{]}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\FunctionTok{---}\ensuremath{\text{ }}\FunctionTok{...}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\NormalTok{[}\DecValTok{8}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{12}\NormalTok{,}\DecValTok{15}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

Unless you were paying very close attention or had already analysed the implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the odds of getting it right were about even. The other possibility would be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}8,12,10,15{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The difference is that for the first (and correct) answer the result is obtained by taking the skeleton of the first list and replacing each element by all possible combinations with elements of the second list, while for the other possibility the starting point is the second list.

In more general terms, the difference between is one of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape sequencing of effects}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Here, by effects we mean the functorial context, as opposed to the values within the functor (some examples: the skeleton of a list, actions performed in the real world in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the existence of a value in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). The existence of two legal implementations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists which only differ in the sequencing of effects indicates that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a non-{}commutative applicative functor. A {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape commutative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} applicative functor, by contrast, leaves no margin for ambiguity in that respect. More formally, a commutative applicative functor is one for which the following holds:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{liftA2\ensuremath{\text{ }}f\ensuremath{\text{ }}u\ensuremath{\text{ }}v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{liftA2\ensuremath{\text{ }}(flip\ensuremath{\text{ }}f)\ensuremath{\text{ }}v\ensuremath{\text{ }}u\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Commutativity}\newline
\end{Highlighting}
\end{Shaded}

Or, equivalently,

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{flip\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{u}\newline
\end{Highlighting}
\end{Shaded}

By the way, if you hear about {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape commutative monads}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Haskell, the concept involved is the same, only specialised to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Commutativity (or the lack thereof) affects other functions which are derived from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a clear example:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combines effects while preserving only the values of its second argument. For monads, it is equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Here is a demonstration of it using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is commutative:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\DataTypeTok{Nothing}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\newline
\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

Swapping the arguments does not affect the effects (that is, the being and nothingness of wrapped values). For {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, swapping the arguments does reorder the effects:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"foo"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"bar"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)}\newline
\StringTok{"foo"}\newline
\StringTok{"bar"}\newline
\DecValTok{3}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"bar"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"foo"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)}\newline
\StringTok{"bar"}\newline
\StringTok{"foo"}\newline
\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

The convention in Haskell is to always implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and other applicative operators using left-{}to-{}right sequencing. Even though this convention helps reducing confusion, it also means appearances sometimes are misleading. For instance, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip (*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as it sequences effects from left to right just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"foo"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<*}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"bar"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)}\newline
\StringTok{"foo"}\newline
\StringTok{"bar"}\newline
\DecValTok{2}\newline
\end{Highlighting}
\end{Shaded}

For the same reason, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}**>{}) :: Applicative f =>{} f a -{}>{} f (a -{}>{} b) -{}>{} f b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That means it provides a way of inverting the sequencing:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{3}\FunctionTok{*}\NormalTok{)]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{8}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{12}\NormalTok{,}\DecValTok{15}\NormalTok{]}\newline
\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{<**>}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{3}\FunctionTok{*}\NormalTok{)]}\newline
\NormalTok{[}\DecValTok{8}\NormalTok{,}\DecValTok{12}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{15}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

An alternative is the \myhref{http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Control-Applicative-Backwards.html}{Control.Applicative.Backwards} module from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily transformers}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which offers a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for flipping the order of effects:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Backwards}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Backwards}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}forwards\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}\}}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{>>>}\ensuremath{\text{ }}\DataTypeTok{Backwards}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{3}\FunctionTok{*}\NormalTok{)]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Backwards}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{]}\newline
\DataTypeTok{Backwards}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{8}\NormalTok{,}\DecValTok{12}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{15}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} For the list functor, implement from scratch (that is, without using anything from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} directly) both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and its version with the \symbol{34}wrong\symbol{34} sequencing of effects, \newline{}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}|*|>{}) :: Applicative f =>{} f (a -{}>{} b) -{}>{} f a -{}>{} f b}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Rewrite the definition of commutativity for a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using do-{}notation instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftM2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Are the following applicative functors commutative? \newline{}
a. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ZipList} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}b. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ((-{}>{}) r)} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}c. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (Use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition from the \mylref{264}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} chapter}. Hint: You may find the answer to exercise 2 of this block useful.)
\item{} What is the result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}2,7,8{]} *>{} {[}3,9{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? (Try to guess without writing.)
\item{} Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}**>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in terms of other {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions.
\item{} As we have just seen, some functors allow two legal implementations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which are only different in the sequencing of effects. Why there is not an analogous issue involving {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?

\end{myenumerate}}
\section{A sliding scale of power}
\label{313}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Three closely related functor type classes; three of the most important classes in Haskell. Though we have seen many examples of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in use, and a few of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we have not compared them head to head yet. If we ignore {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}/{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for a moment, the characteristic methods of the three classes are:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\OtherTok{(<*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b}\newline
\OtherTok{(>>=)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

While those look like disparate types, we can change the picture with a few aesthetic adjustments. Let\textquotesingle{}s replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by its infix synonym, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}\${}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by its flipped version, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (=<{}<{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; and tidy up the signatures a bit:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{(<\$>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}b)}\newline
\OtherTok{(<*>)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}b)}\newline
\OtherTok{(=<<)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}b)}\newline
\end{Highlighting}
\end{Shaded}

Suddenly, the similarities are striking. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (=<{}<{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are all mapping functions over {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s \myfootnote{It is not just a question of type signatures resembling each other: the similarity has theoretical ballast. One aspect of the connection is that it is no coincidence that all three type classes have identity and composition laws.}. The differences between them are in what is being mapped over in each case:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} maps arbitrary functions over functors.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} maps {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t (a -{}>{} b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \mylref{309}{morphisms} over (applicative) functors.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (=<{}<{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} maps {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} t b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions over (monadic) functors.
\end{myitemize}

The day-{}to-{}day differences in uses of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} follow from what the types of those three mapping functions allow you to do. As you move from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and then to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you gain in power, versatility and control, at the cost of guarantees about the results. We will now slide along this scale. While doing so, we will use the contrasting terms {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape values}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape context}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to refer to plain values within a functor and to the whatever surrounds them, respectively.

The type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ensures that it is impossible to use it to change the context, no matter which function it is given. In {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} b) -{}>{} t a -{}>{} t b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function has nothing to do with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} context of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functorial value, and so applying it cannot affect the context. For that reason, if you do {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap f xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on some list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the number of elements of the list will never change.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}(}\DecValTok{2}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}[}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{4}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{12}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

That can be taken as a safety guarantee or as an unfortunate restriction, depending on what you intend. In any case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is clearly able to change the context:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[(}\DecValTok{2}\FunctionTok{*}\NormalTok{),(}\DecValTok{3}\FunctionTok{*}\NormalTok{)]\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{4}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{12}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{15}\NormalTok{,}\DecValTok{18}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t (a -{}>{} b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} morphism carries a context of its own, which is combined with that of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functorial value. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, is subject to a more subtle restriction. While {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t (a -{}>{} b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} morphisms carry context, within them there are plain {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} b)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which are still unable to modify the context. That means the changes to the context {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} performs are fully determined by the context of its arguments, and the values have no influence over the resulting context.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"foo"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}(}\DecValTok{2}\FunctionTok{*}\NormalTok{))\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"bar"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)}\newline
\StringTok{"foo"}\newline
\StringTok{"bar"}\newline
\DecValTok{6}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"foo"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"bar"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)}\newline
\StringTok{"foo"}\newline
\StringTok{"bar"}\newline
\DecValTok{3}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"foo"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}undefined)\ensuremath{\text{ }}}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{(print\ensuremath{\text{ }}}\StringTok{"bar"}\ensuremath{\text{ }}\FunctionTok{*>}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)}\newline
\StringTok{"foo"}\newline
\StringTok{"bar"}\newline
\DecValTok{3}\newline
\end{Highlighting}
\end{Shaded}

Thus with list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you know that the length of the resulting list will be the product of the lengths of the original lists, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you know that all real world effect will happen as long as the evaluation terminates, and so forth.

With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, we are in a very different game. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} t b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, and so it is able to create context from values. That means a lot of flexibility:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{replicate\ensuremath{\text{ }}x\ensuremath{\text{ }}x}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{5}\NormalTok{]}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{]\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{replicate\ensuremath{\text{ }}x\ensuremath{\text{ }}x}\newline
\NormalTok{[]}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{print\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{10}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\StringTok{"Too\ensuremath{\text{ }}small"}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\StringTok{"OK"}\newline
\StringTok{"Too\ensuremath{\text{ }}small"}\newline
\DataTypeTok{Prelude}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DecValTok{42}\ensuremath{\text{ }}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{print\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{10}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\StringTok{"Too\ensuremath{\text{ }}small"}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\StringTok{"OK"}\newline
\StringTok{"OK"}\newline
\end{Highlighting}
\end{Shaded}

Taking advantage of the extra flexibility, however, might mean having less guarantees about, for instance, whether your functions are able to unexpectedly erase parts of a data structure for pathological inputs, or whether the control flow in your application remains intelligible. In some situations there might be performance implications as well, as the complex data dependencies monadic code makes possible might prevent useful refactorings and optimisations. All in all, it is a good idea to only use as much power as needed for the task at hand. If you do need the extra capabilities of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, go right ahead; however, it is often worth it to check whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are sufficient.

\LaTeXExercisesTemplate{The next few exercises concern the following tree data structure: \newline{}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data AT a = L a | B (AT a) (AT a)} \newline{}

\begin{myenumerate}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily AT}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Do not use shortcuts such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure{\mbox{$~$}}={\mbox{$~$}}return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances should match; in particular, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should be equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which follows from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance.
\item{} Implement the following functions, using either the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} one or neither of them, if neither is enough to provide a solution. Between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, choose the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape least}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} powerful one which is still good enough for the task. Justify your choice for each case in a few words. \newline{}
a. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fructify :: AT a -{}>{} AT a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which grows the tree by replacing each leaf {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily L}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a branch {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily B}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} containing two copies of the leaf. \newline{}
b. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily prune :: a -{}>{} (a -{}>{} Bool) -{}>{} AT a -{}>{} AT a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily prune z p t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} replacing a branch of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a leaf carrying the default value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} whenever any of the leaves directly on it satisfies the test {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily p}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. \newline{}
c. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reproduce :: (a -{}>{} b) -{}>{} (a -{}>{} b) -{}>{} AT a -{}>{} AT b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reproduce f g t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} resulting in a new tree with two modified copies of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the root branch. The left copy is obtained by applying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the values in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and the same goes for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the right copy.
\item{} There is another legal instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily AT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the reversed sequencing version of the original one doesn\textquotesingle{}t count). Write it. Hint: this other instance can be used to implement \newline{}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sagittalMap :: (a -{}>{} b) -{}>{} (a -{}>{} b) -{}>{} AT a -{}>{} AT b} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}which, when given a branch, maps one function over the left child tree and the other over the right child tree.
{\small }(In case you are wondering, \symbol{34}AT\symbol{34} stands for \symbol{34}apple tree\symbol{34}. Botanist readers, please forgive the weak metaphors.){\small }

\end{myenumerate}}
\section{The monoidal presentation}
\label{314}

Back in \mylref{230}{Understanding monads}, we saw how the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class can be specified using either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}=>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In a similar way, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} also has an alternative presentation, which might be implemented through the following type class:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Monoidal}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}unit\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}()}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(*\&*)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(a,b)}\newline
\end{Highlighting}
\end{Shaded}

There are deep theoretical reasons behind the name \symbol{34}monoidal\symbol{34} \myfootnote{For extra details, follow the leads from \myfnhref{https://wiki.haskell.org/Typeclassopedia\#Alternative_formulation}{the corresponding section of the Typeclasseopedia} and \myfnhref{http://blog.ezyang.com/2012/08/applicative-functors/}{the blog post by Edward Z. Yang which inspired it}.}. In any case, we can informally say that it does look a lot like a monoid: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provides a default functorial value whose context wraps nothing of interest, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*\&*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combines functorial values by pairing values and combining effects. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoidal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} formulation provides a clearer view of how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} manipulates functorial contexts. Naturally, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*\&*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used to define {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and vice-{}versa.

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws are equivalent to the following set of laws, stated in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoidal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}snd\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{unit\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Left\ensuremath{\text{ }}identity}\newline
\NormalTok{fmap\ensuremath{\text{ }}fst\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{unit\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Right\ensuremath{\text{ }}identity}\newline
\NormalTok{fmap\ensuremath{\text{ }}asl\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{(v\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{w)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(u\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{v)\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{w\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Associativity}\newline
\CommentTok{--\ensuremath{\text{ }}asl\ensuremath{\text{ }}(x,\ensuremath{\text{ }}(y,\ensuremath{\text{ }}z))\ensuremath{\text{ }}=\ensuremath{\text{ }}((x,\ensuremath{\text{ }}y),\ensuremath{\text{ }}z)\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

The functions to the left of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are just boilerplate to convert between equivalent types, such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ((), b)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If you ignore them, the laws are a lot less opaque than in the usual {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} formulation. By the way, just like for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} there is a bonus law, which is guaranteed to hold in Haskell:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}(g\ensuremath{\text{ }}}\FunctionTok{***}\ensuremath{\text{ }}\NormalTok{h)\ensuremath{\text{ }}(u\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{v)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}g\ensuremath{\text{ }}u\ensuremath{\text{ }}}\FunctionTok{*\&*}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}h\ensuremath{\text{ }}v\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Naturality}\newline
\CommentTok{--\ensuremath{\text{ }}g\ensuremath{\text{ }}***\ensuremath{\text{ }}h\ensuremath{\text{ }}=\ensuremath{\text{ }}\textbackslash{}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}->\ensuremath{\text{ }}(g\ensuremath{\text{ }}x,\ensuremath{\text{ }}h\ensuremath{\text{ }}y)}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Write implementations for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*\&*)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pure}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and vice-{}versa.
\item{} Formulate the law of commutative applicative functors (see the \mylref{312}{Sequencing of effects} section) in terms of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoidal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} methods.
\item{} Write from scratch {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoidal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances for: \newline{}
a. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ZipList} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}b. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ((-{}>{}) r)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Foldable}

\myminitoc
\label{315}

\label{316}
\LaTeXNullTemplate{}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class provides a generalisation of list folding ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and friends) and operations derived from it to arbitrary data structures. Besides being extremely useful, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a great example of how monoids can help formulating good abstractions.
\section{Deconstructing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{317}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is quite a busy function − two binary functions on each side of the first function arrow, with types which use two variables each.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldr}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

If we are going to generalise {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it would be convenient to have something simpler to work with, or at least to be able to break it down into simpler components. What could those components be?

A rough description of list folding would be that it consists of running through the list elements and combining them with a binary function. We happen to know one type class which is all about combining pairs of values: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If we take {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr f z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{a\ensuremath{\text{ }}}\OtherTok{`f`}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{`f`}\ensuremath{\text{ }}\NormalTok{(c\ensuremath{\text{ }}}\OtherTok{`f`}\ensuremath{\text{ }}\NormalTok{z))\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}z\ensuremath{\text{ }}[a,b,c]}\newline
\end{Highlighting}
\end{Shaded}

... and make {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f = ({\mbox{$<$}}{\mbox{$>$}})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z = mempty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{(c\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{mempty))\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}foldr\ensuremath{\text{ }}(<>)\ensuremath{\text{ }}mempty\ensuremath{\text{ }}[a,b,c]}\newline
\end{Highlighting}
\end{Shaded}

... we get {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mconcat = foldr mappend mempty}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is a simpler, specialised {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in which we do not need to specify the combining function nor initial accumulator, as we simply use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ({\mbox{$<$}}{\mbox{$>$}})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mempty}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mconcat\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[m]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mconcat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} captures the combine-{}all-{}elements aspect of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} well enough, and covers a few of its use cases:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{mconcat\ensuremath{\text{ }}[}\StringTok{"Tree"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"fingers"}\NormalTok{]\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}concat}\newline
\StringTok{"Treefingers"}\newline
\end{Highlighting}
\end{Shaded}

Neat − but surely we don\textquotesingle{}t want to be restricted to folding with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances only. One way to improve the situation a bit is by realising we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mconcat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to fold a list with elements of any type, as long as we have a function to convert them to some {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{foldMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{foldMap\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mconcat\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}g\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

That makes things more interesting already:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\DecValTok{10}\NormalTok{]}\newline
\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{\{getSum\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{55}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

So far so good, but it seems that we are still unable to fold with arbitrary combining functions. It turns out, however, that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape any}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} binary function that fits the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} signature can be used to convert values to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type! The trick is looking at the combining function passed to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a function of one argument...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldr}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

... and taking advantage of the fact that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b -{}>{} b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions form a monoid under composition, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mempty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{This trick will probably ring familiar if you did the exercise about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the end of \myfnlref{150}{Higher order functions}.}. The corresponding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance is available through the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Endo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wrapper from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{\symbol{34}Endo\symbol{34} is shorthand for \symbol{34}endomorphism\symbol{34}, a jargony word for functions from one type to the same type.}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}appEndo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mempty\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{id}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\OtherTok{`mappend`}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\end{Highlighting}
\end{Shaded}

We can now define...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{foldComposing\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{foldComposing\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}(}\DataTypeTok{Endo}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\end{Highlighting}
\end{Shaded}

... which makes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b -{}>{} b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function out of each element and composes them all:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}c)\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{id)))\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}foldComposing\ensuremath{\text{ }}f}\newline
\ensuremath{\text{ }}\NormalTok{[a,b,c]}\newline
\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{id)))\ensuremath{\text{ }}}\newline
\CommentTok{--\ensuremath{\text{ }}(<>)\ensuremath{\text{ }}and\ensuremath{\text{ }}(.)\ensuremath{\text{ }}are\ensuremath{\text{ }}associative,\ensuremath{\text{ }}so\ensuremath{\text{ }}we\ensuremath{\text{ }}don\textquotesingle{}t\ensuremath{\text{ }}actually\ensuremath{\text{ }}need\ensuremath{\text{ }}the\ensuremath{\text{ }}parentheses.}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}As\ensuremath{\text{ }}an\ensuremath{\text{ }}example,\ensuremath{\text{ }}here\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}step-by-step\ensuremath{\text{ }}evaluation:}\newline
\NormalTok{foldComposing\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{]}\newline
\NormalTok{foldMap\ensuremath{\text{ }}(}\DataTypeTok{Endo}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{))\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{]}\newline
\NormalTok{mconcat\ensuremath{\text{ }}(fmap\ensuremath{\text{ }}(}\DataTypeTok{Endo}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{))\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{])\ensuremath{\text{ }}}\newline
\NormalTok{mconcat\ensuremath{\text{ }}(fmap\ensuremath{\text{ }}}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{[(}\FunctionTok{+}\DecValTok{1}\NormalTok{),\ensuremath{\text{ }}(}\FunctionTok{+}\DecValTok{2}\NormalTok{),\ensuremath{\text{ }}(}\FunctionTok{+}\DecValTok{3}\NormalTok{)])}\newline
\NormalTok{mconcat\ensuremath{\text{ }}[}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\DecValTok{1}\NormalTok{),\ensuremath{\text{ }}}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\DecValTok{2}\NormalTok{),\ensuremath{\text{ }}}\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\DecValTok{3}\NormalTok{)]}\newline
\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{((}\FunctionTok{+}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\DecValTok{3}\NormalTok{))}\newline
\DataTypeTok{Endo}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\DecValTok{6}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

If we apply that function to some {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldr}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{foldr\ensuremath{\text{ }}f\ensuremath{\text{ }}z\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{appEndo\ensuremath{\text{ }}(foldComposing\ensuremath{\text{ }}f\ensuremath{\text{ }}xs)\ensuremath{\text{ }}z\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

...we finally recover {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That means we can define {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a function which is much simpler and therefore easier to reason about. For that reason, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the conceptual heart of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the class which generalises {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to arbitrary data structures.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}Write two implementations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists: one in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the other using recursion explicitly.

\end{myenumerate}}
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class}
\label{318}

Implementing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for a data structure requires writing just one function: either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, has a lot of other methods:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Abridged\ensuremath{\text{ }}definition,\ensuremath{\text{ }}with\ensuremath{\text{ }}just\ensuremath{\text{ }}the\ensuremath{\text{ }}method\ensuremath{\text{ }}signatures.}\newline
\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Foldable}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foldMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foldr\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}All\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}following\ensuremath{\text{ }}have\ensuremath{\text{ }}default\ensuremath{\text{ }}implementations:}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}fold\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}m\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}generalised\ensuremath{\text{ }}mconcat}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foldr\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foldl\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foldl\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foldr1\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foldl1\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}toList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}null\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}length\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}elem\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}maximum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}minimum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}sum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}product\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

The extra methods are there so that more efficient implementations can be written if necessary − for instance, if you are writing a highly optimised data structure you don\textquotesingle{}t want {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to actually do all the fancy trickery needed to turn a right fold into a left fold. In any case, writing just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives you all of the very useful functions listed above for free. And it gets even better: \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html}{Data.Foldable} provides still more functions generalised to any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, including, remarkably, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM_}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}/{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse_}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Here is a quick demonstration of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using \myhref{http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Map.html}{Data.Map} \myfootnote{For more information on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and other useful data structure implementations with, see the \myfnhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FData\%20structures\%20primer}{data structures primer}.}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{Data.Map}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{M}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testMap\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{M.fromList\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{zip\ensuremath{\text{ }}[}\DecValTok{0}\FunctionTok{..}\NormalTok{]}\newline
\ensuremath{\text{ }}\NormalTok{[}\StringTok{"Yesterday"}\NormalTok{,}\StringTok{"I"}\NormalTok{,}\StringTok{"woke"}\NormalTok{,}\StringTok{"up"}\NormalTok{,}\StringTok{"sucking"}\NormalTok{,}\StringTok{"a"}\NormalTok{,}\StringTok{"lemon"}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}testMap\ensuremath{\text{ }}}\newline
\DecValTok{7}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{sum\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}length\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{testMap\ensuremath{\text{ }}}\newline
\DecValTok{29}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{elem\ensuremath{\text{ }}}\StringTok{"lemon"}\ensuremath{\text{ }}\NormalTok{testMap\ensuremath{\text{ }}}\newline
\DataTypeTok{True}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{foldr1\ensuremath{\text{ }}(\textbackslash{}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(}\CharTok{\textquotesingle{}\ensuremath{\text{ }}\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{y))\ensuremath{\text{ }}testMap\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Be\ensuremath{\text{ }}careful:\ensuremath{\text{ }}foldr1\ensuremath{\text{ }}is\ensuremath{\text{ }}partial!}\newline
\StringTok{"Yesterday\ensuremath{\text{ }}I\ensuremath{\text{ }}woke\ensuremath{\text{ }}up\ensuremath{\text{ }}sucking\ensuremath{\text{ }}a\ensuremath{\text{ }}lemon"}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Foldable}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{traverse_\ensuremath{\text{ }}putStrLn\ensuremath{\text{ }}testMap\ensuremath{\text{ }}}\newline
\DataTypeTok{Yesterday}\newline
\DataTypeTok{I}\newline
\NormalTok{woke}\newline
\NormalTok{up}\newline
\NormalTok{sucking}\newline
\NormalTok{a}\newline
\NormalTok{lemon}\newline
\end{Highlighting}
\end{Shaded}

Beyond providing useful generalisations, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} suggest a more declarative way of thinking about folds. For instance, instead of describing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a function which runs across a list (or tree, or whatever the data structure is) accumulating its elements with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we might say that it {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape queries}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} each element for its value and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape summarises}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the results of the queries using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Sum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monoid. Though the difference may seem small, the monoidal summary perspective can help clarifying problems involving folds by separating the core issue of what sort of result we wish to obtain from the details of the data structure being folded.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}Let\textquotesingle{}s play Spot The Monoid! Here are the rules:For each function, suggest a combination of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mempty}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and, if necessary, a function to prepare the values that would allow it to be implemented with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. No need to bother with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances (unless you want to test your solutions with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, of course) − for example, \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mempty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34} would be a perfectly acceptable answer for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If necessary, you can partially apply the functions and use the supplied arguments in the answers. Do not answer every question with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} -{} that would be cheating!(Hint: if you need suggestions, have a look at the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html}{Data.Monoid}.)

\begin{myenumerate}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily product :: (Foldable t, Num a) =>{} t a -{}>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat :: Foldable t =>{} t {[}a{]} -{}>{} {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concatMap :: Foldable t =>{} (a -{}>{} {[}b{]}) -{}>{} t a -{}>{} {[}b{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily all :: Foldable t =>{} (a -{}>{} Bool) -{}>{} t a -{}>{} Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily elem :: Eq a =>{} a -{}>{} t a -{}>{} Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length :: t a -{}>{} Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse_ :: (Foldable t, Applicative f) =>{}\newline{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }(a -{}>{} f b) -{}>{} t a -{}>{} f ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapM_ :: (Foldable t, Monad m) =>{}\newline{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }(a -{}>{} m b) -{}>{} t a -{}>{} m ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeMaximum :: Ord a =>{} t a -{}>{} Maybe a} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}(like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maximum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but handling emptiness.)
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily find :: Foldable t =>{} (a -{}>{} Bool) -{}>{} t a -{}>{} Maybe a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily composeL :: Foldable t =>{}\newline{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }(b -{}>{} a -{}>{} b) -{}>{} t a -{}>{} b -{}>{} b} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}(equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.)

\end{myenumerate}

\end{myenumerate}}
\section{List-{}like folding}
\label{319}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} includes the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily toList :: Foldable t =>{} t a -{}>{} {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} method. That means any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} data structure can be turned into a list; moreover, folding the resulting list will produce the same results than folding the original structure directly. A possible {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily toList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} implementation in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be \myfootnote{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uses a different default implementation for performance reasons.}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{toList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}(\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[x])}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily toList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} reflects the fact that lists are the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries free monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for Haskell types. \symbol{34}Free\symbol{34} here means any value can be promoted to the monoid in a way which neither adds nor erases any information (we can convert values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} lists with a single element and back through {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\textbackslash{}x-{}>{}{[}x{]})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in a lossless way) \myfootnote{There is one caveat relating to non-{}termination with regards to saying lists form a free monoid. For details, see the \myfnhref{http://comonad.com/reader/2015/free-monoids-in-haskell}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Free Monoids in Haskell}} post by Dan Doel. (Note that the discussion there is quite advanced. You might not enjoy it much right now if you have just been introduced to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.)}.

A related key trait of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is made obvious by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily toList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily toList = id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists, if you are given a function defined as...

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Given\ensuremath{\text{ }}a\ensuremath{\text{ }}list\ensuremath{\text{ }}xs\ensuremath{\text{ }}::\ensuremath{\text{ }}[a]\ensuremath{\text{ }}}\newline
\OtherTok{xsAsFoldMap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m}\newline
\NormalTok{xsAsFoldMap\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}f\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

... it is always possible to recover the original list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by supplying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\textbackslash{}x-{}>{}{[}x{]})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xsAsFoldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In this sense, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lists are equivalent to their right folds}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That implies folding with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operations will unavoidably be a lossy operation if the data structure is more complex than a list. Putting it in another way, we can say that the list-{}like folds offered by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are less general than folds of the sort we have seen back in \mylref{184}{Other data structures} (formally known as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape catamorphisms}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), which do make it possible to reconstruct the original structure.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}This exercise concerns the tree type we used in \mylref{185}{Other data structures}:
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data Tree a = Leaf a | Branch (Tree a) (Tree a)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\begin{myenumerate}
\item{}Write a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{}Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeDepth :: Tree a -{}>{} Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which gives the number of branches from the root of the tree to the furthest leaf. Use either the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily treeFold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} catamorphism defined in \mylref{189}{Other data structures}. Are both suggestions actually possible?

\end{myenumerate}

\end{myenumerate}}
\section{More facts about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{320}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is slightly unusual among Haskell classes which are both principled and general-{}purpose in that it has no laws of its own. The closest thing is the following property, which strictly speaking is not a law (as it is guaranteed to hold whatever the instance is): given a \mylref{302}{monoid homomorphism} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf},

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldMap\ensuremath{\text{ }}(g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}f}\newline
\end{Highlighting}
\end{Shaded}

Switching from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap (g . f)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g . foldMap f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be advantageous, as it means applying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only to the result of the fold, rather than to the potentially many elements in the structure being folded.

If the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structure is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well, it also automatically holds that...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldMap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fold\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f}\newline
\end{Highlighting}
\end{Shaded}

... and thus we get, after applying the \mylref{209}{second functor law} and the property just above:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldMap\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}(g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

Though the presence of a method such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might suggest that any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} types should have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances as well, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not actually a superclass of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That makes it possible to give {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances to structures that, for whatever reason, cannot be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s. The most common example are the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FData\%20structures\%20primer\%23Variations}{sets} from \myhref{http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Set.html}{Data.Set}. Element types for those sets must be instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ord}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and therefore their {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function cannot be used as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which has no additional class constraints. That, however, does not deny {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Set.Set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an useful {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{Data.Set}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{S}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testSet\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{S.fromList\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{0}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{testSet\ensuremath{\text{ }}}\newline
\NormalTok{fromList\ensuremath{\text{ }}[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{5}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Foldable}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{toList\ensuremath{\text{ }}testSet}\newline
\NormalTok{[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{5}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}show\ensuremath{\text{ }}testSet\ensuremath{\text{ }}}\newline
\StringTok{"01235"}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}

\begin{myenumerate}
\item{}Write the monoid instance for pairs, \newline{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Monoid a, Monoid b) =>{} Monoid (a,b)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\item{}Prove that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily snd}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are monoid homomorphisms.
\item{}Use the monoid homomorphism property of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} presented above to prove that \newline{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap f \&\&\& foldMap g = foldMap (f \&\&\& g)} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
where \newline{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f \&\&\& g = \textbackslash{}x -{}>{} (f x, g x)} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}

This exercise is based on a message by Edward Kmett \myfootnote{Source (Haskell Café): \myplainurl{https://mail.haskell.org/pipermail/haskell-cafe/2015-February/118152.html}}.

\end{myenumerate}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Traversable}

\myminitoc
\label{321}

\label{322}
\LaTeXNullTemplate{}

We already have studied four of the five type classes in the Prelude that can be used for data structure manipulation: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The fifth one is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{Strictly speaking, we should refer to the five classes in the GHC Prelude, as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} aren\textquotesingle{}t officially part of the Prelude yet according to the \myfnhref{https://www.haskell.org/onlinereport/haskell2010}{Haskell Report}. It is just a matter of time for them to be included, though.}. To traverse means to walk across, and that is exactly what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} generalises: walking across a structure, collecting results at each stop.
\section{Functors made for walking}
\label{323}

If traversing means walking across, though, we have been performing traversals for a long time already. Consider the following plausible {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances for lists:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Foldable}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{mempty}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{<>}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} walks across the list, applies {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to each element and collects the results by rebuilding the list. Similarly, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} walks across the list, applies {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to each element and collects the results by combining them with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, are not enough to express all useful ways of traversing. For instance, suppose we have the following {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}encoded test for negative numbers...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{deleteIfNegative\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{deleteIfNegative\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

... and we want to use it to implement...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{rejectWithNegatives\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\end{Highlighting}
\end{Shaded}

... which gives back the original list wrapped in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if there are no negative elements in it, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} otherwise. Neither {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} nor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on their own would help. Using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would replace the structure of the original list with that of whatever {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we pick for folding, and there is no way of twisting that into giving either the original list or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{One thing to attempt would be exploiting the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid a =>{} Monoid (Maybe a)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance from \myfnhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html}{Data.Monoid}. If you try that, however, you will see it can\textquotesingle{}t possibly give the desired results.}. As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might be attractive at first...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\FunctionTok{-}\DecValTok{5}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{2}\NormalTok{,}\FunctionTok{-}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}deleteIfNegative\ensuremath{\text{ }}testList}\newline
\NormalTok{[}\DataTypeTok{Nothing}\NormalTok{,}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{,}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{,}\DataTypeTok{Nothing}\NormalTok{,}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{0}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

... but then we would need a way to turn a list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a list. If you squint hard enough, that looks somewhat like a fold. Instead, however, of merely combining the values and destroying the list, we need to combine the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} contexts of the values and recreate the list structure within the combined context. Fortunately, there is a type class which is essentially about combining {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} contexts: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{The \myfnhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20functors\%20II\%23The\%20monoidal\%20presentation}{monoidal presentation} of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes that very clear.}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, in turn, leads us to the class we need: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}sequenceA\ensuremath{\text{ }}::\ensuremath{\text{ }}Applicative\ensuremath{\text{ }}f\ensuremath{\text{ }}=>\ensuremath{\text{ }}[f\ensuremath{\text{ }}a]\ensuremath{\text{ }}->\ensuremath{\text{ }}f\ensuremath{\text{ }}[a]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}(u}\FunctionTok{:}\NormalTok{us)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{:}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}us}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Or,\ensuremath{\text{ }}equivalently:}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}us\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}(\textbackslash{}u\ensuremath{\text{ }}v\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{:}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{u\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v)\ensuremath{\text{ }}(pure\ensuremath{\text{ }}[])\ensuremath{\text{ }}us}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} contexts what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values. From that point of view, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is analogous to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} − it creates an applicative summary of the contexts within a structure, and then rebuilds the structure in the new context. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the function we were looking for:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{rejectWithNegatives\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}deleteIfNegative}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}rejectWithNegatives\ensuremath{\text{ }}}\newline
\NormalTok{rejectWithNegatives}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(t\ensuremath{\text{ }}a)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{rejectWithNegatives\ensuremath{\text{ }}testList}\newline
\DataTypeTok{Nothing}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{rejectWithNegatives\ensuremath{\text{ }}[}\DecValTok{0}\FunctionTok{..}\DecValTok{10}\NormalTok{]}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{,}\DecValTok{9}\NormalTok{,}\DecValTok{10}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

These are the methods of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{t,\ensuremath{\text{ }}}\DataTypeTok{Foldable}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}traverse\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(t\ensuremath{\text{ }}b)}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}sequenceA\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}(f\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(t\ensuremath{\text{ }}a)}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}These\ensuremath{\text{ }}methods\ensuremath{\text{ }}have\ensuremath{\text{ }}default\ensuremath{\text{ }}definitions.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}They\ensuremath{\text{ }}are\ensuremath{\text{ }}merely\ensuremath{\text{ }}specialised\ensuremath{\text{ }}versions\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}other\ensuremath{\text{ }}two.}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}mapM\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}(t\ensuremath{\text{ }}b)}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}sequence\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}(m\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}(t\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is analogous to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is analogous to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. They can be defined in terms of each other, and therefore a minimal implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} just needs to supply one of them:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{traverse\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f}\newline
\NormalTok{sequenceA\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}id}\newline
\end{Highlighting}
\end{Shaded}

Rewriting the list instance using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes the parallels with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} obvious:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}_\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}f\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{:}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}f\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Or,\ensuremath{\text{ }}equivalently:}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}f\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}(\textbackslash{}x\ensuremath{\text{ }}v\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{:}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{v)\ensuremath{\text{ }}(pure\ensuremath{\text{ }}[])\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

In general, it is better to write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when implementing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as the default definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} performs, in principle, two runs across the structure (one for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and another for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

We can cleanly define {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rejectWithNegatives}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} directly in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{rejectWithNegatives\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Ord}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(t\ensuremath{\text{ }}a)}\newline
\NormalTok{rejectWithNegatives\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}deleteIfNegative}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}Give the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from \mylref{185}{Other data structures} a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance. The definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Tree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is: \newline{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data Tree a = Leaf a | Branch (Tree a) (Tree a)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}}
\section{Interpretations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{324}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structures can be walked over using the applicative functor of your choice. The type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{traverse\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(t\ensuremath{\text{ }}b)}\newline
\end{Highlighting}
\end{Shaded}

... resembles that of mapping functions we have seen in other classes. Rather than using its function argument to insert functorial contexts under the original structure (as might be done with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) or to modify the structure itself (as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does), {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} adds an extra layer of context {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape on the top}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the structure. Said in another way, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape effectful traversals}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} − traversals which produce an overall effect (i.e. the new outer layer of context).

If the structure below the new layer is recoverable at all, it will match the original structure (the values might have changed, of course). Here is an example involving nested lists:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}(\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{0}\FunctionTok{..}\NormalTok{x])\ensuremath{\text{ }}[}\DecValTok{0}\FunctionTok{..}\DecValTok{3}\NormalTok{]}\newline
\NormalTok{[[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{3}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{]}\newline
\NormalTok{,[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{3}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{0}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{1}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\NormalTok{,[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{3}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{]}\newline
\NormalTok{,[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{3}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{0}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{1}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The inner lists retain the structure the original list − all of them have four elements. The outer list is the new layer, corresponding to the introduction of nondeterminism through allowing each element to vary from zero to its (original) value.

We can also understand {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by focusing on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and how it {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape distributes}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} context.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}[[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{],[}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{7}\NormalTok{]]}\newline
\NormalTok{[[}\DecValTok{1}\NormalTok{,}\DecValTok{5}\NormalTok{],[}\DecValTok{1}\NormalTok{,}\DecValTok{6}\NormalTok{],[}\DecValTok{1}\NormalTok{,}\DecValTok{7}\NormalTok{],[}\DecValTok{2}\NormalTok{,}\DecValTok{5}\NormalTok{],[}\DecValTok{2}\NormalTok{,}\DecValTok{6}\NormalTok{],[}\DecValTok{2}\NormalTok{,}\DecValTok{7}\NormalTok{]}\newline
\NormalTok{,[}\DecValTok{3}\NormalTok{,}\DecValTok{5}\NormalTok{],[}\DecValTok{3}\NormalTok{,}\DecValTok{6}\NormalTok{],[}\DecValTok{3}\NormalTok{,}\DecValTok{7}\NormalTok{],[}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{],[}\DecValTok{4}\NormalTok{,}\DecValTok{6}\NormalTok{],[}\DecValTok{4}\NormalTok{,}\DecValTok{7}\NormalTok{]}\newline
\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

In this example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be seen distributing the old outer structure into the new outer structure, and so the new inner lists have two elements, just like the old outer list. The new outer structure is a list of twelve elements, which is exactly what you would expect from combining with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} one list of four elements with another of three elements. One interesting aspect of the distribution perspective is how it helps making sense of why certain functors cannot possibly have instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (how would one distribute an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} action? Or a function?).

\LaTeXExercisesTemplate{Having the \mylref{305}{applicative functors} chapter fresh in memory can help with the following exercises.

\begin{myenumerate}
\item{}Consider a representation of \myhref{https://en.wikipedia.org/wiki/Matrix\%20\%28mathematics\%29}{matrices} as nested lists, with the inner lists being the rows. Use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to implement \newline{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily transpose :: {[}{[}a{]}{]} -{}>{} {[}{[}a{]}{]}} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
which transposes a matrix (i.e. changes columns into rows and vice-{}versa). For the purposes of this exercise, we don\textquotesingle{}t care about how fake \symbol{34}matrices\symbol{34} with rows of different sizes are handled.
\item{}Explain what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does.
\item{}Time for a round of Spot The Applicative Functor. Consider: \newline{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapAccumL :: Traversable t =>{}\newline{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }(a -{}>{} b -{}>{} (a, c)) -{}>{} a -{}>{} t b -{}>{} (a, t c)} \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
Does its type remind you of anything? Use the appropriate {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to implement it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As further guidance, here is the description of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapAccumL}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html}{Data.Traversable} documentation:
\begin{myblockquote}
\item{}The mapAccumL function behaves like a combination of fmap and foldl; it applies a function to each element of a structure, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new structure.
\end{myblockquote}

\end{myenumerate}}
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws}
\label{325}

Sensible instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} have a set of laws to follow. There are the following two laws:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{traverse\ensuremath{\text{ }}}\DataTypeTok{Identity}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}identity}\newline
\NormalTok{traverse\ensuremath{\text{ }}(}\DataTypeTok{Compose}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}(traverse\ensuremath{\text{ }}g)\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{--}\newline
\ensuremath{\text{ }}\NormalTok{composition}\newline
\end{Highlighting}
\end{Shaded}

Plus a bonus law, which is guaranteed to hold:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}If\ensuremath{\text{ }}t\ensuremath{\text{ }}is\ensuremath{\text{ }}an\ensuremath{\text{ }}applicative\ensuremath{\text{ }}homomorphism,\ensuremath{\text{ }}then}\newline
\NormalTok{t\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}(t\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}naturality}\newline
\end{Highlighting}
\end{Shaded}

Those laws are not exactly self-{}explanatory, so let\textquotesingle{}s have a closer look at them. Starting from the last one: an applicative homomorphism is a function which preserves the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operations, so that:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Given\ensuremath{\text{ }}a\ensuremath{\text{ }}choice\ensuremath{\text{ }}of\ensuremath{\text{ }}f\ensuremath{\text{ }}and\ensuremath{\text{ }}g,\ensuremath{\text{ }}and\ensuremath{\text{ }}for\ensuremath{\text{ }}any\ensuremath{\text{ }}a,}\newline
\OtherTok{t\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}a}\newline
\ensuremath{\text{ }}\newline
\NormalTok{t\ensuremath{\text{ }}(pure\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}x}\newline
\NormalTok{t\ensuremath{\text{ }}(x\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}y}\newline
\end{Highlighting}
\end{Shaded}

Note that not only this definition is analogous to the one of \mylref{302}{monoid homomorphisms} which we have seen earlier on but also that the naturality law mirrors exactly the property about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and monoid homomorphisms seen \mylref{321}{in the chapter about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}}.

The identity law involves {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the dummy functor:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}runIdentity\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

The law says that all traversing with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor does is wrap the structure with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which amounts to doing nothing (as the original structure can be trivially recovered with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runIdentity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor is thus the identity traversal, which is very reasonable indeed.

The composition law, in turn, is stated in terms of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Compose}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functor:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}g\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}getCompose\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(g\ensuremath{\text{ }}a)\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}g)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}(}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{(fmap\ensuremath{\text{ }}(fmap\ensuremath{\text{ }}f)\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}g)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{(pure\ensuremath{\text{ }}(pure\ensuremath{\text{ }}x))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\NormalTok{((}\FunctionTok{<*>}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{x)}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Compose}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} performs composition {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape of functors}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Composing two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s results in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and composing two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s results in an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{Remarkably, however, composing two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s does not necessarily result in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}. The instances are the obvious ones, threading the methods one further functorial layer down.

The composition law states that it doesn\textquotesingle{}t matter whether we perform two traversals separately (right side of the equation) or compose them in order to walk across the structure only once (left side). It is analogous, for instance, to the second functor law. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are needed because the second traversal (or the second part of the traversal, for the left side of the equation) happens below the layer of structure added by the first (part). {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Compose}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is needed so that the composed traversal is applied to the correct layer.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Compose}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are available from \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor-Identity.html}{Data.Functor.Identity} and \myhref{http://hackage.haskell.org/packages/archive/transformers/latest/doc/html/Data-Functor-Compose.html}{Data.Functor.Compose} respectively.

The laws can also be formulated in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sequenceA}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sequenceA\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}}\DataTypeTok{Identity}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}identity}\newline
\NormalTok{sequenceA\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}}\DataTypeTok{Compose}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Compose}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}sequenceA\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}composition}\newline
\CommentTok{--\ensuremath{\text{ }}For\ensuremath{\text{ }}any\ensuremath{\text{ }}applicative\ensuremath{\text{ }}homomorphism\ensuremath{\text{ }}t:}\newline
\NormalTok{t\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sequenceA\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}t\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}naturality}\newline
\end{Highlighting}
\end{Shaded}

Though it\textquotesingle{}s not immediately obvious, several desirable characteristics of traversals follow from the laws, including \myfootnote{For technical details, check the papers cited by the \myfnhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html}{Data.Traversable} documentation.}:

\begin{myitemize}
\item{} Traversals do not skip elements.
\item{} Traversals do not visit elements more than once.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse pure = pure}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Traversals cannot modify the original structure (it is either preserved or fully destroyed).
\end{myitemize}

\section{Recovering {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{326}

We still have not justified the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class constraints of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The reason for them is very simple: as long as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance follows the laws {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is enough to implement both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, all we need is to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to make a traversal out of an arbitrary function:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runIdentity\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}(}\DataTypeTok{Identity}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\end{Highlighting}
\end{Shaded}

To recover {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we need to introduce a third utility functor: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control.Applicative.html}{Control.Applicative}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}getConst\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}_\ensuremath{\text{ }}(}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape constant functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not actually contain a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value. Rather, it holds an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value which is unaffected by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For our current purposes, the truly interesting instance is the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} one

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pure\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{mempty}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{(x\ensuremath{\text{ }}}\OtherTok{`mappend`}\ensuremath{\text{ }}\NormalTok{y)}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} simply combines the values in each context with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mappend}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{This is a great illustration of how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combines contexts monoidally. If we remove the values within the context, the applicative laws in \myfnhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20functors\%20II\%23The\%20monoidal\%20presentation}{monoidal presentation} match the monoid laws exactly.}. We can exploit that to make a traversal out of any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid m =>{} a -{}>{} m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function that we might pass to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Thanks to the instance above, the traversal then becomes a fold:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foldMap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{getConst\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}(}\DataTypeTok{Const}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\end{Highlighting}
\end{Shaded}

We have just recovered from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} two functions which on the surface appear to be entirely different, and all we had to do was pick two different functors. That is a taste of how powerful an abstraction functors are \myfootnote{A prime example, and one of clear practical relevance at that, is that great ode to functors, the \myfnhref{https://hackage.haskell.org/package/lens}{lens} library.}.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Arrow tutorial}

\myminitoc
\label{327}

\label{328}
\LaTeXNullTemplate{}

Arrows provide an alternative to the usual way of structuring computations with the basic functor classes.
This chapter provides a hands-{}on tutorial about them, while the next one,
\mylref{340}{Understanding arrows}, complements it with a conceptual overview.
We recommend you to start with the tutorial, so that you get to taste what programming with arrows feel like.
You can of course switch back and forth between the tutorial and the first part of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Understanding arrows}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
if you prefer going at a slower pace. Be sure to follow along every step of the tutorial on GHC(i).
\section{Stephen\textquotesingle{}s Arrow Tutorial}
\label{329}

In this tutorial, I will create my own arrow, show how to use the arrow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation,
and show how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowChoice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works.
We will end up with a simple game of Hangman.

First, we give a language pragma to enable the arrow do notation in the compiler:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}Arrows\ensuremath{\text{ }}#-\}}\newline
\end{Highlighting}
\end{Shaded}

And then, some imports:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Arrow}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad}\newline
\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{Control.Category}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{Cat}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.List}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Maybe}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{System.Random}\newline
\end{Highlighting}
\end{Shaded}

Any Haskell function can behave as an arrow, because there is an Arrow instance for the
function type constructor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In this tutorial I will build a more interesting arrow
than this, with the ability to maintain state (something that a plain Haskell
function arrow cannot do). Arrows can produce all sorts of effects, including I/O,
but we\textquotesingle{}ll just explore some simple examples.

We\textquotesingle{}ll call our new arrow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Circuit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to suggest that we can
visualize arrows as circuits.\myfootnote{This interpretation of arrows-{}as-{}circuits is loosely based on the Yampa functional reactive programming library.}
\section{Type definition for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Circuit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{330}

A plain Haskell function treated as an arrow has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Circuit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} arrow has two distinguishing features: First, we wrap it in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
declaration to cleanly define an Arrow instance. Second, in order for the circuit to maintain its own internal state,
our arrow returns a replacement for itself along with the normal {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} output value.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}unCircuit\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b,\ensuremath{\text{ }}b)\ensuremath{\text{ }}\}}\newline
\end{Highlighting}
\end{Shaded}

To make this an arrow, we need to make it an instance of both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Throughout these definitions, we always replace each {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Circuit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with the new version
of itself that it has returned.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Cat.Category}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{id\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(Cat.id,\ensuremath{\text{ }}a)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{.}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{dot}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{cir2)\ensuremath{\text{ }}}\OtherTok{`dot`}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{cir1)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}a\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(cir1\textquotesingle{},\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cir1\ensuremath{\text{ }}a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(cir2\textquotesingle{},\ensuremath{\text{ }}c)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cir2\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(cir2\textquotesingle{}\ensuremath{\text{ }}}\OtherTok{`dot`}\ensuremath{\text{ }}\NormalTok{cir1\textquotesingle{},\ensuremath{\text{ }}c)}\newline
\end{Highlighting}
\end{Shaded}

The Cat.id function replaces itself with a copy of itself without maintaining any state. The
purpose of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is to chain two arrows together from right to left. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}<{}<{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are
based on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It needs to replace itself with the `dot` of the two replacements returned by
the execution of the argument Circuits.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Arrow}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{arr\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(arr\ensuremath{\text{ }}f,\ensuremath{\text{ }}f\ensuremath{\text{ }}a)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{first\ensuremath{\text{ }}(}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{cir)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}(b,\ensuremath{\text{ }}d)\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(cir\textquotesingle{},\ensuremath{\text{ }}c)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cir\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(first\ensuremath{\text{ }}cir\textquotesingle{},\ensuremath{\text{ }}(c,\ensuremath{\text{ }}d))}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} lifts a plain Haskell function as an arrow. Like with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the replacement it
gives is just itself, since a plain Haskell function can\textquotesingle{}t maintain state.

Now we need a function to run a circuit:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{runCircuit\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{runCircuit\ensuremath{\text{ }}_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{runCircuit\ensuremath{\text{ }}cir\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(cir\textquotesingle{},x\textquotesingle{})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{unCircuit\ensuremath{\text{ }}cir\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\textquotesingle{}\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}cir\textquotesingle{}\ensuremath{\text{ }}xs}\newline
\end{Highlighting}
\end{Shaded}

For {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapAccumL}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} fans like me, this can alternatively be written as

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{runCircuit\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{runCircuit\ensuremath{\text{ }}cir\ensuremath{\text{ }}inputs\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{snd\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{mapAccumL\ensuremath{\text{ }}(\textbackslash{}cir\ensuremath{\text{ }}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{unCircuit\ensuremath{\text{ }}cir\ensuremath{\text{ }}x)\ensuremath{\text{ }}cir\ensuremath{\text{ }}inputs}\newline
\end{Highlighting}
\end{Shaded}

or, after eta-{}reduction, simply as:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{runCircuit\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\NormalTok{runCircuit\ensuremath{\text{ }}cir\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{snd\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{mapAccumL\ensuremath{\text{ }}unCircuit\ensuremath{\text{ }}cir}\newline
\end{Highlighting}
\end{Shaded}

\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Circuit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} primitives}
\label{331}

Let\textquotesingle{}s define a generalized accumulator to be the basis for our later work. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily accum\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a less general version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily accum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}Accumulator\ensuremath{\text{ }}that\ensuremath{\text{ }}outputs\ensuremath{\text{ }}a\ensuremath{\text{ }}value\ensuremath{\text{ }}determined\ensuremath{\text{ }}by\ensuremath{\text{ }}the\ensuremath{\text{ }}supplied\ensuremath{\text{ }}function.}\newline
\OtherTok{accum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{acc\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{acc\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b,\ensuremath{\text{ }}acc))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b}\newline
\NormalTok{accum\ensuremath{\text{ }}acc\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}input\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(output,\ensuremath{\text{ }}acc\textquotesingle{})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{input\ensuremath{\text{ }}}\OtherTok{`f`}\ensuremath{\text{ }}\NormalTok{acc}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(accum\ensuremath{\text{ }}acc\textquotesingle{}\ensuremath{\text{ }}f,\ensuremath{\text{ }}output)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}|\ensuremath{\text{ }}Accumulator\ensuremath{\text{ }}that\ensuremath{\text{ }}outputs\ensuremath{\text{ }}the\ensuremath{\text{ }}accumulator\ensuremath{\text{ }}value.}\newline
\OtherTok{accum\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b}\newline
\NormalTok{accum\textquotesingle{}\ensuremath{\text{ }}acc\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{accum\ensuremath{\text{ }}acc\ensuremath{\text{ }}(\textbackslash{}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{b\textquotesingle{}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{`f`}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{(b\textquotesingle{},\ensuremath{\text{ }}b\textquotesingle{}))}\newline
\end{Highlighting}
\end{Shaded}

Here is a useful concrete accumulator which keeps a running total of all the numbers
passed to it as inputs.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{total\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{total\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{accum\textquotesingle{}\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

We can run this circuit, like this:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}total\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{2}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{4}\NormalTok{]}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\newline
\end{Highlighting}
\end{Shaded}

\section{Arrow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation}
\label{332}

Here is a statistical mean function:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mean1\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Fractional}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{mean1\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(total\ensuremath{\text{ }}}\FunctionTok{\&\&\&}\ensuremath{\text{ }}\NormalTok{(const\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{^>>}\ensuremath{\text{ }}\NormalTok{total))\ensuremath{\text{ }}}\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{arr\ensuremath{\text{ }}(uncurry\ensuremath{\text{ }}(}\FunctionTok{/}\NormalTok{))}\newline
\end{Highlighting}
\end{Shaded}

It maintains two accumulator cells, one for the sum,
and one for the number of elements. It splits the input using the \symbol{34}fanout\symbol{34} operator
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \&\&\&}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and before the input of the second stream, it discards the input value and
replaces it with 1.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const 1 \^{}>{}>{} total}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is shorthand for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr (const 1) >{}>{}>{} total}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
The first stream is the sum of the inputs. The second stream is the sum of 1 for
each input (i.e. a count of the number of inputs). Then, it merges the two streams with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (/)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator.

Here is the same function, but written using arrow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mean2\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Fractional}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{mean2\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}value\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{value}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{n}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation describes the same relationship between the arrows, but in a totally different way.
Instead of explicitly describing the wiring, you glue the arrows together using variable bindings
and pure Haskell expressions, and the compiler works out all the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr, (>{}>{}>{}), (\&\&\&)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} stuff
for you. Arrow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation also contains a pure \textquotesingle{}let\textquotesingle{} statement exactly like the monadic {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} one.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the keyword that introduces arrow notation, and it binds the arrow input to
a pattern ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily value}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in this example). Arrow statements in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block take one of these forms:

\begin{myitemize}
\item{} {\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape variable binding pattern}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}<{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape pure expression giving arrow input}}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}<{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape pure expression giving arrow input}}
\end{myitemize}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

Like with monads, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword is needed only to combine multiple lines using the variable binding patterns
with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As with monads, the last line isn\textquotesingle{}t allowed to have a variable binding pattern, and the
output value of the last line is the output value of the arrow. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily returnA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an arrow just like
\textquotesingle{}total\textquotesingle{} is (in fact, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily returnA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just the identity arrow, defined as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

Also like with monads, lines other than the last line may have no variable binding, and you get
the effect only, discarding the return value. In {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Circuit}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there would never be a point
in doing this (since no state can escape except through the return value), but in many arrows
there would be.

As you can see, for this example the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation makes the code much more readable. Let\textquotesingle{}s try them:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}mean1\ensuremath{\text{ }}[}\DecValTok{0}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{]}\newline
\NormalTok{[}\FloatTok{0.0}\NormalTok{,}\FloatTok{5.0}\NormalTok{,}\FloatTok{5.666666666666667}\NormalTok{,}\FloatTok{6.25}\NormalTok{]}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}mean2\ensuremath{\text{ }}[}\DecValTok{0}\NormalTok{,}\DecValTok{10}\NormalTok{,}\DecValTok{7}\NormalTok{,}\DecValTok{8}\NormalTok{]}\newline
\NormalTok{[}\FloatTok{0.0}\NormalTok{,}\FloatTok{5.0}\NormalTok{,}\FloatTok{5.666666666666667}\NormalTok{,}\FloatTok{6.25}\NormalTok{]}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

\section{Hangman: Pick a word}
\label{333}

Now for our Hangman game. Let\textquotesingle{}s pick a word from a dictionary:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{generator\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Random}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}a}\newline
\NormalTok{generator\ensuremath{\text{ }}range\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{accum\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}()\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{randomR\ensuremath{\text{ }}range\ensuremath{\text{ }}rng}\newline
\ensuremath{\text{ }}\newline
\NormalTok{dictionary\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[}\StringTok{"dog"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"cat"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"bird"}\NormalTok{]}\newline
\ensuremath{\text{ }}\newline
\OtherTok{pickWord\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\DataTypeTok{String}\newline
\NormalTok{pickWord\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{idx\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{generator\ensuremath{\text{ }}(}\DecValTok{0}\NormalTok{,\ensuremath{\text{ }}length\ensuremath{\text{ }}dictionary}\FunctionTok{-}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{dictionary\ensuremath{\text{ }}}\FunctionTok{!!}\ensuremath{\text{ }}\NormalTok{idx}\newline
\end{Highlighting}
\end{Shaded}

With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily generator}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we\textquotesingle{}re using the accumulator functionality to hold our random number generator.
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pickWord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t introduce anything new, except that the generator arrow is constructed by
a Haskell function that takes arguments.
Here is the output:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{rng\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getStdGen}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}(pickWord\ensuremath{\text{ }}rng)\ensuremath{\text{ }}[(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}()]}\newline
\NormalTok{[}\StringTok{"dog"}\NormalTok{,}\StringTok{"bird"}\NormalTok{,}\StringTok{"dog"}\NormalTok{]}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

We will use these little arrows in a minute. The first returns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the first time, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
forever afterwards:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{oneShot\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\DataTypeTok{Bool}\newline
\NormalTok{oneShot\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{accum\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}_\ensuremath{\text{ }}acc\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(acc,\ensuremath{\text{ }}}\DataTypeTok{False}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}oneShot\ensuremath{\text{ }}[(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}()]}\newline
\NormalTok{[}\DataTypeTok{True}\NormalTok{,}\DataTypeTok{False}\NormalTok{,}\DataTypeTok{False}\NormalTok{,}\DataTypeTok{False}\NormalTok{,}\DataTypeTok{False}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The second stores a value and returns it, when it gets a new one:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{delayedEcho\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{delayedEcho\ensuremath{\text{ }}acc\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{accum\ensuremath{\text{ }}acc\ensuremath{\text{ }}(\textbackslash{}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b,a))}\newline
\end{Highlighting}
\end{Shaded}

which can be shortened to:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{delayedEcho\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{delayedEcho\ensuremath{\text{ }}acc\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{accum\ensuremath{\text{ }}acc\ensuremath{\text{ }}(flip\ensuremath{\text{ }}(,))}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}(delayedEcho\ensuremath{\text{ }}}\DataTypeTok{False}\NormalTok{)\ensuremath{\text{ }}[}\DataTypeTok{True}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{False}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{False}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{False}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{True}\NormalTok{]\ensuremath{\text{ }}}\newline
\NormalTok{[}\DataTypeTok{False}\NormalTok{,}\DataTypeTok{True}\NormalTok{,}\DataTypeTok{False}\NormalTok{,}\DataTypeTok{False}\NormalTok{,}\DataTypeTok{False}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The game\textquotesingle{}s main arrow will be executed repeatedly, and we would like to pick the
word only once on the first iteration, and have it remember it for the rest of
the game. Rather than just mask its output on subsequent loops, we\textquotesingle{}d prefer to
actually run {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pickWord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only once (since in a real implementation it could be very slow).
However, as it stands, the data flow in a Circuit {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries must}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} go down
{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries all}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the paths of component arrows. In order to allow the data flow to go down
one path and not another, we need to make our arrow an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowChoice}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Here\textquotesingle{}s the minimal definition:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{ArrowChoice}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{left\ensuremath{\text{ }}orig}\FunctionTok{@}\NormalTok{(}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{cir)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}ebd\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{ebd\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(cir\textquotesingle{},\ensuremath{\text{ }}c)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cir\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(left\ensuremath{\text{ }}cir\textquotesingle{},\ensuremath{\text{ }}}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{c)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{d\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(left\ensuremath{\text{ }}orig,\ensuremath{\text{ }}}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{d)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{getWord\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\DataTypeTok{String}\newline
\NormalTok{getWord\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}If\ensuremath{\text{ }}this\ensuremath{\text{ }}is\ensuremath{\text{ }}the\ensuremath{\text{ }}first\ensuremath{\text{ }}game\ensuremath{\text{ }}loop,\ensuremath{\text{ }}run\ensuremath{\text{ }}pickWord.\ensuremath{\text{ }}mPicked\ensuremath{\text{ }}becomes\ensuremath{\text{ }}Just}\newline
\ensuremath{\text{ }}\FunctionTok{<}\NormalTok{word}\FunctionTok{>.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}On\ensuremath{\text{ }}subsequent\ensuremath{\text{ }}loops,\ensuremath{\text{ }}mPicked\ensuremath{\text{ }}is\ensuremath{\text{ }}Nothing.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{firstTime\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{oneShot\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mPicked\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{firstTime}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{picked\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{pickWord\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{picked}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}An\ensuremath{\text{ }}accumulator\ensuremath{\text{ }}that\ensuremath{\text{ }}retains\ensuremath{\text{ }}the\ensuremath{\text{ }}last\ensuremath{\text{ }}\textquotesingle{}Just\textquotesingle{}\ensuremath{\text{ }}value.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mWord\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{accum\textquotesingle{}\ensuremath{\text{ }}}\DataTypeTok{Nothing}\ensuremath{\text{ }}\NormalTok{mplus\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{mPicked}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{fromJust\ensuremath{\text{ }}mWord}\newline
\end{Highlighting}
\end{Shaded}

Because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowChoice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is defined, the compiler now allows us to put an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} after {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and thus
choose which arrow to execute (either run {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pickWord}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or skip it). Note that this is not a normal Haskell
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: The compiler implements this using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowChoice}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
The compiler also implements {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} here in the same way.

It is important to understand that none of the local name bindings, including the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument, is
in scope between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}<{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} except in the condition of an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
For example, this is illegal:

\TemplatePreformat{ \newline{}
\{-{} \newline{}
proc {}rng {}-{}>{} {}do \newline{}
 {} {} {} {}idx {}<{}-{} {}generator {}(0, {}length {}dictionary-{}1) {}rng {}-{}<{} {}() {} {}-{}-{} {}ILLEGAL \newline{}
 {} {} {} {}returnA {}-{}<{} {}dictionary {}!! {}idx \newline{}
-{}\} \newline{}
}

The arrow to execute, here {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily generator (0, length dictionary -{}1) rng}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is evaluated
in the scope that exists outside the \textquotesingle{}proc\textquotesingle{} statement. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rng}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not exist in this scope.
If you think about it, this makes sense, because the arrow is constructed at the beginning
only (outside {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). If it were constructed for each execution of the arrow, how would it
keep its state?

Let\textquotesingle{}s try {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getWord}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{rng\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getStdGen}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}(getWord\ensuremath{\text{ }}rng)\ensuremath{\text{ }}[(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}(),\ensuremath{\text{ }}()]}\newline
\NormalTok{[}\StringTok{"dog"}\NormalTok{,}\StringTok{"dog"}\NormalTok{,}\StringTok{"dog"}\NormalTok{,}\StringTok{"dog"}\NormalTok{,}\StringTok{"dog"}\NormalTok{,}\StringTok{"dog"}\NormalTok{]}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\newline
\end{Highlighting}
\end{Shaded}

\section{Hangman: Main program}
\label{334}

Now here is the game:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{attempts\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{attempts\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\newline
\ensuremath{\text{ }}\newline
\OtherTok{livesLeft\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{livesLeft\ensuremath{\text{ }}hung\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\StringTok{"Lives:\ensuremath{\text{ }}["}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{replicate\ensuremath{\text{ }}(attempts\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\NormalTok{hung)\ensuremath{\text{ }}}\CharTok{\textquotesingle{}#\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{replicate\ensuremath{\text{ }}hung\ensuremath{\text{ }}}\CharTok{\textquotesingle{}\ensuremath{\text{ }}\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"]"}\newline
\ensuremath{\text{ }}\newline
\OtherTok{hangman\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{StdGen}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Bool}\NormalTok{,\ensuremath{\text{ }}[}\DataTypeTok{String}\NormalTok{])}\newline
\NormalTok{hangman\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}userInput\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getWord\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{letter\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{listToMaybe\ensuremath{\text{ }}userInput}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{guessed\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{updateGuess\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{(word,\ensuremath{\text{ }}letter)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{hung\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{updateHung\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{(word,\ensuremath{\text{ }}letter)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{end\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{delayedEcho\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}(word\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{guessed\ensuremath{\text{ }}}\FunctionTok{||}\ensuremath{\text{ }}\NormalTok{hung\ensuremath{\text{ }}}\FunctionTok{>=}\ensuremath{\text{ }}\NormalTok{attempts)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{guessed}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{[guessed,\ensuremath{\text{ }}}\StringTok{"You\ensuremath{\text{ }}won!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{hung\ensuremath{\text{ }}}\FunctionTok{>=}\ensuremath{\text{ }}\NormalTok{attempts}\newline
\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{[guessed,\ensuremath{\text{ }}livesLeft\ensuremath{\text{ }}hung,\ensuremath{\text{ }}}\StringTok{"You\ensuremath{\text{ }}died!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{[guessed,\ensuremath{\text{ }}livesLeft\ensuremath{\text{ }}hung]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{(end,\ensuremath{\text{ }}result)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}updateGuess\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{String}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Char}\NormalTok{)\ensuremath{\text{ }}}\DataTypeTok{String}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{updateGuess\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{accum\textquotesingle{}\ensuremath{\text{ }}(repeat\ensuremath{\text{ }}}\CharTok{\textquotesingle{}_\textquotesingle{}}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}(word,\ensuremath{\text{ }}letter)\ensuremath{\text{ }}guess\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{letter\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{l\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}(\textbackslash{}(w,\ensuremath{\text{ }}g)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{w\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{l\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{w\ensuremath{\text{ }}}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}(zip\ensuremath{\text{ }}word\ensuremath{\text{ }}guess)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{take\ensuremath{\text{ }}(length\ensuremath{\text{ }}word)\ensuremath{\text{ }}guess}\newline
\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}updateHung\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{String}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Maybe}\ensuremath{\text{ }}\DataTypeTok{Char}\NormalTok{)\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{updateHung\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}(word,\ensuremath{\text{ }}letter)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{letter\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{l\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{l\ensuremath{\text{ }}}\OtherTok{`elem`}\ensuremath{\text{ }}\NormalTok{word\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\OtherTok{main\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{rng\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getStdGen}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{interact\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{unlines\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Concatenate\ensuremath{\text{ }}lines\ensuremath{\text{ }}out\ensuremath{\text{ }}output}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\StringTok{"Welcome\ensuremath{\text{ }}to\ensuremath{\text{ }}Arrow\ensuremath{\text{ }}Hangman"}\FunctionTok{:}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Prepend\ensuremath{\text{ }}a\ensuremath{\text{ }}greeting\ensuremath{\text{ }}to\ensuremath{\text{ }}the\ensuremath{\text{ }}output}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{concat\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}snd\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{takeWhile\ensuremath{\text{ }}fst\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Take\ensuremath{\text{ }}the\ensuremath{\text{ }}[String]s\ensuremath{\text{ }}as\ensuremath{\text{ }}long\ensuremath{\text{ }}as\ensuremath{\text{ }}the}\newline
\ensuremath{\text{ }}\NormalTok{first\ensuremath{\text{ }}element\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}tuples\ensuremath{\text{ }}is\ensuremath{\text{ }}}\DataTypeTok{True}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}(hangman\ensuremath{\text{ }}rng)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Process\ensuremath{\text{ }}the\ensuremath{\text{ }}input\ensuremath{\text{ }}lazily}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\StringTok{""}\FunctionTok{:}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Act\ensuremath{\text{ }}as\ensuremath{\text{ }}if\ensuremath{\text{ }}the\ensuremath{\text{ }}user\ensuremath{\text{ }}pressed\ensuremath{\text{ }}ENTER}\newline
\ensuremath{\text{ }}\NormalTok{once\ensuremath{\text{ }}at\ensuremath{\text{ }}the\ensuremath{\text{ }}start}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{lines\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Split\ensuremath{\text{ }}input\ensuremath{\text{ }}into\ensuremath{\text{ }}lines}\newline
\end{Highlighting}
\end{Shaded}

And here\textquotesingle{}s an example session. For best results, compile the game and run it from a terminal rather than from GHCi:

\TemplatePreformat{ \newline{}
Welcome {}to {}Arrow {}Hangman \newline{}
___ \newline{}
Lives: {}{[}\#\#\#\#\#{]} \newline{}
a \newline{}
___ \newline{}
Lives: {}{[}\#\#\#\# {}{]} \newline{}
g \newline{}
__g \newline{}
Lives: {}{[}\#\#\#\# {}{]} \newline{}
d \newline{}
d_g \newline{}
Lives: {}{[}\#\#\#\# {}{]} \newline{}
o \newline{}
dog \newline{}
You {}won! \newline{}
}
\section{Advanced stuff}
\label{335}

In this section I will complete the coverage of arrow notation.
\subsection{Combining arrow commands with a function}
\label{336}

We implemented {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mean2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mean2\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Fractional}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{mean2\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}value\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{value}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{n}\newline
\end{Highlighting}
\end{Shaded}

GHC defines a banana bracket syntax for combining arrow statements with a function that operates
on arrows. (In Ross Paterson\textquotesingle{}s paper
\myfootnote{\myfnhref{http://www.soi.city.ac.uk/~ross/papers/notation.html}{Ross Paterson\textquotesingle{}s Paper specifying arrow {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation}}
a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily form}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword is used, but GHC adopted the banana bracket
instead.) Although there\textquotesingle{}s no real reason to, we can write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mean}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mean3\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Fractional}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{mean3\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}value\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(t,\ensuremath{\text{ }}n)\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{\&\&\&}\NormalTok{)\ensuremath{\text{ }}(total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{value)\ensuremath{\text{ }}(total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{|}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{n}\newline
\end{Highlighting}
\end{Shaded}

The first item inside the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (| ... |)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function that takes any number of arrows as input and
returns an arrow. Infix notation cannot be used here. It is followed by the arguments, which are in the
form of proc statements. These statements may contain {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and bindings with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if you like. Each argument
is translated into an arrow and given as an argument to the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&\&\&)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

You may ask, what is the point of this? We can combine arrows quite happily without the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation.
Well, the point is that you get the convenience of using local variable bindings in the statements.

The banana brackets are in fact not required. The compiler is intelligent enough to assume that this is
what you mean when you write it like this (note that infix notation {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allowed here):

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mean4\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Fractional}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{mean4\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}value\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(t,\ensuremath{\text{ }}n)\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{(total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{value)\ensuremath{\text{ }}}\FunctionTok{\&\&\&}\ensuremath{\text{ }}\NormalTok{(total\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{n}\newline
\end{Highlighting}
\end{Shaded}

So why do we need the banana brackets? For situations where this plainer syntax is
ambiguous. The reason is that the arrow part of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} command is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not an ordinary Haskell expression}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Recall that for arrows specified in proc statements, the following things hold true:

\begin{myitemize}
\item{} Local variable bindings are only allowed in the input expression after {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}<{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} condition. The arrow itself is interpreted in the scope that exists outside {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} statements are not plain Haskell. They are implemented using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowChoice}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Functions used to combine arrows are not normal Haskell either. They are shorthand for banana bracket notation.
\end{myitemize}

\subsection{Recursive bindings}
\label{337}

At the risk of wearing out the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mean}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example, here is yet another way to implement it using recursive
bindings. In order for this to work, we\textquotesingle{}ll need an arrow that delays its input by one step:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{delay\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a}\newline
\NormalTok{delay\ensuremath{\text{ }}last\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}this\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(delay\ensuremath{\text{ }}this,\ensuremath{\text{ }}last)}\newline
\end{Highlighting}
\end{Shaded}

Here is what delay does:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{runCircuit\ensuremath{\text{ }}(delay\ensuremath{\text{ }}}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}[}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{,}\DecValTok{7}\NormalTok{]}\newline
\NormalTok{[}\DecValTok{0}\NormalTok{,}\DecValTok{5}\NormalTok{,}\DecValTok{6}\NormalTok{]}\newline
\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

Here is our recursive version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mean}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{mean5\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Fractional}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}a\ensuremath{\text{ }}}\newline
\NormalTok{mean5\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{proc\ensuremath{\text{ }}value\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{rec}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(lastTot,\ensuremath{\text{ }}lastN)\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{delay\ensuremath{\text{ }}(}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{(tot,\ensuremath{\text{ }}n)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(tot,\ensuremath{\text{ }}n)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(lastTot\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{value,\ensuremath{\text{ }}lastN\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{mean\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{tot\ensuremath{\text{ }}}\FunctionTok{/}\ensuremath{\text{ }}\NormalTok{n}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{mean}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block resembles a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{} block, except that

\begin{myitemize}
\item{} The last line can be, and usually is, a variable binding. It doesn\textquotesingle{}t matter whether it\textquotesingle{}s a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}block binding with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}-{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block doesn\textquotesingle{}t have a return value. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily var <{}-{} rec ...}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is illegal, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not allowed to be the last element in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block.
\item{} The use of variables is expected to form a cycle (otherwise there is no point in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\end{myitemize}

The machinery of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is handled by the loop function of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowLoop}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class,
which we define for Circuit like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{ArrowLoop}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{loop\ensuremath{\text{ }}(}\DataTypeTok{Circuit}\ensuremath{\text{ }}\NormalTok{cir)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Circuit}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}b\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(cir\textquotesingle{},\ensuremath{\text{ }}(c,d))\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cir\ensuremath{\text{ }}(b,d)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(loop\ensuremath{\text{ }}cir\textquotesingle{},\ensuremath{\text{ }}c)}\newline
\end{Highlighting}
\end{Shaded}

Behind the scenes, the way it works is this:

\begin{myitemize}
\item{} Any variables defined in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that are forward referenced in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are looped around by passing them through the second tuple element of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loop}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Effectively the variable bindings and references to them can be in any order (but the order of arrow statements is significant in terms of effects).
\item{} Any variables defined in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that are referenced from outside {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are returned in the first tuple element of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loop}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

It is important to understand that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loop}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (and therefore {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) simply binds variables. It doesn\textquotesingle{}t hold onto values
and pass them back in the next invocation -{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily delay}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does this part. The cycle formed by the variable
references must be broken by some sort of delay arrow or lazy evaluation, otherwise
the code would die in an infinite loop as if you had written {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let a = a+1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in
plain Haskell.
\subsection{ArrowApply}
\label{338}

As mentioned before, the arrow part of an arrow statement (before {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}<{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) can\textquotesingle{}t contain any variables
bound inside \textquotesingle{}proc\textquotesingle{}. There is an alternative operator, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}<{}<{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which removes this restriction. It
requires the arrow to implement the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowApply}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} typeclass.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Understanding arrows}

\myminitoc
\label{339}

\label{340}
\LaTeXNullTemplate{}

\LaTexInfoTemplateOne{We have permission to import material from the \myhref{http://www.haskell.org/arrows}{Haskell arrows page}. See the talk page for details.}

Arrows, like monads, express computations that happen within a context. However, they are a more general abstraction than monads, and thus allow for contexts beyond what the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class makes possible. The essential difference between the abstractions can be summed up thus:

\LaTeXZeroBoxTemplate{Just as we think of a monadic type m a as representing a \textquotesingle{}computation delivering an a \textquotesingle{}; so we think of an arrow type a b c, (that is, the application of the parameterised type a to the two parameters b and c) as representing \textquotesingle{}a computation with input of type b delivering a c\textquotesingle{}; arrows make the dependence on input explicit.}

This chapter has two main parts. Firstly, we will consider the main ways in which arrow computations differ from those expressed by the functor classes we are used to, and also briefly present some of the core arrow-{}related type classes. Secondly, we will study the parser example used by John Hughes in the original presentation of arrows.
\section{Pocket guide to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{341}
\subsection{Arrows look a lot like functions}
\label{342}

The first step towards understanding arrows is realising how similar they are to functions. Like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the type constructor of an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance has kind {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily * -{}>{} * -{}>{} *}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is, it takes two type arguments − unlike, say, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which takes only one. Crucially, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a superclass. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is, to put it very roughly, the class for things that can be composed like functions:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Category}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}id\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}a\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}identity\ensuremath{\text{ }}for\ensuremath{\text{ }}composition.}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(.)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}c\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}associative\ensuremath{\text{ }}composition.}\newline
\end{Highlighting}
\end{Shaded}

(It goes without saying that functions have an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} − in fact, they are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s as well.)

A practical consequence of this similarity is that you have to think in point-{}free terms when looking at expressions full of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operators, such as this example from the tutorial:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(total\ensuremath{\text{ }}}\FunctionTok{\&\&\&}\ensuremath{\text{ }}\NormalTok{(const\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{^>>}\ensuremath{\text{ }}\NormalTok{total))\ensuremath{\text{ }}}\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{arr\ensuremath{\text{ }}(uncurry\ensuremath{\text{ }}(}\FunctionTok{/}\NormalTok{))}\newline
\end{Highlighting}
\end{Shaded}

Otherwise you will quickly get lost looking for the values to apply things on. In any case, it is easy to get lost even if you look at such expressions in the right way. That\textquotesingle{}s what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation is all about: adding extra variable names and whitespace while making some operators implicit, so that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} code gets easier to follow.

Before continuing, we should mention that \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Category.html}{Control.Category} also defines {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}<{}<{}) = (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}>{}) = flip (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is very commonly used to compose arrows from left to right.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} glides between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{343}

In spite of the warning we gave just above, arrows can be compared to applicative functors and monads. The trick is making the functors look more like arrows, and not the opposite. That is, you should not compare {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow y =>{} y a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative f =>{} f a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad m =>{} m a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but rather with:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative f =>{} f (a -{}>{} b)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the type of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape static morphisms}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} i.e. the values to the left of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}*>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; and
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad m =>{} a -{}>{} m b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the type of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Kleisli morphisms}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} i.e. the functions to the right of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{Those two concepts are usually known as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape static arrows}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Kleisli arrows}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} respectively. Since using the word \symbol{34}arrow\symbol{34} with two subtly different meanings would make this text horribly confusing, we opted for \symbol{34}morphism\symbol{34}, which is a synonym for this alternative meaning.}.
\end{myitemize}

Morphisms are the sort of things that can have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances, and indeed we could write instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for both static and Kleisli morphisms. This modest twisting is enough for a sensible comparison.

If this argument reminds you of the \myhref{https://en.wikibooks.org/wiki/Haskell\%2FApplicative\%20functors\%20II\%23A\%20sliding\%20scale\%20of\%20power}{sliding scale of power} discussion, in which we compared {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is a sign you are paying attention, as we are following exactly the same route. Back then, we remarked how the types of the morphisms limit how they can, or cannot, create effects. Monadic binds can induce near-{}arbitrary changes to the effects of a computation depending on the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values given to the Kleisli morphism, while the isolation between the functorial wrapper and the function arrow in static morphisms mean the effects in an applicative computation do not depend at all on the values within the functor \myfootnote{Incidentally, that is why they are called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape static}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: the effects are set in stone by the sequencing of computations; the generated values cannot affect them.}.

What sets arrows apart from this point of view is that in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow y =>{} y a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} there is no such connection between the context {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a function arrow to determine so rigidly the range of possibilities. Both static and Kleisli morphisms can be made into {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, and conversely an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be made as limited as an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} one or as powerful as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} one \myfootnote{For details, see \myfnhref{http://homepages.inf.ed.ac.uk/wadler/topics/monads.html}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Idioms are oblivious, arrows are meticulous, monads are promiscuous}}, by Sam Lindley, Philip Wadler and Jeremy Yallop.}. More interestingly, we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to take a third option and have both applicative-{}like static effects and monad-{}like dynamic effects in a single context, but kept separate from each other. Arrows make it possible to fine tune how effects are to be combined. That is the main thrust of the classic example of the arrow-{}based parser, which we will have a look at near the end of this chapter.
\subsection{An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can multitask}
\label{344}

These are the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} methods:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Category}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Arrow}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Minimal\ensuremath{\text{ }}implementation:\ensuremath{\text{ }}arr\ensuremath{\text{ }}and\ensuremath{\text{ }}first}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}arr\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}converts\ensuremath{\text{ }}function\ensuremath{\text{ }}to\ensuremath{\text{ }}arrow}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}first\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(a,\ensuremath{\text{ }}c)\ensuremath{\text{ }}(b,\ensuremath{\text{ }}c)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}maps\ensuremath{\text{ }}over\ensuremath{\text{ }}first\ensuremath{\text{ }}component}\newline
\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}second\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(c,\ensuremath{\text{ }}a)\ensuremath{\text{ }}(c,\ensuremath{\text{ }}b)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}maps\ensuremath{\text{ }}over\ensuremath{\text{ }}second\ensuremath{\text{ }}component}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(***)\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}b\ensuremath{\text{ }}d\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(a,\ensuremath{\text{ }}b)\ensuremath{\text{ }}(c,\ensuremath{\text{ }}d)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}first\ensuremath{\text{ }}and\ensuremath{\text{ }}second\ensuremath{\text{ }}combined}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(\&\&\&)\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}(b,\ensuremath{\text{ }}c)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}(***)\ensuremath{\text{ }}on\ensuremath{\text{ }}a\ensuremath{\text{ }}duplicated\ensuremath{\text{ }}value}\newline
\end{Highlighting}
\end{Shaded}

With these methods, we can carry out multiple computations at each step of what seems to be a linear chain of composed arrows. That is done by keeping values used in separate computations as elements of pairs in a (possibly nested) pair, and then using the using pair-{}handling functions to reach each value when desired. That allows, for instance, saving intermediate values for later or using functions with multiple arguments conveniently \myfootnote{\symbol{34}Conveniently\symbol{34} is arguably too strong a word, though, given how confusing handling nested tuples can get. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Ergo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation.}.

Visualising may help understanding the data flow in an arrow computation. Here are illustrations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the five {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} methods:

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/6.png}
\end{center}
\raggedright{}\myfigurewithcaption{6}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} turns a function into an arrow, composable with other arrows. Naturally, not all arrows are created in this way.}
\end{minipage}\vspace{0.75cm}

\\

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/7.png}
\end{center}
\raggedright{}\myfigurewithcaption{7}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}>{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} composes two arrows. The output of the first one is fed to the second.}
\end{minipage}\vspace{0.75cm}

\\

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/8.png}
\end{center}
\raggedright{}\myfigurewithcaption{8}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two inputs side by side. The first one is modified using an arrow, while the second is left unchanged.}
\end{minipage}\vspace{0.75cm}

\\

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/9.png}
\end{center}
\raggedright{}\myfigurewithcaption{9}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily second}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, conversely, takes two inputs but only modifies the second.}
\end{minipage}\vspace{0.75cm}

\\

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/10.png}
\end{center}
\raggedright{}\myfigurewithcaption{10}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (***)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes two inputs and modifies them with two arrows, one for each input. }
\end{minipage}\vspace{0.75cm}

\\

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/11.png}
\end{center}
\raggedright{}\myfigurewithcaption{11}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&\&\&)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes one input, duplicates it and modifies each copy with a different arrow.}
\end{minipage}\vspace{0.75cm}

\\
\end{longtable}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/12.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithcaption{12}{Data flow for the \mylref{331}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mean1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} arrow from the tutorial}. Rectangles are arrows, rounded rectangles are arrows made with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, circles are other data flow split/merge points. Other combinators are left implicit. Corresponding code:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(total\ensuremath{\text{ }}}\FunctionTok{\&\&\&}\ensuremath{\text{ }}\NormalTok{(const\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{^>>}\ensuremath{\text{ }}\NormalTok{total))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{arr\ensuremath{\text{ }}(uncurry\ensuremath{\text{ }}(}\FunctionTok{/}\NormalTok{))}\newline
\end{Highlighting}
\end{Shaded}
}
\end{minipage}\vspace{0.75cm}

It is worth mentioning that \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Arrow.html}{Control.Arrow} defines {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily returnA = arr id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a do-{}nothing arrow. One of the arrow laws says {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily returnA}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must be equivalent to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance \myfootnote{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has laws, and so do the other arrow classes we are discussing in these two chapters. We won\textquotesingle{}t pause to pore over the laws here, but you can check them in the \myfnhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Arrow.html}{Control.Arrow} documentation.}.
\subsection{An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowChoice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be resolute}
\label{345}

If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes multitasking possible, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowChoice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} forces a decision on what task to do.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Arrow}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{ArrowChoice}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Minimal\ensuremath{\text{ }}implementation:\ensuremath{\text{ }}left}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}left\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}c)\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}c)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}maps\ensuremath{\text{ }}over\ensuremath{\text{ }}left}\newline
\ensuremath{\text{ }}\NormalTok{choice}\newline
\ensuremath{\text{ }}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}right\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}a)\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}b)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}maps\ensuremath{\text{ }}over\ensuremath{\text{ }}right}\newline
\ensuremath{\text{ }}\NormalTok{choice}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(+++)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}b\ensuremath{\text{ }}d\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b)\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}d)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}left\ensuremath{\text{ }}and\ensuremath{\text{ }}right}\newline
\ensuremath{\text{ }}\NormalTok{combined}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}(|||)\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}a\ensuremath{\text{ }}c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}b\ensuremath{\text{ }}c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b)\ensuremath{\text{ }}c\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}(+++),\ensuremath{\text{ }}then\ensuremath{\text{ }}merge}\newline
\ensuremath{\text{ }}\NormalTok{results}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provides a way to tag the values, so that different arrows can handle them depending on whether they are tagged with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Left}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Right}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that these methods involving {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are entirely analogous to those involving pairs offered by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/13.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithcaption{13}{Data flow in a fragment of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getWord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example of \myhref{https://en.wikibooks.org/wiki/Haskell\%2FArrow\%20tutorial\%23Hangman\%3A\%20Pick\%20a\%20word}{the tutorial}. Blue indicates a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Left}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tag and red indicates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Right}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily if}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} construct of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily proc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} notation sends {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Left}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Right}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Corresponding code:
\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{proc\ensuremath{\text{ }}()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{firstTime\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{oneShot\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{mPicked\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{firstTime}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{picked\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{pickWord\ensuremath{\text{ }}rng\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{picked}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{returnA\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{accum\textquotesingle{}\ensuremath{\text{ }}}\DataTypeTok{Nothing}\ensuremath{\text{ }}\NormalTok{mplus\ensuremath{\text{ }}}\FunctionTok{-<}\ensuremath{\text{ }}\NormalTok{mPicked}\newline
\end{Highlighting}
\end{Shaded}
}
\end{minipage}\vspace{0.75cm}

\subsection{An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowApply}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just boring}
\label{346}

As the name suggests, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowApply}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes it possible to apply arrows to values directly midway through an arrow computation. Ordinary {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s do not allow that − we can just compose them on and on and on. Application only happens right at the end, once a run-{}arrow function of some sort is used to get a plain function from the arrow.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{class}\ensuremath{\text{ }}\DataTypeTok{Arrow}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{ArrowApply}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\KeywordTok{where}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}app\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}(y\ensuremath{\text{ }}a\ensuremath{\text{ }}b,\ensuremath{\text{ }}a)\ensuremath{\text{ }}b\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}applies\ensuremath{\text{ }}first\ensuremath{\text{ }}component\ensuremath{\text{ }}to\ensuremath{\text{ }}second}\newline
\end{Highlighting}
\end{Shaded}

(For instance, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily app}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for functions is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily uncurry (\${}) = \textbackslash{}(f, x) -{}>{} f x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} .)

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily app}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, comes at a steep price. Building an arrow as a value within an arrow computation and then eliminating it through application implies allowing the values within the computation to affect the context. That sounds a lot like what monadic binds do. It turns out that an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowApply}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape exactly}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equivalent to some {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as long as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowApply}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws are followed. The ultimate consequence is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ArrowApply}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} arrows cannot realise any of the interesting possibilities {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t, such as having a partly static context.

\LaTeXZeroBoxTemplate{The real flexibility with arrows comes with the ones that aren\textquotesingle{}t monads, otherwise it\textquotesingle{}s just a clunkier syntax.}
\subsection{Arrow combinators crop up in unexpected places}
\label{347}

Functions are the trivial example of arrows, and so all of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions shown above can be used with them. For that reason, it is quite common to see arrow combinators being used in code that otherwise has nothing to do with arrows. Here is a summary of what they do with plain functions, alongside with combinators in other modules that can be used in the same way (in case you prefer the alternative names, or just prefer using simple modules for simple tasks).

\begin{longtable}{>{\RaggedRight}p{0.15034\linewidth}>{\RaggedRight}p{0.38771\linewidth}>{\RaggedRight}p{0.37624\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Combinator}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}What it does\newline{}{\small (specialised to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (-{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf})}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Alternatives}\endhead \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}>{})}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}flip {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily first}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \textbackslash{}f (x, y) -{}>{} (f x, y)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html}{Data.Bifunctor})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily second}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \textbackslash{}f (x, y) -{}>{} (x, f y)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily second}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html}{Data.Bifunctor})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (***)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \textbackslash{}f g (x, y) -{}>{} (f x, g y)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily bimap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html}{Data.Bifunctor})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&\&\&)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \textbackslash{}f g x -{}>{} (f x, g x)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily liftA2 (,)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html}{Control.Applicative})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily left}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Maps over {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Left}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} case.&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html}{Data.Bifunctor})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily right}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Maps over {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Right}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} case.&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily second}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html}{Data.Bifunctor})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+++)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Maps over both cases.&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bimap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Bifunctor.html}{Data.Bifunctor})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (|||)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Eliminates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (\myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Either.html}{Data.Either})\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily app}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \textbackslash{}(f, x) -{}>{} f x}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily uncurry (\${})}
\end{longtable}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Bifunctor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} module provides the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bifunctor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, of which pairs and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are instances of. A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bifunctor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is very much like a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, except that there are two independent ways of mapping functions over it, corresponding to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily second}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} methods \myfootnote{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Bifunctor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} was only added to the core GHC libraries in version 7.10, so it might not be installed if you are using an older version. In that case, you can install the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bifunctors}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package, which also includes several other bifunctor-{}related modules}.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Write implementations for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily second}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (***)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&\&\&)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Use just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (plus any plain functions) to implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily second}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; after that, you can use the other combinators once you have implemented them.
\item{} Write an implementation for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily right}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily left}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily liftY2 :: Arrow y =>{}\newline{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }(a -{}>{} b -{}>{} c) -{}>{} y r a -{}>{} y r b -{}>{} y r c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}}
\section{Using arrows}
\label{348}

\subsection{Avoiding leaks}
\label{349}

Arrows were originally motivated by an efficient parser design found by Swierstra \& Duponcheel\myfootnote{Swierstra, Duponcheel. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Deterministic, error correcting parser combinators}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. \myplainurl{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2760}}.

To describe the benefits of their design, let\textquotesingle{}s examine exactly how monadic parsers work.

If you want to parse a single word, you end up with several monadic parsers stacked end to end. Taking Parsec as an example \myfootnote{Parsec is a popular and powerful parsing library. See \myfnhref{https://hackage.haskell.org/package/parsec}{the parsec documentation on Hackage} for more information.}, a parser for the string \symbol{34}word\symbol{34} can be thought of as \myfootnote{\symbol{34}Thought of as\symbol{34} because in actual code we evidently wouldn\textquotesingle{}t return the string explicitly in such a crude way. Parsec offers a combinator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily string}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which would allow writing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily word = string \symbol{34}word\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In any case, right now we are only concerned with how characters are tested, and so the crude parser is good enough for a mental model.}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{word\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}w\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}o\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}r\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}d\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"word"}\newline
\end{Highlighting}
\end{Shaded}

Each character is tried in order, if \symbol{34}worg\symbol{34} is the input, then the first three parsers will succeed, and the last one will fail, making the entire string \symbol{34}word\symbol{34} parser fail.

If you want to parse one of two options, you create a new parser for each and they are tried in order. The first one must fail in order for the next to be tried with the same input.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{ab\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}a\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}b\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}c\textquotesingle{}}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}(<|>)\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}combinator\ensuremath{\text{ }}for}\newline
\ensuremath{\text{ }}\NormalTok{alternatives}\FunctionTok{.}\newline
\end{Highlighting}
\end{Shaded}

To parse \symbol{34}c\symbol{34} successfully, both \textquotesingle{}a\textquotesingle{} and \textquotesingle{}b\textquotesingle{} must have been tried.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{one\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}o\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}n\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}e\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"one"}\newline
\ensuremath{\text{ }}\newline
\NormalTok{two\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}t\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}w\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}o\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"two"}\newline
\ensuremath{\text{ }}\newline
\NormalTok{three\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}t\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}h\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}r\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}e\textquotesingle{}}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{char\ensuremath{\text{ }}}\CharTok{\textquotesingle{}e\textquotesingle{}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\StringTok{"three"}\newline
\ensuremath{\text{ }}\newline
\NormalTok{nums\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{one\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{two\ensuremath{\text{ }}}\FunctionTok{<|>}\ensuremath{\text{ }}\NormalTok{three}\newline
\end{Highlighting}
\end{Shaded}

With these three parsers, you can\textquotesingle{}t detect that the string \symbol{34}four\symbol{34} will fail the parser {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily nums}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} until the last parser has failed.

If one of the options can consume much of the input but will fail, you still must descend down the chain of parsers until the final parser fails. All of the input that can possibly be consumed by later parsers must be retained in memory in case one of them does consume it. That can lead to much more space usage than you would naively expect − a situation often called a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape space leak}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

The general pattern with monadic parsers, then, is that each option must fail or one option must succeed.
\subsubsection{Can it be done better?}
\label{350}

Swierstra \& Duponcheel (1996) noticed that a smarter parser could immediately fail upon seeing the very first character. For example, in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily nums}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} parser above, the choice of first letter parsers was limited to either the letter \textquotesingle{}o\textquotesingle{} for \symbol{34}one\symbol{34} or the letter \textquotesingle{}t\textquotesingle{} for both \symbol{34}two\symbol{34} and \symbol{34}three\symbol{34}. This smarter parser would also be able to garbage collect input sooner because it could look ahead to see if any other parsers might be able to consume the input, and drop input that could not be consumed. This new parser is a lot like the monadic parsers with the major difference that it exports {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape static}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} information. It\textquotesingle{}s like a monad, but it also tells you what it can parse.

There\textquotesingle{}s one major problem. This doesn\textquotesingle{}t fit into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} interface. Monadic composition works with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} m b)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions, and functions alone. There\textquotesingle{}s no way to attach static information. You have only one choice, throw in some input, and see if it passes or fails.

Back when this issue first arose, the monadic interface was being touted as a completely general purpose tool in the functional programming community, so finding that there was some particularly useful code that just couldn\textquotesingle{}t fit into that interface was something of a setback. This is where arrows come in. John Hughes\textquotesingle{}s {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Generalising monads to arrows}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} proposed the arrows abstraction as new, more flexible tool.
\subsubsection{Static and dynamic parsers}
\label{351}

Let us examine Swierstra and Duponcheel\textquotesingle{}s parser in greater detail, from the perspective of arrows a presented by Hughes. The parser has two components: a fast, static parser which tells us if the input is worth trying to parse; and a slow, dynamic parser which does the actual parsing work.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Arrow}\newline
\KeywordTok{import\ensuremath{\text{ }}qualified}\ensuremath{\text{ }}\DataTypeTok{Control.Category}\ensuremath{\text{ }}\KeywordTok{as}\ensuremath{\text{ }}\DataTypeTok{Cat}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.List}\ensuremath{\text{ }}\NormalTok{(union)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Parser}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{StaticParser}\ensuremath{\text{ }}\NormalTok{s)\ensuremath{\text{ }}(}\DataTypeTok{DynamicParser}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}b)}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{StaticParser}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{SP}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\NormalTok{[s]}\newline
\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{DynamicParser}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{((a,\ensuremath{\text{ }}[s])\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b,\ensuremath{\text{ }}[s]))}\newline
\end{Highlighting}
\end{Shaded}

The static parser consists of a flag, which tells us if the parser can accept the empty input, and a list of possible {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries starting characters}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For example, the static parser for a single character would be as follows:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{spCharA\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{StaticParser}\ensuremath{\text{ }}\DataTypeTok{Char}\newline
\NormalTok{spCharA\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{SP}\ensuremath{\text{ }}\DataTypeTok{False}\ensuremath{\text{ }}\NormalTok{[c]}\newline
\end{Highlighting}
\end{Shaded}

It does not accept the empty string ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and the list of possible starting characters consists only of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

The dynamic parser needs a little more dissecting. What we see is a function that goes from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a, {[}s{]})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (b, {[}s{]})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It is useful to think in terms of sequencing two parsers: each parser consumes the result of the previous parser ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), along with the remaining bits of input stream ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}s{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), it does something with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to produce its own result {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, consumes a bit of string and returns {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape that}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So, as an example of this in action, consider a dynamic parser {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Int, String) -{}>{} (Int, String)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} represents a count of the characters parsed so far. The table below shows what would happen if we sequence a few of them together and set them loose on the string \symbol{34}cake\symbol{34} :

\begin{longtable}{|>{\RaggedRight}p{0.46383\linewidth}|>{\RaggedRight}p{0.17602\linewidth}|>{\RaggedRight}p{0.27444\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}result&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}remaining\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}before&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}0&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}cake\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}after first parser &\hspace*{0pt}\ignorespaces{}\hspace*{0pt}1&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}ake\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}after second parser&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}2&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}ke\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}after third parser&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}3&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}e\\ \hline
\end{longtable}

So the point here is that a dynamic parser has two jobs : it does something to the output of the previous parser (informally, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), and it consumes a bit of the input string, (informally, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}s{]} -{}>{} {[}s{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), hence the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily DP ((a,{[}s{]}) -{}>{} (b,{[}s{]}))}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now, in the case of a dynamic parser for a single character (type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Char, String) -{}>{} (Char, String)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), the first job is trivial. We ignore the output of the previous parser, return the character we have parsed and consume one character off the stream:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{dpCharA\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{DynamicParser}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\DataTypeTok{Char}\newline
\NormalTok{dpCharA\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}(_,x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(x,xs))}\newline
\end{Highlighting}
\end{Shaded}

This might lead you to ask a few questions. For instance, what\textquotesingle{}s the point of accepting the output of the previous parser if we\textquotesingle{}re just going to ignore it? And shouldn\textquotesingle{}t the dynamic parser be making sure that the current character off the stream matches the character to be parsed by testing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x == c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? The answer to the second question is no − and in fact, this is part of the point: the work is not necessary because the check would already have been performed by the static parser. Naturally, things are only so simple because we are testing just one character. If we were writing a parser for several characters in sequence we would need dynamic parsers that actually tested the second and further characters; and if we wanted to build an output string by chaining several parsers of characters then we would need the output of previous parsers.

Time to put both parsers together. Here is our S+D style parser for a single character:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{charA\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Parser}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\DataTypeTok{Char}\newline
\NormalTok{charA\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\DataTypeTok{False}\ensuremath{\text{ }}\NormalTok{[c])\ensuremath{\text{ }}(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}(_,x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(x,xs)))}\newline
\end{Highlighting}
\end{Shaded}

\subsubsection{Bringing the arrow combinators in}
\label{352}

With the preliminary bit of exposition done, we are now going to implement the Arrow class for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Parser s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and by doing so, give you a glimpse of what makes arrows useful. So let\textquotesingle{}s get started:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}We\ensuremath{\text{ }}explain\ensuremath{\text{ }}the\ensuremath{\text{ }}Eq\ensuremath{\text{ }}s\ensuremath{\text{ }}constraint\ensuremath{\text{ }}below.}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Arrow}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Parser}\ensuremath{\text{ }}\NormalTok{s)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily arr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should convert an arbitrary function into a parsing arrow. In this case, we have to use \symbol{34}parse\symbol{34} in a very loose sense: the resulting arrow accepts the empty string, and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape only the empty string}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (its set of first characters is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). Its sole job is to take the output of the previous parsing arrow and do something with it. That being so, it does not consume any input.

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{arr\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\DataTypeTok{True}\ensuremath{\text{ }}\NormalTok{[])\ensuremath{\text{ }}(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}(b,s)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}b,s)))}\newline
\end{Highlighting}
\end{Shaded}

Likewise, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combinator is relatively straightforward. Given a parser, we want to produce a new parser that accepts a pair of inputs {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (b,d)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The first component of the input {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is what we actually want to parse. The second part passes through untouched:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{first\ensuremath{\text{ }}(}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{sp\ensuremath{\text{ }}(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{p))\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{sp\ensuremath{\text{ }}(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}((b,d),s)\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(c,\ensuremath{\text{ }}s\textquotesingle{})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{p\ensuremath{\text{ }}(b,s)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{((c,d),s\textquotesingle{})))}\newline
\end{Highlighting}
\end{Shaded}

We also have to supply the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Category}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is entirely obvious, as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id = arr id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must hold:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Cat.Category}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Parser}\ensuremath{\text{ }}\NormalTok{s)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{id\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\DataTypeTok{True}\ensuremath{\text{ }}\NormalTok{[])\ensuremath{\text{ }}(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{(\textbackslash{}(b,s)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b,s)))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Or\ensuremath{\text{ }}simply:\ensuremath{\text{ }}id\ensuremath{\text{ }}=\ensuremath{\text{ }}P\ensuremath{\text{ }}(SP\ensuremath{\text{ }}True\ensuremath{\text{ }}[])\ensuremath{\text{ }}(DP\ensuremath{\text{ }}id)}\newline
\end{Highlighting}
\end{Shaded}

On the other hand, the implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} requires a little more thought. We want to take two parsers, and return a combined parser incorporating the static and dynamic parsers of both arguments:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}Eq\ensuremath{\text{ }}s\ensuremath{\text{ }}constraint\ensuremath{\text{ }}is\ensuremath{\text{ }}needed\ensuremath{\text{ }}for\ensuremath{\text{ }}using\ensuremath{\text{ }}union\ensuremath{\text{ }}here.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\NormalTok{empty1\ensuremath{\text{ }}start1)\ensuremath{\text{ }}(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{p2))\ensuremath{\text{ }}}\FunctionTok{.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\NormalTok{empty2\ensuremath{\text{ }}start2)\ensuremath{\text{ }}(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{p1))\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{P}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\NormalTok{(empty1\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{empty2)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}empty1\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{start1\ensuremath{\text{ }}}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{start1\ensuremath{\text{ }}}\OtherTok{`union`}\ensuremath{\text{ }}\NormalTok{start2))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{DP}\ensuremath{\text{ }}\NormalTok{(p2}\FunctionTok{.}\NormalTok{p1))}\newline
\end{Highlighting}
\end{Shaded}

Combining the dynamic parsers is easy enough; we just do function composition. Putting the static parsers together requires a little bit of thought. First of all, the combined parser can only accept the empty string if {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape both}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} parsers do. Fair enough, now how about the starting symbols? Well, the parsers are supposed to be in a sequence, so the starting symbols of the second parser shouldn\textquotesingle{}t really matter. If life were simple, the starting symbols of the combined parser would only be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily start1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Alas, life is not simple, because parsers could very well accept the empty input. If the first parser accepts the empty input, then we have to account for this possibility by accepting the starting symbols from both the first and the second parsers \myfootnote{A reasonable question at this point would be \symbol{34}Okay, we can compose the static parsers by uniting their lists, but when we are actually gone to test things with them?\symbol{34}. The answer is that the static tests would be performed by the alternatives combinator, which unites two parsers to produce a parser that accepts input from either.}.

\subsubsection{So what do arrows buy us?}
\label{353}

If you look back at our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Parser}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type and blank out the static parser section, you might notice that this looks a lot like the arrow instances for functions.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{arr\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}(b,\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}b,\ensuremath{\text{ }}s)}\newline
\NormalTok{first\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}((b,\ensuremath{\text{ }}d),\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(c,\ensuremath{\text{ }}s\textquotesingle{})\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{p\ensuremath{\text{ }}(b,\ensuremath{\text{ }}s)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{((c,\ensuremath{\text{ }}d),\ensuremath{\text{ }}s\textquotesingle{}))}\newline
\ensuremath{\text{ }}\newline
\NormalTok{id\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id}\newline
\NormalTok{p2\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{p1\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{p2\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{p1}\newline
\end{Highlighting}
\end{Shaded}

There\textquotesingle{}s the odd {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable out for the ride, which makes the definitions look a little strange, but the outline of e.g. \mylref{347}{the simple {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions} is there. Actually, what you see here is roughly the arrow instance for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad/Kleisli morphism (let {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f :: b -{}>{} c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily p :: b -{}>{} State s c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actually be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (<{}=<{}) = flip (>{}=>{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

That\textquotesingle{}s fine, but we could have easily done that with bind in classic monadic style, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily first}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becoming just an odd helper function that could be easily written with a bit of pattern matching. But remember, our Parser type is not just the dynamic parser − it also contains the static parser.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{arr\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{SP}\ensuremath{\text{ }}\DataTypeTok{True}\ensuremath{\text{ }}\NormalTok{[]}\newline
\NormalTok{first\ensuremath{\text{ }}sp\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{sp}\newline
\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\NormalTok{empty1\ensuremath{\text{ }}start1)\ensuremath{\text{ }}}\FunctionTok{>>>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\NormalTok{empty2\ensuremath{\text{ }}start2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SP}\ensuremath{\text{ }}\NormalTok{(empty1\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{empty2)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}empty1\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{start1\ensuremath{\text{ }}}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{start1\ensuremath{\text{ }}}\OtherTok{`union`}\ensuremath{\text{ }}\NormalTok{start2))}\newline
\end{Highlighting}
\end{Shaded}

This is not at all a function, it\textquotesingle{}s just pushing around some data types, and it cannot be expressed in a monadic way. But the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Arrow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} interface can deal with just as well. And when we combine the two types, we get a two-{}for-{}one deal: the static parser data structure goes along for the ride along with the dynamic parser. The Arrow interface lets us transparently compose and manipulate the two parsers, static and dynamic, as a unit, which we can then run as a traditional, unified function.
\section{Arrows in practice}
\label{354}

Some examples of libraries using arrows:

\begin{myitemize}
\item{} The Haskell XML Toolbox (\myhref{http://www.fh-wedel.de/~si/HXmlToolbox/index.html}{project page} and \myhref{https://hackage.haskell.org/package/hxt}{library documentation}) uses arrows for processing XML. There is a Wiki page in the Haskell Wiki with a somewhat \myhref{http://www.haskell.org/haskellwiki/HXT}{Gentle Introduction to HXT}.
\item{} Netwire (\myhref{http://hackage.haskell.org/package/netwire}{page library documentation}) is a library for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functional reactive programming}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (FRP). FRP is a functional paradigm for handling events and time-{}varying values, with use cases including user interfaces, simulations and games. Netwire has an arrow interface as well as an applicative one.
\item{} Yampa (\myhref{https://wiki.haskell.org/Yampa}{Haskell Wiki page} \myhref{https://hackage.haskell.org/package/Yampa}{library documentation}) is another arrow-{}based FRP library, and a predecessor to Netwire.
\item{} Hughes\textquotesingle{} arrow-{}style parsers were first described in his 2000 paper, but a usable implementation wasn\textquotesingle{}t available until May 2005, when Einar Karttunen released \myhref{https://hackage.haskell.org/package/PArrows}{PArrows}.
\end{myitemize}

\section{See also}
\label{355}

\begin{myitemize}
\item{} \myhref{http://www.haskell.org/arrows/biblio.html}{Bibliography on arrows (haskell.org)}
\end{myitemize}

\LaTeXNullTemplate{}
\section{Acknowledgements}
\label{356}

This module uses text from {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape An Introduction to Arrows}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by Shae Erisson, originally written for The Monad.Reader 4

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Continuation passing style (CPS)}

\myminitoc
\label{357}

\label{358}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Continuation Passing Style}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (CPS for short) is a style of programming in which functions do not return values; rather, they pass control onto a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape continuation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which specifies what happens next. In this chapter, we are going to consider how that plays out in Haskell and, in particular, how CPS can be expressed with a monad.
\section{What are continuations?}
\label{359}
To dispel puzzlement, we will have a second look at an example from way back in the book, \mylref{145}{when we introduced the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator}:

\TemplatePreformat{ \newline{}
>{} {}map {}(\${}$\text{ }${}2)$\text{ }${}{$\text{[}$}(2*),$\text{ }${}(4*),$\text{ }${}(8*){$\text{]}$}$\text{ }$\newline{}
{[}4,8,16{]} \newline{}
}

There is nothing out of ordinary about the expression above, except that it is a little quaint to write that instead of \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map (*2) {[}2, 4, 8{]}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${})}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} section makes the code appear backwards, as if we are applying a value to the functions rather than the other way around. And now, the catch: such an innocent-{}looking reversal is at heart of continuation passing style!

From a CPS perspective, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\${} 2)}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape suspended computation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: a function with general type \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} r) -{}>{} r}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which, given another function as argument, produces a final result. The \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} r}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument is the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape continuation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; it specifies how the computation will be brought to a conclusion. In the example, the functions in the list are supplied as continuations via {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, producing three distinct results. Note that suspended computations are largely interchangeable with plain values: \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip (\${})}}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{That is, \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}x -{}>{} (\${} x)}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, fully spelled out as \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}x -{}>{} \textbackslash{}k -{}>{} k x}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} converts any value into a suspended computation, and passing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as its continuation gives back the original value.
\subsection{What are they good for?}
\label{360}
There is more to continuations than just a parlour trick to impress Haskell newbies. They make it possible to explicitly manipulate, and dramatically alter, the control flow of a program. For instance, returning early from a procedure can be implemented with continuations. Exceptions and failure can also be handled with continuations -{} pass in a continuation for success, another continuation for fail, and invoke the appropriate continuation. Other possibilities include \symbol{34}suspending\symbol{34} a computation and returning to it at another time, and implementing simple forms of concurrency (notably, one Haskell implementation, Hugs, uses continuations to implement cooperative concurrency).

In Haskell, continuations can be used in a similar fashion, for implementing interesting control flow in monads. Note that there usually are alternative techniques for such use cases, especially in tandem with laziness. In some circumstances, CPS can be used to improve performance by eliminating certain construction-{}pattern matching sequences (i.e. a function returns a complex structure which the caller will at some point deconstruct), though a sufficiently smart compiler {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape should}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be able to do the elimination \myfootnote{\myfnhref{http://hackage.haskell.org/package/attoparsec-0.10.4.0/docs/Data-Attoparsec-ByteString.html}{attoparsec} is an example of performance-{}driven usage of CPS.}.

\section{Passing continuations}
\label{361}
An elementary way to take advantage of continuations is to modify our functions so that they return suspended computations rather than ordinary values. We will illustrate how that is done with two simple examples.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythagoras}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{362}
\HaskellExampleTemplate{A simple module, no continuations}{\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}We\ensuremath{\text{ }}assume\ensuremath{\text{ }}some\ensuremath{\text{ }}primitives\ensuremath{\text{ }}add\ensuremath{\text{ }}and\ensuremath{\text{ }}square\ensuremath{\text{ }}for\ensuremath{\text{ }}the\ensuremath{\text{ }}example:}\newline
\ensuremath{\text{ }}\newline
\OtherTok{add\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{add\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{y}\newline
\ensuremath{\text{ }}\newline
\OtherTok{square\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{square\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{pythagoras\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{pythagoras\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{add\ensuremath{\text{ }}(square\ensuremath{\text{ }}x)\ensuremath{\text{ }}(square\ensuremath{\text{ }}y)}\newline
\end{Highlighting}
\end{Shaded}}

Modified to return a suspended computation, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythagoras}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} looks like this:

\HaskellExampleTemplate{A simple module, using continuations}{\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}We\ensuremath{\text{ }}assume\ensuremath{\text{ }}CPS\ensuremath{\text{ }}versions\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}add\ensuremath{\text{ }}and\ensuremath{\text{ }}square\ensuremath{\text{ }}primitives,}\newline
\CommentTok{--\ensuremath{\text{ }}(note:\ensuremath{\text{ }}the\ensuremath{\text{ }}actual\ensuremath{\text{ }}definitions\ensuremath{\text{ }}of\ensuremath{\text{ }}add_cps\ensuremath{\text{ }}and\ensuremath{\text{ }}square_cps\ensuremath{\text{ }}are\ensuremath{\text{ }}not}\newline
\CommentTok{--\ensuremath{\text{ }}in\ensuremath{\text{ }}CPS\ensuremath{\text{ }}form,\ensuremath{\text{ }}they\ensuremath{\text{ }}just\ensuremath{\text{ }}have\ensuremath{\text{ }}the\ensuremath{\text{ }}correct\ensuremath{\text{ }}type)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{add_cps\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)}\newline
\NormalTok{add_cps\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}(add\ensuremath{\text{ }}x\ensuremath{\text{ }}y)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{square_cps\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)}\newline
\NormalTok{square_cps\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}(square\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{pythagoras_cps\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)}\newline
\NormalTok{pythagoras_cps\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{square_cps\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x_squared\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{square_cps\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}y_squared\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{add_cps\ensuremath{\text{ }}x_squared\ensuremath{\text{ }}y_squared\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{k}\newline
\end{Highlighting}
\end{Shaded}}

How the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythagoras_cps}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example works:

\begin{myenumerate}
\item{} square x and throw the result into the (\textbackslash{}x_squared -{}>{} ...) continuation
\item{} square y and throw the result into the (\textbackslash{}y_squared -{}>{} ...) continuation
\item{} add x_squared and y_squared and throw the result into the top level/program continuation {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myenumerate}

We can try it out in GHCi by passing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily print}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the program continuation:
\TemplatePreformat{ \newline{}
*Main>{} {}pythagoras_cps {}3 {}4 {}print \newline{}
25 \newline{}
}

If we look at the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythagoras_cps}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without the optional parentheses around \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Int -{}>{} r) -{}>{} r}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and compare it with the original type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythagoras}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we note that the continuation was in effect added as an extra argument, thus justifying the \symbol{34}continuation passing style\symbol{34} moniker.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily thrice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{363}
\HaskellExampleTemplate{A simple higher order function, no continuations}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{thrice\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{thrice\ensuremath{\text{ }}f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(f\ensuremath{\text{ }}(f\ensuremath{\text{ }}x))}\newline
\end{Highlighting}
\end{Shaded}}

\TemplatePreformat{ \newline{}
*Main>{} {}thrice {}tail {}\symbol{34}foobar\symbol{34} \newline{}
\symbol{34}bar\symbol{34} \newline{}
}

A higher order function such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily thrice}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, when converted to CPS, takes as arguments functions in CPS form as well. Therefore, {\ttfamily \mbox{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f :: a -{}>{} a} will become}\mbox{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}f_cps :: a -{}>{} ((a -{}>{} r) -{}>{} r)}, and the final type will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily thrice_cps :: (a -{}>{} ((a -{}>{} r) -{}>{} r)) -{}>{} a -{}>{} ((a -{}>{} r) -{}>{} r)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The rest of the definition follows quite naturally from the types -{} we replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by the CPS version, passing along the continuation at hand.

\HaskellExampleTemplate{A simple higher order function, with continuations}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{thrice_cps\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)}\newline
\NormalTok{thrice_cps\ensuremath{\text{ }}f_cps\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{f_cps\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}fx\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{f_cps\ensuremath{\text{ }}fx\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}ffx\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\NormalTok{f_cps\ensuremath{\text{ }}ffx\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{k}\newline
\end{Highlighting}
\end{Shaded}}

\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad}
\label{364}
Having continuation-{}passing functions, the next step is providing a neat way of composing them, preferably one which does not require the long chains of nested lambdas we have seen just above. A good start would be a combinator for applying a CPS function to a suspended computation. A possible type for it would be:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{chainCPS\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{((a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r))\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{((b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)}\newline
\end{Highlighting}
\end{Shaded}

(You may want to try implementing it before reading on. Hint: start by stating that the result is a function which takes a \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b -{}>{} r}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} continuation; then, let the types guide you.)

And here is the implementation:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{chainCPS\ensuremath{\text{ }}s\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{k}\newline
\end{Highlighting}
\end{Shaded}

We supply the original suspended computation {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a continuation which makes a new suspended computation (produced by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) and passes the final continuation {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to it. Unsurprisingly, it mirrors closely the nested lambda pattern of the previous examples.

Doesn\textquotesingle{}t the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chainCPS}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} look familiar? If we replace \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} r) -{}>{} r}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Monad m) =>{} m a}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (b -{}>{} r) -{}>{} r}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Monad m) =>{} m b}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we get the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} signature. Furthermore, our old friend \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip (\${})}}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} plays a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}like role, in that it makes a suspended computation out of a value in a trivial way. Lo and behold, we have a monad! All we need now \myfootnote{Beyond verifying that the monad laws hold, which is left as an exercise to the reader.} is a \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont r a}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type to wrap suspended computations, with the usual wrapper and unwrapper functions.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{cont\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{((a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}a}\newline
\OtherTok{runCont\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r}\newline
\end{Highlighting}
\end{Shaded}

The monad instance for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} follows directly from our presentation, the only difference being the wrapping and unwrapping cruft:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cont\ensuremath{\text{ }}(}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cont\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}c\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{runCont\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{runCont\ensuremath{\text{ }}(f\ensuremath{\text{ }}x)\ensuremath{\text{ }}c}\newline
\end{Highlighting}
\end{Shaded}

The end result is that the monad instance makes the continuation passing (and thus the lambda chains) implicit. The monadic bind applies a CPS function to a suspended computation, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runCont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used to provide the final continuation. For a simple example, the Pythagoras example becomes:

\HaskellExampleTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythagoras}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example, using the Cont monad}{\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Using\ensuremath{\text{ }}the\ensuremath{\text{ }}Cont\ensuremath{\text{ }}monad\ensuremath{\text{ }}from\ensuremath{\text{ }}the\ensuremath{\text{ }}transformers\ensuremath{\text{ }}package.}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.Trans.Cont}\newline
\ensuremath{\text{ }}\newline
\OtherTok{add_cont\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{add_cont\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(add\ensuremath{\text{ }}x\ensuremath{\text{ }}y)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{square_cont\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{square_cont\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(square\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{pythagoras_cont\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{pythagoras_cont\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x_squared\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{square_cont\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{y_squared\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{square_cont\ensuremath{\text{ }}y}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{add_cont\ensuremath{\text{ }}x_squared\ensuremath{\text{ }}y_squared}\newline
\end{Highlighting}
\end{Shaded}}
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{365}
While it is always pleasant to see a monad coming forth naturally, a hint of disappointment might linger at this point. One of the promises of CPS was precise control flow manipulation through continuations. And yet, after converting our functions to CPS we promptly hid the continuations behind a monad. To rectify that, we shall introduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a function which gives us back explicit control of continuations -{} but only where we want it.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a very peculiar function; one that is best introduced with examples. Let us start with a trivial one:

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily square}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Without\ensuremath{\text{ }}callCC}\newline
\OtherTok{square\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{square\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}With\ensuremath{\text{ }}callCC}\newline
\OtherTok{squareCCC\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{squareCCC\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}}

The argument passed to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function, whose result is a suspended computation (general type \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont r a}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) which we will refer to as \symbol{34}the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation\symbol{34}. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape In principle}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation is what the whole {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression evaluates to. The caveat, and what makes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so special, is due to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the argument to the argument. It is a function which acts as an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape eject button}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: calling it anywhere will lead to the value passed to it being made into a suspended computation, which then is inserted into control flow at the point of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} invocation. That happens unconditionally; in particular, whatever follows a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} invocation in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation is summarily discarded. From another perspective, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} captures {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape the rest of the computation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} following the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; calling it throws a value into the continuation at that particular point (\symbol{34}callCC\symbol{34} stands for \symbol{34}call with current continuation\symbol{34}). While in this simple example the effect is merely that of a plain {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} opens up a number of possibilities, which we are now going to explore.
\subsection{Deciding when to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{366}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives us extra power over what is thrown into a continuation, and when that is done. The following example begins to show how we can use this extra power.

\HaskellExampleTemplate{Our first proper {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{foo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{String}\newline
\NormalTok{foo\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{^}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{3}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}(y\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{20}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}}\StringTok{"over\ensuremath{\text{ }}twenty"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(show\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{4}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a slightly pathological function that computes the square of its input and adds three; if the result of this computation is greater than 20, then we return from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation (and, in this case, from the whole function) immediately, throwing the string {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}over twenty\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into the continuation that will be passed to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If not, then we subtract four from our previous computation, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it, and throw it into the continuation. Remarkably, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} here is used just like the \textquotesingle{}return\textquotesingle{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape statement}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from an imperative language, that immediately exits the function. And yet, this being Haskell, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just an ordinary first-{}class function, so you can pass it to other functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily when}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, store it in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Reader}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, etc.

Naturally, you can embed calls to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within do-{}blocks:

\HaskellExampleTemplate{More developed {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example involving a do-{}block}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{bar\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{bar\ensuremath{\text{ }}c\ensuremath{\text{ }}s\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{msg\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{s0\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{s}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}(s0\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\StringTok{"hello"}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}}\StringTok{"They\ensuremath{\text{ }}say\ensuremath{\text{ }}hello."}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{s1\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}s0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(}\StringTok{"They\ensuremath{\text{ }}appear\ensuremath{\text{ }}to\ensuremath{\text{ }}be\ensuremath{\text{ }}saying\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{s1)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(length\ensuremath{\text{ }}msg)}\newline
\end{Highlighting}
\end{Shaded}}

When you call {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a value, the entire {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} call takes that value. In effect, that makes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a lot like an \textquotesingle{}goto\textquotesingle{} statement in other languages: when we call {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in our example, it pops the execution out to where you first called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily msg <{}-{} callCC \${} ...}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} line. No more of the argument to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the inner do-{}block) is executed. Hence the following example contains a useless line:

\HaskellExampleTemplate{Popping out a function, introducing a useless line}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{quux\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{quux\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}n}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DecValTok{25}\newline
\end{Highlighting}
\end{Shaded}}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quux}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and not {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 25}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, because we pop out of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quux}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} before getting to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return 25}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} line.
\subsection{Behind the scenes}
\label{367}
We have deliberately broken a trend here: normally when we introduce a function we give its type straight away, but in this case we chose not to. The reason is simple: the type is pretty complex, and it does not immediately give insight into what the function does, or how it works. After the initial presentation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, we are in a better position to tackle it. Take a deep breath...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{callCC\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{((a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

We can make sense of that based on what we already know about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The overall result type and the result type of the argument have to be the same (i.e. \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont r a}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), as in the absence of an invocation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the corresponding result values are one and the same. Now, what about the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? As mentioned above, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s argument is made into a suspended computation inserted at the point of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} invocation; therefore, if the latter has type \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont r a}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s argument must have type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s result type, interestingly enough it doesn\textquotesingle{}t matter as long as it is wrapped in the same \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont r}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad; in other words, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} stands for an arbitrary type. That happens because the suspended computation made out of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument will receive whatever continuation follows the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so the continuation taken by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s result is irrelevant.

\LaTeXbodynoteTemplate{The arbitrariness of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s result type explains why the following variant of the useless line example leads to a type error:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{quux\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{quux\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{5}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}n}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}}\DecValTok{25}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s result type {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape could}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be anything of form {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont r a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; however, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily when}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constrains it to \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont r ()}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so the closing \mbox{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k 25}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not match the result type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily quux}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The solution is very simple: replace the final {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by a plain old {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}

To conclude this section, here is the implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Can you identify {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in it?

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{callCC\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{cont\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}h\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{runCont\ensuremath{\text{ }}(f\ensuremath{\text{ }}(\textbackslash{}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{cont\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{h\ensuremath{\text{ }}a))\ensuremath{\text{ }}h}\newline
\end{Highlighting}
\end{Shaded}

The code is far from obvious. However, the amazing fact is that the implementations of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be produced automatically from their type signatures -{} Lennart Augustsson\textquotesingle{}s Djinn \myplainurl{http://lambda-the-ultimate.org/node/1178} is a program that will do this for you. See Phil Gossett\textquotesingle{}s Google tech talk: \myplainurl{http://www.youtube.com/watch?v=h0OkptwfX4g} for background on the theory behind Djinn; and Dan Piponi\textquotesingle{}s article: \myplainurl{http://www.haskell.org/wikiupload/1/14/TMR-Issue6.pdf} which uses Djinn in deriving continuation passing style.
\section{Example: a complicated control structure}
\label{368}
We will now look at some more realistic examples of control flow manipulation. The first one, presented below, was originally taken from the \symbol{34}The Continuation monad\symbol{34} section of the \myhref{http://www.haskell.org/haskellwiki/All_about_monads}{All about monads tutorial}, used with permission.

\HaskellExampleTemplate{Using Cont for a complicated control structure}{\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{\{-\ensuremath{\text{ }}We\ensuremath{\text{ }}use\ensuremath{\text{ }}the\ensuremath{\text{ }}continuation\ensuremath{\text{ }}monad\ensuremath{\text{ }}to\ensuremath{\text{ }}perform\ensuremath{\text{ }}"escapes"\ensuremath{\text{ }}from\ensuremath{\text{ }}code\ensuremath{\text{ }}blocks.}\newline
\CommentTok{This\ensuremath{\text{ }}function\ensuremath{\text{ }}implements\ensuremath{\text{ }}a\ensuremath{\text{ }}complicated\ensuremath{\text{ }}control\ensuremath{\text{ }}structure\ensuremath{\text{ }}to\ensuremath{\text{ }}process}\newline
\CommentTok{numbers:}\newline
\CommentTok{\ensuremath{\text{ }}}\newline
\CommentTok{Input\ensuremath{\text{ }}(n)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}Output\ensuremath{\text{ }}List\ensuremath{\text{ }}Shown}\newline
\CommentTok{=========\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}======\ensuremath{\text{ }}==========}\newline
\CommentTok{0-9\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}n\ensuremath{\text{ }}none}\newline
\CommentTok{10-199\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}number\ensuremath{\text{ }}of\ensuremath{\text{ }}digits\ensuremath{\text{ }}in\ensuremath{\text{ }}(n/2)\ensuremath{\text{ }}digits\ensuremath{\text{ }}of\ensuremath{\text{ }}(n/2)}\newline
\CommentTok{200-19999\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}n\ensuremath{\text{ }}digits\ensuremath{\text{ }}of\ensuremath{\text{ }}(n/2)}\newline
\CommentTok{20000-1999999\ensuremath{\text{ }}(n/2)\ensuremath{\text{ }}backwards\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}none}\newline
\CommentTok{>=\ensuremath{\text{ }}2000000\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}sum\ensuremath{\text{ }}of\ensuremath{\text{ }}digits\ensuremath{\text{ }}of\ensuremath{\text{ }}(n/2)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}digits\ensuremath{\text{ }}of\ensuremath{\text{ }}(n/2)}\newline
\CommentTok{-\}}\ensuremath{\text{ }}\newline
\OtherTok{fun\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{fun\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\OtherTok{`runCont`}\ensuremath{\text{ }}\NormalTok{id)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{str\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}exit1\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}define\ensuremath{\text{ }}"exit1"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{10}\NormalTok{)\ensuremath{\text{ }}(exit1\ensuremath{\text{ }}(show\ensuremath{\text{ }}n))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{ns\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}digitToInt\ensuremath{\text{ }}(show\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\OtherTok{`div`}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{n\textquotesingle{}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}exit2\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}define\ensuremath{\text{ }}"exit2"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}((length\ensuremath{\text{ }}ns)\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)\ensuremath{\text{ }}(exit2\ensuremath{\text{ }}(length\ensuremath{\text{ }}ns))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}((length\ensuremath{\text{ }}ns)\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)\ensuremath{\text{ }}(exit2\ensuremath{\text{ }}n)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}((length\ensuremath{\text{ }}ns)\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{7}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{ns\textquotesingle{}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}intToDigit\ensuremath{\text{ }}(reverse\ensuremath{\text{ }}ns)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{exit1\ensuremath{\text{ }}(dropWhile\ensuremath{\text{ }}(}\FunctionTok{==}\CharTok{\textquotesingle{}0\textquotesingle{}}\NormalTok{)\ensuremath{\text{ }}ns\textquotesingle{})\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--escape\ensuremath{\text{ }}2\ensuremath{\text{ }}levels}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{sum\ensuremath{\text{ }}ns}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\StringTok{"(ns\ensuremath{\text{ }}=\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(show\ensuremath{\text{ }}ns)\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{")\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{(show\ensuremath{\text{ }}n\textquotesingle{})}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\StringTok{"Answer:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{str}\newline
\end{Highlighting}
\end{Shaded}}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fun}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function that takes an integer {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The implementation uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to set up a control structure using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that does different things based on the range that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} falls in, as stated by the comment at the top. Let us dissect it:

\begin{myenumerate}
\item{} Firstly, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (`runCont` id)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the top just means that we run the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block that follows with a final continuation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (or, in other words, we extract the value from the suspended computation unchanged). That is necessary as the result type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fun}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t mention {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} We bind {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily str}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the result of the following {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do-{}block:
\begin{myenumerate}
\item{} If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is less than 10, we exit straight away, just showing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} If not, we proceed. We construct a list, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ns}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, of digits of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n `div` 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) gets bound to the result of the following inner {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do-{}block.
\begin{myenumerate}
\item{} If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length ns <{} 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, i.e., if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n `div` 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has less than 3 digits, we pop out of this inner do-{}block with the number of digits as the result.
\item{} If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n `div` 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has less than 5 digits, we pop out of the inner do-{}block returning the original {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n `div` 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has less than 7 digits, we pop out of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape both}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the inner and outer do-{}blocks, with the result of the digits of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n `div` 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in reverse order (a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\item{} Otherwise, we end the inner do-{}block, returning the sum of the digits of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n `div` 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myenumerate}

\item{} We end this do-{}block, returning the String {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}(ns = X) Y\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where X is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ns}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the digits of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n `div` 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and Y is the result from the inner do-{}block, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myenumerate}

\item{} Finally, we return out of the entire function, with our result being the string \symbol{34}Answer: Z\symbol{34}, where Z is the string we got from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do-{}block.
\end{myenumerate}

\section{Example: exceptions}
\label{369}
One use of continuations is to model exceptions. To do this, we hold on to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape two}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} continuations: one that takes us out to the handler in case of an exception, and one that takes us to the post-{}handler code in case of a success. Here\textquotesingle{}s a simple function that takes two numbers and does integer division on them, failing when the denominator is zero.

\HaskellExampleTemplate{An exception-{}throwing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily div}}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{divExcpt\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Cont}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{Int}\newline
\NormalTok{divExcpt\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}handler\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}ok\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{err\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}notOk\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}(y\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{notOk\ensuremath{\text{ }}}\StringTok{"Denominator\ensuremath{\text{ }}0"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ok\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{`div`}\ensuremath{\text{ }}\NormalTok{y}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{handler\ensuremath{\text{ }}err}\newline
\ensuremath{\text{ }}\newline
\CommentTok{\{-\ensuremath{\text{ }}For\ensuremath{\text{ }}example,}\newline
\CommentTok{runCont\ensuremath{\text{ }}(divExcpt\ensuremath{\text{ }}10\ensuremath{\text{ }}2\ensuremath{\text{ }}error)\ensuremath{\text{ }}id\ensuremath{\text{ }}-->\ensuremath{\text{ }}5}\newline
\CommentTok{runCont\ensuremath{\text{ }}(divExcpt\ensuremath{\text{ }}10\ensuremath{\text{ }}0\ensuremath{\text{ }}error)\ensuremath{\text{ }}id\ensuremath{\text{ }}-->\ensuremath{\text{ }}***\ensuremath{\text{ }}Exception:\ensuremath{\text{ }}Denominator\ensuremath{\text{ }}0}\newline
\CommentTok{-\}}\newline
\end{Highlighting}
\end{Shaded}}

How does it work? We use two nested calls to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The first labels a continuation that will be used when there\textquotesingle{}s no problem. The second labels a continuation that will be used when we wish to throw an exception. If the denominator isn\textquotesingle{}t 0, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x `div` y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is thrown into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ok}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} continuation, so the execution pops right back out to the top level of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily divExcpt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If, however, we were passed a zero denominator, we throw an error message into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily notOk}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} continuation, which pops us out to the inner do-{}block, and that string gets assigned to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily err}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and given to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily handler}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

A more general approach to handling exceptions can be seen with the following function. Pass a computation as the first parameter (more precisely, a function which takes an error-{}throwing function and results in the computation) and an error handler as the second parameter. This example takes advantage of the generic {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MonadCont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class \myfootnote{Found in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mtl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package, module \myfnhref{http://hackage.haskell.org/packages/archive/mtl/2.1.2/doc/html/Control-Monad-Cont.html}{Control.Monad.Cont}.} which covers both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cont}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the corresponding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ContT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} transformer by default, as well as any other continuation monad which instantiates it.

\HaskellExampleTemplate{General {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily try}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using continuations.}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.Cont}\newline
\ensuremath{\text{ }}\newline
\OtherTok{tryCont\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{MonadCont}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{((err\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(err\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\NormalTok{tryCont\ensuremath{\text{ }}c\ensuremath{\text{ }}h\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}ok\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{err\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}notOk\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}notOk}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ok\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{h\ensuremath{\text{ }}err}\newline
\end{Highlighting}
\end{Shaded}}

And here is our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily try}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in action:

\HaskellExampleTemplate{Using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily try}}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{SqrtException}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{LessThanZero}\ensuremath{\text{ }}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Eq}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\OtherTok{sqrtIO\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{SqrtException}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{ContT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{())\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{ContT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{sqrtIO\ensuremath{\text{ }}throw\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ln\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}(putStr\ensuremath{\text{ }}}\StringTok{"Enter\ensuremath{\text{ }}a\ensuremath{\text{ }}number\ensuremath{\text{ }}to\ensuremath{\text{ }}sqrt:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{readLn)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{when\ensuremath{\text{ }}(ln\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\NormalTok{)\ensuremath{\text{ }}(throw\ensuremath{\text{ }}}\DataTypeTok{LessThanZero}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{print\ensuremath{\text{ }}(sqrt\ensuremath{\text{ }}ln)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runContT\ensuremath{\text{ }}(tryCont\ensuremath{\text{ }}sqrtIO\ensuremath{\text{ }}(lift\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{print))\ensuremath{\text{ }}return}\newline
\end{Highlighting}
\end{Shaded}}

In this example, error throwing means escaping from an enclosing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily throw}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sqrtIO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} jumps out of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tryCont}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s inner {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily callCC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Example: coroutines}
\label{370}
In this section we make a CoroutineT monad that provides a monad with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fork}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which enqueues a new suspended coroutine, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily yield}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that suspends the current thread.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}GeneralizedNewtypeDeriving\ensuremath{\text{ }}#-\}}\newline
\CommentTok{--\ensuremath{\text{ }}We\ensuremath{\text{ }}use\ensuremath{\text{ }}GeneralizedNewtypeDeriving\ensuremath{\text{ }}to\ensuremath{\text{ }}avoid\ensuremath{\text{ }}boilerplate.\ensuremath{\text{ }}As\ensuremath{\text{ }}of\ensuremath{\text{ }}GHC\ensuremath{\text{ }}7.8,\ensuremath{\text{ }}it\ensuremath{\text{ }}is}\newline
\ensuremath{\text{ }}\NormalTok{safe}\FunctionTok{.}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Applicative}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.Cont}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.State}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}CoroutineT\ensuremath{\text{ }}monad\ensuremath{\text{ }}is\ensuremath{\text{ }}just\ensuremath{\text{ }}ContT\ensuremath{\text{ }}stacked\ensuremath{\text{ }}with\ensuremath{\text{ }}a\ensuremath{\text{ }}StateT\ensuremath{\text{ }}containing\ensuremath{\text{ }}the}\newline
\ensuremath{\text{ }}\NormalTok{suspended\ensuremath{\text{ }}coroutines}\FunctionTok{.}\newline
\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{runCoroutineT\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{ContT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}(}\DataTypeTok{StateT}\newline
\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()]\ensuremath{\text{ }}m)\ensuremath{\text{ }}a\}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Functor}\NormalTok{,}\DataTypeTok{Applicative}\NormalTok{,}\DataTypeTok{Monad}\NormalTok{,}\DataTypeTok{MonadCont}\NormalTok{,}\DataTypeTok{MonadIO}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Used\ensuremath{\text{ }}to\ensuremath{\text{ }}manipulate\ensuremath{\text{ }}the\ensuremath{\text{ }}coroutine\ensuremath{\text{ }}queue.}\newline
\OtherTok{getCCs\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}[}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()]}\newline
\NormalTok{getCCs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}get}\newline
\ensuremath{\text{ }}\newline
\OtherTok{putCCs\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()}\newline
\NormalTok{putCCs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{lift\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{put}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Pop\ensuremath{\text{ }}and\ensuremath{\text{ }}push\ensuremath{\text{ }}coroutines\ensuremath{\text{ }}to\ensuremath{\text{ }}the\ensuremath{\text{ }}queue.}\newline
\OtherTok{dequeue\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()}\newline
\NormalTok{dequeue\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{current_ccs\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getCCs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{current_ccs\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{[]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(p}\FunctionTok{:}\NormalTok{ps)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putCCs\ensuremath{\text{ }}ps}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{p}\newline
\ensuremath{\text{ }}\newline
\OtherTok{queue\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()}\newline
\NormalTok{queue\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ccs\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getCCs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putCCs\ensuremath{\text{ }}(ccs}\FunctionTok{++}\NormalTok{[p])}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}interface.}\newline
\OtherTok{yield\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()}\newline
\NormalTok{yield\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{queue\ensuremath{\text{ }}(k\ensuremath{\text{ }}())}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dequeue}\newline
\ensuremath{\text{ }}\newline
\OtherTok{fork\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()}\newline
\NormalTok{fork\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{callCC\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}k\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{queue\ensuremath{\text{ }}(k\ensuremath{\text{ }}())}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{p}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dequeue}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Exhaust\ensuremath{\text{ }}passes\ensuremath{\text{ }}control\ensuremath{\text{ }}to\ensuremath{\text{ }}suspended\ensuremath{\text{ }}coroutines\ensuremath{\text{ }}repeatedly\ensuremath{\text{ }}until\ensuremath{\text{ }}there\ensuremath{\text{ }}isn\textquotesingle{}t}\newline
\ensuremath{\text{ }}\NormalTok{any\ensuremath{\text{ }}left}\FunctionTok{.}\newline
\OtherTok{exhaust\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}()}\newline
\NormalTok{exhaust\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{exhausted\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{null\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{getCCs}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{not\ensuremath{\text{ }}exhausted}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\NormalTok{yield\ensuremath{\text{ }}}\FunctionTok{>>}\ensuremath{\text{ }}\NormalTok{exhaust}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Runs\ensuremath{\text{ }}the\ensuremath{\text{ }}coroutines\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}base\ensuremath{\text{ }}monad.}\newline
\OtherTok{runCoroutineT\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Monad}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{CoroutineT}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}m\ensuremath{\text{ }}r\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}r}\newline
\NormalTok{runCoroutineT\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{flip\ensuremath{\text{ }}evalStateT\ensuremath{\text{ }}[]\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{flip\ensuremath{\text{ }}runContT\ensuremath{\text{ }}return\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{runCoroutineT\textquotesingle{}\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{<*}\newline
\ensuremath{\text{ }}\NormalTok{exhaust)}\newline
\end{Highlighting}
\end{Shaded}

Some example usage:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{printOne\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{liftIO\ensuremath{\text{ }}(print\ensuremath{\text{ }}n)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{yield}\newline
\ensuremath{\text{ }}\newline
\NormalTok{example\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runCoroutineT\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fork\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{replicateM_\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\NormalTok{(printOne\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fork\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{replicateM_\ensuremath{\text{ }}}\DecValTok{4}\ensuremath{\text{ }}\NormalTok{(printOne\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{replicateM_\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{(printOne\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Outputting:
\TemplatePreformat{ \newline{}
3 \newline{}
4 \newline{}
3 \newline{}
2 \newline{}
4 \newline{}
3 \newline{}
2 \newline{}
4 \newline{}
4 \newline{}
}
\section{Example: Implementing pattern matching}
\label{371}
An interesting usage of CPS functions is to implement our own pattern matching. We will illustrate how this can be done by some examples.

\HaskellExampleTemplate{Built-{}in pattern matching}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{check\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{check\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{True}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"It\textquotesingle{}s\ensuremath{\text{ }}True"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{False}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\StringTok{"It\textquotesingle{}s\ensuremath{\text{ }}False"}\newline
\end{Highlighting}
\end{Shaded}}

Now we have learnt CPS, we can refactor the code like this.

\HaskellExampleTemplate{Pattern matching in CPS}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{BoolCPS}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r}\newline
\ensuremath{\text{ }}\newline
\OtherTok{true\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{BoolCPS}\ensuremath{\text{ }}\NormalTok{r}\newline
\NormalTok{true\ensuremath{\text{ }}x\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{false\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{BoolCPS}\ensuremath{\text{ }}\NormalTok{r}\newline
\NormalTok{false\ensuremath{\text{ }}_\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{check\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{BoolCPS}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\NormalTok{check\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\StringTok{"It\textquotesingle{}s\ensuremath{\text{ }}True"}\ensuremath{\text{ }}\StringTok{"It\textquotesingle{}s\ensuremath{\text{ }}False"}\newline
\end{Highlighting}
\end{Shaded}}

\TemplatePreformat{ \newline{}
*Main>{} {}check {}true \newline{}
\symbol{34}It\textquotesingle{}s {}True\symbol{34} \newline{}
*Main>{} {}check {}false \newline{}
\symbol{34}It\textquotesingle{}s {}False\symbol{34} \newline{}
}

What happens here is that, instead of plain values, we represent {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by functions that would choose either the first or second argument they are passed. Since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily true}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily false}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} behave differently, we can achieve the same effect as pattern matching. Furthermore, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily true}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily false}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be converted back and forth by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}b -{}>{} b True False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}b -{}>{} if b then true else false}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

We should see how this is related to CPS in this more complicated example.

\HaskellExampleTemplate{More complicated pattern matching and its CPS equivalence}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foobar}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Zero}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{One}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Two}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{FoobarCPS}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r}\newline
\ensuremath{\text{ }}\newline
\OtherTok{zero\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{FoobarCPS}\ensuremath{\text{ }}\NormalTok{r}\newline
\NormalTok{zero\ensuremath{\text{ }}x\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{one\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{FoobarCPS}\ensuremath{\text{ }}\NormalTok{r}\newline
\NormalTok{one\ensuremath{\text{ }}x\ensuremath{\text{ }}_\ensuremath{\text{ }}f\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x}\newline
\ensuremath{\text{ }}\newline
\OtherTok{two\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{FoobarCPS}\ensuremath{\text{ }}\NormalTok{r}\newline
\NormalTok{two\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}_\ensuremath{\text{ }}_\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}y}\newline
\ensuremath{\text{ }}\newline
\OtherTok{fun\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Foobar}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{fun\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\KeywordTok{of}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Zero}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{One}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Two}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{2}\newline
\ensuremath{\text{ }}\newline
\OtherTok{funCPS\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{FoobarCPS}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{funCPS\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{+}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}(\textbackslash{}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}}

\TemplatePreformat{ \newline{}
*Main>{} {}fun {}zero \newline{}
0 \newline{}
*Main>{} {}fun {}\${}$\text{ }${}one$\text{ }${}3$\text{ }$\newline{}
4 \newline{}
*Main>{} {}fun {}\${}$\text{ }${}two$\text{ }${}3$\text{ }${}4$\text{ }$\newline{}
9 \newline{}
}

Similar to former example, we represent values by functions. These function-{}values pick the corresponding (i.e. match) continuations they are passed to and pass to the latter the values stored in the former. An interesting thing is that this process involves in no comparison. As we know, pattern matching can work on types that are not instances of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: the function-{}values \symbol{34}know\symbol{34} what their patterns are and would automatically pick the right continuations. If this is done from outside, say, by an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pattern_match :: {[}(pattern, result){]} -{}>{} value -{}>{} result}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, it would have to inspect and compare the patterns and the values to see if they match -{}-{} and thus would need {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instances.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Zippers}

\myminitoc
\label{372}

\label{373}
\LaTeXNullTemplate{}
\section{Theseus and the Zipper}
\label{374}\subsection{The Labyrinth}
\label{375}
\symbol{34}Theseus, we have to do something\symbol{34} said Homer, chief marketing officer of Ancient Geeks Inc.. Theseus put the Minotaur action figure™ back onto the shelf and nodded. \symbol{34}Today\textquotesingle{}s children are no longer interested in the ancient myths, they prefer modern heroes like Spiderman or Sponge Bob.\symbol{34} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Heroes}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Theseus knew well how much he had been a hero in the labyrinth back then on Crete\myfootnote{Ian Stewart. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape The true story of how Theseus found his way out of the labyrinth}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Scientific American, February 1991, page 137.}. But those \symbol{34}modern heroes\symbol{34} did not even try to appear realistic. What made them so successful? Anyway, if the pending sales problems could not be resolved, the shareholders would certainly arrange a passage over the Styx for Ancient Geeks Inc.

\symbol{34}Heureka! Theseus, I have an idea: we implement your story with the Minotaur as a computer game! What do you say?\symbol{34} Homer was right. There had been several books, epic (and chart breaking) songs, a mandatory movie trilogy and uncountable Theseus \& the Minotaur™ gimmicks, but a computer game was missing. \symbol{34}Perfect, then. Now, Theseus, your task is to implement the game\symbol{34}.

A true hero, Theseus chose Haskell as the language to implement the company\textquotesingle{}s redeeming product in. Of course, exploring the labyrinth of the Minotaur was to become one of the game\textquotesingle{}s highlights. He pondered: \symbol{34}We have a two-{}dimensional labyrinth whose corridors can point in many directions. Of course, we can abstract from the detailed lengths and angles: for the purpose of finding the way out, we only need to know how the path forks. To keep things easy, we model the labyrinth as a tree. This way, the two branches of a fork cannot join again when walking deeper and the player cannot go round in circles. But I think there is enough opportunity to get lost; and this way, if the player is patient enough, he can explore the entire labyrinth with the left-{}hand rule.\symbol{34}
\\

\TemplateSpaceIndent{ {}data {}Node {}a {}= {}DeadEnd {}a \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}| {}Passage {}a {}(Node {}a) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}| {}Fork {} {} {} {}a {}(Node {}a) {}(Node {}a)}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/14.png}
\end{center}
\raggedright{}\myfigurewithcaption{14}{An example labyrinth and its representation as tree.}
\end{minipage}\vspace{0.75cm}

Theseus made the nodes of the labyrinth carry an extra parameter of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Later on, it may hold game relevant information like the coordinates of the spot a node designates, the ambience around it, a list of game items that lie on the floor, or a list of monsters wandering in that section of the labyrinth. We assume that two helper functions
\\

\TemplateSpaceIndent{ {}get {}:: {}Node {}a {}-{}>{} {}a \newline{}
 {}put {}:: {}a {}-{}>{} {}Node {}a {}-{}>{} {}Node {}a}

retrieve and change the value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} stored in the first argument of every constructor of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Node a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. One case for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is \newline{}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get (Passage x _) = x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} To get a concrete example, write down the labyrinth shown in the picture as a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Node (Int,Int)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The extra parameter {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Int,Int)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} holds the cartesian coordinates of a node.
\end{myenumerate}}

\symbol{34}Mh, how to represent the player\textquotesingle{}s current position in the labyrinth? The player can explore deeper by choosing left or right branches, like in\symbol{34}
\\

\TemplateSpaceIndent{ {} {}turnRight {}:: {}Node {}a {}-{}>{} {}Maybe {}(Node {}a) \newline{}
 {} {}turnRight {}(Fork {}_ {}l {}r) {}= {}Just {}r \newline{}
 {} {}turnRight {}_ {} {} {} {} {} {} {} {} {} {} {} {}= {}Nothing}

\symbol{34}But replacing the current top of the labyrinth with the corresponding sub-{}labyrinth this way is not an option, because he cannot go back then.\symbol{34} He pondered. \symbol{34}Ah, we can apply {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Ariadne\textquotesingle{}s trick with the thread}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for going back. We simply represent the player\textquotesingle{}s position by the list of branches his thread takes, the labyrinth always remains the same.\symbol{34}
\\

\TemplateSpaceIndent{ {}data {}Branch {}= {}KeepStraightOn \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}| {}TurnLeft \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}| {}TurnRight \newline{}
 {}type {}Thread {}= {}{[}Branch{]}}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/15.png}
\end{center}
\raggedright{}\myfigurewithcaption{15}{Representation of the player\textquotesingle{}s position by Ariadne\textquotesingle{}s thread.}
\end{minipage}\vspace{0.75cm}

\symbol{34}For example, a thread {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}TurnRight,KeepStraightOn{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means that the player took the right branch at the entrance and then went straight down a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Passage}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to reach its current position. With the thread, the player can now explore the labyrinth by extending or shortening it. For instance, the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily turnRight}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} extends the thread by appending the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily TurnRight}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to it.\symbol{34}
\\

\TemplateSpaceIndent{ {}turnRight {}:: {}Thread {}-{}>{} {}Thread \newline{}
 {}turnRight {}t {}= {}t {}++ {}{[}TurnRight{]}}

\symbol{34}To access the extra data, i.e. the game relevant items and such, we simply follow the thread into the labyrinth.\symbol{34}
\\

\TemplateSpaceIndent{ {}retrieve {}:: {}Thread {}-{}>{} {}Node {}a {}-{}>{} {}a \newline{}
 {}retrieve {}{[}{]} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}n {} {} {} {} {} {} {} {} {} {} {} {} {}= {}get {}n \newline{}
 {}retrieve {}(KeepStraightOn:bs) {}(Passage {}_ {}n) {}= {}retrieve {}bs {}n \newline{}
 {}retrieve {}(TurnLeft {} {} {} {} {} {}:bs) {}(Fork {}_ {}l {}r) {} {}= {}retrieve {}bs {}l \newline{}
 {}retrieve {}(TurnRight {} {} {} {} {}:bs) {}(Fork {}_ {}l {}r) {} {}= {}retrieve {}bs {}r}

\LaTeXExercisesTemplate{Write a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily update}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that applies a function of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the extra data at the player\textquotesingle{}s position.}

Theseus\textquotesingle{} satisfaction over this solution did not last long. \symbol{34}Unfortunately, if we want to extend the path or go back a step, we have to change the last element of the list. We could store the list in reverse, but even then, we have to follow the thread again and again to access the data in the labyrinth at the player\textquotesingle{}s position. Both actions take time proportional to the length of the thread and for large labyrinths, this will be too long. Isn\textquotesingle{}t there another way?\symbol{34}
\subsection{Ariadne\textquotesingle{}s Zipper}
\label{376}
While Theseus was a skillful warrior, he did not train much in the art of programming and could not find a satisfying solution. After intense but fruitless cogitation, he decided to call his former love Ariadne to ask her for advice. After all, it was she who had the idea with the thread.
Ariadne Consulting. What can I do for you?
Our hero immediately recognized the voice.
\symbol{34}Hello Ariadne, it\textquotesingle{}s Theseus.\symbol{34}
An uneasy silence paused the conversation. Theseus remembered well that he had abandoned her on the island of Naxos and knew that she would not appreciate his call. But Ancient Geeks Inc. was on the road to Hades and he had no choice.
\symbol{34}Uhm, darling, ... how are you?\symbol{34}
Ariadne retorted an icy response, Mr. Theseus, the times of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape darling}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are long over. What do you want?
\symbol{34}Well, I uhm ... I need some help with a programming problem. I\textquotesingle{}m programming a new Theseus \& the Minotaur™ computer game.\symbol{34}
She jeered, Yet another artifact to glorify your \textquotesingle{}heroic being\textquotesingle{}? And you want me of all people to help you?
\symbol{34}Ariadne, please, I beg of you, Ancient Geeks Inc. is on the brink of insolvency. The game is our last hope!\symbol{34}
After a pause, she came to a decision.
Fine, I will help you. But only if you transfer a substantial part of Ancient Geeks Inc. to me. Let\textquotesingle{}s say thirty percent.
Theseus turned pale. But what could he do? The situation was desperate enough, so he agreed but only after negotiating Ariadne\textquotesingle{}s share to a tenth.

After Theseus told Ariadne of the labyrinth representation he had in mind, she could immediately give advice,
You need a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries zipper}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\symbol{34}Huh? What does the problem have to do with my fly?\symbol{34}
Nothing, it\textquotesingle{}s a data structure first published by Gérard Huet\myfootnote{Gérard Huet. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape The Zipper}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Journal of Functional Programming, 7 (5), Sept 1997, pp. 549-{}-{}554. \myfnhref{http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf}{PDF}}.
\symbol{34}Ah.\symbol{34}
More precisely, it\textquotesingle{}s a purely functional way to augment tree-{}like data structures like lists or binary trees with a single {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries focus}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries finger}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that points to a subtree inside the data structure and allows constant time updates and lookups at the spot it points to\myfootnote{Note the notion of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape zipper}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as coined by Gérard Huet also allows to replace whole subtrees even if there is no extra data associated with them. In the case of our labyrinth, this is irrelevant. We will come back to this in the section \myfnlref{377}{Differentiation of data types}.}. In our case, we want a focus on the player\textquotesingle{}s position.
\symbol{34}I know for myself that I want fast updates, but how do I code it?\symbol{34}
Don\textquotesingle{}t get impatient, you cannot solve problems by coding, you can only solve them by thinking. The only place where we can get constant time updates in a purely functional data structure is the topmost node\myfootnote{Of course, the second topmost node or any other node at most a constant number of links away from the top will do as well.}\myfootnote{Note that changing the whole data structure as opposed to updating the data at a node can be achieved in amortized constant time even if more nodes than just the top node is affected. An example is incrementing a number in binary representation. While incrementing say {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 111..11}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must touch all digits to yield {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1000..00}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the increment function nevertheless runs in constant amortized time (but not in constant worst case time).}. So, the focus necessarily has to be at the top. Currently, the topmost node in your labyrinth is always the entrance, but your previous idea of replacing the labyrinth by one of its sub-{}labyrinths ensures that the player\textquotesingle{}s position is at the topmost node.
\symbol{34}But then, the problem is how to go back, because all those sub-{}labyrinths get lost that the player did not choose to branch into.\symbol{34}
Well, you can use my thread in order not to lose the sub-{}labyrinths.
Ariadne savored Theseus\textquotesingle{} puzzlement but quickly continued before he could complain that he already used Ariadne\textquotesingle{}s thread,
The key is to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape glue the lost sub-{}labyrinths to the thread}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that they actually don\textquotesingle{}t get lost at all. The intention is that the thread and the current sub-{}labyrinth complement one another to the whole labyrinth. With \textquotesingle{}current\textquotesingle{} sub-{}labyrinth, I mean the one that the player stands on top of. The zipper simply consists of the thread and the current sub-{}labyrinth.
\\

\TemplateSpaceIndent{ {}type {}Zipper {}a {}= {}(Thread {}a, {}Node {}a)}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/16.png}
\end{center}
\raggedright{}\myfigurewithcaption{16}{The zipper is a pair of Ariadne\textquotesingle{}s thread and the current sub-{}labyrinth that the player stands on top. The main thread is colored red and has sub-{}labyrinths attached to it, such that the whole labyrinth can be reconstructed from the pair.}
\end{minipage}\vspace{0.75cm}

Theseus didn\textquotesingle{}t say anything.
You can also view the thread as a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries context}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in which the current sub-{}labyrinth resides. Now, let\textquotesingle{}s find out how to define {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Thread a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. By the way, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Thread}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has to take the extra parameter {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because it now stores sub-{}labyrinths. The thread is still a simple list of branches, but the branches are different from before.
\\

\TemplateSpaceIndent{ {}data {}Branch {}a {} {}= {}KeepStraightOn {}a \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}| {}TurnLeft {} {}a {}(Node {}a) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}| {}TurnRight {}a {}(Node {}a) \newline{}
 {}type {}Thread {}a {} {}= {}{[}Branch {}a{]}}

Most importantly, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily TurnLeft}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily TurnRight}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} have a sub-{}labyrinth glued to them. When the player chooses say to turn right, we extend the thread with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily TurnRight}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and now attach the untaken left branch to it, so that it doesn\textquotesingle{}t get lost.
Theseus interrupts, \symbol{34}Wait, how would I implement this behavior as a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily turnRight}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? And what about the first argument of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily TurnRight}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Ah, I see. We not only need to glue the branch that would get lost, but also the extra data of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fork}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because it would otherwise get lost as well. So, we can generate a new branch by a preliminary\symbol{34}
\\

\TemplateSpaceIndent{ {}branchRight {}(Fork {}x {}l {}r) {}= {}TurnRight {}x {}l}

\symbol{34}Now, we have to somehow extend the existing thread with it.\symbol{34}
Indeed. The second point about the thread is that it is stored {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape backwards}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To extend it, you put a new branch in front of the list. To go back, you delete the topmost element.
\symbol{34}Aha, this makes extending and going back take only constant time, not time proportional to the length as in my previous version. So the final version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily turnRight}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is\symbol{34}
\\

\TemplateSpaceIndent{ {}turnRight {}:: {}Zipper {}a {}-{}>{} {}Maybe {}(Zipper {}a) \newline{}
 {}turnRight {}(t, {}Fork {}x {}l {}r) {}= {}Just {}(TurnRight {}x {}l {}: {}t, {}r) \newline{}
 {}turnRight {}_ {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}= {}Nothing}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/17.png}
\end{center}
\raggedright{}\myfigurewithcaption{17}{Taking the right subtree from the entrance. Of course, the thread is initially empty. Note that the thread runs backwards, i.e. the topmost segment is the most recent.}
\end{minipage}\vspace{0.75cm}

\symbol{34}That was not too difficult. So let\textquotesingle{}s continue with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily keepStraightOn}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for going down a passage. This is even easier than choosing a branch as we only need to keep the extra data:\symbol{34}
\\

\TemplateSpaceIndent{ {}keepStraightOn {}:: {}Zipper {}a {}-{}>{} {}Maybe {}(Zipper {}a) \newline{}
 {}keepStraightOn {}(t, {}Passage {}x {}n) {}= {}Just {}(KeepStraightOn {}x {}: {}t, {}n) \newline{}
 {}keepStraightOn {}_ {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}= {}Nothing}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/18.png}
\end{center}
\raggedright{}\myfigurewithcaption{18}{Now going down a passage.}
\end{minipage}\vspace{0.75cm}

\LaTeXExercisesTemplate{Write the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily turnLeft}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}

Pleased, he continued, \symbol{34}But the interesting part is to go back, of course. Let\textquotesingle{}s see...\symbol{34}
\\

\TemplateSpaceIndent{ {}back {}:: {}Zipper {}a {}-{}>{} {}Maybe {}(Zipper {}a) \newline{}
 {}back {}({[}{]} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}, {}_) {}= {}Nothing \newline{}
 {}back {}(KeepStraightOn {}x {}: {}t {}, {}n) {}= {}Just {}(t, {}Passage {}x {}n) \newline{}
 {}back {}(TurnLeft {} {}x {}r {} {} {} {}: {}t {}, {}l) {}= {}Just {}(t, {}Fork {}x {}l {}r) \newline{}
 {}back {}(TurnRight {}x {}l {} {} {} {}: {}t {}, {}r) {}= {}Just {}(t, {}Fork {}x {}l {}r)}

\symbol{34}If the thread is empty, we\textquotesingle{}re already at the entrance of the labyrinth and cannot go back. In all other cases, we have to wind up the thread. And thanks to the attachments to the thread, we can actually reconstruct the sub-{}labyrinth we came from.\symbol{34}
Ariadne remarked, Note that a partial test for correctness is to check that each bound variable like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily l}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the left hand side appears exactly once at the right hands side as well. So, when walking up and down a zipper, we only redistribute data between the thread and the current sub-{}labyrinth.

\LaTeXExercisesTemplate{\begin{myenumerate}\item{}Now that we can navigate the zipper, code the functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily update}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that operate on the extra data at the player\textquotesingle{}s position.
\item{}Zippers are by no means limited to the concrete example {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Node a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, they can be constructed for all tree-{}like data types. Go on and construct a zipper for binary trees
\TemplatePreformat{ \newline{}
 {}data {}Tree {}a {}= {}Leaf {}a {}| {}Bin {}(Tree {}a) {}(Tree {}a) \newline{}
}
Start by thinking about the possible branches {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Branch a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that a thread can take. What do you have to glue to the thread when exploring the tree?
\item{}Simple lists have a zipper as well.
\TemplatePreformat{ \newline{}
 {}data {}List {}a {}= {}Empty {}| {}Cons {}a {}(List {}a) \newline{}
}
What does it look like?
\item{}Write a complete game based on Theseus\textquotesingle{} labyrinth.

\end{myenumerate}}

Heureka! That was the solution Theseus sought and Ancient Geeks Inc. should prevail, even if partially sold to Ariadne Consulting. But one question remained:
\symbol{34}Why is it called zipper?\symbol{34}
Well, I would have called it \textquotesingle{}Ariadne\textquotesingle{}s pearl necklace\textquotesingle{}. But most likely, it\textquotesingle{}s called zipper because the thread is in analogy to the open part and the sub-{}labyrinth is like the closed part of a zipper. Moving around in the data structure is analogous to zipping or unzipping the zipper.
\symbol{34}\textquotesingle{}Ariadne\textquotesingle{}s pearl necklace\textquotesingle{},\symbol{34} he articulated disdainfully. \symbol{34}As if your thread was any help back then on Crete.\symbol{34}
As if the idea with the thread were yours, she replied.
\symbol{34}Bah, I need no thread,\symbol{34} he defied the fact that he actually did need the thread to program the game.
Much to his surprise, she agreed, Well, indeed you don\textquotesingle{}t need a thread. Another view is to literally grab the tree at the focus with your finger and lift it up in the air. The focus will be at the top and all other branches of the tree hang down. You only have to assign the resulting tree a suitable algebraic data type, most likely that of the zipper.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/19.png}
\end{center}
\raggedright{}\myfigurewithcaption{19}{Grab the focus with your finger, lift it in the air and the hanging branches will form new tree with your finger at the top, ready to be structured by an algebraic data type.}
\end{minipage}\vspace{0.75cm}

\symbol{34}Ah.\symbol{34} He didn\textquotesingle{}t need Ariadne\textquotesingle{}s thread but he needed Ariadne to tell him? That was too much.
\symbol{34}Thank you, Ariadne, good bye.\symbol{34}
She did not hide her smirk as he could not see it anyway through the phone.

\LaTeXExercisesTemplate{Take a list, fix one element in the middle with your finger and lift the list into the air. What type can you give to the resulting tree?}

Half a year later, Theseus stopped in front of a shop window, defying the cold rain that tried to creep under his buttoned up anorak. Blinking letters announced

\begin{center}
\symbol{34}Spider-{}Man: lost in the Web\symbol{34} \newline{}

-{} find your way through the labyrinth of threads -{} \newline{}

the great computer game by Ancient Geeks Inc.

\end{center}

He cursed the day when he called Ariadne and sold her a part of the company. Was it she who contrived the unfriendly takeover by WineOS Corp., led by Ariadne\textquotesingle{}s husband Dionysus? Theseus watched the raindrops finding their way down the glass window. After the production line was changed, nobody would produce Theseus and the Minotaur™ merchandise anymore. He sighed. His time, the time of heroes, was over. Now came the super-{}heroes.
\section{Differentiation of data types}
\label{377}

The previous section has presented the zipper, a way to augment a tree-{}like data structure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Node a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a finger that can focus on the different subtrees. While we constructed a zipper for a particular data structure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Node a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the construction can be easily adapted to different tree data structures by hand.
\LaTeXExercisesTemplate{Start with a ternary tree
\TemplatePreformat{ \newline{}
 {}data {}Tree {}a {}= {}Leaf {}a {}| {}Node {}(Tree {}a) {}(Tree {}a) {}(Tree {}a) \newline{}
}
and derive the corresponding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Thread a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Zipper a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}
\subsection{Mechanical Differentiation}
\label{378}
But there is also an entirely mechanical way to derive the zipper of any (suitably regular) data type. Surprisingly, \textquotesingle{}derive\textquotesingle{} is to be taken literally, for the zipper can be obtained by the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries derivative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the data type, a discovery first described by Conor McBride\myfootnote{Conor Mc Bride. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape The Derivative of a Regular Type is its Type of One-{}Hole Contexts}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Available online. \myfnhref{http://strictlypositive.org/diff.pdf}{PDF}}. The subsequent section is going to explicate this truly wonderful mathematical gem.

For a systematic construction, we need to calculate with types. The basics of structural calculations with types are outlined in a separate chapter \myhref{https://en.wikibooks.org/wiki/..\%2FGeneric\%20Programming\%2F}{../Generic Programming/} and we will heavily rely on this material.

Let\textquotesingle{}s look at some examples to see what their zippers have in common and how they hint differentiation. The type of binary tree is the fixed point of the recursive equation

\begin{center}
\begin{equation*}\mathit{Tree2} = 1 + \mathit{Tree2}\times\mathit{Tree2}\end{equation*}.
\end{center}

When walking down the tree, we iteratively choose to enter the left or the right subtree and then glue the not-{}entered subtree to Ariadne\textquotesingle{}s thread. Thus, the branches of our thread have the type

\begin{center}
\begin{equation*}\mathit{Branch2} = \mathit{Tree2} + \mathit{Tree2} \cong 2\times\mathit{Tree2}\end{equation*}.
\end{center}

Similarly, the thread for a ternary tree

\begin{center}
\begin{equation*}\mathit{Tree3} = 1 + \mathit{Tree3}\times\mathit{Tree3}\times\mathit{Tree3}\end{equation*}
\end{center}

has branches of type

\begin{center}
\begin{equation*}\mathit{Branch3} = 3\times\mathit{Tree3}\times\mathit{Tree3}\end{equation*}
\end{center}

because at every step, we can choose between three subtrees and have to store the two subtrees we don\textquotesingle{}t enter. Isn\textquotesingle{}t this strikingly similar to the derivatives {$\frac{d}{dx} x^2 = 2\times x$} and {$\frac{d}{dx} x^3 = 3\times x^2$}?

The key to the mystery is the notion of the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries one-{}hole context}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of a data structure. Imagine a data structure parameterised over a type {X}, like the type of trees {$\mathit{Tree}\,X$}. If we were to remove one of the items of this type {X} from the structure and somehow mark the now empty position, we obtain a structure with a marked hole. The result is called \symbol{34}one-{}hole context\symbol{34} and inserting an item of type {X} into the hole gives back a completely filled {$\mathit{Tree}\,X$}. The hole acts as a distinguished position, a focus. The figures illustrate this.
{\scalefont{0.52741}\begin{longtable}{>{\RaggedRight}p{0.47143\linewidth}>{\RaggedRight}p{0.47143\linewidth}}
\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/20.png}\end{center}\myfigurewithcaption{20}{Removing a value of type {X} from a {$\mathit{Tree}\,X$} leaves a hole at that position.}\end{minipage}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/21.png}\end{center}\myfigurewithcaption{21}{A more abstract illustration of plugging {X} into a one-{}hole context.}\end{minipage}
\end{longtable}
}

Of course, we are interested in the type to give to a one-{}hole context, i.e. how to represent it in Haskell. The problem is how to efficiently mark the focus. But as we will see, finding a representation for one-{}hole contexts by induction on the structure of the type we want to take the one-{}hole context of automatically leads to an efficient data type\myfootnote{This phenomenon already shows up with generic tries.}. So, given a data structure {$F\, X$} with a functor {F} and an argument type {X}, we want to calculate the type {$\partial F\, X$} of one-{}hole contexts from the structure of {F}. As our choice of notation {∂F} already reveals, the rules for constructing one-{}hole contexts of sums, products and compositions are exactly Leibniz\textquotesingle{} rules for differentiation.
\begin{longtable}{|>{\RaggedRight}p{0.14816\linewidth}|>{\RaggedRight}p{0.22503\linewidth}|>{\RaggedRight}p{0.54110\linewidth}|} \hline
\multicolumn{2}{|>{\RaggedRight}p{0.38449\linewidth}|}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} One-{}hole context}}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Illustration}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$(\partial\mathit{Const_A})\,X$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$=\,0$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} There is no {X} in {$A = \mathit{Const_A}\,X$}, so the type of its one-{}hole contexts must be empty.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$(\partial\mathit{Id})\,X$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$=\,1$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} There is only one position for items {X} in {$X=\mathit{Id}\,X$}. Removing one {X} leaves no {X} in the result. And as there is only one position we can remove it from, there is exactly one one-{}hole context for {$\mathit{Id}\,X$}. Thus, the type of one-{}hole contexts is the singleton type.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\partial(F + G)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$=\partial F + \partial G$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} As an element of type {$F+G$} is either of type {F} or of type {G}, a one-{}hole context is also either {∂F} or {∂G}.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\partial (F \times G)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$=F \times \partial G + \partial F \times G$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/22.png}\end{center}\myfigurewithoutcaption{22}\end{minipage}\newline{}The hole in a one-{}hole context of a pair is either in the first or in the second component.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\partial (F \circ G)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$=(\partial F \circ G) \times \partial G$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} \begin{minipage}{1.0\linewidth}\begin{center}\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/23.png}\end{center}\myfigurewithoutcaption{23}\end{minipage}\newline{}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Chain rule}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The hole in a composition arises by making a hole in the enclosing structure and fitting the enclosed structure in.\\ \hline
\end{longtable}

Of course, the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily plug}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that fills a hole has the type {$(\partial F\,X) \times X \to F\,X$}.

So far, the syntax {∂} denotes the differentiation of functors, i.e. of a kind of type functions with one argument. But there is also a handy expression oriented notation {\bfseries {∂_X}} slightly more suitable for calculation. The subscript indicates the variable with respect to which we want to differentiate. In general, we have

\begin{center}
\begin{equation*}(\partial F)\,X=\partial_X(F\,X)\end{equation*}
\end{center}

An example is

\begin{center}
\begin{equation*}\partial(\mathit{Id}\times\mathit{Id})\,X=\partial_X(X\times X)=1\times X + X\times 1 \cong 2\times X\end{equation*}
\end{center}

Of course, {∂_X} is just point-{}wise whereas {∂} is point-{}free style.
\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Rewrite some rules in point-{}wise style. For example, the left hand side of the product rule becomes {$\partial_X(F\,X \times G\,X) = \dots $}.
\item{} To get familiar with one-{}hole contexts, differentiate the product {$X^n := X\times X\times \dots\times X$} of exactly {$n$} factors formally and convince yourself that the result is indeed the corresponding one-{}hole context.
\item{} Of course, one-{}hole contexts are useless if we cannot plug values of type {X} back into them. Write the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily plug}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions corresponding to the five rules.
\item{} Formulate the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries chain rule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries two variables}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and prove that it yields one-{}hole contexts. You can do this by viewing a bifunctor {$F\,X\,Y$} as an normal functor in the pair {(X,Y)}. Of course, you may need a handy notation for partial derivatives of bifunctors in point-{}free style.

\end{myenumerate}}
\subsection{Zippers via Differentiation}
\label{379}

The above rules enable us to construct {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries zipper}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s for recursive data types {$\mu F := \mu X.\,F\,X$} where {F} is a polynomial functor. A zipper is a focus on a particular subtree, i.e. substructure of type {μF} inside a large tree of the same type. As in the previous chapter, it can be represented by the subtree we want to focus at and the thread, that is the context in which the subtree resides

\begin{center}
\begin{equation*}\mathit{Zipper}_F = \mu F\times\mathit{Context}_F\end{equation*}.
\end{center}

Now, the context is a series of steps each of which chooses a particular subtree {μF} among those in {$F\,\mu F$}. Thus, the unchosen subtrees are collected together by the one-{}hole context {$\partial F\,(\mu F)$}. The hole of this context comes from removing the subtree we\textquotesingle{}ve chosen to enter. Putting things together, we have

\begin{center}
\begin{equation*}\mathit{Context}_F = \mathit{List}\, (\partial F\,(\mu F))\end{equation*}.
\end{center}

or equivalently

\begin{center}
\begin{equation*}\mathit{Context}_F = 1 + \partial F\,(\mu F) \times \mathit{Context}_F\end{equation*}.
\end{center}

To illustrate how a concrete calculation proceeds, let\textquotesingle{}s systematically construct the zipper for our labyrinth data type
\\

\TemplateSpaceIndent{ {}data {}Node {}a {}= {}DeadEnd {}a \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}| {}Passage {}a {}(Node {}a) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}| {}Fork {}a {}(Node {}a) {}(Node {}a)}

This recursive type is the fixed point

\begin{center}
\begin{equation*}\mathit{Node}\,A = \mu X.\,\mathit{NodeF}_A\,X\end{equation*}
\end{center}

of the functor

\begin{center}
\begin{equation*}\mathit{NodeF}_A\,X = A + A\times X + A\times X\times X\end{equation*}.
\end{center}

In other words, we have

\begin{center}
\begin{equation*}\mathit{Node}\,A \cong \mathit{NodeF}_A\,(\mathit{Node}\,A) \cong A + A\times \mathit{Node}\,A + A\times \mathit{Node}\,A\times \mathit{Node}\,A\end{equation*}.
\end{center}

The derivative reads

\begin{center}
\begin{equation*}\partial_X(\mathit{NodeF}_A\,X) \cong A + 2\times A\times X\end{equation*}
\end{center}

and we get

\begin{center}
\begin{equation*}\partial \mathit{NodeF}_A\,(\mathit{Node}\,A) \cong A + 2\times A\times \mathit{Node}\,A\end{equation*}.
\end{center}

Thus, the context reads

\begin{center}
\begin{equation*}\mathit{Context}_\mathit{NodeF} \cong \mathit{List}\,(\partial \mathit{NodeF}_A\,(\mathit{Node}\,A)) \cong \mathit{List}\,(A + 2\times A\times (\mathit{Node}\,A))\end{equation*}.
\end{center}

Comparing with
\\

\TemplateSpaceIndent{ {}data {}Branch {}a {} {}= {}KeepStraightOn {}a \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}| {}TurnLeft {} {}a {}(Node {}a) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}| {}TurnRight {}a {}(Node {}a) \newline{}
 {}type {}Thread {}a {} {}= {}{[}Branch {}a{]}}

we see that both are exactly the same as expected!
\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Redo the zipper for a ternary tree, but with differentiation this time.
\item{} Construct the zipper for a list.
\item{} Rhetorical question concerning the previous exercise: what\textquotesingle{}s the difference between a list and a stack?

\end{myenumerate}}
\subsection{Differentation of Fixed Point}
\label{380}
There is more to data types than sums and products, we also have a fixed point operator with no direct correspondence in calculus. Consequently, the table is missing a rule of differentiation, namely how to differentiate fixed points {$\mu F\,X = \mu Y.\,F\,X\,Y$}:

\begin{center}
\begin{equation*}\partial_X(\mu F\,X) = {?}\end{equation*}.
\end{center}

As its formulation involves the chain rule in two variables, we delegate it to the exercises. Instead, we will calculate it for our concrete example type {$\mathit{Node}\,A$}:

\begin{center}
\begin{equation*}\begin{matrix} \partial_A(\mathit{Node}\,A) &=& \partial_A(A + A\times\mathit{Node}\,A + A\times \mathit{Node}\,A\times\mathit{Node}\,A)\\ &\cong& 1 + \mathit{Node}\,A + \mathit{Node}\,A\times\mathit{Node}\,A\\ &&+ \partial_A(\mathit{Node}\,A)\times(A + 2\times A\times\mathit{Node}\,A) .\end{matrix}\end{equation*}
\end{center}

Of course, expanding {$\partial_A(\mathit{Node}\,A)$} further is of no use, but we can see this as a fixed point equation and arrive at

\begin{center}
\begin{equation*}\partial_A(\mathit{Node}\,A) = \mu X.\,T\,A + S\,A \times X\end{equation*}
\end{center}

with the abbreviations

\begin{center}
\begin{equation*}T\,A = 1 + \mathit{Node}\,A + \mathit{Node}\,A\times\mathit{Node}\,A\end{equation*}
\end{center}

and

\begin{center}
\begin{equation*}S\,A = A + 2\times A\times\mathit{Node}\,A\end{equation*}.
\end{center}

The recursive type is like a list with element types {$S\,A$}, only that the empty list is replaced by a base case of type {$T\,A$}. But given that the list is finite, we can replace the base case with {1} and pull {$T\,A$} out of the list:

\begin{center}
\begin{equation*}\partial_A(\mathit{Node}\,A) \cong T\,A \times (\mu X.\,1+S\,A\times X) = T\,A\times\mathit{List}\,(S\,A)\end{equation*}.
\end{center}

Comparing with the zipper we derived in the last paragraph, we see that the list type is our context

\begin{center}
\begin{equation*}\mathit{List}\,(S\,A) \cong \mathit{Context}_{\mathit{NodeF}}\end{equation*}
\end{center}

and that

\begin{center}
\begin{equation*}A\times T\,A \cong \mathit{Node}\,A\end{equation*}.
\end{center}

In the end, we have

\begin{center}
\begin{equation*}\mathit{Zipper}_{\mathit{NodeF}} \cong \partial_A(\mathit{Node}\,A) \times A\end{equation*}.
\end{center}

Thus, differentiating our concrete example {$\mathit{Node}\,A$} with respect to {A} yields the zipper up to an {A}!
\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Use the chain rule in two variables to formulate a rule for the differentiation of a fixed point.
\item{} Maybe you know that there are inductive ({μ}) and coinductive fixed points ({ν}). What\textquotesingle{}s the rule for coinductive fixed points?

\end{myenumerate}}
\subsection{Differentation with respect to functions of the argument}
\label{381}
When finding the type of a one-{}hole context one does d f(x)/d x. It is entirely possible to solve expressions like d f(x)/d g(x).
For example, solving d x\^{}4 / d x\^{}2 gives 2x\^{}2 , a two-{}hole context of a 4-{}tuple. The derivation is as follows
let u=x\^{}2
d x\^{}4 / d x\^{}2 = d u\^{}2 /d u = 2u = 2 x\^{}2 .
\subsection{Zippers vs Contexts}
\label{382}
In general however, zippers and one-{}hole contexts denote different things. The zipper is a focus on arbitrary subtrees whereas a one-{}hole context can only focus on the argument of a type constructor. Take for example the data type
\\

\TemplateSpaceIndent{ {} {}data {}Tree {}a {}= {}Leaf {}a {}| {}Bin {}(Tree {}a) {}(Tree {}a)}

which is the fixed point

\begin{center}
\begin{equation*}\mathit{Tree}\,A = \mu X.\,A+X\times X\end{equation*}.
\end{center}

The zipper can focus on subtrees whose top is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bin}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Leaf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but the hole of one-{}hole context of {$\mathit{Tree}\,A$} may only focus a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Leaf}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s because this is where the items of type {A} reside. The derivative of {$\mathit{Node}\,A$} only turned out to be the zipper because every top of a subtree is always decorated with an {A}.
\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Surprisingly, {$\partial_A(\mathit{Tree}\,A)\times A$} and the zipper for {$\mathit{Tree}\,A$} again turn out to be the same type. Doing the calculation is not difficult but can you give a reason why this has to be the case?
\item{} Prove that the zipper construction for {μF} can be obtained by introducing an auxiliary variable {Y}, differentiating {$\mu X.\, Y\times F\,X$} with respect to it and re-{}substituting {$Y=1$}. Why does this work?
\item{} Find a type {$G\,A$} whose zipper is different from the one-{}hole context.

\end{myenumerate}}
\subsection{Conclusion}
\label{383}
We close this section by asking how it may happen that rules from calculus appear in a discrete setting. Currently, nobody knows. But at least, there is a discrete notion of {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries linear}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, namely in the sense of \symbol{34}exactly once\symbol{34}. The key feature of the function that plugs an item of type {X} into the hole of a one-{}hole context is the fact that the item is used exactly once, i.e. linearly. We may think of the plugging map as having type

\begin{center}
\begin{equation*}\partial_X F\,X \to (X \multimap F\,X)\end{equation*}
\end{center}

where {$A \multimap B$} denotes a linear function, one that does not duplicate or ignore its argument, as in linear logic. In a sense, the one-{}hole context is a representation of the function space {$X \multimap F\,X$}, which can be thought of being a linear approximation to {$X\to F\,X$}.

\LaTeXNullTemplate{}
\section{See Also}
\label{384}

\myhref{https://en.wikipedia.org/wiki/Zipper\%20\%28data\%20structure\%29}{w:Zipper (data structure)}
\begin{myitemize}
\item{} \myhref{http://www.haskell.org/haskellwiki/Zipper}{Zipper} on the haskell.org wiki
\item{} \myhref{http://okmij.org/ftp/Computation/Continuations.html\#zipper}{Generic Zipper and its applications}
\item{} \myhref{http://okmij.org/ftp/Computation/Continuations.html\#zipper-fs}{Zipper-{}based file server/OS}
\item{} \myhref{http://www.michaeldadams.org/papers/scrap_your_zippers/}{Scrap Your Zippers: A Generic Zipper for Heterogeneous Types}
\end{myitemize}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Lenses and functional references}

\myminitoc
\label{385}

\label{386}
\LaTeXNullTemplate{}

This chapter is about {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functional references}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. By \symbol{34}references\symbol{34}, we mean they point at parts of values, allowing us to access and modify them. By \symbol{34}functional\symbol{34}, we mean they do so in a way that provides the flexibility and composability we came to expect from functions. We will study functional references as implemented by the powerful \myhref{https://hackage.haskell.org/package/lens}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}} library. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is named after {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lenses}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a particularly well known kind of functional reference. Beyond being very interesting from a conceptual point of view, lenses and other functional references allow for several convenient and increasingly common idioms, put into use by a number of useful libraries.
\section{A taste of lenses}
\label{387}

As a warm-{}up, we will demonstrate the simplest use case for lenses: as a nicer alternative to the vanilla Haskell records. There will be little in the way of explanations in this section; we will fill in the gaps through the remainder of the chapter.

Consider the following types, which are not unlike something you might find in a 2D drawing library:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}point\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}plane.}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}positionX\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}positionY\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}line\ensuremath{\text{ }}segment\ensuremath{\text{ }}from\ensuremath{\text{ }}one\ensuremath{\text{ }}point\ensuremath{\text{ }}to\ensuremath{\text{ }}another.}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Segment}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Segment}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}segmentStart\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Helpers\ensuremath{\text{ }}to\ensuremath{\text{ }}create\ensuremath{\text{ }}points\ensuremath{\text{ }}and\ensuremath{\text{ }}segments.}\newline
\OtherTok{makePoint\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\NormalTok{makePoint\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}y}\newline
\ensuremath{\text{ }}\newline
\OtherTok{makeSegment\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Segment}\newline
\NormalTok{makeSegment\ensuremath{\text{ }}start\ensuremath{\text{ }}end\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{(makePoint\ensuremath{\text{ }}start)\ensuremath{\text{ }}(makePoint\ensuremath{\text{ }}end)}\newline
\end{Highlighting}
\end{Shaded}

Record syntax gives us functions for accessing the fields. With them, getting the coordinates of the points that define a segment is easy enough:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testSeg\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{makeSegment\ensuremath{\text{ }}(}\DecValTok{0}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{positionY\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{segmentEnd\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{testSeg}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FloatTok{4.0}\newline
\end{Highlighting}
\end{Shaded}

Updates, however, are clunkier...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{testSeg\ensuremath{\text{ }}\{\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{makePoint\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{)\ensuremath{\text{ }}\}}\newline
\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{\{segmentStart\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{0.0}\NormalTok{,\ensuremath{\text{ }}positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{1.0}\NormalTok{\}}\newline
\NormalTok{,\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{,\ensuremath{\text{ }}positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{3.0}\NormalTok{\}\}}\newline
\end{Highlighting}
\end{Shaded}

... and get downright ugly when we need to reach a nested field. Here is what it takes to double the value of the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} coordinate of the end point:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{set\ensuremath{\text{ }}}\FunctionTok{+}\NormalTok{m\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Enabling\ensuremath{\text{ }}multi-line\ensuremath{\text{ }}input\ensuremath{\text{ }}in\ensuremath{\text{ }}GHCi.}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{end\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{segmentEnd\ensuremath{\text{ }}testSeg}\newline
\DataTypeTok{GHCi}\FunctionTok{|}\ensuremath{\text{ }}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{testSeg\ensuremath{\text{ }}\{\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{end\ensuremath{\text{ }}\{\ensuremath{\text{ }}positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{positionY\ensuremath{\text{ }}end\ensuremath{\text{ }}\}\ensuremath{\text{ }}\}}\newline
\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{\{segmentStart\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{0.0}\NormalTok{,\ensuremath{\text{ }}positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{1.0}\NormalTok{\}}\newline
\NormalTok{,\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{,\ensuremath{\text{ }}positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{8.0}\NormalTok{\}\}}\newline
\end{Highlighting}
\end{Shaded}

Lenses allow us to avoid such nastiness, so let\textquotesingle{}s start over with them:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}Some\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}examples\ensuremath{\text{ }}in\ensuremath{\text{ }}this\ensuremath{\text{ }}chapter\ensuremath{\text{ }}require\ensuremath{\text{ }}a\ensuremath{\text{ }}few\ensuremath{\text{ }}GHC\ensuremath{\text{ }}extensions:}\newline
\CommentTok{--\ensuremath{\text{ }}TemplateHaskell\ensuremath{\text{ }}is\ensuremath{\text{ }}needed\ensuremath{\text{ }}for\ensuremath{\text{ }}makeLenses;\ensuremath{\text{ }}RankNTypes\ensuremath{\text{ }}is\ensuremath{\text{ }}needed\ensuremath{\text{ }}for}\newline
\CommentTok{--\ensuremath{\text{ }}a\ensuremath{\text{ }}few\ensuremath{\text{ }}type\ensuremath{\text{ }}signatures\ensuremath{\text{ }}later\ensuremath{\text{ }}on.\ensuremath{\text{ }}}\newline
\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}TemplateHaskell,\ensuremath{\text{ }}RankNTypes\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Lens}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}_}\OtherTok{positionX\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}_}\OtherTok{positionY\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{)}\newline
\NormalTok{makeLenses\ensuremath{\text{ }}}\CharTok{\textquotesingle{}\textquotesingle{}}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Segment}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Segment}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}_}\OtherTok{segmentStart\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}_}\OtherTok{segmentEnd\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}\ensuremath{\text{ }}}\KeywordTok{deriving}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\NormalTok{)}\newline
\NormalTok{makeLenses\ensuremath{\text{ }}}\CharTok{\textquotesingle{}\textquotesingle{}}\DataTypeTok{Segment}\newline
\ensuremath{\text{ }}\newline
\OtherTok{makePoint\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\NormalTok{makePoint\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}y}\newline
\ensuremath{\text{ }}\newline
\OtherTok{makeSegment\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Segment}\newline
\NormalTok{makeSegment\ensuremath{\text{ }}start\ensuremath{\text{ }}end\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{(makePoint\ensuremath{\text{ }}start)\ensuremath{\text{ }}(makePoint\ensuremath{\text{ }}end)}\newline
\end{Highlighting}
\end{Shaded}

The only real change here is the use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLenses}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which automatically generates lenses for the fields of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the extra underscores are required by the naming conventions of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLenses}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). As we will see, writing lenses definitions by hand is not difficult at all; however, it can be tedious if there are lots of fields to make lenses for, and thus automatic generation is very convenient.

Thanks to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLenses}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we now have a lens for each field. Their names match that of the fields, except with the leading underscore removed:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}positionY}\newline
\OtherTok{positionY\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Lens\textquotesingle{}}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}	\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}at\ensuremath{\text{ }}WikibookLenses.hs:9:1}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}segmentEnd}\newline
\OtherTok{segmentEnd\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Lens\textquotesingle{}}\ensuremath{\text{ }}\DataTypeTok{Segment}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}	\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}at\ensuremath{\text{ }}WikibookLenses.hs:15:1}\newline
\end{Highlighting}
\end{Shaded}

The type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily positionY :: Lens\textquotesingle{} Point Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tells us that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily positionY}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape reference}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To work with such references, we use the combinators provided by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} library. One of them is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which gives us the value pointed at by a lens, just like a record accessor:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testSeg\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{makeSegment\ensuremath{\text{ }}(}\DecValTok{0}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}testSeg}\newline
\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{4.0}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

Another one is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which overwrites the value pointed at:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}(makePoint\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{))\ensuremath{\text{ }}testSeg}\newline
\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{\{_segmentStart\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{0.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{1.0}\NormalTok{\}}\newline
\NormalTok{,\ensuremath{\text{ }}_segmentEnd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{3.0}\NormalTok{\}\}}\newline
\end{Highlighting}
\end{Shaded}

One of the great things about lenses is that they are easy to compose:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(segmentEnd\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{positionY)\ensuremath{\text{ }}testSeg}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FloatTok{4.0}\newline
\end{Highlighting}
\end{Shaded}

Note that when writing composed lenses, such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily segmentEnd . positionY}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the order is from large to small. In this case, the lens that focuses on a point of the segment comes before the one that focuses on a coordinate of that point. While that might look a little surprising in contrast to how record accessors work (compare with the equivalent lens-{}less example at the beginning of this section), the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} used here is just the function composition operator we know and love.

Composition of lenses provide a way out of the nested record update quagmire. Here is a translation of the coordinate-{}doubling example using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily over}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, through which we can apply a function to the value pointed at by a lens:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}(segmentEnd\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{positionY)\ensuremath{\text{ }}(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}testSeg}\newline
\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{\{_segmentStart\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{0.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{1.0}\NormalTok{\}}\newline
\NormalTok{,\ensuremath{\text{ }}_segmentEnd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{8.0}\NormalTok{\}\}}\newline
\end{Highlighting}
\end{Shaded}

These initial examples might look a bit magical at first. What makes it possible to use one and the same lens to get, set and modify a value? How come composing lenses with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} just works? Is it really so easy to write lenses without the help of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLenses}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? We will answer such questions by going behind the curtains to find what lenses are made of.
\section{The scenic route to lenses}
\label{388}

There are many ways to make sense of lenses. We will follow a sinuous yet gentle path, one which avoids conceptual leaps of faith. Along the way, we will introduce a few different kinds of functional references. Following {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} terminology, from now on we will use the word {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape \symbol{34}optics\symbol{34}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to refer collectively to the various species of functional references. As we will see, the optics in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are interrelated, forming a hierarchy. It is this hierarchy which we are now going to explore.
\subsection{Traversals}
\label{389}

We will begin not with lenses, but with a closely related optic: traversals. The \mylref{322}{Traversable} chapter discussed how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes it possible to walk across a structure while producing an overall effect:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{traverse}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(t\ensuremath{\text{ }}b)}\newline
\end{Highlighting}
\end{Shaded}

With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you can use any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you like to produce the effect. In particular, we have seen how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be obtained from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} simply by picking {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the applicative functor, and that the same goes for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid m =>{} Applicative (Const m)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fmap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runIdentity\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}(}\DataTypeTok{Identity}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\NormalTok{foldMap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{getConst\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{traverse\ensuremath{\text{ }}(}\DataTypeTok{Const}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes this idea and lets it blossom.

Manipulating values within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structure, as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows us to, is an example of targeting parts of a whole. As flexible as it is, however, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only handles a rather limited range of targets. For one, we might want to walk across structures that are not {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functors. Here is an entirely reasonable function that does so with our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{pointCoordinates}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\DataTypeTok{Point}\newline
\NormalTok{pointCoordinates\ensuremath{\text{ }}g\ensuremath{\text{ }}(}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{<*>}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}y}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It looks a lot like a typical implementation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and can be used in pretty much the same way. Here is an adaptation of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rejectWithNegatives}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example from the \mylref{323}{Traversable} chapter:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{deleteIfNegative\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{<}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\DataTypeTok{Nothing}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{pointCoordinates\ensuremath{\text{ }}deleteIfNegative\ensuremath{\text{ }}(makePoint\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{))}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{1.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{\})}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{pointCoordinates\ensuremath{\text{ }}deleteIfNegative\ensuremath{\text{ }}(makePoint\ensuremath{\text{ }}(}\FunctionTok{-}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{))}\newline
\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

This generalised notion of a traversal that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} exemplifies is captured by one of the core types of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Traversal}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall f.}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the right side of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration means that any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used to replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That makes it unnecessary to mention {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the left side, or to specify which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to pick when using a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.}

With the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} synonym, the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be expressed as:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Traversal}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\end{Highlighting}
\end{Shaded}

Let\textquotesingle{}s have a closer look at what became of each type variable in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal s t a b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a traversal of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} produces a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (in some {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} context).
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} targets {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values in a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the X and Y coordinates of the points).
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: the targeted {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values become {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values (possibly different than the original ones).
\end{myitemize}

In the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the same as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the same as b. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not change the type of the traversed structure, or that of the targets in it, but that need not be the case. One example is good old {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, whose type can be expressed as:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Traversal}\ensuremath{\text{ }}\NormalTok{(t\ensuremath{\text{ }}a)\ensuremath{\text{ }}(t\ensuremath{\text{ }}b)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is able to change the types of the targeted values in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structure and, by extension, the type of the structure itself.

The \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Traversal.html}{Control.Lens.Traversal} module includes generalisations of \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Traversable.html}{Data.Traversable} functions and various other tools for working with traversals.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily extremityCoordinates}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a traversal that goes through all coordinates of the points that define a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the order suggested by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} declaration. (Hint: use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pointCoordinates}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} traversal.)
\end{myenumerate}}
\subsection{Setters}
\label{390}

Next in our programme comes the generalisation of the links between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We shall begin with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

To recover {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we picked {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the applicative functor. That choice allowed us to modify the targeted values without producing any extra effects. We can reach similar results by picking the definition of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t}\newline
\end{Highlighting}
\end{Shaded}

... and specialising {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{t}\newline
\end{Highlighting}
\end{Shaded}

In {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} parlance, that is how you get a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For technical reasons, the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Setter.html}{Control.Lens.Setter} is a little different...

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Setter}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Settable}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

... but if you dig into the documentation you will find that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Settable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functor is either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or something very much like it, so the difference need not concern us.

When we take {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and restrict the choice of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we actually make the type more general. Given that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} works with any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functor, it will also work with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and therefore any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and can be used as one. The reverse, however, is not true: not all setters are traversals.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily over}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the essential combinator for setters. It works a lot like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, except that you pass a setter as its first argument in order to specify which parts of the structure you want to target:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}pointCoordinates\ensuremath{\text{ }}negate\ensuremath{\text{ }}(makePoint\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{))}\newline
\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{-}\FloatTok{1.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{-}\FloatTok{2.0}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

In fact, there is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapped}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that allows us to recover {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}mapped\ensuremath{\text{ }}negate\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{4}\NormalTok{]}\newline
\NormalTok{[}\FunctionTok{-}\DecValTok{1}\NormalTok{,}\FunctionTok{-}\DecValTok{2}\NormalTok{,}\FunctionTok{-}\DecValTok{3}\NormalTok{,}\FunctionTok{-}\DecValTok{4}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}mapped\ensuremath{\text{ }}negate\ensuremath{\text{ }}(}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{3}\NormalTok{)}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{-}\DecValTok{3}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Another very important combinator is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which replaces all targeted values with a constant. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set setter x = over setter (const x)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, analogously to how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (x <{}\${}) = fmap (const x)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}pointCoordinates\ensuremath{\text{ }}}\DecValTok{7}\ensuremath{\text{ }}\NormalTok{(makePoint\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{))\ensuremath{\text{ }}}\newline
\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{7.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{7.0}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily over}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to implement... \TemplatePreformat{scaleSegment {}:: {}Double {}-{}>{} {}Segment {}-{}>{} {}Segment}... so that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily scaleSegment n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} multiplies all coordinates of a segment by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (Hint: use your answer to the previous exercise.)
\item{} Implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily mapped}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For this exercise, you can specialise the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Settable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functor to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (Hint: you will need \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Functor-Identity.html}{Data.Functor.Identity}.)
\end{myenumerate}}
\subsection{Folds}
\label{391}

Having generalised the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}as-{}traversal trick, it is time to do the same with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldMap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}as-{}traversal one. We will use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to go from...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t}\newline
\end{Highlighting}
\end{Shaded}

... to:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{forall\ensuremath{\text{ }}r}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Monoid}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

Since the second parameter of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is irrelevant, we replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to make our life easier.

Just like we have seen for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Identity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Lens-Fold.html}{Control.Lens.Fold} uses something slightly more general than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid r =>{} Const r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Fold}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Contravariant}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a type class for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape contravariant functors}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The key {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} method is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily contramap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{contramap\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Contravariant}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

... which looks a lot like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, except that it, so to say, turns the function arrow around on mapping. Types parametrised over function arguments are typical examples of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For instance, \myhref{http://hackage.haskell.org/packages/archive/contravariant/latest/doc/html/Data-Functor-Contravariant.html}{Data.Functor.Contravariant} defines a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Predicate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type for boolean tests on values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{Predicate}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Predicate}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}getPredicate\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{+}\DataTypeTok{Data.Functor.Contravariant}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{largerThanFour\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Predicate}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{>}\ensuremath{\text{ }}\DecValTok{4}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{getPredicate\ensuremath{\text{ }}largerThanFour\ensuremath{\text{ }}}\DecValTok{6}\newline
\DataTypeTok{True}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Predicate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so you can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily contramap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to modify a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Predicate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that the values are adjusted in some way before being submitted to the test:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{getPredicate\ensuremath{\text{ }}(contramap\ensuremath{\text{ }}length\ensuremath{\text{ }}largerThanFour)\ensuremath{\text{ }}}\StringTok{"orange"}\newline
\DataTypeTok{True}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has laws which are analogous to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ones:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{contramap\ensuremath{\text{ }}id\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id}\newline
\NormalTok{contramap\ensuremath{\text{ }}(g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{contramap\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{contramap\ensuremath{\text{ }}g}\newline
\end{Highlighting}
\end{Shaded}}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid r =>{} Const r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is both a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Thanks to the functor and contravariant laws, anything that is both a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is, just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a vacuous functor, with both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily contramap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doing nothing. The additional {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint corresponds to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; it allows us to actually perform the fold by combining the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}like contexts created from the targets.

Every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, given that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must work with any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, including those that are also {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The situation parallels exactly what we have seen for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Lens.Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} offers analogues to everything in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Foldable.html}{Data.Foldable}. Two commonly seen combinators from that module are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily toListOf}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which produces a list of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} targets...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Using\ensuremath{\text{ }}the\ensuremath{\text{ }}solution\ensuremath{\text{ }}to\ensuremath{\text{ }}the\ensuremath{\text{ }}exercise\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}traversals\ensuremath{\text{ }}subsection.}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{toListOf\ensuremath{\text{ }}extremityCoordinates\ensuremath{\text{ }}(makeSegment\ensuremath{\text{ }}(}\DecValTok{0}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{3}\NormalTok{))}\newline
\NormalTok{[}\FloatTok{0.0}\NormalTok{,}\FloatTok{1.0}\NormalTok{,}\FloatTok{2.0}\NormalTok{,}\FloatTok{3.0}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

... and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily preview}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which extracts the first target of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily First}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monoid from \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Monoid.html}{Data.Monoid}.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}traverse\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{10}\NormalTok{]}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{1}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Getters}
\label{392}

So far we have moved from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to more general optics ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) by restricting the functors available for traversing. We can also go in the opposite direction, that is, making more specific optics by broadening the range of functors they have to deal with. For instance, if we take {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Fold}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Contravariant}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

... and relax the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint to merely {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we obtain {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Getter}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Contravariant}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} still has to be both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it remains being a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}like vacuous functor. Without the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint, however, we can\textquotesingle{}t combine results from multiple targets. The upshot is that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} always has exactly one target, unlike a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (or, for that matter, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) which can have any number of targets, including zero.

The essence of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be brought to light by specialising {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the obvious choice, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{someGetter\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

Since a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const r whatever}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value can be losslessly converted to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value and back, the type above is equivalent to:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{someGetter\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r}\newline
\ensuremath{\text{ }}\newline
\NormalTok{someGetter\textquotesingle{}\ensuremath{\text{ }}k\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{getConst\ensuremath{\text{ }}(someGetter\ensuremath{\text{ }}(}\DataTypeTok{Const}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{k)\ensuremath{\text{ }}x)}\newline
\NormalTok{someGetter\ensuremath{\text{ }}g\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{(someGetter\textquotesingle{}\ensuremath{\text{ }}(getConst\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{g)\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} r) -{}>{} s -{}>{} r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, however, is just an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function in disguise (the camouflage being \mylref{358}{continuation passing style}):

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{someGetter\textquotesingle{}\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\newline
\NormalTok{someGetter\textquotesingle{}\textquotesingle{}\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{someGetter\textquotesingle{}\ensuremath{\text{ }}id\ensuremath{\text{ }}x}\newline
\NormalTok{someGetter\textquotesingle{}\ensuremath{\text{ }}k\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{k\ensuremath{\text{ }}(someGetter\textquotesingle{}\textquotesingle{}\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

Thus we conclude that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter s a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equivalent to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. From this point of view, it is only natural that it takes exactly one target to exactly one result. It is not surprising either that two basic combinators from \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Lens-Getter.html}{Control.Lens.Getter} are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily to}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which makes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} out of an arbitrary function, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which converts a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} back to an arbitrary function.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}same\ensuremath{\text{ }}as\ensuremath{\text{ }}fst\ensuremath{\text{ }}(4,\ensuremath{\text{ }}1)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(to\ensuremath{\text{ }}fst)\ensuremath{\text{ }}(}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)}\newline
\DecValTok{4}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXbodynoteTemplate{Given what we have just said about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being less general than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it may come as a surprise that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can work {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s as well as with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{+}\DataTypeTok{Data.Monoid}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}traverse\ensuremath{\text{ }}(fmap\ensuremath{\text{ }}}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{1}\FunctionTok{..}\DecValTok{10}\NormalTok{])}\newline
\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{\{getSum\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{55}\NormalTok{\}}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}both\ensuremath{\text{ }}traverses\ensuremath{\text{ }}the\ensuremath{\text{ }}components\ensuremath{\text{ }}of\ensuremath{\text{ }}a\ensuremath{\text{ }}pair.}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}both\ensuremath{\text{ }}([}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{],[}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{])}\newline
\NormalTok{[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{,}\DecValTok{4}\NormalTok{,}\DecValTok{5}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

That is possible thanks to one of the many subtleties of the type signatures of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The first argument of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not exactly a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getting}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Getting}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}s}\newline
\ensuremath{\text{ }}\newline
\OtherTok{view\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{MonadReader}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}m\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Getting}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{m\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getting}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} specialises the functor parameter to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Const r}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the obvious choice for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but leaves it open whether there will be an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instance for it (i.e. whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily r}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). Using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as an example, as long as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Monoid}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getting a s a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s can be used with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as long as the fold targets are monoidal.

Many combinators in both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Lens.Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Lens.Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are defined in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getting}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} rather than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. One advantage of using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getting}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is that the resulting type signatures tell us more about the folds that might be performed. For instance, consider {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hasn\textquotesingle{}t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Lens.Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{hasn\textquotesingle{}t\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Getting}\ensuremath{\text{ }}\DataTypeTok{All}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\end{Highlighting}
\end{Shaded}

It is a generalised test for emptiness:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{hasn\textquotesingle{}t\ensuremath{\text{ }}traverse\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{4}\NormalTok{]}\newline
\DataTypeTok{False}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{hasn\textquotesingle{}t\ensuremath{\text{ }}traverse\ensuremath{\text{ }}}\DataTypeTok{Nothing}\newline
\DataTypeTok{True}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold s a -{}>{} s -{}>{} Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would work just as well as a signature for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hasn\textquotesingle{}t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getting All}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the actual signature is quite informative, in that it strongly suggests what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hasn\textquotesingle{}t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does: it converts all {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} targets in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily All}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monoid (more precisely, to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily All False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), folds them and extracts a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the overall {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily All}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} result.}
\subsection{Lenses at last}
\label{393}

If we go back to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Traversal}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Applicative}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t}\newline
\end{Highlighting}
\end{Shaded}

... and relax the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, just as we did when going from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}...

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Lens}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t}\newline
\end{Highlighting}
\end{Shaded}

... we finally reach the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type.

What changes when moving from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? As before, relaxing the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint costs us the ability to traverse multiple targets. Unlike a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} always focuses on a single target. As usual in such cases, there is a bright side to the restriction: with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can be sure that exactly one target will be found, while with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we might end up with many, or none at all.

The absence of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Applicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constraint and the uniqueness of targets point towards another key fact about lenses: they can be used as getters. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Contravariant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} plus {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a strictly more specific constraint than just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strictly more general than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and therefore a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we conclude that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lenses can be used as both getters and setters}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That explains why lenses can replace record labels.

\LaTeXbodynoteTemplate{On close reading, our claim that every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might seem rash. Placing the types side by side...

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Lens}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Getter}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}f}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Contravariant}\ensuremath{\text{ }}\NormalTok{f,\ensuremath{\text{ }}}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}s}\newline
\end{Highlighting}
\end{Shaded}

... shows that going from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens s t a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter s a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} involves making {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. How can we be sure that is possible for any lens? An analogous issue might be raised about the relationship between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For the moment, this question will be left suspended; we will return to it in the section about optic laws.}

Here is a quick demonstration of the flexibility of lenses using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a lens that focuses on the first component of a tuple:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{_1\ensuremath{\text{ }}(\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DecValTok{0}\FunctionTok{..}\NormalTok{x])\ensuremath{\text{ }}(}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Traversal}\newline
\NormalTok{[(}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{),(}\DecValTok{1}\NormalTok{,}\DecValTok{1}\NormalTok{),(}\DecValTok{2}\NormalTok{,}\DecValTok{1}\NormalTok{),(}\DecValTok{3}\NormalTok{,}\DecValTok{1}\NormalTok{),(}\DecValTok{4}\NormalTok{,}\DecValTok{1}\NormalTok{)]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}_1\ensuremath{\text{ }}}\DecValTok{7}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Setter\ensuremath{\text{ }}}\newline
\NormalTok{(}\DecValTok{7}\NormalTok{,}\DecValTok{1}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}_1\ensuremath{\text{ }}length\ensuremath{\text{ }}(}\StringTok{"orange"}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Setter,\ensuremath{\text{ }}changing\ensuremath{\text{ }}the\ensuremath{\text{ }}types}\newline
\NormalTok{(}\DecValTok{6}\NormalTok{,}\DecValTok{1}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{toListOf\ensuremath{\text{ }}_1\ensuremath{\text{ }}(}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Fold}\newline
\NormalTok{[}\DecValTok{4}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}_1\ensuremath{\text{ }}(}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Getter}\newline
\DecValTok{4}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Implement the lenses for the fields of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is, the ones we generated with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLenses}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} early on. (Hint: Follow the types. Once you write the signatures down you will notice that beyond {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the record labels there is not much else you can use to write them.)
\item{} Implement the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, which takes a getter function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a setter function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} b -{}>{} t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and produces a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens s t a b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (Hint: Your implementation will be able to minimise the repetitiveness in the solution of the previous exercise.)

\end{myenumerate}}
\section{Composition}
\label{394}

The optics we have seen so far fit the shape...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}t)}\newline
\end{Highlighting}
\end{Shaded}

... in which:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of some sort;
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the type of the whole, that is, the full structure the optic works with;
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the type of what the whole becomes through the optic;
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the type of the parts, that is, the targets within {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that the optic focuses on; and
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the type of what the parts becomes through the optic.
\end{myitemize}

One key thing those optics have in common is that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape they are all functions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. More specifically, they are mapping functions that turn a function acting on a part ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} f b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) into a function acting on the whole ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s -{}>{} f t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). Being functions, they can be composed in the usual manner. Let\textquotesingle{}s have a second look at the lens composition example from the introduction:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testSeg\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{makeSegment\ensuremath{\text{ }}(}\DecValTok{0}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(segmentEnd\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{positionY)\ensuremath{\text{ }}testSeg}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FloatTok{4.0}\newline
\end{Highlighting}
\end{Shaded}

An optic modifies the function it receives as argument to make it act on a larger structure. Given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} composes functions from right to left, we find that, when reading code from left to right, the components of an optic assembled with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} focus on progressively smaller parts of the original structure. The conventions used by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type synonyms match this large-{}to-{}small order, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} coming before {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The table below illustrates how we can look at what an optic does either a mapping (from small to large) or as a focusing (from large to small), using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily segmentEnd . positionY}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as an example:

{\scalefont{0.67680}\begin{longtable}{|>{\RaggedRight}p{0.21842\linewidth}|>{\RaggedRight}p{0.22243\linewidth}|>{\RaggedRight}p{0.22243\linewidth}|>{\RaggedRight}p{0.22243\linewidth}|} \hline
\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Lens}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily segmentEnd}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily positionY}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily segmentEnd . positionY}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Bare type}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplatePreformat{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Functor {}f\newline{} {} {}=>{} {}(Point {}-{}>{} {}f {}Point)\newline{} {} {}-{}>{} {}(Segment {}-{}>{} {}f {}Segment)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplatePreformat{Functor {}f\newline{} {} {}=>{} {}(Double {}-{}>{} {}f {}Double)\newline{} {} {}-{}>{} {}(Point {}-{}>{} {}f {}Point)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplatePreformat{Functor {}f\newline{} {} {}=>{} {}(Double {}-{}>{} {}f {}Double)\newline{} {} {}-{}>{} {}(Segment {}-{}>{} {}f {}Segment)}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries \symbol{34}Mapping\symbol{34} interpretation}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}From a function on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a function on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}From a function on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a function on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}From a function on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a function on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Type with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries Lens}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens Segment Segment Point Point}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily Lens Point Point Double Double}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily Lens Segment Segment Double Double}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Type with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries Lens\textquotesingle{}}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens\textquotesingle{} Segment Point}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily Lens\textquotesingle{} Point Double}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily Lens\textquotesingle{} Segment Double}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries \symbol{34}Focusing\symbol{34} interpretation}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Focuses on a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Focuses on a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Focuses on a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} within a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}\\ \hline
\end{longtable}
}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\LaTeXbodynoteTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} synonym is just convenient shorthand for lenses that do not change types (that is, lenses with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{Lens\textquotesingle{}}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Lens}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}s\ensuremath{\text{ }}a\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

There are analogous {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} synonyms as well.}

The types behind synonyms such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only differ in which functors they allow in place of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As a consequence, optics of different kinds can be freely mixed, as long as there is a type which all of them fit. Here are some examples:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}Traversal\ensuremath{\text{ }}on\ensuremath{\text{ }}a\ensuremath{\text{ }}Lens\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}Traversal.}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{(_2\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{traverse)\ensuremath{\text{ }}(\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\FunctionTok{-}\NormalTok{x,\ensuremath{\text{ }}x])\ensuremath{\text{ }}(}\StringTok{"foo"}\NormalTok{,\ensuremath{\text{ }}[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{])}\newline
\NormalTok{[(}\StringTok{"foo"}\NormalTok{,[}\FunctionTok{-}\DecValTok{1}\NormalTok{,}\FunctionTok{-}\DecValTok{2}\NormalTok{]),(}\StringTok{"foo"}\NormalTok{,[}\FunctionTok{-}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{]),(}\StringTok{"foo"}\NormalTok{,[}\DecValTok{1}\NormalTok{,}\FunctionTok{-}\DecValTok{2}\NormalTok{]),(}\StringTok{"foo"}\NormalTok{,[}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{])]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}Getter\ensuremath{\text{ }}on\ensuremath{\text{ }}a\ensuremath{\text{ }}Lens\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}Getter.}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(positionX\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{to\ensuremath{\text{ }}negate)\ensuremath{\text{ }}(makePoint\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,}\DecValTok{4}\NormalTok{))}\newline
\FunctionTok{-}\FloatTok{2.0}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}Getter\ensuremath{\text{ }}on\ensuremath{\text{ }}a\ensuremath{\text{ }}Traversal\ensuremath{\text{ }}is\ensuremath{\text{ }}a\ensuremath{\text{ }}Fold.}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{toListOf\ensuremath{\text{ }}(both\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{to\ensuremath{\text{ }}negate)\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,}\FunctionTok{-}\DecValTok{3}\NormalTok{)}\newline
\NormalTok{[}\FunctionTok{-}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{]}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}Getter\ensuremath{\text{ }}on\ensuremath{\text{ }}a\ensuremath{\text{ }}Setter\ensuremath{\text{ }}does\ensuremath{\text{ }}not\ensuremath{\text{ }}exist\ensuremath{\text{ }}(there\ensuremath{\text{ }}is\ensuremath{\text{ }}no\ensuremath{\text{ }}unifying\ensuremath{\text{ }}optic).}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}(mapped\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{to\ensuremath{\text{ }}length)\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\NormalTok{[}\StringTok{"orange"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"apple"}\NormalTok{]\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\newline
\FunctionTok{<}\NormalTok{interactive}\FunctionTok{>:}\DecValTok{49}\FunctionTok{:}\DecValTok{15}\FunctionTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{No}\ensuremath{\text{ }}\KeywordTok{instance}\ensuremath{\text{ }}\NormalTok{for\ensuremath{\text{ }}(}\DataTypeTok{Contravariant}\ensuremath{\text{ }}\DataTypeTok{Identity}\NormalTok{)\ensuremath{\text{ }}arising\ensuremath{\text{ }}from\ensuremath{\text{ }}a\ensuremath{\text{ }}use\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{‘to’}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{In}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}second\ensuremath{\text{ }}argument\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{‘(}\FunctionTok{.}\NormalTok{)’,\ensuremath{\text{ }}namely\ensuremath{\text{ }}‘to\ensuremath{\text{ }}length’}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{In}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}first\ensuremath{\text{ }}argument\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{‘set’,\ensuremath{\text{ }}namely\ensuremath{\text{ }}‘(mapped\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{to\ensuremath{\text{ }}length)’}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{In}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}expression}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}(mapped\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{to\ensuremath{\text{ }}length)\ensuremath{\text{ }}}\DecValTok{3}\ensuremath{\text{ }}\NormalTok{[}\StringTok{"orange"}\NormalTok{,\ensuremath{\text{ }}}\StringTok{"apple"}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

\section{Operators}
\label{395}

Several {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combinators have infix operator synonyms, or at least operators nearly equivalent to them. Here are the correspondences for some of the combinators we have already seen:

\begin{longtable}{|>{\RaggedRight}p{0.52184\linewidth}|>{\RaggedRight}p{0.42101\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Prefix}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Infix}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view _1 (1,2)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily (1,2) \^{}. _1}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily set _1 7 (1,2)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily (_1 .\~{} 7) (1,2)}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily over _1 (2 *) (1,2)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily (_1 \%\~{} (2 *)) (1,2)}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily toListOf traverse {[}1..4{]}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily {[}1..4{]} \^{}.. traverse}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily preview traverse {[}{]}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{\ttfamily {[}{]} \^{}? traverse}\\ \hline
\end{longtable}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operators that extract values (e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\^{}.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\^{}..)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\^{}?)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) are flipped with respect to the corresponding prefix combinators, so that they take the structure from which the result is extracted as the first argument. That improves readability of code using them, as writing the full structure before the optics targeting parts of it mirrors how composed optics are written in large-{}to-{}small order. With the help of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} operator, which is defined simply as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily flip (\${})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the structure can also be written first when using modifying operators (e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.\~{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\%\~{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\&)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is particularly convenient when there are many fields to modify:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{sextupleTest\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{,}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&}\ensuremath{\text{ }}\NormalTok{_1\ensuremath{\text{ }}}\FunctionTok{.~}\ensuremath{\text{ }}\DecValTok{7}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&}\ensuremath{\text{ }}\NormalTok{_2\ensuremath{\text{ }}}\FunctionTok{\%~}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{*}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&}\ensuremath{\text{ }}\NormalTok{_3\ensuremath{\text{ }}}\FunctionTok{.~}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{-}\DecValTok{1}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&}\ensuremath{\text{ }}\NormalTok{_4\ensuremath{\text{ }}}\FunctionTok{.~}\ensuremath{\text{ }}\StringTok{"orange"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&}\ensuremath{\text{ }}\NormalTok{_5\ensuremath{\text{ }}}\FunctionTok{\%~}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{\&}\ensuremath{\text{ }}\NormalTok{_6\ensuremath{\text{ }}}\FunctionTok{\%~}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{3}\ensuremath{\text{ }}\FunctionTok{*}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{sextupleTest}\newline
\NormalTok{(}\DecValTok{7}\NormalTok{,}\DecValTok{5}\NormalTok{,}\FunctionTok{-}\DecValTok{1}\NormalTok{,}\StringTok{"orange"}\NormalTok{,}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\section{A swiss army knife}
\label{396}

Thus far we have covered enough of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to introduce lenses and show that they aren\textquotesingle{}t arcane magic. That, however, is only the tip of the iceberg. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a large library providing a rich assortment of tools, which in turn realise a colourful palette of concepts. The odds are that if you think of anything in the core libraries there will be a combinator somewhere in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that works with it. It is no exaggeration to say that a book exploring every corner of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might be made as long as this one you are reading. Unfortunately, we cannot undertake such an endeavour right here. What we can do is briefly discussing a few other general-{}purpose {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} tools you are bound to encounter in the wild at some point.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} manipulation}
\label{397}

There are quite a few combinators for working with state functors peppered over the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} modules. For instance:

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily use}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Lens.Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an analogue of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gets}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad.State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that takes a getter instead of a plain function.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Lens.Setter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} includes suggestive-{}looking operators that modify parts of a state targeted a setter (e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily .=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is analogous to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \%=}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily over}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+= x)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily over (+x)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\item{} \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Zoom.html}{Control.Lens.Zoom} offers the remarkably handy {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zoom}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combinator, which uses a traversal (or a lens) to zoom into a part of a state. It does so by lifiting a stateful computation into one that works with a larger state, of which the original state is a part.
\end{myitemize}

Such combinators can be used to write highly intention-{}revealing code that transparently manipulates deep parts of a state:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.State}\newline
\ensuremath{\text{ }}\newline
\OtherTok{stateExample\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{State}\ensuremath{\text{ }}\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{stateExample\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{segmentStart\ensuremath{\text{ }}}\FunctionTok{.=}\ensuremath{\text{ }}\NormalTok{makePoint\ensuremath{\text{ }}(}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{zoom\ensuremath{\text{ }}segmentEnd\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{positionX\ensuremath{\text{ }}}\FunctionTok{+=}\ensuremath{\text{ }}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{positionY\ensuremath{\text{ }}}\FunctionTok{*=}\ensuremath{\text{ }}\DecValTok{2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{pointCoordinates\ensuremath{\text{ }}}\FunctionTok{\%=}\ensuremath{\text{ }}\NormalTok{negate}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{execState\ensuremath{\text{ }}stateExample\ensuremath{\text{ }}(makeSegment\ensuremath{\text{ }}(}\DecValTok{1}\NormalTok{,}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}(}\DecValTok{5}\NormalTok{,}\DecValTok{3}\NormalTok{))}\newline
\DataTypeTok{Segment}\ensuremath{\text{ }}\NormalTok{\{_segmentStart\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{0.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{0.0}\NormalTok{\}}\newline
\NormalTok{,\ensuremath{\text{ }}_segmentEnd\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{-}\FloatTok{6.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FunctionTok{-}\FloatTok{6.0}\NormalTok{\}\}}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Isos}
\label{398}

In our series of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Segment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} examples, we have been using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function as a convenient way to make a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} out of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Double, Double)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pair.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{makePoint\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Point}\newline
\NormalTok{makePoint\ensuremath{\text{ }}(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}y}\newline
\end{Highlighting}
\end{Shaded}

The X and Y coordinates of the resulting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} correspond exactly to the two components of the original pair. That being so, we can define an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unmakePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{unmakePoint\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)}\newline
\NormalTok{unmakePoint\ensuremath{\text{ }}(}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(x,y)}\newline
\end{Highlighting}
\end{Shaded}

... so that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unmakePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are a pair of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape inverses}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is, they undo each other:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{unmakePoint\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{makePoint\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id}\newline
\NormalTok{makePoint\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{unmakePoint\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id}\newline
\end{Highlighting}
\end{Shaded}

In other words, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unmakePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} provide a way to losslessly convert a pair to a point and vice-{}versa. Using jargon, we can say that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unmakePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} form an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape isomorphism}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unmakePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might be made into a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens\textquotesingle{} Point (Double, Double)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Symmetrically. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makePoint}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would give rise to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens\textquotesingle{} (Double, Double) Point}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and the two lenses would be a pair of inverses. Lenses with inverses have a type synonym of their own, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as well as some extra tools defined in \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Iso.html}{Control.Lens.Iso}.

An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be built from a pair of inverses through the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily iso}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{iso\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Iso}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{pointPair\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Iso\textquotesingle{}}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)}\newline
\NormalTok{pointPair\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{iso\ensuremath{\text{ }}unmakePoint\ensuremath{\text{ }}makePoint}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}es, and so the familiar lens combinators work as usual:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Tuple}\ensuremath{\text{ }}\NormalTok{(swap)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testPoint\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{makePoint\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}pointPair\ensuremath{\text{ }}testPoint\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Equivalent\ensuremath{\text{ }}to\ensuremath{\text{ }}unmakePoint}\newline
\NormalTok{(}\FloatTok{2.0}\NormalTok{,}\FloatTok{3.0}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(pointPair\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{_2)\ensuremath{\text{ }}testPoint}\newline
\FloatTok{3.0}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}pointPair\ensuremath{\text{ }}swap\ensuremath{\text{ }}testPoint}\newline
\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{3.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

Additionally, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s can be inverted using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily from}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}from\ensuremath{\text{ }}pointPair}\newline
\OtherTok{from\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{AnIso}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Iso}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}a\ensuremath{\text{ }}t\ensuremath{\text{ }}s}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}	\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}in\ensuremath{\text{ }}‘Control.Lens.Iso’}\newline
\OtherTok{pointPair\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Iso\textquotesingle{}}\ensuremath{\text{ }}\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}	\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}at\ensuremath{\text{ }}WikibookLenses.hs:77:1}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(from\ensuremath{\text{ }}pointPair)\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{)\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Equivalent\ensuremath{\text{ }}to\ensuremath{\text{ }}makePoint}\newline
\DataTypeTok{Point}\ensuremath{\text{ }}\NormalTok{\{_positionX\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{2.0}\NormalTok{,\ensuremath{\text{ }}_positionY\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\FloatTok{3.0}\NormalTok{\}}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(from\ensuremath{\text{ }}pointPair\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{positionY)\ensuremath{\text{ }}(}\DecValTok{2}\NormalTok{,}\DecValTok{3}\NormalTok{)}\newline
\FloatTok{3.0}\newline
\end{Highlighting}
\end{Shaded}

Another interesting combinator is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily under}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As the name suggests, it is just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily over}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, except that it uses the inverted {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily from}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would give us. We will demonstrate it by using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily enum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} isomorphism to play with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} representation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s without using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily chr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ord}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} explicitly:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}enum}\newline
\OtherTok{enum\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Enum}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Iso\textquotesingle{}}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}	}\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}in\ensuremath{\text{ }}‘Control.Lens.Iso’}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{under\ensuremath{\text{ }}enum\ensuremath{\text{ }}(}\FunctionTok{+}\DecValTok{7}\NormalTok{)\ensuremath{\text{ }}}\CharTok{\textquotesingle{}a\textquotesingle{}}\newline
\CharTok{\textquotesingle{}h\textquotesingle{}}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s and other single-{}constructor types give rise to isomorphisms. \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Wrapped.html}{Control.Lens.Wrapped} exploits that fact to provide {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}based tools which, for instance, make it unnecessary to remember record label names for unwrapping {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testConst\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Const}\ensuremath{\text{ }}\StringTok{"foo"}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}getConst\ensuremath{\text{ }}testConst}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{op\ensuremath{\text{ }}}\DataTypeTok{Const}\ensuremath{\text{ }}\NormalTok{testConst}\newline
\StringTok{"foo"}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{testIdent\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Identity}\ensuremath{\text{ }}\StringTok{"bar"}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}runIdentity\ensuremath{\text{ }}testIdent}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{op\ensuremath{\text{ }}}\DataTypeTok{Identity}\ensuremath{\text{ }}\NormalTok{testIdent}\newline
\StringTok{"bar"}\newline
\end{Highlighting}
\end{Shaded}

... and that make {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} wrapping for instance selection less messy:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{m\ensuremath{\text{ }}}\FunctionTok{+}\DataTypeTok{Data.Monoid}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}getSum\ensuremath{\text{ }}(foldMap\ensuremath{\text{ }}Sum\ensuremath{\text{ }}[1..10])}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{ala\ensuremath{\text{ }}}\DataTypeTok{Sum}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{10}\NormalTok{]}\newline
\DecValTok{55}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}getProduct\ensuremath{\text{ }}(foldMap\ensuremath{\text{ }}Product\ensuremath{\text{ }}[1..10])}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{ala\ensuremath{\text{ }}}\DataTypeTok{Product}\ensuremath{\text{ }}\NormalTok{foldMap\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{10}\NormalTok{]}\newline
\DecValTok{3628800}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Prisms}
\label{399}

With {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we have reached for the first time a rank below {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the hierarchy of optics: every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but not every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. By going back to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can observe how the optics get progressively less precise in what they point to:

\begin{myitemize}
\item{} An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an optic that has exactly one target and is invertible.
\item{} A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} also has exactly one target but is not invertible.
\item{} A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can have any number of targets and is not invertible.
\end{myitemize}

Along the way, we first dropped invertibility and then the uniqueness of targets. If we follow a different path by dropping uniqueness before invertibility, we find a second kind of optic between isomorphisms and traversals: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape prisms}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an invertible optic that need not have exactly one target. As invertibility is incompatible with multiple targets, we can be more precise: a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can reach either no targets or exactly one target.

Aiming at a single target with the possibility of failure sounds a lot like pattern matching, and prisms are indeed able to capture that. If tuples and records provide natural examples of lenses, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and other types with multiple constructors play the same role for prisms.

Every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so the usual combinators for traversals, setters and folds all work with prisms:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}_}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{5}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Just}\ensuremath{\text{ }}\StringTok{"orange"}\NormalTok{)}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{5}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}_}\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{5}\ensuremath{\text{ }}\DataTypeTok{Nothing}\newline
\DataTypeTok{Nothing}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}_}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Right}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)}\newline
\DataTypeTok{Right}\ensuremath{\text{ }}\DecValTok{10}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}_}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{*}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Left}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)}\newline
\DataTypeTok{Left}\ensuremath{\text{ }}\DecValTok{5}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{toListOf\ensuremath{\text{ }}_}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Left}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)}\newline
\NormalTok{[}\DecValTok{5}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, though: the target might not be there. For that reason, we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily preview}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} rather than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to retrieve the target:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}_}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Right}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\DecValTok{5}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}_}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Left}\ensuremath{\text{ }}\DecValTok{5}\NormalTok{)}\newline
\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

For inverting a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily re}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily review}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Review.html}{Control.Lens.Review}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily re}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is analogous to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily from}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, though it gives merely a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily review}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with the inverted prism.

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{view\ensuremath{\text{ }}(re\ensuremath{\text{ }}_}\DataTypeTok{Right}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{3}\newline
\DataTypeTok{Right}\ensuremath{\text{ }}\DecValTok{3}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{review\ensuremath{\text{ }}_}\DataTypeTok{Right}\ensuremath{\text{ }}\DecValTok{3}\newline
\DataTypeTok{Right}\ensuremath{\text{ }}\DecValTok{3}\newline
\end{Highlighting}
\end{Shaded}

Just like there is more to lenses than reaching record fields, prisms are not limited to matching constructors. For instance, \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Control-Lens-Prism.html}{Control.Lens.Prism} defines {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily only}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which encodes equality tests as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}only}\newline
\OtherTok{only\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Prism\textquotesingle{}}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}()}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}	\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}in\ensuremath{\text{ }}‘Control.Lens.Prism’}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}(only\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{)\ensuremath{\text{ }}(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{()}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}(only\ensuremath{\text{ }}}\DecValTok{5}\NormalTok{)\ensuremath{\text{ }}(}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\DataTypeTok{Nothing}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily prism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily prism\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions allow us to build our own prisms. Here is an example using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily stripPrefix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}prism}\newline
\OtherTok{prism\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{t)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Either}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Prism}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}t\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}	\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}in\ensuremath{\text{ }}‘Control.Lens.Prism’}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{info\ensuremath{\text{ }}prism\textquotesingle{}}\newline
\OtherTok{prism\textquotesingle{}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{s)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Prism}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}s\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}	\CommentTok{--\ensuremath{\text{ }}Defined\ensuremath{\text{ }}in\ensuremath{\text{ }}‘Control.Lens.Prism’}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.List}\ensuremath{\text{ }}\NormalTok{(stripPrefix)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}stripPrefix}\newline
\OtherTok{stripPrefix\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{prefixed\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Prism\textquotesingle{}}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}[a]}\newline
\NormalTok{prefixed\ensuremath{\text{ }}prefix\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{prism\textquotesingle{}\ensuremath{\text{ }}(prefix\ensuremath{\text{ }}}\FunctionTok{++}\NormalTok{)\ensuremath{\text{ }}(stripPrefix\ensuremath{\text{ }}prefix)}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}(prefixed\ensuremath{\text{ }}}\StringTok{"tele"}\NormalTok{)\ensuremath{\text{ }}}\StringTok{"telescope"}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\StringTok{"scope"}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}(prefixed\ensuremath{\text{ }}}\StringTok{"tele"}\NormalTok{)\ensuremath{\text{ }}}\StringTok{"orange"}\newline
\DataTypeTok{Nothing}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{review\ensuremath{\text{ }}(prefixed\ensuremath{\text{ }}}\StringTok{"tele"}\NormalTok{)\ensuremath{\text{ }}}\StringTok{"graph"}\newline
\StringTok{"telegraph"}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily prefixed}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is available from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, in the \myhref{http://hackage.haskell.org/packages/archive/lens/latest/doc/html/Data-List-Lens.html}{Data.List.Lens} module.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Lens.Prism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} defines an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily outside}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, which has the following (simplified) type:
\TemplatePreformat{outside {}:: {}Prism {}s {}t {}a {}b \newline{}
 {} {} {} {} {} {} {} {}-{}>{} {}Lens {}(t {}-{}>{} {}r) {}(s {}-{}>{} {}r) {}(b {}-{}>{} {}r) {}(a {}-{}>{} {}r)}

\begin{myenumerate}
\item{}Explain what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily outside}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does without mentioning its implementation. (Hint: The documentation says that with it we can \symbol{34}use a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a kind of first-{}class pattern\symbol{34}. Your answer should expand on that, explaining how we can use it in such a way.)
\item{}Use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily outside}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to implement {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from the Prelude:
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybe :: b -{}>{} (a -{}>{} b) -{}>{} Maybe a -{}>{} b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily either :: (a -{}>{} c) -{}>{} (b -{}>{} c) -{}>{} Either a b -{}>{} c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myenumerate}

\end{myenumerate}}
\section{Laws}
\label{400}

There are laws specifying how sensible optics should behave. We will now survey those that apply to the optics that we covered here.

Starting from the top of the taxonomy, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not have laws, just like the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foldable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not have laws either, which is not surprising, given that any function can be made into a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} via {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily to}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, however, does have laws. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily over}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a generalisation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and is therefore subject to the functor laws:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{over\ensuremath{\text{ }}s\ensuremath{\text{ }}id\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id}\newline
\NormalTok{over\ensuremath{\text{ }}s\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}s\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{over\ensuremath{\text{ }}s\ensuremath{\text{ }}(g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\end{Highlighting}
\end{Shaded}

As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set s x = over s (const x)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a consequence of the second functor law is that:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{set\ensuremath{\text{ }}s\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}s\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}s\ensuremath{\text{ }}y}\newline
\end{Highlighting}
\end{Shaded}

That is, setting twice is the same as setting once.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws, similarly, are generalisations of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} laws:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{t\ensuremath{\text{ }}pure\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{pure}\newline
\NormalTok{fmap\ensuremath{\text{ }}(t\ensuremath{\text{ }}g)\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{getCompose\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}(}\DataTypeTok{Compose}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{f)}\newline
\end{Highlighting}
\end{Shaded}

The consequences discussed in the \mylref{325}{Traversable} chapter follow as well: a traversal visits all of its targets exactly once, and must either preserve the surrounding structure or destroy it wholly.

Every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so the laws above also hold for lenses. In addition, every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Given that a lens is both a getter and a setter, it should get the same target that it sets. This common sense requirement is expressed by the following laws:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{view\ensuremath{\text{ }}l\ensuremath{\text{ }}(set\ensuremath{\text{ }}l\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{set\ensuremath{\text{ }}l\ensuremath{\text{ }}(view\ensuremath{\text{ }}l\ensuremath{\text{ }}z)\ensuremath{\text{ }}z\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

Together with the \symbol{34}setting twice\symbol{34} law of setters presented above, those laws are commonly referred to as the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lens laws}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Analogous laws hold for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily preview}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily view}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily review}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{preview\ensuremath{\text{ }}p\ensuremath{\text{ }}(review\ensuremath{\text{ }}p\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{review\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{<\$>}\ensuremath{\text{ }}\NormalTok{preview\ensuremath{\text{ }}p\ensuremath{\text{ }}z\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{z}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Iso}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are both lenses and prisms, so all of the laws above hold for them. The prism laws, however, can be simplified, given that for isomorphisms {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily preview i = Just . view i}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (that is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily preview}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} never fails):

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{view\ensuremath{\text{ }}i\ensuremath{\text{ }}(review\ensuremath{\text{ }}i\ensuremath{\text{ }}x)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{review\ensuremath{\text{ }}i\ensuremath{\text{ }}(view\ensuremath{\text{ }}i\ensuremath{\text{ }}z)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{z}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Polymorphic updates}
\label{401}

When we look at optic types such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter s t a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens s t a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we see four independent type variables. However, if we take the various optic laws into account we find out that not all choices of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are reasonable. For instance, consider the \symbol{34}setting twice\symbol{34} law of setters:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{set\ensuremath{\text{ }}s\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}s\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}s\ensuremath{\text{ }}y}\newline
\end{Highlighting}
\end{Shaded}

For \symbol{34}setting twice is the same than setting once\symbol{34} to make sense, it must be possible to set twice using the same setter. As a consequence, the law can only hold for a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter s t a b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can somehow be specialised so that it becomes equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (otherwise the type of the whole would change on every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, leading to a type mismatch).

From considerations about the types involved in the laws such as the one above, it follows that the four type parameters in law-{}abiding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Prism}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}es are not fully independent from each other. We won\textquotesingle{}t examine the interdependency in detail, but merely point out some of its consequences. Firstly, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are cut from the same cloth, in that even if an optic can change types there must be a way of specialising {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to make them equal; furthermore, the same holds for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Secondly, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are equal then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must be equal as well.

In practice, those restrictions mean that valid optics that can change types usually have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily t}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} parametrised in terms of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Type-{}changing updates in this fashion are often referred to as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape polymorphic updates}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For the sake of illustration, here are a few arbitrary examples taken from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}To\ensuremath{\text{ }}avoid\ensuremath{\text{ }}distracting\ensuremath{\text{ }}details,}\newline
\CommentTok{--\ensuremath{\text{ }}we\ensuremath{\text{ }}specialised\ensuremath{\text{ }}the\ensuremath{\text{ }}types\ensuremath{\text{ }}of\ensuremath{\text{ }}argument\ensuremath{\text{ }}and\ensuremath{\text{ }}_1.}\newline
\OtherTok{mapped\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Functor}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Setter}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}a)\ensuremath{\text{ }}(f\ensuremath{\text{ }}b)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\OtherTok{contramapped\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Contravariant}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Setter}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}b)\ensuremath{\text{ }}(f\ensuremath{\text{ }}a)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\OtherTok{argument\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Setter}\ensuremath{\text{ }}\NormalTok{(b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{r)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\OtherTok{traverse\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Traversable}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Traversal}\ensuremath{\text{ }}\NormalTok{(t\ensuremath{\text{ }}a)\ensuremath{\text{ }}(t\ensuremath{\text{ }}b)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\OtherTok{both\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bitraversable}\ensuremath{\text{ }}\NormalTok{r\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{Traversal}\ensuremath{\text{ }}\NormalTok{(r\ensuremath{\text{ }}a\ensuremath{\text{ }}a)\ensuremath{\text{ }}(r\ensuremath{\text{ }}b\ensuremath{\text{ }}b)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\NormalTok{_1}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Lens}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}c)\ensuremath{\text{ }}(b,\ensuremath{\text{ }}c)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\NormalTok{_}\DataTypeTok{Just}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Prism}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}(}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\newline
\end{Highlighting}
\end{Shaded}

At this point, we can return to the question left open when we presented the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type. Given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allow type changing while {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} do not, it would be indeed rash to say that every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or that every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However, the interdependence of the type variables mean that every {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lawful}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getter}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and every lawful {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fold}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as lawful lenses and traversals can always be used in non type-{}changing ways.
\section{No strings attached}
\label{402}

As we have seen, we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to define optics through functions such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and auto-{}generation tools such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeLenses}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Strictly speaking, though, these are merely convenience helpers. Given that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so forth are just type synonyms, their definitions are not needed when writing optics − for instance, we can always write {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor f =>{} (a -{}>{} f b) -{}>{} (s -{}>{} f t)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens s t a b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That means we can define optics compatible with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at all! In fact, any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Traversal}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Getting}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be defined with no dependencies other than the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily base}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package.

The ability to define optics without depending on the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} library provides considerable flexibility in how they can be leveraged. While there are libraries that do depend on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, library authors are often wary of acquiring a dependency on large packages with several dependencies such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, especially when writing small, general-{}purpose libraries. Such concerns can be sidestepped by defining the optics without using the type synonyms or the helper tools in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Furthermore, the types being only synonyms makes it possible to have multiple optic frameworks (i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and similar libraries) that can be used interchangeably.
\section{Further reading}
\label{403}

\begin{myitemize}
\item{} Several paragraphs above, we said that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} easily provides enough material for a full book. The closest thing to that we currently have is Artyom Kazak\textquotesingle{}s \myhref{http://artyom.me/lens-over-tea-1}{\symbol{34}lens over tea\symbol{34}} series of blog posts. It explores the implementation of functional references in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the concepts behind it in far more depth than what we are able to do here. Highly recommended reading.
\item{} Useful information can be reached through \myhref{https://github.com/ekmett/lens/wiki}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{} GitHub wiki}, and of course \myhref{https://hackage.haskell.org/package/lens}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{} API documentation} is well worth exploring.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a large and complex library. If you want to study its implementation but would rather begin with something simpler, a good place to start are minimalistic {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}compatible libraries such as {\ttfamily \myhref{http://hackage.haskell.org/package/microlens}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily microlens}} and {\ttfamily \myhref{http://hackage.haskell.org/package/lens-simple}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens-{}simple}}.
\item{} Studying (and using!) optic-{}powered libraries is a good way to get the hang of how functional references are used. Some arbitrary examples:
\begin{myitemize}
\item{} {\ttfamily \myhref{http://projects.haskell.org/diagrams/}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily diagrams}}, a vector graphics library that uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} extensively to deal with properties of graphic elements.
\item{} {\ttfamily \myhref{http://www.serpentine.com/wreq/}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily wreq}}, a web client library with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}based interface.
\item{} {\ttfamily \myhref{https://hackage.haskell.org/package/xml-lens}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xml-{}lens}}, which provides optics for manipulating XML.
\item{} {\ttfamily \myhref{http://hackage.haskell.org/package/formattable}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily formattable}}, a library for date, time and number formattting. \myhref{http://hackage.haskell.org/packages/archive/formattable/latest/doc/html/Formattable-NumFormat.html}{Formattable.NumFormat} is an example of a module that provides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}compatible lenses without depending on the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily lens}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package.
\end{myitemize}

\end{myitemize}

\LaTeXNullTemplate{}
\chapter{Mutable objects}

\myminitoc
\label{404}

\label{405}
\LaTeXNullTemplate{}

Functional purity is a defining characteristics of Haskell, one which leads to many of its strengths. As such, language and ecosystem encourage eschewing mutable state altogether. Thanks to tools such as \mylref{257}{the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad}, which allows us to keep track of state in a convenient and functionally pure way, and \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FData\%20structures\%20primer}{efficient immutable data structures} like the ones provided by the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily containers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unordered-{}containers}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} packages, Haskell programmers can get by perfectly fine with complete immutability in the vast majority of situations. However, under select circumstances using mutable state is just the most sensible option. One might, for instance, be interested in:

\begin{myitemize}
\item{} From Haskell code, using a library written in another language which assumes mutable state everywhere. This situation often arises with event-{}callback GUI toolkits.
\end{myitemize}

\begin{myitemize}
\item{} Using Haskell to implement a language that provides imperative-{}style mutable variables.
\end{myitemize}

\begin{myitemize}
\item{} Implementing algorithms that inherently require destructive updates to variables.
\end{myitemize}

\begin{myitemize}
\item{} Dealing with volumes of bulk data massive enough to justify squeezing every drop of computational power available to make the problem at hand feasible.
\end{myitemize}

Any general-{}purpose programming language worth its salt should be able to deal with such tasks. With Haskell, it is no different: there are not only ways to create mutable objects, but also to keep mutability under control, existing peacefully in a setting where immutability is the default.
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s}
\label{406}

Let\textquotesingle{}s begin with the simplest of those use cases above. A common way of structuring code for user interfaces is through the event-{}and-{}callback model. The event might be a button click or a key press, while the callback is just a piece of code meant to be called in response to the event. The client code (that is, your code, if you are using such a library) should set up the wiring that connects interface elements, events involving them, and the corresponding callbacks. An hypothetical function to arrange a callback might have the following type:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{register\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Element}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Event}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Element}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument is the callback, while the result of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily register}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} action which sets up the wiring. Running {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily register{\mbox{$~$}}click{\mbox{$~$}}button1{\mbox{$~$}}(print{\mbox{$~$}}\symbol{34}Hello\symbol{34})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would lead to \symbol{34}Hello\symbol{34} being printed on the console following every click on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily button1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily register}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} − with pervasive {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and lacking useful return values − and our exposition above have a marked imperative feel. That\textquotesingle{}s because our hypothetical GUI library was written using a more imperative style in a wholly different language. Some good soul has written a facade so that we can use it from Haskell, but the facade is a very thin one, and so the style of the original library leaks into our code \myfootnote{The technical term for facades over libraries from other languages is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape bindings}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Bindings can be thin, exposing transparently the constructs of the original library, or they can add extra layers of abstraction can be built on to achieve a more Haskell-{}like feel. The elementary tool for creating bindings in Haskell is the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape foreign function interface}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which we cover \myfnlref{661}{in a chapter of Haskell in Practice}.}.

Using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily register}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to perform {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actions such as printing to the console or showing dialog boxes is easy enough. However, what if we want to add 1 to a counter every time a button is clicked? The type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily register}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t reveal any way to pass information to the callback, nor to get information back from it (the return types are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t help: even if there was a way to pass an initial state to the callback, run a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation within it, what would we do with the results? We would need to pass the resulting state of the counter to the callback on the next time the button is clicked, and we would have no idea when that would happen, nor a place to keep the value in the meantime.

The obvious solution to this issue in many languages would be creating a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape mutable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} variable outside of the callback and then giving the callback a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape reference}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to it, so that its code can change the value of the variable at will. We need not worry, though, as Haskell allows us to do exactly that. In fact, there are several types of mutable variables available, the simplest of which is the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are very simple; they are just boxes containing mutable values. We can create one as follows:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.IORef}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}newIORef\ensuremath{\text{ }}}\newline
\OtherTok{newIORef\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{IORef}\ensuremath{\text{ }}\NormalTok{a)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{box\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{newIORef\ensuremath{\text{ }}(}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newIORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a value and gives back, as the result of an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} action, an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} initialised to that value. We can then use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readIORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to retrieve the value in it...

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}readIORef}\newline
\OtherTok{readIORef\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IORef}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{a}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{readIORef\ensuremath{\text{ }}box\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{print}\newline
\DecValTok{4}\newline
\end{Highlighting}
\end{Shaded}

... and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily modifyIORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily writeIORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to change it:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{modifyIORef\ensuremath{\text{ }}box\ensuremath{\text{ }}(}\DecValTok{2}\FunctionTok{*}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{readIORef\ensuremath{\text{ }}box\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{print}\newline
\DecValTok{8}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{writeIORef\ensuremath{\text{ }}box\ensuremath{\text{ }}}\DecValTok{0}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{readIORef\ensuremath{\text{ }}box\ensuremath{\text{ }}}\FunctionTok{>>=}\ensuremath{\text{ }}\NormalTok{print}\newline
\DecValTok{0}\newline
\end{Highlighting}
\end{Shaded}

An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be enough for implementing the counter, given that it would persist between button clicks. The code might look like this:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{setupGUI\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IORef}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{setupGUI\ensuremath{\text{ }}counter\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}However\ensuremath{\text{ }}much\ensuremath{\text{ }}other\ensuremath{\text{ }}GUI\ensuremath{\text{ }}preparation\ensuremath{\text{ }}code\ensuremath{\text{ }}we\ensuremath{\text{ }}need.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{register\ensuremath{\text{ }}click\ensuremath{\text{ }}button1\ensuremath{\text{ }}(modifyIORef\ensuremath{\text{ }}counter\ensuremath{\text{ }}(}\FunctionTok{+}\DecValTok{1}\NormalTok{))}\newline
\ensuremath{\text{ }}\newline
\OtherTok{main\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}etc.}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{counter\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{newIORef\ensuremath{\text{ }}(}\DecValTok{0}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{setupGUI\ensuremath{\text{ }}counter}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Then\ensuremath{\text{ }}just\ensuremath{\text{ }}use\ensuremath{\text{ }}the\ensuremath{\text{ }}counter\ensuremath{\text{ }}value\ensuremath{\text{ }}wherever\ensuremath{\text{ }}necessary.}\newline
\end{Highlighting}
\end{Shaded}

Note there is no point in using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s indiscriminately, without a good reason for it. Beyond the more fundamental concerns with mutable state, it just would not be very convenient to do so with all those explicit read/write/modify calls, not to mention the need to introduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in extra places to handle the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (in our hypothetical example that wouldn\textquotesingle{}t be much of an issue, as the GUI code would have to live in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} anyway, and we presumably would keep it apart from the pure functions forming the core of our program, as good Haskell practice dictates). Still, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are there for when you can\textquotesingle{}t avoid them.
\subsection{The pitfalls of concurrency}
\label{407}

There is another very important use case for mutable variables that we didn\textquotesingle{}t mention in the introduction: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape concurrency}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is, circumstances when simultaneous computations are being executed by the computer. Concurrency scenarios range from the trivial (a progress bar displaying the status of a background task) to the extremely complex (server-{}side software handling thousands of requests at once). Given that in principle nothing guarantees that simultaneous computations will run in step with each other, any communication between them calls for mutable variables. That, however, introduces a complication: the issues with understandability and predictability of code using mutable state become much more serious in the presence of independent computations with unpredictable timings. For instance, computation A might need the result of computation B, but it might ask for that result earlier than predicted and thus acquire a bogus result. Writing correct concurrent code can be difficult, and subtle bugs are easy to introduce unless adequate measures are taken.

The only functions in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-IORef.html}{Data.IORef} that provide extra safety in concurrent code are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily atomicallyModifyIORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily atomicallyModifyIORef\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily atomicallyWriteIORef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which are only of any help in very simple situations in which there is just one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} meant to be used as a shared resource between computations. Concurrent Haskell code should take advantage of more sophisticated tools tailored for concurrency, such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MVar}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s (mutable variables that a computation can make unavailable to the others for as long as necessary − see \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Concurrent-MVar.html}{Control.Concurrent.MVar}) and \myhref{http://hackage.haskell.org/packages/archive/stm/latest/doc/html/Control-Concurrent-STM.html}{Control.Concurrent.STM} from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily stm}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} package (an implementation of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape software transactional memory}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a concurrency model which makes it possible to write safe concurrent code while avoiding the ugliness and complications of having to explicitly manage the availability of all shared variables) \myfootnote{A future chapter of this book will introduce some of those features.}.
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad}
\label{408}

In the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example above, mutability was imposed upon our code by external demands. However, in the two final scenarios suggested by the introduction (algorithms that require mutability and extreme computational demands) the need for mutable state is internal − that is, it is not reflected in any way in the overall results. For instance, sorting a list does not require mutability in any essential way, and so a function that sorts a list and returns a new lists should, in principle, be functionally pure even if the sorting algorithm uses destructive updates to swap the position of the elements. In such case, the mutability is just an implementation detail. The standard libraries provide a nifty tool for handling such situations while still ending up with pure functions: the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad, which can be found in \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Monad-ST.html}{Control.Monad.ST}.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST s a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} looks a lot like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State s a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and indeed they are similar in spirit. An {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation is one that uses an internal state to produce results, except that the state is mutable. For that purpose, \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-STRef.html}{Data.STRef} provides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily STRef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s. A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily STRef s a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is exactly like an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORef a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but it lives in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad rather than in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

There is one {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape major}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} difference that sets apart {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad.ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} offers a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function with the following type:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{runST\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(forall\ensuremath{\text{ }}s}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

At first, that is a shocking type signature. If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} involves mutability, how come we can simply extract {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} values from the monad? The answer lies in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall s.}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} part of the type. Having a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall s.}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} enclosed within the type of an argument amounts to telling the type checker \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} could be anything. Don\textquotesingle{}t make any assumptions about it\symbol{34}. Not making any assumptions, however, means that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} cannot be matched with anything else − even with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from another invocation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myfootnote{This is an example of an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape existential type}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. \symbol{34}Existential\symbol{34} is meant in a precise technical sense, but we can get the gist of it by noting that the only thing we know about it is that it exists.}:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.ST}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.STRef}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Attempt\ensuremath{\text{ }}to\ensuremath{\text{ }}keep\ensuremath{\text{ }}an\ensuremath{\text{ }}STRef\ensuremath{\text{ }}around\ensuremath{\text{ }}to\ensuremath{\text{ }}pass\ensuremath{\text{ }}to\ensuremath{\text{ }}pure\ensuremath{\text{ }}code:}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{ref\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runST\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{newSTRef\ensuremath{\text{ }}(}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\FunctionTok{<}\NormalTok{interactive}\FunctionTok{>:}\DecValTok{125}\FunctionTok{:}\DecValTok{19}\FunctionTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Couldn\textquotesingle{}t}\ensuremath{\text{ }}\NormalTok{match\ensuremath{\text{ }}}\KeywordTok{type}\ensuremath{\text{ }}\NormalTok{‘a’\ensuremath{\text{ }}with\ensuremath{\text{ }}‘}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{’}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{because\ensuremath{\text{ }}}\KeywordTok{type}\ensuremath{\text{ }}\NormalTok{variable\ensuremath{\text{ }}‘s’\ensuremath{\text{ }}would\ensuremath{\text{ }}escape\ensuremath{\text{ }}its\ensuremath{\text{ }}scope}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{This}\ensuremath{\text{ }}\NormalTok{(rigid,\ensuremath{\text{ }}skolem)\ensuremath{\text{ }}}\KeywordTok{type}\ensuremath{\text{ }}\NormalTok{variable\ensuremath{\text{ }}is\ensuremath{\text{ }}bound\ensuremath{\text{ }}by}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{type}\ensuremath{\text{ }}\NormalTok{expected\ensuremath{\text{ }}by\ensuremath{\text{ }}the\ensuremath{\text{ }}context}\FunctionTok{:}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{at\ensuremath{\text{ }}}\FunctionTok{<}\NormalTok{interactive}\FunctionTok{>:}\DecValTok{125}\FunctionTok{:}\DecValTok{11}\FunctionTok{-}\DecValTok{37}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Expected}\ensuremath{\text{ }}\KeywordTok{type}\FunctionTok{:}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Actual}\ensuremath{\text{ }}\KeywordTok{type}\FunctionTok{:}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}(}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Relevant}\ensuremath{\text{ }}\NormalTok{bindings\ensuremath{\text{ }}include}\OtherTok{\ensuremath{\text{ }}ref\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}(bound\ensuremath{\text{ }}at\ensuremath{\text{ }}}\FunctionTok{<}\NormalTok{interactive}\FunctionTok{>:}\DecValTok{125}\FunctionTok{:}\DecValTok{5}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{In}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}second\ensuremath{\text{ }}argument\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{‘(}\FunctionTok{\$}\NormalTok{)’,\ensuremath{\text{ }}namely\ensuremath{\text{ }}‘newSTRef\ensuremath{\text{ }}(}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{)’}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{In}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}expression}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{runST\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{newSTRef\ensuremath{\text{ }}(}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{)}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}error\ensuremath{\text{ }}message\ensuremath{\text{ }}is\ensuremath{\text{ }}quite\ensuremath{\text{ }}clear:}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}"because\ensuremath{\text{ }}type\ensuremath{\text{ }}variable\ensuremath{\text{ }}‘s’\ensuremath{\text{ }}would\ensuremath{\text{ }}escape\ensuremath{\text{ }}its\ensuremath{\text{ }}scope"}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Attempt\ensuremath{\text{ }}to\ensuremath{\text{ }}feed\ensuremath{\text{ }}an\ensuremath{\text{ }}STRef\ensuremath{\text{ }}from\ensuremath{\text{ }}one\ensuremath{\text{ }}ST\ensuremath{\text{ }}computation\ensuremath{\text{ }}to\ensuremath{\text{ }}another:}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runST\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{readSTRef\ensuremath{\text{ }}}\FunctionTok{=<<}\ensuremath{\text{ }}\NormalTok{runST\ensuremath{\text{ }}(newSTRef\ensuremath{\text{ }}(}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{))}\newline
\ensuremath{\text{ }}\newline
\FunctionTok{<}\NormalTok{interactive}\FunctionTok{>:}\DecValTok{129}\FunctionTok{:}\DecValTok{38}\FunctionTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Couldn\textquotesingle{}t}\ensuremath{\text{ }}\NormalTok{match\ensuremath{\text{ }}}\KeywordTok{type}\ensuremath{\text{ }}\NormalTok{‘}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s1\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{’\ensuremath{\text{ }}with\ensuremath{\text{ }}‘}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}(}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a)’}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Expected}\ensuremath{\text{ }}\KeywordTok{type}\FunctionTok{:}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s1\ensuremath{\text{ }}(}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}(}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a))}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Actual}\ensuremath{\text{ }}\KeywordTok{type}\FunctionTok{:}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s1\ensuremath{\text{ }}(}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s1\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Relevant}\ensuremath{\text{ }}\NormalTok{bindings\ensuremath{\text{ }}include}\OtherTok{\ensuremath{\text{ }}x\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}(bound\ensuremath{\text{ }}at\ensuremath{\text{ }}}\FunctionTok{<}\NormalTok{interactive}\FunctionTok{>:}\DecValTok{129}\FunctionTok{:}\DecValTok{5}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{In}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}first\ensuremath{\text{ }}argument\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{‘runST’,\ensuremath{\text{ }}namely\ensuremath{\text{ }}‘(newSTRef\ensuremath{\text{ }}(}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{))’}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{In}\ensuremath{\text{ }}\NormalTok{the\ensuremath{\text{ }}second\ensuremath{\text{ }}argument\ensuremath{\text{ }}}\KeywordTok{of}\ensuremath{\text{ }}\NormalTok{‘(}\FunctionTok{=<<}\NormalTok{)’,\ensuremath{\text{ }}namely}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{‘runST\ensuremath{\text{ }}(newSTRef\ensuremath{\text{ }}(}\DecValTok{4}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\NormalTok{))’}\newline
\DataTypeTok{GHCi}\FunctionTok{>}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}\textquotesingle{}s\textquotesingle{}\ensuremath{\text{ }}from\ensuremath{\text{ }}each\ensuremath{\text{ }}computation\ensuremath{\text{ }}are\ensuremath{\text{ }}necessarily\ensuremath{\text{ }}not\ensuremath{\text{ }}the\ensuremath{\text{ }}same.}\newline
\end{Highlighting}
\end{Shaded}

The overall effect of this type trickery is to insulate the internal state and mutability within each {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} computation, so that from the point of view of anything else in the program {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a pure function.

As a trivial example of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in action, here is a very imperative-{}looking version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists \myfootnote{Adapted from the \myfnhref{https://wiki.haskell.org/Monad/ST}{HaskellWiki page on ST}.}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Control.Monad.ST}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.STRef}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Foldable}\newline
\ensuremath{\text{ }}\newline
\OtherTok{sumST\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Num}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{sumST\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runST\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{newSTRef\ensuremath{\text{ }}}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{for_\ensuremath{\text{ }}xs\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{modifySTRef\ensuremath{\text{ }}n\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{x)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{readSTRef\ensuremath{\text{ }}n}\newline
\end{Highlighting}
\end{Shaded}

For all intents and purposes, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sumST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is no less pure than the familiar {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The fact that it destructively updates its accumulator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a mere implementation detail, and there is no way information about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} could leak other than through the final result. Looking at a simple example like this one makes it clear that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type variable in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST s a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not correspond to anything in particular within the computation − it is just an artificial marker. Another detail worth noting is that even though {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily for_}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} folds the list from the right the sums are done from the left, as the mutations are performed as applicative effects sequenced form left to right.
\section{Mutable data structures}
\label{409}

Mutable data structures can be found in the libraries for the exceptional use cases for which they prove necessary. For instance, mutable arrays (alongside with immutable ones) can be found in the \myhref{https://hackage.haskell.org/package/vector}{vector} package or the \myhref{https://hackage.haskell.org/package/array}{array} package bundled with GHC \myfootnote{For general observations on arrays, see the \myfnhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FData\%20structures\%20primer\%23Raw\%20performance\%20with\%20arrays}{data structures primer}.}. There are also mutable hash tables, such as those from the \myhref{https://hackage.haskell.org/package/hashtables}{hashtables package}. In all cases mentioned, both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} versions are provided.
\section{Further reading}
\label{410}

\begin{myitemize}
\item{} \myhref{https://en.wikibooks.org/wiki/Write_Yourself_a_Scheme_in_48_Hours\%2FAdding_Variables_and_Assignment}{The seventh chapter of Write Yourself a Scheme in 48 Hours} provides an interesting example of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IORefs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} being used to implement mutable variables in a language.
\end{myitemize}

\begin{myitemize}
\item{} \myhref{http://augustss.blogspot.com.br/2007/08/quicksort-in-haskell-quicksort-is.html}{Lennart Augustsson\textquotesingle{}s blog} shows how a true quicksort (that is, one using the original algorithm which performs destructive updates to sort the list) can be implemented in Haskell, just like we assured that was possible way back in \mylref{140}{Haskell/Higher-{}order functions}. His implementation is quite amusing thanks to the combinators used to handle mutability, which make Haskell look like C. Be sure to check the two posts before the one linked to see how that was done.
\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Concurrency}

\myminitoc
\label{411}

\label{412}
\LaTeXNullTemplate{}
\section{Concurrency}
\label{413}

Concurrency in Haskell is mostly done with Haskell threads. Haskell threads are user-{}space threads that are implemented in the runtime. Haskell threads are much more efficient in terms of both time and space than Operating System threads. Apart from traditional synchronization primitives like semaphores, Haskell offers Software Transactional Memory which greatly simplifies concurrent access to shared memory.

The modules for concurrency are Control.Concurrent.* and Control.Monad.STM.
\section{When do you need it?}
\label{414}

Perhaps more important than {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries when}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries when not}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Concurrency in Haskell is not used to utilize multiple processor cores; you need another thing, \symbol{34}\myhref{https://en.wikibooks.org/wiki/Haskell\%2FParallelism}{parallelism}\symbol{34}, for that. Instead, concurrency is used for when a single core must divide its attention between various things, typically IO.

For example, consider a simple \symbol{34}static\symbol{34} webserver (i.e. serves only static content such as images). Ideally, such a webserver should consume few processing resources; instead, it must be able to transfer data as fast as possible. The bottleneck should be I/O, where you can throw more hardware at the problem. So you must be able to efficiently utilize a single processor core among several connections.

In a C version of such a webserver, you\textquotesingle{}d use a big loop centered around {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily select()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on each connection and on the listening socket. Each open connection would have an attached data structure specifying the state of that connection (i.e. receiving the HTTP header, parsing it, sending the file). Such a big loop would be difficult and error-{}prone to code by hand. However, using Concurrent Haskell, you would be able to write a much smaller loop concentrating solely on the listening socket, which would spawn a new \symbol{34}thread\symbol{34} for each accepted connection. You can then write a new \symbol{34}thread\symbol{34} in the IO monad which, in sequence, receives the HTTP header, parses it, and sends the file.

Internally, the Haskell compiler will then convert the spawning of the thread to an allocation of a small structure specifying the state of the \symbol{34}thread\symbol{34}, congruent to the data structure you would have defined in C. It will then convert the various threads into a single big loop. Thus, while you write as if each thread is independent, internally the compiler will convert it to a big loop centered around {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily select()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or whatever alternative is best on your system.
\section{Example}
\label{415}

\HaskellExampleTemplate{Downloading files in parallel}{\TemplatePreformat{ \newline{}
downloadFile {}:: {}URL {}-{}>{} {}IO {}() \newline{}
downloadFile {}= {}undefined \newline{}
 {} \newline{}
downloadFiles {}:: {}{[}URL{]} {}-{}>{} {}IO {}() \newline{}
downloadFiles {}= {}mapM_ {}(forkIO {}. {}downloadFile)}}
\section{Software Transactional Memory}
\label{416}

Software Transactional Memory (STM) is a mechanism that allows transactions on memory similar to database transactions. It greatly simplifies access to shared resources when programming in a multithreaded environment. By using STM, you no longer have to rely on locking.

To use STM, you have to include Control.Monad.STM. To change into the STM-{}Monad the atomically function is used. STM offers different primitives (TVar, TMVar, TChan and TArray) that can be used for communication.

The following example shows how to use a TChan to communicate between two threads. The channel is created in the main function and handed over to the reader/writerThread functions. The readerThread waits on the TChan for new input and prints it. The writerThread writes some Int-{}values to the channel and terminates.

\HaskellExampleTemplate{Communication with a TChan}{\TemplatePreformat{ \newline{}
import {}Control.Monad.STM \newline{}
import {}Control.Concurrent \newline{}
import {}Control.Concurrent.STM.TChan \newline{}
 {} \newline{}
oneSecond {}= {}1000000 \newline{}
 {} \newline{}
writerThread {}:: {}TChan {}Int {}-{}>{} {}IO {}() \newline{}
writerThread {}chan {}= {}do \newline{}
 {} {} {} {} {} {} {} {}atomically {}\${}$\text{ }${}writeTChan$\text{ }${}chan$\text{ }${}1$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}threadDelay {}oneSecond \newline{}
 {} {} {} {} {} {} {} {}atomically {}\${}$\text{ }${}writeTChan$\text{ }${}chan$\text{ }${}2$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}threadDelay {}oneSecond \newline{}
 {} {} {} {} {} {} {} {}atomically {}\${}$\text{ }${}writeTChan$\text{ }${}chan$\text{ }${}3$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}threadDelay {}oneSecond \newline{}
 {} \newline{}
readerThread {}:: {}TChan {}Int {}-{}>{} {}IO {}() \newline{}
readerThread {}chan {}= {}do \newline{}
 {} {} {} {} {} {} {} {}newInt {}<{}-{} {}atomically {}\${}$\text{ }${}readTChan$\text{ }${}chan$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}putStrLn {}\${}$\text{ }${}\symbol{34}read$\text{ }${}new$\text{ }${}value:$\text{ }${}\symbol{34}$\text{ }${}++$\text{ }${}show$\text{ }${}newInt$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}readerThread {}chan \newline{}
 {} \newline{}
main {}= {}do \newline{}
 {} {} {} {} {} {} {} {}chan {}<{}-{} {}atomically {}\${}$\text{ }${}newTChan$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}forkIO {}\${}$\text{ }${}readerThread$\text{ }${}chan$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}forkIO {}\${}$\text{ }${}writerThread$\text{ }${}chan$\text{ }$\newline{}
 {} {} {} {} {} {} {} {}threadDelay {}\${}$\text{ }${}5$\text{ }${}*$\text{ }${}oneSecond$\text{ }$\newline{}
}}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Fun with Types}

\myminitoc
\label{417}

\chapter{Polymorphism basics}

\myminitoc
\label{418}

\label{419}
\LaTeXNullTemplate{}
\section{Parametric Polymorphism}
\label{420}
Section goal = short, enables reader to read code (ParseP) with \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and use libraries (ST) without horror. Question \myhref{https://en.wikibooks.org/wiki/Talk\%3AHaskell\%2FThe_Curry-Howard_isomorphism\%23Polymorphic\%20types}{Talk:Haskell/The_Curry-{}Howard_isomorphism\#Polymorphic types} would be solved by this section.

Link to the following paper: Luca Cardelli: \myhref{http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf}{On Understanding Types, Data Abstraction, and Polymorphism}.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{421}
As you may know, a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries polymorphic}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is a function that works for many different types. For instance,

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}length\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\end{Highlighting}
\end{Shaded}

can calculate the length of any list, be it a string {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String = {[}Char{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or a list of integers {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Int{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries type variable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} indicates that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} accepts any element type. Other examples of polymorphic functions are

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}fst\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}snd\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a,\ensuremath{\text{ }}b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}map\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\end{Highlighting}
\end{Shaded}

Type variables always {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries begin in lowercase}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} whereas concrete types like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} always start with an uppercase letter, that\textquotesingle{}s how we can tell them apart.

There is a more {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries explicit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} way to indicate that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be any type

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}length\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}a}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\end{Highlighting}
\end{Shaded}

In other words, \symbol{34}for all types {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a list of elements of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and returns an integer\symbol{34}. You should think of the old signature as an abbreviation for the new one with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}\myfootnote{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Note that the keyword {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not part of the Haskell 98 standard, but any of the language extensions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ScopedTypeVariables}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Rank2Types}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily RankNTypes}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will enable it in the compiler. A future Haskell standard will incorporate one of these.}. That is, the compiler will internally insert any missing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for you. Another example: the types signature for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is really a shorthand for

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}fst\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}a}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}b}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(a,b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

or equivalently

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}fst\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(a,b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

Similarly, the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is really

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}map\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}a\ensuremath{\text{ }}b}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\end{Highlighting}
\end{Shaded}

The idea that something is applicable to every type or holds for everything is called {\bfseries \myhref{https://en.wikipedia.org/wiki/Universal\%20quantification}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries universal quantification}}. In mathematical logic, the symbol \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀\myfootnote{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily UnicodeSyntax}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} extension allows you to use the symbol \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword in your Haskell source code.} (an upside-{}down A, read as \symbol{34}forall\symbol{34}) is commonly used for that, it is called the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries universal quantifier}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Higher rank types}
\label{422}
With explicit {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it now becomes possible to write functions that expect {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries polymorphic arguments}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, like for instance

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}foo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(forall\ensuremath{\text{ }}a}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Char}\NormalTok{,}\DataTypeTok{Bool}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foo\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}}\CharTok{\textquotesingle{}c\textquotesingle{}}\NormalTok{,\ensuremath{\text{ }}f\ensuremath{\text{ }}}\DataTypeTok{True}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a polymorphic function, it can be applied to anything. In particular, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can apply it to both the character {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}c\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the boolean {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

It is not possible to write a function like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Haskell98, the type checker will complain that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} may only be applied to values of either the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and reject the definition. The closest we could come to the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}bar\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Char}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Bool}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

which is the same as

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}bar\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}a}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{((a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Char}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Bool}\NormalTok{))}\newline
\end{Highlighting}
\end{Shaded}

But this is very different from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the outermost level means that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} promises to work with any argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as long as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has the shape {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for some type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} unknown to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bar}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Contrast this with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where it\textquotesingle{}s the argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} who promises to be of shape {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for all types {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the same time , and it\textquotesingle{}s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} who makes use of that promise by choosing both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a = Char}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a = Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Concerning nomenclature, simple polymorphic functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are said to have a rank-{}1 type while the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is classified as {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries rank-{}2 type}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In general, a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries rank-{}n type}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a function that has at least one rank-{}(n-{}1) argument but no arguments of even higher rank.

The theoretical basis for higher rank types is {\bfseries \myhref{https://en.wikipedia.org/wiki/System\%20F}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries System F}}, also known as the second-{}order lambda calculus. We will detail it in the section \mylref{425}{System F} in order to better understand the meaning of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and its placement like in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bar}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Haskell98 is based on the \myhref{https://en.wikipedia.org/wiki/Hindley-Milner}{Hindley-{}Milner} type system, which is a restriction of System F and does not support {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and rank-{}2 types or types of even higher rank. You have to enable the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily RankNTypes}\myfootnote{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Or enable just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Rank2Types}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if you only want to use rank-{}2 types} language extension to make use of the full power of System F.

But of course, there is a good reason that Haskell98 does not support higher rank types: type inference for the full System F is undecidable, the programmer would have to write down all type signatures. Thus, the early versions of Haskell have adopted the Hindley-{}Milner type system which only offers simple polymorphic function but enables complete type inference in return. Recent advances in research have reduced the burden of writing type signatures and made rank-{}n types practical in current Haskell compilers.
\subsection{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{423}
For the practical Haskell programmer, the \myhref{http://www.haskell.org/haskellwiki/Monad/ST}{ST monad} is probably the first example of a rank-{}2 type in the wild. Similar to the IO monad, it offers mutable references

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}newSTRef\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}(}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a)}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}readSTRef\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}writeSTRef\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{STRef}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

and mutable arrays. The type variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} represents the state that is being manipulated. But unlike IO, these stateful computations can be used in pure code. In particular, the function

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}runST\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(forall\ensuremath{\text{ }}s}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{ST}\ensuremath{\text{ }}\NormalTok{s\ensuremath{\text{ }}a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

sets up the initial state, runs the computation, discards the state and returns the result. As you can see, it has a rank-{}2 type. Why?

The point is that mutable references should be local to one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For instance,

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{v\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runST\ensuremath{\text{ }}(newSTRef\ensuremath{\text{ }}}\StringTok{"abc"}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{foo\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{runST\ensuremath{\text{ }}(readSTRef\ensuremath{\text{ }}v)}\newline
\end{Highlighting}
\end{Shaded}

is wrong because a mutable reference created in the context of one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is used again in a second {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In other words, the result type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (forall s. ST s a) -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} may not be a reference like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily STRef s String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily v}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But the rank-{}2 type guarantees exactly that! Because the argument must be polymorphic in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it has to return one and the same type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for all states {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; the result {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} may not depend on the state. Thus, the unwanted code snippet above contains a type error and the compiler will reject it.

You can find a more detailed explanation of the ST monad in the original paper \myhref{http://www.dcs.gla.ac.uk/fp/papers/lazy-functional-state-threads.ps.Z}{Lazy functional state threads}\myfootnote{John Launchbury; Simon Peyton Jones 1994-{}??-{}??. Lazy functional state threads- ACM Press\symbol{34}. pp. 24-{}35
\myplainurl{http://}}.
\subsection{Impredicativity}
\label{424}

\begin{myitemize}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape predicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} = type variables instantiated to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monotypes}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape impredicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} = also {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape polytypes}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Example: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length {[}id :: forall a . a -{}>{} a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just (id :: forall a. a -{}>{} a)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Subtly different from higher-{}rank.
\end{myitemize}

\begin{myitemize}
\item{} relation of polymorphic types by their generality, i.e. `isInstanceOf`.
\item{} \myhref{http://thread.gmane.org/gmane.comp.lang.haskell.cafe/40508/focus=40610}{haskell-{}cafe: RankNTypes short explanation.}
\end{myitemize}

\section{System F}
\label{425}
Section goal = a little bit lambda calculus foundation to prevent brain damage from implicit type parameter passing.

\begin{myitemize}
\item{} System F = Basis for all this \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}stuff.
\item{} Explicit type applications i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map Int (+1) {[}1,2,3{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} similar to the function arrow -{}>{}.
\item{} Terms depend on types. Big Λ for type arguments, small λ for value arguments.
\end{myitemize}

\section{Examples}
\label{426}
Section goal = enable reader to judge whether to use data structures with \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in his \uline{own} code.

\begin{myitemize}
\item{} Church numerals, Encoding of arbitrary recursive types (positivity conditions): {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \&forall x. (F x -{}>{} x) -{}>{} x}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Continuations, Pattern-{}matching: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily either}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}
\end{myitemize}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

I.e. \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be put to good use for implementing data types in Haskell.
\section{Other forms of Polymorphism}
\label{427}
Section goal = contrast polymorphism in OOP and stuff. how type classes fit in.

\begin{myitemize}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape ad-{}hoc polymorphism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} = different behavior depending on type s. =>{} Haskell type classes.
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape parametric polymorphism}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} = ignorant of the type actually used. =>{} \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}∀
\item{} \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape subtyping}
\end{myitemize}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\section{Free Theorems}
\label{428}
Section goal = enable reader to come up with free theorems. no need to prove them, intuition is enough.
\begin{myitemize}
\item{} free theorems for parametric polymorphism.
\end{myitemize}

\LaTeXNullTemplate{}
\section{See also}
\label{429}
\begin{myitemize}
\item{} Luca Cardelli. \myhref{http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf}{On Understanding Types, Data Abstraction, and Polymorphism}.
\end{myitemize}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Existentially quantified types}

\myminitoc
\label{430}

\label{431}
\LaTeXNullTemplate{}

Existential types, or \textquotesingle{}existentials\textquotesingle{} for short, are a way of \textquotesingle{}squashing\textquotesingle{} a group of types into one, single type.

Existentials are part of GHC\textquotesingle{}s {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type system extensions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. They aren\textquotesingle{}t part of Haskell98, and as such you\textquotesingle{}ll have to either compile any code that contains them with an extra command-{}line parameter of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}XExistentialQuantification}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or put {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{-{}\# LANGUAGE ExistentialQuantification \#-{}\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at the top of your sources that use existentials.
\section{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword}
\label{432}
The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword is used to explicitly bring fresh type variables into scope. For example, consider something you\textquotesingle{}ve innocuously seen written a hundred times so far:

\HaskellExampleTemplate{A polymorphic function}{\\

\TemplateSpaceIndent{ {}map {}:: {}(a {}-{}>{} {}b) {}-{}>{} {}{[}a{]} {}-{}>{} {}{[}b{]}}}

But what are these {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Well, they\textquotesingle{}re type variables, you answer. The compiler sees that they begin with a lowercase letter and as such allows any type to fill that role. Another way of putting this is that those variables are \textquotesingle{}universally quantified\textquotesingle{}. If you\textquotesingle{}ve studied formal logic, you will have undoubtedly come across the quantifiers: \textquotesingle{}for all\textquotesingle{} (or {\forall}) and \textquotesingle{}exists\textquotesingle{} (or {\exists}). They \textquotesingle{}quantify\textquotesingle{} whatever comes after them: for example, {$\exists x$} means that whatever follows is true for at least one value of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {$\forall x$} means that what follows is true for every possible value of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you can imagine. For example, {$\forall x, \, x^2 \geq 0$} and {$\exists x, \, x^3 = 27$}.

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword quantifies {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape types}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in a similar way. We would rewrite {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s type as follows:

\HaskellExampleTemplate{Explicitly quantifying the type variables}{\\

\TemplateSpaceIndent{ {}map {}:: {}forall {}a {}b. {}(a {}-{}>{} {}b) {}-{}>{} {}{[}a{]} {}-{}>{} {}{[}b{]}}}

So we see that for any combination of types {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we can imagine, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (a -{}>{} b) -{}>{} {[}a{]} -{}>{} {[}b{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For example, we might choose {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a = Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b = String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Then it\textquotesingle{}s valid to say that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Int -{}>{} String) -{}>{} {[}Int{]} -{}>{} {[}String{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Here we are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape instantiating}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the general type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a more specific type.

However, in Haskell, any introduction of a lowercase type parameter implicitly begins with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword, so those two previous type declarations for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are equivalent, as are the declarations below:

\HaskellExampleTemplate{Two equivalent type statements}{\\

\TemplateSpaceIndent{ {}id {}:: {}a {}-{}>{} {}a \newline{}
 {}id {}:: {}forall {}a {}. {}a {}-{}>{} {}a}}

What makes life really interesting and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so useful is that you can apply additional constraints on the type variables it introduces. Such constraints, {$P(x)$}, serve to guarantee certain properties of the type variable, {x}, as a kind of ad-{}hoc interface restriction, (similar to {$\exists x, P(x)$} or {$\forall x, P(x)$} stipulations).

Let\textquotesingle{}s dive right into the deep end of this by seeing an example of the power of existential types in action.
\section{Example: heterogeneous lists}
\label{433}
The premise behind Haskell\textquotesingle{}s type class system is grouping types that all share a common property. So if you know a type that is a member of some class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily C}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you know certain things about that type. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a member of class {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Eq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so we know that elements of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be compared for equality.

Suppose we have a group of values. We don\textquotesingle{}t know if they are all the same type, but we do know they are all members of some class (and, by extension, that all the values have a certain property). It might be useful to throw all these values into a list. We can\textquotesingle{}t do this normally because lists elements must be of the same type (homogeneous with respect to types). However, existential types allow us to loosen this requirement by defining a \textquotesingle{}type hider\textquotesingle{} or \textquotesingle{}type box\textquotesingle{}:

\HaskellExampleTemplate{Constructing a heterogeneous list}{\TemplatePreformat{ \newline{}
 {}data {}ShowBox {}= {}forall {}s. {}Show {}s {}=>{} {}SB {}s \newline{}
 {} \newline{}
 {}heteroList {}:: {}{[}ShowBox{]} \newline{}
 {}heteroList {}= {}{[}SB {}(), {}SB {}5, {}SB {}True{]} \newline{}
}}

We won\textquotesingle{}t explain precisely what we mean by that data type definition, but its meaning should be clear to your intuition. The important thing is that we\textquotesingle{}re calling the constructor on three values of different types, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}SB (), SB 5, SB True{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, yet we are able to place them all into a singe list, so we must somehow have the same type for each one. Essentially, yes. This is because our use of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword gives our constructor the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SB :: forall s. Show s =>{} s -{}>{} ShowBox}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If we were now writing a function to which we intend to pass {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily heteroList}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we couldn\textquotesingle{}t apply a function such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the values inside the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SB}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because their type might not be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But we do know something about each of the elements: they can be converted to a string via {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In fact, that\textquotesingle{}s pretty much the only thing we know about them.

\HaskellExampleTemplate{Using our heterogeneous list}{\TemplatePreformat{ \newline{}
 {}instance {}Show {}ShowBox {}where \newline{}
 {} {}show {}(SB {}s) {}= {}show {}s {} {} {} {} {} {} {} {}-{}-{} {}(*) {}see {}the {}comment {}in {}the {}text {}below \newline{}
 {} \newline{}
 {}f {}:: {}{[}ShowBox{]} {}-{}>{} {}IO {}() \newline{}
 {}f {}xs {}= {}mapM_ {}print {}xs \newline{}
 {} \newline{}
 {}main {}= {}f {}heteroList \newline{}
}}

Let\textquotesingle{}s expand on this a bit more. In the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ShowBox}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – the line marked with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*) see the comment in the text below}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} – we don\textquotesingle{}t know the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But as we mentioned, we {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} know that the type is an instance of Show due to the constraint on the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SB}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor. Therefore, it\textquotesingle{}s legal to use the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as seen in the right-{}hand side of the function definition.

As for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, recall the type of print:

\HaskellExampleTemplate{Types of the functions involved}{\TemplatePreformat{ \newline{}
 {}print {}:: {}Show {}s {}=>{} {}s {}-{}>{} {}IO {}() {}-{}-{} {}print {}x {}= {}putStrLn {}(show {}x) \newline{}
 {}mapM_ {}:: {}(a {}-{}>{} {}m {}b) {}-{}>{} {}{[}a{]} {}-{}>{} {}m {}() \newline{}
 {}mapM_ {}print {}:: {}Show {}s {}=>{} {}{[}s{]} {}-{}>{} {}IO {}() \newline{}
}}

As we just declared {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ShowBox}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can print the values in the list.
\section{A Further Explanation}
\label{434}
One way to think about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is to think about types as a set of possible values. For example, Bool is the set \{True, False, {\mbox{\bot}}\} (remember that bottom, {\mbox{\bot}}, is a member of every type!), Integer is the set of integers (and bottom), String is the set of all possible strings (and bottom), and so on. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} serves as a way to assert a commonality or {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape intersection}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the specified types (i.e. sets of values). For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the intersection of all types. This subset turns out to be the set whose sole element is bottom, \{{\mbox{\bot}}\}, since it is an implicit value in every type. That is, the type whose only available value is bottom. However, since every Haskell type includes bottom, \{{\mbox{\bot}}\}, this quantification in fact stipulates all Haskell types. However, the only permissible operations on it are those available to a type whose only element is bottom.

A few more examples:

\begin{myenumerate}
\item{} The list, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}forall a. a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is the type of a list whose elements all have the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, i.e. a list of bottoms.
\item{} The list, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}forall a. Show a =>{} a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is the type of a list whose elements all have the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. Show a =>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The Show class constraint requires the possible types to also be a member of the class, Show. However, {\mbox{\bot}} is still the only value common to all these types, so this too is a list of bottoms.
\item{} The list, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}forall a. Num a =>{} a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, requires each element to be a member of the class, Num. Consequently, the possible values include numeric literals, which have the specific type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. Num a =>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as well as bottom.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the type of the list whose elements all have the same type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Since we cannot presume any particular type at all, this too is a list of bottoms.
\end{myenumerate}

We see that most intersections over types just lead to bottoms because types generally don\textquotesingle{}t have any values in common and so presumptions cannot be made about a union of their values.

However, recall that in the last section, we developed a heterogeneous list using a \textquotesingle{}type hider\textquotesingle{}. This \textquotesingle{}type hider\textquotesingle{} functions as a wrapper type which guarantees certain facilities by implying a predicate or constraint on the permissible types. In that case it was that they must be a member of the type class, Show. In general, that seems to be the purpose of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, to impose type constraint on the permissible types within a type declaration and thereby guaranteeing certain facilities with such types.

Let\textquotesingle{}s declare one.

\HaskellExampleTemplate{An existential datatype}{\TemplatePreformat{ \newline{}
 {}data {}T {}= {}forall {}a. {}MkT {}a \newline{}
}}

This means that:

\HaskellExampleTemplate{This defines a family of constructors for T}{\\

\TemplateSpaceIndent{ {}MkT {}:: {}forall {}a. {}(a {}-{}>{} {}T)}}

So we can pass any type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we want to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MkT}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and it will create a T. So what happens when we deconstruct a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} value with pattern matching...?

\HaskellExampleTemplate{Pattern matching on our existential constructor}{\TemplatePreformat{ \newline{}
 {}foo {}(MkT {}x) {}= {}... {}-{}-{} {}what {}is {}the {}type {}of {}x? \newline{}
}}

As we\textquotesingle{}ve just stated, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} could be of any type. That means it\textquotesingle{}s a member of some arbitrary type, so has the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In other words the set whose only available value is bottom, \&prep;.

However, we can make a heterogeneous list:

\HaskellExampleTemplate{Constructing the hetereogeneous list}{\TemplatePreformat{ \newline{}
 {}heteroList {}= {}{[}MkT {}5, {}MkT {}(), {}MkT {}True, {}MkT {}map{]} \newline{}
}}

Of course, when we pattern match on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily heteroList}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we cannot presume any features about its elements\myfootnote{However, we can apply them to functions whose type is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. a -{}>{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape R}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for some arbitrary {\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape R}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as these accept values of any type as a parameter. Examples of such functions: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily seq}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So technically, we can\textquotesingle{}t do anything {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape useful}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with its elements, except reduce them to WHNF.because all we know is that they have some arbitrary type. However, if we introduce class constraints:

\HaskellExampleTemplate{A new existential data type, with a class constraint}{\TemplatePreformat{ \newline{}
 {}data {}T\textquotesingle{} {}= {}forall {}a. {}Show {}a {}=>{} {}MkT\textquotesingle{} {}a \newline{}
}}

The class constraint serves to limit the types we are intersecting over, such that we now have values inside a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which are elements of some arbitrary type {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape that are members of Show}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The implication of this is that we can apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} upon deconstruction. It doesn\textquotesingle{}t matter exactly which type it turns out to be.

\HaskellExampleTemplate{Using our new heterogenous setup}{\TemplatePreformat{ \newline{}
 {}heteroList\textquotesingle{} {}= {}{[}MkT\textquotesingle{} {}5, {}MkT\textquotesingle{} {}(), {}MkT\textquotesingle{} {}True, {}MkT\textquotesingle{} {}\symbol{34}Sartre\symbol{34}{]} \newline{}
 {}main {}= {}mapM_ {}(\textbackslash{}(MkT\textquotesingle{} {}x) {}-{}>{} {}print {}x) {}heteroList\textquotesingle{} \newline{}
 {} \newline{}
 {}\{-{} {}prints: \newline{}
 {}5 \newline{}
 {}() \newline{}
 {}True \newline{}
 {}\symbol{34}Sartre\symbol{34} \newline{}
 {}-{}\} \newline{}
}}

To summaries, the interaction of the universal quantifier with data types produces a qualified subset of types guaranteeing certain facilities as described by one or more class constraints.
\section{Example: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{435}
One monad that you may not have come across so far is the ST monad. This is essentially a more powerful version of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily State}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad: it has a much more complicated structure and involves some more advanced topics. It was originally written to provide Haskell with IO. As we mentioned in the \mylref{221}{../Understanding monads/} chapter, IO is basically just a State monad with an environment of all the information about the real world. In fact, inside GHC at least, ST is used, and the environment is a type called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily RealWorld}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

To get out of the State monad, you can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runState}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The analogous function for ST is called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and it has a rather particular type:

\HaskellExampleTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function}{\\

\TemplateSpaceIndent{ {}runST {}:: {}forall {}a. {}(forall {}s. {}ST {}s {}a) {}-{}>{} {}a}}

This is actually an example of a more complicated language feature called rank-{}2 polymorphism, which we don\textquotesingle{}t go into in detail here. It\textquotesingle{}s important to notice that there is no parameter for the initial state. Indeed, ST uses a different notion of state to State; while State allows you to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily put}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the current state, ST provides an interface to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape references}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You create references, which have type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily STRef}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newSTRef :: a -{}>{} ST s (STRef s a)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, providing an initial value, then you can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily readSTRef :: STRef s a -{}>{} ST s a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily writeSTRef :: STRef s a -{}>{} a -{}>{} ST s ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to manipulate them. As such, the internal environment of a ST computation is not one specific value, but a mapping from references to values. Therefore, you don\textquotesingle{}t need to provide an initial state to runST, as the initial state is just the empty mapping containing no references.

However, things aren\textquotesingle{}t quite as simple as this. What stops you creating a reference in one ST computation, then using it in another? We don\textquotesingle{}t want to allow this because (for reasons of thread-{}safety) no ST computation should be allowed to assume that the initial internal environment contains any specific references. More concretely, we want the following code to be invalid:

\HaskellExampleTemplate{Bad ST code}{\TemplatePreformat{ \newline{}
 {}let {}v {}= {}runST {}(newSTRef {}True) \newline{}
 {}in {}runST {}(readSTRef {}v) \newline{}
}}

What would prevent this? The effect of the rank-{}2 polymorphism in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s type is to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape constrain the scope of the type variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape s}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to be within the first parameter. In other words, if the type variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} appears in the first parameter it cannot also appear in the second. Let\textquotesingle{}s take a look at how exactly this is done. Say we have some code like the following:

\HaskellExampleTemplate{Briefer bad ST code}{\\

\TemplateSpaceIndent{ {}... {}runST {}(newSTRef {}True) {}...}}

The compiler tries to fit the types together:

\HaskellExampleTemplate{The compiler\textquotesingle{}s typechecking stage}{\\

\TemplateSpaceIndent{ {}newSTRef {}True {}:: {}forall {}s. {}ST {}s {}(STRef {}s {}Bool) \newline{}
 {}runST {}:: {}forall {}a. {}(forall {}s. {}ST {}s {}a) {}-{}>{} {}a \newline{}
 {}together, {}forall {}a. {}(forall {}s. {}ST {}s {}(STRef {}s {}Bool)) {}-{}>{} {}STRef {}s {}Bool}}

The importance of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the first bracket is that we can change the name of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That is, we could write:

\HaskellExampleTemplate{A type mismatch!}{\\

\TemplateSpaceIndent{ {}together, {}forall {}a. {}(forall {}s\textquotesingle{}. {}ST {}s\textquotesingle{} {}(STRef {}s\textquotesingle{} {}Bool)) {}-{}>{} {}STRef {}s {}Bool}}

This makes sense: in mathematics, saying {$\forall x. x > 5$} is precisely the same as saying {$\forall y. y > 5$}; you\textquotesingle{}re just giving the variable a different label. However, we have a problem with our above code. Notice that as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} scope over the return type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we don\textquotesingle{}t rename the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} there as well. But suddenly, we\textquotesingle{}ve got a type mismatch! The result type of the ST computation in the first parameter must match the result type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but now it doesn\textquotesingle{}t!

The key feature of the existential is that it allows the compiler to generalise the type of the state in the first parameter, and so the result type cannot depend on it. This neatly sidesteps our dependence problems, and \textquotesingle{}compartmentalises\textquotesingle{} each call to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runST}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into its own little heap, with references not being able to be shared between different calls.
\section{Quantification as a primitive}
\label{436}
Universal quantification is useful for defining data types that aren\textquotesingle{}t already defined.
Suppose there was no such thing as pairs built into haskell.
Quantification could be used to define them.\\

\TemplateSpaceIndent{ {}\{-{}\# {}LANGUAGE {}ExistentialQuantification, {}RankNTypes {}\#-{}\} \newline{}
 {} \newline{}
 {}newtype {}Pair {}a {}b {}= {}Pair {}(forall {}c. {}(a {}-{}>{} {}b {}-{}>{} {}c) {}-{}>{} {}c) \newline{}
 {} \newline{}
 {}makePair {}:: {}a {}-{}>{} {}b {}-{}>{} {}Pair {}a {}b \newline{}
 {}makePair {}a {}b {}= {}Pair {}\${}$\text{ }${}\textbackslash{}f$\text{ }${}-{}>{}$\text{ }${}f$\text{ }${}a$\text{ }${}b}

In GHCi:\\

\TemplateSpaceIndent{ {} {}λ>{} {}:bro \newline{}
 {} {}newtype {}Pair {}a {}b {}= {}Pair {}\{runPair {}:: {}forall {}c. {}(a {}-{}>{} {}b {}-{}>{} {}c) {}-{}>{} {}c\} \newline{}
 {} {}makePair {}:: {}a {}-{}>{} {}b {}-{}>{} {}Pair {}a {}b \newline{}
 {} {} \newline{}
 {} {}λ>{} {}let {}pair {}= {}makePair {}\symbol{34}a\symbol{34} {}\textquotesingle{}b\textquotesingle{} {} \newline{}
 {} {} \newline{}
 {} {}λ>{} {}:t {}pair \newline{}
 {} {}pair {}:: {}Pair {}{[}Char{]} {}Char \newline{}
 {} {} \newline{}
 {} {}λ>{} {}runPair {}pair {}(\textbackslash{}x {}y {}-{}>{} {}x) \newline{}
 {} {}\symbol{34}a\symbol{34} \newline{}
 {} {} \newline{}
 {} {}λ>{} {}runPair {}pair {}(\textbackslash{}x {}y {}-{}>{} {}y) \newline{}
 {} {}\textquotesingle{}b\textquotesingle{}}

\LaTeXNullTemplate{}
\section{Further reading}
\label{437}
\begin{myitemize}
\item{} \myhref{https://ocharles.org.uk/blog/guest-posts/2014-12-19-existential-quantification.html}{24 Days of GHC Extensions: Existential Quantification}
\item{} GHC\textquotesingle{}s user guide contains \myhref{http://haskell.org/ghc/docs/latest/html/users_guide/data-type-extensions.html\#existential-quantification}{useful information} on existentials, including the various limitations placed on them (which you should know about).
\item{} {\itshape \myhref{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.3299}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Lazy Functional State Threads}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape , by Simon Peyton-{}Jones and John Launchbury, is a paper which explains more fully the ideas behind ST.}
\end{myitemize}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Advanced type classes}

\myminitoc
\label{438}

\label{439}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

Type classes may seem innocuous, but research on the subject has resulted in several advancements and generalisations which make them a very powerful tool.
\section{Multi-{}parameter type classes}
\label{440}
Multi-{}parameter type classes are a generalisation of the single parameter \myhref{https://en.wikibooks.org/wiki/Classes\%20and\%20types}{type classes}, and are supported by some Haskell implementations.

Suppose we wanted to create a \textquotesingle{}Collection\textquotesingle{} type class that could be used with a variety of concrete data types, and supports two operations -{}-{} \textquotesingle{}insert\textquotesingle{} for adding elements, and \textquotesingle{}member\textquotesingle{} for testing membership. A first attempt might look like this:

\HaskellExampleTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Collection}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class (wrong)}{\TemplatePreformat{ \newline{}
 {}class {}Collection {}c {}where \newline{}
 {} {} {} {} {}insert {}:: {}c {}-{}>{} {}e {}-{}>{} {}c \newline{}
 {} {} {} {} {}member {}:: {}c {}-{}>{} {}e {}-{}>{} {}Bool \newline{}
 {} \newline{}
 {}-{}-{} {}Make {}lists {}an {}instance {}of {}Collection: \newline{}
 {}instance {}Collection {}{[}a{]} {}where \newline{}
 {} {} {} {} {}insert {}xs {}x {}= {}x:xs \newline{}
 {} {} {} {} {}member {}= {}flip {}elem \newline{}
}}

This won\textquotesingle{}t compile, however. The problem is that the \textquotesingle{}e\textquotesingle{} type variable in the Collection operations comes from nowhere -{}-{} there is nothing in the type of an instance of Collection that will tell us what the \textquotesingle{}e\textquotesingle{} actually is, so we can never define implementations of these methods. Multi-{}parameter type classes solve this by allowing us to put \textquotesingle{}e\textquotesingle{} into the type of the class. Here is an example that compiles and can be used:

\HaskellExampleTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Collection}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type class (right)}{\TemplatePreformat{ \newline{}
 {}\{-{}\# {}LANGUAGE {}FlexibleInstances {}\#-{}\} \newline{}
 {}\{-{}\# {}LANGUAGE {}MultiParamTypeClasses {}\#-{}\} \newline{}
 {}class {}Eq {}e {}=>{} {}Collection {}c {}e {}where \newline{}
 {} {} {} {} {}insert {}:: {}c {}-{}>{} {}e {}-{}>{} {}c \newline{}
 {} {} {} {} {}member {}:: {}c {}-{}>{} {}e {}-{}>{} {}Bool \newline{}
 {} \newline{}
 {}instance {}Eq {}a {}=>{} {}Collection {}{[}a{]} {}a {}where \newline{}
 {} {} {} {} {}insert {}= {}flip {}(:) \newline{}
 {} {} {} {} {}member {}= {}flip {}elem \newline{}
}}
\section{Functional dependencies}
\label{441}

A problem with the above example is that, in this case, we have extra information that the compiler doesn\textquotesingle{}t know, which can lead to false ambiguities and over-{}generalised function signatures. In this case, we can see intuitively that the type of the collection will always determine the type of the element it contains -{} so if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Hashmap a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (The reverse is not true: many different collection types can hold the same element type, so knowing the element type was e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, would not tell you the collection type).

In order to tell the compiler this information, we add a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries functional dependency}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, changing the class declaration to

\HaskellExampleTemplate{A functional dependency}{\TemplatePreformat{ \newline{}
 {}class {}Eq {}e {}=>{} {}Collection {}c {}e {}| {}c {}-{}>{} {}e {}where {}... \newline{}
}}

A functional dependency is a constraint that we can place on type class parameters. Here, the extra {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily | c -{}>{} e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should be read \textquotesingle{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uniquely identifies {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily e}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}, meaning for a given {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there will only be one {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily e}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You can have more than one functional dependency in a class -{}-{} for example you could have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c -{}>{} e, e -{}>{} c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the above case. And you can have more than two parameters in multi-{}parameter classes.
\subsection{Examples}
\label{442}
\subsubsection{Matrices and vectors}
\label{443}
Suppose you want to implement some code to perform simple linear algebra:

\HaskellExampleTemplate{The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Vector}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Matrix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} datatypes}{\TemplatePreformat{ \newline{}
 {}data {}Vector {}= {}Vector {}Int {}Int {}deriving {}(Eq, {}Show) \newline{}
 {}data {}Matrix {}= {}Matrix {}Vector {}Vector {}deriving {}(Eq, {}Show) \newline{}
}}

You want these to behave as much like numbers as possible. So you might start by overloading Haskell\textquotesingle{}s Num class:

\HaskellExampleTemplate{Instance declarations for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Vector}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Matrix}}{\TemplatePreformat{ \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}instance {}Num {}Vector {}where \newline{}
 {} {}Vector {}a1 {}b1 {}+ {}Vector {}a2 {}b2 {}= {}Vector {}(a1+a2) {}(b1+b2) \newline{}
 {} {}Vector {}a1 {}b1 {}-{} {}Vector {}a2 {}b2 {}= {}Vector {}(a1-{}a2) {}(b1-{}b2) \newline{}
 {} {}\{-{} {}... {}and {}so {}on {}... {}-{}\} \newline{}
 {} \newline{}
instance {}Num {}Matrix {}where \newline{}
 {} {}Matrix {}a1 {}b1 {}+ {}Matrix {}a2 {}b2 {}= {}Matrix {}(a1+a2) {}(b1+b2) \newline{}
 {} {}Matrix {}a1 {}b1 {}-{} {}Matrix {}a2 {}b2 {}= {}Matrix {}(a1-{}a2) {}(b1-{}b2) \newline{}
 {} {}\{-{} {}... {}and {}so {}on {}... {}-{}\} \newline{}
}}

The problem comes when you want to start multiplying quantities. You really need a multiplication function which overloads to different types:

\HaskellExampleTemplate{What we need}{\TemplatePreformat{ \newline{}
(*) {}:: {}Matrix {}-{}>{} {}Matrix {}-{}>{} {}Matrix \newline{}
(*) {}:: {}Matrix {}-{}>{} {}Vector {}-{}>{} {}Vector \newline{}
(*) {}:: {}Matrix {}-{}>{} {}Int {}-{}>{} {}Matrix \newline{}
(*) {}:: {}Int {}-{}>{} {}Matrix {}-{}>{} {}Matrix \newline{}
\{-{} {}... {}and {}so {}on {}... {}-{}\} \newline{}
}}

How do we specify a type class which allows all these possibilities?

We could try this:

\HaskellExampleTemplate{An ineffective attempt (too general)}{\TemplatePreformat{ \newline{}
class {}Mult {}a {}b {}c {}where \newline{}
 {} {}(*) {}:: {}a {}-{}>{} {}b {}-{}>{} {}c \newline{}
 {} \newline{}
instance {}Mult {}Matrix {}Matrix {}Matrix {}where \newline{}
 {} {}\{-{} {}... {}-{}\} \newline{}
 {} \newline{}
instance {}Mult {}Matrix {}Vector {}Vector {}where \newline{}
 {} {}\{-{} {}... {}-{}\} \newline{}
}}

That, however, isn\textquotesingle{}t really what we want. As it stands, even a simple expression like this has an ambiguous type unless you supply an additional type declaration on the intermediate expression:

\HaskellExampleTemplate{Ambiguities lead to more verbose code}{\TemplatePreformat{ \newline{}
m1, {}m2, {}m3 {}:: {}Matrix \newline{}
(m1 {}* {}m2) {}* {}m3 {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}type {}error; {}type {}of {}(m1*m2) {}is {}ambiguous \newline{}
(m1 {}* {}m2) {}:: {}Matrix {}* {}m3 {} {} {} {}-{}-{} {}this {}is {}ok \newline{}
}}

After all, nothing is stopping someone from coming along later and adding another instance:

\HaskellExampleTemplate{A nonsensical instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Mult}}{\TemplatePreformat{ \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}instance {}Mult {}Matrix {}Matrix {}(Maybe {}Char) {}where \newline{}
 {} {}\{-{} {}whatever {}-{}\} \newline{}
}}

The problem is that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} shouldn\textquotesingle{}t really be a free type variable. When you know the types of the things that you\textquotesingle{}re multiplying, the result type should be determined from that information alone.

You can express this by specifying a functional dependency:

\HaskellExampleTemplate{The correct definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Mult}}{\TemplatePreformat{ \newline{}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}class {}Mult {}a {}b {}c {}| {}a {}b {}-{}>{} {}c {}where \newline{}
 {} {}(*) {}:: {}a {}-{}>{} {}b {}-{}>{} {}c \newline{}
}}

This tells Haskell that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is uniquely determined from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Phantom types}

\myminitoc
\label{444}

\label{445}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

Phantom types are a way to embed a language with a stronger type system than Haskell\textquotesingle{}s.
\section{Phantom types}
\label{446}
An ordinary type
\\

\TemplateSpaceIndent{ {}data {}T {}= {}TI {}Int {}| {}TS {}String \newline{}
 {} \newline{}
 {}plus {}:: {}T {}-{}>{} {}T {}-{}>{} {}T \newline{}
 {}concat {}:: {}T {}-{}>{} {}T {}-{}>{} {}T}

its phantom type version
\\

\TemplateSpaceIndent{ {}data {}T {}a {}= {}TI {}Int {}| {}TS {}String}

Nothing\textquotesingle{}s changed -{} just a new argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that we don\textquotesingle{}t touch. But magic!\\

\TemplateSpaceIndent{ {} \newline{}
 {}plus {}:: {}T {}Int {}-{}>{} {}T {}Int {}-{}>{} {}T {}Int \newline{}
 {}concat {}:: {}T {}String {}-{}>{} {}T {}String {}-{}>{} {}T {}String}

Now we can enforce a little bit more!

This is useful if you want to increase the type-{}safety of your code, but not impose additional runtime overhead:
\\

\TemplateSpaceIndent{ {}-{}-{} {}Peano {}numbers {}at {}the {}type {}level. \newline{}
 {}data {}Zero {}= {}Zero \newline{}
 {}data {}Succ {}a {}= {}Succ {}a \newline{}
 {}-{}-{} {}Example: {}3 {}can {}be {}modeled {}as {}the {}type \newline{}
 {}-{}-{} {}Succ {}(Succ {}(Succ {}Zero))) \newline{}
 {} \newline{}
 {}type {}D2 {}= {}Succ {}(Succ {}Zero) \newline{}
 {}type {}D3 {}= {}Succ {}(Succ {}(Succ {}Zero)) \newline{}
 {} \newline{}
 {}data {}Vector {}n {}a {}= {}Vector {}{[}a{]} {}deriving {}(Eq, {}Show) \newline{}
 {} \newline{}
 {}vector2d {}:: {}Vector {}D2 {}Int \newline{}
 {}vector2d {}= {}Vector {}{[}1,2{]} \newline{}
 {} \newline{}
 {}vector3d {}:: {}Vector {}D3 {}Int \newline{}
 {}vector3d {}= {}Vector {}{[}1,2,3{]} \newline{}
 {} \newline{}
 {}-{}-{} {}vector2d {}== {}vector3d {}raises {}a {}type {}error \newline{}
 {}-{}-{} {}at {}compile-{}time: \newline{}
 {} \newline{}
 {}-{}-{} {} {} {}Couldn\textquotesingle{}t {}match {}expected {}type {}`Zero\textquotesingle{} \newline{}
 {}-{}-{} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}with {}actual {}type {}`Succ {}Zero\textquotesingle{} \newline{}
 {}-{}-{} {} {} {}Expected {}type: {}Vector {}D2 {}Int \newline{}
 {}-{}-{} {} {} {} {} {}Actual {}type: {}Vector {}D3 {}Int \newline{}
 {}-{}-{} {} {} {}In {}the {}second {}argument {}of {}`(==)\textquotesingle{}, {}namely {}`vector3d\textquotesingle{} \newline{}
 {}-{}-{} {} {} {}In {}the {}expression: {}vector2d {}== {}vector3d \newline{}
 {} \newline{}
 {}-{}-{} {}while {}vector2d {}== {}Vector {}{[}1,2,3{]} {}works}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Generalised algebraic data-{}types (GADT)}

\myminitoc
\label{447}

\label{448}
\LaTeXNullTemplate{}
\myhref{https://en.wikipedia.org/wiki/Generalized\%20algebraic\%20data\%20type}{w:Generalized algebraic data type}
\LaTeXNullTemplate{}
\section{Introduction}
\label{449}
Generalized algebraic datatypes, or simply GADTs, are a generalization of the algebraic data types that you are familiar with. Basically, they allow you to explicitly write down the types of the constructors. In this chapter, you\textquotesingle{}ll learn why this is useful and how to declare your own.

We begin with an example of building a simple embedded domain specific language (EDSL) for simple arithmetical expressions, which is put on a sounder footing with GADTs. This is followed by a review of the syntax for GADTs, with simpler illustrations, and a different application to construct a safe list type for which the equivalent of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} fails to typecheck and thus does not give the usual runtime error: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily *** Exception: Prelude.head: empty list}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Understanding GADTs}
\label{450}
So, what are GADTs and what are they useful for? GADTs are mainly used to implement domain specific languages, and so this section will introduce them with a corresponding example.
\subsection{Arithmetic expressions}
\label{451}
Let\textquotesingle{}s consider a small language for arithmetic expressions, given by the data type

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{I}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}integer\ensuremath{\text{ }}constants}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Add}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}add\ensuremath{\text{ }}two\ensuremath{\text{ }}expressions}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Mul}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}multiply\ensuremath{\text{ }}two\ensuremath{\text{ }}expressions}\newline
\end{Highlighting}
\end{Shaded}

In other words, this data type corresponds to the abstract syntax tree, an arithmetic term like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (5+1)*7}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be represented as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (I 5 `Add` I 1) `Mul` I 7 :: Expr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Given the abstract syntax tree, we would like to do something with it; we want to compile it, optimize it and so on. For starters, let\textquotesingle{}s write an evaluation function that takes an expression and calculates the integer value it represents. The definition is straightforward:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{eval\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{I}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{Add}\ensuremath{\text{ }}\NormalTok{e1\ensuremath{\text{ }}e2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e1\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e2}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{Mul}\ensuremath{\text{ }}\NormalTok{e1\ensuremath{\text{ }}e2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e1\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e2}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Extending the language}
\label{452}
Now, imagine that we would like to extend our language with other types than just integers. For instance, let\textquotesingle{}s say we want to represent equality tests, so we need booleans as well. We augment the `Expr` type to become

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{I}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{B}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}boolean\ensuremath{\text{ }}constants}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Add}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Mul}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}equality\ensuremath{\text{ }}test}\newline
\end{Highlighting}
\end{Shaded}

The term {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5+1 == 7}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would be represented as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (I 5 `Add` I 1) `Eq` I 7}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

As before, we want to write a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily eval}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to evaluate expressions. But this time, expressions can now represent either integers or booleans and we have to capture that in the return type

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{eval\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Either}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\end{Highlighting}
\end{Shaded}

The first two cases are straightforward

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{I}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{n}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{B}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

but now we get in trouble. We would like to write

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{Add}\ensuremath{\text{ }}\NormalTok{e1\ensuremath{\text{ }}e2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e1\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e2\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}???}\newline
\end{Highlighting}
\end{Shaded}

but this doesn\textquotesingle{}t type check: the addition function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily +}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expects two integer arguments, but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily eval e1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either Int Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and we\textquotesingle{}d have to extract the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from that.

Even worse, what happens if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily e1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} actually represents a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape boolean}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? The following is a valid expression

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{B}\ensuremath{\text{ }}\DataTypeTok{True}\ensuremath{\text{ }}\OtherTok{`Add`}\ensuremath{\text{ }}\DataTypeTok{I}\ensuremath{\text{ }}\DecValTok{5}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\newline
\end{Highlighting}
\end{Shaded}

but clearly, it doesn\textquotesingle{}t make any sense; we can\textquotesingle{}t add booleans to integers! In other words, evaluation may return integers or booleans, but it may also {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape fail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because the expression makes no sense. We have to incorporate that in the return type:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{eval\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Either}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Bool}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Now, we could write this function just fine, but that would still be unsatisfactory, because what we {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape really}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} want to do is to have Haskell\textquotesingle{}s type system rule out any invalid expressions; we don\textquotesingle{}t want to check types ourselves while deconstructing the abstract syntax tree.

Exercise: Despite our goal, it may still be instructional to implement the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily eval}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function; do this.

Starting point:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{I}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{B}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}boolean\ensuremath{\text{ }}constants}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Add}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Mul}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}equality\ensuremath{\text{ }}test}\newline
\ensuremath{\text{ }}\newline
\OtherTok{eval\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Maybe}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Either}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\DataTypeTok{Bool}\NormalTok{)}\newline
\CommentTok{--\ensuremath{\text{ }}Your\ensuremath{\text{ }}implementation\ensuremath{\text{ }}here.}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Phantom types}
\label{453}
The so-{}called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape phantom types}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are the first step towards our goal. The technique is to augment the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Expr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a type variable, so that it becomes

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{I}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{B}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Add}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}(}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Mul}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}(}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}(}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a)}\newline
\end{Highlighting}
\end{Shaded}

Note that an expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Expr a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not contain a value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at all; that\textquotesingle{}s why {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is called a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape phantom type}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it\textquotesingle{}s just a dummy variable. Compare that with, say, a list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which does contain a bunch of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s.

The key idea is that we\textquotesingle{}re going to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to track the type of the expression for us. Instead of making the constructor

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{Add}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

available to users of our small language, we are only going to provide a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape smart constructor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a more restricted type

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{add\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{add\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Add}\newline
\end{Highlighting}
\end{Shaded}

The implementation is the same, but the types are different. Doing this with the other constructors as well,

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{i\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{i\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{I}\newline
\OtherTok{b\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{B}\newline
\end{Highlighting}
\end{Shaded}

the previously problematic expression

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{b\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\OtherTok{`add`}\ensuremath{\text{ }}\NormalTok{i\ensuremath{\text{ }}}\DecValTok{5}\newline
\end{Highlighting}
\end{Shaded}

no longer type checks! After all, the first arguments has the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Expr Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} while {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily add}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expects an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Expr Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In other words, the phantom type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} marks the intended type of the expression. By only exporting the smart constructors, the user cannot create expressions with incorrect types.

As before, we want to implement an evaluation function. With our new marker {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we might hope to give it the type

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{eval\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

and implement the first case like this

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{I}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n}\newline
\end{Highlighting}
\end{Shaded}

But alas, this does not work: how would the compiler know that encountering the constructor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily I}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a = Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Granted, this will be case for all the expression that were created by users of our language because they are only allowed to use the smart constructors. But internally, an expression like

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{I}\ensuremath{\text{ }}\DecValTok{5}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

is still valid. In fact, as you can see, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t even have to be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it could be anything.

What we need is a way to restrict the return types of the constructors themselves, and that\textquotesingle{}s exactly what generalized data types do.
\subsection{GADTs}
\label{454}
The obvious notation for restricting the type of a constructor is to write down its type, and that\textquotesingle{}s exactly how GADTs are defined:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{I}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{B}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Add}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Mul}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Eq}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\end{Highlighting}
\end{Shaded}

In other words, we simply list the type signatures of all the constructors. In particular, the marker type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is specialised to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} according to our needs, just like we would have done with smart constructors.

And the great thing about GADTs is that we now {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape can}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} implement an evaluation function that takes advantage of the type marker:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{eval\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Expr}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{I}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{B}\ensuremath{\text{ }}\NormalTok{b)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{Add}\ensuremath{\text{ }}\NormalTok{e1\ensuremath{\text{ }}e2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e1\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e2}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{Mul}\ensuremath{\text{ }}\NormalTok{e1\ensuremath{\text{ }}e2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e1\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e2}\newline
\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{Eq}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{e1\ensuremath{\text{ }}e2)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e1\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{eval\ensuremath{\text{ }}e2}\newline
\end{Highlighting}
\end{Shaded}

In particular, in the first case

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{eval\ensuremath{\text{ }}(}\DataTypeTok{I}\ensuremath{\text{ }}\NormalTok{n)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{n}\newline
\end{Highlighting}
\end{Shaded}

the compiler is now able infer that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a=Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when we encounter a constructor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily I}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and that it is legal to return the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n :: Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; similarly for the other cases.

To summarise, GADTs allows us to restrict the return types of constructors and thus enable us to take advantage of Haskell\textquotesingle{}s type system for our domain specific languages. Thus, we can implement more languages and their implementation becomes simpler.
\section{Summary}
\label{455}\subsection{Syntax}
\label{456}
Here a quick summary of how the syntax for declaring GADTs works.

First, consider the following ordinary algebraic datatypes: the familiar {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} types, and a simple tree type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily RoseTree}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

{\scalefont{0.39662}\begin{longtable}{>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Maybe}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}List}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Rose Tree}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}data {}Maybe {}a {}= {} {}\newline{} {} {} {} {}Nothing {}| {} {} {}\newline{} {} {} {} {}Just {}a {} {} {} {} {} {} {} {} {} {} {} {}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}data {}List {}a {}= {}\newline{} {} {} {} {}Nil {}| {} {}\newline{} {} {} {} {}Cons {}a {}(List {}a) {} {} {} {} {} {} {} {} {} {} {} {} {} {}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}data {}RoseTree {}a {}= {}\newline{} {} {} {} {} {}RoseTree {}a {}{[}RoseTree {}a{]} {} {} {} {} {} {} {} {} {} {}\newline{} {} {} {} {} {}}
\end{longtable}
}

Remember that the constructors introduced by these declarations can be used both for pattern matches to deconstruct values and as functions to construct values. ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nil}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are functions with \symbol{34}zero arguments\symbol{34}.) We can ask what the types of the latter are:

\begin{longtable}{>{\RaggedRight}p{0.25893\linewidth}>{\RaggedRight}p{0.32768\linewidth}>{\RaggedRight}p{0.32768\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Maybe}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}List}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Rose Tree}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplatePreformat{\newline{}>{} {}:t {}Nothing\newline{}Nothing {}:: {}Maybe {}a\newline{}>{} {}:t {}Just\newline{}Just {}:: {}a {}-{}>{} {}Maybe {}a {} {}\newline{}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplatePreformat{\newline{}>{} {}:t {}Nil\newline{}Nil {}:: {}List {}a\newline{}>{} {}:t {}Cons\newline{}Cons {}:: {}a {}-{}>{} {}List {}a {}-{}>{} {}List {}a {} {} {} {}\newline{}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplatePreformat{\newline{} {}\newline{}>{} {}:t {}RoseTree\newline{}RoseTree {}::\newline{} {} {} {}a {}-{}>{} {}{[}RoseTree {}a{]} {}-{}>{} {}RoseTree {}a {} {} {} {}\newline{} {}\newline{}}
\end{longtable}

It is clear that this type information about the constructors for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily RoseTree}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} respectively is equivalent to the information we gave to the compiler when declaring the datatype in the first place. In other words, it\textquotesingle{}s also conceivable to declare a datatype by simply listing the types of all of its constructors, and that\textquotesingle{}s exactly what the GADT syntax does:

{\scalefont{0.39662}\begin{longtable}{>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}>{\RaggedRight}p{0.30476\linewidth}}
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Maybe}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}List}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}Rose Tree}\\ \hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}data {}Maybe {}a {}where\newline{} {} {} {}Nothing {} {}:: {}Maybe {}a\newline{} {} {} {}Just {}:: {}a {}-{}>{} {}Maybe {}a}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}data {}List {}a {}where\newline{} {} {} {}Nil {} {}:: {}List {}a\newline{} {} {} {}Cons {}:: {}a {}-{}>{} {}List {}a {}-{}>{} {}List {}a}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}\TemplateSource{\newline{}data {}RoseTree {}a {}where {}\newline{} {} {} {}RoseTree {}::\newline{} {} {} {} {} {} {}a {}-{}>{} {} {}{[}RoseTree {}a{]} {}-{}>{} {}RoseTree {}a\newline{}}
\end{longtable}
}

This syntax is made available by the language option {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{-{}\#LANGUAGE GADTs \#-{}\}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It should be familiar to you in that it closely resembles the syntax of type class declarations. It\textquotesingle{}s also easy to remember if you already like to think of constructors as just being functions. Each constructor is just defined by a type signature.
\subsection{New possibilities}
\label{457}

Note that when we asked the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GHCi}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the types of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} it returned {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} Maybe a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the types. In these and the other cases, the type of the final output of the function associated with a constructor is the type we were initially defining -{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily List a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily RoseTree a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In general, in standard Haskell, the constructor functions for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as their final return type. If the new syntax were to be strictly equivalent to the old, we would have to place this restriction on its use for valid type declarations.

So what do GADTs add for us? The ability to control exactly what kind of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you return. With GADTs, a constructor for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is not obliged to return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; it can return any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo blah}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that you can think of. In the code sample below, for instance, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GadtedFoo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor returns a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GadtedFoo Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} even though it is for the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GadtedFoo x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\HaskellExampleTemplate{GADT gives you more control}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{FooInGadtClothing}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\DataTypeTok{MkFooInGadtClothing}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{FooInGadtClothing}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--which\ensuremath{\text{ }}is\ensuremath{\text{ }}no\ensuremath{\text{ }}different\ensuremath{\text{ }}from:\ensuremath{\text{ }}\ensuremath{\text{ }}data\ensuremath{\text{ }}Haskell98Foo\ensuremath{\text{ }}a\ensuremath{\text{ }}=\ensuremath{\text{ }}MkHaskell98Foo\ensuremath{\text{ }}a\ensuremath{\text{ }},}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--by\ensuremath{\text{ }}contrast,\ensuremath{\text{ }}consider:}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{TrueGadtFoo}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{MkTrueGadtFoo}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{TrueGadtFoo}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--This\ensuremath{\text{ }}has\ensuremath{\text{ }}no\ensuremath{\text{ }}Haskell\ensuremath{\text{ }}98\ensuremath{\text{ }}equivalent.}\newline
\end{Highlighting}
\end{Shaded}}

But note that you can only push the generalization so far... if the datatype you are declaring is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the constructor functions {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape must}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} return some kind of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foo}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or another. Returning anything else simply wouldn\textquotesingle{}t work

\HaskellExampleTemplate{Try this out. It doesn\textquotesingle{}t work}{\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Bar}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{BarNone}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bar}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}This\ensuremath{\text{ }}is\ensuremath{\text{ }}ok}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{MkFoo}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bar}\ensuremath{\text{ }}\DataTypeTok{Int}\CommentTok{--\ensuremath{\text{ }}This\ensuremath{\text{ }}will\ensuremath{\text{ }}not\ensuremath{\text{ }}typecheck}\newline
\end{Highlighting}
\end{Shaded}}
\section{Examples}
\label{458}\subsection{Safe Lists}
\label{459}

\begin{myquote}
\item{} {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Prerequisite:}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape We assume in this section that you know how a List tends to be represented in functional languages}
\item{} {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Note:}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape The examples in this section additionally require the extensions EmptyDataDecls and KindSignatures to be enabled}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

We\textquotesingle{}ve now gotten a glimpse of the extra control given to us by the GADT syntax. The only thing new is that you can control exactly what kind of data structure you return. Now, what can we use it for? Consider the humble Haskell list. What happens when you invoke {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? Haskell blows up. Have you ever wished you could have a magical version of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that only accepts lists with at least one element, lists on which it will never blow up?

To begin with, let\textquotesingle{}s define a new type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SafeList x y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The idea is to have something similar to normal Haskell lists {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}x{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but with a little extra information in the type. This extra information (the type variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) tells us whether or not the list is empty. Empty lists are represented as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SafeList x Empty}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, whereas non-{}empty lists are represented as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SafeList x NonEmpty}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}we\ensuremath{\text{ }}have\ensuremath{\text{ }}to\ensuremath{\text{ }}define\ensuremath{\text{ }}these\ensuremath{\text{ }}types}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Empty}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{NonEmpty}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}the\ensuremath{\text{ }}idea\ensuremath{\text{ }}is\ensuremath{\text{ }}that\ensuremath{\text{ }}you\ensuremath{\text{ }}can\ensuremath{\text{ }}have\ensuremath{\text{ }}either\ensuremath{\text{ }}}\newline
\CommentTok{--\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}SafeList\ensuremath{\text{ }}a\ensuremath{\text{ }}Empty}\newline
\CommentTok{--\ensuremath{\text{ }}or\ensuremath{\text{ }}SafeList\ensuremath{\text{ }}a\ensuremath{\text{ }}NonEmpty}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\KeywordTok{where}\newline
\CommentTok{--\ensuremath{\text{ }}to\ensuremath{\text{ }}be\ensuremath{\text{ }}implemented}\newline
\end{Highlighting}
\end{Shaded}

Since we have this extra information, we can now define a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeHead}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on only the non-{}empty lists! Calling {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeHead}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on an empty list would simply refuse to type-{}check.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{safeHead\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{NonEmpty}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

So now that we know what we want, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeHead}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, how do we actually go about getting it? The answer is GADT. The key is that we take advantage of the GADT feature to return two {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape different}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} list-{}of-{}a types, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SafeList a Empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nil}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SafeList a NonEmpty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cons}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nil}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{Empty}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Cons}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{NonEmpty}\newline
\end{Highlighting}
\end{Shaded}

This wouldn\textquotesingle{}t have been possible without GADT, because all of our constructors would have been required to return the same type of list; whereas with GADT we can now return different types of lists with different constructors. Anyway, let\textquotesingle{}s put this all together, along with the actual definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SafeHead}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\HaskellExampleTemplate{safe lists via GADT}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#LANGUAGE\ensuremath{\text{ }}GADTs,\ensuremath{\text{ }}EmptyDataDecls\ensuremath{\text{ }}#-\}}\newline
\CommentTok{--\ensuremath{\text{ }}(the\ensuremath{\text{ }}EmptyDataDecls\ensuremath{\text{ }}pragma\ensuremath{\text{ }}must\ensuremath{\text{ }}also\ensuremath{\text{ }}appear\ensuremath{\text{ }}at\ensuremath{\text{ }}the\ensuremath{\text{ }}very\ensuremath{\text{ }}top\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}module,}\newline
\CommentTok{--\ensuremath{\text{ }}in\ensuremath{\text{ }}order\ensuremath{\text{ }}to\ensuremath{\text{ }}allow\ensuremath{\text{ }}the\ensuremath{\text{ }}Empty\ensuremath{\text{ }}and\ensuremath{\text{ }}NonEmpty\ensuremath{\text{ }}datatype\ensuremath{\text{ }}declarations.)}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Empty}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{NonEmpty}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nil}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{Empty}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Cons}\OtherTok{::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{NonEmpty}\newline
\ensuremath{\text{ }}\newline
\OtherTok{safeHead\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{SafeList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{NonEmpty}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{safeHead\ensuremath{\text{ }}(}\DataTypeTok{Cons}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}_)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}}

Copy this listing into a file and load in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ghci -{}fglasgow-{}exts}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You should notice the following difference, calling {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeHead}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on a non-{}empty and an empty-{}list respectively:
\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeHead}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is... safe}{\TemplatePreformat{ \newline{}
Prelude {}Main>{} {}safeHead {}(Cons {}\symbol{34}hi\symbol{34} {}Nil) \newline{}
\symbol{34}hi\symbol{34} \newline{}
Prelude {}Main>{} {}safeHead {}Nil \newline{}
 {} \newline{}
<{}interactive>{}:1:9: \newline{}
 {} {} {} {}Couldn\textquotesingle{}t {}match {}`NonEmpty\textquotesingle{} {}against {}`Empty\textquotesingle{} \newline{}
 {} {} {} {} {} {}Expected {}type: {}SafeList {}a {}NonEmpty \newline{}
 {} {} {} {} {} {}Inferred {}type: {}SafeList {}a {}Empty \newline{}
 {} {} {} {}In {}the {}first {}argument {}of {}`safeHead\textquotesingle{}, {}namely {}`Nil\textquotesingle{} \newline{}
 {} {} {} {}In {}the {}definition {}of {}`it\textquotesingle{}: {}it {}= {}safeHead {}Nil \newline{}
}}

The complaint is a good thing: it means that we can now ensure during compile-{}time if we\textquotesingle{}re calling {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeHead}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on an appropriate list. However, that also sets up a pitfall in potential. Consider the following function. What do you think its type is?

\HaskellExampleTemplate{Trouble with GADTs}{\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{silly\ensuremath{\text{ }}}\DataTypeTok{False}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Nil}\newline
\NormalTok{silly\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Cons}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\DataTypeTok{Nil}\newline
\end{Highlighting}
\end{Shaded}}

Now try loading the example up in GHCi. You\textquotesingle{}ll notice the following complaint:
\HaskellExampleTemplate{Trouble with GADTs -{} the complaint}{\TemplatePreformat{ \newline{}
Couldn\textquotesingle{}t {}match {}`Empty\textquotesingle{} {}against {}`NonEmpty\textquotesingle{} \newline{}
 {} {} {} {} {}Expected {}type: {}SafeList {}() {}Empty \newline{}
 {} {} {} {} {}Inferred {}type: {}SafeList {}() {}NonEmpty \newline{}
 {} {} {}In {}the {}application {}`Cons {}() {}Nil\textquotesingle{} \newline{}
 {} {} {}In {}the {}definition {}of {}`silly\textquotesingle{}: {}silly {}True {}= {}Cons {}() {}Nil \newline{}
}}

The cases in the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily silly}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluate to marked lists of different types, leading to a type error. The extra constraints imposed through the GADT make it impossible for a function to produce both empty and non-{}empty lists.

If we are really keen on defining {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily silly}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can do so by liberalizing the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cons}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that it can construct both safe and unsafe lists.

\HaskellExampleTemplate{A different approach}{\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#LANGUAGE\ensuremath{\text{ }}GADTs,\ensuremath{\text{ }}EmptyDataDecls,\ensuremath{\text{ }}KindSignatures\ensuremath{\text{ }}#-\}}\newline
\CommentTok{--\ensuremath{\text{ }}here\ensuremath{\text{ }}we\ensuremath{\text{ }}add\ensuremath{\text{ }}the\ensuremath{\text{ }}KindSignatures\ensuremath{\text{ }}pragma,}\newline
\CommentTok{--\ensuremath{\text{ }}which\ensuremath{\text{ }}makes\ensuremath{\text{ }}the\ensuremath{\text{ }}GADT\ensuremath{\text{ }}declaration\ensuremath{\text{ }}a\ensuremath{\text{ }}bit\ensuremath{\text{ }}more\ensuremath{\text{ }}elegant.}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Note\ensuremath{\text{ }}the\ensuremath{\text{ }}subtle\ensuremath{\text{ }}yet\ensuremath{\text{ }}revealing\ensuremath{\text{ }}change\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}phantom\ensuremath{\text{ }}type\ensuremath{\text{ }}names.}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{NotSafe}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Safe}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{MarkedList}\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nil}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{MarkedList}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\DataTypeTok{NotSafe}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Cons}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{MarkedList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{MarkedList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}c}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\newline
\OtherTok{safeHead\ensuremath{\text{ }}::}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{MarkedList}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\DataTypeTok{Safe}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{safeHead\ensuremath{\text{ }}(}\DataTypeTok{Cons}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}_)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}This\ensuremath{\text{ }}function\ensuremath{\text{ }}will\ensuremath{\text{ }}never\ensuremath{\text{ }}produce\ensuremath{\text{ }}anything\ensuremath{\text{ }}that\ensuremath{\text{ }}can\ensuremath{\text{ }}be\ensuremath{\text{ }}consumed\ensuremath{\text{ }}by\ensuremath{\text{ }}safeHead,}\newline
\CommentTok{--\ensuremath{\text{ }}no\ensuremath{\text{ }}matter\ensuremath{\text{ }}that\ensuremath{\text{ }}the\ensuremath{\text{ }}resulting\ensuremath{\text{ }}list\ensuremath{\text{ }}is\ensuremath{\text{ }}not\ensuremath{\text{ }}necessarily\ensuremath{\text{ }}empty.}\newline
\OtherTok{silly\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Bool}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{MarkedList}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\DataTypeTok{NotSafe}\newline
\NormalTok{silly\ensuremath{\text{ }}}\DataTypeTok{False}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Nil}\newline
\NormalTok{silly\ensuremath{\text{ }}}\DataTypeTok{True}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{Cons}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\DataTypeTok{Nil}\newline
\end{Highlighting}
\end{Shaded}}

There is a cost to the fix above: by relaxing the constraint on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cons}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} we throw away the knowledge that it cannot produce an empty list. Based on our first version of the safe list we could, for instance, define a function which took a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily SafeList a Empty}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} argument and be sure anything produced by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Cons}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} would not be accepted by it. That does not hold for the analogous {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily MarkedList a NotSafe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; arguably, the type is less useful exactly because it is less restrictive. While in this example the issue may seem minor, given that not much can be done with an empty list, in general it is worth considering.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Could you implement a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safeTail}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function? Both versions introduced here would count as valid starting material, as well as any other variants in similar spirit.

\end{myenumerate}}
\subsection{A simple expression evaluator}
\label{460}

\begin{myquote}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Insert the example used in Wobbly Types paper... I thought that was quite pedagogical}
\item{} {\itshape This is already covered in the first part of the tutorial.}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{Discussion}
\label{461}

\begin{myquote}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape More examples, thoughts}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\begin{myquote}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape From FOSDEM 2006, I vaguely recall that there is some relationship between GADT and the below... what?}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\subsection{Phantom types}
\label{462}
See \mylref{445}{../Phantom types/}.
\subsection{Existential types}
\label{463}

If you like \mylref{431}{../Existentially quantified types/}, you\textquotesingle{}d probably want to notice that they are now subsumed by GADTs. As the GHC manual says, the following two type declarations give you the same thing.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{TE}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}b}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{MkTE}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}(b}\OtherTok{->}\NormalTok{a)}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{TG}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\KeywordTok{where}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}}\DataTypeTok{MkTG}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(b}\OtherTok{->}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{TG}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}\}}\newline
\end{Highlighting}
\end{Shaded}

Heterogeneous lists are accomplished with GADTs like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{TE2}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{forall\ensuremath{\text{ }}b}\FunctionTok{.}\ensuremath{\text{ }}\DataTypeTok{Show}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\DataTypeTok{MkTE2}\ensuremath{\text{ }}\NormalTok{[b]}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{TG2}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{MkTG2}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Show}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[b]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{TG2}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Witness types}
\label{464}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Type constructors \& Kinds}

\myminitoc
\label{465}

\label{466}
\LaTeXNullTemplate{}
\section{Kinds for C++ users}
\label{467}

\begin{myitemize}
\item{} * is any concrete type, including functions. These all have kind *:
\end{myitemize}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{MyType}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\ensuremath{\text{ }}\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{MyFuncType}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\OtherTok{\ensuremath{\text{ }}myFunc\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{typedef}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{MyType;}\newline
\ensuremath{\text{ }}\KeywordTok{typedef}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{(*MyFuncType)(}\DataTypeTok{int}\NormalTok{);}\newline
\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{MyFunc(}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{a);}\newline
\end{Highlighting}
\end{Shaded}

\begin{myitemize}
\item{} * -{}>{} * is a template that takes one type argument. It is like a function from types to types: you plug a type in and the result is a type. Confusion can arise from the two uses of MyData (although you can give them different names if you wish) -{} the first is a type constructor, the second is a data constructor. These are equivalent to a class template and a constructor respectively in C++. Context resolves the ambiguity -{} where Haskell expects a type (e.g. in a type signature) MyData is a type constructor, where a value, it is a data constructor.
\end{myitemize}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{MyData}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}type\ensuremath{\text{ }}constructor\ensuremath{\text{ }}with\ensuremath{\text{ }}kind\ensuremath{\text{ }}*\ensuremath{\text{ }}->\ensuremath{\text{ }}*}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MyData}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}data\ensuremath{\text{ }}constructor\ensuremath{\text{ }}with\ensuremath{\text{ }}type\ensuremath{\text{ }}a\ensuremath{\text{ }}->\ensuremath{\text{ }}MyData\ensuremath{\text{ }}a}\newline
\ensuremath{\text{ }}\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{k\ensuremath{\text{ }}}\DataTypeTok{MyData}\newline
\ensuremath{\text{ }}\DataTypeTok{MyData}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\FunctionTok{*}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\FunctionTok{*}\newline
\ensuremath{\text{ }}\FunctionTok{*}\DataTypeTok{Main}\FunctionTok{>}\ensuremath{\text{ }}\FunctionTok{:}\NormalTok{t\ensuremath{\text{ }}}\DataTypeTok{MyData}\newline
\ensuremath{\text{ }}\DataTypeTok{MyData}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{MyData}\ensuremath{\text{ }}\NormalTok{a}\newline
\ensuremath{\text{ }}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{template}\ensuremath{\text{ }}\NormalTok{<}\KeywordTok{typename}\ensuremath{\text{ }}\NormalTok{t>\ensuremath{\text{ }}}\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{MyData}\newline
\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{t\ensuremath{\text{ }}member;}\newline
\ensuremath{\text{ }}\NormalTok{\};}\newline
\end{Highlighting}
\end{Shaded}

\begin{myitemize}
\item{} * -{}>{} * -{}>{} * is a template that takes two type arguments
\end{myitemize}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{MyData}\ensuremath{\text{ }}\NormalTok{t1\ensuremath{\text{ }}t2\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MyData}\ensuremath{\text{ }}\NormalTok{t1\ensuremath{\text{ }}t2}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{template}\ensuremath{\text{ }}\NormalTok{<}\KeywordTok{typename}\ensuremath{\text{ }}\NormalTok{t1,\ensuremath{\text{ }}}\KeywordTok{typename}\ensuremath{\text{ }}\NormalTok{t2>\ensuremath{\text{ }}}\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{MyData}\newline
\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{t1\ensuremath{\text{ }}member1;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{t2\ensuremath{\text{ }}member2;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{MyData(t1\ensuremath{\text{ }}m1,\ensuremath{\text{ }}t2\ensuremath{\text{ }}m2)\ensuremath{\text{ }}:\ensuremath{\text{ }}member1(m1),\ensuremath{\text{ }}member2(m2)\ensuremath{\text{ }}\{\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\NormalTok{\};}\newline
\end{Highlighting}
\end{Shaded}

\begin{myitemize}
\item{} (* -{}>{} *) -{}>{} * is a template that takes one template argument of kind (* -{}>{} *)
\end{myitemize}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{MyData}\ensuremath{\text{ }}\NormalTok{tmpl\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{MyData}\ensuremath{\text{ }}\NormalTok{(tmpl\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\KeywordTok{template}\ensuremath{\text{ }}\NormalTok{<}\KeywordTok{template}\ensuremath{\text{ }}\NormalTok{<}\KeywordTok{typename}\ensuremath{\text{ }}\NormalTok{t>\ensuremath{\text{ }}}\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{tmpl>\ensuremath{\text{ }}}\KeywordTok{class}\ensuremath{\text{ }}\NormalTok{MyData}\newline
\ensuremath{\text{ }}\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tmpl<}\DataTypeTok{int}\NormalTok{>\ensuremath{\text{ }}member1;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{MyData(tmpl<}\DataTypeTok{int}\NormalTok{>\ensuremath{\text{ }}m)\ensuremath{\text{ }}:\ensuremath{\text{ }}member1(m)\ensuremath{\text{ }}\{\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\NormalTok{\};}\newline
\end{Highlighting}
\end{Shaded}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Wider Theory}

\myminitoc
\label{468}

\chapter{Denotational semantics}

\myminitoc
\label{469}

\label{470}
\begin{TemplateInfo}{}{}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries New readers: Please report stumbling blocks!}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} While the material on this page is intended to explain clearly, there are always mental traps that innocent readers new to the subject fall in but that the authors are not aware of. Please report any tricky passages to the \myhref{https://en.wikibooks.org/wiki/Talk\%3AHaskell\%2FDenotational_semantics}{Talk} page or the \#haskell IRC channel so that the style of exposition can be improved.\end{TemplateInfo}

\LaTeXNullTemplate{}
\section{Introduction}
\label{471}
This chapter explains how to formalize the meaning of Haskell programs, the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries denotational semantics}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It may seem to be nit-{}picking to formally specify that the program {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily square x = x*x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means the same as the mathematical square function that maps each number to its square, but what about the meaning of a program like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f x = f (x+1)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that loops forever? In the following, we will exemplify the approach first taken by Scott and Strachey to this question and obtain a foundation to reason about the correctness of functional programs in general and recursive definitions in particular. Of course, we will concentrate on those topics needed to understand Haskell programs.\myfootnote{In fact, there are no written down and complete denotational semantics of Haskell. This would be a tedious task void of additional insight and we happily embrace the folklore and common sense semantics.}

Another aim of this chapter is to illustrate the notions {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries strict}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries lazy}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that capture the idea that a function needs or needs not to evaluate its argument. This is a basic ingredient to predict the course of evaluation of Haskell programs and hence of primary interest to the programmer. Interestingly, these notions can be formulated concisely with denotational semantics alone, no reference to an execution model is necessary. They will be put to good use in \mylref{527}{Graph Reduction}, but it is this chapter that will familiarize the reader with the denotational definition and involved notions such as {\mbox{\bot}} (\symbol{34}Bottom\symbol{34}). The reader only interested in strictness may wish to poke around in section \mylref{474}{Bottom and Partial Functions} and quickly head over to \mylref{483}{Strict and Non-{}Strict Semantics}.
\subsection{What are Denotational Semantics and what are they for?}
\label{472}
What does a Haskell program mean? This question is answered by the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries denotational semantics}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of Haskell. In general, the denotational semantics of a programming language map each of its programs to a mathematical object (denotation), that represents the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape meaning}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the program in question. As an example, the mathematical object for the Haskell programs {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 10}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 9+1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2*5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum {[}1..4{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be represented by the integer {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape 10}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We say that all those programs {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries denote}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the integer {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape 10}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The collection of such mathematical objects is called the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries semantic domain}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

The mapping from program code to a semantic domain is commonly written down with double square brackets (\symbol{34}Oxford brackets\symbol{34}) around program code. For example,

\begin{center}
\begin{equation*}[[\texttt{2*5}]] = 10.\end{equation*}
\end{center}

Denotations are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape compositional}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, i.e. the meaning of a program like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1+9}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} only depends on the meaning of its constituents:

\begin{center}
\begin{equation*}[[\texttt{a+b}]] = [[\texttt{a}]]+[[\texttt{b}]].\end{equation*}
\end{center}

The same notation is used for types, i.e.

\begin{center}
\begin{equation*}[[\texttt{Integer}]]=\mathbb{Z}.\end{equation*}
\end{center}

For simplicity however, we will silently identify expressions with their semantic objects in subsequent chapters and use this notation only when clarification is needed.

It is one of the key properties of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape purely functional}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} languages like Haskell that a direct mathematical interpretation like \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1+9}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} denotes {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape 10}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34} carries over to functions, too: in essence, the denotation of a program of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a mathematical function {$\mathbb{Z}\to\mathbb{Z}$} between integers. While we will see that this expression needs refinement generally, to include non-{}termination, the situation for {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape imperative languages}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is clearly worse: a procedure with that type denotes something that changes the state of a machine in possibly unintended ways. Imperative languages are tightly tied to {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries operational semantics}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which describes their way of execution on a machine. It is possible to define a denotational semantics for imperative programs and to use it to reason about such programs, but the semantics often has operational nature and sometimes must be extended in comparison to the denotational semantics for functional languages.\myfootnote{Monads are one of the most successful ways to give denotational semantics to imperative programs. See also \myfnhref{https://en.wikibooks.org/wiki/Haskell\%2FAdvanced\%20monads}{Haskell/Advanced monads}.} In contrast, the meaning of purely functional languages is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape by default}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} completely independent from their way of execution. The Haskell98 standard even goes as far as to specify only Haskell\textquotesingle{}s non-{}strict denotational semantics, leaving open how to implement them.

In the end, denotational semantics enables us to develop formal proofs that programs indeed do what we want them to do mathematically. Ironically, for proving program properties in day-{}to-{}day Haskell, one can use \myhref{https://en.wikibooks.org/wiki/Haskell\%2FEquational\%20reasoning}{Equational reasoning}, which transforms programs into equivalent ones without seeing much of the underlying mathematical objects we are concentrating on in this chapter. But the denotational semantics actually show up whenever we have to reason about non-{}terminating programs, for instance in \mylref{490}{Infinite Lists}.

Of course, because they only state what a program is, denotational semantics cannot answer questions about how long a program takes or how much memory it eats; this is governed by the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape evaluation strategy}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which dictates how the computer calculates the normal form of an expression. On the other hand, the implementation has to respect the semantics, and to a certain extent, it is the semantics that determine how Haskell programs must be evaluated on a machine. We will elaborate on this in \mylref{483}{Strict and Non-{}Strict Semantics}.
\subsection{What to choose as Semantic Domain?}
\label{473}
We are now looking for suitable mathematical objects that we can attribute to every Haskell program. In case of the example {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 10}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2*5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum {[}1..4{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it is clear that all expressions should denote the integer {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape 10}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Generalizing, every value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is likely to denote an element of the set {\mathbb{Z}}. The same can be done with values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f :: Integer -{}>{} Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can appeal to the mathematical definition of \symbol{34}function\symbol{34} as a set of (argument,value)-{}pairs, its {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape graph}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

But interpreting functions as their graph was too quick, because it does not work well with recursive definitions. Consider the definition
\\

\TemplateSpaceIndent{ {}shaves {}:: {}Integer {}-{}>{} {}Integer {}-{}>{} {}Bool \newline{}
 {}1 {}`shaves` {}1 {}= {}True \newline{}
 {}2 {}`shaves` {}2 {}= {}False \newline{}
 {}0 {}`shaves` {}x {}= {}not {}(x {}`shaves` {}x) \newline{}
 {}_ {}`shaves` {}_ {}= {}False}

We can think of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf},{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as being male persons with long beards and the question is who shaves whom. Person {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} shaves himself, but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gets shaved by the barber {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because evaluating the third equation yields {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 `shaves` 2 == True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In general, the third line says that the barber {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} shaves all persons that do not shave themselves.

What about the barber himself, is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 `shaves` 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} true or not? If it is, then the third equation says that it is not. If it is not, then the third equation says that it is. Puzzled, we see that we just cannot attribute {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 `shaves` 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the graph we use as interpretation for the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily shaves}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must have an empty spot. We realize that our semantic objects must be able to incorporate {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries partial functions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, functions that are undefined for some values of their arguments (..that is otherwise permitted by the arguments\textquotesingle{} types).

It is well known that this famous example gave rise to serious foundational problems in set theory. It\textquotesingle{}s an example of an {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries impredicative}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition, a definition which uses itself, a logical circle. Unfortunately for recursive definitions, the circle is not the problem but the feature.
\section{Bottom and Partial Functions}
\label{474}\subsection{{\mbox{\bot}} Bottom}
\label{475}
To define partial functions, we introduce a special value \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, named {\bfseries \myhref{https://en.wikibooks.org/wiki/\%3Aw\%3ABottom\%20type}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries bottom}} and commonly written {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily _|_}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in typewriter font. We say that \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the completely {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries \symbol{34}undefined\symbol{34} value or function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Every basic data type like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} contains one \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} besides their usual elements. So the possible values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are

\begin{center}
\begin{equation*}\bot, 0, +1, -1, +2, -2, +3, -3, \dots\end{equation*}
\end{center}

Adding \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the set of values is also called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries lifting}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is often depicted by a subscript like in {\mathbb{Z}_\bot}. While this is the correct notation for the mathematical set \symbol{34}lifted integers\symbol{34}, we prefer to talk about \symbol{34}values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34}. We do this because {\mathbb{Z}_\bot} suggests that there are \symbol{34}real\symbol{34} integers {\mathbb{Z}}, but inside Haskell, the \symbol{34}integers\symbol{34} are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

As another example, the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with only one element actually has two inhabitants:

\begin{center}
\begin{equation*}\bot, ()\end{equation*}
\end{center}

For now, we will stick to programming with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s. Arbitrary algebraic data types will be treated in section \mylref{487}{Algebraic Data Types} since strict and non-{}strict languages diverge on how these include \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

In Haskell, the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} denotes \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. With its help, one can indeed verify some semantic properties of actual Haskell programs. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has the polymorphic type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a . a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which of course can be specialized to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined :: Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined :: ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined :: Integer -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so on. In the Haskell Prelude, it is defined as

\begin{center}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined = error \symbol{34}Prelude.undefined\symbol{34}}
\end{center}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

As a side note, it follows from \myhref{https://en.wikibooks.org/wiki/Haskell\%2FThe\%20Curry-Howard\%20isomorphism}{the Curry-{}Howard isomorphism} that any value of the polymorphic type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a . a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must denote \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Partial Functions and the Semantic Approximation Order}
\label{476}
Now, {\bot} ({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape bottom type}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) gives us the possibility to denote partial functions:

\begin{center}
\begin{equation*}f(n) = \begin{cases} 1 & \mbox{ if } n \mbox{ is } 0 \\ -2 & \mbox{ if } n \mbox{ is } 1 \\ \bot & \mbox{ else } \end{cases} \end{equation*}
\end{center}

Here, {$f(n)$} yields well defined values for {$n=0$} and {$n=1$} but gives {\bot} for all other {n}. Note that the type {\bot} is universal, as {\bot} has no value: the function {\bot}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily :: Integer -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is given by

\begin{center}
\begin{equation*}\bot(n) = \bot\end{equation*} for all \begin{equation*}n\end{equation*}
\end{center}

where the {\bot} on the right hand side denotes a value of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

To formalize, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries partial functions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} say, of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are at least mathematical mappings from the lifted integers {$\mathbb{Z}_\bot=\{\bot, 0, \pm 1, \pm 2, \pm 3, \dots\}$} to the lifted integers. But this is not enough, since it does not acknowledge the special role of {\bot}. For example, the definition

\begin{center}
\begin{equation*}g(n) = \begin{cases} 1 & \mbox{ if } n \mbox{ is } \bot \\ \bot & \mbox{ else } \end{cases} \end{equation*}
\end{center}

looks counterintuitive, and, in fact, is wrong. Why does {$g(\bot)$} yield a defined value whereas {$g(1)$} is undefined? The intuition is that every partial function {g} should yield more defined answers for more defined arguments. To formalize, we can say that every concrete number is {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries more defined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} than {\bot}:

\begin{center}
\begin{equation*}\bot\sqsubset 1\ ,\ \bot\sqsubset 2\ , \dots\end{equation*}
\end{center}

Here, {$a\sqsubset b$} denotes that {b} is more defined than {a}. Likewise, {$a\sqsubseteq b$} will denote that either {b} is more defined than {a} or both are equal (and so have the same definedness). {\sqsubset} is also called the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries semantic approximation order}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because we can approximate defined values by less defined ones thus interpreting \symbol{34}more defined\symbol{34} as \symbol{34}approximating better\symbol{34}. Of course, {\bot} is designed to be the least element of a data type, we always have that {$\bot\sqsubset x$} for all {x}, except the case when {x} happens to denote {\bot} itself:

\begin{center}
\begin{equation*}\forall x\neq\bot\ \ \ \bot\sqsubset x \end{equation*}
\end{center}

As no number is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape more defined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} than another, the mathematical relation {\sqsubset} is false for any pair of numbers:

\begin{center}
\begin{equation*} 1 \sqsubset 1 \end{equation*} does not hold.
\end{center}

\begin{center}
neither \begin{equation*}1 \sqsubset 2\end{equation*} nor \begin{equation*}2 \sqsubset 1\end{equation*} hold.
\end{center}

This is contrasted to ordinary order predicate {\le}, which can compare any two numbers. A quick way to remember this is the sentence: \symbol{34}{1} and {2} are different in terms of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape information content}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but are equal in terms of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape information quantity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\symbol{34}. That\textquotesingle{}s another reason why we use a different symbol: {\sqsubseteq}.

\begin{center}
neither \begin{equation*}1 \sqsubseteq 2\end{equation*} nor \begin{equation*}2 \sqsubseteq 1\end{equation*} hold,
\end{center}

\begin{center}
but \begin{equation*}1 \sqsubseteq 1\end{equation*} holds.
\end{center}

One says that {\sqsubseteq} specifies a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries partial order}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and that the values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} form a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries partially ordered set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ({\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries poset}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for short). A partial order is characterized by the following three laws
\begin{myitemize}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Reflexivity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, everything is just as defined as itself: {$x \sqsubseteq x$} for all {x}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Transitivity}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: if {$x \sqsubseteq y$} and {$y \sqsubseteq z$}, then {$x \sqsubseteq z$}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Antisymmetry}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: if both {$x \sqsubseteq y$} and {$y \sqsubseteq x$} hold, then {x} and {y} must be equal: {$x=y$}.
\end{myitemize}

\LaTeXExercisesTemplate{Do the integers form a poset with respect to the order {\le}?}

We can depict the order {\sqsubseteq} on the values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} by the following graph

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/24.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{24}
\end{minipage}\vspace{0.75cm}

where every link between two nodes specifies that the one above is more defined than the one below. Because there is only one level (excluding {\bot}), one says that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape flat domain}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The picture also explains the name of {\bot}: it\textquotesingle{}s called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape bottom}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because it always sits at the bottom.
\subsection{Monotonicity}
\label{477}
Our intuition about partial functions now can be formulated as following: every partial function {f} is a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries monotone}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} mapping between partially ordered sets. More defined arguments will yield more defined values:

\begin{center}
\begin{equation*} x\sqsubseteq y \Rightarrow f(x)\sqsubseteq f(y) \end{equation*}
\end{center}

In particular, a function {h} with {$h(\bot)=1$} is constant: {$h(n)=1$} for all {n}. Note that here it is crucial that {$1 \sqsubseteq 2$} etc. don\textquotesingle{}t hold.

Translated to Haskell, monotonicity means that we cannot use {\bot} as a condition, i.e. we cannot pattern match on {\bot}, or its equivalent {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Otherwise, the example {g} from above could be expressed as a Haskell program. As we shall see later, {\bot} also denotes non-{}terminating programs, so that the inability to observe {\bot} inside Haskell is related to the halting problem.

Of course, the notion of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape more defined than}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be extended to partial functions by saying that a function is more defined than another if it is so at every possible argument:

\begin{center}
\begin{equation*}f \sqsubseteq g \mbox{ if } \forall x. f(x) \sqsubseteq g(x)\end{equation*}
\end{center}

Thus, the partial functions also form a poset, with the undefined function {$\bot(x)=\bot$} being the least element.
\section{Recursive Definitions as Fixed Point Iterations}
\label{478}\subsection{Approximations of the Factorial Function}
\label{479}
Now that we have a means to describe partial functions, we can give an interpretation to recursive definitions. Lets take the prominent example of the factorial function {$f(n)=n!$} whose recursive definition is

\begin{center}
\begin{equation*}f(n) = \mbox{ if } n == 0 \mbox{ then } 1 \mbox{ else } n \cdot f(n-1)\end{equation*}
\end{center}

Although we saw that interpreting this recursive function directly as a set description may lead to problems, we intuitively know that in order to calculate {$f(n)$} for every given {n} we have to iterate the right hand side. This iteration can be formalized as follows: we calculate a sequence of functions {f_k} with the property that each one consists of the right hand side applied to the previous one, that is

\begin{center}
\begin{equation*}f_{k+1}(n) = \mbox{ if } n == 0 \mbox{ then } 1 \mbox{ else } n \cdot f_k(n-1)\end{equation*}
\end{center}

We start with the undefined function {$f_0(n) = \bot$}, and the resulting sequence of partial functions reads:

\begin{center}
\begin{equation*}f_1(n) = \begin{cases} 1 & \mbox{ if } n \mbox{ is } 0 \\ \bot & \mbox{ else } \end{cases} \ ,\ f_2(n) = \begin{cases} 1 & \mbox{ if } n \mbox{ is } 0 \\ 1 & \mbox{ if } n \mbox{ is } 1 \\ \bot & \mbox{ else } \end{cases} \ ,\ f_3(n) = \begin{cases} 1 & \mbox{ if } n \mbox{ is } 0 \\ 1 & \mbox{ if } n \mbox{ is } 1 \\ 2 & \mbox{ if } n \mbox{ is } 2 \\ \bot & \mbox{ else } \end{cases} \end{equation*}
\end{center}

and so on. Clearly,

\begin{center}
\begin{equation*}\bot=f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots \end{equation*}
\end{center}

and we expect that the sequence converges to the factorial function.

The iteration follows the well known scheme of a fixed point iteration

\begin{center}
\begin{equation*} x_0, g(x_0), g(g(x_0)), g(g(g(x_0))), \dots \end{equation*}
\end{center}

In our case, {x_0} is a function and {g} is a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functional}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a mapping between functions. We have

\begin{center}
\begin{equation*} x_0 = \bot\end{equation*} and
\begin{equation*} g(x) = n\mapsto\mbox{ if } n == 0 \mbox{ then } 1 \mbox{ else } n*x(n-1) \,\end{equation*}

\end{center}

If we start with {$x_0 = \bot$}, the iteration will yield increasingly defined approximations to the factorial function

\begin{center}
\begin{equation*} \bot\sqsubseteq g(\bot)\sqsubseteq g(g(\bot))\sqsubseteq g(g(g(\bot)))\sqsubseteq \dots \end{equation*}
\end{center}

(Proof that the sequence increases: The first inequality {$\bot\sqsubseteq g(\bot)$} follows from the fact that {\bot} is less defined than anything else. The second inequality follows from the first one by applying {g} to both sides and noting that {g} is monotone. The third follows from the second in the same fashion and so on.)

It is very illustrative to formulate this iteration scheme in Haskell. As functionals are just ordinary higher order functions, we have
\\

\TemplateSpaceIndent{ {}g {}:: {}(Integer {}-{}>{} {}Integer) {}-{}>{} {}(Integer {}-{}>{} {}Integer) \newline{}
 {}g {}x {}= {}\textbackslash{}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}x {}(n-{}1) \newline{}
 {} \newline{}
 {}x0 {}:: {}Integer {}-{}>{} {}Integer \newline{}
 {}x0 {}= {}undefined \newline{}
 {} \newline{}
 {}(f0:f1:f2:f3:f4:fs) {}= {}iterate {}g {}x0}

We can now evaluate the functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f0,f1,...}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} at sample arguments and see whether they yield {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or not:
\\

\TemplateSpaceIndent{ {} {}>{} {}f3 {}0 \newline{}
 {} {}1 \newline{}
 {} {}>{} {}f3 {}1 \newline{}
 {} {}1 \newline{}
 {} {}>{} {}f3 {}2 \newline{}
 {} {}2 \newline{}
 {} {}>{} {}f3 {}5 \newline{}
 {} {}*** {}Exception: {}Prelude.undefined \newline{}
 {} {}>{} {}map {}f3 {}{[}0..{]} \newline{}
 {} {}{[}1,1,2,*** {}Exception: {}Prelude.undefined \newline{}
 {} {}>{} {}map {}f4 {}{[}0..{]} \newline{}
 {} {}{[}1,1,2,6,*** {}Exception: {}Prelude.undefined \newline{}
 {} {}>{} {}map {}f1 {}{[}0..{]} \newline{}
 {} {}{[}1,*** {}Exception: {}Prelude.undefined}

Of course, we cannot use this to check whether f4 is really undefined for all arguments.
\subsection{Convergence}
\label{480}
To the mathematician, the question whether this sequence of approximations converges is still to be answered. For that, we say that a poset is a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries directed complete partial order}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ({\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries dcpo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) iff every monotone sequence {$x_0\sqsubseteq x_1\sqsubseteq \dots$} (also called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape chain}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) has a least upper bound (supremum)

\begin{center}
\begin{equation*}\sup_{\sqsubseteq} \{x_0\sqsubseteq x_1\sqsubseteq \dots\} = x\end{equation*}.
\end{center}

If that\textquotesingle{}s the case for the semantic approximation order, we clearly can be sure that monotone sequence of functions approximating the factorial function indeed has a limit. For our denotational semantics, we will only meet dcpos which have a least element {\bot} which are called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries complete partial order}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s ({\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries cpo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s clearly form a (d)cpo, because the monotone sequences consisting of more than one element must be of the form

\begin{center}
\begin{equation*}\bot\sqsubseteq\dots\sqsubseteq\ \bot\sqsubseteq n\sqsubseteq n\sqsubseteq \dots\sqsubseteq n\end{equation*}
\end{center}

where {n} is an ordinary number. Thus, {n} is already the least upper bound.

For functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer -{}>{} Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, this argument fails because monotone sequences may be of infinite length. But because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a (d)cpo, we know that for every point {n}, there is a least upper bound

\begin{center}
\begin{equation*}\sup_{\sqsubseteq} \{\bot=f_0(n) \sqsubseteq f_1(n) \sqsubseteq f_2(n) \sqsubseteq \dots\} =: f(n)\end{equation*}.
\end{center}

As the semantic approximation order is defined point-{}wise, the function {f} is the supremum we looked for.

These have been the last touches for our aim to transform the impredicative definition of the factorial function into a well defined construction. Of course, it remains to be shown that {$f(n)$} actually yields a defined value for every {n}, but this is not hard and far more reasonable than a completely ill-{}formed definition.
\subsection{Bottom includes Non-{}Termination}
\label{481}
It is instructive to try our newly gained insight into recursive definitions on an example that does not terminate:

\begin{center}
\begin{equation*}f(n) = f(n+1)\end{equation*}
\end{center}

The approximating sequence reads

\begin{center}
\begin{equation*}f_0 = \bot, f_1 = \bot, \dots\end{equation*}
\end{center}

and consists only of {\bot}. Clearly, the resulting limit is {\bot} again. From an operational point of view, a machine executing this program will loop indefinitely. We thus see that {\bot} may also denote a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries non-{}terminating}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function or value. Hence, given the halting problem, pattern matching on {\bot} in Haskell is impossible.
\subsection{Interpretation as Least Fixed Point}
\label{482}
Earlier, we called the approximating sequence an example of the well known \symbol{34}fixed point iteration\symbol{34} scheme. And of course, the definition of the factorial function {f} can also be thought as the specification of a fixed point of the functional {g}:

\begin{center}
\begin{equation*}f = g(f) = n\mapsto\mbox{ if } n == 0 \mbox{ then } 1 \mbox{ else } n\cdot f(n-1)\end{equation*}
\end{center}

However, there might be multiple fixed points. For instance, there are several {f} which fulfill the specification

\begin{center}
\begin{equation*}f = n\mapsto\mbox{ if } n == 0 \mbox{ then } 1 \mbox{ else } f(n+1)\end{equation*},
\end{center}

Of course, when executing such a program, the machine will loop forever on {$f(1)$} or {$f(2)$} and thus not produce any valuable information about the value of {$f(1)$}. This corresponds to choosing the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape least defined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} fixed point as semantic object {f} and this is indeed a canonical choice. Thus, we say that

\begin{center}
\begin{equation*}f=g(f)\end{equation*},
\end{center}

defines the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries least fixed point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {f} of {g}. Clearly, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape least}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is with respect to our semantic approximation order {\sqsubseteq}.

The existence of a least fixed point is guaranteed by our iterative construction if we add the condition that {g} must be {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries continuous}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (sometimes also called \symbol{34}chain continuous\symbol{34}). That simply means that {g} respects suprema of monotone sequences:

\begin{center}
\begin{equation*}\sup_{\sqsubseteq}\{g(x_0)\sqsubseteq g(x_1) \sqsubseteq\dots\} = g\left(\sup_{\sqsubseteq}\{x_0\sqsubseteq x_1\sqsubseteq\dots\}\right)\end{equation*}
\end{center}

We can then argue that with

\begin{center}
\begin{equation*}f=\sup_{\sqsubseteq}\{x_0\sqsubseteq g(x_0)\sqsubseteq g(g(x_0))\sqsubseteq\dots\}\end{equation*}
\end{center}

we have

\begin{center}
\begin{equation*}\begin{array}{lcl} g(f) &=& g\left(\sup_{\sqsubseteq}\{x_0\sqsubseteq g(x_0)\sqsubseteq g(g(x_0))\sqsubseteq\dots\}\right)\\ &=& \sup_{\sqsubseteq}\{g(x_0)\sqsubseteq g(g(x_0))\sqsubseteq\dots\}\\ &=& \sup_{\sqsubseteq}\{x_0 \sqsubseteq g(x_0)\sqsubseteq g(g(x_0))\sqsubseteq\dots\}\\ &=& f \end{array}\end{equation*}
\end{center}

and the iteration limit is indeed a fixed point of {g}. You may also want to convince yourself that the fixed point iteration yields the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape least}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} fixed point possible.
\LaTeXExercisesTemplate{Prove that the fixed point obtained by fixed point iteration starting with {$x_0=\bot$} is also the least one, that it is smaller than any other fixed point. (Hint: {\bot} is the least element of our cpo and {g} is monotone)}

By the way, how do we know that each Haskell function we write down indeed is continuous? Just as with monotonicity, this has to be enforced by the programming language. Admittedly, these properties can somewhat be enforced or broken at will, so the question feels a bit void. But intuitively, monotonicity is guaranteed by not allowing pattern matches on {\bot}. For continuity, we note that for an arbitrary type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, every simple function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is automatically continuous because the monotone sequences of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s are of finite length. Any infinite chain of values of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gets mapped to a finite chain of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s and respect for suprema becomes a consequence of monotonicity. Thus, all functions of the special case {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must be continuous. For functionals like {g}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ::(Integer -{}>{} Integer) -{}>{} (Integer -{}>{} Integer)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the continuity then materializes due to currying, as the type is isomorphic to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ::((Integer -{}>{} Integer), Integer) -{}>{} Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and we can take {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a=((Integer -{}>{} Integer), Integer)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

In Haskell, the fixed interpretation of the factorial function can be coded as

\begin{center}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily factorial = fix g}
\end{center}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

with the help of the fixed point combinator

\begin{center}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix :: (a -{}>{} a) -{}>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{center}

We can define it by

\begin{center}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix f = let x = f x in x}
\end{center}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

which leaves us somewhat puzzled because when expanding {$factorial$}, the result is not anything different from how we would have defined the factorial function in Haskell in the first place. But of course, the construction this whole section was about is not at all present when running a real Haskell program. It\textquotesingle{}s just a means to put the mathematical interpretation of Haskell programs on a firm ground. Yet it is very nice that we can explore these semantics in Haskell itself with the help of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\section{Strict and Non-{}Strict Semantics}
\label{483}
After having elaborated on the denotational semantics of Haskell programs, we will drop the mathematical function notation {$f(n)$} for semantic objects in favor of their now equivalent Haskell notation {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\subsection{Strict Functions}
\label{484}
A function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with one argument is called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries strict}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, if and only if

\begin{center}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f {\mbox{\bot}} = {\mbox{\bot}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{center}

Here are some examples of strict functions
\\

\TemplateSpaceIndent{ {}id {} {} {} {} {}x {}= {}x \newline{}
 {}succ {} {} {}x {}= {}x {}+ {}1 \newline{}
 {}power2 {}0 {}= {}1 \newline{}
 {}power2 {}n {}= {}2 {}* {}power2 {}(n-{}1)}

and there is nothing unexpected about them. But why are they strict? It is instructive to prove that these functions are indeed strict. For {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, this follows from the definition. For {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily succ}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we have to ponder whether {\ttfamily {\mbox{\bot}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily + 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily {\mbox{\bot}}} or not. If it was not, then we should for example have {\ttfamily {\mbox{\bot}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily + 1 = 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or more general {\ttfamily {\mbox{\bot}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily + 1 = {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape k}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for some concrete number {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape k}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We remember that every function is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monotone}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so we should have for example

\begin{center}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 = {\mbox{\bot}} + 1 \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊑{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 4 + 1 = 5}
\end{center}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

as {\ttfamily {\mbox{\bot}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊑\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 4}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But neither of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊑{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 = 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} nor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2 \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊒{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is valid so that {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} cannot be 2. In general, we obtain the contradiction

\begin{center}
{\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily = {\mbox{\bot}} + 1 \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊑\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily + 1 = {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape k}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily + 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{center}

and thus the only possible choice is

\begin{center}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily succ {\mbox{\bot}} = {\mbox{\bot}} + 1 = {\mbox{\bot}}}
\end{center}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily succ}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict.
\LaTeXExercisesTemplate{Prove that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily power2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict. While one can base the proof on the \symbol{34}obvious\symbol{34} fact that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily power2 {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape n}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {2^n}, the latter is preferably proven using fixed point iteration.}
\subsection{Non-{}Strict and Strict Languages}
\label{485}
Searching for {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries non-{}strict}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions, it happens that there is only one prototype of a non-{}strict function of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer -{}>{} Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {}one {}x {}= {}1}

Its variants are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily constk x = {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape k}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for every concrete number {\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape k}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Why are these the only ones possible? Remember that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily one {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape n}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be no less defined than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily one {\mbox{\bot}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a flat domain, both must be equal.

Why is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily one}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} non-{}strict? To see that it is, we use a Haskell interpreter and try
\\

\TemplateSpaceIndent{ {}>{} {}one {}(undefined {}:: {}Integer) \newline{}
 {}1}

which is not {\mbox{\bot}}. This is reasonable as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily one}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} completely ignores its argument. When interpreting {\mbox{\bot}} in an operational sense as \symbol{34}non-{}termination\symbol{34}, one may say that the non-{}strictness of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily one}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} means that it does not force its argument to be evaluated and therefore avoids the infinite loop when evaluating the argument {\mbox{\bot}}. But one might as well say that every function must evaluate its arguments before computing the result which means that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily one {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should be {\mbox{\bot}}, too. That is, if the program computing the argument does not halt, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily one}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should not halt as well.\myfootnote{ Strictness as premature evaluation of function arguments is elaborated in the chapter \myfnlref{527}{Graph Reduction}.} It shows up that one can {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape choose freely}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} this or the other design for a functional programming language. One says that the language is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape strict}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape non-{}strict}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} depending on whether functions are strict or non-{}strict by default. The choice for Haskell is non-{}strict. In contrast, the functional languages ML and Lisp choose strict semantics.
\subsection{Functions with several Arguments}
\label{486}
The notion of strictness extends to functions with several variables. For example, a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of two arguments is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape strict in the second argument}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if and only if

\begin{center}
{\ttfamily { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f x {\mbox{\bot}} = {\mbox{\bot}}}
\end{center}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

for every {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But for multiple arguments, mixed forms where the strictness depends on the given value of the other arguments, are much more common. An example is the conditional
\\

\TemplateSpaceIndent{ {}cond {}b {}x {}y {}= {}if {}b {}then {}x {}else {}y}

We see that it is strict in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} depending on whether the test {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {}cond {}True {} {}x {}{\mbox{\bot}} {}= {}x \newline{}
 {}cond {}False {}x {}{\mbox{\bot}} {}= {}{\mbox{\bot}}}

and likewise for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Apparently, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily cond}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is certainly {\mbox{\bot}} if both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are, but not necessarily when at least one of them is defined. This behavior is called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries joint strictness}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Clearly, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily cond}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} behaves like the if-{}then-{}else statement where it is crucial not to evaluate both the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} branches:
\\

\TemplateSpaceIndent{ {}if {}null {}xs {}then {}\textquotesingle{}a\textquotesingle{} {}else {}head {}xs \newline{}
 {}if {}n {}== {}0 {} {}then {} {}1 {} {}else {}5 {}/ {}n}

Here, the else part is {\mbox{\bot}} when the condition is met. Thus, in a non-{}strict language, we have the possibility to wrap primitive control statements such as if-{}then-{}else into functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily cond}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This way, we can define our own control operators. In a strict language, this is not possible as both branches will be evaluated when calling {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily cond}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which makes it rather useless. This is a glimpse of the general observation that non-{}strictness offers more flexibility for code reuse than strictness. See the chapter \mylref{549}{Laziness}\myfootnote{The term {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Laziness}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comes from the fact that the prevalent implementation technique for non-{}strict languages is called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy evaluation}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for more on this subject.
\section{Algebraic Data Types}
\label{487}
After treating the motivation case of partial functions between {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, we now want to extend the scope of denotational semantics to arbitrary algebraic data types in Haskell.

A word about nomenclature: the collection of semantic objects for a particular type is usually called a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries domain}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This term is more a generic name than a particular definition and we decide that our domains are cpos (complete partial orders), that is sets of values together with a relation {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape more defined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that obeys some conditions to allow fixed point iteration. Usually, one adds additional conditions to the cpos that ensure that the values of our domains can be represented in some finite way on a computer and thereby avoiding to ponder the twisted ways of uncountable infinite sets. But as we are not going to prove general domain theoretic theorems, the conditions will just happen to hold by construction.
\subsection{Constructors}
\label{488}
Let\textquotesingle{}s take the example types
\\

\TemplateSpaceIndent{ {}data {}Bool {} {} {} {}= {}True {}| {}False \newline{}
 {}data {}Maybe {}a {}= {}Just {}a {}| {}Nothing}

Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are nullary constructors whereas {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a unary constructor. The inhabitants of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} form the following domain:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/25.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{25}
\end{minipage}\vspace{0.75cm}

Remember that {\mbox{\bot}} is added as least element to the set of values {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we say that the type is {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries lifted}\myfootnote{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}The term {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lifted}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is somewhat overloaded, see also \myfnlref{473}{Unboxed Types}.}. A domain whose poset diagram consists of only one level is called a {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries flat domain}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We already know that {$Integer$} is a flat domain as well, it\textquotesingle{}s just that the level above {\mbox{\bot}} has an infinite number of elements.

What are the possible inhabitants of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? They are
\\

\TemplateSpaceIndent{ {}{\mbox{\bot}}, {}Nothing, {}Just {}{\mbox{\bot}}, {}Just {}True, {}Just {}False}

So the general rule is to insert all possible values into the unary (binary, ternary, ...) constructors as usual but without forgetting {\mbox{\bot}}. Concerning the partial order, we remember the condition that the constructors should be monotone just as any other functions. Hence, the partial order looks as follows

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/26.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{26}
\end{minipage}\vspace{0.75cm}

But there is something to ponder: why isn\textquotesingle{}t {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just {\mbox{\bot}} = {\mbox{\bot}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? I mean \symbol{34}Just undefined\symbol{34} is as undefined as \symbol{34}undefined\symbol{34}! The answer is that this depends on whether the language is strict or non-{}strict. In a strict language, all constructors are strict by default, i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just {\mbox{\bot}} = {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the diagram would reduce to

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/27.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{27}
\end{minipage}\vspace{0.75cm}

As a consequence, all domains of a strict language are flat.

But in a non-{}strict language like Haskell, constructors are non-{}strict by default and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a new element different from {\mbox{\bot}}, because we can write a function that reacts differently to them:
\\

\TemplateSpaceIndent{ {}f {}(Just {}_) {}= {}4 \newline{}
 {}f {}Nothing {} {}= {}7}

As {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ignores the contents of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f (Just {\mbox{\bot}})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 4}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily {\mbox{\bot}}} (intuitively, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is passed {\mbox{\bot}},
it will not be possible to tell whether to take the Just branch or the
Nothing branch, and so {\mbox{\bot}} will be returned).

This gives rise to {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries non-{}flat domains}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as depicted in the former graph. What should these be of use for? In the context of \mylref{527}{Graph Reduction}, we may also think of {\mbox{\bot}} as an unevaluated expression. Thus, a value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x = Just {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} may tell us that a computation (say a lookup) succeeded and is not {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but that the true value has not been evaluated yet. If we are only interested in whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} succeeded or not, this actually saves us from the unnecessary work to calculate whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as would be the case in a flat domain. The full impact of non-{}flat domains will be explored in the chapter \mylref{549}{Laziness}, but one prominent example are infinite lists treated in section \mylref{490}{Recursive Data Types and Infinite Lists}.
\subsection{Pattern Matching}
\label{489}
In the section \mylref{484}{Strict Functions}, we proved that some functions are strict by inspecting their results on different inputs and insisting on monotonicity. However, in the light of algebraic data types, there can only be one source of strictness in real life Haskell: pattern matching, i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expressions. The general rule is that pattern matching on a constructor of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}type will force the function to be strict, i.e. matching {\mbox{\bot}} against a constructor always gives {\mbox{\bot}}. For illustration, consider
\\

\TemplateSpaceIndent{ {}const1 {}_ {}= {}1}

\\

\TemplateSpaceIndent{ {}const1\textquotesingle{} {}True {} {}= {}1 \newline{}
 {}const1\textquotesingle{} {}False {}= {}1}

The first function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const1}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is non-{}strict whereas the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const1\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict because it decides whether the argument is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} although its result doesn\textquotesingle{}t depend on that. Pattern matching in function arguments is equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}expressions
\\

\TemplateSpaceIndent{ {}const1\textquotesingle{} {}x {}= {}case {}x {}of \newline{}
 {} {} {} {}True {} {}-{}>{} {}1 \newline{}
 {} {} {} {}False {}-{}>{} {}1}

which similarly impose strictness on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: if the argument to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} expression denotes {\mbox{\bot}} the whole {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will denote {\mbox{\bot}}, too. However, the argument for case expressions may be more involved as in
\\

\TemplateSpaceIndent{ {}foo {}k {}table {}= {}case {}lookup {}(\symbol{34}Foo.\symbol{34} {}++ {}k) {}table {}of \newline{}
 {} {} {}Nothing {}-{}>{} {}... \newline{}
 {} {} {}Just {}x {} {}-{}>{} {}...}

and it can be difficult to track what this means for the strictness of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

An example for multiple pattern matches in the equational style is the logical {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {}or {}True {}_ {}= {}True \newline{}
 {}or {}_ {}True {}= {}True \newline{}
 {}or {}_ {}_ {} {} {} {}= {}False}

Note that equations are matched from top to bottom. The first equation for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} matches the first argument against {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict in its first argument. The same equation also tells us that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or True x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is non-{}strict in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If the first argument is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then the second will be matched against {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or False x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that while wildcards are a general sign of non-{}strictness, this depends on their position with respect to the pattern matches against constructors.
\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Give an equivalent discussion for the logical {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily and}
\item{} \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Can the logical \symbol{34}excluded or\symbol{34} ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) be non-{}strict in one of its arguments if we know the other?
\end{myenumerate}}

There is another form of pattern matching, namely {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries irrefutable patterns}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} marked with a tilde {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \~{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Their use is demonstrated by
\\

\TemplateSpaceIndent{ {}f {}\~{}(Just {}x) {}= {}1 \newline{}
 {}f {}Nothing {} {} {}= {}2}

An irrefutable pattern always succeeds (hence the name) resulting in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f {\mbox{\bot}} = 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But when changing the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to
\\

\TemplateSpaceIndent{ {}f {}\~{}(Just {}x) {}= {}x {}+ {}1 \newline{}
 {}f {}Nothing {} {} {}= {}2 {} {} {} {} {} {}-{}-{} {}this {}line {}may {}as {}well {}be {}left {}away}

we have
\\

\TemplateSpaceIndent{ {}f {}{\mbox{\bot}} {} {} {} {} {} {} {}= {}{\mbox{\bot}} {}+ {}1 {}= {}{\mbox{\bot}} \newline{}
 {}f {}(Just {}1) {}= {}1 {}+ {}1 {}= {}2}

If the argument matches the pattern, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be bound to the corresponding value. Otherwise, any variable like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be bound to {\mbox{\bot}}.

By default, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} bindings are non-{}strict, too:
\\

\TemplateSpaceIndent{ {}foo {}key {}map {}= {}let {}Just {}x {}= {}lookup {}key {}map {}in {}...}

is equivalent to
\\

\TemplateSpaceIndent{ {}foo {}key {}map {}= {}case {}(lookup {}key {}map) {}of {}\~{}(Just {}x) {}-{}>{} {}...}

\LaTeXExercisesTemplate{\begin{myenumerate}\item{} The \myhref{http://www.haskell.org/onlinereport/}{Haskell language definition} gives the detailed \myhref{http://www.haskell.org/onlinereport/exps.html\#case-semantics}{semantics of pattern matching} and you should now be able to understand it. So go on and have a look!
\item{} Consider a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}ean arguments with the following properties:
\\

\TemplateSpaceIndent{ {}or {}{\mbox{\bot}} {} {} {} {} {}{\mbox{\bot}} {} {} {} {}= {}{\mbox{\bot}} \newline{}
 {}or {}True {} {}{\mbox{\bot}} {} {} {} {}= {}True \newline{}
 {}or {}{\mbox{\bot}} {} {} {} {} {}True {}= {}True \newline{}
 {} \newline{}
 {}or {}False {}y {} {} {} {} {}= {}y \newline{}
 {}or {}x {}False {} {} {} {} {}= {}x}

This function is another example of joint strictness, but a much sharper one: the result is only {\mbox{\bot}} if both arguments are (at least when we restrict the arguments to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\mbox{\bot}}). Can such a function be implemented in Haskell?

\end{myenumerate}}
\subsection{Recursive Data Types and Infinite Lists}
\label{490}
The case of recursive data structures is not very different from the base case. Consider a list of unit values
\\

\TemplateSpaceIndent{ {}data {}List {}= {}{[}{]} {}| {}() {}: {}List}

Though this seems like a simple type, there is a surprisingly complicated number of ways you can fit {\bot} in here and there, and therefore the corresponding graph is complicated. The bottom of this graph is shown below. An ellipsis indicates that the graph continues along this direction. A red ellipse behind an element indicates that this is the end of a chain; the element is in normal form.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/28.\SVGExtension}
\end{center}
\raggedright{}\myfigurewithoutcaption{28}
\end{minipage}\vspace{0.75cm}

and so on. But now, there are also chains of infinite length like

\begin{center}
{\ttfamily {\mbox{\bot}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {\sqsubseteq} ():{\mbox{\bot}} {\sqsubseteq} ():():{\mbox{\bot}} {\sqsubseteq} ...}
\end{center}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

This causes us some trouble as we noted in section \mylref{480}{Convergence} that every monotone sequence must have a least upper bound. This is only possible if we allow for {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries infinite lists}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Infinite lists (sometimes also called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape streams}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) turn out to be very useful and their manifold use cases are treated in full detail in chapter \mylref{549}{Laziness}. Here, we will show what their denotational semantics should be and how to reason about them. Note that while the following discussion is restricted to lists only, it easily generalizes to arbitrary recursive data structures like trees.

In the following, we will switch back to the standard list type
\\

\TemplateSpaceIndent{ {}data {}{[}a{]} {}= {}{[}{]} {}| {}a {}: {}{[}a{]}}

to close the syntactic gap to practical programming with infinite lists in Haskell.
\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Draw the non-{}flat domain corresponding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Bool{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} How is the graphic to be changed for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Integer{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?
\end{myenumerate}}

Calculating with infinite lists is best shown by example. For that, we need an infinite list
\\

\TemplateSpaceIndent{ {}ones {}:: {}{[}Integer{]} \newline{}
 {}ones {}= {}1 {}: {}ones}

When applying the fixed point iteration to this recursive definition, we see that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ones}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ought to be the supremum of

\begin{center}
{\ttfamily {\mbox{\bot}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {\sqsubseteq} 1:{\mbox{\bot}} {\sqsubseteq} 1:1:{\mbox{\bot}} {\sqsubseteq} 1:1:1:{\mbox{\bot}} {\sqsubseteq}...}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf},
\end{center}

that is an infinite list of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Let\textquotesingle{}s try to understand what {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take 2 ones}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should be. With the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\\

\TemplateSpaceIndent{ {}take {}0 {}_ {} {} {} {} {} {}= {}{[}{]} \newline{}
 {}take {}n {}(x:xs) {}= {}x {}: {}take {}(n-{}1) {}xs \newline{}
 {}take {}n {}{[}{]} {} {} {} {} {}= {}{[}{]}}

we can apply {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to elements of the approximating sequence of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ones}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {}take {}2 {}{\mbox{\bot}} {} {} {} {} {} {} {}==>{} {} {}{\mbox{\bot}} \newline{}
 {}take {}2 {}(1:{\mbox{\bot}}) {} {} {}==>{} {} {}1 {}: {}take {}1 {}{\mbox{\bot}} {} {} {} {} {} {}==>{} {} {}1 {}: {}{\mbox{\bot}} \newline{}
 {}take {}2 {}(1:1:{\mbox{\bot}}) {}==>{} {} {}1 {}: {}take {}1 {}(1:{\mbox{\bot}}) {} {}==>{} {} {}1 {}: {}1 {}: {}take {}0 {}{\mbox{\bot}} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}==>{} {} {}1 {}: {}1 {}: {}{[}{]}}

We see that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take 2 (1:1:1:{\mbox{\bot}})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so on must be the same as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take 2 (1:1:{\mbox{\bot}}) = 1:1:{[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1:1:{[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is fully defined. Taking the supremum on both the sequence of input lists and the resulting sequence of output lists, we can conclude
\\

\TemplateSpaceIndent{ {}take {}2 {}ones {}= {}1:1:{[}{]}}

Thus, taking the first two elements of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ones}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} behaves exactly as expected.

Generalizing from the example, we see that reasoning about infinite lists involves considering the approximating sequence and passing to the supremum, the truly infinite list. Still, we did not give it a firm ground. The solution is to identify the infinite list with the whole chain itself and to formally add it as a new element to our domain: the infinite list {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the sequence of its approximations. Of course, any infinite list like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ones}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be compactly depicted as
\\

\TemplateSpaceIndent{ {}ones {}= {}1 {}: {}1 {}: {}1 {}: {}1 {}: {}...}

what simply means that
\\

\TemplateSpaceIndent{ {}ones {}= {}({\mbox{\bot}} {}{\sqsubseteq} {}1:{\mbox{\bot}} {}{\sqsubseteq} {}1:1:{\mbox{\bot}} {}{\sqsubseteq} {}...)}

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Of course, there are more interesting infinite lists than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ones}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Can you write recursive definition in Haskell for
\begin{myenumerate}
\item{} the natural numbers {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily nats = 1:2:3:4:...}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a cycle like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily cycle123 = 1:2:3: 1:2:3 : ...}
\end{myenumerate}

\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Look at the Prelude functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily repeat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily iterate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and try to solve the previous exercise with their help.
\item{} Use the example from the text to find the value the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily drop 3 nats}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} denotes.
\item{} Assume that the work in a strict setting, i.e. that the domain of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Integer{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is flat. What does the domain look like? What about infinite lists? What value does {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ones}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} denote?
\end{myenumerate}}

What about the puzzle of how a computer can calculate with infinite lists? It takes an infinite amount of time, after all? Well, this is true. But the trick is that the computer may well finish in a finite amount of time if it only considers a finite part of the infinite list. So, infinite lists should be thought of as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape potentially}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} infinite lists. In general, intermediate results take the form of infinite lists whereas the final value is finite. It is one of the benefits of denotational semantics that one treat the intermediate infinite data structures as truly infinite when reasoning about program correctness.
\LaTeXExercisesTemplate{\begin{myenumerate}\item{} To demonstrate the use of infinite lists as intermediate results, show that
\TemplatePreformat{take {}3 {}(map {}(+1) {}nats) {}= {}take {}3 {}(tail {}nats)}
by first calculating the infinite sequence corresponding to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map (+1) nats}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Of course, we should give an example where the final result indeed takes an infinite time. So, what does
\\

\TemplateSpaceIndent{ {}filter {}(<{} {}5) {}nats}

denote?
\item{} Sometimes, one can replace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily takeWhile}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the previous exercise. Why only sometimes and what happens if one does?

\end{myenumerate}}

As a last note, the construction of a recursive domain can be done by a fixed point iteration similar to recursive definition for functions. Yet, the problem of infinite chains has to be tackled explicitly. See the literature in \mylref{496}{External Links} for a formal construction.
\subsection{Haskell specialities: Strictness Annotations and Newtypes}
\label{491}
Haskell offers a way to change the default non-{}strict behavior of data type constructors by {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape strictness annotations}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In a data declaration like
\\

\TemplateSpaceIndent{ {}data {}Maybe\textquotesingle{} {}a {}= {}Just\textquotesingle{} {}!a {}| {}Nothing\textquotesingle{}}

an exclamation point {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily !}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} before an argument of the constructor specifies that it should be strict in this argument. Hence we have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just\textquotesingle{} {\mbox{\bot}} = {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in our example. Further information may be found in chapter \mylref{569}{Strictness}.

In some cases, one wants to rename a data type, like in
\\

\TemplateSpaceIndent{ {}data {}Couldbe {}a {}= {}Couldbe {}(Maybe {}a)}

However, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} contains both the elements {\ttfamily {\mbox{\bot}}} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe {\mbox{\bot}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. With the help of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily newtype}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition
\\

\TemplateSpaceIndent{ {}newtype {}Couldbe {}a {}= {}Couldbe {}(Maybe {}a)}

we can arrange that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is semantically equal to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but different during type checking. In particular, the constructor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict. Yet, this definition is subtly different from
\\

\TemplateSpaceIndent{ {}data {}Couldbe\textquotesingle{} {}a {}= {}Couldbe\textquotesingle{} {}!(Maybe {}a)}

To explain how, consider the functions
\\

\TemplateSpaceIndent{ {}f {} {}(Couldbe {} {}m) {}= {}42 \newline{}
 {}f\textquotesingle{} {}(Couldbe\textquotesingle{} {}m) {}= {}42}

Here, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f\textquotesingle{} {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will cause the pattern match on the constructor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} fail with the effect that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f\textquotesingle{} {\mbox{\bot}} = {\mbox{\bot}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But for the newtype, the match on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will never fail, we get {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f {\mbox{\bot}} = 42}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In a sense, the difference can be stated as:
\begin{myitemize}
\item{} for the strict case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe\textquotesingle{} {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a synonym for {\mbox{\bot}}
\item{} for the newtype, {\mbox{\bot}} is a synonym for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Couldbe {\mbox{\bot}}}
\end{myitemize}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
with the agreement that a pattern match on {\mbox{\bot}} fails and that a match on {\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape Constructor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {\mbox{\bot}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not.

Newtypes may also be used to define recursive types. An example is the alternate definition of the list type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\\

\TemplateSpaceIndent{ {} {}newtype {}List {}a {}= {}In {}(Maybe {}(a, {}List {}a))}

Again, the point is that the constructor {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily In}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does not introduce an additional lifting with {\mbox{\bot}}.
\section{Other Selected Topics}
\label{492}\subsection{Abstract Interpretation and Strictness Analysis}
\label{493}
As lazy evaluation means a constant computational overhead, a Haskell compiler may want to discover where inherent non-{}strictness is not needed at all which allows it to drop the overhead at these particular places. To that extent, the compiler performs {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries strictness analysis}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} just like we proved in some functions to be strict section \mylref{484}{Strict Functions}. Of course, details of strictness depending on the exact values of arguments like in our example {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily cond}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are out of scope (this is in general undecidable). But the compiler may try to find approximate strictness information and this works in many common cases like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily power2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Now, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries abstract interpretation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a formidable idea to reason about strictness: ...

\LaTeXNullTemplate{}

For more about strictness analysis, see the \myhref{http://haskell.org/haskellwiki/Research_papers/Compilation\#Strictness}{research papers about strictness analysis on the Haskell wiki}.
\subsection{Interpretation as Powersets}
\label{494}
So far, we have introduced {\mbox{\bot}} and the semantic approximation order {\sqsubseteq} abstractly by specifying their properties. However, both as well as any inhabitants of a data type like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just {\mbox{\bot}}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be interpreted as ordinary sets. This is called the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries powerset construction}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. NOTE: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape i\textquotesingle{}m not sure whether this is really true. Someone how knows, please correct this.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

The idea is to think of {\mbox{\bot}} as the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape set of all possible values}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and that a computation retrieves more information this by choosing a subset. In a sense, the denotation of a value starts its life as the set of all values which will be reduced by computations until there remains a set with a single element only.

As an example, consider {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} where the domain looks like
\\

\TemplateSpaceIndent{ {}\{True\} {} {}\{False\} \newline{}
 {} {} {} {}\textbackslash{} {} {} {} {} {} {}/ \newline{}
 {} {} {} {} {}\textbackslash{} {} {} {} {}/ \newline{}
 {} {} {} {}{\mbox{\bot}} {}= {}\{True, {}False\}}

The values {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are encoded as the singleton sets {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{True\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{False\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\mbox{\bot}} is the set of all possible values.

Another example is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe Bool}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {} {}\{Just {}True\} {} {} {}\{Just {}False\} \newline{}
 {} {} {} {} {} {} {} {} {} {}\textbackslash{} {} {} {} {} {}/ \newline{}
 {} {} {} {} {} {} {} {} {} {} {}\textbackslash{} {} {} {}/ \newline{}
 {}\{Nothing\} {}\{Just {}True, {}Just {}False\} \newline{}
 {} {} {} {} {} {}\textbackslash{} {} {} {} {} {} {}/ \newline{}
 {} {} {} {} {} {} {}\textbackslash{} {} {} {} {}/ \newline{}
 {} {}{\mbox{\bot}} {}= {}\{Nothing, {}Just {}True, {}Just {}False\}}

We see that the semantic approximation order is equivalent to set inclusion, but with arguments switched:

\begin{center}
\begin{equation*}x\sqsubseteq y \iff x \supseteq y\end{equation*}
\end{center}

This approach can be used to give a semantics to exceptions in Haskell\myfootnote{S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. \myfnhref{http://research.microsoft.com/~simonpj/Papers/imprecise-exn.htm}{A semantics for imprecise exceptions.} In Programming Languages Design and Implementation. ACM press, May 1999.}.
\subsection{Naïve Sets are unsuited for Recursive Data Types}
\label{495}
In the section \mylref{473}{What to choose as Semantic Domain?}, we argued that taking simple sets as denotation for types doesn\textquotesingle{}t work well with partial functions. In the light of recursive data types, things become even worse as John C. Reynolds showed in his paper {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Polymorphism is not set-{}theoretic}\myfootnote{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}John C. Reynolds. {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Polymorphism is not set-{}theoretic}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. INRIA Rapports de Recherche No. 296. May 1984.}.

Reynolds actually considers the recursive type
\\

\TemplateSpaceIndent{ {}newtype {}U {}= {}In {}((U {}-{}>{} {}Bool) {}-{}>{} {}Bool)}

Interpreting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the set {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \{True,False\}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the function type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A -{}>{} B}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as the set of functions from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily B}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} cannot denote a set. This is because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (A -{}>{} Bool)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the set of subsets (powerset) of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which, due to a diagonal argument analogous to Cantor\textquotesingle{}s argument that there are \symbol{34}more\symbol{34} real numbers than natural ones, always has a bigger cardinality than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Thus, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (U -{}>{} Bool) -{}>{} Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has an even bigger cardinality than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and there is no way for it to be isomorphic to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Hence, the set {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must not exist, a contradiction.

In our world of partial functions, this argument fails. Here, an element of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is given by a sequence of approximations taken from the sequence of domains

\begin{center}
{\ttfamily {\mbox{\bot}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily , ({\mbox{\bot}} -{}>{} Bool) -{}>{} Bool, ((({\mbox{\bot}} -{}>{} Bool) -{}>{} Bool) -{}>{} Bool) -{}>{} Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so on
\end{center}

where {\mbox{\bot}} denotes the domain with the single inhabitant {\mbox{\bot}}. While the author of this text admittedly has no clue on what such a thing should mean, the constructor gives a perfectly well defined object for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We see that the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (U -{}>{} Bool) -{}>{} Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} merely consists of shifted approximating sequences which means that it is isomorphic to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

As a last note, Reynolds actually constructs an equivalent of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the second order polymorphic lambda calculus. There, it happens that all terms have a normal form, i.e. there are only total functions when we do not include a primitive recursion operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix :: (a -{}>{} a) -{}>{} a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Thus, there is no true need for partial functions and {\mbox{\bot}}, yet a naïve set theoretic semantics fails. We can only speculate that this has to do with the fact that not every mathematical function is computable. In particular, the set of computable functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A -{}>{} Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should not have a bigger cardinality than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXNullTemplate{}
\section{External Links}
\label{496}
\myhref{https://en.wikipedia.org/wiki/Denotational\%20semantics}{w:Denotational semantics}

Online books about Denotational Semantics
\begin{myitemize}
\item{} Denotational Semantics. A Methodology for Language Development
 . Allyn and Bacon
 , , 1986

\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Category theory}

\myminitoc
\label{497}

\label{498}
\LaTeXNullTemplate{}

This article attempts to give an overview of category theory, in so far as it applies to Haskell. To this end, Haskell code will be given alongside the mathematical definitions. Absolute rigour is not followed; in its place, we seek to give the reader an intuitive feel for what the concepts of category theory are and how they relate to Haskell.
\section{Introduction to categories}
\label{499}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/29.png}
\end{center}
\raggedright{}\myfigurewithcaption{29}{A simple category, with three objects {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape B}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, three identity morphisms {id_A}, {id_B} and {id_C}, and two other morphisms {$f : C \to B$} and {$g : A \to B$}. The third element (the specification of how to compose the morphisms) is not shown.}
\end{minipage}\vspace{0.75cm}

A category is, in essence, a simple collection. It has three components:

\begin{myitemize}
\item{} A collection of {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries objects}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} A collection of {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries morphisms}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, each of which ties two objects (a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape source object}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape target object}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) together. (These are sometimes called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries arrows}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but we avoid that term here as it has other connotations in Haskell.) If {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a morphism with source object {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and target object {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape B}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we write {$f : A \to B$}.
\item{} A notion of {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries composition}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of these morphisms. If {$g : A \to B$} and {$f : B \to C$} are two morphisms, they can be composed, resulting in a morphism {$f \circ g : A \to C$}.
\end{myitemize}

Lots of things form categories. For example, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the category of all sets with morphisms as standard functions and composition being standard function composition. (Category names are often typeset in bold face.) {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Grp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the category of all groups with morphisms as functions that preserve group operations (the group homomorphisms), i.e. for any two groups, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape G}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with operation {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape *}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape H}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with operation {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape ·}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a function {$f : G \to H$} is a morphism in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Grp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if:

\begin{myquote}
\item{} \begin{equation*}f(u * v) = f(u) \cdot f(v)\end{equation*}
\end{myquote}

It may seem that morphisms are always functions, but this needn\textquotesingle{}t be the case. For example, any partial order ({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape P}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\leq}) defines a category where the objects are the elements of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape P}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and there is a morphism between any two objects {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape B}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} iff {$A \leq B$}. Moreover, there are allowed to be multiple morphisms with the same source and target objects; using the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} example, {\sin} and {\cos} are both functions with source object {\mathbb{R}} and target object {$[-1,1]$}, but they’re most certainly not the same morphism!
\subsection{Category laws}
\label{500}

There are three laws that categories need to follow. Firstly, and most simply, the composition of morphisms needs to be {\bfseries {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbi.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbi.ttf}\bfseries \itshape associative}}{\itshape }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Symbolically,

\begin{myquote}
\item{} \begin{equation*}f \circ (g \circ h) = (f \circ g) \circ h\end{equation*}
\end{myquote}

Morphisms are applied right to left in Haskell and most commonly in mathematics, so with {$f \circ g$} first {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is applied, then {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Secondly, the category needs to be {\bfseries {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbi.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbi.ttf}\bfseries \itshape closed}}{\itshape }{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} under the composition operation. So if {$f : B \to C$} and {$g : A \to B$}, then there must be some morphism {$h : A \to C$} in the category such that {$h = f \circ g$}. We can see how this works using the following category:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/30.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{30}
\end{minipage}\vspace{0.75cm}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are both morphisms so we must be able to compose them and get another morphism in the category. So which is the morphism {$f \circ g$}? The only option is {id_A}. Similarly, we see that {$g \circ f = \mathit{id}_B$}.

Lastly, given a category {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} there needs to be for every object {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} an {\bfseries {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbi.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbi.ttf}\bfseries \itshape identity}}{\itshape { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape morphism}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {$\mathit{id}_A : A \to A$} that is an identity of composition with other morphisms. Put precisely, for every morphism {$g : A \to B$}:

\begin{myquote}
\item{} \begin{equation*}g \circ \mathit{id}_A = \mathit{id}_B \circ g = g\end{equation*}
\end{myquote}

\subsection{{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the Haskell category}
\label{501}

The main category we\textquotesingle{}ll be concerning ourselves with in this article is {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which treats Haskell types as objects and Haskell functions as morphisms and uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for composition: a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f :: A -{}>{} B}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for types {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily B}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a morphism in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We can check the first and second law easily: we know {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an associative function, and clearly, for any {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f . g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is another function. In {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the identity morphism is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and we have trivially:

\begin{myquote}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id . f = f . id = f}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\myfootnote{Actually, there is a subtlety here: because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a lazy function, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we have that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id . f = \textbackslash{}_ -{}>{} \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now, while this may seem equivalent to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for all intents and purposes, you can actually tell them apart using the strictifying function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily seq}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, meaning that the last category law is broken. We can define a new strict composition function, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f .! g = ((.) \${}! f) \${}! g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that makes {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a category. We proceed by using the normal {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, though, and attribute any discrepancies to the fact that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily seq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} breaks an awful lot of the nice language properties anyway.} This isn\textquotesingle{}t an exact translation of the law above, though; we\textquotesingle{}re missing subscripts. The function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in Haskell is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape polymorphic}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — it can take many different types for its domain and range, or, in category-{}speak, can have many different source and target objects. But morphisms in category theory are by definition {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monomorphic}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — each morphism has one specific source object and one specific target object. A polymorphic Haskell function can be made monomorphic by specifying its type ({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape instantiating}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a monomorphic type), so it would be more precise if we said that the identity morphism from {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on a type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (id :: A -{}>{} A)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. With this in mind, the above law would be rewritten as:

\begin{myquote}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (id :: B -{}>{} B) . f = f . (id :: A -{}>{} A) = f}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

However, for simplicity, we will ignore this distinction when the meaning is clear.

\LaTeXExercisesTemplate{\begin{myitemize}
\item{} As was mentioned, any partial order ({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape P}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\leq}) is a category with objects as the elements of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape P}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a morphism between elements {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} iff a {\leq} b. Which of the above laws guarantees the transitivity of {\leq}?
\item{} (Harder.) If we add another morphism to the above example, it fails to be a category. Why? Hint: think about associativity of the composition operation.

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/31.png}
\end{center}
\raggedright{}\myfigurewithoutcaption{31}
\end{minipage}\vspace{0.75cm}

\end{myitemize}}
\section{Functors}
\label{502}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/32.png}
\end{center}
\raggedright{}\myfigurewithcaption{32}{A functor between two categories, {\mathbf{C}} and {\mathbf{D}}. Of note is that the objects {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape B}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} both get mapped to the same object in {\mathbf{D}}, and that therefore {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes a morphism with the same source and target object (but isn\textquotesingle{}t necessarily an identity), and {id_A} and {id_B} become the same morphism. The arrows showing the mapping of objects are shown in a dotted, pale olive. The arrows showing the mapping of morphisms are shown in a dotted, pale blue.}
\end{minipage}\vspace{0.75cm}

So we have some categories which have objects and morphisms that relate our objects together. The next Big Topic in category theory is the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries functor}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which relates categories together. A functor is essentially a transformation between categories, so given categories {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape D}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, a functor {$F : C \to D$}:

\begin{myitemize}
\item{} Maps any object {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {$F(A)$}, in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape D}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} Maps morphisms {$f : A \to B$} in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {$F(f) : F(A) \to F(B)$} in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape D}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

One of the canonical examples of a functor is the forgetful functor {$\mathbf{Grp} \to \mathbf{Set}$} which maps groups to their underlying sets and group morphisms to the functions which behave the same but are defined on sets instead of groups. Another example is the power set functor {$\mathbf{Set} \to \mathbf{Set}$} which maps sets to their power sets and maps functions {$f : X \to Y$} to functions {$\mathcal{P}(X) \to \mathcal{P}(Y)$} which take inputs {$U \subseteq X$} and return {$f(U)$}, the image of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape U}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} under {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, defined by {$f(U) = \{ \, f(u) : u \in U \, \}$}. For any category {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can define a functor known as the identity functor on {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, or {$1_C : C \to C$}, that just maps objects to themselves and morphisms to themselves. This will turn out to be useful in the \mylref{507}{monad laws} section later on.

Once again there are a few axioms that functors have to obey. Firstly, given an identity morphism {id_A} on an object {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {$F(id_A)$} must be the identity morphism on {$F(A)$}, i.e.:

\begin{myquote}
\item{} \begin{equation*}F(id_A) = id_{F(A)}\end{equation*}
\end{myquote}

Secondly functors must distribute over morphism composition, i.e.

\begin{myquote}
\item{} \begin{equation*}F(f \circ g) = F(f) \circ F(g)\end{equation*}
\end{myquote}

\LaTeXExercisesTemplate{For the diagram given on the right, check these functor laws.}
\subsection{Functors on {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{503}
The Functor typeclass you have probably seen in Haskell does in fact tie in with the categorical notion of a functor. Remember that a functor has two parts: it maps objects in one category to objects in another and morphisms in the first category to morphisms in the second. Functors in Haskell are from {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape func}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape func}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the subcategory of {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} defined on just that functor\textquotesingle{}s types. E.g. the list functor goes from {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Lst}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Lst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the category containing only {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape list types}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that is, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}T{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for any type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The morphisms in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Lst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are functions defined on list types, that is, functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}T{]} -{}>{} {[}U{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for types {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily U}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. How does this tie into the Haskell typeclass Functor? Recall its definition:
\\

\TemplateSpaceIndent{ {}class {}Functor {}(f {}:: {}* {}-{}>{} {}*) {}where \newline{}
 {} {} {}fmap {}:: {}(a {}-{}>{} {}b) {}-{}>{} {}f {}a {}-{}>{} {}f {}b}

Let\textquotesingle{}s have a sample instance, too:
\\

\TemplateSpaceIndent{ {}instance {}Functor {}Maybe {}where \newline{}
 {} {} {}fmap {}f {}(Just {}x) {}= {}Just {}(f {}x) \newline{}
 {} {} {}fmap {}_ {}Nothing {} {}= {}Nothing}

Here\textquotesingle{}s the key part: the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape type constructor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Maybe takes any type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a new type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe T}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Also, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} restricted to Maybe types takes a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe a -{}>{} Maybe b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But that\textquotesingle{}s it! We\textquotesingle{}ve defined two parts, something that takes objects in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to objects in another category (that of Maybe types and functions defined on Maybe types), and something that takes morphisms in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to morphisms in this category. So Maybe is a functor.

A useful intuition regarding Haskell functors is that they represent types that can be mapped over. This could be a list or a Maybe, but also more complicated structures like trees. A function that does some mapping could be written using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then any functor structure could be passed into this function. E.g. you could write a generic function that covers all of Data.List.map, Data.Map.map, Data.Array.IArray.amap, and so on.

What about the functor axioms? The polymorphic function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes the place of {id_A} for any {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so the first law states:
\\

\TemplateSpaceIndent{ {}fmap {}id {}= {}id}

With our above intuition in mind, this states that mapping over a structure doing nothing to each element is equivalent to doing nothing overall. Secondly, morphism composition is just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (.)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so
\\

\TemplateSpaceIndent{ {}fmap {}(f {}. {}g) {}= {}fmap {}f {}. {}fmap {}g}

This second law is very useful in practice. Picturing the functor as a list or similar container, the right-{}hand side is a two-{}pass algorithm: we map over the structure, performing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then map over it again, performing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The functor axioms guarantee we can transform this into a single-{}pass algorithm that performs {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f . g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is a process known as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape fusion}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\LaTeXExercisesTemplate{Check the laws for the Maybe and list functors.}
\subsection{Translating categorical concepts into Haskell}
\label{504}

Functors provide a good example of how category theory gets translated into Haskell. The key points to remember are that:

\begin{myitemize}
\item{} We work in the category {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Hask}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and its subcategories.
\item{} Objects are types.
\item{} Morphisms are functions.
\item{} Things that take a type and return another type are type constructors.
\item{} Things that take a function and return another function are higher-{}order functions.
\item{} Typeclasses, along with the polymorphism they provide, make a nice way of capturing the fact that in category theory things are often defined over a number of objects at once.
\end{myitemize}

\section{Monads}
\label{505}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/33.png}
\end{center}
\raggedright{}\myfigurewithcaption{33}{{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the two morphisms that must exist for every object for a given monad.}
\end{minipage}\vspace{0.75cm}

Monads are obviously an extremely important concept in Haskell, and in fact they originally came from category theory. A {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape monad}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a special type of functor, from a category to that same category, that supports some additional structure. So, down to definitions. A monad is a functor {$M : C \to C$}, along with two morphisms\myfootnote{Experienced category theorists will notice that we\textquotesingle{}re simplifying things a bit here; instead of presenting {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as natural transformations, we treat them explicitly as morphisms, and require naturality as extra axioms alongside the \myfnlref{510}{standard monad laws (laws 3 and 4)}. The reasoning is simplicity; we are not trying to teach category theory as a whole, simply give a categorical background to some of the structures in Haskell. You may also notice that we are giving these morphisms names suggestive of their Haskell analogues, because the names {η} and {μ} don’t provide much intuition.} for every object {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape X}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape C}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{myitemize}
\item{} {$\mathit{unit}^M_X : X \to M(X)$}
\item{} {$\mathit{join}^M_X : M(M(X)) \to M(X)$}
\end{myitemize}

When the monad under discussion is obvious, we’ll leave out the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape M}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} superscript for these functions and just talk about {unit_X} and {join_X} for some {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape X}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Let’s see how this translates to the Haskell typeclass Monad, then.
\\

\TemplateSpaceIndent{ {}class {}Functor {}m {}=>{} {}Monad {}m {}where \newline{}
 {} {} {}return {}:: {}a {}-{}>{} {}m {}a \newline{}
 {} {} {}(>{}>{}=) {} {}:: {}m {}a {}-{}>{} {}(a {}-{}>{} {}m {}b) {}-{}>{} {}m {}b}

The class constraint of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Functor m}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ensures that we already have the functor structure: a mapping of objects and of morphisms. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the (polymorphic) analogue to {unit_X} for any {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape X}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But we have a problem. Although {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}’s type looks quite similar to that of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unit}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; the other function, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, often called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape bind}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, bears no resemblance to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. There is however another monad function, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join :: Monad m =>{} m (m a) -{}>{} m a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, that looks quite similar. Indeed, we can recover {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from each other:
\\

\TemplateSpaceIndent{ {}join {}:: {}Monad {}m {}=>{} {}m {}(m {}a) {}-{}>{} {}m {}a \newline{}
 {}join {}x {}= {}x {}>{}>{}= {}id \newline{}
 {} \newline{}
 {}(>{}>{}=) {}:: {}Monad {}m {}=>{} {}m {}a {}-{}>{} {}(a {}-{}>{} {}m {}b) {}-{}>{} {}m {}b \newline{}
 {}x {}>{}>{}= {}f {}= {}join {}(fmap {}f {}x)}

So specifying a monad’s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is equivalent to specifying its {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It just turns out that the normal way of defining a monad in category theory is to give {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, whereas Haskell programmers like to give {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.\myfootnote{This is perhaps due to the fact that Haskell programmers like to think of monads as a way of sequencing computations with a common feature, whereas in category theory the container aspect of the various structures is emphasised. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pertains naturally to containers (squashing two layers of a container down into one), but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the natural sequencing operation (do something, feeding its results into something else).} Often, the categorical way makes more sense. Any time you have some kind of structure {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape M}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a natural way of taking any object {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape X}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into {$M(X)$}, as well as a way of taking {$M(M(X))$} into {$M(X)$}, you probably have a monad. We can see this in the following example section.
\subsection{Example: the powerset functor is also a monad}
\label{506}
The power set functor {$P : \mathbf{Set} \to \mathbf{Set}$} described above forms a monad. For any set {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you have a {$\mathit{unit}_S(x) = \{x\}$}, mapping elements to their singleton set. Note that each of these singleton sets are trivially a subset of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so {unit_S} returns elements of the powerset of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, as is required. Also, you can define a function {join_S} as follows: we receive an input {$L \in \mathcal{P}(\mathcal{P}(S))$}. This is:

\begin{myitemize}
\item{} A member of the powerset of the powerset of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} So a member of the set of all subsets of the set of all subsets of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} So a set of subsets of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}
\end{myitemize}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

We then return the union of these subsets, giving another subset of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Symbolically,

\begin{myquote}
\item{} \begin{equation*}\mathit{join}_S(L) = \bigcup L\end{equation*}
\end{myquote}

Hence {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape P}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a monad \myfootnote{If you can prove that certain laws hold, which we\textquotesingle{}ll explore in the next section.}.

In fact, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape P}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is almost equivalent to the list monad; with the exception that we\textquotesingle{}re talking lists instead of sets, they\textquotesingle{}re almost the same. Compare:

\begin{longtable}{|>{\RaggedRight}p{0.39688\linewidth}|>{\RaggedRight}p{0.54598\linewidth}|} \hline
\multicolumn{2}{|>{\RaggedRight}p{0.97143\linewidth}|}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Power set functor on {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Set}}}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Function type}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Definition}\endhead \hline \multicolumn{2}{|>{\RaggedRight}p{0.97143\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Given a set {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape S}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a morphism {$f : A \to B$}:}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$P(f) : \mathcal{P}(A) \to \mathcal{P}(B)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$(P(f))(S) = \{ f(a) : a \in S \}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\mathit{unit}_S : S \to \mathcal{P}(S)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\mathit{unit}_S(x) = \{ x \}$}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\mathit{join}_S : \mathcal{P}(\mathcal{P}(S)) \to \mathcal{P}(S)$}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} {$\mathit{join}_S(L) = \bigcup L$}\\ \hline \multicolumn{2}{|>{\RaggedRight}p{0.97143\linewidth}|}{{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} List monad from Haskell}}\\ \hline {\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Function type}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Definition}\\ \hline \multicolumn{2}{|>{\RaggedRight}p{0.97143\linewidth}|}{\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Given a type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f :: A -{}>{} B}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap f :: {[}A{]} -{}>{} {[}B{]}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap f xs = {[} f a | a <{}-{} xs {]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return :: T -{}>{} {[}T{]}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return x = {[}x{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join :: {[}{[}T{]}{]} -{}>{} {[}T{]}}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join xs = concat xs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\\ \hline
\end{longtable}

\section{The monad laws and their importance}
\label{507}
Just as functors had to obey certain axioms in order to be called functors, monads have a few of their own. We\textquotesingle{}ll first list them, then translate to Haskell, then see why they’re important.

Given a monad {$M : C \to C$} and a morphism {$f : A \to B$} for {$A, B \in C$},
\begin{myenumerate}
\item{} {$\mathrm{join} \circ M(\mathrm{join}) = \mathrm{join} \circ \mathrm{join}$}
\item{} {$\mathrm{join} \circ M(\mathrm{unit}) = \mathrm{join} \circ \mathrm{unit} = \mathrm{id}$}
\item{} {$\mathrm{unit} \circ f = M(f) \circ \mathrm{unit}$}
\item{} {$\mathrm{join} \circ M(M(f)) = M(f) \circ \mathrm{join}$}
\end{myenumerate}

By now, the Haskell translations should be hopefully self-{}explanatory:

\begin{myenumerate}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . fmap join = join . join}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . fmap return = join . return = id}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return . f = fmap f . return}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . fmap (fmap f) = fmap f . join}
\end{myenumerate}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

(Remember that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the part of a functor that acts on morphisms.) These laws seem a bit impenetrable at first, though. What on earth do these laws mean, and why should they be true for monads? Let’s explore the laws.
\subsection{The first law}
\label{508}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . fmap join = join . join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/34.png}
\end{center}
\raggedright{}\myfigurewithcaption{34}{A demonstration of the first law for lists. Remember that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily concat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the list monad.}
\end{minipage}\vspace{0.75cm}

In order to understand this law, we\textquotesingle{}ll first use the example of lists. The first law mentions two functions, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . fmap join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the left-{}hand side) and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the right-{}hand side). What will the types of these functions be? Remembering that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}’s type is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{[}a{]}{]} -{}>{} {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (we’re talking just about lists for now), the types are both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}\myhref{https://en.wikibooks.org/wiki/a}{a}{]} -{}>{} {[}a{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the fact that they’re the same is handy; after all, we’re trying to show they’re completely the same function!). So we have a list of lists of lists. The left-{}hand side, then, performs {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on this 3-{}layered list, then uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on the result. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just the familiar {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for lists, so we first map across each of the list of lists inside the top-{}level list, concatenating them down into a list each. So afterward, we have a list of lists, which we then run through {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In summary, we \textquotesingle{}enter\textquotesingle{} the top level, collapse the second and third levels down, then collapse this new level with the top level.

What about the right-{}hand side? We first run {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on our list of list of lists. Although this is three layers, and you normally apply a two-{}layered list to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, this will still work, because a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}\myhref{https://en.wikibooks.org/wiki/a}{a}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is just {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{[}b{]}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b = {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so in a sense, a three-{}layered list is just a two layered list, but rather than the last layer being \textquotesingle{}flat\textquotesingle{}, it is composed of another list. So if we apply our list of lists (of lists) to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it will flatten those outer two layers into one. As the second layer wasn\textquotesingle{}t flat but instead contained a third layer, we will still end up with a list of lists, which the other {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} flattens. Summing up, the left-{}hand side will flatten the inner two layers into a new layer, then flatten this with the outermost layer. The right-{}hand side will flatten the outer two layers, then flatten this with the innermost layer. These two operations should be equivalent. It’s sort of like a law of associativity for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also a monad, with
\\

\TemplateSpaceIndent{ {}return {}:: {}a {}-{}>{} {}Maybe {}a \newline{}
 {}return {}x {}= {}Just {}x \newline{}
 {} \newline{}
 {}join {}:: {}Maybe {}(Maybe {}a) {}-{}>{} {}Maybe {}a \newline{}
 {}join {}Nothing {} {} {} {} {} {} {} {} {}= {}Nothing \newline{}
 {}join {}(Just {}Nothing) {} {}= {}Nothing \newline{}
 {}join {}(Just {}(Just {}x)) {}= {}Just {}x}

So if we had a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape three}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}layered Maybe (i.e., it could be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just (Just Nothing)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just (Just (Just x))}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), the first law says that collapsing the inner two layers first, then that with the outer layer is exactly the same as collapsing the outer layers first, then that with the innermost layer.

\LaTeXExercisesTemplate{Verify that the list and Maybe monads do in fact obey this law with some examples to see precisely how the layer flattening works.}
\subsection{The second law}
\label{509}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . fmap return = join . return = id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

What about the second law, then? Again, we\textquotesingle{}ll start with the example of lists. Both functions mentioned in the second law are functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]} -{}>{} {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The left-{}hand side expresses a function that maps over the list, turning each element {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into its singleton list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}x{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so that at the end we’re left with a list of singleton lists. This two-{}layered list is flattened down into a single-{}layer list again using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The right hand side, however, takes the entire list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}x, y, z, ...{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, turns it into the singleton list of lists {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{[}x, y, z, ...{]}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then flattens the two layers down into one again. This law is less obvious to state quickly, but it essentially says that applying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a monadic value, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}ing the result should have the same effect whether you perform the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from inside the top layer or from outside it.

\LaTeXExercisesTemplate{Prove this second law for the Maybe monad.}
\subsection{The third and fourth laws}
\label{510}
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return . f = fmap f . return}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily join . fmap (fmap f) = fmap f . join}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

The last two laws express more self evident fact about how we expect monads to behave. The easiest way to see how they are true is to expand them to use the expanded form:

\begin{myenumerate}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}x -{}>{} return (f x) = \textbackslash{}x -{}>{} fmap f (return x)}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}x -{}>{} join (fmap (fmap f) x) = \textbackslash{}x -{}>{} fmap f (join x)}
\end{myenumerate}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\LaTeXExercisesTemplate{Convince yourself that these laws should hold true for any monad by exploring what they mean, in a similar style to how we explained the first and second laws.}
\subsection{Application to do-{}blocks}
\label{511}
Well, we have intuitive statements about the laws that a monad must support, but why is that important? The answer becomes obvious when we consider do-{}blocks. Recall that a do-{}block is just syntactic sugar for a combination of statements involving {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as witnessed by the usual translation:
\\

\TemplateSpaceIndent{ {}do {}\{ {}x {}\} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{}>{} {} {}x \newline{}
 {}do {}\{ {}let {}\{ {}y {}= {}v {}\}; {}x {}\} {} {}-{}-{}>{} {} {}let {}y {}= {}v {}in {}do {}\{ {}x {}\} \newline{}
 {}do {}\{ {}v {}<{}-{} {}y; {}x {}\} {} {} {} {} {} {} {} {} {}-{}-{}>{} {} {}y {}>{}>{}= {}\textbackslash{}v {}-{}>{} {}do {}\{ {}x {}\} \newline{}
 {}do {}\{ {}y; {}x {}\} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{}>{} {} {}y {}>{}>{}= {}\textbackslash{}_ {}-{}>{} {}do {}\{ {}x {}\}}

Also notice that we can prove what are normally quoted as the monad laws using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from our above laws (the proofs are a little heavy in some cases, feel free to skip them if you want to):

\begin{myenumerate}\item{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return x >{}>{}= f = f x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Proof:
\TemplatePreformat{ {} {} {}return {}x {}>{}>{}= {}f \newline{}
 {}= {}join {}(fmap {}f {}(return {}x)) {}-{}-{} {}By {}the {}definition {}of {}(>{}>{}=) \newline{}
 {}= {}join {}(return {}(f {}x)) {} {} {} {} {} {}-{}-{} {}By {}law {}3 \newline{}
 {}= {}(join {}. {}return) {}(f {}x) \newline{}
 {}= {}id {}(f {}x) {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}By {}law {}2 \newline{}
 {}= {}f {}x \newline{}
}

\item{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m >{}>{}= return = m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Proof:\\

\TemplateSpaceIndent{ {} {} {}m {}>{}>{}= {}return \newline{}
 {}= {}join {}(fmap {}return {}m) {} {} {} {}-{}-{} {}By {}the {}definition {}of {}(>{}>{}=) \newline{}
 {}= {}(join {}. {}fmap {}return) {}m \newline{}
 {}= {}id {}m {}-{}-{} {}By {}law {}2 \newline{}
 {}= {}m}

\item{}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (m >{}>{}= f) >{}>{}= g = m >{}>{}= (\textbackslash{}x -{}>{} f x >{}>{}= g)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Proof (recall that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fmap f . fmap g = fmap (f . g)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}):\\

\TemplateSpaceIndent{ {} {} {}(m {}>{}>{}= {}f) {}>{}>{}= {}g \newline{}
 {}= {}(join {}(fmap {}f {}m)) {}>{}>{}= {}g {}-{}-{} {}By {}the {}definition {}of \newline{}
 {}(>{}>{}=) \newline{}
 {}= {}join {}(fmap {}g {}(join {}(fmap {}f {}m))) {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}By {}the {}definition {}of \newline{}
 {}(>{}>{}=) \newline{}
 {}= {}(join {}. {}fmap {}g) {}(join {}(fmap {}f {}m)) \newline{}
 {}= {}(join {}. {}fmap {}g {}. {}join) {}(fmap {}f {}m) \newline{}
 {}= {}(join {}. {}join {}. {}fmap {}(fmap {}g)) {}(fmap {}f {}m) {} {} {} {} {} {} {} {} {}-{}-{} {}By {}law {}4 \newline{}
 {}= {}(join {}. {}join {}. {}fmap {}(fmap {}g) {}. {}fmap {}f) {}m \newline{}
 {}= {}(join {}. {}join {}. {}fmap {}(fmap {}g {}. {}f)) {}m {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}By {}the {}distributive {}law \newline{}
 {}of {}functors \newline{}
 {}= {}(join {}. {}join {}. {}fmap {}(\textbackslash{}x {}-{}>{} {}fmap {}g {}(f {}x))) {}m \newline{}
 {}= {}(join {}. {}fmap {}join {}. {}fmap {}(\textbackslash{}x {}-{}>{} {}fmap {}g {}(f {}x))) {}m {}-{}-{} {}By {}law {}1 \newline{}
 {}= {}(join {}. {}fmap {}(join {}. {}(\textbackslash{}x {}-{}>{} {}fmap {}g {}(f {}x)))) {}m {} {} {} {}-{}-{} {}By {}the {}distributive {}law \newline{}
 {}of {}functors \newline{}
 {}= {}(join {}. {}fmap {}(\textbackslash{}x {}-{}>{} {}join {}(fmap {}g {}(f {}x)))) {}m \newline{}
 {}= {}(join {}. {}fmap {}(\textbackslash{}x {}-{}>{} {}f {}x {}>{}>{}= {}g)) {}m {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}-{}-{} {}By {}the {}definition {}of \newline{}
 {}(>{}>{}=) \newline{}
 {}= {}join {}(fmap {}(\textbackslash{}x {}-{}>{} {}f {}x {}>{}>{}= {}g) {}m) \newline{}
 {}= {}m {}>{}>{}= {}(\textbackslash{}x {}-{}>{} {}f {}x {}>{}>{}= {}g) {}-{}-{} {}By {}the {}definition {}of \newline{}
 {}(>{}>{}=)}

\end{myenumerate}

These new monad laws, using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (>{}>{}=)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, can be translated into do-{}block notation.

{\scalefont{0.83810}\begin{longtable}{|>{\RaggedRight}p{0.48555\linewidth}|>{\RaggedRight}p{0.45731\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Points-{}free style}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Do-{}block style}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return x >{}>{}= f = f x}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do \{ v <{}-{} return x; f v \} = do \{ f x \}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m >{}>{}= return = m}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do \{ v <{}-{} m; return v \} = do \{ m \}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (m >{}>{}= f) >{}>{}= g = m >{}>{}= (\textbackslash{}x -{}>{} f x >{}>{}= g)}&\hspace*{0pt}\ignorespaces{}\hspace*{0pt}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \TemplatePreformat{ {} {} {}do {}\{ {}y {}<{}-{} {}do {}\{ {}x {}<{}-{} {}m; {}f {}x {}\};\newline{} {} {} {} {} {} {} {} {}g {}y {}\}\newline{} {}=\newline{} {} {} {}do {}\{ {}x {}<{}-{} {}m;\newline{} {} {} {} {} {} {} {} {}y {}<{}-{} {}f {}x;\newline{} {} {} {} {} {} {} {} {}g {}y {}\}\newline{}}\\ \hline
\end{longtable}
}

The monad laws are now common-{}sense statements about how do-{}blocks should function. If one of these laws were invalidated, users would become confused, as you couldn\textquotesingle{}t be able to manipulate things within the do-{}blocks as would be expected. The monad laws are, in essence, usability guidelines.

\LaTeXExercisesTemplate{In fact, the two versions of the laws we gave:\\

\TemplateSpaceIndent{ {}-{}-{} {}Categorical: \newline{}
 {}join {}. {}fmap {}join {}= {}join {}. {}join \newline{}
 {}join {}. {}fmap {}return {}= {}join {}. {}return {}= {}id \newline{}
 {}return {}. {}f {}= {}fmap {}f {}. {}return \newline{}
 {}join {}. {}fmap {}(fmap {}f) {}= {}fmap {}f {}. {}join \newline{}
 {} \newline{}
 {}-{}-{} {}Functional: \newline{}
 {}m {}>{}>{}= {}return {}= {}m \newline{}
 {}return {}m {}>{}>{}= {}f {}= {}f {}m \newline{}
 {}(m {}>{}>{}= {}f) {}>{}>{}= {}g {}= {}m {}>{}>{}= {}(\textbackslash{}x {}-{}>{} {}f {}x {}>{}>{}= {}g)}

are entirely equivalent. We showed that we can recover the functional laws from the categorical ones. Go the other way; show that starting from the functional laws, the categorical laws hold. It may be useful to remember the following definitions:\\

\TemplateSpaceIndent{ {}join {}m {}= {}m {}>{}>{}= {}id \newline{}
 {}fmap {}f {}m {}= {}m {}>{}>{}= {}return {}. {}f}

Thanks to Yitzchak Gale for suggesting this exercise.}
\section{Summary}
\label{512}
We\textquotesingle{}ve come a long way in this chapter. We\textquotesingle{}ve looked at what categories are and how they apply to Haskell. We\textquotesingle{}ve introduced the basic concepts of category theory including functors, as well as some more advanced topics like monads, and seen how they\textquotesingle{}re crucial to idiomatic Haskell. We haven\textquotesingle{}t covered some of the basic category theory that wasn\textquotesingle{}t needed for our aims, like natural transformations, but have instead provided an intuitive feel for the categorical grounding behind Haskell\textquotesingle{}s structures.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{The Curry-{}Howard isomorphism}

\myminitoc
\label{513}

\chapter{fix and recursion}

\myminitoc
\label{514}

\label{515}
\LaTeXNullTemplate{}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is a particularly weird-{}looking function when you first see it. However, it is useful for one main theoretical reason: introducing it into the (typed) lambda calculus as a primitive allows you to define recursive functions.
\section{Introducing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{516}
Let\textquotesingle{}s have the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} before we go any further:
\\

\TemplateSpaceIndent{ {}fix {}:: {}(a {}-{}>{} {}a) {}-{}>{} {}a \newline{}
 {}fix {}f {}= {}let {}x {}= {}f {}x {}in {}x}

This immediately seems quite magical. Surely {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will yield an infinite application stream of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f (f (f (...)))}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? The resolution to this is our good friend, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy evaluation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Essentially, this sequence of applications of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will converge to a value if (and only if) {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a lazy function. Let\textquotesingle{}s see some examples:

\HaskellExampleTemplate{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} examples}{\\

\TemplateSpaceIndent{ {}Prelude>{} {}:m {}Control.Monad.Fix \newline{}
 {}Prelude {}Control.Monad.Fix>{} {}fix {}(2+) \newline{}
 {}*** {}Exception: {}stack {}overflow \newline{}
 {}Prelude {}Control.Monad.Fix>{} {}fix {}(const {}\symbol{34}hello\symbol{34}) \newline{}
 {}\symbol{34}hello\symbol{34} \newline{}
 {}Prelude {}Control.Monad.Fix>{} {}fix {}(1:) \newline{}
 {}{[}1,...}}

We first import the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control.Monad.Fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} module to bring {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into scope (this is also available in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). Then we try some examples. Since the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is so simple, let\textquotesingle{}s expand our examples to explain what happens:
\\

\TemplateSpaceIndent{ {} {} {}fix {}(2+) \newline{}
 {}= {}2 {}+ {}(fix {}(2+)) \newline{}
 {}= {}2 {}+ {}(2 {}+ {}fix {}(2+)) \newline{}
 {}= {}2 {}+ {}(2 {}+ {}(2 {}+ {}fix {}(2+))) \newline{}
 {}= {}2 {}+ {}(2 {}+ {}(2 {}+ {}(2 {}+ {}fix {}(2+)))) \newline{}
 {}= {}...}

It\textquotesingle{}s clear that this will never converge to any value. Let\textquotesingle{}s expand the next example:
\\

\TemplateSpaceIndent{ {} {} {}fix {}(const {}\symbol{34}hello\symbol{34}) \newline{}
 {}= {}const {}\symbol{34}hello\symbol{34} {}(fix {}(const {}\symbol{34}hello\symbol{34})) \newline{}
 {}= {}\symbol{34}hello\symbol{34}}

This is quite different: we can see after one expansion of the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} ignores its second argument, the evaluation concludes. The evaluation for the last example is a little different, but we can proceed similarly:
\\

\TemplateSpaceIndent{ {} {} {}fix {}(1:) \newline{}
 {}= {}1 {}: {}fix {}(1:) \newline{}
 {}= {}1 {}: {}(1 {}: {}fix {}(1:)) \newline{}
 {}= {}1 {}: {}(1 {}: {}(1 {}: {}fix {}(1:)))}

Although this similarly looks like it\textquotesingle{}ll never converge to a value, keep in mind that when you type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix (1:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into GHCi, what it\textquotesingle{}s really doing is applying {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to that. So we should look at how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show (fix (1:))}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates (for simplicity, we\textquotesingle{}ll pretend {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} on lists doesn\textquotesingle{}t put commas between items):
\\

\TemplateSpaceIndent{ {} {} {}show {}(fix {}(1:)) \newline{}
 {}= {}\symbol{34}{[}\symbol{34} {}++ {}map {}show {}(fix {}(1:)) {}++ {}\symbol{34}{]}\symbol{34} \newline{}
 {}= {}\symbol{34}{[}\symbol{34} {}++ {}map {}show {}(1 {}: {}fix {}(1:)) {}++ {}\symbol{34}{]}\symbol{34} \newline{}
 {}= {}\symbol{34}{[}\symbol{34} {}++ {}\symbol{34}1\symbol{34} {}++ {}map {}show {}(fix {}(1:)) {}++ {}\symbol{34}{]}\symbol{34} \newline{}
 {}= {}\symbol{34}{[}\symbol{34} {}++ {}\symbol{34}1\symbol{34} {}++ {}\symbol{34}1\symbol{34} {}++ {}map {}show {}(fix {}(1:)) {}++ {}\symbol{34}{]}\symbol{34}}

So although the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map show (fix (1:))}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will never terminate, it does produce output: GHCi can print the beginning of the string, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \symbol{34}{[}\symbol{34} ++ \symbol{34}1\symbol{34} ++ \symbol{34}1\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and continue to print more as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily map show (fix (1:))}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} produces more. This is lazy evaluation at work: the printing function doesn\textquotesingle{}t need to consume its entire input string before beginning to print, it does so as soon as it can start.

Lastly, iteratively calculating an approximation of a square root of a number,
\\

\TemplateSpaceIndent{ {} {} {}fix {}(\textbackslash{}next {}guess {}tol {}val {}-{}>{} {}if {}abs(guess\^{}2-{}val) {}<{} {}tol {}then {}guess {}else \newline{}
 {} {} {} {} {} {} {} {} {}next {}((guess {}+ {}val {}/ {}guess) {}/ {}2.0) {}tol {}val) {}2.0 {}0.0001 {}25.0 \newline{}
 {}= {}let {}f {}next {}guess {}tol {}val {}= {}if {}abs(guess\^{}2-{}val) {}<{} {}tol {}then {}guess {}else \newline{}
 {}next {}((guess {}+ {}val {}/ {}guess) {}/ {}2.0) {}tol {}val \newline{}
 {} {} {}in {}fix {}f {}2.0 {}0.0001 {}25.0 \newline{}
 {}= {}let {}f {}... {}= {}... \newline{}
 {} {} {}in {}f {}(fix {}f) {}2.0 {}0.0001 {}25.0 {} {} {}-{}-{} {}next {}= {}fix {}f {}= {}f {}(fix {}f) {}= {}f {}next {}... \newline{}
 {}= {}5.000000000016778}

\LaTeXExercisesTemplate{What, if anything, will the following expressions converge to?
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix (\symbol{34}hello\symbol{34}++)}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix (\textbackslash{}x -{}>{} cycle (1:x))}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix reverse}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix id}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix (\textbackslash{}x -{}>{} take 2 \${} cycle (1:x))}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myitemize}}
\section{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and fixed points}
\label{517}
A {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape fixed point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} such that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f a == a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a fixed point of the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (* 3)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0 * 3 == 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This is where the name of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} comes from: it finds the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape least-{}defined fixed point}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of a function. (We\textquotesingle{}ll come to what \symbol{34}least defined\symbol{34} means in a minute.) Notice that for both of our examples above that converge, this is readily seen:
\\

\TemplateSpaceIndent{ {}const {}\symbol{34}hello\symbol{34} {}\symbol{34}hello\symbol{34} {}-{}>{} {}\symbol{34}hello\symbol{34} \newline{}
 {}(1:) {}{[}1,1,..{]} {} {} {} {} {} {} {} {} {}-{}>{} {}{[}1,1,...{]}}

And since there\textquotesingle{}s no number {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} such that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2+x == x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it also makes sense that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix (2+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} diverges.

\LaTeXExercisesTemplate{For each of the functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the above exercises for which you decided that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} converges, verify that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} finds a fixed point.}

In fact, it\textquotesingle{}s obvious from the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that it finds a fixed point. All we need to do is write the equation for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the other way around:
\\

\TemplateSpaceIndent{ {}f {}(fix {}f) {}= {}fix {}f}

Which is precisely the definition of a fixed point! So it seems that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} should always find a fixed point. But sometimes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} seems to fail at this, as sometimes it diverges. We can repair this property, however, if we bring in some \mylref{470}{denotational semantics}. Every Haskell type actually includes a special value called bottom, written {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So the values with type, for example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} include, in fact, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as well as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1, 2, 3}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} etc.. Divergent computations are denoted by a value of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, i.e., we have that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix (2+) = \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

The special value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also denoted by this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now we can understand how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} finds fixed points of functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (2+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\HaskellExampleTemplate{Fixed points of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (2+)}}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\TemplatePreformat{ \newline{}
Prelude>{} {}(2+) {}undefined \newline{}
*** {}Exception: {}Prelude.undefined \newline{}
}}

So feeding {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (i.e., {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (2+)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} gives us {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} back. So {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a fixed point of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (2+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}!

In the case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (2+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it is the only fixed point. However, there are other functions {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with several fixed points for which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} still diverges: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix (*3)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} diverges, but we remarked above that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 0}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a fixed point of that function. This is where the \symbol{34}least-{}defined\symbol{34} clause comes in. Types in Haskell have a \myhref{http://en.wikipedia.org/wiki/Partial_order}{partial order} on them called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape definedness}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In any type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the least-{}defined value (hence the name \symbol{34}bottom\symbol{34}). For simple types like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the only pairs in the partial order are {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ≤\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 1}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ≤\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so on. We do not have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ≤{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for any non-{}bottom {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily m}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Similar comments apply to other simple types like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bool}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For \symbol{34}layered\symbol{34} values such as lists or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the picture is more complicated, and we refer to the chapter on \mylref{470}{denotational semantics}.

So since {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the least-{}defined value for all types and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} finds the least-{}defined fixed point, if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily = \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we will have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix f = \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (and the converse is also true). If you\textquotesingle{}ve read the denotational semantics article, you will recognise this as the criterion for a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape strict function}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} diverges if and only if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict.
\section{Recursion}
\label{518}
If you have already come across examples of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, chances are they were examples involving {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and recursion. Here\textquotesingle{}s a classic example:

\HaskellExampleTemplate{Encoding recursion with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\TemplatePreformat{ \newline{}
Prelude>{} {}let {}fact {}n {}= {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}fact {}(n-{}1) {}in {}fact {}5 \newline{}
120 \newline{}
Prelude>{} {}fix {}(\textbackslash{}rec {}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}rec {}(n-{}1)) {}5 \newline{}
120 \newline{}
}}

Here we have used {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to \symbol{34}encode\symbol{34} the factorial function: note that (if we regard {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a language primitive) our second definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t involve recursion at all. In a language like the typed lambda calculus that doesn\textquotesingle{}t feature recursion, we can introduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in to write recursive functions in this way. Here are some more examples:

\HaskellExampleTemplate{More {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} examples}{\TemplatePreformat{ \newline{}
Prelude>{} {}fix {}(\textbackslash{}rec {}f {}l {}-{}>{} {}if {}null {}l {}then {}{[}{]} {}else {}f {}(head {}l) {}: {}rec {}f {}(tail {}l)) \newline{}
 {}(+1) {}{[}1..3{]} \newline{}
{[}2,3,4{]} \newline{}
Prelude>{} {}map {}(fix {}(\textbackslash{}rec {}n {}-{}>{} {}if {}n {}== {}1 {}|| {}n {}== {}2 {}then {}1 {}else {}rec {}(n-{}1) {}+ {}rec \newline{}
 {}(n-{}2))) {}{[}1..10{]} \newline{}
{[}1,1,2,3,5,8,13,21,34,55{]} \newline{}
}}

So how does this work? Let\textquotesingle{}s first approach it from a denotational point of view with our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. For brevity let\textquotesingle{}s define:
\\

\TemplateSpaceIndent{ {}fact\textquotesingle{} {}rec {}n {}= {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}rec {}(n-{}1)}

This is the same function as in the first example above, except that we gave a name to the anonymous function so that we\textquotesingle{}re computing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix fact\textquotesingle{} 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} now. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will find a fixed point of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, i.e. the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape function}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} such that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f == fact\textquotesingle{} f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But let\textquotesingle{}s expand what this means:
\\

\TemplateSpaceIndent{ {}f {}= {}fact\textquotesingle{} {}f \newline{}
 {} {} {}= {}\textbackslash{}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}f {}(n-{}1)}

All we did was substitute {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rec}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. But this looks exactly like a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape recursive}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} definition of a factorial function! {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} feeds {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape itself}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as its first parameter in order to create a recursive function out of a higher-{}order function.

We can also consider things from a more operational point of view. Let\textquotesingle{}s actually expand the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix fact\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {} {} {}fix {}fact\textquotesingle{} \newline{}
 {}= {}fact\textquotesingle{} {}(fix {}fact\textquotesingle{}) \newline{}
 {}= {}(\textbackslash{}rec {}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}rec {}(n-{}1)) {}(fix {}fact\textquotesingle{}) \newline{}
 {}= {}\textbackslash{}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}fix {}fact\textquotesingle{} {}(n-{}1) \newline{}
 {}= {}\textbackslash{}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 {}else {}n {}* {}fact\textquotesingle{} {}(fix {}fact\textquotesingle{}) {}(n-{}1) \newline{}
 {}= {}\textbackslash{}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 \newline{}
 {} {} {} {} {} {} {} {} {}else {}n {}* {}(\textbackslash{}rec {}n\textquotesingle{} {}-{}>{} {}if {}n\textquotesingle{} {}== {}0 {}then {}1 {}else {}n\textquotesingle{} {}* {}rec {}(n\textquotesingle{}-{}1)) {}(fix \newline{}
 {}fact\textquotesingle{}) {}(n-{}1) \newline{}
 {}= {}\textbackslash{}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 \newline{}
 {} {} {} {} {} {} {} {} {}else {}n {}* {}(if {}n-{}1 {}== {}0 {}then {}1 {}else {}(n-{}1) {}* {}fix {}fact\textquotesingle{} {}(n-{}2)) \newline{}
 {}= {}\textbackslash{}n {}-{}>{} {}if {}n {}== {}0 {}then {}1 \newline{}
 {} {} {} {} {} {} {} {} {}else {}n {}* {}(if {}n-{}1 {}== {}0 {}then {}1 \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}else {}(n-{}1) {}* {}(if {}n-{}2 {}== {}0 {}then {}1 \newline{}
 {}else {}(n-{}2) {}* {}fix {}fact\textquotesingle{} {}(n-{}3))) \newline{}
 {}= {}...}

Notice that the use of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows us to keep \symbol{34}unravelling\symbol{34} the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: every time we hit the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily else}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause, we product another copy of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} via the evaluation rule {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix fact\textquotesingle{} = fact\textquotesingle{} (fix fact\textquotesingle{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which functions as the next call in the recursion chain. Eventually we hit the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily then}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause and bottom out of this chain.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Expand the other two examples we gave above in this sense. You may need a lot of paper for the Fibonacci example!
\item{} Write non-{}recursive versions of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily filter}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\end{myenumerate}}
\section{The typed lambda calculus}
\label{519}
In this section we\textquotesingle{}ll expand upon a point mentioned a few times in the previous section: how {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows us to encode recursion in the typed lambda calculus. It presumes you\textquotesingle{}ve already met the typed lambda calculus. Recall that in the lambda calculus, there is no {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause or top-{}level bindings. Every program is a simple tree of lambda abstractions, applications and literals. Let\textquotesingle{}s say we want to write a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fact}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. Assuming we have a type called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Nat}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the natural numbers, we\textquotesingle{}d start out something like the following:
\\

\TemplateSpaceIndent{ {}λn:Nat. {}if {}iszero {}n {}then {}1 {}else {}n {}* {}<{}blank>{} {}(n-{}1)}

The problem is, how do we fill in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}blank>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? We don\textquotesingle{}t have a name for our function, so we can\textquotesingle{}t call it recursively. The only way to bind names to terms is to use a lambda abstraction, so let\textquotesingle{}s give that a go:
\\

\TemplateSpaceIndent{ {}(λf:Nat→Nat. {}λn:Nat. {}if {}iszero {}n {}then {}1 {}else {}n {}* {}f {}(n-{}1)) \newline{}
 {} {} {}(λm:Nat. {}if {}iszero {}m {}then {}1 {}else {}m {}* {}<{}blank>{} {}(m-{}1))}

This expands to:
\\

\TemplateSpaceIndent{ {}λn:Nat. {}if {}iszero {}n {}then {}1 \newline{}
 {} {} {} {} {} {} {} {} {}else {}n {}* {}(if {}iszero {}n-{}1 {}then {}1 {}else {}(n-{}1) {}* {}<{}blank>{} {}(n-{}2))}

We still have a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}blank>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. We could try to add one more layer in:\\

\TemplateSpaceIndent{ {} {} {} \newline{}
 {}(λf:Nat→Nat. {}λn:Nat. {}if {}iszero {}n {}then {}1 {}else {}n {}* {}f {}(n-{}1) \newline{}
 {} {} {}((λg:Nat→Nat. {}λm:Nat. {}if {}iszero {}n\textquotesingle{} {}then {}1 {}else {}n\textquotesingle{} {}* {}g {}(m-{}1)) \newline{}
 {} {} {} {} {}(λp:Nat. {}if {}iszero {}p {}then {}1 {}else {}p {}* {}<{}blank>{} {}(p-{}1)))) \newline{}
 {} \newline{}
 {}-{}>{} \newline{}
 {} \newline{}
 {}λn:Nat. {}if {}iszero {}n {}then {}1 \newline{}
 {} {} {} {} {} {} {} {} {}else {}n {}* {}(if {}iszero {}n-{}1 {}then {}1 \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}else {}(n-{}1) {}* {}(if {}iszero {}n-{}2 {}then {}1 {}else {}(n-{}2) {}* {}<{}blank>{} \newline{}
 {}(n-{}3)))}

It\textquotesingle{}s pretty clear we\textquotesingle{}re never going to be able to get rid of this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily <{}blank>{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, no matter how many levels of naming we add in. Never, that is, unless we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which, in essence, provides an object from which we can always unravel one more layer of recursion and still have what we started off:
\\

\TemplateSpaceIndent{ {}fix {}(λf:Nat→Nat. {}λn:Nat. {}if {}iszero {}n {}then {}1 {}else {}n {}* {}f {}(n-{}1))}

This is a perfect factorial function in the typed lambda calculus plus {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is actually slightly more interesting than that in the context of the typed lambda calculus: if we introduce it into the language, then every type becomes inhabited, because given some concrete type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the following expression has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily T}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {}fix {}(λx:T. {}x)}

This, in Haskell-{}speak, is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which is denotationally {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeMono.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeMono.ttf}\ttfamily ⊥}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So we see that as soon as we introduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fix}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the typed lambda calculus, the property that every well-{}typed term reduces to a value is lost.
\section{Fix as a data type}
\label{520}
It is also possible to make a fix data type in Haskell.

There are three ways of defining it.\\

\TemplateSpaceIndent{ {}newtype {}Fix {}f {}= {}Fix {}(f {}(Fix {}f))}

or using the RankNTypes extension\\

\TemplateSpaceIndent{ {}newtype {}Mu {}f=Mu {}(forall {}a.(f {}a-{}>{}a)-{}>{}a) \newline{}
 {}data {}Nu {}f=forall {}a.Nu {}a {}(a-{}>{}f {}a)}

Mu and Nu help generalize folds, unfolds and refolds.\\

\TemplateSpaceIndent{ {}fold {}:: {}(f {}a {}-{}>{} {}a) {}-{}>{} {}Mu {}f {}-{}>{} {}a \newline{}
 {}fold {}g {}(Mu {}f)=f {}g \newline{}
 {}unfold {}:: {}(a {}-{}>{} {}f {}a) {}-{}>{} {}a {}-{}>{} {}Nu {}f \newline{}
 {}unfold {}f {}x=Nu {}x {}f \newline{}
 {}refold {}:: {}(a {}-{}>{} {}f {}a) {}-{}>{} {}(g {}a-{}>{} {}a) {}-{}>{} {}Mu {}f {}-{}>{} {}Nu {}g \newline{}
 {}refold {}f {}g=unfold {}g {}. {}fold {}f}

Mu and Nu are restricted versions of Fix.
Mu is used for making inductive noninfinite data and Nu is used for making coinductive infinite data.
Eg)\\

\TemplateSpaceIndent{ {}newpoint {}Stream {}a=Stream {}(Nu {}((,) {}a)) {}-{}-{} {}forsome {}b. {}(b,b-{}>{}(a,b)) \newline{}
 {}newpoint {}Void {}a=Void {}(Mu {}((,) {}a)) {}-{}-{} {}forall {}b.((a,b)-{}>{}b)-{}>{}b}

Unlike the fix point function the fix point types do not lead to bottom.
In the following code Bot is perfectly defined. It is equivalent to the unit type ().\\

\TemplateSpaceIndent{ {}newtype {}Id {}a=Id {}a \newline{}
 {}newtype {}Bot=Bot {}(Fix {}Id) {}-{}-{} {}equals {} {} {} {} {} {} {} {} {} {}newtype {}Bot=Bot {}Bot \newline{}
 {}-{}-{} {}There {}is {}only {}one {}allowable {}term. {}Bot {}\${}$\text{ }${}Bot$\text{ }${}\${} {}Bot {}\${}$\text{ }${}Bot$\text{ }${}..,}

The Fix data type cannot model all forms of recursion.
Take for instance this nonregular data type.\\

\TemplateSpaceIndent{ {}data {}Node {}a=Two {}a {}a|Three {}a {}a {}a \newline{}
 {}data {}FingerTree {}a=U {}a|Up {}(FingerTree {}(Node {}a))}

It is not easy to implement this using Fix.

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

\chapter{Haskell Performance}

\myminitoc
\label{521}

\chapter{Introduction}

\myminitoc
\label{522}

\label{523}
\begin{myenumerate}
\item{} REDIRECT \mylref{523}{Haskell/Performance introduction}
\end{myenumerate}

\chapter{Step by Step Examples}

\myminitoc
\label{524}

\label{525}
\begin{myenumerate}
\item{} REDIRECT \mylref{525}{Haskell/Performance examples}
\end{myenumerate}

\chapter{Graph reduction}

\myminitoc
\label{526}

\label{527}
\LaTeXNullTemplate{}
\section{Notes and TODOs}
\label{528}
{\itshape \begin{myitemize}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape TODO: Pour lazy evaluation explanation from \mylref{549}{../Laziness/} into this mold.
\item{} TODO: better section names.
\item{} TODO: ponder the graphical representation of graphs.
\begin{myitemize}
\item{} No grapical representation, do it with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape let .. in}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape . Pro: Reduction are easiest to perform in that way anyway. Cons: no graphic.
\item{} ASCII art / line art similar to the one in Bird\&Wadler? Pro: displays only the relevant parts truly as graph, easy to perform on paper. Cons: Ugly, no large graphs with that.
\item{} Full blown graphs with @-{}nodes? Pro: look graphy. Cons: nobody needs to know @-{}nodes in order to understand graph reduction. Can be explained in the implementation section.
\item{} Graphs without @-{}nodes. Pro: easy to understand. Cons: what about currying?
\end{myitemize}

\item{} ! Keep this chapter short. The sooner the reader knows how to evaluate Haskell programs by hand, the better.
\item{} First sections closely follow Bird\&Wadler
\end{myitemize}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{Introduction}
\label{529}
Programming is not only about writing correct programs, answered by denotational semantics, but also about writing fast ones that require little memory. For that, we need to know how they\textquotesingle{}re executed on a machine, commonly given by operational semantics. This chapter explains how Haskell programs are commonly executed on a real computer and thus serves as foundation for analyzing time and space usage. Note that the Haskell standard deliberately does {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape not}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} give operational semantics, implementations are free to choose their own. But so far, every implementation of Haskell more or less closely follows the execution model of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy evaluation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

In the following, we will detail lazy evaluation and subsequently use this execution model to explain and exemplify the reasoning about time and memory complexity of Haskell programs.
\section{Evaluating Expressions by Lazy Evaluation}
\label{530}\subsection{Reductions}
\label{531}
Executing a functional program, i.e. evaluating an expression, means to repeatedly apply function definitions until all function applications have been expanded. Take for example the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily pythagoras 3 4}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} together with the definitions
\\

\TemplateSpaceIndent{ {} {} {} {} {} {} {}square {}x {}= {}x {}* {}x \newline{}
 {}pythagoras {}x {}y {}= {}square {}x {}+ {}square {}y}

One possible sequence of such {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries reduction}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s is
\\

\TemplateSpaceIndent{ {}pythagoras {}3 {}4 \newline{}
 {} {}{\mbox{\Rightarrow}} {}square {}3 {}+ {}square {}4 {} {} {}(pythagoras) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {}(3*3) {}+ {}square {}4 {} {} {}(square) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {} {} {}9 {}+ {}square {}4 {} {} {}(*) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {} {} {}9 {}+ {}(4*4) {} {} {} {} {} {}(square) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {} {} {}9 {}+ {}16 {} {} {} {} {} {} {} {} {}(*) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {} {} {} {} {}25}

Every reduction replaces a subexpression, called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries reducible expression}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries redex}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for short, with an equivalent one, either by appealing to a function definition like for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily square}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or by using a built-{}in function like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. An expression without redexes is said to be in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries normal form}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Of course, execution stops once reaching a normal form which thus is the result of the computation.

Clearly, the fewer reductions that have to be performed, the faster the program runs. We cannot expect each reduction step to take the same amount of time because its implementation on real hardware looks very different, but in terms of asymptotic complexity, this number of reductions is an accurate measure.
\subsection{Reduction Strategies}
\label{532}
There are many possible reduction sequences and the number of reductions may depend on the order in which reductions are performed. Take for example the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst (square 3, square 4)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. One systematic possibility is to evaluate all function arguments before applying the function definition
\\

\TemplateSpaceIndent{ {}fst {}(square {}3, {}square {}4) \newline{}
 {} {}{\mbox{\Rightarrow}} {}fst {}(3*3, {}square {}4) {} {} {}(square) \newline{}
 {} {}{\mbox{\Rightarrow}} {}fst {}({}9 {}, {}square {}4) {} {} {}(*) \newline{}
 {} {}{\mbox{\Rightarrow}} {}fst {}({}9 {}, {}4*4) {} {} {} {} {} {} {} {}(square) \newline{}
 {} {}{\mbox{\Rightarrow}} {}fst {}({}9 {}, {}16 {}) {} {} {} {} {} {} {} {}(*) \newline{}
 {} {}{\mbox{\Rightarrow}} {}9 {}(fst)}

This is called an {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries innermost reduction}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} strategy and an {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries innermost redex}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a redex that has no other redex as subexpression inside.

Another systematic possibility is to apply all function definitions first and only then evaluate arguments:
\\

\TemplateSpaceIndent{ {}fst {}(square {}3, {}square {}4) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}square {}3 {} {} {} {} {} {} {} {} {} {} {} {} {}(fst) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}3*3 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(square) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}9 {}(*)}

which is named {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries outermost reduction}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and always reduces {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries outermost redex}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}es that are not inside another redex. Here, the outermost reduction uses fewer reduction steps than the innermost reduction. Why? Because the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t need the second component of the pair and the reduction of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily square 4}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} was superfluous.
\subsection{Termination}
\label{533}
For some expressions like
\\

\TemplateSpaceIndent{ {}loop {}= {}1 {}+ {}loop}

no reduction sequence may terminate and program execution enters a neverending loop, those expressions do not have a normal form. But there are also expressions where some reduction sequences terminate and some do not, an example being
\\

\TemplateSpaceIndent{ {}fst {}(42, {}loop) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}42 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(fst) \newline{}
 {} \newline{}
 {}fst {}(42, {}loop) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}fst {}(42,1+loop) {} {} {} {} {} {}(loop) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}fst {}(42,1+(1+loop)) {} {}(loop) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}...}

The first reduction sequence is outermost reduction and the second is innermost reduction which tries in vain to evaluate the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loop}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} even though it is ignored by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fst}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} anyway. The ability to evaluate function arguments only when needed is what makes outermost optimal when it comes to termination:
{\bfseries
\begin{mydescription}Theorem (Church Rosser II)
\end{mydescription}
}
\begin{myquote}\item{} If there is one terminating reduction, then outermost reduction will terminate, too.
\end{myquote}

\subsection{Graph Reduction (Reduction + Sharing)}
\label{534}
Despite the ability to discard arguments, outermost reduction doesn\textquotesingle{}t always take fewer reduction steps than innermost reduction:
\\

\TemplateSpaceIndent{ {}square {}(1+2) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}(1+2)*(1+2) {} {} {} {} {} {} {} {} {} {}(square) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}(1+2)*3 {} {} {} {} {} {} {} {} {} {} {} {} {} {}(+) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {}3*3 {} {} {} {} {} {} {} {} {} {} {} {} {} {}(+) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {} {}9 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(*)}

Here, the argument {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (1+2)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is duplicated and subsequently reduced twice. But because it is one and the same argument, the solution is to share the reduction {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (1+2) {\mbox{\Rightarrow}} 3}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with all other incarnations of this argument. This can be achieved by representing expressions as {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape graphs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For example,
\\

\TemplateSpaceIndent{ {} {}__________ \newline{}
 {}| {} {} {}| {} {} {} {} {}{\mbox{\downarrow}} \newline{}
 {}{\mbox{\lozenge}} {}* {}{\mbox{\lozenge}} {} {} {} {} {}(1+2)}

represents the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (1+2)*(1+2)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now, the {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries outermost graph reduction}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily square (1+2)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} proceeds as follows
\\

\TemplateSpaceIndent{ {}square {}(1+2) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}__________ {} {} {} {} {} {} {} {} {} {} {}(square) \newline{}
 {} {} {} {} {}| {} {} {}| {} {} {} {} {}{\mbox{\downarrow}} \newline{}
 {} {} {} {} {}{\mbox{\lozenge}} {}* {}{\mbox{\lozenge}} {} {} {} {} {}(1+2) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {}__________ {} {} {} {} {} {} {} {} {} {} {}(+) \newline{}
 {} {} {} {} {}| {} {} {}| {} {} {} {} {}{\mbox{\downarrow}} \newline{}
 {} {} {} {} {}{\mbox{\lozenge}} {}* {}{\mbox{\lozenge}} {} {} {} {} {} {}3 \newline{}
 {} \newline{}
 {} {}{\mbox{\Rightarrow}} {}9 {}(*)}

and the work has been shared. In other words, outermost graph reduction now reduces every argument at most once. For this reason, it always takes fewer reduction steps than the innermost reduction, a fact we will prove when \mylref{542}{reasoning about time}.

Sharing of expressions is also introduced with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructs. For instance, consider \myhref{https://en.wikipedia.org/wiki/Heron\%27s\%20formula}{Heron\textquotesingle{}s formula} for the area of a triangle with sides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf},{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:
\\

\TemplateSpaceIndent{ {}area {}a {}b {}c {}= {}let {}s {}= {}(a+b+c)/2 {}in \newline{}
 {} {} {} {} {} {}sqrt {}(s*(s-{}a)*(s-{}b)*(s-{}c))}

Instantiating this to an equilateral triangle will reduce as
\\

\TemplateSpaceIndent{ {}area {}1 {}1 {}1 \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {} {} {}_____________________ {} {} {} {} {} {} {} {} {} {} {} {} {}(area) \newline{}
 {} {} {} {} {} {} {} {} {} {} {}| {} {}| {} {} {} {}| {} {} {} {} {}| {} {} {} {} {} {}{\mbox{\downarrow}} \newline{}
 {} {} {} {} {}sqrt {}({\mbox{\lozenge}}*({\mbox{\lozenge}}-{}a)*({\mbox{\lozenge}}-{}b)*({\mbox{\lozenge}}-{}c)) {} {}((1+1+1)/2) \newline{}
 {} {}{\mbox{\Rightarrow}} {} {} {} {} {} {} {} {}_____________________ {} {} {} {} {} {} {} {} {} {} {} {} {}(+),(+),(/) \newline{}
 {} {} {} {} {} {} {} {} {} {} {}| {} {}| {} {} {} {}| {} {} {} {} {}| {} {} {} {} {} {}{\mbox{\downarrow}} \newline{}
 {} {} {} {} {}sqrt {}({\mbox{\lozenge}}*({\mbox{\lozenge}}-{}a)*({\mbox{\lozenge}}-{}b)*({\mbox{\lozenge}}-{}c)) {} {}1.5 \newline{}
 {} {}{\mbox{\Rightarrow}} \newline{}
 {} {} {} {} {}... \newline{}
 {} {}{\mbox{\Rightarrow}} \newline{}
 {} {} {} {} {}0.433012702}

which is {$\sqrt3/4$}. Put differently, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}bindings simply give names to nodes in the graph. In fact, one can dispense entirely with a graphical notation and solely rely on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to mark sharing and express a graph structure.\myfootnote{ John Maraist, Martin Odersky, and Philip Wadler
 . The call-{}by-{}need lambda calculus
 \myfnhref{ homepages.inf.ed.ac.uk/wadler/topics/call-{}by-{}need.html\#need-{}journal
 }{ The call-{}by-{}need lambda calculus
 }. \textit{{} Journal of Functional Programming
 }, {{\bfseries 8
 }}: 257-{}317
 May
 1998
 \myplainurl{http://homepages.inf.ed.ac.uk/wadler/topics/call-by-need.html\#need-journal}

}

Any implementation of Haskell is in some form based on outermost graph reduction which thus provides a good model for reasoning about the asympotic complexity of time and memory allocation. The number of reduction steps to reach normal form corresponds to the execution time and the size of the terms in the graph corresponds to the memory used.

\LaTeXExercisesTemplate{\begin{myenumerate}\item{} Reduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily square (square 3)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to normal form with innermost and outermost graph reduction.
\item{} Consider the fast exponentiation algorithm\\

\TemplateSpaceIndent{ {}power {}x {}0 {}= {}1 \newline{}
 {}power {}x {}n {}= {}x\textquotesingle{} {}* {}x\textquotesingle{} {}* {}(if {}n {}`mod` {}2 {}== {}0 {}then {}1 {}else {}x) \newline{}
 {} {} {}where {}x\textquotesingle{} {}= {}power {}x {}(n {}`div` {}2)}

that takes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to the power of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Reduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily power 2 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with innermost and outermost graph reduction. How many reductions are performed? What is the asymptotic time complexity for the general {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily power 2 n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? What happens to the algorithm if we use \symbol{34}graphless\symbol{34} outermost reduction?

\end{myenumerate}}
\subsection{Pattern Matching}
\label{535}
So far, our description of outermost graph reduction is still underspecified when it comes to pattern matching and data constructors. Explaining these points will enable the reader to trace most cases of the reduction strategy that is commonly the base for implementing non-{}strict functional languages like Haskell. It is called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries call-{}by-{}need}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries lazy evaluation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in allusion to the fact that it \symbol{34}lazily\symbol{34} postpones the reduction of function arguments to the last possible moment. Of course, the remaining details are covered in subsequent chapters.

To see how pattern matching needs specification, consider for example the boolean disjunction
\\

\TemplateSpaceIndent{ {}or {}True {} {}y {}= {}True \newline{}
 {}or {}False {}y {}= {}y}

and the expression
\\

\TemplateSpaceIndent{ {}or {}(1==1) {}loop}

with a non-{}terminating {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily loop = not loop}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The following reduction sequence \\

\TemplateSpaceIndent{ {} \newline{}
 {}or {}(1==1) {}loop \newline{}
 {} {}{\mbox{\Rightarrow}} {}or {}(1==1) {}(not {}loop) {} {} {} {} {} {} {} {}(loop) \newline{}
 {} {}{\mbox{\Rightarrow}} {}or {}(1==1) {}(not {}(not {}loop)) {} {}(loop) \newline{}
 {} {}{\mbox{\Rightarrow}} {}...}

only reduces outermost redexes and therefore is an outermost reduction. But
\\

\TemplateSpaceIndent{ {}or {}(1==1) {}loop \newline{}
 {} {}{\mbox{\Rightarrow}} {}or {}True {} {} {}loop {} {} {} {} {} {} {} {} {} {} {} {} {} {}(or) \newline{}
 {} {}{\mbox{\Rightarrow}} {}True}

makes much more sense. Of course, we just want to apply the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and are only reducing arguments to decide which equation to choose. This intention is captured by the following rules for pattern matching in Haskell:
\begin{myitemize}
\item{} Left hand sides are matched from top to bottom
\item{} When matching a left hand side, arguments are matched from left to right
\item{} Evaluate arguments only as much as needed to decide whether they match or not.
\end{myitemize}

Thus, for our example {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or (1==1) loop}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we have to reduce the first argument to either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily False}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then evaluate the second to match a variable {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern and then expand the matching function definition. As the match against a variable always succeeds, the second argument will not be reduced at all. It is the second reduction section above that reproduces this behavior.

With these preparations, the reader should now be able to evaluate most Haskell expressions. Here are some random encounters to test this ability:
\LaTeXExercisesTemplate{Reduce the following expressions with lazy evaluation to normal form. Assume the standard function definitions from the Prelude.
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length {[}42,42+1,42-{}1{]}}
\item{} {\ttfamily head (map (2*) {[}1,2,3{]})}
\item{} {\ttfamily head \${} {$\text{[}$}1,2,3{$\text{]}$} ++ (let loop = tail loop in loop)}
\item{} {\ttfamily zip {[}1..3{]} (iterate (+1) 0)}
\item{} {\ttfamily head \${} concatMap (\textbackslash{}x -{}>{} {[}x,x+1{]}) {[}1,2,3{]}}
\item{} {\ttfamily take (42-{}6*7) \${} map square {$\text{[}$}2718..3146{$\text{]}$}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\end{myitemize}}
\subsection{Higher Order Functions}
\label{536}
The remaining point to clarify is the reduction of higher order functions and currying. For instance, consider the definitions
\\

\TemplateSpaceIndent{ {}id {}x {}= {}x \newline{}
 {}a {}= {}id {}(+1) {}41}

\\

\TemplateSpaceIndent{ {}twice {}f {}= {}f {}. {}f \newline{}
 {}b {}= {}twice {}(+1) {}(13*3)}

where both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily twice}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are only defined with one argument. The solution is to see multiple arguments as subsequent applications to one argument, this is called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries currying}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\\

\TemplateSpaceIndent{ {}a {}= {}(id {} {} {} {}(+1)) {}41 \newline{}
 {}b {}= {}(twice {}(+1)) {}(13*3)}

To reduce an arbitrary application {\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\textsubscript{1}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\textsubscript{2}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, call-{}by-{}need first reduce {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape expression\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\textsubscript{1}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} until this becomes a function whose definition can be unfolded with the argument {\ttfamily {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\textsubscript{2}}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Hence, the reduction sequences are
\\

\TemplateSpaceIndent{ {}a \newline{}
 {} {}{\mbox{\Rightarrow}} {}(id {}(+1)) {}41 {} {} {} {} {} {} {} {} {} {}(a) \newline{}
 {} {}{\mbox{\Rightarrow}} {}(+1) {}41 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(id) \newline{}
 {} {}{\mbox{\Rightarrow}} {}42 {}(+) \newline{}
 {} \newline{}
 {}b \newline{}
 {} {}{\mbox{\Rightarrow}} {}(twice {}(+1)) {}(13*3) {} {} {}(b) \newline{}
 {} {}{\mbox{\Rightarrow}} {}((+1).(+1) {}) {}(13*3) {} {} {}(twice) \newline{}
 {} {}{\mbox{\Rightarrow}} {}(+1) {}((+1) {}(13*3)) {} {} {} {}(.) \newline{}
 {} {}{\mbox{\Rightarrow}} {}(+1) {}((+1) {} {}39) {} {} {} {} {} {} {}(*) \newline{}
 {} {}{\mbox{\Rightarrow}} {}(+1) {}40 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(+) \newline{}
 {} {}{\mbox{\Rightarrow}} {}41 {}(+)}

Admittedly, the description is a bit vague and the next section will detail a way to state it clearly.

While it may seem that pattern matching is the workhorse of time intensive computations and higher order functions are only for capturing the essence of an algorithm, functions are indeed useful as data structures. One example are difference lists ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}a{]} -{}>{} {[}a{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) that permit concatenation in {$O(1)$} time, another is the representation of a stream by a fold. In fact, all data structures are represented as functions in the pure lambda calculus, the root of all functional programming languages.

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Exercises! Or not? Diff-{}Lists Best done with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape foldl (++)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape but this requires knowledge of the fold example. Oh, where do we introduce the foldl VS. foldr example at all? Hm, Bird\&Wadler sneak in an extra section \symbol{34}Meet again with fold\symbol{34} for the (++) example at the end of \symbol{34}Controlling reduction order and space requirements\symbol{34} :-{}/ The complexity of (++) is explained when arguing about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape reverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape .}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\subsection{Weak Head Normal Form}
\label{537}
To formulate precisely how lazy evaluation chooses its reduction sequence, it is best to abandon equational function definitions and replace them with an expression-{}oriented approach. In other words, our goal is to translate function definitions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f (x:xs) = ...}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into the form {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f = {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This can be done with two primitives, namely case-{}expressions and lambda abstractions.

In their primitive form, case-{}expressions only allow the discrimination of the outermost constructor. For instance, the primitive case-{}expression for lists has the form
\\

\TemplateSpaceIndent{ {}case {}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape expression} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}of \newline{}
 {} {} {}{[}{]} {} {} {}-{}>{} {}... \newline{}
 {} {} {}x:xs {}-{}>{} {}...}

Lambda abstractions are functions of one parameter, so that the following two definitions are equivalent
\\

\TemplateSpaceIndent{ {}f {}x {}= {}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape expression} \newline{}
 {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}f {} {} {}= {}\textbackslash{}x {}-{}>{} {}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape expression}}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

Here is a translation of the definition of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily zip}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\\

\TemplateSpaceIndent{ {}zip {}:: {}{[}a{]} {}-{}>{} {}{[}a{]} {}-{}>{} {}{[}(a,a){]} \newline{}
 {}zip {}{[}{]} {} {} {} {} {} {}ys {} {} {} {} {} {}= {}{[}{]} \newline{}
 {}zip {}xs {} {} {} {} {} {}{[}{]} {} {} {} {} {} {}= {}{[}{]} \newline{}
 {}zip {}(x:xs\textquotesingle{}) {}(y:ys\textquotesingle{}) {}= {}(x,y):zip {}xs\textquotesingle{} {}ys\textquotesingle{}}

to case-{}expressions and lambda-{}abstractions:
\\

\TemplateSpaceIndent{ {}zip {}= {}\textbackslash{}xs {}-{}>{} {}\textbackslash{}ys {}-{}>{} \newline{}
 {} {} {} {}case {}xs {}of \newline{}
 {} {} {} {} {} {} {}{[}{]} {} {} {} {}-{}>{} {}{[}{]} \newline{}
 {} {} {} {} {} {} {}x:xs\textquotesingle{} {}-{}>{} \newline{}
 {} {} {} {} {} {} {} {} {} {}case {}ys {}of \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}{[}{]} {} {} {} {}-{}>{} {}{[}{]} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {}y:ys\textquotesingle{} {}-{}>{} {}(x,y):zip {}xs\textquotesingle{} {}ys\textquotesingle{}}

Assuming that all definitions have been translated to those primitives, every redex now has the form of either
\begin{myitemize}
\item{} a function application {\ttfamily { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (\textbackslash{}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape variable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}>{}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\textsubscript{1}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily) {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\textsubscript{2}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily}
\item{} \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or a case-{}expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily case {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily of \{ ... \}}
\end{myitemize}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy evaluation}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
{\bfseries
\begin{mydescription}Weak Head Normal Form
\end{mydescription}
}
\begin{myquote}\item{}An expression is in weak head normal form, iff it is either
\end{myquote}

\begin{myitemize}
\item{} a constructor (possibly applied to arguments) like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just (square 42)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:) 1}
\item{} \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}a built-{}in function applied to too few arguments (perhaps none) like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (+) 2}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sqrt}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\item{} or a lambda abstraction {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textbackslash{}x -{}>{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape expression}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
\end{myitemize}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape functions types cannot be pattern matched anyway, but the devious seq can evaluate them to WHNF nonetheless. \symbol{34}weak\symbol{34} = no reduction under lambdas. \symbol{34}head\symbol{34} = first the function application, then the arguments.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\subsection{Strict and Non-{}strict Functions}
\label{538}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape A non-{}strict function doesn\textquotesingle{}t need its argument. A strict function needs its argument in WHNF, as long as we do not distinguish between different forms of non-{}termination ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape f x = loop}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape doesn\textquotesingle{}t need its argument, for example).}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{Controlling Space}
\label{539}

\symbol{34}Space\symbol{34} here may be better visualized as traversal of a graph. Either a data structure, or an induced dependencies graph. For instance : Fibonacci(N) depends on : Nothing if N = 0 or N = 1 ; Fibonacci(N-{}1) and Fibonacci(N-{}2) else. As Fibonacci(N-{}1) depends on Fibonacci(N-{}2), the induced graph is not a tree. Therefore, there is a correspondence between implementation technique and data structure traversal :
\begin{longtable}{|>{\RaggedRight}p{0.45247\linewidth}|>{\RaggedRight}p{0.49038\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Corresponding Implementation technique }&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Data Structure Traversal}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Memoization &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Depth First Search (keep every intermediary result in memory)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Parallel evaluation &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Breadth First Search (keep every intermediary result in memory, too)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Sharing &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Directed acyclic graph traversal (Maintain only a \symbol{34}frontier\symbol{34} in memory.)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Usual recursion &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} Tree traversal (Fill a stack)\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Tail recursion &\hspace*{0pt}\ignorespaces{}\hspace*{0pt} List traversal / Greedy Search (Constant space)\\ \hline
\end{longtable}

The classical :
\\

\TemplateSpaceIndent{ {} {}fibo {}0 {}= {}1 \newline{}
 {} {}fibo {}1 {}= {}1 \newline{}
 {} {}fibo {}n {}= {}fibo {}(n-{}1) {}+ {}fibo {}(n-{}2)}

Is a tree traversal applied to a directed acyclic graph for the worse. The optimized version :
\\

\TemplateSpaceIndent{ {}fibo {}n {}= {} \newline{}
 {} {}let {}f {}a {}b {}m {}= \newline{}
 {} {} {} {} {}if {}m {}= {}0 {}then {}a \newline{}
 {} {} {} {} {}if {}m {}= {}1 {}then {}b \newline{}
 {} {} {} {} {}f {}b {}(a+b) {}(m-{}1) \newline{}
 {} {}in {}f {}1 {}1 {}n}

Uses a DAG traversal. Luckily, the frontier size is constant, so it\textquotesingle{}s a tail recursive algorithm.

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape NOTE: The chapter \mylref{569}{../Strictness} is intended to elaborate on the stuff here.

NOTE: The notion of strict function is to be introduced before this section.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

Now\textquotesingle{}s the time for the space-{}eating fold example:
\\

\TemplateSpaceIndent{ {}foldl {}(+) {}0 {}{[}1..10{]}}

Introduce {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily seq}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \${}!}{$\text{ }$}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that can force an expression to WHNF. =>{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Tricky space leak example:
\\

\TemplateSpaceIndent{ {}(\textbackslash{}xs {}-{}>{} {}head {}xs {}+ {}last {}xs) {}{[}1..n{]} \newline{}
 {}(\textbackslash{}xs {}-{}>{} {}last {}xs {}+ {}head {}xs) {}{[}1..n{]}}

The first version runs on O(1) space. The second in O(n).

\subsection{Sharing and CSE}
\label{540}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape NOTE: overlaps with section about time. Hm, make an extra memoization section?}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

How to share
\\

\TemplateSpaceIndent{ {}foo {}x {}y {}= {}-{}-{} {}s {}is {}not {}shared \newline{}
 {}foo {}x {}= {}\textbackslash{}y {}-{}>{} {}s {}+ {}y \newline{}
 {} {} {}where {}s {}= {}expensive {}x {}-{}-{} {}s {}is {}shared}

\symbol{34}Lambda-{}lifting\symbol{34}, \symbol{34}Full laziness\symbol{34}. The compiler should not do full laziness.

A classic and important example for the trade between space and time:
\\

\TemplateSpaceIndent{ {}sublists {}{[}{]} {} {} {} {} {} {}= {}\mylref{0}{} \newline{}
 {}sublists {}(x:xs) {} {}= {}sublists {}xs {}++ {}map {}(x:) {}(sublists {}xs) \newline{}
 {}sublists\textquotesingle{} {}(x:xs) {}= {}let {}ys {}= {}sublists\textquotesingle{} {}xs {}in {}ys {}++ {}map {}(x:) {}ys}

That\textquotesingle{}s why the compiler should not do common subexpression elimination as optimization. (Does GHC?).

\subsection{Tail recursion}
\label{541}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape NOTE: Does this belong to the space section? I think so, it\textquotesingle{}s about stack space.

Tail recursion in Haskell looks different.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{Reasoning about Time}
\label{542}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Note: introducing strictness before the upper time bound saves some hassle with explanation?}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\subsection{Lazy eval <{} Eager eval}
\label{543}
When reasoning about execution time, naively performing graph reduction by hand to get a clue on what\textquotesingle{}s going on is most often infeasible. In fact, the order of evaluation taken by lazy evaluation is difficult to predict by humans, it is much easier to trace the path of eager evaluation where arguments are reduced to normal form before being supplied to a function. But knowing that lazy evaluation always performs fewer reduction steps than eager evaluation (present the proof!), we can easily get an upper bound for the number of reductions by pretending that our function is evaluated eagerly.

Example:\\

\TemplateSpaceIndent{ {}or {}= {}foldr {}(||) {}False \newline{}
 {}isPrime {}n {}= {}not {}\${}$\text{ }${}or$\text{ }${}\${} {}map {}(\textbackslash{}k {}-{}>{} {}n {}`mod` {}k {}== {}0) {}{[}2..n-{}1{]}}

=>{} eager evaluation always takes n steps, lazy won\textquotesingle{}t take more than that. But it will actually take fewer.
\subsection{Throwing away arguments}
\label{544}
Time bound exact for functions that examine their argument to normal form anyway. The property that a function needs its argument can concisely be captured by denotational semantics:
\\

\TemplateSpaceIndent{ {}f {}{\mbox{\bot}} {}= {}{\mbox{\bot}}}

Argument in WHNF only, though. Operationally: non-{}termination -{}>{} non-{}termination. (this is an approximation only, though because f anything = {\mbox{\bot}} doesn\textquotesingle{}t \symbol{34}need\symbol{34} its argument). Non-{}strict functions don\textquotesingle{}t need their argument and eager time bound is not sharp. But the information whether a function is strict or not can already be used to great benefit in the analysis.
\\

\TemplateSpaceIndent{ {}isPrime {}n {}= {}not {}\${}$\text{ }${}or$\text{ }${}\${} {}(n {}`mod` {}2 {}== {}0) {}: {}(n {}`mod` {}3 {}== {}0) {}: {}...}

It\textquotesingle{}s enough to know {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily or True {\mbox{\bot}} = True}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Other examples:
\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr (:) {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} vs. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl (flip (:)) {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with {\mbox{\bot}}.
\item{} Can {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head . mergesort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be analyzed only with {\mbox{\bot}}? In any case, this example is too involed and belongs to \mylref{549}{../Laziness}.
\end{myitemize}

\subsection{Persistence \& Amortisation}
\label{545}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape NOTE: this section is better left to a data structures chapter because the subsections above cover most of the cases a programmer not focussing on data structures / amortization will encounter.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

Persistence = no updates in place, older versions are still there.
Amortisation = distribute unequal running times across a sequence of operations.
Both don\textquotesingle{}t go well together in a strict setting. Lazy evaluation can reconcile them. Debit invariants. Example: incrementing numbers in binary representation.

\section{Implementation of Graph reduction}
\label{546}
Small talk about G-{}machines and such. Main definition:

closure = thunk = code/data pair on the heap. What do they do? Consider {$(\lambda x.\lambda y.x+y) 2$}. This is a function that returns a function, namely {$\lambda y.2+y$} in this case. But when you want to compile code, it\textquotesingle{}s prohibitive to actually perform the substitution in memory and replace all occurrences of {x} by 2. So, you return a closure that consists of the function code {$\lambda y.x+y$} and an environment {$\{x=2\}$} that assigns values to the free variables appearing in there.

GHC (?, most Haskell implementations?) avoid free variables completely and use supercombinators. In other words, they\textquotesingle{}re supplied as extra-{}parameters and the observation that lambda-{}expressions with too few parameters don\textquotesingle{}t need to be reduced since their WHNF is not very different.

Note that these terms are technical terms for implementation stuff, lazy evaluation happily lives without them. Don\textquotesingle{}t use them in any of the sections above.

\LaTeXNullTemplate{}
\section{References}
\label{547}

\begin{myitemize}
\item{} Introduction to Functional Programming using Haskell
 . Prentice Hall
 , , 1998

\item{} The Implementation of Functional Programming Languages
 . Prentice Hall
 , , 1987

\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Laziness}

\myminitoc
\label{548}

\label{549}
\LaTeXNullTemplate{}

\LaTeXCquoteTemplate{Hard work pays off later. Laziness pays off now! – Steven Wright}
\section{Introduction}
\label{550}
By now, you are aware that Haskell uses lazy evaluation in that nothing is evaluated until necessary. But what exactly does \symbol{34}until necessary\symbol{34} mean? In this chapter, we will see how lazy evaluation works (how little black magic there is), what exactly it means for functional programming, and how to make the best use of it.

First, let\textquotesingle{}s consider the reasons and implications of lazy evaluation. At first glance, we might think that lazy evaluation makes programs more efficient. After all, what can be more efficient than not doing anything? In practice, however, laziness often introduces an overhead that leads programmers to hunt for places where they can make their code more strict. The real benefit of laziness is in making the right things {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries efficient enough}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape . Lazy evaluation allows us to write more simple, elegant code than we could in a strict environment.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\subsection{Nonstrictness versus Laziness}
\label{551}
There is a slight difference between {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape laziness}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape nonstrictness}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Nonstrict semantics}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} refers to a given property of Haskell programs that you can rely on: nothing will be evaluated until it is needed. {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Lazy evaluation}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is how you implement nonstrictness using a device called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries thunks}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which we explain in the next section. However, these two concepts are so closely linked that it helps to explain them both together. Knowledge of thunks helps in understanding nonstrictness, and the semantics of nonstrictness explains why we use lazy evaluation in the first place. So, we\textquotesingle{}ll introduce the concepts simultaneously and make no particular effort to keep them from intertwining (with the exception of getting the terminology right).
\section{Thunks and Weak head normal form}
\label{552}
You need to understand two principles to see how programs execute in Haskell. First, we have the property of nonstrictness: we evaluate as little as possible and delay evaluation as long as possible. Second, Haskell values are highly layered; and \textquotesingle{}evaluating\textquotesingle{} a Haskell value could mean evaluating down to any one of these layers. Let\textquotesingle{}s walk through a few examples using a pair.

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(length\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{5}\NormalTok{],\ensuremath{\text{ }}reverse\ensuremath{\text{ }}}\StringTok{"olleh"}\NormalTok{)\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\FunctionTok{...}\newline
\end{Highlighting}
\end{Shaded}

Assume that in the \textquotesingle{}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily in}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{} part, we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} somewhere — otherwise, we wouldn\textquotesingle{}t need to evaluate the let-{}binding at all! The right-{}hand side could have been {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and it would still work if the \textquotesingle{}in\textquotesingle{} part doesn\textquotesingle{}t mention {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This assumption will remain for all the examples in this section.

What do we know about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? We can calculate that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} must be {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 5}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is \symbol{34}hello\symbol{34}, but remember the first principle: we don\textquotesingle{}t evaluate the calls to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} until we\textquotesingle{}re forced to. So, we say that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are both {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries thunks}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: that is, they are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unevaluated values}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape recipe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that explains how to evaluate them. For example, for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} this recipe says \textquotesingle{}Evaluate {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length {[}1..5{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}. However, we are actually doing some pattern matching on the left hand side. What would happen if we removed that?

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(length\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{5}\NormalTok{],\ensuremath{\text{ }}reverse\ensuremath{\text{ }}}\StringTok{"olleh"}\NormalTok{)\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\FunctionTok{...}\newline
\end{Highlighting}
\end{Shaded}

Although it\textquotesingle{}s still pretty obvious to us that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a pair, the compiler sees that we\textquotesingle{}re not trying to deconstruct the value on the right-{}hand side of the \textquotesingle{}=\textquotesingle{} sign at all, so it doesn\textquotesingle{}t really care what\textquotesingle{}s there. It lets {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be a thunk on its own. Later on, when we try to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we\textquotesingle{}ll probably need one or both of the components, so we\textquotesingle{}ll have to evaluate {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but for now, it can be a thunk.

Above, we said Haskell values were layered. We can see that at work if we pattern match on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(length\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{5}\NormalTok{],\ensuremath{\text{ }}reverse\ensuremath{\text{ }}}\StringTok{"olleh"}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(n,\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\newline
\KeywordTok{in}\ensuremath{\text{ }}\FunctionTok{...}\newline
\end{Highlighting}
\end{Shaded}

After the first line has been executed, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is simply a thunk. We know nothing about the sort of value it is because we haven\textquotesingle{}t been asked to find out yet. In the second line, however, we pattern match on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using a pair pattern. The compiler thinks \textquotesingle{}I better make sure that pattern does indeed match {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and in order to do that, I need to make sure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a pair.\textquotesingle{} Be careful, though — we\textquotesingle{}re not yet doing anything with the component parts (the calls to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), so they can remain unevaluated. In other words, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which was just a thunk, gets evaluated to something like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*thunk*, *thunk*)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily n}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} become thunks which, when evaluated, will be the component parts of the original {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Let\textquotesingle{}s try a slightly more complicated pattern match:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(length\ensuremath{\text{ }}[}\DecValTok{1}\FunctionTok{..}\DecValTok{5}\NormalTok{],\ensuremath{\text{ }}reverse\ensuremath{\text{ }}}\StringTok{"olleh"}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(n,\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{z\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CharTok{\textquotesingle{}h\textquotesingle{}}\FunctionTok{:}\NormalTok{ss\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{s}\newline
\KeywordTok{in}\ensuremath{\text{ }}\FunctionTok{...}\newline
\end{Highlighting}
\end{Shaded}

The pattern match on the second component of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} causes some evaluation. The compiler wishes to check that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}h\textquotesingle{}:ss}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern matches the second component of the pair. So, it:

\begin{myenumerate}
\item{} Evaluates the top level of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to ensure it\textquotesingle{}s a cons cell: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s = *thunk* : *thunk*}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} had been an empty list we would encounter a pattern match failure error at this point.)
\item{} Evaluates the first thunk it just revealed to make sure it\textquotesingle{}s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \textquotesingle{}h\textquotesingle{}:ss = \textquotesingle{}h\textquotesingle{} : *thunk*}
\end{myenumerate}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\begin{myitemize}
\item{} The rest of the list stays unevaluated, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ss}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} becomes a thunk which, when evaluated, will be the rest of this list.
\end{myitemize}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/35.png}
\end{center}
\raggedright{}\myfigurewithcaption{35}{Evaluating the value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (4, {[}1, 2{]})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} step by step. The first stage is completely unevaluated; all subsequent forms are in WHNF, and the last one is also in normal form.}
\end{minipage}\vspace{0.75cm}

We can \textquotesingle{}partially evaluate\textquotesingle{} (most) Haskell values. Also, there is some sense of the minimum amount of evaluation we can do. For example, if we have a pair thunk, then the minimum amount of evaluation takes us to the pair constructor with two unevaluated components: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (*thunk*, *thunk*)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If we have a list, the minimum amount of evaluation takes us either to a cons cell {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily *thunk* : *thunk*}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or an empty list {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that in the empty list case, no more evaluation can be performed on the value; it is said to be in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries normal form}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If we are at any of the intermediate steps so that we\textquotesingle{}ve performed at least some evaluation on a value, it is in {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries weak head normal form}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (WHNF). (There is also a \textquotesingle{}head normal form\textquotesingle{}, but it\textquotesingle{}s not used in Haskell.) {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Fully}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluating something in WHNF reduces it to something in normal form; if at some point we needed to, say, print {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily z}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} out to the user, we\textquotesingle{}d need to fully evaluate it, including those calls to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily reverse}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (5, \symbol{34}hello\symbol{34})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where it is in normal form. Performing any degree of evaluation on a value is sometimes called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries forcing}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that value.

Note that for some values there is only one result. For example, you can\textquotesingle{}t partially evaluate an integer. It\textquotesingle{}s either a thunk or it\textquotesingle{}s in normal form. Furthermore, if we have a constructor with strict components (annotated with an exclamation mark, as with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily data MaybeS a = NothingS | JustS !a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), these components become evaluated as soon as we evaluate the level above. I.e. we can never have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily JustS *thunk*}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} — as soon as we get to this level, the strictness annotation on the component of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily JustS}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} forces us to evaluate the component part.

In this section we\textquotesingle{}ve explored the basics of laziness. We\textquotesingle{}ve seen that nothing gets evaluated until it is needed (in fact, the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape only}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} place that Haskell values get evaluated is in pattern matches and inside certain primitive IO functions) . This principle even applies to evaluating values — we do the minimum amount of work on a value that we need to compute our result.
\section{Lazy and strict functions}
\label{553}
Functions can be lazy or strict \textquotesingle{}in an argument\textquotesingle{}. Most functions need to do something with their arguments, and this will involve evaluating these arguments to different levels. For example, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} needs to evaluate only the cons cells in the argument you give it, not the contents of those cons cells. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length *thunk*}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} might evaluate to something like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length (*thunk* : *thunk* : *thunk* : {[}{]})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which in turn evaluates to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 3}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Others need to evaluate their arguments fully, as in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (length . show)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If you had {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length \${} show *thunk*}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, there\textquotesingle{}s no way you can do anything other than evaluate that thunk to normal form.

So, some functions evaluate their arguments more fully than others. Given two functions of one parameter, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we say {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is stricter than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to a deeper level than {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Often, we only care about WHNF, so a function that evaluates its argument to at least WHNF is called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape strict}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and one that performs no evaluation is {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. What about functions of more than one parameter? Well, we can talk about functions being strict in one parameter, but lazy in another. For example, given a function like the following:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

Clearly we need to perform no evaluation on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but we need to evaluate {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} fully to normal form, so {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict in its first parameter but lazy in its second.

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Why must we fully evaluate x to normal form in f x y = show x?
\item{} Which is the stricter function?

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{f\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}[head\ensuremath{\text{ }}x]}\newline
\NormalTok{g\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}(tail\ensuremath{\text{ }}x)}\newline
\end{Highlighting}
\end{Shaded}

\end{myenumerate}}

In the original discussion about \myhref{https://en.wikibooks.org/wiki/Haskell\%2FList\%20processing\%23foldl}{Folds}, we discussed memory problems with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that are solved by the strictly-{}evaluated {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl\textquotesingle{}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Essentially, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr (:) {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl (flip (:)) {[}{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} both evaluate their arguments to the same level of strictness, but {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can start producing values straight away, whereas {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldl}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} needs to evaluate cons cells all the way to the end before it starts producing any output. So, there are times when strictness can be valuable.
\subsection{Black-{}box strictness analysis}
\label{554}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/36.png}
\end{center}
\raggedright{}\myfigurewithcaption{36}{If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns an error when passed undefined, it must be strict. Otherwise, it\textquotesingle{}s lazy.}
\end{minipage}\vspace{0.75cm}

Imagine we\textquotesingle{}re given some function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which takes a single parameter. We\textquotesingle{}re not allowed to look at its source code, but we want to know whether {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict or not. How might we do this? Probably the easiest way is to use the standard Prelude value {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Forcing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to any level of evaluation will halt our program and print an error, so all of these print errors:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{undefined\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{length\ensuremath{\text{ }}undefined}\newline
\NormalTok{head\ensuremath{\text{ }}undefined}\newline
\DataTypeTok{JustS}\ensuremath{\text{ }}\NormalTok{undefined\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Using\ensuremath{\text{ }}MaybeS\ensuremath{\text{ }}as\ensuremath{\text{ }}defined\ensuremath{\text{ }}in\ensuremath{\text{ }}the\ensuremath{\text{ }}last\ensuremath{\text{ }}section}\newline
\end{Highlighting}
\end{Shaded}

So if a function is strict, passing it {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will result in an error. Were the function lazy, passing it undefined would print no error and we can carry on as normal. For example, none of the following produce errors:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}undefined)\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{x}\newline
\NormalTok{length\ensuremath{\text{ }}[undefined,\ensuremath{\text{ }}undefined,\ensuremath{\text{ }}undefined]}\newline
\NormalTok{head\ensuremath{\text{ }}(}\DecValTok{4}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{undefined)}\newline
\DataTypeTok{Just}\ensuremath{\text{ }}\NormalTok{undefined}\newline
\end{Highlighting}
\end{Shaded}

So we can say that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a strict function if, and only if, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} results in an error being printed and the halting of our program.
\subsection{In the context of nonstrict semantics}
\label{555}
What we\textquotesingle{}ve presented so far makes sense until you start to think about functions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} strict? Our gut reaction is probably to say \symbol{34}No! It doesn\textquotesingle{}t evaluate its argument, therefore it\textquotesingle{}s lazy\symbol{34}. However, let\textquotesingle{}s apply our black-{}box strictness analysis from the last section to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Clearly, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is going to print an error and halt our program, so shouldn\textquotesingle{}t we say that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict? The reason for this mixup is that Haskell\textquotesingle{}s nonstrict semantics makes the whole issue a bit murkier.

Nothing gets evaluated if it doesn\textquotesingle{}t need to be, according to nonstrictness. In the following code, will {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily length undefined}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be evaluated?

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{[}\DecValTok{4}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{10}\NormalTok{,\ensuremath{\text{ }}length\ensuremath{\text{ }}undefined,\ensuremath{\text{ }}}\DecValTok{12}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

If you type this into GHCi, it seems strict — you\textquotesingle{}ll get an error. However, our question was something of a trick. It doesn\textquotesingle{}t make sense to state whether a value gets evaluated unless we\textquotesingle{}re doing something to this value. Think about it: if we type in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head {[}1, 2, 3{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into GHCi, the only reason we have to do any evaluation whatsoever is because GHCi has to print us out the result. Typing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}4, 10, length undefined, 12{]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} again requires GHCi to print that list back to us, so it must evaluate it to normal form. In your average Haskell program, nothing at all will be evaluated until we come to perform the IO in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily main}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. So it makes no sense to say whether something is evaluated or not unless we know what it\textquotesingle{}s being passed to, one level up. One lesson here is: don\textquotesingle{}t blindly trust GHCi because {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape everything in GHCi is filtered through IO!}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

So when we say \symbol{34}Does {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} force {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}?\symbol{34} what we really mean is \symbol{34}Given that we\textquotesingle{}re forcing {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, does {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} get forced as a result?\symbol{34}. Now we can turn our attention back to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. If we force {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to normal form, then {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will be forced to normal form, so we conclude that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} itself doesn\textquotesingle{}t evaluate its argument, it just hands it on to the caller who will. One way to see this is in the following code:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}We\ensuremath{\text{ }}evaluate\ensuremath{\text{ }}the\ensuremath{\text{ }}right-hand\ensuremath{\text{ }}of\ensuremath{\text{ }}the\ensuremath{\text{ }}let-binding\ensuremath{\text{ }}to\ensuremath{\text{ }}WHNF\ensuremath{\text{ }}by\ensuremath{\text{ }}pattern-matching}\newline
\CommentTok{--\ensuremath{\text{ }}against\ensuremath{\text{ }}it.}\newline
\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{undefined\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Error,\ensuremath{\text{ }}because\ensuremath{\text{ }}we\ensuremath{\text{ }}force\ensuremath{\text{ }}undefined.}\newline
\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{id\ensuremath{\text{ }}undefined\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Error,\ensuremath{\text{ }}because\ensuremath{\text{ }}we\ensuremath{\text{ }}force\ensuremath{\text{ }}undefined.}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily id}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doesn\textquotesingle{}t \symbol{34}stop\symbol{34} the forcing, so it is strict. Contrast this to a clearly lazy function, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily const (3, 4)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{undefined\ensuremath{\text{ }}}\KeywordTok{in}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Error,\ensuremath{\text{ }}because\ensuremath{\text{ }}we\ensuremath{\text{ }}force\ensuremath{\text{ }}undefined.}\newline
\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{const\ensuremath{\text{ }}(}\DecValTok{3}\NormalTok{,\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{)\ensuremath{\text{ }}undefined\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}No\ensuremath{\text{ }}error,\ensuremath{\text{ }}because\ensuremath{\text{ }}const\ensuremath{\text{ }}(3,\ensuremath{\text{ }}4)\ensuremath{\text{ }}is\ensuremath{\text{ }}lazy.}\newline
\end{Highlighting}
\end{Shaded}

\subsection{The denotational view on things}
\label{556}
If you\textquotesingle{}re familiar with denotational semantics (perhaps you\textquotesingle{}ve read the \mylref{470}{wikibook chapter}?), then the strictness of a function can be summed up very succinctly:

\begin{center}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} = \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⊥\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \setmainfont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeSerif.ttf,BoldFont=FreeSerifBold.ttf,ItalicFont=FreeSerifItalic.ttf,BoldItalicFont=FreeSerifBoldItalic.ttf]{FreeSerif.ttf}\setmonofont[Path=/usr/share/fonts/truetype/freefont/,UprightFont=FreeMono.ttf,BoldFont=FreeMonoBold.ttf,ItalicFont=FreeMonoOblique.ttf,BoldItalicFont=FreeMonoBoldOblique.ttf]{FreeSerif.ttf}⇔\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is strict
\end{center}

Assuming that, we can say that everything with type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily forall a. a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, including {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily error \symbol{34}any string\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily throw}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and so on, has denotation {\mbox{\bot}}.
\section{Lazy pattern matching}
\label{557}
You might have seen pattern matches like the following in Haskell sources.

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}From\ensuremath{\text{ }}Control.Arrow}\newline
\NormalTok{(}\FunctionTok{***}\NormalTok{)\ensuremath{\text{ }}f\ensuremath{\text{ }}g\ensuremath{\text{ }}}\FunctionTok{~}\NormalTok{(x,\ensuremath{\text{ }}y)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(f\ensuremath{\text{ }}x,\ensuremath{\text{ }}g\ensuremath{\text{ }}y)}\newline
\end{Highlighting}
\end{Shaded}

The question is: what does the tilde sign (\~{}) mean in the above pattern match? \~{} makes a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape lazy pattern}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape irrefutable pattern}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Normally, if you pattern match using a constructor as part of the pattern, you have to evaluate any argument passed into that function to make sure it matches the pattern. For example, if you had a function like the above, the third argument would be evaluated when you call the function to make sure the value matches the pattern. (Note that the first and second arguments won\textquotesingle{}t be evaluated, because the patterns {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily g}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} match anything. Also it\textquotesingle{}s worth noting that the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape components}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the tuple won\textquotesingle{}t be evaluated: just the \textquotesingle{}top level\textquotesingle{}. Try {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily let f (Just x) = 1 in f (Just undefined)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to see this.)

However, prepending a pattern with a tilde sign delays the evaluation of the value until the component parts are actually used. But you run the risk that the value might not match the pattern — you\textquotesingle{}re telling the compiler \textquotesingle{}Trust me, I know it\textquotesingle{}ll work out\textquotesingle{}. (If it turns out it doesn\textquotesingle{}t match the pattern, you get a runtime error.) To illustrate the difference:

\TemplatePreformat{ \newline{}
 {} \newline{}
Prelude>{} {}let {}f {}(x,y) {}= {}1 \newline{}
Prelude>{} {}f {}undefined \newline{}
*** {}Exception: {}Prelude.undefined \newline{}
 {} \newline{}
Prelude>{} {}let {}f {}\~{}(x,y) {}= {}1 \newline{}
Prelude>{} {}f {}undefined \newline{}
1 \newline{}
 {} \newline{}
}

In the first example, the value is evaluated because it has to match the tuple pattern. You evaluate undefined and get undefined, which stops the proceedings. In the latter example, you don\textquotesingle{}t bother evaluating the parameter until it\textquotesingle{}s needed, which turns out to be never, so it doesn\textquotesingle{}t matter you passed it {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily undefined}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. To bring the discussion around in a circle back to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (***)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\TemplatePreformat{ \newline{}
Prelude>{} {}(const {}1 {}*** {}const {}2) {}undefined \newline{}
(1,2) \newline{}
}

If the pattern weren\textquotesingle{}t irrefutable, the example would have failed.
\subsection{When does it make sense to use lazy patterns?}
\label{558}
Essentially, use lazy patterns when you only have the single constructor for the type, e.g. tuples. Multiple equations won\textquotesingle{}t work nicely with irrefutable patterns. To see this, let\textquotesingle{}s examine what would happen were we to make {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} have an irrefutable pattern:

\TemplatePreformat{ \newline{}
head\textquotesingle{} {}:: {}{[}a{]} {}-{}>{} {}a \newline{}
head\textquotesingle{} {}\~{}{[}{]} {} {} {} {} {}= {}undefined \newline{}
head\textquotesingle{} {}\~{}(x:xs) {}= {}x \newline{}
}

We\textquotesingle{}re using one of these patterns for sure, and we need not evaluate even the top level of the argument until absolutely necessary, so we don\textquotesingle{}t know whether it\textquotesingle{}s an empty list or a cons cell. As we\textquotesingle{}re using an {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape irrefutable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pattern for the first equation, this will match, and the function will always return undefined.

\LaTeXExercisesTemplate{\begin{myitemize}
\item{} Why won\textquotesingle{}t changing the order of the equations to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} help here?
\item{} If the first equation is changed to use an ordinary refutable pattern, will the behavior of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head\textquotesingle{}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} still be different from that of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily head}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}? If so, how?

\end{myitemize}}
\section{Benefits of nonstrict semantics}
\label{559}
Why make Haskell a nonstrict language in the first place? What advantages are there?
\subsection{Separation of concerns without time penalty}
\label{560}
Lazy evaluation encourages a kind of \symbol{34}what you see is what you get\symbol{34} mentality when it comes to coding. For example, let\textquotesingle{}s say you wanted to find the lowest three numbers in a long list. In Haskell this is achieved extremely naturally: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily take 3 (sort xs)}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However a naïve translation of that code in a strict language would be a very bad idea! It would involve computing the entire sorted list, then chopping off all but the first three elements. However, with lazy evaluation we stop once we\textquotesingle{}ve sorted the list up to the third element, so this natural definition turns out to be efficient (depending on the implementation of sort).

To give a second example, the function {\ttfamily \myhref{http://haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html\#v\%3AisInfixOf}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isInfixOf}} from Data.List allows you to see if one string is a substring of another string. It\textquotesingle{}s easily definable as:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{isInfixOf\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{isInfixOf\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{any\ensuremath{\text{ }}(isPrefixOf\ensuremath{\text{ }}x)\ensuremath{\text{ }}(tails\ensuremath{\text{ }}y)}\newline
\end{Highlighting}
\end{Shaded}

Again, this would be suicide in a strict language as computing all the tails of a list would be very time-{}consuming. However, here we only evaluate enough elements of each tail to determine whether it has prefix {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or not, and stop and return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily True}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} once we found one with prefix {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

There are many more examples along these lines.\myfootnote{In general, expressions like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily prune . generate}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, where {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily generate}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} produces a list of items and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily prune}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} cuts them down, will be much more efficient in a nonstrict language.} So we can write code that looks and feels natural and doesn\textquotesingle{}t incur any time penalty.

However, as always in Computer Science (and in life), a tradeoff exists (in particular, a space-{}time tradeoff). Using a thunk instead of a plain {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for a trivial calculation (like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 2+2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) can be a waste.
For more examples, see the page on \mylref{569}{../Strictness}.
\subsection{Improved code reuse}
\label{561}

Often code reuse is desireable.

For example, we\textquotesingle{}ll take again (but in more detail) {\ttfamily \myhref{http://haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html\#v\%3AisInfixOf}{\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isInfixOf}} from Data.List. Let\textquotesingle{}s look at the full definition:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}From\ensuremath{\text{ }}the\ensuremath{\text{ }}Prelude}\newline
\NormalTok{or\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{foldr\ensuremath{\text{ }}(}\FunctionTok{||}\NormalTok{)\ensuremath{\text{ }}}\DataTypeTok{False}\newline
\NormalTok{any\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{or\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{map\ensuremath{\text{ }}p\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}From\ensuremath{\text{ }}Data.List}\newline
\NormalTok{isPrefixOf\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{True}\newline
\NormalTok{isPrefixOf\ensuremath{\text{ }}_\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{False}\newline
\NormalTok{isPrefixOf\ensuremath{\text{ }}(x}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}(y}\FunctionTok{:}\NormalTok{ys)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{isPrefixOf\ensuremath{\text{ }}xs\ensuremath{\text{ }}ys\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\newline
\NormalTok{tails\ensuremath{\text{ }}[]\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{[[]]}\newline
\NormalTok{tails\ensuremath{\text{ }}xss}\FunctionTok{@}\NormalTok{(_}\FunctionTok{:}\NormalTok{xs)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{xss\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{tails\ensuremath{\text{ }}xs}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}Our\ensuremath{\text{ }}function}\newline
\OtherTok{isInfixOf\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Eq}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[a]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Bool}\newline
\NormalTok{isInfixOf\ensuremath{\text{ }}x\ensuremath{\text{ }}y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{any\ensuremath{\text{ }}(isPrefixOf\ensuremath{\text{ }}x)\ensuremath{\text{ }}(tails\ensuremath{\text{ }}y)}\newline
\end{Highlighting}
\end{Shaded}

Where {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily any}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isPrefixOf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tails}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are the functions taken from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} library. This function determines if its first parameter, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} occurs as a subsequence of its second, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; when applied on {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s (i.e. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Char{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), it checks if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a substring of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Read in a strict way, it forms the list of all the tails of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily y}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, then checks them all to see if any of them have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as a prefix. In a strict language, writing this function this way (relying on the already-{}written programs {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily any}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isPrefixOf}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tails}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) would be silly, because it would be far slower than it needed to be. You\textquotesingle{}d end up doing direct recursion again, or in an imperative language, a couple of nested loops. You might be able to get some use out of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily isPrefixOf}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but you certainly wouldn\textquotesingle{}t use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily tails}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You might be able to write a usable shortcutting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily any}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but it would be more work, since you wouldn\textquotesingle{}t want to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to do it.

Now, in a lazy language, all the shortcutting is done for you. You don\textquotesingle{}t end up rewriting {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily foldr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to shortcut when you find a solution or rewriting the recursion done in tails so that it will stop early again. You can reuse standard library code better. Laziness isn\textquotesingle{}t just a constant-{}factor speed thing, it makes a qualitative impact on the code which is reasonable to write. In fact, it\textquotesingle{}s commonplace to define infinite structures, and then only use as much as is needed, rather than having to mix up the logic of constructing the data structure with code that determines whether any part is needed. Code modularity is increased, as laziness gives you more ways to chop up your code into small pieces, each of which does a simple task of generating, filtering, or otherwise manipulating data.

\myhref{http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html}{Why Functional Programming Matters} largely focuses on examples where laziness is crucial and provides a strong argument for lazy evaluation being the default.
\subsection{Infinite data structures}
\label{562}

\LaTeXNullTemplate{}

{\itshape { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Examples:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fibs\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\FunctionTok{:}\DecValTok{1}\FunctionTok{:}\NormalTok{zipWith\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}fibs\ensuremath{\text{ }}(tail\ensuremath{\text{ }}fibs)}\newline
\StringTok{"rock-scissors-paper"}\ensuremath{\text{ }}\NormalTok{example\ensuremath{\text{ }}from\ensuremath{\text{ }}}\DataTypeTok{Bird}\FunctionTok{\&}\DataTypeTok{Wadler}\newline
\NormalTok{prune\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{generate}\newline
\end{Highlighting}
\end{Shaded}

Infinite data structures usually tie a knot, too, but the Sci-{}Fi-{}Explanation of that is better left to the next section. One could move the next section before this one but I think that infinite data structures are simpler than tying general knots}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{Common nonstrict idioms}
\label{563}
\subsection{Tying the knot}
\label{564}

\LaTeXNullTemplate{}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape More practical examples?

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{repMin}\newline
\end{Highlighting}
\end{Shaded}

Sci-{}Fi-{}Explanation: \symbol{34}You can borrow things from the future as long as you don\textquotesingle{}t try to change them\symbol{34}. Advanced: the \symbol{34}Blueprint\symbol{34}-{}technique. Examples: the one from the haskellwiki, the one from the mailing list.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

At first a pure functional language seems to have a problem with circular data structures. Suppose I have a data type like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{value\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{a,}\OtherTok{\ensuremath{\text{ }}next\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\NormalTok{a\}}\newline
\end{Highlighting}
\end{Shaded}

If I want to create two objects \symbol{34}x\symbol{34} and \symbol{34}y\symbol{34} where \symbol{34}x\symbol{34} contains a reference to \symbol{34}y\symbol{34} and \symbol{34}y\symbol{34} contains a reference to \symbol{34}x\symbol{34} then in a conventional language this is straightforward: create the objects and then set the relevant fields to point to each other:
\\

\TemplateSpaceIndent{ {} {}-{}-{} {}Not {}Haskell {}code \newline{}
 {} {}x {}:= {}new {}Foo; \newline{}
 {} {}y {}:= {}new {}Foo; \newline{}
 {} {}x.value {}:= {}1; \newline{}
 {} {}x.next {}:= {}y; \newline{}
 {} {}y.value {}:= {}2 \newline{}
 {} {}y.next {}:= {}x;}

In Haskell this kind of modification is not allowed. So instead we depend on lazy evaluation:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{circularFoo\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\newline
\NormalTok{circularFoo\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{x}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\NormalTok{y}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Foo}\ensuremath{\text{ }}\DecValTok{2}\ensuremath{\text{ }}\NormalTok{x}\newline
\end{Highlighting}
\end{Shaded}

This depends on the fact that the \symbol{34}Foo\symbol{34} constructor is a function, and like most functions it gets evaluated lazily.
Only when one of the fields is required does it get evaluated.

It may help to understand what happens behind the scenes here. When a lazy value is created (for example, by a call to \symbol{34}Foo\symbol{34}), the compiler generates an internal data structure called a \symbol{34}thunk\symbol{34} containing the function call and arguments. When the value of the function is demanded, the function is called (as you would expect). But then the thunk data structure is replaced with the return value. Thus, anything else that refers to that value gets it straight away without the need to call the function.

(Note that the Haskell language standard makes no mention of thunks: they are an implementation mechanism. From the mathematical point of view this is a straightforward example of mutual recursion.)

So, when we call \symbol{34}circularFoo\symbol{34} the result \symbol{34}x\symbol{34} is actually a thunk. One of the arguments is a reference to a second thunk representing \symbol{34}y\symbol{34}. This in turn has a reference back to the thunk representing \symbol{34}x\symbol{34}. If we then use the value \symbol{34}next x\symbol{34} this forces the \symbol{34}x\symbol{34} thunk to be evaluated and returns a reference to the \symbol{34}y\symbol{34} thunk. If I use the value \symbol{34}next \${} next x\symbol{34} then I force the evaluation of both thunks. So now both thunks have been replaced with the actual \symbol{34}Foo\symbol{34} structures, referring to each other. Which is what we wanted.

This is most often applied with constructor functions, but it isn\textquotesingle{}t limited just to constructors. You can just as readily write:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}y}\newline
\NormalTok{y\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{g\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

The same logic applies.
\subsection{Memoization, Sharing and Dynamic Programming}
\label{565}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Dynamic programming with immutable arrays. DP with other finite maps, Hinze\textquotesingle{}s paper \symbol{34}Trouble shared is Trouble halved\symbol{34}. Let-{}floating {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape \textbackslash{}x-{}>{} let z = foo x in \textbackslash{}y -{}>{} ...}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape .}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
\section{Conclusions about laziness}
\label{566}

<{}-{}-{}! Move conclusions to the introduction? -{}-{}>{}

Laziness:

\begin{myitemize}
\item{} Can make qualitative improvements to performance!
\item{} Can hurt performance in some other cases.
\item{} Makes code simpler.
\item{} Makes hard problems conceivable.
\item{} Allows for separation of concerns with regard to generating and processing data.
\end{myitemize}

\LaTeXNullTemplate{}
\section{References}
\label{567}

\begin{myitemize}
\item{} \myhref{http://www.haskell.org/haskellwiki/Performance/Laziness}{Laziness on the Haskell wiki}
\item{} \myhref{http://www.haskell.org/haskellwiki/Haskell/Lazy_Evaluation}{Lazy evaluation tutorial on the Haskell wiki}
\end{myitemize}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Strictness}

\myminitoc
\label{568}

\label{569}
\LaTeXNullTemplate{}
\section{Difference between strict and lazy evaluation}
\label{570}

Strict evaluation, or eager evaluation, is an evaluation strategy where expressions are evaluated as soon as they are bound to a variable. For example, with strict evaluation, when {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x = 3 * 7}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is read, 3 * 7 is immediately computed and 21 is bound to x. Conversely, with \mylref{549}{lazy evaluation} values are only computed when they are needed. In the example {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x = 3 * 7}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, 3 * 7 isn\textquotesingle{}t evaluated until it\textquotesingle{}s needed, like if you needed to output the value of x.
\section{Why laziness can be problematic}
\label{571}

Lazy evaluation often involves objects called thunks. A thunk is a placeholder object, specifying not the data itself, but rather how to compute that data. An entity can be replaced with a thunk to compute that entity. When an entity is copied, whether or not it is a thunk doesn\textquotesingle{}t matter -{} it\textquotesingle{}s copied as is (on most implementations, a pointer to the data is created). When an entity is evaluated, it is first checked if it is thunk; if it\textquotesingle{}s a thunk, then it is executed, otherwise the actual data is returned. It is by the magic of thunks that laziness can be implemented.

Generally, in the implementation the thunk is really just a pointer to a piece of (usually static) code, plus another pointer to the data the code should work on. If the entity computed by the thunk is larger than the pointer to the code and the associated data, then a thunk wins out in memory usage. But if the entity computed by the thunk is smaller, the thunk ends up using more memory.

As an example, consider an infinite length list generated using the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily iterate (+ 1) 0}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The size of the list is infinite, but the code is just an add instruction, and the two pieces of data, 1 and 0, are just two Integers. In this case, the thunk representing that list takes much less memory than the actual list, which would take infinite memory.

However, as another example consider the number generated using the expression {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily 4 * 13 + 2}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The value of that number is 54, but in thunk form it is a multiply, an add, and three numbers. In such a case, the thunk loses in terms of memory.

Often, the second case above will consume so much memory that it will consume the entire heap and force the garbage collector. This can slow down the execution of the program significantly. And that, in fact, is the main reason why laziness can be problematic.

Additionally, if the resulting value {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} used, no computation is saved; instead, a slight overhead (of a constant factor) for building the thunk is paid. However, this overhead is not something the programmer should deal with most of the times; more important factors must be considered and may give a much bigger improvements; additionally, optimizing Haskell compilers like GHC can perform \textquotesingle{}strictness analysis\textquotesingle{} and remove that slight overhead.
\section{Strictness annotations}
\label{572}
\section{seq}
\label{573}
\subsection{DeepSeq}
\label{574}
\section{References}
\label{575}

\begin{myitemize}
\item{} \myhref{http://www.haskell.org/haskellwiki/Performance/Strictness}{Strictness on the Haskell wiki}
\end{myitemize}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Algorithm complexity}

\myminitoc
\label{576}

\label{577}
\LaTeXNullTemplate{}

Complexity Theory is the study of how long a program will take to run,
depending on the size of its input. There are many good introductory
books to complexity theory and the basics are explained in any good
algorithms book. I\textquotesingle{}ll keep the discussion here to a minimum.

The idea is to say how well a program scales with more data. If you
have a program that runs quickly on very small amounts of data but
chokes on huge amounts of data, it\textquotesingle{}s not very useful (unless you know
you\textquotesingle{}ll only be working with small amounts of data, of course).
Consider the following Haskell function to return the sum of the
elements in a list:

\TemplatePreformat{ \newline{}
sum {}{[}{]} {}= {}0 \newline{}
sum {}(x:xs) {}= {}x {}+ {}sum {}xs \newline{}
}
How long does it take this function to complete? That\textquotesingle{}s a very
difficult question; it would depend on all sorts of things: your
processor speed, your amount of memory, the exact way in which the
addition is carried out, the length of the list, how many other
programs are running on your computer, and so on. This is far too
much to deal with, so we need to invent a simpler model. The model we
use is sort of an arbitrary \symbol{34}machine step.\symbol{34} So the question is
\symbol{34}how many machine steps will it take for this program to complete?\symbol{34}
In this case, it only depends on the length of the input list.

If the input list is of length {0}, the function will take either {0}
or {1} or {2} or some very small number of machine steps, depending
exactly on how you count them (perhaps {1} step to do the pattern
matching and {1} more to return the value {0}). What if the list is
of length {1}? Well, it would take however much time the list of
length {0} would take, plus a few more steps for doing the first (and
only element).

If the input list is of length {n}, it will take however many steps an
empty list would take (call this value {y}) and then, for each element
it would take a certain number of steps to do the addition and the
recursive call (call this number {x}). Then, the total time this
function will take is {$nx+y$} since it needs to do those additions {n}
many times. These {x} and {y} values are called {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape constant}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
values{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape , since they are independent of {n}, and actually dependent}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
only on exactly how we define a machine step, so we really don\textquotesingle{}t want
to consider them all that important. Therefore, we say that the
complexity of this {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is {$\mathcal{O}(n)$} (read \symbol{34}order {n}\symbol{34}).
Basically saying something is {$\mathcal{O}(n)$} means that for some constant
factors {x} and {y}, the function takes {$nx+y$} machine steps to
complete.

Consider the following sorting algorithm for lists (commonly called
\symbol{34}insertion sort\symbol{34}):

\TemplatePreformat{ \newline{}
sort {}{[}{]} {} {}= {}{[}{]} \newline{}
sort {}{[}x{]} {}= {}{[}x{]} \newline{}
sort {}(x:xs) {}= {}insert {}(sort {}xs) \newline{}
 {} {} {} {}where {}insert {}{[}{]} {}= {}{[}x{]} \newline{}
 {} {} {} {} {} {} {} {} {} {}insert {}(y:ys) {}| {}x {}<{}= {}y {} {} {} {}= {}x {}: {}y {}: {}ys \newline{}
 {}| {}otherwise {}= {}y {}: {}insert {}ys \newline{}
}
The way this algorithm works is as follow: if we want to sort an empty
list or a list of just one element, we return them as they are, as
they are already sorted. Otherwise, we have a list of the form
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x:xs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In this case, we sort {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily xs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and then want to insert
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the appropriate location. That\textquotesingle{}s what the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily insert}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
function does. It traverses the now-{}sorted tail and inserts {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
wherever it naturally fits.

Let\textquotesingle{}s analyze how long this function takes to complete. Suppose it
takes {$f(n)$} stepts to sort a list of length {n}. Then, in order to
sort a list of {n}-{}many elements, we first have to sort the tail of
the list first, which takes {$f(n-1)$} time. Then, we have to insert
{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into this new list. If {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily x}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has to go at the end, this will
take {$\mathcal{O}(n-1)=\mathcal{O}(n)$} steps. Putting all of this together, we see that
we have to do {$\mathcal{O}(n)$} amount of work {$\mathcal{O}(n)$} many times, which means
that the entire complexity of this sorting algorithm is {$\mathcal{O}(n^2)$}.
Here, the squared is not a constant value, so we cannot throw it out.

What does this mean? Simply that for really long lists, the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sum}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}
function won\textquotesingle{}t take very long, but that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sort}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function will
take quite some time. Of course there are algorithms that run much
more slowly than simply {$\mathcal{O}(n^2)$} and there are ones that run more
quickly than {$\mathcal{O}(n)$}. (Also note that a {$\mathcal{O}(n^2)$} algorithm may actually be much faster than a {$\mathcal{O}(n)$} algorithm in practice, if it takes much less time to perform a single step of the {$\mathcal{O}(n^2)$} algorithm.)

Consider the random access functions for lists and arrays. In the
worst case, accessing an arbitrary element in a list of length {n}
will take {$\mathcal{O}(n)$} time (think about accessing the last element).
However with arrays, you can access any element immediately, which is
said to be in {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape constant}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} time, or {$\mathcal{O}(1)$}, which is basically as
fast an any algorithm can go.

There\textquotesingle{}s much more in complexity theory than this, but this should be
enough to allow you to understand all the discussions in this
tutorial. Just keep in mind that {$\mathcal{O}(1)$} is faster than {$\mathcal{O}(n)$} is
faster than {$\mathcal{O}(n^2)$}, etc.
\section{Optimising}
\label{578}

\LaTeXNullTemplate{}
\subsection{Profiling}
\label{579}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Libraries Reference}

\myminitoc
\label{580}

\chapter{The Hierarchical Libraries}

\myminitoc
\label{581}

\label{582}
\begin{myenumerate}
\item{} REDIRECT \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries}{Haskell/Libraries}
\end{myenumerate}

\chapter{Lists}

\myminitoc
\label{583}

\label{584}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

The {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries List}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} datatype (see \myhref{http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html}{Data.List}) is the fundamental data structure in Haskell — this is the basic building-{}block of data storage and manipulation. In computer science terms it is a singly-{}linked list. In the hierarchical library system the List module is stored in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.List}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; but this module only contains utility functions. The definition of list itself is integral to the Haskell language.
\section{Theory}
\label{585}

A singly-{}linked list is a set of values in a defined order. The list can only be traversed in one direction (i.e., you cannot move back and forth through the list like tape in a cassette machine).

The list of the first 5 positive integers is written as\\

\TemplateSpaceIndent{ {}{[} {}1, {}2, {}3, {}4, {}5 {}{]}}

We can move through this list, examining and changing values, from left to right, but not in the other direction. This means that the list\\

\TemplateSpaceIndent{ {}{[} {}5, {}4, {}3, {}2, {}1 {}{]}}

is not just a trivial change in perspective from the previous list, but the result of significant computation ({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape O(n)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the length of the list).
\section{Definition}
\label{586}

The polymorphic list datatype can be defined with the following recursive definition:\\

\TemplateSpaceIndent{ {}data {}{[}a{]} {}= {}{[}{]} \newline{}
 {} {} {} {} {} {} {} {} {} {}| {}a {}: {}{[}a{]}}

The \symbol{34}base case\symbol{34} for this definition is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the empty list. In order to put something into this list, we use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor\\

\TemplateSpaceIndent{ {}emptyList {}= {}{[}{]} \newline{}
 {}oneElem {}= {}1:{[}{]}}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (pronounced {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape cons}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}) is right-{}associative, so that creating multi-{}element lists can be done like\\

\TemplateSpaceIndent{ {}manyElems {}= {}1:2:3:4:5:{[}{]}}

or even just\\

\TemplateSpaceIndent{ {}manyElems\textquotesingle{} {}= {}{[}1,2,3,4,5{]}}

\section{Basic list usage}
\label{587}\subsection{Prepending}
\label{588}
It\textquotesingle{}s easy to hard-{}code lists without cons, but run-{}time list creation will use cons. For example, to push an argument onto a simulated stack, we would use:\\

\TemplateSpaceIndent{ {}push {}:: {}Arg {}-{}>{} {}{[}Arg{]} {}-{}>{} {}{[}Arg{]} \newline{}
 {}push {}arg {}stack {}= {}arg:stack}

\subsection{Pattern-{}matching}
\label{589}
If we want to examine the top of the stack, we would typically use a peek function. We can try pattern-{}matching for this.\\

\TemplateSpaceIndent{ {}peek {}:: {}{[}Arg{]} {}-{}>{} {}Maybe {}Arg \newline{}
 {}peek {}{[}{]} {}= {}Nothing \newline{}
 {}peek {}(a:as) {}= {}Just {}a}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} before the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape cons}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the pattern matches the head of the list. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily as}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} matches the tail of the list. Since we don\textquotesingle{}t actually want the tail (and it\textquotesingle{}s not referenced anywhere else in the code), we can tell the compiler this explicitly, by using a wild-{}card match, in the form of an underscore:\\

\TemplateSpaceIndent{ {}peek {}(a:_) {}= {}Just {}a}

\section{List utilities}
\label{590}
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape FIXME: is this not covered in the chapter on \mylref{97}{ list manipulation}?}\subsection{{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} Maps}
\label{591}\subsection{Folds, unfolds and scans}
\label{592}\subsection{Length, head, tail etc.}
\label{593}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\myhref{https://en.wikibooks.org/wiki/Category\%3AHaskell\%2FNot\%20in\%20book}{Category:Haskell/Not in book}
\chapter{Arrays}

\myminitoc
\label{594}

\label{595}
\begin{myenumerate}
\item{} REDIRECT \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FArrays}{Haskell/Libraries/Arrays}
\end{myenumerate}

\chapter{Maybe}

\myminitoc
\label{596}

\label{597}
\begin{myenumerate}
\item{} REDIRECT \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FMaybe}{Haskell/Libraries/Maybe}
\end{myenumerate}

\chapter{Maps}

\myminitoc
\label{598}

\label{599}
\begin{myenumerate}
\item{} REDIRECT \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FMaps}{Haskell/Libraries/Maps}
\end{myenumerate}

\chapter{IO}

\myminitoc
\label{600}

\label{601}
\begin{myenumerate}
\item{} REDIRECT \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FIO}{Haskell/Libraries/IO}
\end{myenumerate}

\chapter{Random Numbers}

\myminitoc
\label{602}

\label{603}
\begin{myenumerate}
\item{} REDIRECT \myhref{https://en.wikibooks.org/wiki/Haskell\%2FLibraries\%2FRandom}{Haskell/Libraries/Random}
\end{myenumerate}

\chapter{General Practices}

\myminitoc
\label{604}

\chapter{Building a standalone application}

\myminitoc
\label{605}

\label{606}
\begin{myenumerate}
\item{} REDIRECT \myhref{https://en.wikibooks.org/wiki/Haskell\%2FStandalone\%20programs}{Haskell/Standalone programs}
\end{myenumerate}

\chapter{Debugging}

\myminitoc
\label{607}

\label{608}
\LaTeXNullTemplate{}
\section{Debug prints with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Debug.Trace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}}
\label{609}

Debug prints are a common way to debug programs. In imperative languages, we can just sprinkle the code with print statements to standard output or to some as log file in order to track debug information (e.g. value of a particular variable, or some human-{}readable message). In Haskell, however, we cannot output any information other than through the IO monad; and we don\textquotesingle{}t want to introduce that just for debugging.

To deal with this problem, the standard library provides the \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Debug-Trace.html}{Debug.Trace}. That module exports a function called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which provides a convenient way to attach debug print statements anywhere in a program. For instance, this program prints every argument passed to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fib}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when not equal to 0 or 1:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Debug.Trace}\newline
\ensuremath{\text{ }}\newline
\OtherTok{fib\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{fib\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\newline
\NormalTok{fib\ensuremath{\text{ }}}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{1}\newline
\NormalTok{fib\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{trace\ensuremath{\text{ }}(}\StringTok{"n:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}n)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{fib\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{+}\ensuremath{\text{ }}\NormalTok{fib\ensuremath{\text{ }}(n\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\StringTok{"fib\ensuremath{\text{ }}4:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}(fib\ensuremath{\text{ }}}\DecValTok{4}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Below is the resulting output:

\TemplatePreformat{ \newline{}
n: {}4 \newline{}
n: {}3 \newline{}
n: {}2 \newline{}
n: {}2 \newline{}
fib {}4: {}3 \newline{}
}

Also, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} makes it possible to trace execution steps of program; that is, which function is called first, second, etc. To do so, we annotate parts of functions we are interested in, like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Debug.Trace}\newline
\ensuremath{\text{ }}\newline
\OtherTok{factorial\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\newline
\NormalTok{factorial\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{trace\ensuremath{\text{ }}(}\StringTok{"branch\ensuremath{\text{ }}1"}\NormalTok{)\ensuremath{\text{ }}}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{trace\ensuremath{\text{ }}(}\StringTok{"branch\ensuremath{\text{ }}2"}\NormalTok{)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{*}\ensuremath{\text{ }}\NormalTok{(factorial\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{n\ensuremath{\text{ }}}\FunctionTok{-}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\StringTok{"factorial\ensuremath{\text{ }}6:\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}(factorial\ensuremath{\text{ }}}\DecValTok{6}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

When a program annotated in such way is run, it will print the debug strings in the same order the annotated statements were executed. That output might help to locate errors in case of missing statements or similar things.
\subsection{Some extra advice}
\label{610}

As demonstrated above, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be used outside of the IO monad; and indeed its type signature...

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{trace\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

...indicates that it is a pure function. Yet surely {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape is}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} doing IO while printing useful messages. What\textquotesingle{}s going on? In fact, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uses a dirty trick of sorts to circumvent the separation between IO and pure Haskell. That is reflected in the following disclaimer, found in the \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Debug-Trace\#v:trace.html}{documentation for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}}:
\begin{myblockquote}
\item{}
The trace function should {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape only}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} be used for debugging, or for monitoring execution. The function is not referentially transparent: its type indicates that it is a pure function but it has the side effect of outputting the trace message.

\end{myblockquote}

A common mistake in using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: while trying to fit the debug traces into an existing function, one accidentally includes the value being evaluated in the message to be printed by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily trace}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; e.g. don\textquotesingle{}t do anything like this:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{foo\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{trace\ensuremath{\text{ }}(}\StringTok{"foo\ensuremath{\text{ }}=\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}foo)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{bar}\newline
\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{baz}\newline
\end{Highlighting}
\end{Shaded}

That leads to infinite recursion because trace message will be evaluated before bar expression which will lead to evaluation of foo in terms of trace message and bar again and trace message will be evaluated before bar and so forth to infinity. Instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show foo}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the correct trace message should have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show bar}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{foo\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{trace\ensuremath{\text{ }}(}\StringTok{"foo\ensuremath{\text{ }}=\ensuremath{\text{ }}"}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\NormalTok{show\ensuremath{\text{ }}bar)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{bar}\newline
\KeywordTok{in}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{baz}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Useful idioms}
\label{611}

A helper function that incorporates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily show}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} can be convenient:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{traceThis\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\NormalTok{traceThis\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{trace\ensuremath{\text{ }}(show\ensuremath{\text{ }}x)\ensuremath{\text{ }}x}\newline
\end{Highlighting}
\end{Shaded}

In a similar vein, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Debug.Trace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} defines a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily traceShow}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, that \symbol{34}prints\symbol{34} its first argument and evaluates to the second one:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{traceShow\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Show}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{b}\newline
\NormalTok{traceShow\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{trace\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{show}\newline
\end{Highlighting}
\end{Shaded}

Finally, a function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily debug}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} like this one may prove handy as well:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{debug\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{flip\ensuremath{\text{ }}trace}\newline
\end{Highlighting}
\end{Shaded}

This will allow you to write code like...

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{+}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{`debug`}\ensuremath{\text{ }}\StringTok{"adding"}\newline
\end{Highlighting}
\end{Shaded}

... making it easier to comment/uncomment debugging statements.
\section{Incremental development with GHCi}
\label{612}
\section{Debugging with Hat}
\label{613}
\section{General tips}
\label{614}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Testing}

\myminitoc
\label{615}

\label{616}
\LaTeXNullTemplate{}
\section{Quickcheck}
\label{617}

Consider the following function:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{getList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{find\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{find\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{find\ensuremath{\text{ }}n\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ch\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getChar}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{ch\ensuremath{\text{ }}}\OtherTok{`elem`}\ensuremath{\text{ }}\NormalTok{[}\CharTok{\textquotesingle{}a\textquotesingle{}}\FunctionTok{..}\CharTok{\textquotesingle{}e\textquotesingle{}}\NormalTok{]\ensuremath{\text{ }}}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{tl\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{find\ensuremath{\text{ }}(n}\FunctionTok{-}\DecValTok{1}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(ch\ensuremath{\text{ }}}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{tl)\ensuremath{\text{ }}}\KeywordTok{else}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{find\ensuremath{\text{ }}n}\newline
\end{Highlighting}
\end{Shaded}

How would we effectively test this function in Haskell? We\textquotesingle{}ll use refactoring and QuickCheck.
\subsection{Keeping things pure}
\label{618}

The getList function is hard to test because {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily getChar}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} does IO out in the world, so there\textquotesingle{}s no internal way to verify things.
The other statements in our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} block are all wrapped up with the IO.

Let\textquotesingle{}s untangle our function so we can at least test the referentially transparent
parts with QuickCheck. We can take advantage of lazy IO firstly,
to avoid all the unpleasant low-{}level IO handling.

So the first step is to factor out the IO part of the function into a
thin \symbol{34}skin\symbol{34} layer:

\begin{Shaded}
\begin{Highlighting}[]

\CommentTok{--\ensuremath{\text{ }}A\ensuremath{\text{ }}thin\ensuremath{\text{ }}monadic\ensuremath{\text{ }}skin\ensuremath{\text{ }}layer}\newline
\OtherTok{getList\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Char}\NormalTok{]}\newline
\NormalTok{getList\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fmap\ensuremath{\text{ }}take5\ensuremath{\text{ }}getContents}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}The\ensuremath{\text{ }}actual\ensuremath{\text{ }}worker}\newline
\OtherTok{take5\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Char}\NormalTok{]\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{Char}\NormalTok{]}\newline
\NormalTok{take5\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{take\ensuremath{\text{ }}}\DecValTok{5}\ensuremath{\text{ }}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{filter\ensuremath{\text{ }}(}\OtherTok{`elem`}\ensuremath{\text{ }}\NormalTok{[}\CharTok{\textquotesingle{}a\textquotesingle{}}\FunctionTok{..}\CharTok{\textquotesingle{}e\textquotesingle{}}\NormalTok{])}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Testing with QuickCheck}
\label{619}

Now, we can test the \textquotesingle{}guts\textquotesingle{} of the algorithm, the take5 function, in isolation. Let\textquotesingle{}s use QuickCheck. First we need an Arbitrary instance for the Char type — that takes care of generating random Chars for us to test with. Restrict it to a range of nice chars just for simplicity:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Char}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Test.QuickCheck}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Arbitrary}\ensuremath{\text{ }}\DataTypeTok{Char}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{arbitrary\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{choose\ensuremath{\text{ }}(}\CharTok{\textquotesingle{}\textbackslash{}32\textquotesingle{}}\NormalTok{,\ensuremath{\text{ }}}\CharTok{\textquotesingle{}\textbackslash{}128\textquotesingle{}}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{coarbitrary\ensuremath{\text{ }}c\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{variant\ensuremath{\text{ }}(ord\ensuremath{\text{ }}c\ensuremath{\text{ }}}\OtherTok{`rem`}\ensuremath{\text{ }}\DecValTok{4}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

Let\textquotesingle{}s fire up GHCi and try some generic properties (it\textquotesingle{}s nice that we can use the QuickCheck testing framework directly from the Haskell REPL). An easy one first, a {[}Char{]} is equal to itself:

\TemplatePreformat{ \newline{}
*A>{} {}quickCheck {}((\textbackslash{}s {}-{}>{} {}s {}== {}s) {}:: {}{[}Char{]} {}-{}>{} {}Bool) \newline{}
OK, {}passed {}100 {}tests. \newline{}
}

What just happened? QuickCheck generated 100 random {[}Char{]} values, and
applied our property, checking the result was True for all cases.
QuickCheck {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape generated the test sets for us}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}!

A more interesting property now: reversing twice returns the identity:

\TemplatePreformat{ \newline{}
*A>{} {}quickCheck {}((\textbackslash{}s {}-{}>{} {}(reverse.reverse) {}s {}== {}s) {}:: {}{[}Char{]} {}-{}>{} {}Bool) \newline{}
OK, {}passed {}100 {}tests. \newline{}
}

Great!
\subsection{Testing take5}
\label{620}

The first step to testing with QuickCheck is to work out some properties
that are true of the function, for all inputs. That is, we need to find
{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape invariants}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

A simple invariant might be:
{$\forall s. \mathit{length} (\mathit{take}5 s) = 5$}

So let\textquotesingle{}s write that as a QuickCheck property:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{\textbackslash{}s\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{length\ensuremath{\text{ }}(take5\ensuremath{\text{ }}s)\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{5}\newline
\end{Highlighting}
\end{Shaded}

Which we can then run in QuickCheck as:
\TemplatePreformat{ \newline{}
*A>{} {}quickCheck {}(\textbackslash{}s {}-{}>{} {}length {}(take5 {}s) {}== {}5) \newline{}
Falsifiable, {}after {}0 {}tests: \newline{}
\symbol{34}\symbol{34} \newline{}
}

Ah! QuickCheck caught us out. If the input string contains less than 5
filterable characters, the resulting string will be no more than 5
characters long. So let\textquotesingle{}s weaken the property a bit:
{$\forall s. \mathit{length} (\mathit{take}5 s) \le 5$}

That is, take5 returns a string of at most 5 characters long. Let\textquotesingle{}s test
this:
\TemplatePreformat{ \newline{}
*A>{} {}quickCheck {}(\textbackslash{}s {}-{}>{} {}length {}(take5 {}s) {}<{}= {}5) \newline{}
OK, {}passed {}100 {}tests. \newline{}
}

Good!
\subsection{Another property}
\label{621}

Another thing to check would be that the correct characters are
returned. That is, for all returned characters, those characters are
members of the set {[}\textquotesingle{}a\textquotesingle{},\textquotesingle{}b\textquotesingle{},\textquotesingle{}c\textquotesingle{},\textquotesingle{}d\textquotesingle{},\textquotesingle{}e\textquotesingle{}{]}.

We can specify that as:
{$\forall s. \forall e. (e \in take5 s) \Rightarrow (e \in \{a, b, c, d, e\}) $}

And in QuickCheck:
\TemplatePreformat{ \newline{}
*A>{} {}quickCheck {}(\textbackslash{}s {}-{}>{} {}all {}(`elem` {}{[}\textquotesingle{}a\textquotesingle{}..\textquotesingle{}e\textquotesingle{}{]}) {}(take5 {}s)) \newline{}
OK, {}passed {}100 {}tests. \newline{}
}

Excellent. So we can have some confidence that the function neither
returns strings that are too long nor includes invalid characters.
\subsection{Coverage}
\label{622}

One issue with the default QuickCheck configuration, when testing
{[}Char{]}: the standard 100 tests isn\textquotesingle{}t enough for our situation.
In fact, QuickCheck never generates a String greater than 5 characters
long when using the supplied Arbitrary instance for Char! We can confirm
this:

\TemplatePreformat{ \newline{}
*A>{} {}quickCheck {}(\textbackslash{}s {}-{}>{} {}length {}(take5 {}s) {}<{} {}5) \newline{}
OK, {}passed {}100 {}tests. \newline{}
}

QuickCheck wastes its time generating different Chars, when what we
really need is longer strings. One solution to this is to modify
QuickCheck\textquotesingle{}s default configuration to test deeper:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{deepCheck\ensuremath{\text{ }}p\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{check\ensuremath{\text{ }}(defaultConfig\ensuremath{\text{ }}\{\ensuremath{\text{ }}configMaxTest\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{10000}\NormalTok{\})\ensuremath{\text{ }}p}\newline
\end{Highlighting}
\end{Shaded}

This instructs the system to find at least 10000 test cases before
concluding that all is well. Let\textquotesingle{}s check that it is generating longer
strings:

\TemplatePreformat{ \newline{}
*A>{} {}deepCheck {}(\textbackslash{}s {}-{}>{} {}length {}(take5 {}s) {}<{} {}5) \newline{}
Falsifiable, {}after {}125 {}tests: \newline{}
\symbol{34};:iD\^{}*NNi\~{}Y\textbackslash{}\textbackslash{}RegMob\textbackslash{}DEL@krsx/=dcf7kub|EQi\textbackslash{}DELD*\symbol{34} \newline{}
}

We can check the test data QuickCheck is generating using the
\textquotesingle{}verboseCheck\textquotesingle{} hook. Here, testing on integers lists:

\TemplatePreformat{ \newline{}
*A>{} {}verboseCheck {}(\textbackslash{}s {}-{}>{} {}length {}s {}<{} {}5) \newline{}
0: {}{[}{]} \newline{}
1: {}{[}0{]} \newline{}
2: {}{[}{]} \newline{}
3: {}{[}{]} \newline{}
4: {}{[}{]} \newline{}
5: {}{[}1,2,1,1{]} \newline{}
6: {}{[}2{]} \newline{}
7: {}{[}-{}2,4,-{}4,0,0{]} \newline{}
Falsifiable, {}after {}7 {}tests: \newline{}
{[}-{}2,4,-{}4,0,0{]} \newline{}
}
\subsection{More information on QuickCheck}
\label{623}

\begin{myitemize}
\item{} \myplainurl{http://haskell.org/haskellwiki/Introduction_to_QuickCheck}
\item{} \myplainurl{http://haskell.org/haskellwiki/QuickCheck_as_a_test_set_generator}
\end{myitemize}

\section{HUnit}
\label{624}

Sometimes it is easier to give an example for a test than to define one from a general rule. HUnit provides a unit testing framework which helps you to do just this. You could also abuse QuickCheck by providing a general rule which just so happens to fit your example; but it\textquotesingle{}s probably less work in that case to just use HUnit.

\begin{myquote}
\item{} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape TODO: give an example of HUnit test, and a small tour of it}
\end{myquote}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

More details for working with HUnit can be found in its \myhref{http://hunit.sourceforge.net/HUnit-1.0/Guide.html}{user\textquotesingle{}s guide}.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\begin{myquote}
\item{}
\end{myquote}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Packaging your software (Cabal)}

\myminitoc
\label{625}

\label{626}
\LaTeXNullTemplate{}

A guide to the best practice for creating a new Haskell project or
program.
\section{Recommended tools}
\label{627}

Almost all new Haskell projects use the following tools. Each is
intrinsically useful, but using a set of common tools also benefits
everyone by increasing productivity, and you\textquotesingle{}re more likely to get
patches.
\subsection{Revision control}
\label{628}

Use \myhref{http://darcs.net}{darcs}, unless you have a specific reason not to,
in which case use \myhref{http://git-scm.com}{git}. If you don\textquotesingle{}t like git, go back and look at darcs.
It\textquotesingle{}s written in Haskell, and it\textquotesingle{}s used by many Haskell developers.
See the wikibook \myhref{https://en.wikibooks.org/wiki/Understanding\%20darcs}{Understanding darcs} to get started.
\subsection{Build system}
\label{629}

Use \myhref{http://haskell.org/cabal}{Cabal}.
You should read at least the start of section 2 of the \myhref{http://haskell.org/cabal/users-guide/index.html}{Cabal User\textquotesingle{}s Guide}.
\subsection{Documentation}
\label{630}

For libraries, use \myhref{http://haskell.org/haddock}{Haddock}. We recommend using recent versions of haddock (2.8 or above, as of December 2010).
\subsection{Testing}
\label{631}

Pure code can be tested using \myhref{http://www.md.chalmers.se/~rjmh/QuickCheck/}{QuickCheck} or \myhref{http://www.mail-archive.com/haskell@haskell.org/msg19215.html}{SmallCheck}, impure code with \myhref{http://hunit.sourceforge.net/}{HUnit}.

To get started, try \mylref{616}{Haskell/Testing}. For a slightly more advanced introduction, \myhref{http://blog.codersbase.com/2006/09/simple-unit-testing-in-haskell.html}{Simple Unit Testing in Haskell} is a blog article about creating a testing framework for QuickCheck using some Template Haskell.
\section{Structure of a simple project}
\label{632}

The basic structure of a new Haskell project can be adopted from \myhref{http://semantic.org/hnop/}{HNop}, the minimal Haskell project. It consists of the following files, for the mythical project \symbol{34}haq\symbol{34}.

\begin{myitemize}
\item{} Haq.hs -{}-{} the main haskell source file
\item{} haq.cabal -{}-{} the cabal build description
\item{} Setup.hs -{}-{} build script itself
\item{} _darcs or .git -{}-{} revision control
\item{} README -{}-{} info
\item{} LICENSE -{}-{} license
\end{myitemize}

You can of course elaborate on this, with subdirectories and multiple
modules.

Here is a transcript on how you\textquotesingle{}d create a minimal darcs-{}using and cabalised Haskell project, for the cool new Haskell program \symbol{34}haq\symbol{34}, build it, install it and release.

The command tool \textquotesingle{}cabal init\textquotesingle{} automates all this for you, but it\textquotesingle{}s important that you understand all the parts first.

We will now walk through the creation of the infrastructure for a simple Haskell executable. Advice for libraries follows after.
\subsection{Create a directory}
\label{633}

Create somewhere for the source:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}mkdir$\text{ }${}haq$\text{ }$\newline{}
\${}$\text{ }${}cd$\text{ }${}haq$\text{ }$\newline{}
}
\subsection{Write some Haskell source}
\label{634}

Write your program:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}cat$\text{ }${}>{}$\text{ }${}Haq.hs$\text{ }$\newline{}
-{}-{} \newline{}
-{}-{} {}Copyright {}(c) {}2006 {}Don {}Stewart {}-{} {}http://www.cse.unsw.edu.au/\~{}dons \newline{}
-{}-{} {}GPL {}version {}2 {}or {}later {}(see {}http://www.gnu.org/copyleft/gpl.html) \newline{}
-{}-{} \newline{}
import {}System.Environment \newline{}
 {} \newline{}
-{}-{} {}\textquotesingle{}main\textquotesingle{} {}runs {}the {}main {}program \newline{}
main {}:: {}IO {}() \newline{}
main {}= {}getArgs {}>{}>{}= {}print {}. {}haqify {}. {}head \newline{}
 {} \newline{}
haqify {}s {}= {}\symbol{34}Haq! {}\symbol{34} {}++ {}s \newline{}
}
\subsection{Stick it in darcs}
\label{635}

Place the source under revision control:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}darcs$\text{ }${}init$\text{ }$\newline{}
\${}$\text{ }${}darcs$\text{ }${}add$\text{ }${}Haq.hs$\text{ }${}$\text{ }$\newline{}
\${}$\text{ }${}darcs$\text{ }${}record$\text{ }$\newline{}
addfile {}./Haq.hs \newline{}
Shall {}I {}record {}this {}change? {}(1/?) {} {}{[}ynWsfqadjkc{]}, {}or {}? {}for {}help: {}y \newline{}
hunk {}./Haq.hs {}1 \newline{}
+-{}-{} \newline{}
+-{}-{} {}Copyright {}(c) {}2006 {}Don {}Stewart {}-{} {}http://www.cse.unsw.edu.au/\~{}dons \newline{}
+-{}-{} {}GPL {}version {}2 {}or {}later {}(see {}http://www.gnu.org/copyleft/gpl.html) \newline{}
+-{}-{} \newline{}
+import {}System.Environment \newline{}
+ \newline{}
+-{}-{} {}| {}\textquotesingle{}main\textquotesingle{} {}runs {}the {}main {}program \newline{}
+main {}:: {}IO {}() \newline{}
+main {}= {}getArgs {}>{}>{}= {}print {}. {}haqify {}. {}head \newline{}
+ \newline{}
+haqify {}s {}= {}\symbol{34}Haq! {}\symbol{34} {}++ {}s \newline{}
Shall {}I {}record {}this {}change? {}(2/?) {} {}{[}ynWsfqadjkc{]}, {}or {}? {}for {}help: {}y \newline{}
What {}is {}the {}patch {}name? {}Import {}haq {}source \newline{}
Do {}you {}want {}to {}add {}a {}long {}comment? {}{[}yn{]}n \newline{}
Finished {}recording {}patch {}\textquotesingle{}Import {}haq {}source\textquotesingle{} \newline{}
}

And we can see that darcs is now running the show:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}ls$\text{ }$\newline{}
Haq.hs {}_darcs \newline{}
}

For git:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}git$\text{ }${}config$\text{ }${}-{}-{}global$\text{ }${}user.name$\text{ }${}\symbol{34}John$\text{ }${}Doe\symbol{34}$\text{ }$\newline{}
\${}$\text{ }${}git$\text{ }${}config$\text{ }${}-{}-{}global$\text{ }${}user.email$\text{ }${}johndoe@example.com$\text{ }$\newline{}
\${}$\text{ }${}git$\text{ }${}init$\text{ }$\newline{}
\${}$\text{ }${}git$\text{ }${}add$\text{ }${}*$\text{ }$\newline{}
\${}$\text{ }${}git$\text{ }${}commit$\text{ }${}-{}m$\text{ }${}\textquotesingle{}Import {}haq {}source\textquotesingle{} \newline{}
\${}$\text{ }${}ls$\text{ }${}-{}A$\text{ }$\newline{}
.git {}Haq.hs \newline{}
}

\subsection{Add a build system}
\label{636}

Create a .cabal file describing how to build your project:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}cat$\text{ }${}>{}$\text{ }${}haq.cabal$\text{ }$\newline{}
Name: {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}haq \newline{}
Version: {} {} {} {} {} {} {} {} {} {} {} {} {}0.0 \newline{}
Synopsis: {} {} {} {} {} {} {} {} {} {} {} {}Super {}cool {}mega {}lambdas \newline{}
Description: {} {} {} {} {} {} {} {} {}My {}super {}cool, {}indeed, {}even {}mega {}lambdas {} \newline{}
 {}will {}demonstrate {}a {}basic {}project. {}You {}will {}marvel. \newline{}
License: {} {} {} {} {} {} {} {} {} {} {} {} {}GPL \newline{}
License-{}file: {} {} {} {} {} {} {} {}LICENSE \newline{}
Author: {} {} {} {} {} {} {} {} {} {} {} {} {} {}Don {}Stewart \newline{}
Maintainer: {} {} {} {} {} {} {} {} {} {}Don {}Stewart {}<{}dons@cse.unsw.edu.au>{} \newline{}
Build-{}Depends: {} {} {} {} {} {} {}base \newline{}
 {} \newline{}
Executable: {} {} {} {} {} {} {} {} {} {}haq \newline{}
Main-{}is: {} {} {} {} {} {} {} {} {} {} {} {} {}Haq.hs \newline{}
}

(If your package uses other packages, e.g. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily array}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you\textquotesingle{}ll need to add them to the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Build-{}Depends:}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} field.)
Add a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setup.lhs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that will actually do the building:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}cat$\text{ }${}>{}$\text{ }${}Setup.lhs$\text{ }$\newline{}
\#! {}/usr/bin/env {}runhaskell \newline{}
 {} \newline{}
>{} {}import {}Distribution.Simple \newline{}
>{} {}main {}= {}defaultMain \newline{}
}
Cabal allows either {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setup.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Setup.lhs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; as long as the format is appropriate, it doesn\textquotesingle{}t matter which one you choose. But it\textquotesingle{}s a good idea to always include the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \#! /usr/bin/env runhaskell}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} line; because it follows the \myhref{https://en.wikipedia.org/wiki/Shebang\%20\%28Unix\%29}{shebang} convention, you could execute the Setup.hs directly in a Unix shell instead of always manually calling {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily runhaskell}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (assuming the Setup file is marked executable, of course).

Record your changes:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}darcs$\text{ }${}add$\text{ }${}haq.cabal$\text{ }${}Setup.lhs$\text{ }$\newline{}
\${}$\text{ }${}darcs$\text{ }${}record$\text{ }${}-{}-{}all$\text{ }$\newline{}
What {}is {}the {}patch {}name? {}Add {}a {}build {}system \newline{}
Do {}you {}want {}to {}add {}a {}long {}comment? {}{[}yn{]}n \newline{}
Finished {}recording {}patch {}\textquotesingle{}Add {}a {}build {}system\textquotesingle{} \newline{}
}

Git:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}git$\text{ }${}add$\text{ }${}haq.cabal$\text{ }${}Setup.lhs$\text{ }$\newline{}
\${}$\text{ }${}git$\text{ }${}commit$\text{ }${}-{}m$\text{ }${}\textquotesingle{}Add$\text{ }${}a$\text{ }${}build$\text{ }${}system\textquotesingle{} \newline{}
}
\subsection{Build your project}
\label{637}

Now build it!

\TemplatePreformat{ \newline{}
\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}configure$\text{ }${}-{}-{}prefix=\${}HOME {}-{}-{}user \newline{}
\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}build$\text{ }$\newline{}
\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}install$\text{ }$\newline{}
}
\subsection{Run it}
\label{638}

And now you can run your cool project:
\TemplatePreformat{ \newline{}
\${}$\text{ }${}haq$\text{ }${}me$\text{ }$\newline{}
\symbol{34}Haq! {}me\symbol{34} \newline{}
}

You can also run it in-{}place, avoiding the install phase:
\TemplatePreformat{ \newline{}
\${}$\text{ }${}dist/build/haq/haq$\text{ }${}you$\text{ }$\newline{}
\symbol{34}Haq! {}you\symbol{34} \newline{}
}
\subsection{Build some haddock documentation}
\label{639}

Generate some API documentation into dist/doc/*

\TemplatePreformat{ \newline{}
\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}haddock$\text{ }$\newline{}
}

which generates files in dist/doc/ including:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}w3m$\text{ }${}-{}dump$\text{ }${}dist/doc/html/haq/Main.html \newline{}
 {}haq {}Contents {}Index \newline{}
 {}Main \newline{}
 {} \newline{}
 {}Synopsis \newline{}
 {}main {}:: {}IO {}() \newline{}
 {} \newline{}
 {}Documentation \newline{}
 {} \newline{}
 {}main {}:: {}IO {}() \newline{}
 {}main {}runs {}the {}main {}program \newline{}
 {} \newline{}
 {}Produced {}by {}Haddock {}version {}0.7 \newline{}
}

No output? Make sure you have actually installed haddock. It is a separate program, not something that comes with the Haskell compiler, like Cabal.
\subsection{Add some automated testing: QuickCheck}
\label{640}

We\textquotesingle{}ll use QuickCheck to specify a simple property of our Haq.hs code. Create a tests module, Tests.hs, with some QuickCheck boilerplate:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}cat$\text{ }${}>{}$\text{ }${}Tests.hs$\text{ }$\newline{}
import {}Char \newline{}
import {}List \newline{}
import {}Test.QuickCheck \newline{}
import {}Text.Printf \newline{}
 {} \newline{}
main {} {}= {}mapM_ {}(\textbackslash{}(s,a) {}-{}>{} {}printf {}\symbol{34}\%-{}25s: {}\symbol{34} {}s {}>{}>{} {}a) {}tests \newline{}
 {} \newline{}
instance {}Arbitrary {}Char {}where \newline{}
 {} {} {} {}arbitrary {} {} {} {} {}= {}choose {}(\textquotesingle{}\textbackslash{}0\textquotesingle{}, {}\textquotesingle{}\textbackslash{}128\textquotesingle{}) \newline{}
 {} {} {} {}coarbitrary {}c {}= {}variant {}(ord {}c {}`rem` {}4) \newline{}
}

Now let\textquotesingle{}s write a simple property:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}cat$\text{ }${}>{}>{}$\text{ }${}Tests.hs$\text{ }${}$\text{ }$\newline{}
-{}-{} {}reversing {}twice {}a {}finite {}list, {}is {}the {}same {}as {}identity \newline{}
prop_reversereverse {}s {}= {}(reverse {}. {}reverse) {}s {}== {}id {}s \newline{}
 {} {} {} {}where {}_ {}= {}s {}:: {}{[}Int{]} \newline{}
 {} \newline{}
-{}-{} {}and {}add {}this {}to {}the {}tests {}list \newline{}
tests {} {}= {}{[}(\symbol{34}reverse.reverse/id\symbol{34}, {}test {}prop_reversereverse){]} \newline{}
}

We can now run this test, and have QuickCheck generate the test data:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}runhaskell$\text{ }${}Tests.hs$\text{ }$\newline{}
reverse.reverse/id {} {} {} {} {} {} {}: {}OK, {}passed {}100 {}tests. \newline{}
}

Let\textquotesingle{}s add a test for the \textquotesingle{}haqify\textquotesingle{} function:

\TemplatePreformat{ \newline{}
-{}-{} {}Dropping {}the {}\symbol{34}Haq! {}\symbol{34} {}string {}is {}the {}same {}as {}identity \newline{}
prop_haq {}s {}= {}drop {}(length {}\symbol{34}Haq! {}\symbol{34}) {}(haqify {}s) {}== {}id {}s \newline{}
 {} {} {} {}where {}haqify {}s {}= {}\symbol{34}Haq! {}\symbol{34} {}++ {}s \newline{}
 {} \newline{}
tests {} {}= {}{[}(\symbol{34}reverse.reverse/id\symbol{34}, {}test {}prop_reversereverse) \newline{}
 {} {} {} {} {} {} {} {},(\symbol{34}drop.haq/id\symbol{34}, {} {} {} {} {} {} {} {}test {}prop_haq){]} \newline{}
}

and let\textquotesingle{}s test that:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}runhaskell$\text{ }${}Tests.hs$\text{ }$\newline{}
reverse.reverse/id {} {} {} {} {} {} {}: {}OK, {}passed {}100 {}tests. \newline{}
drop.haq/id {} {} {} {} {} {} {} {} {} {} {} {} {} {}: {}OK, {}passed {}100 {}tests. \newline{}
}

Great!
\subsection{Running the test suite from darcs}
\label{641}

We can arrange for darcs to run the test suite on every commit:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}darcs$\text{ }${}setpref$\text{ }${}test$\text{ }${}\symbol{34}runhaskell$\text{ }${}Tests.hs\symbol{34}$\text{ }$\newline{}
Changing {}value {}of {}test {}from {}\textquotesingle{}\textquotesingle{} {}to {}\textquotesingle{}runhaskell {}Tests.hs\textquotesingle{} \newline{}
}

will run the full set of QuickChecks. (If your test requires it you may need to ensure other things are built too e.g.: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily darcs setpref test \symbol{34}alex Tokens.x;happy Grammar.y;runhaskell Tests.hs\symbol{34}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

Let\textquotesingle{}s commit a new patch:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}darcs$\text{ }${}add$\text{ }${}Tests.hs$\text{ }$\newline{}
\${}$\text{ }${}darcs$\text{ }${}record$\text{ }${}-{}-{}all$\text{ }$\newline{}
What {}is {}the {}patch {}name? {}Add {}testsuite \newline{}
Do {}you {}want {}to {}add {}a {}long {}comment? {}{[}yn{]}n \newline{}
Running {}test... \newline{}
reverse.reverse/id {} {} {} {} {} {} {}: {}OK, {}passed {}100 {}tests. \newline{}
drop.haq/id {} {} {} {} {} {} {} {} {} {} {} {} {} {}: {}OK, {}passed {}100 {}tests. \newline{}
Test {}ran {}successfully. \newline{}
Looks {}like {}a {}good {}patch. \newline{}
Finished {}recording {}patch {}\textquotesingle{}Add {}testsuite\textquotesingle{} \newline{}
}

Excellent, now patches must pass the test suite before they can be
committed.
\subsection{Tag the stable version, create a tarball, and sell it!}
\label{642}

Tag the stable version:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}darcs$\text{ }${}tag$\text{ }$\newline{}
What {}is {}the {}version {}name? {}0.0 \newline{}
Finished {}tagging {}patch {}\textquotesingle{}TAG {}0.0\textquotesingle{} \newline{}
}
\subsubsection{Advanced Darcs functionality: lazy get}
\label{643}

As your repositories accumulate patches, new users can become annoyed at how long it takes to accomplish the initial {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily darcs get}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. (Some projects, like \myhref{https://en.wikipedia.org/wiki/Yi\%20\%28editor\%29}{yi} or GHC, can have thousands of patches.) Darcs is quick enough, but downloading thousands of individual patches can still take a while. Isn\textquotesingle{}t there some way to make things more efficient?

Darcs provides the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily -{}-{}lazy}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} option to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily darcs get}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This enables to download only the latest version of the repository. Patches are later downloaded on demand if needed.

\subsubsection{Distribution}
\label{644}
When distributing your Haskell program, you have roughly three options:
\begin{myenumerate}
\item{} distributing via a Darcs repository
\item{} distributing a tarball
\begin{myenumerate}
\item{} a Darcs tarball
\item{} a Cabal tarball
\end{myenumerate}

\end{myenumerate}

With a Darcs repository, if it is public, then you are done. However: perhaps you don\textquotesingle{}t have a server with Darcs, or perhaps your computer isn\textquotesingle{}t set up for people to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily darcs pull}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} from it. In which case you\textquotesingle{}ll need to distribute the source via tarball.
\paragraph{Tarballs via darcs}
{ }\newline\label{645}

Darcs provides a command where it will make a compressed tarball, and it will place a copy of all the files it manages into it. (Note that nothing in _darcs will be included -{} it\textquotesingle{}ll just be your source files, no revision history.)

\TemplatePreformat{ \newline{}
\${}$\text{ }${}darcs$\text{ }${}dist$\text{ }${}-{}d$\text{ }${}haq-{}0.0$\text{ }$\newline{}
Created {}dist {}as {}haq-{}0.0.tar.gz \newline{}
}

And you\textquotesingle{}re all set up!
\paragraph{Tarballs via Cabal}
{ }\newline\label{646}

Since our code is cabalised, we can create a tarball with Cabal
directly:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}sdist$\text{ }$\newline{}
Building {}source {}dist {}for {}haq-{}0.0... \newline{}
Source {}tarball {}created: {}dist/haq-{}0.0.tar.gz \newline{}
}

This has advantages and disadvantages compared to a Darcs-{}produced tarball. The primary {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape advantage}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is that Cabal will do more checking of our repository, and more importantly, it\textquotesingle{}ll ensure that the tarball has the structure needed by HackageDB and cabal-{}install.

However, it does have a disadvantage: it packages up only the files needed to build the project. It will deliberately fail to include other files in the repository, even if they turn out to be necessary at some point\myfootnote{This is actually a good thing, since it allows us to do things like create an elaborate test suite which doesn\textquotesingle{}t get included in the tarball, so users aren\textquotesingle{}t bothered by it. It also can reveal hidden assumptions and omissions in our code -{} perhaps your code was only building and running because of a file accidentally generated.}. To include other files (such as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Test.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in the above example), we need to add lines to the cabal file like:

\TemplatePreformat{ \newline{}
extra-{}source-{}files: {}Tests.hs \newline{}
}

If we had them, we could make sure files like AUTHORS or the README get included as well:

\TemplatePreformat{ \newline{}
data-{}files: {}AUTHORS, {}README \newline{}
}
\subsection{Summary}
\label{647}

The following files were created:
\\

\TemplateSpaceIndent{ {} {} {} {}\${}$\text{ }${}ls$\text{ }$\newline{}
 {} {} {} {}Haq.hs {} {} {} {} {} {} {} {} {} {} {}Tests.hs {} {} {} {} {} {} {} {} {}dist {} {} {} {} {} {} {} {} {} {} {} {} {}haq.cabal \newline{}
 {} {} {} {}Setup.lhs {} {} {} {} {} {} {} {}_darcs {} {} {} {} {} {} {} {} {} {} {}haq-{}0.0.tar.gz}

\section{Libraries}
\label{648}

The process for creating a Haskell library is almost identical. The differences
are as follows, for the hypothetical \symbol{34}ltree\symbol{34} library:
\subsection{Hierarchical source}
\label{649}

The source should live under a directory path that fits into the
existing \myhref{http://community.haskell.org/~simonmar/lib-hierarchy.html}{module layout guide}.
So we would create the following directory structure, for the module
Data.LTree:
\\

\TemplateSpaceIndent{ {} {} {} {}\${}$\text{ }${}mkdir$\text{ }${}Data$\text{ }$\newline{}
 {} {} {} {}\${}$\text{ }${}cat$\text{ }${}>{}$\text{ }${}Data/LTree.hs$\text{ }${}$\text{ }$\newline{}
 {} {} {} {}module {}Data.LTree {}where}

So our Data.LTree module lives in Data/LTree.hs
\subsection{The Cabal file}
\label{650}

Cabal files for libraries list the publically visible modules, and have
no executable section:
\\

\TemplateSpaceIndent{ {} {} {} {}\${}$\text{ }${}cat$\text{ }${}ltree.cabal$\text{ }${}$\text{ }$\newline{}
 {} {} {} {}Name: {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}ltree \newline{}
 {} {} {} {}Version: {} {} {} {} {} {} {} {} {} {} {} {} {}0.1 \newline{}
 {} {} {} {}Description: {} {} {} {} {} {} {} {} {}Lambda {}tree {}implementation \newline{}
 {} {} {} {}License: {} {} {} {} {} {} {} {} {} {} {} {} {}BSD3 \newline{}
 {} {} {} {}License-{}file: {} {} {} {} {} {} {} {}LICENSE \newline{}
 {} {} {} {}Author: {} {} {} {} {} {} {} {} {} {} {} {} {} {}Don {}Stewart \newline{}
 {} {} {} {}Maintainer: {} {} {} {} {} {} {} {} {} {}dons@cse.unsw.edu.au \newline{}
 {} {} {} {}Build-{}Depends: {} {} {} {} {} {} {}base \newline{}
 {} {} {} {}Exposed-{}modules: {} {} {} {} {}Data.LTree}

We can thus build our library:
\\

\TemplateSpaceIndent{ {} {} {} {}\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}configure$\text{ }${}-{}-{}prefix=\${}HOME {}-{}-{}user \newline{}
 {} {} {} {}\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}build$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
 {} {} {} {}Preprocessing {}library {}ltree-{}0.1... \newline{}
 {} {} {} {}Building {}ltree-{}0.1... \newline{}
 {} {} {} {}{[}1 {}of {}1{]} {}Compiling {}Data.LTree {} {} {} {} {} {} {}({}Data/LTree.hs, {}dist/build/Data/LTree.o \newline{}
 {}) \newline{}
 {} {} {} {}/usr/bin/ar: {}creating {}dist/build/libHSltree-{}0.1.a}

and our library has been created as a object archive. On *nix systems, you should
probably add the -{}-{}user flag to the configure step (this means you want to update
your local package database during installation). Now install it:
\\

\TemplateSpaceIndent{ {} {} {} {}\${}$\text{ }${}runhaskell$\text{ }${}Setup.lhs$\text{ }${}install$\text{ }$\newline{}
 {} {} {} {}Installing: {}/home/dons/lib/ltree-{}0.1/ghc-{}6.6 {}\& {}/home/dons/bin {}ltree-{}0.1... \newline{}
 {} {} {} {}Registering {}ltree-{}0.1... \newline{}
 {} {} {} {}Reading {}package {}info {}from {}\symbol{34}.installed-{}pkg-{}config\symbol{34} {}... {}done. \newline{}
 {} {} {} {}Saving {}old {}package {}config {}file... {}done. \newline{}
 {} {} {} {}Writing {}new {}package {}config {}file... {}done.}

And we\textquotesingle{}re done! You can use your new library from, for example, ghci:
\\

\TemplateSpaceIndent{ {} {} {} {}\${}$\text{ }${}ghci$\text{ }${}-{}package$\text{ }${}ltree$\text{ }$\newline{}
 {} {} {} {}Prelude>{} {}:m {}+ {}Data.LTree \newline{}
 {} {} {} {}Prelude {}Data.LTree>{} {}}

The new library is in scope, and ready to go.
\subsection{More complex build systems}
\label{651}

For larger projects it is useful to have source trees stored in
subdirectories. This can be done simply by creating a directory, for
example, \symbol{34}src\symbol{34}, into which you will put your src tree.

To have Cabal find this code, you add the following line to your Cabal
file:
\\

\TemplateSpaceIndent{ {} {} {} {}hs-{}source-{}dirs: {}src}

Cabal can set up to also run configure scripts, along with a range of
other features. For more information consult the
\myhref{http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html}{Cabal documentation}.
\subsubsection{Internal modules}
\label{652}

If your library uses internal modules that are not exposed, do not forget to list them in the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape other-{}modules}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} field:
\\

\TemplateSpaceIndent{ {} {} {} {}other-{}modules: {}My.Own.Module}

Failing to do so (as of GHC 6.8.3) may lead to your library deceptively building without errors but actually being unusable from applications, which would fail at build time with a linker error.
\section{Automation}
\label{653}
\subsection{cabal init}
\label{654}
A package management tool for Haskell called cabal-{}install provides a command line tool to help developers create a simple cabal project. Just run and answer all the questions. Default values are provided for each.
\TemplatePreformat{ \newline{}
\${}$\text{ }${}cabal$\text{ }${}init$\text{ }$\newline{}
Package {}name {}{[}default {}\symbol{34}test\symbol{34}{]}? {} \newline{}
Package {}version {}{[}default {}\symbol{34}0.1\symbol{34}{]}? {} \newline{}
Please {}choose {}a {}license: \newline{}
... \newline{}
}
\subsection{mkcabal}
\label{655}
mkcabal is a tool that existed before cabal init, which also automatically populates a new cabal project :
\\

\TemplateSpaceIndent{ {} {} {} {}darcs {}get {}http://code.haskell.org/\~{}dons/code/mkcabal}

{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries N.B. This tool does not work in Windows.}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} The Windows version of GHC does not include the readline package that this tool needs.

Usage is:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}mkcabal$\text{ }$\newline{}
Project {}name: {}haq \newline{}
What {}license {}{[}\symbol{34}GPL\symbol{34},\symbol{34}LGPL\symbol{34},\symbol{34}BSD3\symbol{34},\symbol{34}BSD4\symbol{34},\symbol{34}PublicDomain\symbol{34},\symbol{34}AllRightsReserved\symbol{34}{]} \newline{}
 {}{[}\symbol{34}BSD3\symbol{34}{]}: {} \newline{}
What {}kind {}of {}project {}{[}Executable,Library{]} {}{[}Executable{]}: {} \newline{}
Is {}this {}your {}name? {}-{} {}\symbol{34}Don {}Stewart {}\symbol{34} {}{[}Y/n{]}: {} \newline{}
Is {}this {}your {}email {}address? {}-{} {}\symbol{34}<{}dons@cse.unsw.edu.au>{}\symbol{34} {}{[}Y/n{]}: {} \newline{}
Created {}Setup.lhs {}and {}haq.cabal \newline{}
\${}$\text{ }${}ls$\text{ }$\newline{}
Haq.hs {} {} {} {}LICENSE {} {} {}Setup.lhs {}_darcs {} {} {} {}dist {} {} {} {} {} {}haq.cabal \newline{}
}

which will fill out some stub Cabal files for the project \textquotesingle{}haq\textquotesingle{}.

To create an entirely new project tree:

\TemplatePreformat{ \newline{}
\${}$\text{ }${}mkcabal$\text{ }${}-{}-{}init-{}project$\text{ }$\newline{}
Project {}name: {}haq \newline{}
What {}license {}{[}\symbol{34}GPL\symbol{34},\symbol{34}LGPL\symbol{34},\symbol{34}BSD3\symbol{34},\symbol{34}BSD4\symbol{34},\symbol{34}PublicDomain\symbol{34},\symbol{34}AllRightsReserved\symbol{34}{]} \newline{}
 {}{[}\symbol{34}BSD3\symbol{34}{]}: {} \newline{}
What {}kind {}of {}project {}{[}Executable,Library{]} {}{[}Executable{]}: {} \newline{}
Is {}this {}your {}name? {}-{} {}\symbol{34}Don {}Stewart {}\symbol{34} {}{[}Y/n{]}: {} \newline{}
Is {}this {}your {}email {}address? {}-{} {}\symbol{34}<{}dons@cse.unsw.edu.au>{}\symbol{34} {}{[}Y/n{]}: {} \newline{}
Created {}new {}project {}directory: {}haq \newline{}
\${}$\text{ }${}cd$\text{ }${}haq$\text{ }$\newline{}
\${}$\text{ }${}ls$\text{ }$\newline{}
Haq.hs {} {} {} {}LICENSE {} {} {}README {} {} {} {}Setup.lhs {}haq.cabal \newline{}
}
\section{Licenses}
\label{656}

Code for the common base library package must be BSD licensed or something more Free/Open. Otherwise, it is entirely up to you as the author.

Choose a licence (inspired by \myhref{http://www.dina.dk/~abraham/rants/license.html}{this}). Check the licences of things you use, both other Haskell packages and C libraries, since these may impose conditions you must follow.

Use the same licence as related projects, where possible. The Haskell community is split into 2 camps, roughly, those who release everything under BSD or public domain, and the GPL/LGPLers (this split roughly mirrors the copyleft/noncopyleft divide in Free software communities). Some Haskellers recommend specifically avoiding the LGPL, due to cross module optimisation issues. Like many licensing questions, this advice is controversial. Several Haskell projects (wxHaskell, HaXml, etc.) use the LGPL with an extra permissive clause to avoid the cross-{}module optimisation problem.
\section{Releases}
\label{657}

It\textquotesingle{}s important to release your code as stable, tagged tarballs. Don\textquotesingle{}t
just \myhref{http://web.archive.org/web/20070627103346/http://awayrepl.blogspot.com/2006/11/we-dont-do-releases.html}{rely on darcs for distribution}.

\begin{myitemize}
\item{} {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries darcs dist}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} generates tarballs directly from a darcs repository
\end{myitemize}

For example:
\\

\TemplateSpaceIndent{ {}\${}$\text{ }${}cd$\text{ }${}fps$\text{ }$\newline{}
 {}\${}$\text{ }${}ls$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }${}$\text{ }$\newline{}
 {}Data {} {} {} {} {} {}LICENSE {} {} {}README {} {} {} {}Setup.hs {} {}TODO {} {} {} {} {} {}_darcs {} {} {} {}cbits {}dist {} {} {} {} {} \newline{}
 {}fps.cabal {}tests \newline{}
 {}\${}$\text{ }${}darcs$\text{ }${}dist$\text{ }${}-{}d$\text{ }${}fps-{}0.8$\text{ }$\newline{}
 {}Created {}dist {}as {}fps-{}0.8.tar.gz}

You can now just post your fps-{}0.8.tar.gz

You can also have darcs do the equivalent of \textquotesingle{}daily snapshots\textquotesingle{} for you by using a post-{}hook.

put the following in _darcs/prefs/defaults:\\

\TemplateSpaceIndent{ {} {}apply {}posthook {}darcs {}dist \newline{}
 {} {}apply {}run-{}posthook}

Advice:
\begin{myitemize}
\item{} Tag each release using {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries darcs tag}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. For example:
\end{myitemize}

\\

\TemplateSpaceIndent{ {}\${}$\text{ }${}darcs$\text{ }${}tag$\text{ }${}0.8$\text{ }$\newline{}
 {}Finished {}tagging {}patch {}\textquotesingle{}TAG {}0.8\textquotesingle{}}

Then people can {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily darcs get -{}-{}lazy -{}-{}tag 0.8}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, to get just the tagged version (and not the entire history).
\section{Hosting}
\label{658}

You can host public and private Darcs repositories on \myplainurl{http://patch-tag.com/} for free.
Otherwise, a Darcs repository can be published simply by making it available from a web page.
Another option is to host on the Haskell Community Server at \myplainurl{http://code.haskell.org/.} You can request an account via \myplainurl{http://community.haskell.org/admin/.} You can also use \myplainurl{https://github.com/} for Git hosting.
\section{Example}
\label{659}

\myhref{http://www.cse.unsw.edu.au/~dons/blog/2006/12/11\#release-a-library-today}{A complete example} of writing, packaging and releasing a new Haskell library under this process has been documented.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Using the Foreign Function Interface (FFI)}

\myminitoc
\label{660}

\label{661}
\LaTeXNullTemplate{}

Using Haskell is fine, but in the real world there are a large number of useful libraries in other languages, especially C.
To use these libraries, and let C code use Haskell functions, there is the Foreign Function Interface (FFI).
\section{Calling C from Haskell}
\label{662}
\subsection{Marshalling (Type Conversion)}
\label{663}
When using C functions, it is necessary to convert Haskell types to the appropriate C types.
These are available in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foreign.C.Types}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} module; some examples are given in the following table.
\begin{longtable}{|>{\RaggedRight}p{0.20783\linewidth}|>{\RaggedRight}p{0.39138\linewidth}|>{\RaggedRight}p{0.31507\linewidth}|} \hline
{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Haskell}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Foreign.C.Types}&{\bfseries \hspace*{0pt}\ignorespaces{}\hspace*{0pt} C}\endhead \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Double&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CDouble&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} double\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Char&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CUChar&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} unsigned char\\ \hline \hspace*{0pt}\ignorespaces{}\hspace*{0pt} Int&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} CLong&\hspace*{0pt}\ignorespaces{}\hspace*{0pt} long int\\ \hline
\end{longtable}

The operation of converting Haskell types into C types is called {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries marshalling}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (and the opposite, predictably, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unmarshalling}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
For basic types this is quite straightforward: for floating-{}point one uses {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily realToFrac}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (either way, as e.g. both {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are instances of classes {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Real}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Fractional}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), for integers {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fromIntegral}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and so on.

\begin{TemplateInfo}{\danger}{Warning}If you are using GHC previous to 6.12.x, note that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CLDouble}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type does not really represent a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily long double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but is just a synonym for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape never use it}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, since it will lead to silent type errors if the C compiler does not also consider {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily long double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} a synonym for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Since 6.12.x {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CLDouble}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} \myhref{http://hackage.haskell.org/trac/ghc/ticket/2793}{has been removed}, \myhref{http://hackage.haskell.org/trac/ghc/ticket/3353}{pending proper implementation}.\end{TemplateInfo}
\subsection{Calling a pure C function}
\label{664}
A pure function implemented in C does not present significant trouble in Haskell.
The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sin}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function of the C standard library is a fine example:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"math.h\ensuremath{\text{ }}sin"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_sin\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CDouble}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{CDouble}\newline
\end{Highlighting}
\end{Shaded}

First, we specify a GHC extension for the FFI in the first line.
We then import the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foreign}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foreign.C.Types}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} modules, the latter of which contains information about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the representation of double-{}precision floating-{}point numbers in C.

We then specify that we are {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape import}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}ing a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape foreign}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, with a call to C.
A \symbol{34}safety level\symbol{34} has to be specified with the keyword {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (the default) or {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unsafe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
In general, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unsafe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is more efficient, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily safe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is required only for C code that could call back a Haskell function.
Since that is a very particular case, it is actually quite safe to use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unsafe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} keyword in most cases.
Finally, we need to specify header and function name, separated by a space.

The Haskell function name is then given, in our case we use a standard {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c_sin}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but it could have been anything. Note that the function signature must be correct—GHC will not check the C header to confirm that the function actually takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and returns another, and writing a wrong one could have unpredictable results.

It is then possible to generate a wrapper around the function using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that it looks exactly like any Haskell function.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{haskellSin\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\newline
\NormalTok{haskellSin\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{realToFrac\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{c_sin\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{realToFrac}\newline
\end{Highlighting}
\end{Shaded}

Importing C\textquotesingle{}s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sin}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is simple because it is a pure function that takes a plain {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as input and returns another as output: things will complicate with impure functions and pointers, which are ubiquitous in more complicated C libraries.
\subsection{Impure C Functions}
\label{665}
A classic impure C function is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rand}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for the generation of pseudo-{}random numbers.
Suppose you do not want to use Haskell\textquotesingle{}s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily System.Random.randomIO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for example because you want to replicate exactly the series of pseudo-{}random numbers output by some C routine. Then, you could import it just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sin}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} before:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"stdlib.h\ensuremath{\text{ }}rand"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_rand\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CUInt}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Oops!}\newline
\end{Highlighting}
\end{Shaded}

If you try this naïve implementation in GHCI, you will notice that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily c_rand}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is returning always the same value: \\

\TemplateSpaceIndent{ {}>{} {}c_rand \newline{}
 {}1714636915 \newline{}
 {}>{} {}c_rand \newline{}
 {}1714636915}

indeed, we have told GHC that it is a pure function, and GHC sees no point in calculating twice the result of a pure function.
Note that GHC did not give any error or warning message.

In order to make GHC understand this is no pure function, we have to use the \mylref{248}{IO monad}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"stdlib.h\ensuremath{\text{ }}rand"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_rand\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{CUInt}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}"stdlib.h\ensuremath{\text{ }}srand"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_srand\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CUInt}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\end{Highlighting}
\end{Shaded}

Here, we also imported the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily srand}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, to be able to seed the C pseudo-{}random generator.\\

\TemplateSpaceIndent{ {}>{} {}c_rand \newline{}
 {}1957747793 \newline{}
 {}>{} {}c_rand \newline{}
 {}424238335 \newline{}
 {}>{} {}c_srand {}0 \newline{}
 {}>{} {}c_rand \newline{}
 {}1804289383 \newline{}
 {}>{} {}c_srand {}0 \newline{}
 {}>{} {}c_rand \newline{}
 {}1804289383}

\subsection{Working with C Pointers}
\label{666}
The most useful C functions are often those that do complicated calculations with several parameters, and with increasing complexity the need of returning control codes arises.
This means that a typical paradigm of C libraries is to give pointers of allocated memory as \symbol{34}targets\symbol{34} in which the results may be written, while the function itself returns an integer value (typically, if 0, computation was successful, otherwise there was a problem specified by the number).
Another possibility is that the function will return a pointer to a structure (possibly defined in the implementation, and therefore unavailable to us).

As a pedagogical example, we consider \myhref{http://www.gnu.org/software/gsl/manual/html_node/Elementary-Functions.html}{the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_frexp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function} of the \myhref{http://en.wikipedia.org/wiki/GNU_Scientific_Library}{GNU Scientific Library}, a freely available library for scientific computation.
It is a simple C function with prototype:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{gsl_frexp\ensuremath{\text{ }}(}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{x,\ensuremath{\text{ }}}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}e)}\newline
\end{Highlighting}
\end{Shaded}

The function takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape x}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and it returns its normalised fraction {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and integer exponent {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so that:
\begin{myquote}
\item{} \begin{equation*} x = f \times 2^e \qquad e \in \mathbb{Z}, \quad 0.5 \leq f < 1\end{equation*}
\end{myquote}

We interface this C function into Haskell with the following code:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.Ptr}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_math.h\ensuremath{\text{ }}gsl_frexp"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}gsl_frexp\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CDouble}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{CDouble}\newline
\end{Highlighting}
\end{Shaded}

The new part is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ptr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which can be used with any instance of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Storable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, among which all C types, but also several Haskell types.

Notice how the result of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_frexp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad.
This is typical when working with pointers, be they used for input or output (as in this case); we will see shortly what would happen had we used a simple {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for the function.

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily frexp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function is implemented in pure Haskell code as follows:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{frexp\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Int}\NormalTok{)}\newline
\NormalTok{frexp\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{unsafePerformIO\ensuremath{\text{ }}}\FunctionTok{\$}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}expptr\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{gsl_frexp\ensuremath{\text{ }}(realToFrac\ensuremath{\text{ }}x)\ensuremath{\text{ }}expptr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{e\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}expptr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(realToFrac\ensuremath{\text{ }}f,\ensuremath{\text{ }}fromIntegral\ensuremath{\text{ }}e)}\newline
\end{Highlighting}
\end{Shaded}

We know that, memory management details aside, the function is pure: that\textquotesingle{}s why the signature returns a tuple with {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} outside of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad.
Yet, {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is provided {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape inside}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of it: to extract it, we use the function {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape unsafePerformIO}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which extracts values from the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad: obviously, it is legitimate to use it only when we {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape know}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} the function is pure, and we can allow GHC to optimise accordingly.

To allocate pointers, we use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alloca}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, which also takes responsibility for freeing memory.
As an argument, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alloca}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes a function of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ptr a -{}>{} IO b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and returns the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO b}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
In practice, this translates to the following usage pattern with {\mbox{λ}} functions:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{...}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}pointer\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c_function\ensuremath{\text{ }}argument\ensuremath{\text{ }}pointer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}pointer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}result}\newline
\end{Highlighting}
\end{Shaded}

The pattern can easily be nested if several pointers are required:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{...}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}firstPointer\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}secondPointer\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c_function\ensuremath{\text{ }}argument\ensuremath{\text{ }}firstPointer\ensuremath{\text{ }}secondPointer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{first\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}firstPointer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{second\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}secondPointer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}(first,\ensuremath{\text{ }}second)}\newline
\end{Highlighting}
\end{Shaded}

Back to our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily frexp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function: in the {\mbox{λ}} function that is the argument to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alloca}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, the function is evaluated and the pointer is read immediately afterwards with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily peek}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Here we can understand why we wanted the imported C function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_frexp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to return a value in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad: if GHC could decide when to calculate the quantity {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape f}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, it would likely decide not to do it until it is necessary: that is at the last line when {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} uses it, and {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape after}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape e}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has been read from an allocated, but yet uninitialised memory address, which will contain random data. In short, we want {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_frexp}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to return a monadic value because we want to determine the sequence of computations ourselves.

If some other function had required a pointer to {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape provide input}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instead of storing output, one would have used the similar {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily poke}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function to set the pointed value, obviously {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape before}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} evaluating the function:

\begin{Shaded}
\begin{Highlighting}[]

\FunctionTok{...}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}inputPointer\ensuremath{\text{ }}}\OtherTok{->}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}outputPointer\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{poke\ensuremath{\text{ }}inputPointer\ensuremath{\text{ }}value}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c_function\ensuremath{\text{ }}argument\ensuremath{\text{ }}inputPointer\ensuremath{\text{ }}outputPointer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}outputPointer}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}result}\newline
\end{Highlighting}
\end{Shaded}

In the final line, the results are arranged in a tuple and returned, after having been converted from C types.

To test the function, remember to link GHC to the GSL; in GHCI, do:\\

\TemplateSpaceIndent{ {}\${}$\text{ }${}ghci$\text{ }${}frexp.hs$\text{ }${}-{}lgsl}

(Note that most systems do not come with the GSL preinstalled, and you may have to download and install its development packages.)
\subsection{Working with C Structures}
\label{667}
Very often data are returned by C functions in form of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily struct}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s or pointers to these.
In some rare cases, these structures are returned directly, but more often they are returned as pointers; the return value is most often an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily int}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} that indicates the correctness of execution.

We will consider another GSL function, \myhref{http://www.gnu.org/software/gsl/manual/html_node/Regular-Cylindrical-Bessel-Functions.html}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_sf_bessel_Jn_e}}.
This function provides the regular cylindrical Bessel function for a given order {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and returns the result as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_sf_result}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structure pointer.
The structure contains two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, one for the result and one for the error.
The integer error code returned by the function can be transformed in a C string by the function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_strerror}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
The signature of the Haskell function we are looking for is therefore:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{BesselJn}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Either}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

where the first argument is the order of the cylindrical Bessel function, the second is the function\textquotesingle{}s argument, and the returned value is either an error message or a tuple with result and margin of error.
\subsubsection{Making a New Instance of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Storable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class}
\label{668}
In order to allocate and read a pointer to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_sf_result}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structure, it is necessary to make it an instance of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Storable}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class.

In order to do that, it is useful to use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hsc2hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} program: we create first a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bessel.hsc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} file, with a mixed syntax of Haskell and C macros, which is later expanded into Haskell by the command:\\

\TemplateSpaceIndent{ {}\${}$\text{ }${}hsc2hs$\text{ }${}Bessel.hsc}

After that, we simply load the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bessel.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} file in GHC.

This is the first part of file {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bessel.hsc}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Bessel}\ensuremath{\text{ }}\NormalTok{(besselJn)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.Ptr}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.String}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\ensuremath{\text{ }}\newline
\StringTok{#include\ensuremath{\text{ }}<gsl/gsl_sf_result.h>}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{GslSfResult}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GslSfResult}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}gsl_value\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CDouble}\NormalTok{,}\OtherTok{\ensuremath{\text{ }}gsl_error\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CDouble}\ensuremath{\text{ }}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Storable}\ensuremath{\text{ }}\DataTypeTok{GslSfResult}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sizeOf\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{size\ensuremath{\text{ }}gsl_sf_result)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alignment\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{alignment\ensuremath{\text{ }}(undefined}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CDouble}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}ptr\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{value\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{peek\ensuremath{\text{ }}gsl_sf_result,\ensuremath{\text{ }}val)\ensuremath{\text{ }}ptr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{peek\ensuremath{\text{ }}gsl_sf_result,\ensuremath{\text{ }}err)\ensuremath{\text{ }}ptr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}\ensuremath{\text{ }}}\DataTypeTok{GslSfResult}\ensuremath{\text{ }}\NormalTok{\{\ensuremath{\text{ }}gsl_value\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{value,\ensuremath{\text{ }}gsl_error\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}\}}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{poke\ensuremath{\text{ }}ptr\ensuremath{\text{ }}(}\DataTypeTok{GslSfResult}\ensuremath{\text{ }}\NormalTok{value\ensuremath{\text{ }}error)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{poke\ensuremath{\text{ }}gsl_sf_result,\ensuremath{\text{ }}val)\ensuremath{\text{ }}ptr\ensuremath{\text{ }}value}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{poke\ensuremath{\text{ }}gsl_sf_result,\ensuremath{\text{ }}err)\ensuremath{\text{ }}ptr\ensuremath{\text{ }}error}\newline
\end{Highlighting}
\end{Shaded}

We use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \#include}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} directive to make sure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hsc2hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} knows where to find information about {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_sf_result}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
We then define a Haskell data structure mirroring the GSL\textquotesingle{}s, with two {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s: this is the class we make an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Storable}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Strictly, we need only {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sizeOf}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alignment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily peek}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for this example; {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily poke}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is added for completeness.

\begin{myitemize}
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sizeOf}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is obviously fundamental to the allocation process, and is calculated by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hsc2hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \#size}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} macro.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alignment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the size in bytes of the \myhref{http://en.wikipedia.org/wiki/Data_structure_alignment}{data structure alignment}. In general, it should be the largest {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alignment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of the elements of the structure; in our case, since the two elements are the same, we simply use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CDouble}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}\textquotesingle{}s. The value of the argument to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alignment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is inconsequential, what is important is the type of the argument.
\item{} {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily peek}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is implemented using a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily do}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}block and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \#peek}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} macros, as shown. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily val}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily err}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are the names used for the structure fields in the GSL source code.
\item{} Similarly, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily poke}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is implemented with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily \#poke}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} macro.
\end{myitemize}

\subsubsection{Importing the C Functions}
\label{669}

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_bessel.h\ensuremath{\text{ }}gsl_sf_bessel_Jn_e"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_besselJn\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{CDouble}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\DataTypeTok{GslSfResult}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{CInt}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_errno.h\ensuremath{\text{ }}gsl_set_error_handler_off"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_deactivate_gsl_error_handler\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_errno.h\ensuremath{\text{ }}gsl_strerror"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_error_string\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{CString}\newline
\end{Highlighting}
\end{Shaded}

We import several functions from the GSL libraries: first, the Bessel function itself, which will do the actual work. Then, we need a particular function, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_set_error_handler_off}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, because the default GSL error handler will simply crash the program, even if called by Haskell: we, instead, plan to deal with errors ourselves.
The last function is the GSL-{}wide interpreter that translates error codes in human-{}readable C strings.
\subsubsection{Implementing the Bessel Function}
\label{670}
Finally, we can implement the Haskell version of the GSL cylindrical Bessel function of order {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape n}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{besselJn\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Either}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)}\newline
\NormalTok{besselJn\ensuremath{\text{ }}n\ensuremath{\text{ }}x\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{unsafePerformIO\ensuremath{\text{ }}}\FunctionTok{\$}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}gslSfPtr\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c_deactivate_gsl_error_handler}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{status\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{c_besselJn\ensuremath{\text{ }}(fromIntegral\ensuremath{\text{ }}n)\ensuremath{\text{ }}(realToFrac\ensuremath{\text{ }}x)\ensuremath{\text{ }}gslSfPtr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{status\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{GslSfResult}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}err\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}gslSfPtr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{(realToFrac\ensuremath{\text{ }}val,\ensuremath{\text{ }}realToFrac\ensuremath{\text{ }}err)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{c_error_string\ensuremath{\text{ }}status}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{error_message\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peekCString\ensuremath{\text{ }}error}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{(}\StringTok{"GSL\ensuremath{\text{ }}error:\ensuremath{\text{ }}"}\FunctionTok{++}\NormalTok{error_message)}\newline
\end{Highlighting}
\end{Shaded}

Again, we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unsafePerformIO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because the function is pure, even though its nuts-{}and-{}bolts implementation is not.
After allocating a pointer to a GSL result structure, we deactivate the GSL error handler to avoid crashes in case something goes wrong, and finally we can call the GSL function.
At this point, if the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily status}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returned by the function is 0, we unmarshal the result and return it as a tuple.
Otherwise, we call the GSL error-{}string function, and pass the error as a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Left}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} result instead.
\subsubsection{Examples}
\label{671}
Once we are finished writing the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Bessel.hsc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, we have to convert it to proper Haskell and load the produced file:\\

\TemplateSpaceIndent{ {}\${}$\text{ }${}hsc2hs$\text{ }${}Bessel.hsc$\text{ }$\newline{}
 {}\${}$\text{ }${}ghci$\text{ }${}Bessel.hs$\text{ }${}-{}lgsl}

We can then call the Bessel function with several values:\\

\TemplateSpaceIndent{ {}>{} {}besselJn {}0 {}10 \newline{}
 {}Right {}(-{}0.2459357644513483,1.8116861737200453e-{}16) \newline{}
 {}>{} {}besselJn {}1 {}0 \newline{}
 {}Right {}(0.0,0.0) \newline{}
 {}>{} {}besselJn {}1000 {}2 \newline{}
 {}Left {}\symbol{34}GSL {}error: {}underflow\symbol{34}}

\subsection{Advanced Topics}
\label{672}
This section contains an advanced example with some more complex features of the FFI.
We will import into Haskell one of the more complicated functions of the GSL, the one used to calculate \myhref{http://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html}{the integral of a function between two given points with an adaptive Gauss-{}Kronrod algorithm}.
The GSL function is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_integration_qag}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

This example will illustrate function pointers, export of Haskell functions to C routines, enumerations, and handling pointers of unknown structures.
\subsubsection{Available C Functions and Structures}
\label{673}
The GSL has three functions which are necessary to integrate a given function with the considered method:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{gsl_integration_workspace\ensuremath{\text{ }}*\ensuremath{\text{ }}gsl_integration_workspace_alloc\ensuremath{\text{ }}(size_t\ensuremath{\text{ }}n);}\newline
\DataTypeTok{void}\ensuremath{\text{ }}\NormalTok{gsl_integration_workspace_free\ensuremath{\text{ }}(gsl_integration_workspace\ensuremath{\text{ }}*\ensuremath{\text{ }}w);}\newline
\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{gsl_integration_qag\ensuremath{\text{ }}(}\DataTypeTok{const}\ensuremath{\text{ }}\NormalTok{gsl_function\ensuremath{\text{ }}*\ensuremath{\text{ }}f,\ensuremath{\text{ }}}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{a,\ensuremath{\text{ }}}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{b,\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{epsabs,\ensuremath{\text{ }}}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{epsrel,\ensuremath{\text{ }}size_t\ensuremath{\text{ }}limit,\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{key,\ensuremath{\text{ }}gsl_integration_workspace\ensuremath{\text{ }}*\ensuremath{\text{ }}workspace,\ensuremath{\text{ }}}\newline
\ensuremath{\text{ }}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}result,\ensuremath{\text{ }}}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}abserr);}\newline
\end{Highlighting}
\end{Shaded}

The first two deal with allocation and deallocation of a \symbol{34}workspace\symbol{34} structure of which we know nothing (we just pass a pointer around).
The actual work is done by the last function, which requires a pointer to a workspace.

To provide functions, the GSL specifies an appropriate structure for C:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{struct}\ensuremath{\text{ }}\NormalTok{gsl_function}\newline
\NormalTok{\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{(*\ensuremath{\text{ }}function)\ensuremath{\text{ }}(}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{x,\ensuremath{\text{ }}}\DataTypeTok{void}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}params);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{void}\ensuremath{\text{ }}\NormalTok{*\ensuremath{\text{ }}params;}\newline
\NormalTok{\};}\newline
\end{Highlighting}
\end{Shaded}

The reason for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily void}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pointer is that it is not possible to define {\mbox{λ}} functions in C: parameters are therefore passed along with a parameter of unknown type.
In Haskell, we do not need the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily params}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} element, and will consistently ignore it.
\subsubsection{Imports and Inclusions}
\label{674}
We start our {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily qag.hsc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} file with the following:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface,\ensuremath{\text{ }}EmptyDataDecls\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Qag}\ensuremath{\text{ }}\NormalTok{(\ensuremath{\text{ }}qag,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss15,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss21,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss31,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss41,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss51,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss61\ensuremath{\text{ }})\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.Ptr}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.String}\newline
\ensuremath{\text{ }}\newline
\StringTok{#include\ensuremath{\text{ }}<gsl/gsl_math.h>}\newline
\StringTok{#include\ensuremath{\text{ }}<gsl/gsl_integration.h>}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_errno.h\ensuremath{\text{ }}gsl_strerror"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_error_string\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{CString}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_errno.h\ensuremath{\text{ }}gsl_set_error_handler_off"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_deactivate_gsl_error_handler\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\end{Highlighting}
\end{Shaded}

We declare the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily EmptyDataDecls}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pragma, which we will use later for the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Workspace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} data type.
Since this file will have a good number of functions that should not be available to the outside world, we also declare it a module and export only the final function {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily qag}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gauss}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{} flags.
We also include the relevant C headers of the GSL.
The import of C functions for error messages and deactivation of the error handler was described before.
\subsubsection{Enumerations}
\label{675}
One of the arguments of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_integration_qag}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily key}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, an integer value that can have values from 1 to 6 and indicates the integration rule.
GSL defines a macro for each value, but in Haskell it is more appropriate to define a type, which we call {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IntegrationRule}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
Also, to have its values automatically defined by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hsc2hs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we can use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily enum}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} macro:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}rule\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\NormalTok{\}}\newline
\StringTok{#\{enum\ensuremath{\text{ }}IntegrationRule,\ensuremath{\text{ }}IntegrationRule,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss15\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS15}\NormalTok{,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss21\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS21}\NormalTok{,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss31\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS31}\NormalTok{,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss41\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS41}\NormalTok{,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss51\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS51}\NormalTok{,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{gauss61\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS61}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hsc2hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} will search the headers for the macros and give our variables the correct values. The enum directive will define a function with an appropriate type signature for each of the enum values. The above example will get translated to something like this (with the C macros appropriately replaced by their values):

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{newtype}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\ensuremath{\text{ }}\NormalTok{\{}\OtherTok{\ensuremath{\text{ }}rule\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\OtherTok{gauss15\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\newline
\NormalTok{gauss15\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS15}\newline
\OtherTok{gauss21\ensuremath{\text{ }}\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\newline
\NormalTok{gauss21\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\ensuremath{\text{ }}\DataTypeTok{GSL_INTEG_GAUSS21}\newline
\FunctionTok{.}\newline
\FunctionTok{.}\newline
\FunctionTok{.}\newline
\end{Highlighting}
\end{Shaded}

The variables cannot be modified and are essentially constant flags.
Since we did not export the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IntegrationRule}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} constructor in the module declaration, but only the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gauss}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} flags, it is impossible for a user to even construct an invalid value. One thing less to worry about!
\subsubsection{Haskell Function Target}
\label{676}
We can now write down the signature of the function we desire:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{qag\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IntegrationRule}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Algorithm\ensuremath{\text{ }}type}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Int}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Step\ensuremath{\text{ }}limit}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Absolute\ensuremath{\text{ }}tolerance}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Relative\ensuremath{\text{ }}tolerance}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Function\ensuremath{\text{ }}to\ensuremath{\text{ }}integrate}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Integration\ensuremath{\text{ }}interval\ensuremath{\text{ }}start}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}Integration\ensuremath{\text{ }}interval\ensuremath{\text{ }}end}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Either}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\NormalTok{,\ensuremath{\text{ }}}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}\ensuremath{\text{ }}}\CommentTok{--\ensuremath{\text{ }}Result\ensuremath{\text{ }}and\ensuremath{\text{ }}(absolute)\ensuremath{\text{ }}error\ensuremath{\text{ }}estimate}\newline
\end{Highlighting}
\end{Shaded}

Note how the order of arguments is different from the C version: indeed, since C does not have the possibility of partial application, the ordering criteria are different than in Haskell.

As in the previous example, we indicate errors with a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Either String (Double, Double)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} result.
\subsubsection{Passing Haskell Functions to the C Algorithm}
\label{677}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{type}\ensuremath{\text{ }}\DataTypeTok{CFunction}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{CDouble}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{CDouble}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{GslFunction}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{GslFunction}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{FunPtr}\ensuremath{\text{ }}\DataTypeTok{CFunction}\NormalTok{)\ensuremath{\text{ }}(}\DataTypeTok{Ptr}\ensuremath{\text{ }}\NormalTok{())}\newline
\KeywordTok{instance}\ensuremath{\text{ }}\DataTypeTok{Storable}\ensuremath{\text{ }}\DataTypeTok{GslFunction}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{sizeOf\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{size\ensuremath{\text{ }}gsl_function)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alignment\ensuremath{\text{ }}_\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{alignment\ensuremath{\text{ }}(undefined}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\NormalTok{())}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}ptr\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{function\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{peek\ensuremath{\text{ }}gsl_function,\ensuremath{\text{ }}function)\ensuremath{\text{ }}ptr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{GslFunction}\ensuremath{\text{ }}\NormalTok{function\ensuremath{\text{ }}nullPtr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{poke\ensuremath{\text{ }}ptr\ensuremath{\text{ }}(}\DataTypeTok{GslFunction}\ensuremath{\text{ }}\NormalTok{fun\ensuremath{\text{ }}nullPtr)\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{(}\FunctionTok{#}\NormalTok{poke\ensuremath{\text{ }}gsl_function,\ensuremath{\text{ }}function)\ensuremath{\text{ }}ptr\ensuremath{\text{ }}fun}\newline
\ensuremath{\text{ }}\newline
\OtherTok{makeCfunction\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Double}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Double}\NormalTok{)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{CDouble}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\NormalTok{()\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{CDouble}\NormalTok{)}\newline
\NormalTok{makeCfunction\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{\textbackslash{}x\ensuremath{\text{ }}voidpointer\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{realToFrac\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}(realToFrac\ensuremath{\text{ }}x)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}"wrapper"}\newline
\OtherTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}makeFunPtr\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CFunction}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{FunPtr}\ensuremath{\text{ }}\DataTypeTok{CFunction}\NormalTok{)}\newline
\end{Highlighting}
\end{Shaded}

We define a shorthand type, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily CFunction}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for readability. Note that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily void}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pointer has been translated to a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Ptr ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, since we have no intention of using it.
Then it is the turn of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_function}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} structure: no surprises here. Note that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily void}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pointer is always assumed to be null, both in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily peek}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily poke}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and is never really read nor written.

To make a Haskell {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Double -{}>{} Double}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function available to the C algorithm, we make two steps: first, we re-{}organise the arguments using a {\mbox{λ}} function in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeCfunction}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; then, in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily makeFunPtr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, we take the function with reordered arguments and produce a function pointer that we can pass on to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily poke}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so we can construct the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GslFunction}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} data structure.
\subsubsection{Handling Unknown Structures}
\label{678}

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Workspace}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_integration.h}\newline
\ensuremath{\text{ }}\NormalTok{gsl_integration_workspace_alloc}\StringTok{"}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_qag_alloc\ensuremath{\text{ }}::\ensuremath{\text{ }}CSize\ensuremath{\text{ }}->\ensuremath{\text{ }}IO\ensuremath{\text{ }}(Ptr\ensuremath{\text{ }}Workspace)}\newline
\StringTok{foreign\ensuremath{\text{ }}import\ensuremath{\text{ }}ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"}\NormalTok{gsl}\FunctionTok{/}\NormalTok{gsl_integration}\FunctionTok{.}\NormalTok{h}\newline
\ensuremath{\text{ }}\NormalTok{gsl_integration_workspace_free}\StringTok{"}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_qag_free\ensuremath{\text{ }}\ensuremath{\text{ }}::\ensuremath{\text{ }}Ptr\ensuremath{\text{ }}Workspace\ensuremath{\text{ }}->\ensuremath{\text{ }}IO\ensuremath{\text{ }}()}\newline
\StringTok{\ensuremath{\text{ }}}\newline
\StringTok{foreign\ensuremath{\text{ }}import\ensuremath{\text{ }}ccall\ensuremath{\text{ }}safe\ensuremath{\text{ }}"}\NormalTok{gsl}\FunctionTok{/}\NormalTok{gsl_integration}\FunctionTok{.}\NormalTok{h\ensuremath{\text{ }}gsl_integration_qag}\StringTok{"}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_qag\ensuremath{\text{ }}::\ensuremath{\text{ }}Ptr\ensuremath{\text{ }}GslFunction\ensuremath{\text{ }}--\ensuremath{\text{ }}Allocated\ensuremath{\text{ }}GSL\ensuremath{\text{ }}function\ensuremath{\text{ }}structure}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}CDouble\ensuremath{\text{ }}--\ensuremath{\text{ }}Start\ensuremath{\text{ }}interval}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}CDouble\ensuremath{\text{ }}--\ensuremath{\text{ }}End\ensuremath{\text{ }}interval}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}CDouble\ensuremath{\text{ }}--\ensuremath{\text{ }}Absolute\ensuremath{\text{ }}tolerance}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}CDouble\ensuremath{\text{ }}--\ensuremath{\text{ }}Relative\ensuremath{\text{ }}tolerance}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}CSize\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}--\ensuremath{\text{ }}Maximum\ensuremath{\text{ }}number\ensuremath{\text{ }}of\ensuremath{\text{ }}subintervals}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}CInt\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}--\ensuremath{\text{ }}Type\ensuremath{\text{ }}of\ensuremath{\text{ }}Gauss-Kronrod\ensuremath{\text{ }}rule}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}Ptr\ensuremath{\text{ }}Workspace\ensuremath{\text{ }}--\ensuremath{\text{ }}GSL\ensuremath{\text{ }}integration\ensuremath{\text{ }}workspace}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}Ptr\ensuremath{\text{ }}CDouble\ensuremath{\text{ }}--\ensuremath{\text{ }}Result}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}Ptr\ensuremath{\text{ }}CDouble\ensuremath{\text{ }}--\ensuremath{\text{ }}Computation\ensuremath{\text{ }}error}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}->\ensuremath{\text{ }}IO\ensuremath{\text{ }}CInt\ensuremath{\text{ }}--\ensuremath{\text{ }}Exit\ensuremath{\text{ }}code}\newline
\end{Highlighting}
\end{Shaded}

The reason we imported the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily EmptyDataDecls}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} pragma is this: we are declaring the data structure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Workspace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} without providing any constructor.
This is a way to make sure it will always be handled as a pointer, and never actually instantiated.

Otherwise, we normally import the allocating and deallocating routines.
We can now import the integration function, since we have all the required pieces ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GslFunction}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Workspace}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).
\subsubsection{The Complete Function}
\label{679}
It is now possible to implement a function with the same functionality as the GSL\textquotesingle{}s QAG algorithm.

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{qag\ensuremath{\text{ }}gauss\ensuremath{\text{ }}steps\ensuremath{\text{ }}abstol\ensuremath{\text{ }}reltol\ensuremath{\text{ }}f\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{unsafePerformIO\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c_deactivate_gsl_error_handler}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{workspacePtr\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{c_qag_alloc\ensuremath{\text{ }}(fromIntegral\ensuremath{\text{ }}steps)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{workspacePtr\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{nullPtr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\StringTok{"GSL\ensuremath{\text{ }}could\ensuremath{\text{ }}not\ensuremath{\text{ }}allocate\ensuremath{\text{ }}workspace"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{fPtr\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{makeFunPtr\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{makeCfunction\ensuremath{\text{ }}f}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}gsl_f\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{poke\ensuremath{\text{ }}gsl_f\ensuremath{\text{ }}(}\DataTypeTok{GslFunction}\ensuremath{\text{ }}\NormalTok{fPtr\ensuremath{\text{ }}nullPtr)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}resultPtr\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\NormalTok{alloca\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}errorPtr\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\NormalTok{status\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{c_qag\ensuremath{\text{ }}gsl_f}\newline
\ensuremath{\text{ }}\NormalTok{(realToFrac\ensuremath{\text{ }}a)}\newline
\ensuremath{\text{ }}\NormalTok{(realToFrac\ensuremath{\text{ }}b)}\newline
\ensuremath{\text{ }}\NormalTok{(realToFrac\ensuremath{\text{ }}abstol)}\newline
\ensuremath{\text{ }}\NormalTok{(realToFrac\ensuremath{\text{ }}reltol)}\newline
\ensuremath{\text{ }}\NormalTok{(fromIntegral\ensuremath{\text{ }}steps)}\newline
\ensuremath{\text{ }}\NormalTok{(rule\ensuremath{\text{ }}gauss)}\newline
\ensuremath{\text{ }}\NormalTok{workspacePtr}\newline
\ensuremath{\text{ }}\NormalTok{resultPtr}\newline
\ensuremath{\text{ }}\NormalTok{errorPtr}\newline
\ensuremath{\text{ }}\NormalTok{c_qag_free\ensuremath{\text{ }}workspacePtr}\newline
\ensuremath{\text{ }}\NormalTok{freeHaskellFunPtr\ensuremath{\text{ }}fPtr}\newline
\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{status\ensuremath{\text{ }}}\FunctionTok{/=}\ensuremath{\text{ }}\DecValTok{0}\newline
\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\NormalTok{c_errormsg\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{c_error_string\ensuremath{\text{ }}status}\newline
\ensuremath{\text{ }}\NormalTok{errormsg\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peekCString\ensuremath{\text{ }}c_errormsg}\newline
\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\NormalTok{errormsg}\newline
\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\NormalTok{c_result\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}resultPtr}\newline
\ensuremath{\text{ }}\NormalTok{c_error\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{peek\ensuremath{\text{ }}\ensuremath{\text{ }}errorPtr}\newline
\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{realToFrac\ensuremath{\text{ }}c_result}\newline
\ensuremath{\text{ }}\KeywordTok{let}\ensuremath{\text{ }}\NormalTok{error\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{realToFrac\ensuremath{\text{ }}c_error}\newline
\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{Right}\ensuremath{\text{ }}\NormalTok{(result,\ensuremath{\text{ }}error)}\newline
\end{Highlighting}
\end{Shaded}

First and foremost, we deactivate the GSL error handler, that would crash the program instead of letting us report the error.

We then proceed to allocate the workspace; notice that, if the returned pointer is null, there was an error (typically, too large size) that has to be reported.

If the workspace was allocated correctly, we convert the given function to a function pointer and allocate the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GslFunction}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} struct, in which we place the function pointer.
Allocating memory for the result and its error margin is the last thing before calling the main routine.

After calling, we have to do some housekeeping and free the memory allocated by the workspace and the function pointer. Note that it would be possible to skip the bookkeeping using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ForeignPtr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but the work required to get it to work is more than the effort to remember one line of cleanup.

We then proceed to check the return value and return the result, as was done for the Bessel function.
\subsection{Self-{}Deallocating Pointers}
\label{680}
In the previous example, we manually handled the deallocation of the GSL integration workspace, a data structure we know nothing about, by calling its C deallocation function.
It happens that the same workspace is used in several integration routines, which we may want to import in Haskell.

Instead of replicating the same allocation/deallocation code each time, which could lead to memory leaks when someone forgets the deallocation part, we can provide a sort of \symbol{34}smart pointer\symbol{34}, which will deallocate the memory when it is not needed any more.
This is called {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ForeignPtr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} (do not confuse with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foreign.Ptr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: this one\textquotesingle{}s qualified name is actually {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Foreign.ForeignPtr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}!).
The function handling the deallocation is called the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape finalizer}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

In this section we will write a simple module to allocate GSL workspaces and provide them as appropriately configured {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ForeignPtr}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}s, so that users do not have to worry about deallocation.

The module, written in file {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GSLWorkspace.hs}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, is as follows:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface,\ensuremath{\text{ }}EmptyDataDecls\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{GSLWorkSpace}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Workspace}\NormalTok{,\ensuremath{\text{ }}createWorkspace)\ensuremath{\text{ }}}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.Ptr}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.ForeignPtr}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Workspace}\newline
\NormalTok{foreign\ensuremath{\text{ }}}\KeywordTok{import\ensuremath{\text{ }}}\NormalTok{ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"gsl/gsl_integration.h}\newline
\ensuremath{\text{ }}\NormalTok{gsl_integration_workspace_alloc}\StringTok{"}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_ws_alloc\ensuremath{\text{ }}::\ensuremath{\text{ }}CSize\ensuremath{\text{ }}->\ensuremath{\text{ }}IO\ensuremath{\text{ }}(Ptr\ensuremath{\text{ }}Workspace)}\newline
\StringTok{foreign\ensuremath{\text{ }}import\ensuremath{\text{ }}ccall\ensuremath{\text{ }}unsafe\ensuremath{\text{ }}"}\NormalTok{gsl}\FunctionTok{/}\NormalTok{gsl_integration}\FunctionTok{.}\NormalTok{h}\newline
\ensuremath{\text{ }}\FunctionTok{\&}\NormalTok{gsl_integration_workspace_free}\StringTok{"}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}c_ws_free\ensuremath{\text{ }}\ensuremath{\text{ }}::\ensuremath{\text{ }}FunPtr(\ensuremath{\text{ }}Ptr\ensuremath{\text{ }}Workspace\ensuremath{\text{ }}->\ensuremath{\text{ }}IO\ensuremath{\text{ }}()\ensuremath{\text{ }})}\newline
\StringTok{\ensuremath{\text{ }}}\newline
\StringTok{createWorkspace\ensuremath{\text{ }}::\ensuremath{\text{ }}CSize\ensuremath{\text{ }}->\ensuremath{\text{ }}IO\ensuremath{\text{ }}(Maybe\ensuremath{\text{ }}(ForeignPtr\ensuremath{\text{ }}Workspace)\ensuremath{\text{ }})}\newline
\StringTok{createWorkspace\ensuremath{\text{ }}size\ensuremath{\text{ }}=\ensuremath{\text{ }}do}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}ptr\ensuremath{\text{ }}<-\ensuremath{\text{ }}c_ws_alloc\ensuremath{\text{ }}size}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}if\ensuremath{\text{ }}ptr\ensuremath{\text{ }}/=\ensuremath{\text{ }}nullPtr}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}then\ensuremath{\text{ }}do}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}foreignPtr\ensuremath{\text{ }}<-\ensuremath{\text{ }}newForeignPtr\ensuremath{\text{ }}c_ws_free\ensuremath{\text{ }}ptr}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}return\ensuremath{\text{ }}\$\ensuremath{\text{ }}Just\ensuremath{\text{ }}foreignPtr}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}else}\newline
\StringTok{\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}return\ensuremath{\text{ }}Nothing}\newline
\end{Highlighting}
\end{Shaded}

We first declare our empty data structure {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Workspace}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, just like we did in the previous section.

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_integration_workspace_alloc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gsl_integration_workspace_free}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions will no longer be needed in any other file: here, note that the deallocation function is called with an ampersand (\symbol{34}\&\symbol{34}), because we do not actually want the function, but rather a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape pointer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to it to set as a finalizer.

The workspace creation function returns a IO (Maybe) value, because there is still the possibility that allocation is unsuccessful and the null pointer is returned. The GSL does not specify what happens if the deallocation function is called on the null pointer, so for safety we do not set a finalizer in that case and return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO Nothing}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}; the user code will then have to check for \symbol{34}{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}ness\symbol{34} of the returned value.

If the pointer produced by the allocation function is non-{}null, we build a foreign pointer with the deallocation function, inject into the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Maybe}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and then the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad. That\textquotesingle{}s it, the foreign pointer is ready for use!

\begin{TemplateInfo}{\danger}{Warning}This function requires object code to be compiled, so if you load this module with GHCI (which is an interpreter) you must indicate it:\\

\TemplateSpaceIndent{ {}\${}$\text{ }${}ghci$\text{ }${}GSLWorkSpace.hs$\text{ }${}-{}fobject-{}code}

Or, from within GHCI:\\

\TemplateSpaceIndent{ {}>{} {}:set {}-{}fobject-{}code \newline{}
 {}>{} {}:load {}GSLWorkSpace.hs}

\end{TemplateInfo}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily qag.hsc}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} file must now be modified to use the new module; the parts that change are:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}[...]}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{GSLWorkSpace}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Data.Maybe}\NormalTok{(isNothing,\ensuremath{\text{ }}fromJust)}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}[...]}\newline
\ensuremath{\text{ }}\newline
\NormalTok{qag\ensuremath{\text{ }}gauss\ensuremath{\text{ }}steps\ensuremath{\text{ }}abstol\ensuremath{\text{ }}reltol\ensuremath{\text{ }}f\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{unsafePerformIO\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{c_deactivate_gsl_error_handler}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ws\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{createWorkspace\ensuremath{\text{ }}(fromIntegral\ensuremath{\text{ }}steps)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{isNothing\ensuremath{\text{ }}ws}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\DataTypeTok{Left}\ensuremath{\text{ }}\StringTok{"GSL\ensuremath{\text{ }}could\ensuremath{\text{ }}not\ensuremath{\text{ }}allocate\ensuremath{\text{ }}workspace"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{withForeignPtr\ensuremath{\text{ }}(fromJust\ensuremath{\text{ }}ws)\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}workspacePtr\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\newline
\CommentTok{--\ensuremath{\text{ }}[...]}\newline
\end{Highlighting}
\end{Shaded}

Obviously, we do not need the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily EmptyDataDecls}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} extension here any more; instead we import the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily GSLWorkSpace}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} module, and also a couple of nice-{}to-{}have functions from {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Data.Maybe}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
We also remove the foreign declarations of the workspace allocation and deallocation functions.

The most important difference is in the main function, where we (try to) allocate a workspace {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ws}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, test for its {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Just}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}ness, and if everything is fine we use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily withForeignPtr}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function to extract the workspace pointer. Everything else is the same.
\section{Calling Haskell from C}
\label{681}
Sometimes it is also convenient to call Haskell from C, in order to take advantage of some of Haskell\textquotesingle{}s features which are tedious to implement in C, such as lazy evaluation.

We will consider a typical Haskell example, Fibonacci numbers.
These are produced in an elegant, haskellian one-{}liner as:

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{fibonacci\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{zipWith\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}fibonacci\ensuremath{\text{ }}(tail\ensuremath{\text{ }}fibonacci)}\newline
\end{Highlighting}
\end{Shaded}

Our task is to export the ability to calculate Fibonacci numbers from Haskell to C.
However, in Haskell, we typically use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Integer}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type, which is unbounded: this cannot be exported to C, since there is no such corresponding type.
To provide a larger range of outputs, we specify that the C function shall output, whenever the result is beyond the bounds of its integer type, an approximation in floating-{}point.
If the result is also beyond the range of floating-{}point, the computation will fail.
The status of the result (whether it can be represented as a C integer, a floating-{}point type or not at all) is signalled by the status integer returned by the function.
Its desired signature is therefore:

\begin{Shaded}
\begin{Highlighting}[]

\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{fib(\ensuremath{\text{ }}}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{index,\ensuremath{\text{ }}}\DataTypeTok{unsigned}\ensuremath{\text{ }}\DataTypeTok{long}\ensuremath{\text{ }}\DataTypeTok{long}\NormalTok{*\ensuremath{\text{ }}result,\ensuremath{\text{ }}}\DataTypeTok{double}\NormalTok{*\ensuremath{\text{ }}approx\ensuremath{\text{ }})}\newline
\end{Highlighting}
\end{Shaded}

\subsection{Haskell Source}
\label{682}
The Haskell source code for file {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fibonacci.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{\{-#\ensuremath{\text{ }}LANGUAGE\ensuremath{\text{ }}ForeignFunctionInterface\ensuremath{\text{ }}#-\}}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Fibonacci}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Foreign.C.Types}\newline
\ensuremath{\text{ }}\newline
\OtherTok{fibonacci\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{(}\DataTypeTok{Integral}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{[a]}\newline
\NormalTok{fibonacci\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\DecValTok{1}\ensuremath{\text{ }}\FunctionTok{:}\ensuremath{\text{ }}\NormalTok{zipWith\ensuremath{\text{ }}(}\FunctionTok{+}\NormalTok{)\ensuremath{\text{ }}fibonacci\ensuremath{\text{ }}(tail\ensuremath{\text{ }}fibonacci)}\newline
\ensuremath{\text{ }}\newline
\NormalTok{foreign\ensuremath{\text{ }}export\ensuremath{\text{ }}ccall}\OtherTok{\ensuremath{\text{ }}fibonacci_c\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\DataTypeTok{CULLong}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\DataTypeTok{CDouble}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\newline
\ensuremath{\text{ }}\DataTypeTok{CInt}\newline
\OtherTok{fibonacci_c\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CInt}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\DataTypeTok{CULLong}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Ptr}\ensuremath{\text{ }}\DataTypeTok{CDouble}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{CInt}\newline
\NormalTok{fibonacci_c\ensuremath{\text{ }}n\ensuremath{\text{ }}intPtr\ensuremath{\text{ }}dblPtr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{badInt\ensuremath{\text{ }}}\FunctionTok{\&\&}\ensuremath{\text{ }}\NormalTok{badDouble\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DecValTok{2}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{badInt\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{poke\ensuremath{\text{ }}dblPtr\ensuremath{\text{ }}dbl_result}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DecValTok{1}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\NormalTok{otherwise\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{poke\ensuremath{\text{ }}intPtr\ensuremath{\text{ }}(fromIntegral\ensuremath{\text{ }}result)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{poke\ensuremath{\text{ }}dblPtr\ensuremath{\text{ }}dbl_result}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}}\DecValTok{0}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{fibonacci\ensuremath{\text{ }}}\FunctionTok{!!}\ensuremath{\text{ }}\NormalTok{(fromIntegral\ensuremath{\text{ }}n)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{dbl_result\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{realToFrac\ensuremath{\text{ }}result}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{badInt\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{result\ensuremath{\text{ }}}\FunctionTok{>}\ensuremath{\text{ }}\NormalTok{toInteger\ensuremath{\text{ }}(maxBound}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{CULLong}\NormalTok{)}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{badDouble\ensuremath{\text{ }}\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{isInfinite\ensuremath{\text{ }}dbl_result}\newline
\end{Highlighting}
\end{Shaded}

When exporting, we need to wrap our functions in a module (it is a good habit anyway).
We have already seen the Fibonacci infinite list, so let\textquotesingle{}s focus on the exported function: it takes an argument, two pointers to the target {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily unsigned long long}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily double}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and returns the status in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} monad (since writing on pointers is a side effect).

The function is implemented with input guards, defined in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily where}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} clause at the bottom. A successful computation will return 0, a partially successful 1 (in which we still can use the floating-{}point value as an approximation), and a completely unsuccessful one will return 2.

Note that the function does not call {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alloca}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, since the pointers are assumed to have been already allocated by the calling C function.

The Haskell code can then be compiled with GHC:\\

\TemplateSpaceIndent{ {}ghc {}-{}c {}fibonacci.hs}

\subsection{C Source}
\label{683}
The compilation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fibonacci.hs}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has spawned several files, among which {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fibonacci_stub.h}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which we include in our C code in file {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily fib.c}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{#include\ensuremath{\text{ }}<stdio.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}<stdlib.h>}\newline
\OtherTok{#include\ensuremath{\text{ }}"fibonacci_stub.h"}\newline
\ensuremath{\text{ }}\newline
\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{main(}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{argc,\ensuremath{\text{ }}}\DataTypeTok{char}\ensuremath{\text{ }}\NormalTok{*argv[])\ensuremath{\text{ }}\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{(argc\ensuremath{\text{ }}<\ensuremath{\text{ }}}\DecValTok{2}\NormalTok{)\ensuremath{\text{ }}\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Usage:\ensuremath{\text{ }}\%s\ensuremath{\text{ }}<number>}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{,\ensuremath{\text{ }}argv[}\DecValTok{0}\NormalTok{]);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{hs_init(\&argc,\ensuremath{\text{ }}\&argv);}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{const}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{arg\ensuremath{\text{ }}=\ensuremath{\text{ }}atoi(argv[}\DecValTok{1}\NormalTok{]);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{unsigned}\ensuremath{\text{ }}\DataTypeTok{long}\ensuremath{\text{ }}\DataTypeTok{long}\ensuremath{\text{ }}\NormalTok{res;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{double}\ensuremath{\text{ }}\NormalTok{approx;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\DataTypeTok{const}\ensuremath{\text{ }}\DataTypeTok{int}\ensuremath{\text{ }}\NormalTok{status\ensuremath{\text{ }}=\ensuremath{\text{ }}fibonacci_c(arg,\ensuremath{\text{ }}\&res,\ensuremath{\text{ }}\&approx);}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{hs_exit();}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{switch}\ensuremath{\text{ }}\NormalTok{(status)\ensuremath{\text{ }}\{}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\DecValTok{0}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"F_\%d:\ensuremath{\text{ }}\%llu}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{,\ensuremath{\text{ }}arg,\ensuremath{\text{ }}res);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{break}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\DecValTok{1}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Error:\ensuremath{\text{ }}result\ensuremath{\text{ }}is\ensuremath{\text{ }}out\ensuremath{\text{ }}of\ensuremath{\text{ }}bounds}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Floating-point\ensuremath{\text{ }}approximation:\ensuremath{\text{ }}\%e}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{,\ensuremath{\text{ }}approx);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{break}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{case}\ensuremath{\text{ }}\DecValTok{2}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Error:\ensuremath{\text{ }}result\ensuremath{\text{ }}is\ensuremath{\text{ }}out\ensuremath{\text{ }}of\ensuremath{\text{ }}bounds}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Floating-point\ensuremath{\text{ }}approximation\ensuremath{\text{ }}is\ensuremath{\text{ }}infinite}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{break}\NormalTok{;}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{default}\NormalTok{:}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{printf(}\StringTok{"Unknown\ensuremath{\text{ }}error:\ensuremath{\text{ }}\%d}\CharTok{\textbackslash{}n}\StringTok{"}\NormalTok{,\ensuremath{\text{ }}status);}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{\}}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{return}\ensuremath{\text{ }}\NormalTok{status;}\newline
\NormalTok{\}}\newline
\end{Highlighting}
\end{Shaded}

The notable thing is that we need to initialise the Haskell environment with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hs_init}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, which we call passing it the command-{}line arguments of main; we also have to shut Haskell down with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily hs_exit()}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} when we are done.
The rest is fairly standard C code for allocation and error handling.

Note that you have to compile the C code {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape with GHC}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, not your C compiler!\\

\TemplateSpaceIndent{ {}ghc {}-{}no-{}hs-{}main {}fib.c {}fibonacci.o {}fibonacci_stub.o {}-{}o {}fib}

You can then proceed to test the algorithm:\\

\TemplateSpaceIndent{ {}./fib {}42 \newline{}
 {}F_42: {}267914296 \newline{}
 {}\${}$\text{ }${}./fib$\text{ }${}666$\text{ }$\newline{}
 {}Error: {}result {}is {}out {}of {}bounds \newline{}
 {}Floating-{}point {}approximation: {}6.859357e+138 \newline{}
 {}\${}$\text{ }${}./fib$\text{ }${}1492$\text{ }$\newline{}
 {}Error: {}result {}is {}out {}of {}bounds \newline{}
 {}Floating-{}point {}approximation {}is {}infinite \newline{}
 {}./fib {}-{}1 \newline{}
 {}fib: {}Prelude.(!!): {}negative {}index}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\chapter{Generic Programming : Scrap your boilerplate}

\myminitoc
\label{684}

\label{685}
\LaTeXNullTemplate{}

The \symbol{34}Scrap your boilerplate\symbol{34} approach, \symbol{34}described\symbol{34} in \myplainurl{http://www.cs.vu.nl/boilerplate/}, is a way to allow your data structures to be traversed by so-{}called \symbol{34}generic\symbol{34} functions: that is, functions that abstract over the specific data constructors being created or modified, while allowing for the addition of cases for specific types.

For instance if you want to serialize all the structures in your code, but you want to write only one serialization function that operates over any instance of the Data.Data.Data class (which can be derived with -{}XDeriveDataTypeable).
\section{Serialization Example}
\label{686}
The goal is to convert all our data into a format below:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{data}\ensuremath{\text{ }}\DataTypeTok{Tag}\ensuremath{\text{ }}\FunctionTok{=}\ensuremath{\text{ }}\DataTypeTok{Con}\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\FunctionTok{|}\ensuremath{\text{ }}\DataTypeTok{Val}\ensuremath{\text{ }}\DataTypeTok{String}\newline
\end{Highlighting}
\end{Shaded}

\section{Comparing Haskell ASTs}
\label{687}
The \myhref{http://hackage.haskell.org/package/haskell-src-exts}{haskell-{}src-{}exts package} parses Haskell into a quite complicated syntax tree. Let\textquotesingle{}s say we want to check if two source files that are nearly identical are equivalent.

To start:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{System.Environment}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Language.Haskell.Exts}\newline
\ensuremath{\text{ }}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}parse\ensuremath{\text{ }}the\ensuremath{\text{ }}filenames\ensuremath{\text{ }}given\ensuremath{\text{ }}by\ensuremath{\text{ }}the\ensuremath{\text{ }}first\ensuremath{\text{ }}two\ensuremath{\text{ }}command\ensuremath{\text{ }}line\ensuremath{\text{ }}arguments,}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--\ensuremath{\text{ }}proper\ensuremath{\text{ }}error\ensuremath{\text{ }}handling\ensuremath{\text{ }}is\ensuremath{\text{ }}left\ensuremath{\text{ }}as\ensuremath{\text{ }}an\ensuremath{\text{ }}exercise}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{[}\DataTypeTok{ParseOk}\ensuremath{\text{ }}\NormalTok{moduleA,\ensuremath{\text{ }}}\DataTypeTok{ParseOk}\ensuremath{\text{ }}\NormalTok{moduleB]\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{mapM\ensuremath{\text{ }}parseFile\ensuremath{\text{ }}}\FunctionTok{.}\ensuremath{\text{ }}\NormalTok{take\ensuremath{\text{ }}}\DecValTok{2}\ensuremath{\text{ }}\FunctionTok{=<<}\ensuremath{\text{ }}\NormalTok{getArgs}\newline
\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStrLn\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\KeywordTok{if}\ensuremath{\text{ }}\NormalTok{moduleA\ensuremath{\text{ }}}\FunctionTok{==}\ensuremath{\text{ }}\NormalTok{moduleB}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{then}\ensuremath{\text{ }}\StringTok{"Your\ensuremath{\text{ }}modules\ensuremath{\text{ }}are\ensuremath{\text{ }}equal"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{else}\ensuremath{\text{ }}\StringTok{"Your\ensuremath{\text{ }}modules\ensuremath{\text{ }}differ"}\newline
\end{Highlighting}
\end{Shaded}

From a bit of testing, it will be apparent that identical files with different names will not be equal to (==). However, to correct the fact, without resorting to lots of boilerplate, we can use generic programming:
\section{TODO}
\label{688}
describe using Data.Generics.Twins.gzip*? to write a function to find where there are differences?

Or use it to write a variant of geq that ignores the specific cases that are unimportant (the SrcLoc elements) (i.e. syb doesn\textquotesingle{}t allow generic extension... contrast it with other libraries?).

Or just explain this hack (which worked well enough) to run before (==), or geq::

\begin{Shaded}
\begin{Highlighting}[]

\NormalTok{everyWhere\ensuremath{\text{ }}(mkT\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\NormalTok{\textbackslash{}\ensuremath{\text{ }}_\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{SrcLoc}\ensuremath{\text{ }}\StringTok{""}\ensuremath{\text{ }}\DecValTok{0}\ensuremath{\text{ }}\DecValTok{0}\NormalTok{)}\OtherTok{\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{Data}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{=>}\ensuremath{\text{ }}\NormalTok{a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a}\newline
\end{Highlighting}
\end{Shaded}

Or can we develop this into writing something better than sim_mira (for hs code), found here: \myplainurl{http://dickgrune.com/Programs/similarity_tester/}

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}

\chapter{Specialised Tasks}

\myminitoc
\label{689}

\chapter{Graphical user interfaces (GUI)}

\myminitoc
\label{690}

\label{691}
\LaTeXNullTemplate{}

Haskell has at least four toolkits for programming a graphical interface:
\begin{myitemize}
\item{} \myhref{https://en.wikibooks.org/wiki/\%3Aw\%3AWxHaskell}{wxHaskell} -{} provides a Haskell interface to the cross-{}platform wxWidgets toolkit which supports Windows, OS X, and Gtk+ on GNU/Linux, among others.
\item{} \myhref{http://www.haskell.org/haskellwiki/Gtk2Hs}{Gtk2Hs} -{} provides a Haskell interface to the GTK+ library
\item{} \myhref{http://code.google.com/p/hoc/}{hoc} (documentation at \myhref{http://hoc.sourceforge.net/}{sourceforge}) -{} provides a Haskell to Objective-{}C binding which allows users to access to the Cocoa library on MacOS X
\item{} \myhref{http://qthaskell.berlios.de/}{qtHaskell} -{} provides a set of Haskell bindings for the Qt Widget Library
\end{myitemize}

In this tutorial, we will focus on the wxHaskell toolkit.
\section{Getting and running wxHaskell}
\label{692}

To install wxHaskell, look for your version of instructions at:
\myhref{http://www.haskell.org/haskellwiki/WxHaskell/Linux}{GNU/Linux}
\myhref{http://www.haskell.org/haskellwiki/WxHaskell/Mac}{Mac}
\myhref{http://www.haskell.org/haskellwiki/WxHaskell/Windows}{Windows}

or the \myhref{http://wxhaskell.sourceforge.net/download.html}{wxHaskell download page} and follow the installation instructions provided on the wxHaskell download page. Don\textquotesingle{}t forget to register wxHaskell with GHC, or else it won\textquotesingle{}t run (automatically registered with Cabal). To compile source.hs (which happens to use wxHaskell code), open a command line and type:
\\

\TemplateSpaceIndent{ {}ghc {}-{}package {}wx {}source.hs {}-{}o {}bin}

Code for GHCi is similar:
\\

\TemplateSpaceIndent{ {}ghci {}-{}package {}wx}

You can then load the files from within the GHCi interface. To test if everything works, go to \${}wxHaskellDir/samples/wx (\${}wxHaskellDir is the directory where you installed it) and load (or compile) HelloWorld.hs. It should show a window with title \symbol{34}Hello World!\symbol{34}, a menu bar with File and About, and a status bar at the bottom, that says \symbol{34}Welcome to wxHaskell\symbol{34}.

If it doesn\textquotesingle{}t work, you might try to copy the contents of the \${}wxHaskellDir/lib directory to the ghc install directory.
\subsection{Shortcut for Debian and Ubuntu}
\label{693}
If your operating system is Debian or Ubuntu, you can simply run these commands from the terminal:
\\

\TemplateSpaceIndent{ {} {} {} {}sudo {}apt-{}get {}install {}g++ \newline{}
 {} {} {} {}sudo {}apt-{}get {}install {}libglu-{}dev \newline{}
 {} {} {} {}sudo {}apt-{}get {}install {}libwxgtk2.8-{}dev}

\section{Hello World}
\label{694}

Here\textquotesingle{}s the basic Haskell \symbol{34}Hello World\symbol{34} program:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\OtherTok{main\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{putStr\ensuremath{\text{ }}}\StringTok{"Hello\ensuremath{\text{ }}World!"}\newline
\end{Highlighting}
\end{Shaded}

It will compile just fine, but how do we actually do GUI work with this? First, you must import the wxHaskell library {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WX}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WXCore}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has some more stuff, but we won\textquotesingle{}t need that now.

To start a GUI, use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily start gui}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In this case, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gui}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the name of a function which we\textquotesingle{}ll use to build the interface. It must have an IO type. Let\textquotesingle{}s see what we have:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Graphics.UI.WX}\newline
\ensuremath{\text{ }}\newline
\OtherTok{main\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{start\ensuremath{\text{ }}gui}\newline
\ensuremath{\text{ }}\newline
\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\CommentTok{--GUI\ensuremath{\text{ }}stuff}\newline
\end{Highlighting}
\end{Shaded}

To make a frame, we use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily frame}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which has the type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}Prop (Frame ()){]} -{}>{} IO (Frame ())}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.
It takes a list of \symbol{34}frame properties\symbol{34} and returns the corresponding frame. We\textquotesingle{}ll look deeper into properties later,
but a property is typically a combination of an attribute and a value. What we\textquotesingle{}re interested in now is the title.
This is in the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute and has type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (Textual w) =>{} Attr w String}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The most important
thing here, is that it\textquotesingle{}s a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute. Here\textquotesingle{}s how we code it:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The operator {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} takes an attribute and a value and combines both into a property. Note that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily frame}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} returns an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO (Frame ())}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You can change the type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gui}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO (Frame ())}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but it might be better just to add {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily return ()}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Now we have our own GUI consisting of a frame with title \symbol{34}Hello World!\symbol{34}. Its source:

\begin{Shaded}
\begin{Highlighting}[]

\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\newline
\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Graphics.UI.WX}\newline
\ensuremath{\text{ }}\newline
\OtherTok{main\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{start\ensuremath{\text{ }}gui}\newline
\ensuremath{\text{ }}\newline
\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

The result should look like the screenshot. (It might look slightly different on Linux or MacOS X, on which wxhaskell also runs)
\section{Controls}
\label{695}
\LaTexInfoTemplateOne{From here on, its good practice to keep a browser window or tab open with the \myhref{http://wxhaskell.sourceforge.net/doc/}{wxHaskell documentation}. It\textquotesingle{}s also available in \${}wxHaskellDir/doc/index.html.}
\subsection{A text label}
\label{696}

A simple frame doesn\textquotesingle{}t do much. In this section, we\textquotesingle{}re going to add some more elements. Let\textquotesingle{}s start simple with a label. wxHaskell has a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily label}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but that\textquotesingle{}s a layout thing. We won\textquotesingle{}t be doing layout until next section. What we\textquotesingle{}re looking for is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily staticText}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It\textquotesingle{}s in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WX.Controls}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily staticText}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function takes a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Window}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} as argument along with a list of properties. Do we have a window? Yup! Look at {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WX.Frame}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. There, we see that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Frame}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is merely a type-{}synonym of a special sort of window. We\textquotesingle{}ll change the code in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily gui}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} so it looks like this:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/37.png}
\end{center}
\raggedright{}\myfigurewithcaption{37}{Hello StaticText! (winXP)}
\end{minipage}\vspace{0.75cm}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}StaticText!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

Again, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an attribute of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily staticText}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} object, so this works. Try it!
\subsection{A button}
\label{697}

Now for a little more interaction. A button. We\textquotesingle{}re not going to add functionality to it until the section about events, but already something visible will happen when you click on it.

A {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily button}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a control, just like {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily staticText}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Look it up in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WX.Controls}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

Again, we need a window and a list of properties. We\textquotesingle{}ll use the frame again. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also an attribute of a button:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/38.png}
\end{center}
\raggedright{}\myfigurewithcaption{38}{Overlapping button and StaticText (winXP)}
\end{minipage}\vspace{0.75cm}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}StaticText!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{button\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}Button!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

Load it into GHCi (or compile it with GHC) and... hey!? What\textquotesingle{}s that? The button\textquotesingle{}s been covered up by the label! We\textquotesingle{}re going to fix that next.
\section{Layout}
\label{698}

The reason that the label and the button overlap, is that we haven\textquotesingle{}t set a {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape layout}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for our frame yet. Layouts are created using the functions found in the documentation of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WXCore.Layout}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Note that you don\textquotesingle{}t have to import {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WXCore}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to use layouts.

The documentation says we can turn a member of the widget class into a layout by using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily widget}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. Also, windows are a member of the widget class. But, wait a minute... we only have one window, and that\textquotesingle{}s the frame! Nope... we have more, look at {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WX.Controls}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and click on any occurrence of the word {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Control}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You\textquotesingle{}ll be taken to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WXCore.WxcClassTypes}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and it is there we see that a Control is also a type synonym of a special type of window. We\textquotesingle{}ll need to change the code a bit, but here it is.

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{st\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}StaticText!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{button\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}Button!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

Now we can use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily widget st}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily widget b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to create a layout of the staticText and the button. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily layout}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an attribute of the frame, so we\textquotesingle{}ll set it here:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/39.png}
\end{center}
\raggedright{}\myfigurewithcaption{39}{StaticText with layout (winXP)}
\end{minipage}\vspace{0.75cm}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{st\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}StaticText!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{button\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}Button!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}f\ensuremath{\text{ }}[layout\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{widget\ensuremath{\text{ }}st]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function will be covered in the section below about attributes. Try the code, what\textquotesingle{}s wrong? This only displays the staticText, not the button. We need a way to combine the two. We will use {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape layout combinators}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} for that. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily row}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily column}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} look nice. They take an integer and a list of layouts. We can easily make a list of layouts of the button and the staticText. The integer is the spacing between the elements of the list. Let\textquotesingle{}s try something:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/40.png}
\end{center}
\raggedright{}\myfigurewithcaption{40}{A row layout (winXP)}
\end{minipage}\vspace{0.75cm}

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/41.png}
\end{center}
\raggedright{}\myfigurewithcaption{41}{Column layout with a spacing of 25 (winXP)}
\end{minipage}\vspace{0.75cm}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{st\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}StaticText!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{button\ensuremath{\text{ }}f\ensuremath{\text{ }}[text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}Button!"}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}f\ensuremath{\text{ }}[layout\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{row\ensuremath{\text{ }}}\DecValTok{0}\ensuremath{\text{ }}\NormalTok{[widget\ensuremath{\text{ }}st,\ensuremath{\text{ }}widget\ensuremath{\text{ }}b]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{return\ensuremath{\text{ }}()}\newline
\end{Highlighting}
\end{Shaded}

Play around with the integer and see what happens. Also, change {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily row}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} into {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily column}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Try to change the order of the elements in the list to get a feeling of how it works. For fun, try to add {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily widget b}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} several more times in the list. What happens?

Here are a few exercises to spark your imagination. Remember to use the documentation!

\LaTeXExercisesTemplate{\begin{myenumerate}
\item{} Add a checkbox control. It doesn\textquotesingle{}t have to do anything yet, just make sure it appears next to the staticText and the button when using row-{}layout, or below them when using column layout. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is also an attribute of the checkbox.
\item{} Notice that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily row}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily column}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} take a list of {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape layouts}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and also generates a layout itself. Use this fact to make your checkbox appear on the left of the staticText and the button, with the staticText and the button in a column.
\item{} Can you figure out how the radiobox control works? Take the layout of the previous exercise and add a radiobox with two (or more) options below the checkbox, staticText and button. Use the documentation!
\item{} Use the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily boxed}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} combinator to create a nice looking border around the four controls, and another one around the staticText and the button. ({\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Note: the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape boxed}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape combinator might not be working on MacOS X -{} you might get widgets that can\textquotesingle{}t be interacted with. This is likely just a bug in wxhaskell.}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf})
\end{myenumerate}}

After having completed the exercises, the end result should look like this:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/42.png}
\end{center}
\raggedright{}\myfigurewithcaption{42}{Answer to exercises}
\end{minipage}\vspace{0.75cm}

You could have used different spacing for {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily row}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily column}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} or have the options of the radiobox displayed horizontally.
\section{Attributes}
\label{699}

After all this, you might be wondering: \symbol{34}Where did that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function suddenly come from?\symbol{34} and \symbol{34}How would {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape I}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} know if {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an attribute of something?\symbol{34}. Both answers lie in the attribute system of wxHaskell.
\subsection{Setting and modifying attributes}
\label{700}

In a wxHaskell program, you can set the properties of the widgets in two ways:
\begin{myenumerate}
\item{} during creation: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f <{}-{} frame {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries {[} text := \symbol{34}Hello World!\symbol{34} {]}}}
\item{} { }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} using the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set f {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries {[} layout := widget st {]}}}
\end{myenumerate}
\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function takes two arguments: something of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} along with properties of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. In wxHaskell, these will be the widgets and the properties of these widgets. Some properties can only be set during creation, such as the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily alignment}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} of a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily textEntry}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, but you can set most others in any IO-{}function in your program — as long as you have a reference to it (the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntb.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntb.ttf}\ttfamily \bfseries f}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[}{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunit.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunit.ttf}\ttfamily \itshape stuff}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}).

Apart from setting properties, you can also get them. This is done with the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function. Here\textquotesingle{}s a silly example:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{st\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ftext\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{get\ensuremath{\text{ }}f\ensuremath{\text{ }}text}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}st\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{ftext]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{ftext\ensuremath{\text{ }}}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}And\ensuremath{\text{ }}hello\ensuremath{\text{ }}again!"}\ensuremath{\text{ }}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

Look at the type signature of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily get}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. It\textquotesingle{}s {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w -{}>{} Attr w a -{}>{} IO a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute, so we have an {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily IO String}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} which we can bind to {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily ftext}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The last line edits the text of the frame. Yep, destructive updates are possible in wxHaskell. We can overwrite the properties using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} anytime with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This inspires us to write a modify function:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{modify\ensuremath{\text{ }}::}\ensuremath{\text{ }}\NormalTok{w\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{Attr}\ensuremath{\text{ }}\NormalTok{w\ensuremath{\text{ }}a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{(a\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\NormalTok{a)\ensuremath{\text{ }}}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{modify\ensuremath{\text{ }}w\ensuremath{\text{ }}attr\ensuremath{\text{ }}f\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{val\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{get\ensuremath{\text{ }}w\ensuremath{\text{ }}attr}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}w\ensuremath{\text{ }}[\ensuremath{\text{ }}attr\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}val\ensuremath{\text{ }}]}\newline
\end{Highlighting}
\end{Shaded}

First it gets the value, then it sets it again after applying the function. Surely we\textquotesingle{}re not the first one to think of that...

Look at this operator: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:\~{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You can use it in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily set}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} because it takes an attribute and a function. The result is a property in which the original value is modified by the function. That means we can write:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Hello\ensuremath{\text{ }}World!"}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{st\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{ftext\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{get\ensuremath{\text{ }}f\ensuremath{\text{ }}text}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}st\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{ftext\ensuremath{\text{ }}]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:~}\ensuremath{\text{ }}\FunctionTok{++}\ensuremath{\text{ }}\StringTok{"\ensuremath{\text{ }}And\ensuremath{\text{ }}hello\ensuremath{\text{ }}again!"}\ensuremath{\text{ }}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

This is a great place to use anonymous functions with the lambda-{}notation.

There are two more operators we can use to set or modify properties: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (::=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (::\~{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. They do almost the same as {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:\~{})}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} except a function of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w -{}>{} orig}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is expected, where {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily w}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the widget type, and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily orig}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is the original \symbol{34}value\symbol{34} type ({\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:=)}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily a -{}>{} a}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} in case of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily (:\~{})}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}). We won\textquotesingle{}t be using them now, as we\textquotesingle{}ve only encountered attributes of non-{}IO types, and the widget needed in the function is generally only useful in IO-{}blocks.
\subsection{How to find attributes}
\label{701}

Now the second question. Where do we go to determine that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an attribute of all those things? Go to the documentation…

Let\textquotesingle{}s see what attributes a button has: Go to \myhref{http://hackage.haskell.org/packages/archive/wx/0.10.2/doc/html/Graphics-UI-WX-Controls.html}{{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WX.Controls}}. Click the link that says \myhref{http://hackage.haskell.org/packages/archive/wx/0.10.2/doc/html/Graphics-UI-WX-Controls.html\#4}{\symbol{34}Button\symbol{34}}. You\textquotesingle{}ll see that a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Button}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a type synonym of a special kind of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and a list of functions that can be used to create a button. After each function, there\textquotesingle{}s a list of \symbol{34}Instances\symbol{34}. For the normal {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily button}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function, we see {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Commanding -{}-{} Textual, Literate, Dimensions, Colored, Visible, Child, Able, Tipped, Identity, Styled, Reactive, Paint}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. That\textquotesingle{}s the list of classes of which a button is an instance. Read through the \mylref{196}{../Classes and types/} chapter. It means that there are some class-{}specific functions available for the button. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Textual}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, for example, adds the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily appendText}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} functions. If a widget is an instance of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Textual}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, it means that it has a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily text}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute!

Note that while {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily StaticText}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} hasn\textquotesingle{}t got a list of instances, it\textquotesingle{}s still a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Control}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, and that\textquotesingle{}s a synonym for some kind of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Window}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. When looking at the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Textual}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class, it says that {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Window}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is an instance of it. That\textquotesingle{}s an error on the side of the documentation!

Let\textquotesingle{}s take a look at the attributes of a frame. They can be found in {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Graphics.UI.WX.Frame}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Another error in the documentation here: It says {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Frame}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} instantiates {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily HasImage}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. This was true in an older version of wxHaskell. It should say {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Pictured}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Apart from that, we have {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Form}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Textual}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Dimensions}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Colored}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Able}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and a few more. We\textquotesingle{}re already seen {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Textual}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Form}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Anything that is an instance of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Form}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} has a {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily layout}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Dimensions}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} adds (among others) the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily clientSize}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute. It\textquotesingle{}s an attribute of the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Size}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} type, which can be made with {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily sz}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Please note that the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily layout}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute can also change the size. If you want to use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily clientSize}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} you should set it after the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily layout}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Colored}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} adds the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily color}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily bgcolor}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attributes.

{\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Able}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} adds the Boolean {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily enabled}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} attribute. This can be used to enable or disable certain form elements, which is often displayed as a greyed-{}out option.

There are lots of other attributes, read through the documentation for each class.
\section{Events}
\label{702}

There are a few classes that deserve special attention. They are the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Reactive}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class and the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Commanding}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class. As you can see in the documentation of these classes, they don\textquotesingle{}t add attributes (of the form {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Attr w a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}), but {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape events}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. The {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Commanding}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} class adds the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily command}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} event. We\textquotesingle{}ll use a button to demonstrate event handling.

Here\textquotesingle{}s a simple GUI with a button and a staticText:

\begin{minipage}{1.0\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth,height=6.5in,keepaspectratio]{../images/43.png}
\end{center}
\raggedright{}\myfigurewithcaption{43}{Before (winXP)}
\end{minipage}\vspace{0.75cm}

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Event\ensuremath{\text{ }}Handling"}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{st\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"You\ensuremath{\text{ }}haven\textbackslash{}\textquotesingle{}t\ensuremath{\text{ }}clicked\ensuremath{\text{ }}the\ensuremath{\text{ }}button\ensuremath{\text{ }}yet."}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{button\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Click\ensuremath{\text{ }}me!"}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}layout\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{column\ensuremath{\text{ }}}\DecValTok{25}\ensuremath{\text{ }}\NormalTok{[\ensuremath{\text{ }}widget\ensuremath{\text{ }}st,\ensuremath{\text{ }}widget\ensuremath{\text{ }}b\ensuremath{\text{ }}]\ensuremath{\text{ }}]}\newline
\end{Highlighting}
\end{Shaded}

We want to change the staticText when you press the button. We\textquotesingle{}ll need the {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily on}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} function:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{button\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Click\ensuremath{\text{ }}me!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}on\ensuremath{\text{ }}command\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\CommentTok{--stuff}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{]}\newline
\end{Highlighting}
\end{Shaded}

The type of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily on}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Event w a -{}>{} Attr w a}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily command}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is of type {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Event w (IO ())}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, so we need an IO-{}function. This function is called the {\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Event handler}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. Here\textquotesingle{}s what we get:

\begin{Shaded}
\begin{Highlighting}[]

\OtherTok{gui\ensuremath{\text{ }}::}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\NormalTok{()}\newline
\NormalTok{gui\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\KeywordTok{do}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{f\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{frame\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Event\ensuremath{\text{ }}Handling"}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{st\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{staticText\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"You\ensuremath{\text{ }}haven\textbackslash{}\textquotesingle{}t\ensuremath{\text{ }}clicked\ensuremath{\text{ }}the\ensuremath{\text{ }}button\ensuremath{\text{ }}yet."}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{b\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{button\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"Click\ensuremath{\text{ }}me!"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{,\ensuremath{\text{ }}on\ensuremath{\text{ }}command\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}st\ensuremath{\text{ }}[\ensuremath{\text{ }}text\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\StringTok{"You\ensuremath{\text{ }}have\ensuremath{\text{ }}clicked\ensuremath{\text{ }}the\ensuremath{\text{ }}button!"}\newline
\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{]}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{set\ensuremath{\text{ }}f\ensuremath{\text{ }}[\ensuremath{\text{ }}layout\ensuremath{\text{ }}}\FunctionTok{:=}\ensuremath{\text{ }}\NormalTok{column\ensuremath{\text{ }}}\DecValTok{25}\ensuremath{\text{ }}\NormalTok{[\ensuremath{\text{ }}widget\ensuremath{\text{ }}st,\ensuremath{\text{ }}widget\ensuremath{\text{ }}b\ensuremath{\text{ }}]\ensuremath{\text{ }}]}\newline
\end{Highlighting}
\end{Shaded}

{\itshape \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunti.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunti.ttf}\itshape Insert text about event filters here}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Databases}

\myminitoc
\label{703}

\label{704}
\LaTeXNullTemplate{}
\section{Introduction}
\label{705}
Haskell\textquotesingle{}s most popular database module is \myhref{https://github.com/hdbc/hdbc/wiki}{HDBC}. HDBC provides an abstraction layer between Haskell programs and SQL relational databases. This lets you write database code once, in Haskell, and have it work with a number of backend SQL databases.

HDBC is modeled loosely on \myhref{http://search.cpan.org/~timb/DBI/DBI.pm}{Perl\textquotesingle{}s DBI interface}, though it has also been influenced by Python\textquotesingle{}s DB-{}API v2, JDBC in Java, and HSQL in Haskell. Like how DBI requires DBD in Perl, HDBC requires a driver module beneath it to work.

These HDBC backend drivers exist: PostgreSQL,
SQLite, and ODBC (for Windows and Unix/Linux/Mac). MySQL is the most popular open-{}sourced databases, and there are two drivers for MySQL: \myhref{http://hackage.haskell.org/package/HDBC-mysql}{HDBC-{}mysql} (native) and \myhref{http://hackage.haskell.org/package/HDBC-odbc}{HDBC-{}odbc} (ODBC). MySQL users can use the ODBC driver on any MySQL-{}supported platform, including Linux.

An advantage of using ODBC is that the syntax of the SQL statement is insulated from the different kinds of database engines. This increases the portability of the application should you have to move from one database to another. The same argument for preferring ODBC applies for other commercial databases (such as Oracle and DB2).
\section{Installation}
\label{706}
\subsection{PostgreSQL or SQLite}
\label{707}
See the \myhref{https://github.com/hdbc/hdbc/wiki/FrequentlyAskedQuestions}{HDBC FAQ} for more information.
\subsection{Native MySQL}
\label{708}

The native ODBC-{}mysql library requires the C MySQL client library to be present.

You may need to \myhref{http://www.serpentine.com/blog/2010/09/04/dealing-with-fragile-c-libraries-e-g-mysql-from-haskell/}{wrap your database accesses} to prevent runtime errors.
\subsection{ODBC/MySQL}
\label{709}
Making HDBC work with MySQL via ODBC is somewhat involved, especially if you do not have root privileges.

\begin{myitemize}
\item{} If your platform doesn\textquotesingle{}t already provide an ODBC library (and most do), install Unix-{}ODBC. See \myhref{http://sourceforge.net/projects/unixodbc/}{here} for more information.
\item{} Install MySQL-{}ODBC Connector. See \myhref{http://dev.mysql.com/downloads/connector/odbc/}{here} for more information.
\item{} Install Database.HDBC module
\item{} Install Database.HDBC.ODBC module
\item{} Add the mysql driver to odbcinst.ini file (under \${}ODBC_HOME/etc/) and your data source in \${}HOME/.odbc.ini.
\item{} Create a test program
\end{myitemize}

Since the ODBC driver is installed using shared library by default, you will need the following env:
\\

\TemplateSpaceIndent{ {}export {}LD_LIBRARY_PATH=\${}ODBC_HOME/lib}

If you do not like adding an additional env variables, you should try to compile ODBC with static library option enabled.

The next task is to write a simple test program that connects to the database and print the names of all your tables, as shown below.

You may need to \myhref{http://www.serpentine.com/blog/2010/09/04/dealing-with-fragile-c-libraries-e-g-mysql-from-haskell/}{wrap your database accesses} in order to prevent runtime errors.

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{module}\ensuremath{\text{ }}\DataTypeTok{Main}\ensuremath{\text{ }}\KeywordTok{where}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Database.HDBC.ODBC}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{import\ensuremath{\text{ }}}\DataTypeTok{Database.HDBC}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{main\ensuremath{\text{ }}}\FunctionTok{=}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{do}\ensuremath{\text{ }}\NormalTok{c\ensuremath{\text{ }}\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{connectODBC\ensuremath{\text{ }}}\StringTok{"DSN=PSPDSN"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{xs\ensuremath{\text{ }}}\OtherTok{<-}\ensuremath{\text{ }}\NormalTok{getTables\ensuremath{\text{ }}c}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\NormalTok{putStr\ensuremath{\text{ }}}\FunctionTok{\$}\ensuremath{\text{ }}\StringTok{"tables\ensuremath{\text{ }}"}\FunctionTok{++}\NormalTok{(foldr\ensuremath{\text{ }}jn\ensuremath{\text{ }}}\StringTok{"."}\ensuremath{\text{ }}\NormalTok{xs)}\FunctionTok{++}\StringTok{"\textbackslash{}n"}\newline
\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\ensuremath{\text{ }}\KeywordTok{where}\ensuremath{\text{ }}\NormalTok{jn\ensuremath{\text{ }}a\ensuremath{\text{ }}b\ensuremath{\text{ }}}\FunctionTok{=}\ensuremath{\text{ }}\NormalTok{a}\FunctionTok{++}\StringTok{"\ensuremath{\text{ }}"}\FunctionTok{++}\NormalTok{b}\newline
\end{Highlighting}
\end{Shaded}

\section{General Workflow}
\label{710}\subsection{Connect and Disconnect}
\label{711}
The first step of any database operation is to connect to the target database. This is done via the driver-{}specific connect API, which has the type of:

\begin{Shaded}
\begin{Highlighting}[]

\ensuremath{\text{ }}\DataTypeTok{String}\ensuremath{\text{ }}\OtherTok{->}\ensuremath{\text{ }}\DataTypeTok{IO}\ensuremath{\text{ }}\DataTypeTok{Connection}\newline
\end{Highlighting}
\end{Shaded}

Given a connect string, the connect API will return {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily Connection}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and put you in the IO monad.

Although most programs will garbage-{}collect your connections when they are out of scope or when the program ends, it is a good practice to disconnect from the database explicitly.
\\

\TemplateSpaceIndent{ {} {}conn-{}>{}Disconnect}

\subsection{Running Queries}
\label{712}
Running a query generally involves the following steps:
\begin{myitemize}
\item{} Prepare a statement
\item{} Execute a statement with bind variables
\item{} Fetch the result set (if any)
\item{} Finish the statement
\end{myitemize}

HDBC provides two ways for bind variables and returning result set: {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[} SqlValue {]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[} Maybe String {]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. You need to use the functions with {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries s}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} prefix when using {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[} Maybe String {]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, instead of {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[} SqlValue {]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[} SqlValue {]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} allows you to use strongly typed data if type safety is very important in your application; otherwise, {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[} Maybe String {]}}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is more handy when dealing with lots of database queries. When you use {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily {[} Maybe String {]}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}, you assume the database driver will perform automatic data conversion. Be aware there is a performance price for this convenience.

Sometimes, when the query is simple, there are simplified APIs that wrap multiple steps into one. For example, {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries Run}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries sRun}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} are wrappers of \symbol{34}prepare and execute\symbol{34}. {\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries quickQuery}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} is a wrapper of \symbol{34}prepare, execute, and fetch all rows\symbol{34}.
\section{Running SQL Statements}
\label{713}
\subsection{Select}
\label{714}
\subsection{Insert}
\label{715}
\subsection{Update}
\label{716}
\subsection{Delete}
\label{717}
\section{Transaction}
\label{718}
Database transaction is controlled by {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily commit}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} and {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily rollback}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}. However, be aware some databases (such as mysql) do not support transaction. Therefore, every query is in its atomic transaction.

HDBC provides {\ttfamily \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily withTransaction}{ }\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf} to allow you automate the transaction control over a group of queries.
\section{Calling Procedure}
\label{719}

\LaTeXNullTemplate{}
\chapter{Web programming}

\myminitoc
\label{720}

\label{721}
\LaTeXNullTemplate{}

An example web application, using the HAppS framework, is \myhref{http://hpaste.org}{hpaste}, the Haskell paste bin. Built around the core Haskell web framework, HAppS, with HaXmL for page generation, and binary/zlib for state serialisation.

The \myhref{http://homepages.paradise.net.nz/warrickg/haskell/http/}{HTTP and Browser modules} exist, and might be useful.

\LaTeXNullTemplate{}

\LaTeXNullTemplate{}
\myhref{https://en.wikibooks.org/wiki/Category\%3AHaskell\%2FNot\%20in\%20book}{Category:Haskell/Not in book}
\chapter{Working with XML}

\myminitoc
\label{722}

\label{723}
\LaTeXNullTemplate{}
\LaTeXNullTemplate{}

There are several Haskell libraries for XML work, and additional ones for HTML. For more web-{}specific work, you may want to refer to the \mylref{721}{Haskell/Web programming} chapter.
\subsection{Libraries for parsing XML}
\label{724}

\begin{myitemize}
\item{} \myhref{http://www.fh-wedel.de/~si/HXmlToolbox/}{The Haskell XML Toolbox (hxt)} is a collection of tools for parsing XML, aiming at a more general approach than the other tools.
\item{} \myhref{http://projects.haskell.org/HaXml/}{HaXml} is a collection of utilities for parsing, filtering, transforming, and generating XML documents using Haskell.
\item{} \myhref{http://www.flightlab.com/~joe/hxml/}{HXML} is a non-{}validating, lazy, space efficient parser that can work as a drop-{}in replacement for HaXml.
\item{} \myhref{https://hackage.haskell.org/package/xml-conduit}{xml-{}conduit} provides parsing and rendering functions for XML. For a tutorial see \myplainurl{http://www.yesodweb.com/book/xml}.
\end{myitemize}

\subsection{Libraries for generating XML}
\label{725}

\begin{myitemize}
\item{} HSXML represents XML documents as statically typesafe s-{}expressions.
\end{myitemize}

\subsection{Other options}
\label{726}

\begin{myitemize}
\item{} \myhref{http://www.cs.york.ac.uk/fp/darcs/tagsoup/tagsoup.htm}{tagsoup} is a library for parsing unstructured HTML, i.e. it does not assume validity or even well-{}formedness of the data.
\end{myitemize}

\section{Getting acquainted with HXT}
\label{727}

In the following, we are going to use the Haskell XML Toolbox for our examples. You should have a working \mylref{2}{installation of GHC}, including GHCi, and you should have downloaded and installed HXT according to \myhref{http://www.fh-wedel.de/~si/HXmlToolbox/\#install}{the instructions}.

With those in place, we are ready to start playing with HXT. Let\textquotesingle{}s bring the XML parser into scope, and parse a simple XML-{}formatted string:
\\

\TemplateSpaceIndent{ {} {}Prelude>{} {}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries :m + Text.XML.HXT.Parser.XmlParsec} \newline{}
 {} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Prelude {}Text.XML.HXT.Parser.XmlParsec>{} {}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries xread \symbol{34}<{}foo>{}abc<{}bar/>{}def<{}/foo>{}\symbol{34}} \newline{}
 {} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}{[}NTree {}(XTag {}(QN {}\{namePrefix {}= {}\symbol{34}\symbol{34}, {}localPart {}= {}\symbol{34}foo\symbol{34}, {}namespaceUri {}= {}\symbol{34}\symbol{34}\}) {}{[}{]}) \newline{}
 {} {}{[}NTree {}(XText {}\symbol{34}abc\symbol{34}) {}{[}{]},NTree {}(XTag {}(QN {}\{namePrefix {}= {}\symbol{34}\symbol{34}, {}localPart {}= {}\symbol{34}bar\symbol{34}, \newline{}
 {} {}namespaceUri {}= {}\symbol{34}\symbol{34}\}) {}{[}{]}) {}{[}{]},NTree {}(XText {}\symbol{34}def\symbol{34}) {}{[}{]}{]}{]}}

We see that HXT represents an XML document as a list of trees, where the nodes can be constructed as an XTag containing a list of subtrees, or an XText containing a string. With GHCi, we can explore this in more detail:
\\

\TemplateSpaceIndent{ {} {}Prelude>{} {}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries :m + Data.Tree.NTree.TypeDefs} \newline{}
 {} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}Prelude {}Text.XML.HXT.Parser.XmlParsec {}Text.XML.HXT.DOM>{} {}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries :i NTree} \newline{}
 {} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}data {}NTree {}a {}= {}NTree {}a {}(NTrees {}a) {} {} \newline{}
 {}-{}-{} {}Defined {}in {}Data.Tree.NTree.TypeDefs \newline{}
 {} {}Prelude {}Text.XML.HXT.Parser.XmlParsec {}Text.XML.HXT.DOM>{} {}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries :i NTrees} \newline{}
 {} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}type {}NTrees {}a {}= {}{[}NTree {}a{]} {} {} {} {} {} {} {}-{}-{} {}Defined {}in {}Data.Tree.NTree.TypeDefs}

As we can see, an NTree is a general tree structure where a node stores its children in a list, and some more browsing around will tell us that XML documents are trees over an XNode type, defined as:
\\

\TemplateSpaceIndent{ {} {}data {}XNode \newline{}
 {} {} {} {}= {}XText {}String \newline{}
 {} {} {} {}| {}XCharRef {}Int \newline{}
 {} {} {} {}| {}XEntityRef {}String \newline{}
 {} {} {} {}| {}XCmt {}String \newline{}
 {} {} {} {}| {}XCdata {}String \newline{}
 {} {} {} {}| {}XPi {}QName {}XmlTrees \newline{}
 {} {} {} {}| {}XTag {}QName {}XmlTrees \newline{}
 {} {} {} {}| {}XDTD {}DTDElem {}Attributes \newline{}
 {} {} {} {}| {}XAttr {}QName \newline{}
 {} {} {} {}| {}XError {}Int {}String}

Returning to our example, we notice that while HXT successfully parsed our input, one might desire a more lucid presentation for human consumption. Lucky for us, the DOM module supplies this. Notice that xread returns a list of trees, while the formatting function works on a single tree.
\\

\TemplateSpaceIndent{ {} {}Prelude {}Text.XML.HXT.Parser.XmlParsec>{} {}:m {}+ {}Text.XML.HXT.DOM.FormatXmlTree \newline{}
 {} {}Prelude {}Text.XML.HXT.Parser.XmlParsec {}Text.XML.HXT.DOM>{} {}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries putStrLn \${} formatXmlTree \${} head \${} xread \symbol{34}<{}foo>{}abc<{}bar/>{}def<{}/foo>{}\symbol{34}} \newline{}
 {} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}-{}-{}-{}XTag {}\symbol{34}foo\symbol{34} \newline{}
 {} {} {} {} {}| \newline{}
 {} {} {} {} {}+-{}-{}-{}XText {}\symbol{34}abc\symbol{34} \newline{}
 {} {} {} {} {}| \newline{}
 {} {} {} {} {}+-{}-{}-{}XTag {}\symbol{34}bar\symbol{34} \newline{}
 {} {} {} {} {}| \newline{}
 {} {} {} {} {}+-{}-{}-{}XText {}\symbol{34}def\symbol{34}}

This representation makes the structure obvious, and it is easy to see the relationship to our input string. Let\textquotesingle{}s proceed to extend our XML document with some attributes (taking care to escape the quotes, of course):
\\

\TemplateSpaceIndent{ {} {}Prelude {}Text.XML.HXT.Parser.XmlParsec>{} {}{\bfseries \setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunbx.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunbx.ttf}\bfseries xread \symbol{34}<{}foo a1=\textbackslash{}\symbol{34}my\textbackslash{}\symbol{34} b2=\textbackslash{}\symbol{34}oh\textbackslash{}\symbol{34}>{}abc<{}bar/>{}def<{}/foo>{}\symbol{34}} \newline{}
 {} {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}{[}NTree {}(XTag {}(QN {}\{namePrefix {}= {}\symbol{34}\symbol{34}, {}localPart {}= {}\symbol{34}foo\symbol{34}, {}namespaceUri {}= {}\symbol{34}\symbol{34}\}) \newline{}
 {}{[}NTree {}(XAttr {}(QN \newline{}
 {} {}\{namePrefix {}= {}\symbol{34}\symbol{34}, {}localPart {}= {}\symbol{34}a1\symbol{34}, {}namespaceUri {}= {}\symbol{34}\symbol{34}\})) {}{[}NTree {}(XText {}\symbol{34}my\symbol{34}) \newline{}
 {}{[}{]}{]},NTree {}(XAttr \newline{}
 {} {}(QN {}\{namePrefix {}= {}\symbol{34}\symbol{34}, {}localPart {}= {}\symbol{34}b2\symbol{34}, {}namespaceUri {}= {}\symbol{34}\symbol{34}\})) {}{[}NTree {}(XText \newline{}
 {}\symbol{34}oh\symbol{34}) {}{[}{]}{]}{]}) {}{[}NTree \newline{}
 {} {}(XText {}\symbol{34}abc\symbol{34}) {}{[}{]},NTree {}(XTag {}(QN {}\{namePrefix {}= {}\symbol{34}\symbol{34}, {}localPart {}= {}\symbol{34}bar\symbol{34}, \newline{}
 {}namespaceUri {}= {}\symbol{34}\symbol{34}\}) {}{[}{]}) \newline{}
 {} {}{[}{]},NTree {}(XText {}\symbol{34}def\symbol{34}) {}{[}{]}{]}{]}}

Notice that attributes are stored as regular NTree nodes with the XAttr content type, and (of course) no children. Feel free to pretty-{}print this expression, as we did above.

For a trivial example of data extraction, consider this small example using \myhref{http://en.wikipedia.org/wiki/XPath}{XPath}:
\\

\TemplateSpaceIndent{ {} {}Prelude>{} {}:set {}prompt {}\symbol{34}>{} {}\symbol{34} \newline{}
 {} {}>{} {}:m {}+ {}Text.XML.HXT.Parser.XmlParsec {}Text.XML.HXT.XPath.XPathEval \newline{}
 {} {}>{} {}let {}xml {}= {}\symbol{34}<{}foo>{}A<{}c>{}C<{}/c>{}<{}/foo>{}\symbol{34} \newline{}
 {} {}>{} {}let {}xmltree {}= {}head {}\${}$\text{ }${}xread$\text{ }${}xml$\text{ }$\newline{}
 {} {}>{} {}let {}result {}= {}getXPath {}\symbol{34}//a\symbol{34} {}xmltree \newline{}
 {} {}>{} {}result \newline{}
 {} {}>{} {}{[}NTree {}(XTag {}(QN {}\{namePrefix {}= {}\symbol{34}\symbol{34}, {}localPart {}= {}\symbol{34}a\symbol{34}, {}namespaceUri {}= {}\symbol{34}\symbol{34}\}) {}{[}{]}) \newline{}
 {}{[}NTree {}(XText {}\symbol{34}A\symbol{34}) {}{[}{]}{]}{]} \newline{}
 {} {}>{} {}:t {}result \newline{}
 {} {}>{} {}result {}:: {}NTrees {}XNode}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\chapter{Using Regular Expressions}

\myminitoc
\label{728}

\label{729}
\LaTeXNullTemplate{}

Good tutorials where to start
\begin{myitemize}
\item{} \myhref{http://www.serpentine.com/blog/2007/02/27/a-haskell-regular-expression-tutorial/}{serpentine.com}
\item{} \myhref{http://www.haskell.org/haskellwiki/Regular_expressions}{Regular Expressions (Haskell Wiki)}
\end{myitemize}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}
\myhref{https://en.wikibooks.org/wiki/Category\%3AHaskell\%2FNot\%20in\%20book}{Category:Haskell/Not in book}
\chapter{Parsing Mathematical Expressions}

\myminitoc
\label{730}

\label{731}
\LaTeXNullTemplate{}

This chapter discusses how to turn strings of text such as \symbol{34}3*sin x + y\symbol{34} into an abstract syntactic representation like Plus (Times (Number 3) (Apply \symbol{34}sin\symbol{34} (Variable \symbol{34}x\symbol{34}))) (Variable \symbol{34}y\symbol{34}).

We are going to use \myhref{http://hackage.haskell.org/packages/archive/base/latest/doc/html/Text-ParserCombinators-ReadP.html}{Text.ParserCombinators.ReadP} throughout, so you will need to have the reference open to refer to.
\section{First Warmup}
\label{732}
\\

\TemplateSpaceIndent{ {} {} {} {}import {}Text.ParserCombinators.ReadP}

For a warmup, to get started on the problem, we first try an easier problem. A language where the symbols are just the letter \symbol{34}o\symbol{34}, a single operator \symbol{34}\&\symbol{34} and brackets. First define a data type for these trees:
\\

\TemplateSpaceIndent{ {} {} {} {}data {}Tree {}= {}Branch {}Tree {}Tree {}| {}Leaf {}deriving {}Show}

Now a parser for leaves is defined using the ReadP library:
\\

\TemplateSpaceIndent{ {} {} {} {}leaf {}= {}do {}char {}\textquotesingle{}o\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}Leaf}

now to define a parser for the branches, made up by \symbol{34}\&\symbol{34} operator we need to choose an associativity. That is, whether o\&o\&o should be the same as (o\&o)\&o or o\&(o\&o) -{} let us pick the latter.

For a first approximation we can forget about brackets, adding them in after the first \symbol{34}milestone\symbol{34}:
\\

\TemplateSpaceIndent{ {} {} {} {}branch {}= {}do {}a {}<{}-{} {}leaf \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{}\&\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}b {}<{}-{} {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Branch {}a {}b) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}tree {}= {}leaf {}+++ {}branch}

It\textquotesingle{}s now possible to test this out and see if it acts properly on a few inputs:
\\

\TemplateSpaceIndent{ {} {} {} {}*Main>{} {}readP_to_S {}tree {}\symbol{34}o\symbol{34} \newline{}
 {} {} {} {}{[}(Leaf,\symbol{34}\symbol{34}){]} \newline{}
 {} {} {} {}*Main>{} {}readP_to_S {}tree {}\symbol{34}o\&o\symbol{34} \newline{}
 {} {} {} {}{[}(Leaf,\symbol{34}\&o\symbol{34}),(Branch {}Leaf {}Leaf,\symbol{34}\symbol{34}){]} \newline{}
 {} {} {} {}*Main>{} {}readP_to_S {}tree {}\symbol{34}o\&o\&o\symbol{34} \newline{}
 {} {} {} {}{[}(Leaf,\symbol{34}\&o\&o\symbol{34}),(Branch {}Leaf {}Leaf,\symbol{34}\&o\symbol{34}),(Branch {}Leaf {}(Branch {}Leaf {}Leaf),\symbol{34}\symbol{34}){]}}

Since that worked fine we can proceed to add support for parenthesis. Brackets are defined generally, so that we can reuse it later on
\\

\TemplateSpaceIndent{ {} {} {} {}brackets {}p {}= {}do {}char {}\textquotesingle{}(\textquotesingle{} \newline{}
 {}r {}<{}-{} {}p \newline{}
 {}char {}\textquotesingle{})\textquotesingle{} \newline{}
 {}return {}r}

We can now update the branch and tree parsers to support brackets:
\\

\TemplateSpaceIndent{ {} {} {} {}branch {}= {}do {}a {}<{}-{} {}leaf {}+++ {}brackets {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{}\&\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}b {}<{}-{} {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Branch {}a {}b) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}tree {}= {}leaf {}+++ {}branch {}+++ {}brackets {}tree}

A bit of testing shows that it seems to work
\\

\TemplateSpaceIndent{ {} {} {} {}*Main>{} {}readP_to_S {}tree {}\symbol{34}((o\&((o\&o)))\&o\&((o\&o)\&o)\&o)\symbol{34} \newline{}
 {} {} {} {}{[}(Branch {}(Branch {}Leaf {}(Branch {}Leaf {}Leaf)) {}(Branch {}Leaf {}(Branch {}(Branch \newline{}
 {}(Branch {}Leaf {}Leaf) {}Leaf) {}Leaf)),\symbol{34}\symbol{34}){]}}

\section{Adaptation}
\label{733}

This gives a good starting point for adaptation. The first modification towards the ultimate goal, which is quite easy to do, is changing the leaves from just \symbol{34}o\symbol{34} to any string. To do this we have change to `Leaf` to `Leaf String` in the data type and update the leaf function:
\\

\TemplateSpaceIndent{ {} {} {} {}data {}Tree {}= {}Branch {}Tree {}Tree {}| {}Leaf {}String {}deriving {}Show \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}leaf {}= {}do {}s {}<{}-{} {}many1 {}(choice {}(map {}char {}{[}\textquotesingle{}a\textquotesingle{}..\textquotesingle{}z\textquotesingle{}{]})) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Leaf {}s)}

For the next adaptation we try and add a new operation \symbol{34}|\symbol{34} which binders weaker than \symbol{34}\&\symbol{34}. I.e. \symbol{34}foo\&bar|baz\symbol{34} should parse as \symbol{34}(foo\&bar)|baz\symbol{34}. First we need to update the data type representing syntax:
\\

\TemplateSpaceIndent{ {} {} {} {}data {}Operator {}= {}And {}| {}Or {}deriving {}Show \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}data {}Tree {}= {}Branch {}Operator {}Tree {}Tree {}| {}Leaf {}String {}deriving {}Show}

The obvious thing to do is duplicate the `branch` function and call it `andBranch` and `orBranch`, and give or precedence using the left choice operator `<{}++`:
\\

\TemplateSpaceIndent{ {} {} {} {}andBranch {}= {}do {}a {}<{}-{} {}leaf {}+++ {}brackets {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{}\&\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}b {}<{}-{} {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Branch {}And {}a {}b) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}orBranch {}= {}do {}a {}<{}-{} {}leaf {}+++ {}brackets {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{}|\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}b {}<{}-{} {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Branch {}Or {}a {}b) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}tree {}= {}leaf {}+++ {}(orBranch {}<{}++ {}andBranch) {}+++ {}brackets {}tree}

This modification does not work though, if we think of an expression such as \symbol{34}a\&b\&c\&d|e\&f\&g\&h|i\&j\&k|l\&m\&n\&o|p\&q\&r|s\symbol{34} as a tree \symbol{34}X|Y|Z|W|P|Q\symbol{34} (which we already know how to parse!) except that the leaves are a more complicated form (but again, one we already know how to parse) then we can compose a working parser:
\\

\TemplateSpaceIndent{ {} {} {} {}andBranch {}= {}do {}a {}<{}-{} {}leaf {}+++ {}brackets {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{}\&\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}b {}<{}-{} {}andTree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Branch {}And {}a {}b) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}andTree {}= {}leaf {}+++ {}brackets {}tree {}+++ {}andBranch \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}orBranch {}= {}do {}a {}<{}-{} {}andTree {}+++ {}brackets {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{}|\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}b {}<{}-{} {}orTree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Branch {}Or {}a {}b) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}orTree {}= {}andTree {}+++ {}brackets {}tree {}+++ {}orBranch \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}tree {}= {}orTree}

While this approach does work, for example:
\\

\TemplateSpaceIndent{ {} {} {} {}*Main>{} {}readP_to_S {}tree {}\symbol{34}(foo\&bar|baz)\symbol{34} \newline{}
 {} {} {} {}{[}(Leaf {}\symbol{34}\symbol{34},\symbol{34}(foo\&bar|baz)\symbol{34}),(Branch {}Or {}(Branch {}And {}(Leaf {}\symbol{34}foo\symbol{34}) {}(Leaf {}\symbol{34}bar\symbol{34})) \newline{}
 {}(Leaf {}\symbol{34}baz\symbol{34}),\symbol{34}\symbol{34}),(Branch {}Or {}(Branch {}And {}(Leaf {}\symbol{34}foo\symbol{34}) {}(Leaf {}\symbol{34}bar\symbol{34})) {}(Leaf \newline{}
 {}\symbol{34}baz\symbol{34}),\symbol{34}\symbol{34}){]} \newline{}
 {} {} {} {}*Main>{} {}readP_to_S {}tree {}\symbol{34}(foo|bar\&baz)\symbol{34} \newline{}
 {} {} {} {}{[}(Leaf {}\symbol{34}\symbol{34},\symbol{34}(foo|bar\&baz)\symbol{34}),(Branch {}Or {}(Leaf {}\symbol{34}foo\symbol{34}) {}(Branch {}And {}(Leaf {}\symbol{34}bar\symbol{34}) \newline{}
 {}(Leaf {}\symbol{34}baz\symbol{34})),\symbol{34}\symbol{34}),(Branch {}Or {}(Leaf {}\symbol{34}foo\symbol{34}) {}(Branch {}And {}(Leaf {}\symbol{34}bar\symbol{34}) {}(Leaf \newline{}
 {}\symbol{34}baz\symbol{34})),\symbol{34}\symbol{34}){]}}

it parses ambiguously, which is undesirable for efficiency reasons as well as hinting that we may have done something unnatural. Both `andTree` and `orTree` functions have `brackets tree` in them, since `orTree` contains `andTree` this is where the ambiguity creeps in. To solve it we simply delete from `orTree`.
\\

\TemplateSpaceIndent{ {} {} {} {}orTree {}= {}andTree {}+++ {}orBranch}

\section{Structure Emerges}
\label{734}

All the previous fiddling and playing has actually caused a significant portion of the structure of our final program to make its-{}self clear. Looking back at what was written we could quite easily extend it to add another operator, and another after that (Exercise for the reader: if it is not clear exactly how this would be done, figure it out and do it). A moments meditation suggests that we might complete this pattern and abstract it out, given an arbitrarily long list of operators
\\

\TemplateSpaceIndent{ {} {} {} {}operators {}= {}{[}(Or,\symbol{34}|\symbol{34}),(And,\symbol{34}+\symbol{34}){]}}

or perhaps
\\

\TemplateSpaceIndent{ {} {} {} {}data {}Operator {}= {}Add {}| {}Mul {}| {}Exp {}deriving {}Show \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}operators {}= {}{[}(Add,\symbol{34}+\symbol{34}),(Mul,\symbol{34}*\symbol{34}),(Exp,\symbol{34}\^{}\symbol{34}){]}}

the parser should be computed from it, nesting it (as we did manually in the past) so that parses happen correctly without ambiguity.

The seasoned haskell programmer will have already seen, in her minds eye, the following:
\\

\TemplateSpaceIndent{ {} {} {} {}tree {}= {}foldr {}(\textbackslash{}(op,name) {}p {}-{}>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}let {}this {}= {}p {}+++ {}do {}a {}<{}-{} {}p {}+++ {}brackets {}tree \newline{}
 {}char {}name \newline{}
 {}b {}<{}-{} {}this \newline{}
 {}return {}(Branch {}op {}a {}b) \newline{}
 {}in {}this) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(leaf {}+++ {}brackets {}tree) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}operators}

which is then tested.
\\

\TemplateSpaceIndent{ {} {} {} {}*Main>{} {}readP_to_S {}tree {}\symbol{34}(x\^{}e*y+w\^{}e*z\^{}e)\symbol{34} \newline{}
 {} {} {} {}{[}(Leaf {}\symbol{34}\symbol{34},\symbol{34}(x\^{}e*y+w\^{}e*z\^{}e)\symbol{34}),(Branch {}Add {}(Branch {}Mul {}(Branch {}Exp {}(Leaf {}\symbol{34}x\symbol{34}) \newline{}
 {}(Leaf {}\symbol{34}e\symbol{34})) {}(Leaf {}\symbol{34}y\symbol{34})) {}(Branch {}Mul {}(Branch {}Exp {}(Leaf {}\symbol{34}w\symbol{34}) {}(Leaf {}\symbol{34}e\symbol{34})) {}(Branch \newline{}
 {}Exp {}(Leaf {}\symbol{34}z\symbol{34}) {}(Leaf {}\symbol{34}e\symbol{34}))),\symbol{34}\symbol{34}){]}}

This is a good checkpoint to pause, in summary we have distilled the embryonic parser down to the following script:
\\

\TemplateSpaceIndent{ {} {} {} {}import {}Text.ParserCombinators.ReadP \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}brackets {}p {}= {}do {}char {}\textquotesingle{}(\textquotesingle{} \newline{}
 {}r {}<{}-{} {}p \newline{}
 {}char {}\textquotesingle{})\textquotesingle{} \newline{}
 {}return {}r \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}data {}Operator {}= {}Add {}| {}Mul {}| {}Exp {}deriving {}Show \newline{}
 {} {} {} {}operators {}= {}{[}(Add,\textquotesingle{}+\textquotesingle{}),(Mul,\textquotesingle{}*\textquotesingle{}),(Exp,\textquotesingle{}\^{}\textquotesingle{}){]} \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}data {}Tree {}= {}Branch {}Operator {}Tree {}Tree {}| {}Leaf {}String {}deriving {}Show \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}leaf {}= {}do {}s {}<{}-{} {}many1 {}(choice {}(map {}char {}{[}\textquotesingle{}a\textquotesingle{}..\textquotesingle{}z\textquotesingle{}{]})) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Leaf {}s) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}tree {}= {}foldr {}(\textbackslash{}(op,name) {}p {}-{}>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}let {}this {}= {}p {}+++ {}do {}a {}<{}-{} {}p {}+++ {}brackets {}tree \newline{}
 {}char {}name \newline{}
 {}b {}<{}-{} {}this \newline{}
 {}return {}(Branch {}op {}a {}b) \newline{}
 {}in {}this) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(leaf {}+++ {}brackets {}tree) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}operators}

\section{Whitespace and applicative notation}
\label{735}

Since both the functional/applicative notation and ignoring whitespace depend on some of the same characters (space characters) it is a useful question to ask which should be implemented first, or whether it is not important which should be programmed first.

Considering the expression \symbol{34}f x\symbol{34}, suggests that we should find how to parse whitespace before handling applicative notation, since once it has been dealt with function application should just correspond to simple juxtaposition (as intended).

There is a technical difficultly making our current parser ignore whitespace: if we were to make a `skipWhitespace` parser, and put it everywhere that whitespace could occur we would be inundated with ambiguous parses. Hence it is necessary to skip whitespace only in certain crucial places, for example we could pick the convention that whitespace is always skipped *before* reading a token. Then \symbol{34} a + b * c \symbol{34} would be seen by the parser chunked in the following way \symbol{34}{[} a{]}{[} +{]}{[} b{]}{[} *{]}{[} c{]}{[} {]}\symbol{34}. Which convention we choose is arbitrary, but ignoring whitespace before seems slightly neater, since it handles \symbol{34} a\symbol{34} without any complaints.

We define the following:
\\

\TemplateSpaceIndent{ {} {} {} {}skipWhitespace {}= {}do {}many {}(choice {}(map {}char {}{[}\textquotesingle{} {}\textquotesingle{},\textquotesingle{}\textbackslash{}n\textquotesingle{}{]})) \newline{}
 {}return {}()}

and update all the parses written before, so that they follow the new convention
\\

\TemplateSpaceIndent{ {} {} {} {}brackets {}p {}= {}do {}skipWhitespace \newline{}
 {}char {}\textquotesingle{}(\textquotesingle{} \newline{}
 {}r {}<{}-{} {}p \newline{}
 {}skipWhitespace \newline{}
 {}char {}\textquotesingle{})\textquotesingle{} \newline{}
 {}return {}r \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}leaf {}= {}do {}skipWhitespace \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}s {}<{}-{} {}many1 {}(choice {}(map {}char {}{[}\textquotesingle{}a\textquotesingle{}..\textquotesingle{}z\textquotesingle{}{]})) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}(Leaf {}s) \newline{}
 {} {} {} {} \newline{}
 {} {} {} {}tree {}= {}foldr {}(\textbackslash{}(op,name) {}p {}-{}>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}let {}this {}= {}p {}+++ {}do {}a {}<{}-{} {}p {}+++ {}brackets {}tree \newline{}
 {}skipWhitespace \newline{}
 {}char {}name \newline{}
 {}b {}<{}-{} {}this \newline{}
 {}return {}(Branch {}op {}a {}b) \newline{}
 {}in {}this) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(leaf {}+++ {}brackets {}tree) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}operators}

In order to add applicative support clearly the syntax needs to allow for it:
\\

\TemplateSpaceIndent{ {} {} {} {}data {}Tree {}= {}Apply {}Tree {}Tree {}| {}Branch {}Operator {}Tree {}Tree {}| {}Leaf {}String \newline{}
 {}deriving {}Show}

This syntax tree will allow for sentences such as \symbol{34}(x + y) foo\symbol{34}, while this not correct other sentences like \symbol{34}(f . g) x\symbol{34} are commonplace in haskell -{} it should be the job of the type-{}checker to decide which is meaningful and which is not: This separation of concerns lets our problem (parsing) remain simple and homogeneous.

Our parser is essentially just two functions `leaf` and `tree` (`skipWhitespace` and `brackets` being considered \symbol{34}library\symbol{34} or helper functions). The function `tree` eats up all the operators it can, attaching leaves onto them as it can. While the `leaf` function could be thought of as reading in anything which doesn\textquotesingle{}t have operators in it. Given this view of the program it is clear that to support applicative notation one needs to replace leaf with something that parses a chain of functional applications.

The obvious thing to try is then,
\\

\TemplateSpaceIndent{ {} {} {} {}leaf {}= {}chainl1 {}(do {}skipWhitespace \newline{}
 {}s {}<{}-{} {}many1 {}(choice {}(map {}char {}{[}\textquotesingle{}a\textquotesingle{}..\textquotesingle{}z\textquotesingle{}{]})) \newline{}
 {}return {}(Leaf {}s)) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(return {}Apply)}

and it is easily extended to support the \symbol{34}commonplace\symbol{34} compound sentences discussed earlier:
\\

\TemplateSpaceIndent{ {} {} {} {}leaf {}= {}chainl1 {}(brackets {}tree \newline{}
 {}+++ {}do {}skipWhitespace \newline{}
 {}s {}<{}-{} {}many1 {}(choice {}(map {}char {}{[}\textquotesingle{}a\textquotesingle{}..\textquotesingle{}z\textquotesingle{}{]})) \newline{}
 {}return {}(Leaf {}s)) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(return {}Apply)}

This is the problem completely solved! Our original goal is completed, one only needs to specify the operators they would like to have (in order) and write a traversal function converts the `Tree` into say mathematical expressions -{}-{} giving errors if unknown functions were used etc.
\subsection{Making it Modular}
\label{736}

The algorithms written are general enough to be useful in different circumstances, and even if they only had a single use -{}-{} if we were planning on using them in a larger program it is essential that we isolate the internals from the externals (its interface).

{\ttfamily \\

\TemplateSpaceIndent{ {}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmuntt.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmuntt.ttf}\ttfamily module {}Parser \newline{}
 {} {}({}Tree(..), {}parseExpression \newline{}
 {} {}) {}where \newline{}
 {} \newline{}
 {}import {}Data.Maybe \newline{}
 {}import {}Text.ParserCombinators.ReadP \newline{}
 {} \newline{}
 {}skipWhitespace {}= {}do {}many {}(choice {}(map {}char {}{[}\textquotesingle{} {}\textquotesingle{},\textquotesingle{}\textbackslash{}n\textquotesingle{}{]})) \newline{}
 {}return {}() \newline{}
 {} \newline{}
 {}brackets {}p {}= {}do {}skipWhitespace \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{}(\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}r {}<{}-{} {}p \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}skipWhitespace \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}char {}\textquotesingle{})\textquotesingle{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}return {}r \newline{}
 {} \newline{}
 {}data {}Tree {}op {}= {}Apply {}(Tree {}op) {}(Tree {}op) {}| {}Branch {}op {}(Tree {}op) {}(Tree {}op) {}| {}Leaf \newline{}
 {}String {}deriving {}Show \newline{}
 {} \newline{}
 {}parseExpression {}operators {}= {}listToMaybe {}. {}map {}fst {}. {}filter {}(null {}.snd) {}. \newline{}
 {}readP_to_S {}tree {}where \newline{}
 {} {}leaf {}= {}chainl1 {}(brackets {}tree \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}+++ {}do {}skipWhitespace \newline{}
 {}s {}<{}-{} {}many1 {}(choice {}(map {}char {}{[}\textquotesingle{}a\textquotesingle{}..\textquotesingle{}z\textquotesingle{}{]})) \newline{}
 {}return {}(Leaf {}s)) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(return {}Apply) \newline{}
 {} {}tree {}= {}foldr {}(\textbackslash{}(op,name) {}p {}-{}>{} \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}let {}this {}= {}p {}+++ {}do {}a {}<{}-{} {}p {}+++ {}brackets {}tree \newline{}
 {}skipWhitespace \newline{}
 {}char {}name \newline{}
 {}b {}<{}-{} {}this \newline{}
 {}return {}(Branch {}op {}a {}b) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}in {}this) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}(leaf {}+++ {}brackets {}tree) \newline{}
 {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}operators}}\setmainfont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmunrm.ttf,BoldFont=cmunbx.ttf,ItalicFont=cmunti.ttf,BoldItalicFont=cmunbi.ttf]{cmunrm.ttf}\setmonofont[Path=/usr/share/fonts/truetype/cmu/,UprightFont=cmuntt.ttf,BoldFont=cmuntb.ttf,ItalicFont=cmunit.ttf,BoldItalicFont=cmuntx.ttf]{cmunrm.ttf}

\LaTeXNullTemplate{}
\LaTeXNullTemplate{}\chapter{Contributors}
\label{Contributors}
\begin{longtable}{rp{0.6\linewidth}}
\textbf{Edits}&\textbf{User}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Aaronsteers~enwikibooks\&action=edit\&redlink=1}{Aaronsteers\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Abdelazer}{Abdelazer}\\
3& \myhref{https://en.wikibooks.org/wiki/User:Acangiano}{Acangiano}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Adrianneumann\&action=edit\&redlink=1}{Adrianneumann}\\
11& \myhref{https://en.wikibooks.org/wiki/User:Adrignola}{Adrignola}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Aeinner\&action=edit\&redlink=1}{Aeinner}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ahersen\&action=edit\&redlink=1}{Ahersen}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Albmont}{Albmont}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Alexanderaltman\&action=edit\&redlink=1}{Alexanderaltman}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Alexandre.delanoe\&action=edit\&redlink=1}{Alexandre.delanoe}\\
5& \myhref{https://en.wikibooks.org/wiki/User:Alexey_Feldgendler}{Alexey Feldgendler}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Alexey_Muranov\&action=edit\&redlink=1}{Alexey Muranov}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Alexvy86\&action=edit\&redlink=1}{Alexvy86}\\
8& \myhref{https://en.wikibooks.org/wiki/User:AllenZh}{AllenZh}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Almkglor~enwikibooks\&action=edit\&redlink=1}{Almkglor\~{}enwikibooks}\\
18& \myhref{https://en.wikibooks.org/wiki/User:Amire80}{Amire80}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ammon\&action=edit\&redlink=1}{Ammon}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Anareth\&action=edit\&redlink=1}{Anareth}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Anders_Kaseorg\&action=edit\&redlink=1}{Anders Kaseorg}\\
6& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Andrebolle\&action=edit\&redlink=1}{Andrebolle}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Aniloadam\&action=edit\&redlink=1}{Aniloadam}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Anton_Lorenzen\&action=edit\&redlink=1}{Anton Lorenzen}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Apalamarchuk\&action=edit\&redlink=1}{Apalamarchuk}\\
191& \myhref{https://en.wikibooks.org/wiki/User:Apfelmus}{Apfelmus}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Asknell\&action=edit\&redlink=1}{Asknell}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Astroman3D\&action=edit\&redlink=1}{Astroman3D}\\
4& \myhref{https://en.wikibooks.org/wiki/User:Atcovi}{Atcovi}\\
1& \myhref{https://en.wikibooks.org/wiki/User:AugPi}{AugPi}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Augustss~enwikibooks\&action=edit\&redlink=1}{Augustss\~{}enwikibooks}\\
20& \myhref{https://en.wikibooks.org/wiki/User:Avicennasis}{Avicennasis}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Avijja~enwikibooks\&action=edit\&redlink=1}{Avijja\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Axa\&action=edit\&redlink=1}{Axa}\\
6& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Axnicho\&action=edit\&redlink=1}{Axnicho}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ayathustra\&action=edit\&redlink=1}{Ayathustra}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:B7j0c\&action=edit\&redlink=1}{B7j0c}\\
10& \myhref{https://en.wikibooks.org/wiki/User:BCW}{BCW}\\
143& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Backfromquadrangle\&action=edit\&redlink=1}{Backfromquadrangle}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Bart_Massey~enwikibooks\&action=edit\&redlink=1}{Bart Massey\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Bartosz}{Bartosz}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Basvandijk\&action=edit\&redlink=1}{Basvandijk}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Bhathaway\&action=edit\&redlink=1}{Bhathaway}\\
13& \myhref{https://en.wikibooks.org/wiki/User:BiT}{BiT}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Billinghurst}{Billinghurst}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Billymac00\&action=edit\&redlink=1}{Billymac00}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:BlackMeph\&action=edit\&redlink=1}{BlackMeph}\\
39& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Blackh\&action=edit\&redlink=1}{Blackh}\\
16& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Blaisorblade\&action=edit\&redlink=1}{Blaisorblade}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Bli\&action=edit\&redlink=1}{Bli}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Blogscot}{Blogscot}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Blue_Penguin_Toad_Frog\&action=edit\&redlink=1}{Blue Penguin Toad Frog}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Bos~enwikibooks\&action=edit\&redlink=1}{Bos\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Brandizzi\&action=edit\&redlink=1}{Brandizzi}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Brateevsky}{Brateevsky}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Brennon~enwikibooks\&action=edit\&redlink=1}{Brennon\~{}enwikibooks}\\
8& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Bsddeamon\&action=edit\&redlink=1}{Bsddeamon}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Bstpierre\&action=edit\&redlink=1}{Bstpierre}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Bulldog98}{Bulldog98}\\
14& \myhref{https://en.wikibooks.org/wiki/User:Byorgey}{Byorgey}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Calvins\&action=edit\&redlink=1}{Calvins}\\
8& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Canadaduane\&action=edit\&redlink=1}{Canadaduane}\\
11& \myhref{https://en.wikibooks.org/wiki/User:Catamorphism}{Catamorphism}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Catofax~enwikibooks\&action=edit\&redlink=1}{Catofax\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Cdgarrett1966\&action=edit\&redlink=1}{Cdgarrett1966}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Cdunn2001~enwikibooks\&action=edit\&redlink=1}{Cdunn2001\~{}enwikibooks}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Cheshire~enwikibooks\&action=edit\&redlink=1}{Cheshire\~{}enwikibooks}\\
9& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Chief_sequoya\&action=edit\&redlink=1}{Chief sequoya}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Chris_Forno\&action=edit\&redlink=1}{Chris Forno}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:ChrisKuklewicz\&action=edit\&redlink=1}{ChrisKuklewicz}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Christofian\&action=edit\&redlink=1}{Christofian}\\
29& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Cic\&action=edit\&redlink=1}{Cic}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Clj~enwikibooks\&action=edit\&redlink=1}{Clj\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Codeispoetry}{Codeispoetry}\\
1& \myhref{https://en.wikibooks.org/wiki/User:CommonsDelinker}{CommonsDelinker}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Crasshopper}{Crasshopper}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Damien_Cassou\&action=edit\&redlink=1}{Damien Cassou}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Daniel5Ko\&action=edit\&redlink=1}{Daniel5Ko}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:DanielSchoepe\&action=edit\&redlink=1}{DanielSchoepe}\\
242& \myhref{https://en.wikibooks.org/wiki/User:DavidHouse}{DavidHouse}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Davorak\&action=edit\&redlink=1}{Davorak}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Denny}{Denny}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Derekmahar\&action=edit\&redlink=1}{Derekmahar}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Dherington\&action=edit\&redlink=1}{Dherington}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Diddymus\&action=edit\&redlink=1}{Diddymus}\\
44& \myhref{https://en.wikibooks.org/wiki/User:Digichoron}{Digichoron}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:DimoneSem\&action=edit\&redlink=1}{DimoneSem}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Dino~enwikibooks\&action=edit\&redlink=1}{Dino\~{}enwikibooks}\\
20& \myhref{https://en.wikibooks.org/wiki/User:Dirk_H\%25C3\%25BCnniger}{Dirk Hünniger}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Dporter\&action=edit\&redlink=1}{Dporter}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Dukedave~enwikibooks\&action=edit\&redlink=1}{Dukedave\~{}enwikibooks}\\
1131& \myhref{https://en.wikibooks.org/wiki/User:Duplode}{Duplode}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:D\%25C5\%2582ugosz\&action=edit\&redlink=1}{Długosz}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:EddieTwo\&action=edit\&redlink=1}{EddieTwo}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Edward_Z._Yang}{Edward Z. Yang}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Eihjia~enwikibooks\&action=edit\&redlink=1}{Eihjia\~{}enwikibooks}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Erich~enwikibooks\&action=edit\&redlink=1}{Erich\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:ErikFK\&action=edit\&redlink=1}{ErikFK}\\
2& \myhref{https://en.wikibooks.org/wiki/User:EvanCarroll}{EvanCarroll}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Favonia\&action=edit\&redlink=1}{Favonia}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Felix_C._Stegerman\&action=edit\&redlink=1}{Felix C. Stegerman}\\
6& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Fieryhydra\&action=edit\&redlink=1}{Fieryhydra}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Fluxion~enwikibooks\&action=edit\&redlink=1}{Fluxion\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Freinn\&action=edit\&redlink=1}{Freinn}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Froth\&action=edit\&redlink=1}{Froth}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Fshahriar\&action=edit\&redlink=1}{Fshahriar}\\
11& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:GPhilip\&action=edit\&redlink=1}{GPhilip}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:GRiba2010\&action=edit\&redlink=1}{GRiba2010}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gauthier~enwikibooks\&action=edit\&redlink=1}{Gauthier\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gdweber~enwikibooks\&action=edit\&redlink=1}{Gdweber\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:GeordieMcBain\&action=edit\&redlink=1}{GeordieMcBain}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gert~enwikibooks\&action=edit\&redlink=1}{Gert\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gerymate\&action=edit\&redlink=1}{Gerymate}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ghostzart\&action=edit\&redlink=1}{Ghostzart}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gh~enwikibooks\&action=edit\&redlink=1}{Gh\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Glaisher}{Glaisher}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Glosser.ca\&action=edit\&redlink=1}{Glosser.ca}\\
2& \myhref{https://en.wikibooks.org/wiki/User:GorgeUbuasha}{GorgeUbuasha}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gotoki_no_joe\&action=edit\&redlink=1}{Gotoki no joe}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gphilip\&action=edit\&redlink=1}{Gphilip}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Gracenotes}{Gracenotes}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Greenrd}{Greenrd}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:GreggHB\&action=edit\&redlink=1}{GreggHB}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gregorias\&action=edit\&redlink=1}{Gregorias}\\
51& \myhref{https://en.wikibooks.org/wiki/User:Gwern}{Gwern}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Gwideman\&action=edit\&redlink=1}{Gwideman}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Hairy_Dude}{Hairy Dude}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Hansix\&action=edit\&redlink=1}{Hansix}\\
16& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Hathal\&action=edit\&redlink=1}{Hathal}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Henrylaxen\&action=edit\&redlink=1}{Henrylaxen}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Herbythyme}{Herbythyme}\\
1& \myhref{https://en.wikibooks.org/wiki/User:HethrirBot}{HethrirBot}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Hkhooda\&action=edit\&redlink=1}{Hkhooda}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:HostileFork\&action=edit\&redlink=1}{HostileFork}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:How_Si_Yu\&action=edit\&redlink=1}{How Si Yu}\\
2& \myhref{https://en.wikibooks.org/wiki/User:HowardBGolden}{HowardBGolden}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Huwpuwynyty\&action=edit\&redlink=1}{Huwpuwynyty}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Igorrafaeldesousa\&action=edit\&redlink=1}{Igorrafaeldesousa}\\
12& \myhref{https://en.wikibooks.org/wiki/User:Ihope127}{Ihope127}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Immanuel.normann\&action=edit\&redlink=1}{Immanuel.normann}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Indil~enwikibooks\&action=edit\&redlink=1}{Indil\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Insanity\&action=edit\&redlink=1}{Insanity}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ithika~enwikibooks\&action=edit\&redlink=1}{Ithika\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:IvarTJ\&action=edit\&redlink=1}{IvarTJ}\\
1& \myhref{https://en.wikibooks.org/wiki/User:JackPotte}{JackPotte}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:James.h.saunders\&action=edit\&redlink=1}{James.h.saunders}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jas~enwikibooks\&action=edit\&redlink=1}{Jas\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jbalint~enwikibooks\&action=edit\&redlink=1}{Jbalint\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jbolden1517\&action=edit\&redlink=1}{Jbolden1517}\\
4& \myhref{https://en.wikibooks.org/wiki/User:Jdgilbey}{Jdgilbey}\\
6& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jeffwheeler\&action=edit\&redlink=1}{Jeffwheeler}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jfeltz\&action=edit\&redlink=1}{Jfeltz}\\
36& \myhref{https://en.wikibooks.org/wiki/User:Jguk}{Jguk}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jjinux\&action=edit\&redlink=1}{Jjinux}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jleedev\&action=edit\&redlink=1}{Jleedev}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Joee92~enwikibooks\&action=edit\&redlink=1}{Joee92\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Joeyadams\&action=edit\&redlink=1}{Joeyadams}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:JohnBeattie\&action=edit\&redlink=1}{JohnBeattie}\\
15& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Jsnx\&action=edit\&redlink=1}{Jsnx}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Kbakalar\&action=edit\&redlink=1}{Kbakalar}\\
3& \myhref{https://en.wikibooks.org/wiki/User:Ketil}{Ketil}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Kie\%25C5\%2582ek\&action=edit\&redlink=1}{Kiełek}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Knuton\&action=edit\&redlink=1}{Knuton}\\
864& \myhref{https://en.wikibooks.org/wiki/User:Kowey}{Kowey}\\
7& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Laura_huber\&action=edit\&redlink=1}{Laura huber}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Leaderboard\&action=edit\&redlink=1}{Leaderboard}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Linopolus\&action=edit\&redlink=1}{Linopolus}\\
1& \myhref{https://en.wikibooks.org/wiki/User:LokiClock}{LokiClock}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Lord-Raizen\&action=edit\&redlink=1}{Lord-{}Raizen}\\
7& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:LungZeno~enwikibooks\&action=edit\&redlink=1}{LungZeno\~{}enwikibooks}\\
10& \myhref{https://en.wikibooks.org/wiki/User:Lusum}{Lusum}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Lynnarddai\&action=edit\&redlink=1}{Lynnarddai}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:MMF\&action=edit\&redlink=1}{MMF}\\
1& \myhref{https://en.wikibooks.org/wiki/User:MarSch}{MarSch}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Marc_van_Leeuwen\&action=edit\&redlink=1}{Marc van Leeuwen}\\
3& \myhref{https://en.wikibooks.org/wiki/User:Marky1991~enwikibooks}{Marky1991\~{}enwikibooks}\\
17& \myhref{https://en.wikibooks.org/wiki/User:Marudubshinki}{Marudubshinki}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mathnerd314159\&action=edit\&redlink=1}{Mathnerd314159}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mattcox\&action=edit\&redlink=1}{Mattcox}\\
3& \myhref{https://en.wikibooks.org/wiki/User:Mat\%25C4\%259Bj_Grabovsk\%25C3\%25BD}{Matěj Grabovský}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mgm7734\&action=edit\&redlink=1}{Mgm7734}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Michael_miceli\&action=edit\&redlink=1}{Michael miceli}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Miegir\&action=edit\&redlink=1}{Miegir}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Mike}{Mike}\\
26& \myhref{https://en.wikibooks.org/wiki/User:Mike_Linksvayer}{Mike Linksvayer}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mikeyo~enwikibooks\&action=edit\&redlink=1}{Mikeyo\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Miroslav65\&action=edit\&redlink=1}{Miroslav65}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Miyoko_Moua\&action=edit\&redlink=1}{Miyoko Moua}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Mjkaye}{Mjkaye}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mk2366\&action=edit\&redlink=1}{Mk2366}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mokendall\&action=edit\&redlink=1}{Mokendall}\\
9& \myhref{https://en.wikibooks.org/wiki/User:Msouth}{Msouth}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mvanier\&action=edit\&redlink=1}{Mvanier}\\
6& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Mx4492\&action=edit\&redlink=1}{Mx4492}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Nabetse\&action=edit\&redlink=1}{Nabetse}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Narendraj9\&action=edit\&redlink=1}{Narendraj9}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Nathanielvirgo\&action=edit\&redlink=1}{Nathanielvirgo}\\
8& \myhref{https://en.wikibooks.org/wiki/User:Nattfodd}{Nattfodd}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Neodymion~enwikibooks\&action=edit\&redlink=1}{Neodymion\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ner0x652\&action=edit\&redlink=1}{Ner0x652}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Nikai}{Nikai}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Nikiriy\&action=edit\&redlink=1}{Nikiriy}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Notnowplease\&action=edit\&redlink=1}{Notnowplease}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Nyuszika7H}{Nyuszika7H}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ob_ivan\&action=edit\&redlink=1}{Ob ivan}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Oblosys\&action=edit\&redlink=1}{Oblosys}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Obscaenvs\&action=edit\&redlink=1}{Obscaenvs}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Oddron\&action=edit\&redlink=1}{Oddron}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Oligomous\&action=edit\&redlink=1}{Oligomous}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ondra~enwikibooks\&action=edit\&redlink=1}{Ondra\~{}enwikibooks}\\
16& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Orzetto~enwikibooks\&action=edit\&redlink=1}{Orzetto\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Oxryly\&action=edit\&redlink=1}{Oxryly}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Pakanek\&action=edit\&redlink=1}{Pakanek}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:PandaMittens\&action=edit\&redlink=1}{PandaMittens}\\
13& \myhref{https://en.wikibooks.org/wiki/User:Panic2k4}{Panic2k4}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Paolino~enwikibooks\&action=edit\&redlink=1}{Paolino\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Patriques82}{Patriques82}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Paul.kline\&action=edit\&redlink=1}{Paul.kline}\\
65& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:PaulJohnson\&action=edit\&redlink=1}{PaulJohnson}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Peterwhy\&action=edit\&redlink=1}{Peterwhy}\\
4& \myhref{https://en.wikibooks.org/wiki/User:Physis}{Physis}\\
5& \myhref{https://en.wikibooks.org/wiki/User:Pi_zero}{Pi zero}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Pingveno}{Pingveno}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Piojo~enwikibooks\&action=edit\&redlink=1}{Piojo\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Plattyaj\&action=edit\&redlink=1}{Plattyaj}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Pmags\&action=edit\&redlink=1}{Pmags}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Polypus74\&action=edit\&redlink=1}{Polypus74}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Prmaple\&action=edit\&redlink=1}{Prmaple}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Pseafield\&action=edit\&redlink=1}{Pseafield}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Pshook\&action=edit\&redlink=1}{Pshook}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Punkouter\&action=edit\&redlink=1}{Punkouter}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Pupeno\&action=edit\&redlink=1}{Pupeno}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Qeny\&action=edit\&redlink=1}{Qeny}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:QrBh5nqqq0svWlVr\&action=edit\&redlink=1}{QrBh5nqqq0svWlVr}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Qrilka\&action=edit\&redlink=1}{Qrilka}\\
19& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Quandle\&action=edit\&redlink=1}{Quandle}\\
12& \myhref{https://en.wikibooks.org/wiki/User:QuiteUnusual}{QuiteUnusual}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Qwertyus}{Qwertyus}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Rahiel\%253F\&action=edit\&redlink=1}{Rahiel?}\\
6& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Randallbritten\&action=edit\&redlink=1}{Randallbritten}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Raneksi\&action=edit\&redlink=1}{Raneksi}\\
7& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Rastus_Vernon\&action=edit\&redlink=1}{Rastus Vernon}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Ravichandar84}{Ravichandar84}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Rdragn\&action=edit\&redlink=1}{Rdragn}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Recent_Runes}{Recent Runes}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Renick\&action=edit\&redlink=1}{Renick}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Revence27~enwikibooks\&action=edit\&redlink=1}{Revence27\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Robert_Matthews}{Robert Matthews}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:RoelVanDijk\&action=edit\&redlink=1}{RoelVanDijk}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Royote\&action=edit\&redlink=1}{Royote}\\
36& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Rudis\&action=edit\&redlink=1}{Rudis}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Ruud_Koot}{Ruud Koot}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ryk\&action=edit\&redlink=1}{Ryk}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:S489\&action=edit\&redlink=1}{S489}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Saibod\&action=edit\&redlink=1}{Saibod}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Salah.khairy\&action=edit\&redlink=1}{Salah.khairy}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Sanyam\&action=edit\&redlink=1}{Sanyam}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Sapiens_scriptor\&action=edit\&redlink=1}{Sapiens scriptor}\\
14& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Sarabander\&action=edit\&redlink=1}{Sarabander}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Schoenfinkel\&action=edit\&redlink=1}{Schoenfinkel}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Scvalex\&action=edit\&redlink=1}{Scvalex}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Sebastian_Goll}{Sebastian Goll}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Seusschef\&action=edit\&redlink=1}{Seusschef}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Sgronblo\&action=edit\&redlink=1}{Sgronblo}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Shenme}{Shenme}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Shock_one\&action=edit\&redlink=1}{Shock one}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Sibi.lam\&action=edit\&redlink=1}{Sibi.lam}\\
19& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:SimonMichael\&action=edit\&redlink=1}{SimonMichael}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Siteswapper\&action=edit\&redlink=1}{Siteswapper}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Smcpeak\&action=edit\&redlink=1}{Smcpeak}\\
5& \myhref{https://en.wikibooks.org/wiki/User:Snarius~enwikibooks}{Snarius\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Snowolf}{Snowolf}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Snoyberg\&action=edit\&redlink=1}{Snoyberg}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Some1~enwikibooks\&action=edit\&redlink=1}{Some1\~{}enwikibooks}\\
9& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Spammaxx\&action=edit\&redlink=1}{Spammaxx}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Spockwang\&action=edit\&redlink=1}{Spockwang}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Spookylukey~enwikibooks\&action=edit\&redlink=1}{Spookylukey\~{}enwikibooks}\\
10& \myhref{https://en.wikibooks.org/wiki/User:Sqdcn}{Sqdcn}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Stateless~enwikibooks\&action=edit\&redlink=1}{Stateless\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:SteloKim~enwikibooks\&action=edit\&redlink=1}{SteloKim\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Stereotype441}{Stereotype441}\\
13& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Stevelihn~enwikibooks\&action=edit\&redlink=1}{Stevelihn\~{}enwikibooks}\\
5& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Ste~enwikibooks\&action=edit\&redlink=1}{Ste\~{}enwikibooks}\\
4& \myhref{https://en.wikibooks.org/wiki/User:Stuhacking~enwikibooks}{Stuhacking\~{}enwikibooks}\\
7& \myhref{https://en.wikibooks.org/wiki/User:Stw}{Stw}\\
10& \myhref{https://en.wikibooks.org/wiki/User:Sudozero}{Sudozero}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Sullivan-\&action=edit\&redlink=1}{Sullivan-{}}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Sumant.nk\&action=edit\&redlink=1}{Sumant.nk}\\
8& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Svick\&action=edit\&redlink=1}{Svick}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Swift}{Swift}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:TJ_schulte\&action=edit\&redlink=1}{TJ schulte}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Tanuki647\&action=edit\&redlink=1}{Tanuki647}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Taylor561\&action=edit\&redlink=1}{Taylor561}\\
62& \myhref{https://en.wikibooks.org/wiki/User:Tchakkazulu}{Tchakkazulu}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Tea2min\&action=edit\&redlink=1}{Tea2min}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Teval~enwikibooks\&action=edit\&redlink=1}{Teval\~{}enwikibooks}\\
4& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Thejoshwolfe\&action=edit\&redlink=1}{Thejoshwolfe}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Timp21337\&action=edit\&redlink=1}{Timp21337}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Tinmarks\&action=edit\&redlink=1}{Tinmarks}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:TittoAssini~enwikibooks\&action=edit\&redlink=1}{TittoAssini\~{}enwikibooks}\\
10& \myhref{https://en.wikibooks.org/wiki/User:Toby_Bartels}{Toby Bartels}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:TomFitzhenry~enwikibooks\&action=edit\&redlink=1}{TomFitzhenry\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Trannart\&action=edit\&redlink=1}{Trannart}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Trinithis\&action=edit\&redlink=1}{Trinithis}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Turtur~enwikibooks\&action=edit\&redlink=1}{Turtur\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Twelvefifty\&action=edit\&redlink=1}{Twelvefifty}\\
21& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Uchchwhash~enwikibooks\&action=edit\&redlink=1}{Uchchwhash\~{}enwikibooks}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Unimaginable666~enwikibooks\&action=edit\&redlink=1}{Unimaginable666\~{}enwikibooks}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Van_der_Hoorn}{Van der Hoorn}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:VernonF\&action=edit\&redlink=1}{VernonF}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Vesal\&action=edit\&redlink=1}{Vesal}\\
2& \myhref{https://en.wikibooks.org/wiki/User:Vincent_cloutier}{Vincent cloutier}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Walkie\&action=edit\&redlink=1}{Walkie}\\
3& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Wapcaplet~enwikibooks\&action=edit\&redlink=1}{Wapcaplet\~{}enwikibooks}\\
16& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Wei2912\&action=edit\&redlink=1}{Wei2912}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Whym}{Whym}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Will48}{Will48}\\
17& \myhref{https://en.wikibooks.org/wiki/User:WillNess}{WillNess}\\
1& \myhref{https://en.wikibooks.org/wiki/User:Withinfocus}{Withinfocus}\\
2& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Wrmorris\&action=edit\&redlink=1}{Wrmorris}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Xnn\&action=edit\&redlink=1}{Xnn}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Xrchz\&action=edit\&redlink=1}{Xrchz}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:Zr40\&action=edit\&redlink=1}{Zr40}\\
1& \myhref{https://en.wikibooks.org/w/index.php\%3ftitle=User:\%25D7\%25A4\%25D7\%25A8\%25D7\%2594\&action=edit\&redlink=1}{פרה}\\
\end{longtable}
\pagebreak
\listoffigures
\label{ListOfFigures}
\begin{itemize}
\item GFDL: Gnu Free Documentation License. \url{http://www.gnu.org/licenses/fdl.html}
\item cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. \url{http://creativecommons.org/licenses/by-sa/3.0/}
\item cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. \url{http://creativecommons.org/licenses/by-sa/2.5/}
\item cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. \url{http://creativecommons.org/licenses/by-sa/2.0/}
\item cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. \url{http://creativecommons.org/licenses/by-sa/1.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/}
\item cc-by-2.0: Creative Commons Attribution 2.0 License. \url{http://creativecommons.org/licenses/by/2.0/deed.en}
\item cc-by-2.5: Creative Commons Attribution 2.5 License. \url{http://creativecommons.org/licenses/by/2.5/deed.en}
\item cc-by-3.0: Creative Commons Attribution 3.0 License. \url{http://creativecommons.org/licenses/by/3.0/deed.en}
\item GPL: GNU General Public License. \url{http://www.gnu.org/licenses/gpl-2.0.txt}
\item LGPL: GNU Lesser General Public License. \url{http://www.gnu.org/licenses/lgpl.html}
 \item PD: This image is in the public domain.
\item ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.
\item EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro.
\item LFK: Lizenz Freie Kunst. \url{http://artlibre.org/licence/lal/de}
\item CFR: Copyright free use.
\item EPL: Eclipse Public License. \url{http://www.eclipse.org/org/documents/epl-v10.php}
\end{itemize}
Copies of the GPL, the LGPL as well as a GFDL are included in chapter \mylref{Licenses}{Licenses}. Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.
\pagebreak
\small
\begin{longtable}{|p{0.05\textwidth}|p{0.6\textwidth}|p{0.15\textwidth}|}
\hline
\href{https://en.wikibooks.org/wiki/File:Classes.svg}{1}& Dirk Hünniger&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Dice.jpg}{2}& \myhref{https://en.wikipedia.org/wiki/User:Gaz}{Gaz} at \myhref{http://en.wikipedia.org}{en.wikipedia}&CC-BY-SA-3.0\\ \hline
\href{https://en.wikibooks.org/wiki/File:Stone\%20Dice\%2017.JPG}{3}& Cyberpunk, Drilnoth, Emijrpbot, Hazard-Bot, JarektBot, Juiced lemon, Mindmatrix&\\ \hline
\href{https://en.wikibooks.org/wiki/File:State\%20Monad\%20Bind.svg}{4}& \myhref{http://commons.wikimedia.org/w/index.php?title=User:Randallbritten\&action=edit\&redlink=1}{Randall Britten}, \myhref{https://commons.wikimedia.org/w/index.php?title=User:Randallbritten\&action=edit\&redlink=1}{Randall Britten}&CC-BY-SA-3.0\\ \hline
\href{https://en.wikibooks.org/wiki/File:Monoids\%20diagrams\%20demo.svg}{5}& \myhref{http://commons.wikimedia.org/wiki/User:Duplode}{Daniel Mlot}, \myhref{https://commons.wikimedia.org/wiki/User:Duplode}{Daniel Mlot}&\\ \hline
\href{https://en.wikibooks.org/wiki/File:ArrowsConveyors\%20arr.png}{6}& No machine-{}readable author provided. \myhref{http://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims)., No machine-{}readable author provided. \myhref{https://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims).&CC-BY-SA-2.5\\ \hline
\href{https://en.wikibooks.org/wiki/File:ArrowsConveyors\%20bind2.png}{7}& No machine-{}readable author provided. \myhref{http://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims)., No machine-{}readable author provided. \myhref{https://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims).&CC-BY-SA-2.5\\ \hline
\href{https://en.wikibooks.org/wiki/File:ArrowsConveyors\%20first2.png}{8}& No machine-{}readable author provided. \myhref{http://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims)., No machine-{}readable author provided. \myhref{https://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims).&CC-BY-SA-2.5\\ \hline
\href{https://en.wikibooks.org/wiki/File:ArrowsConveyors\%20second2.png}{9}& No machine-{}readable author provided. \myhref{http://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims)., No machine-{}readable author provided. \myhref{https://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims).&CC-BY-SA-2.5\\ \hline
\href{https://en.wikibooks.org/wiki/File:ArrowsConveyors\%20star2.png}{10}& No machine-{}readable author provided. \myhref{http://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims)., No machine-{}readable author provided. \myhref{https://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims).&CC-BY-SA-2.5\\ \hline
\href{https://en.wikibooks.org/wiki/File:ArrowsConveyors\%20ampersand2.png}{11}& No machine-{}readable author provided. \myhref{http://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims)., No machine-{}readable author provided. \myhref{https://commons.wikimedia.org/wiki/User:Kowey}{Kowey} assumed (based on copyright claims).&CC-BY-SA-2.5\\ \hline
\href{https://en.wikibooks.org/wiki/File:Understanding\%20arrows\%20mean1\%20data\%20flow.svg}{12}& \myhref{http://commons.wikimedia.org/wiki/User:Duplode}{Daniel Mlot}, \myhref{https://commons.wikimedia.org/wiki/User:Duplode}{Daniel Mlot}&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Understanding\%20arrows\%20getWord\%20data\%20flow.svg}{13}& \myhref{http://commons.wikimedia.org/wiki/User:Duplode}{Daniel Mlot}, \myhref{https://commons.wikimedia.org/wiki/User:Duplode}{Daniel Mlot}&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Labyrinth-Tree.png}{14}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Labyrinth-Thread.png}{15}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Labyrinth-Zipper.png}{16}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Labyrinth-TurnRight.png}{17}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Labyrinth-KeepStraightOn.png}{18}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Labyrinth-Finger.png}{19}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:One-hole-context-Tree.png}{20}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:One-hole-context-plug.png}{21}& \myhref{https://en.wikibooks.org/wiki/en:Apfelmus}{en:Apfelmus}&CC-BY-SA-2.5\\ \hline
\href{https://en.wikibooks.org/wiki/File:One-hole-context-product.png}{22}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:One-hole-context-composition.png}{23}& Adrignola, Apfelmus&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Int-graph.png}{24}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Bool-graph.png}{25}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Maybe-graph.png}{26}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Maybe-graph-strict.png}{27}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:List\%20domain\%20graph.svg}{28}& \myhref{http://commons.wikimedia.org/wiki/User:Svick}{Svick}, \myhref{https://commons.wikimedia.org/wiki/User:Svick}{Svick}&PD\\ \hline
\href{https://en.wikibooks.org/wiki/File:Simple-cat.png}{29}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Composition-ex.png}{30}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Not-a-cat.png}{31}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Functor.png}{32}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Unit-join.png}{33}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Monad-law-1-lists.png}{34}& DavidHouse&\\ \hline
\href{https://en.wikibooks.org/wiki/File:Thunk-layers.png}{35}& \myhref{http://commons.wikimedia.org/w/index.php?title=User:DavidHouse\&action=edit\&redlink=1}{DavidHouse}, \myhref{https://commons.wikimedia.org/w/index.php?title=User:DavidHouse\&action=edit\&redlink=1}{DavidHouse}&CC-BY-SA-3.0\\ \hline
\href{https://en.wikibooks.org/wiki/File:Black-box-strictness.png}{36}& \myhref{http://commons.wikimedia.org/w/index.php?title=User:DavidHouse\&action=edit\&redlink=1}{DavidHouse}, \myhref{https://commons.wikimedia.org/w/index.php?title=User:DavidHouse\&action=edit\&redlink=1}{DavidHouse}&CC-BY-SA-3.0\\ \hline
\href{https://en.wikibooks.org/wiki/File:WxHaskell2_winxp.png}{37}& Tchakkazulu&\\ \hline
\href{https://en.wikibooks.org/wiki/File:WxHaskell3_winxp.png}{38}& Tchakkazulu&\\ \hline
\href{https://en.wikibooks.org/wiki/File:WxHaskell4_winxp.png}{39}& Tchakkazulu&\\ \hline
\href{https://en.wikibooks.org/wiki/File:WxHaskell5_row_winxp.png}{40}& Tchakkazulu&\\ \hline
\href{https://en.wikibooks.org/wiki/File:WxHaskell5_col_winxp.PNG}{41}& Tchakkazulu&\\ \hline
\href{https://en.wikibooks.org/wiki/File:WxHaskell6_winxp.png}{42}& Tchakkazulu&\\ \hline
\href{https://en.wikibooks.org/wiki/File:WxHaskell7_before_winxp.png}{43}& Tchakkazulu&\\ \hline

\end{longtable}
\pagebreak\pagebreak

\printindex

\KOMAoptions{fontsize=9pt,DIV=90,BCOR=0pt}
\pagebreak
\chapter{Licenses}
\label{Licenses}
{\tiny
\section {GNU GENERAL PUBLIC LICENSE}
\begin{multicols}{4}

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

 * a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
 * b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
 * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
 * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

 * a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
 * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
 * c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
 * d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
 * e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

 * a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
 * b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
 * c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
 * d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
 * e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
 * f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.

A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.
15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
\end{multicols}

\section{GNU Free Documentation License}
\begin{multicols}{4}

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

 * A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
 * B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
 * C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
 * D. Preserve all the copyright notices of the Document.
 * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
 * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
 * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
 * H. Include an unaltered copy of this License.
 * I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
 * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
 * K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
 * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
 * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
 * N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
 * O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

 Copyright (C) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with … Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
\end{multicols}

\section{GNU Lesser General Public License}
\begin{multicols}{4}

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version:

 * a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
 * b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:

 * a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:

 * a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
 * b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
 * c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
 * d) Do one of the following:
 o 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
 o 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
 * e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:

 * a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
 * b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.
\end{multicols}
}
\pagebreak
\end{document}

document/headers/options.tex

% Festlegungen für minitoc
% \renewcommand{\myminitoc}{\minitoc}
% \renewcommand{\mtctitle}{Überblick}
% \setcounter{minitocdepth}{1}
% \dominitoc % diese Zeile aktiviert das Erstellen der minitocs, sie muss vor \tableofcontents kommen

% Seitenformat
% ------------
%\KOMAoption{paper}{A5} % zulässig: letter, legal, executive; A-, B-, C-, D-Reihen
\KOMAoption{open}{right}			% zulässig: right (jedes Kapitel beginnt rechts), left, any
\KOMAoption{numbers}{auto}
% Satzspiegel jetzt neu berechnen, damit er bei Kopf- und Fußzeilen beachtet wird
\KOMAoptions{DIV=13}

% Kopf- und Fusszeilen
% --------------------
% Breite und Trennlinie
%\setheadwidth[-6mm]{textwithmarginpar}
%\setheadsepline[textwithmarginpar]{0.4pt}
\setheadwidth{text}
\setheadsepline[text]{0.4pt}

% Variante 1: Kopf: links Kapitel, rechts Abschnitt (ohne Nummer); Fuß: außen die Seitenzahl
\ohead{\headmark}
\renewcommand{\chaptermark}[1]{\markleft{#1}{}}
\renewcommand{\sectionmark}[1]{\markright{#1}{}}
\ofoot[\pagemark]{\pagemark}

% Variante 2: Kopf außen die Seitenzahl, Fuß nichts
%\ohead{\pagemark}
%\ofoot{}

% Standardschriften
% -----------------
%\KOMAoption{fontsize}{18pt}
\addtokomafont{disposition}{\rmfamily}
\addtokomafont{title}{\rmfamily}
\setkomafont{pageheadfoot}{\normalfont\rmfamily\mdseries}

% vertikaler Ausgleich
% --------------------
% nein -> \raggedbottom
% ja -> \flushbottom aber ungeeignet bei Fußnoten
%\raggedbottom
\flushbottom

% Tiefe des Inhaltsverzeichnisses bestimmen
% ---
% -1 nur \part{}
% 0 bis \chapter{}
% 1 bis \section{}
% 2 bis \subsection{} usw.
\newcommand{\mytocdepth}{1}

% mypart - Teile des Buches und Inhaltsverzeichnis
% --
% Standard: nur im Inhaltsverzeichnis, zusätzlicher Eintrag ohne Seitenzahl
% Variante: nur im Inhaltsverzeichnis, zusätzlicher Eintrag mit Seitenzahl
%\renewcommand{\mypart}[1]{\addcontentsline{toc}{part}{#1}}
% Variante: mit eigener Seite vor dem ersten Kapitel, mit Eintrag und Seitenzahl im Inhaltsverzeichnis
\renewcommand{\mypart}[1]{\part{#1}}

% maketitle
% ---
% Bestandteile des Innentitels
%\title{Einführung in SQL}
%\author{Jürgen Thomas}
%\subtitle{Datenbanken bearbeiten}
\date{}
% Bestandteile von Impressum und CR
% Bestandteile von Impressum und CR

\uppertitleback{
%Detaillierte Daten zu dieser Publikation sind bei Wikibooks zu erhalten:\newline{} \url{http://de.wikibooks.org/}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet zu erhalten: \newline{}\url{https://portal.d-nb.de/opac.htm?method=showSearchForm#top}
%Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Daten sind im Internet unter der Katalog-Nr. 1008575860 zu erhalten: \newline{}\url{http://d-nb.info/1008575860}

%Namen von Programmen und Produkten sowie sonstige Angaben sind häufig geschützt. Da es auch freie Bezeichnungen gibt, wird das Symbol \textregistered{} nicht verwendet.

%Erstellt am
\today{}
}

\lowertitleback{
{\footnotesize
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license.
A URI to this license is given in the list of figures on page \pageref{ListOfFigures}.
If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license.
The list of contributors is included in chapter Contributors on page \pageref{Contributors}.
The licenses GPL, LGPL and GFDL are included in chapter Licenses on page \pageref{Licenses}, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses.
The licenses of the figures are given in the list of figures on page \pageref{ListOfFigures}.
This PDF was generated by the \LaTeX{} typesetting software.
The \LaTeX{} source code is included as an attachment ({\tt source.7z.txt}) in this PDF file.
To extract the source from the PDF file, you can use the \texttt{pdfdetach} tool
including in the \texttt{poppler} suite, or the
\url{http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/} utility.
Some PDF viewers may also let you save the attachment to a file.
After extracting it from the PDF file you have to rename it to {\tt source.7z}.
To uncompress the resulting archive we recommend the use of \url{http://www.7-zip.org/}.
The \LaTeX{} source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from \url{http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf}.
}}

\renewcommand{\mysubtitle}[1]{}
\renewcommand{\mymaintitle}[1]{}
\renewcommand{\myauthor}[1]{}

\newenvironment{myshaded}{%
 \def\FrameCommand{ \hskip-2pt \fboxsep=\FrameSep \colorbox{shadecolor}}%
 \MakeFramed {\advance\hsize-\width \FrameRestore}}%
 {\endMakeFramed}

document/headers/packages1.tex

% Standard für Formatierung
%\usepackage[utf8]{inputenc} % use \usepackage[utf8]{inputenc} for tex4ht
\usepackage[usenames]{color}
\usepackage{textcomp}
\usepackage{parskip}
\usepackage[normalem]{ulem}
\usepackage[unicode=true]{hyperref}
\usepackage{tocstyle}
\usepackage[defblank]{paralist}
\usepackage{trace}
% Minitoc
%\usepackage{minitoc}

% Keystroke
\usepackage{keystroke}

document/headers/packages2.tex

% für Zeichensätze

%replacemnt for pslatex
\usepackage{mathptmx}
\usepackage[scaled=.92]{helvet}
\usepackage{courier}

\usepackage[T1]{fontenc} % disable this line for tex4ht

% für Tabellen
\usepackage{multirow}
\usepackage{multicol}
\usepackage{array,ragged2e}
\usepackage{longtable}

% für Kopf- und Fußzeilen, Fußnoten
\usepackage{scrpage2}
\usepackage{footnote}

% für Rahmen
\usepackage{verbatim}
\usepackage{framed}

% für Symbole
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}

\usepackage{pifont}
\usepackage{marvosym}
\let\Cross\undefined
\usepackage{fourier-orns} % disable this line for tex4ht % für weitere Logos, z.B. \danger

% für Grafik-Einbindung
\usepackage[pdftex]{graphicx}
\usepackage{wasysym}
\let\Square\undefined

% unklare Verwendung
\usepackage{bbm}
\usepackage{skull}

%arabtex
\usepackage[T1]{tipa} % disable this line for tex4ht

\usepackage{fancyvrb}
\usepackage{bbding}
\usepackage{textcomp}
\usepackage[table]{xcolor}
%\usepackage{microtype} disabled for xelatex
\usepackage{lscape}
\usepackage{tocstyle}
\usepackage{amsthm}
\usepackage{index}
\usepackage{scalefnt}
\makeindex

document/headers/paper.tex

\KOMAoption{paper}{A4}

document/headers/svg.tex

\newcommand{\SVGExtension}{png}

document/headers/templates-chemie.tex

\newcommand{\TemplateEnergieerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Energie}\\ \hline
{\bfseries Albert Einstein (14.3. 1879 - 18.4.1955)}: Umwandlung von Energie in Masse und von Masse in Energie ist möglich.\\
$E = m \cdot c^2$ (c = Lichtgeschwindigkeit = 300.000 km/s)\\ \hline
{\bfseries
Bei einer chemischen Reaktion ist die Summe aus Masse und Energie der Ausgangsstoffe gleich der Summe aus Masse und Energie der Endstoffe.
}\\\hline
Wird Energie frei, tritt ein unwägbar kleiner Massenverlust auf. Wird Energie investiert, tritt Massenzunahme auf. Dieses kann allerdings mit herkömmlichen Waagen nicht gemessen werden. \\ \hline
\end{longtable}
}

\newcommand{\TemplatePeriodensystem}[1]{
Hier sollte das Periodensystem stehen. Ein solches wird sehr wahrscheinlich von Orlando Camargo Rodriguez frei zur Verfügung gestellt werden. Dateiname: tabela_periodica.tex ist bereits online. Lizenz aber noch nicht genau genug definiert.
}

\newcommand{\TemplateMassenerhaltung}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz von der Erhaltung der Masse}\\ \hline
{\bfseries Antoine Lavoisier (1743 - 1794)}: Rien ne se perd, rien ne se crée\\
Die Gesamtmasse ändert sich bei chemischen Reaktionen (im Rahmen der Messgenauigkeiten) nicht.\\ \hline
Masse der Ausgangsstoffe=Masse der Produkte \\ \hline
\end{longtable}
}

\newcommand{\TemplateDaltonsAtomhyposthese}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
\begin{enumerate}
\item Materie besteht aus extrem kleinen, bei Reaktion ungeteilt bleibenden Teilchen, den Atomen.
\item Die Masse der Atome eines bestimmten Elements sind gleich (alle Atome eines Elements sind gleich). Die Atome verschiedener Elemente unterscheiden sich in ihren Eigenschaften (zum Beispiel in Größe, Masse, usw.).
\item Es existieren so viele Atomsorten wie Elemente.
\item Bei chemischen Reaktionen werden Atome in neuer Kombination vereinigt oder voneinander getrennt.
\item Eine bestimmte Verbindung wird von den Atomen der betreffenden Elemente in einem bestimmten, einfachen Zahlenverhältnis gebildet.
\end{enumerate}
\\ \hline
\end{longtable}
}

\newcommand{\TemplateUnveraenderlicheMassenverhaeltnisse}[1]{
\begin{longtable}{|>{\RaggedRight}p{\linewidth}|} \hline
{\bfseries Gesetz der unveränderlichen Massenverhältnisse}\\ \hline
Louis Proust (1799) \\ \hline
Bei chemischen Reaktionen, also Vereinigung beziehungsweise Zersetzung, reagieren die Reinstoffe immer in einem von der Natur vorgegebenen festen Verhältnis miteinander.
\\ \hline
\end{longtable}
}

document/headers/templates-dirk.tex

\newenvironment{TemplateCodeInside}[6]
{
\def\leftbox{#5}
\def\rightbox{}
\def\framecolor{shadecolor}
\ifstr{#4}{e}{ \def\framecolor{red}
 \def\rightbox{Falsch} } {}
\ifstr{#4}{v}{ \def\framecolor{mydarkgreen}
 \def\rightbox{Richtig} } {}

\begin{scriptsize}
\begin{framed}
\ttfamily

\ifstr{\leftbox} {} {
 % Ausgabe nur, wenn rechte Box Inhalt hat, dann links mit Standardtext
 \ifstr{\rightbox}{}{}
 { \fbox{Quelltext} \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
 }
} {
\fbox{\leftbox}
% und bei Bedarf zusätzlich rechts die zweite Box
 \ifstr{\rightbox}{}{}
 { \hfill \textbf{\color{\framecolor} \fcolorbox{black}{white}{\rightbox} }
 }
}

\begin{flushleft}
} % Ende der begin-Anweisungen, es folgen die end-Anweisungen
{\end{flushleft}\end{framed}\end{scriptsize} }

\newcommand{\TemplateCode}[9]
% **
{

\ifstr{#1}{}{~}{
\minisec{\normalfont \scriptsize \centering \textbf{\textit{#1}} \medskip } }

\begin{scriptsize}

% Code-Abschnitt mit #4
\begin{TemplateCodeInside} {} {0pt} {0pt} {#3} {#5} {}
#6
\end{TemplateCodeInside}

% Ausgabetext mit #4
#4

% #2 Fußzeile ausgeben, sofern vorgesehen
\ifstr{#2} {} {} { \centering \textit{#2} \medskip \\ }

\end{scriptsize}
}

document/headers/templates.tex

\newcommand{\LaTeXJa}{Ja}
\newcommand{\LaTeXNein}{Nein}
\newcommand{\wbtempcolora}{white}
\newcommand{\wbtempcolorb}{white}
\newcommand{\wbtempcolorc}{white}
\newcommand{\wbtemptexta}{}
\newcommand{\wbtemptextb}{}
\newcommand{\wbtemptextc}{}
\newlength{\wbtemplengtha}
\setlength{\wbtemplengtha}{0pt}
\newlength{\wbtemplengthb}
\setlength{\wbtemplengthb}{0pt}
\newlength{\wbtemplengthc}
\setlength{\wbtemplengthc}{0pt}
\newlength{\wbtemplengthd}
\setlength{\wbtemplengthd}{0pt}
\newlength{\wbtemplengthe}
\setlength{\wbtemplengthe}{0pt}
\newcount\wbtempcounta
\wbtempcounta=0
\newcount\wbtempcountb
\wbtempcountb=0
\newcount\wbtempcountc
\wbtempcountc=0

\newcommand{\CPPAuthorsTemplate}[4]{
\LaTeXZeroBoxTemplate{
The following people are authors to this book:

#3

You can verify who has contributed to this book by examining the history logs at Wikibooks (http://en.wikibooks.org/).

Acknowledgment is given for using some contents from other works like #1, as from the authors #2.

The above authors release their work under the following license:

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. In short: you are free to share and to make derivatives of this work under the conditions that you appropriately attribute it, and that you only distribute it under the same, similar or a compatible license. Any of the above conditions can be waived if you get permission from the copyright holder.
Unless otherwise noted, #4 used in this book have their own copyright, may use different licenses than the one used here, and were not created by the above authors. The authors, contributors, and licenses used should be acknowledged separately.}
}

\newcommand{\NFFallunterscheidung}[8]{
{\bfseries Fall 1:} #1 \\
#2 \\
{\bfseries Fall 2:} #3 \\
#4 \\
{\bfseries Fall 3:} #5 \\
#6 \\
{\bfseries Fall 4:} #7 \\
#8 \\
}

\newcommand{\NFAufgabe}[2]{
{\bfseries Aufgabe:}\\
#1 \\
{\bfseries Lösung:}\\
#2 \\
}

\newcommand{\tlTemplate}[1]{{\{\{{\ttfamily #1}\}\}}}

\newcommand{\matrixdimTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
{\bfseries Matrix Dimensions: }\\
A: $p \times p$ \\
B: $p \times q$\\
C: $r \times p$\\
D: $r \times q$\\
\end{myshaded}
}

\newcommand{\matlabTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This operation can be performed using this MATLAB command:
{\ttfamily #1}
\end{myshaded}}

\newcommand{\PrintUnitPage}[3]{\pagebreak
\begin{flushleft}
{\bfseries \Large #1}
\end{flushleft}

\begin{longtable}{>{\RaggedRight}p{0.5\linewidth}>{\RaggedRight}p{0.5\linewidth}}
& #2
\end{longtable}}

\newcommand{\LaTeXCodeTipTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
#1 \\
#2 \\
#3
\end{myshaded}
}

\newcommand{\DisassemblySyntax}[1]{

\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
This code example uses #1 Syntax
\end{myshaded}}

\newcommand{\LaTeXDeutschTemplate}[1]{ {\bfseries deutsch:} #1 }

\newcommand{\LaTeXNullTemplate}[1]{}
\newcommand{\LaTeXEquals}[1]{=}

\newcommand{\LatexSymbol}[1]{\LaTeX}

\newcommand{\LaTeXDoubleBoxTemplate}[2]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}
\end{minipage}

}

\newcommand{\NFHinweis}[1]{

\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{
\begin{flushleft}
\begin{Large}
{\Huge \textcircled{\LARGE !}} \ Hinweis
\end{Large}
\end{flushleft}}
\medskip
#1
\end{myshaded}
\end{minipage}

}

\newcommand{\LaTeXSimpleBoxTemplate}[2]{
{\bfseries #1} \\
#2
}

\newcommand{\SolutionBoxTemplate}[2]{
#2
}

\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}

\newcommand{\LaTeXDoubleBoxOpenTemplate}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #1} \\
#2
\end{myshaded}

}

\newcommand{\Loesungsweg}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Wie kommt man auf den Beweis? #1} \\
#2
\end{myshaded}

}

\newcommand{\LaTeXInduktion}[6]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Aussageform, deren Allgemeingültigkeit für #1 bewiesen werden soll:} \\
#2
{\newline \bfseries 1. Induktionsanfang}
#3
{\newline \bfseries 2. Induktionsschritt}
{\newline \bfseries 2a. Induktionsvoraussetzung}
#4
{\newline \bfseries 2b. Induktionsbehauptung}
#5
{\newline \bfseries 2c. Beweis des Induktionsschritts}
#6
\end{myshaded}

}

\newcommand{\LaTeXLatinExcerciseTemplate}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries Excercise: #1} \\
#2 \\
{\bfseries Solution}
#3
\end{myshaded}

}

\newcommand{\LaTeXShadedColorBoxTemplate}[2]{
{\linewidth}#1\begin{myshaded}
#2
\end{myshaded}
}

\newcommand{\PGP}[1]{PGP:#1}

\newcommand{\DETAILS}[1]{For more details on this topic, see #1}

\newcommand{\ADAFile}[1]{\LaTeXZeroBoxTemplate{File: #1}}
\newcommand{\ADASample}[1]{\LaTeXZeroBoxTemplate{This code sample is also available in #1}}

\newcommand{\LaTeXZeroBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\LaTeXZeroBoxOpenTemplate}[1]{
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
}

\newcommand{\PDFLink}[1]{
\textbf{PDF} #1
}

\newcommand{\Lysippos}[1]{Lysippos}

\newcommand{\SonnensystemFakten}[3]{
#1 \\
\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\bfseries #2} \\
#3 \\
\end{myshaded}
}

\newcommand{\VorlageReferenzenEintrag}[3]{
\begin{longtable}{p{0.2\linewidth}p{0.8\linewidth}}

{[\bfseries #1]} & {\itshape #2} #3 \\
\end{longtable}

}

\newcommand{\MBOX}[2]{\definecolor{shadecolor}{gray}{0.9}
\begin{myshaded}
\begin{longtable}{p{0.2\linewidth}p{0.7\linewidth}}
#1 & #2 \\
\end{longtable}
\end{myshaded}}

\newcommand{\LaTeXIdentityTemplate}[1]{#1
}
\newcommand{\Doppellizenz}[1]{Dieser Text ist sowohl unter GFDL als auch CC BY-SA 3.0 lizenziert. Wenn der Text unter CC BY-SA 3.0 genutzt wird, kann entsprechend Abschnitt 4b als Autor „Wikibooks“ genannt werden.}

\newcommand{\AdaRM}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaEightThreeRM}[2]{\myfnhref{http://archive.adaic.com/standards/83lrm/html/lrm-#1.html}{Annex #1: #2}}

\newcommand{\AdaRMThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaRMAThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{Annex #1.#2.#3 #4}}

\newcommand{\AdaRMATwo}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2.html}{Annex #1.#2 #3}}

\newcommand{\AdaNiveFiveRMThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaSGThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/#1-#2-#3.html}{#1.#2.#3 #4}}

\newcommand{\AdaSGTwo}[3]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaSGOne}[2]{\myfnhref{http://www.adaic.org/resources/add_content/docs/95style/html/sec_#1/}{Chapter #1: #2}}

\newcommand{\AdaRMNineFive}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2.html}{#1.#2 #3}}

\newcommand{\AdaRMCiteFive}[7]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1-#2-#3.html}{ISO/IEC 8652:2007. #1.#2.#3 #4 (#5). Ada 2005 Reference Manual. #7 }}

\newcommand{\AdaTwentyZeroFive}[1]{{\itshape This language feature is only available in Ada 2005}}

\newcommand{\ADANFAI}[2]{\myfnhref{http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-00#1.TXT}{AI95-00#1-01 #2}}

\newcommand{\ADARMAONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1.html}{Annex #1 #2}}

\newcommand{\ADARMONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/05rm/html/RM-#1.html}{Section #1: #2}}
\newcommand{\ADANiveFiveRMONE}[2]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1.html}{Section #1: #2}}

\newcommand{\AdaNiveFiveRMAThree}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2-#3.html}{Annex #1.#2-#3 #4}}

\newcommand{\AdaNiveFiveRMATwo}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-#1-#2.html}{Annex #1.#2 #3}}

\newcommand{\AdaNiveFiveR}[3]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95rat/rat95html/rat95-p#3-#1.html}{#1 #2}}

\newcommand{\AdaNiveFiveRTwo}[4]{\myfnhref{http://www.adaic.org/resources/add_content/standards/95rat/rat95html/rat95-p#4-#1.html}{#1.#2 #3}}

\newcommand{\AdaPragma}[1]{\LaTeXTTBF{pragma} }

\newcommand{\yes}[1]{yes}
\newcommand{\no}[1]{no}
\newcommand{\BlenderRepo}[1]{\myfnhef{https://developer.blender.org/diffusion/B/browse/master/#1}{#1}}

\newcommand{\TychoBrahe}[1]{Tycho Brahe}
\newcommand{\BlenderAlignedView}[1]{This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit \myfnhref{https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}{Aligned} to view issue to understand the settings that need to be changed.}

\newcommand{\LaTeXPlainBoxTemplate}[1]{
\begin{minipage}{\linewidth}\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}
#1
\end{myshaded}
\end{minipage}
}

\newcommand{\Hinweis}[1]{
\begin{TemplateInfo}{{\Huge \textcircled{\LARGE !}}}{Hinweis}
#1
\end{TemplateInfo}}

\newcommand{\LaTexInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}}

\newcommand{\EqnTemplate}[1]{
\begin{flushright}
\textbf{[#1]}
\end{flushright}}

\newcommand{\RefTemplate}[1]{[#1]}

\newcommand{\LaTeXGCCTakeTemplate}[1]{
\LaTeXDoubleBoxTemplate{Take home:}{#1}
}

\newcommand{\LaTeXEditorNote}[1]{\LaTeXDoubleBoxTemplate{Editor's note}{#1}}

\newcommand{\BNPForVersion}[1]{
\LaTeXInfoTemplateOne{Applicable Blender version: #1}
}

\newcommand{\LaTeXInfoTemplateOne}[1]{
\begin{TemplateInfo}{\Info}{Information}
#1
\end{TemplateInfo}
}

\newcommand{\LaTexHelpFulHintTemplate}[1]{
\LaTeXDoubleBoxTemplate{Helpful Hint:}{#1}
}

\newcommand{\MyLaTeXTemplate}[3]{
\LaTeXDoubleBoxTemplate{MyLaTeXTemplate1:}{#1 \\ #2 \\ #3}
}

\newcommand{\TemplatePreformat}[1]{
\par
\begin{scriptsize}
%\setlength{\baselineskip}{0.9\baselineskip}
\ttfamily
#1
\par
\end{scriptsize}
}

\newcommand{\TemplateSpaceIndent}[1]{
\begin{scriptsize}
\begin{framed}
\ttfamily
#1
\end{framed}
\end{scriptsize}
}

\newcommand{\GenericColorBox}[2]
{
\newline
\begin{tabular}[t]{p{0.6cm}p{4cm}}
#1\\
\end{tabular}
}

\newcommand{\legendNamedColorBox}[2]
{
 \GenericColorBox{
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{#1}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

\newcommand{\legendColorBox}[2]
{
 \GenericColorBox{
 \definecolor{tempColor}{rgb}{#1}
 \parbox[t]{0.5\linewidth}{
 \textsuperscript{
 \fcolorbox{black}{tempColor}{
 \Huge{\,\,}
 }
 }
 }
 }{
 #2
 }
}

%\newcommand{\ubung} {{\LARGE \triangleright}}
\newcommand{\ubung}{\ding{228} \textbf{Aufgabe:}\,}

\newcommand{\TemplateSource}[1]
{
%\begin{TemplateCodeInside}{}{\baselineskip}{\baselineskip}{}{}{true}
\begin{scriptsize}
\begin{myshaded}\ttfamily
#1
\end{myshaded}
\end{scriptsize}
%\end{TemplateCodeInside}
}

\newenvironment{TemplateInfo}[2]
% no more parameters
%**
% Template Info
% Kasten mit Logo, Titelzeile, Text
% kann für folgende Wiki-Vorlagen benutzt werden:
% Vorlage:merke, Vorlage:Achtung u.ä.
%
% #1 Logo (optional) default: \Info
% #2 Titel (optional) default: Information; könnte theoretisch auch leer sein,
% das ist aber wegen des Logos nicht sinnvoll
%**
{
% Definition des Kastens mit Standardwerten
% u.U. ist linewidth=1pt erorderlich
\begin{framed}
% linksbündig ist besser, weil es in der Regel wenige Zeilen sind, die teilweise kurz sind
\begin{flushleft}
% Überschrift größer darstellen
\begin{Large}
% #1 wird als Logo verwendet, Vorgabe ist \Info aus marvosym
% für andere Logos muss ggf. das Package eingebunden werden
% das Logo kann auch mit einer Größe verbunden werden, z.B. \LARGE\danger als #1
{#1 } \
% #2 wird als Titelzeile verwendet, Vorgabe ist 'Information'
{\bfseries #2}
\medskip \end{Large} \\
} % Ende der begin-Anweisungen, es folgenden die end-Anweisungen
{ \end{flushleft}\end{framed} }

\newcommand{\TemplateHeaderExercise}[3]
% no more parameters
%**
% Template Header Exercise
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
% ist gedacht für folgende Wiki-Vorlage:
% Vorlage:Übung4
% kann genauso für den Aufgaben-Teil folgender Vorlagen verwendet werden:
% Vorlage:Übung (wird zz. nur einmal benutzt)
% Vorlage:Übung2 (wird zz. gar nicht benutzt)
% Vorlage:Übung3 (wird zz. in 2 Büchern häufig benutzt)
% C++-Programmierung/ Vorlage:Aufgabe (wird zz. nur selten benutzt,
% ist in LatexRenderer.hs schon erledigt)
%
% #1 Text (optional) 'Aufgabe' oder 'Übung', kann auch leer sein
% #2 Nummer (Pflicht) könnte theoretisch auch leer sein, aber dann sieht die Zeile
% seltsam aus; oder die if-Abfragen wären unnötig komplex
% #3 Titel (optional) Inhaltsangabe der Aufgabe, kann auch leer sein
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateHeaderSolution}[3]
% no more parameters
%**
% Template Header Solution
% Rahmen als minisec mit Nummer der Aufgabe und Titel und grauem Hintergrund
%
% ist gedacht für den Lösungen-Teil der Vorlagen und wird genauso
% verwendet wie \TemplateHeaderExercise
%**
{
\minisec{\normalfont \fcolorbox{black}{shadecolor}{\large \, Lösung zu #1 #2 \ifx{#3}{}{}\else{-- #3}\fi \,} \medskip }
}

\newcommand{\TemplateUbungDrei}[4]
{
\TemplateHeaderExercise{Übung}{#1}{#2}
#3
\TemplateHeaderSolution{Übung}{#1}{#2}
#4
}

\newcommand{\Mywrapfigure}[2]
{
\begin{wrapfigure}{r}{#1\textwidth}
\begin{center}
#2
\end{center}
\end{wrapfigure}
}

\newcommand{\Mymakebox}[2]
{
\begin{minipage}{#1\textwidth}
#2
\end{minipage}
}

\newcommand{\MyBlau}[1]{
\textcolor{darkblue}{#1}
}
\newcommand{\MyRot}[1]{
\textcolor{red}{#1}
}
\newcommand{\MyGrun}[1]{
\textcolor{mydarkgreen}{#1}
}
\newcommand{\MyBg}[2]{
\fcolorbox{#1}{#1}{#2}
}

\newcommand{\BNPModule}[1]{
the "#1" module
}

\newcommand{\LaTeXMerkeZweiTemplate}[1]{\LaTeXDoubleBoxTemplate{Merke}{#1}}

\newcommand{\LaTeXDefinitionTemplate}[1]{\LaTeXDoubleBoxTemplate{Definition}{#1}}

\newcommand{\LaTeXAnorganischeChemieFuerSchuelerVorlageMerksatzTemplate}[1]{\LaTeXDoubleBoxTemplate{Merksatz}{#1}}

\newcommand{\LaTeXTextTemplate}[1]{\LaTeXDoubleBoxTemplate{}{#1}}

\newcommand{\LaTeXExampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}
\newcommand{\HaskellExampleTemplate}[2]{\LaTeXDoubleBoxTemplate{Example: #1}{#2}}

\newcommand{\LaTeXexampleTemplate}[1]{\LaTeXDoubleBoxTemplate{Example:}{#1}}

\newcommand{\LaTeXPTPBoxTemplate}[1]{\LaTeXDoubleBoxTemplate{Points to ponder:}{#1}}

\newcommand{\LaTeXNOTETemplate}[2]{\LaTeXDoubleBoxTemplate{Note:}{#1 #2}}

\newcommand{\LaTeXNotizTemplate}[1]{\LaTeXDoubleBoxTemplate{Notiz:}{#1}}

\newcommand{\LaTeXbodynoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\DarcsPatchProperty}[1]{\LaTeXDoubleBoxTemplate{Patch property:}{#1}}

\newcommand{\LaTeXecebcite}[1]{[#1]}

\newcommand{\LaTeXmainpage}[1]{{\itshape Main Page: #1}}
\newcommand{\LaTeXAsof}[1]{As of #1}
\newcommand{\LaTeXasof}[1]{as of #1}

\newcommand{\LaTeXAPDIPpreface}[1]{
Roberto R. Romulo \newline
Chairman (2000-2002) \newline
e-ASEAN Task Force \newline
Manila, Philippines \newline
 \newline
Shahid Akhtar \newline
Program Coordinator\newline
UNDP-APDIP \newline
Kuala Lumpur, Malaysia\newline
http://www.apdip.net\newline}

\newcommand{\LaTeXcquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXCquoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Quote:}{#1}}

\newcommand{\LaTeXSideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXsideNoteTemplate}[1]{\LaTeXDoubleBoxTemplate{Note:}{#1}}

\newcommand{\LaTeXExercisesTemplate}[1]{\LaTeXDoubleBoxTemplate{Exercises:}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageTippTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}

\newcommand{\LaTeXTipTemplate}[1]{\LaTeXDoubleBoxTemplate{Tip}{#1}}
\newcommand{\LaTeXUnknownTemplate}[1]{unknown}

\newcommand{\LaTeXCppProgrammierungVorlageHinweisTemplate}[1]{\LaTeXDoubleBoxTemplate{Hinweis}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageSpaeterImBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Thema wird später näher erläutert...}{#1}}

\newcommand{\SGreen}[1]{This page uses material from Dr. Sheldon Green's Hypertext Help with LaTeX.}
\newcommand{\ARoberts}[1]{This page uses material from Andy Roberts' Getting to grips with LaTeX with permission from the author.}

\newcommand{\LaTeXCppProgrammierungVorlageAnderesBuchTemplate}[1]{\LaTeXDoubleBoxTemplate{Buchempfehlung}{#1}}

\newcommand{\LaTeXCppProgrammierungVorlageNichtNaeherBeschriebenTemplate}[1]{\LaTeXDoubleBoxTemplate{Nicht Thema dieses Buches...}{#1}}

\newcommand{\LaTeXPythonUnterLinuxVorlagenVorlageDetailsTemplate}[1]{\LaTeXDoubleBoxTemplate{Details}{#1}}

\newcommand{\LaTeXChapterTemplate}[1]{\chapter{#1}
\myminitoc
}

\newcommand{\Sample}[2]{
\begin{longtable}{|p{\linewidth}|}
\hline
#1 \\ \hline
#2 \\ \hline
\end{longtable}
}

\newcommand{\Syntax}[1]{
\LaTeXDoubleBoxTemplate{Syntax}{#1}}

\newcommand{\LaTeXTT}[1]{{\ttfamily #1}}
\newcommand{\LaTeXBF}[1]{{\bfseries #1}}
\newcommand{\ADAPK}[3]{{#1.#2}}
\newcommand{\LaTeXTTBF}[1]{{\bfseries \ttfamily #1}}
\newcommand{\LaTeXIT}[1]{{\itshape #1}}
\newcommand{\ADACOM}[1]{{\itshape -{}-#1}}

\newcommand{\LaTeXCenter}[1]{
\begin{center}
#1
\end{center}}

\newcommand{\BNPManual}[2]{The Blender Manual page on #1 at \url{http://wiki.blender.org/index.php/Doc:Manual/#1}}
\newcommand{\BNPWeb}[2]{#1 at \url{#2}}

\newcommand{\Noframecenter}[2]{
\begin{tablular}{p{\linewidth}}
#2\\
#1
\end{tabluar}
}

\newcommand{\LaTeXTTUlineTemplate}[1]{{\ttfamily \uline{#1}}
}

\newcommand{\PythonUnterLinuxDenulltails}[1]{
\begin{tabular}{|p{\linewidth}|}\hline
\textbf{Denulltails} \\ \hline
#1 \\ \hline
\end{tabular}}

\newcommand{\GNURTip}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
\textbf{Tip} \\ \hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlUebung}[1]{
\begin{longtable}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{longtable}}

\newcommand{\PerlNotiz}[1]{
\begin{table}{|p{\linewidth}|}\hline
#1 \\ \hline
\end{table}}

\newcommand{\ACFSZusatz}[1]{\textbf{ Zusatzinformation }}
\newcommand{\ACFSVorlageB}[1]{\textbf{ Beobachtung }}
\newcommand{\ACFSVorlageV}[1]{\textbf{ Versuchsbeschreibung }}
\newcommand{\TemplateHeaderSolutionUebung}[2]{\TemplateHeaderSolution{Übung}{#1}{#2}}
\newcommand{\TemplateHeaderExerciseUebung}[2]{\TemplateHeaderExercise{Übung}{#1}{#2}}

\newcommand{\ChemTemplate}[9]{\texttt{
#1#2#3#4#5#6#7#8#9}}

\newcommand{\QED}[1]{\square}

\newcommand{\WaningTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warning}
#1
\end{TemplateInfo}}

\newcommand{\WarnungTemplate}[1]{
\begin{TemplateInfo}{\danger}{Warnung}
#1
\end{TemplateInfo}}

\newcommand{\BlenderAlignedToViewIssue}[1]{
\begin{TemplateInfo}{\danger}{Blender3d Aligned to view issue}
This tutorial relies on objects being created so that they are aligned to the view that you’re looking through. Versions 2.48 and above have changed the way this works. Visit Aligned (\url{http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Aligned_to_view_issue}) to view issue to understand the settings that need to be changed.
\end{TemplateInfo}}

\newcommand{\BlenderVersion}[1]{
{\itshape Diese Seite bezieht sich auf }{\bfseries \quad Blender Version #1}}

\newcommand{\Literal}[1]{{\itshape #1}}

\newcommand{\JavaIllustration}[3]{
\begin{tablular}
{Figure #1: #2}
\\
#3
\end{ltablular}
}

\newcommand{\Ja}[1]{\Checkmark {\bfseries Ja}}
\newcommand{\Nein}[1]{\XSolidBrush {\bfseries Nein}}

\newcommand{\SVGVersions}[8]{
{\scriptsize
\begin{tabular}{|p{0.45\linewidth}|p{0.13\linewidth}|}\hline
Squiggle (Batik) & #1 \\ \hline
Opera (Presto) & #2 \\ \hline
Firefox (Gecko; auch SeaMonkey, Iceape, Iceweasel etc) & #3 \\ \hline
Konqueror (KSVG) & #4 \\ \hline
Safari (Webkit) & #5 \\ \hline
Chrome (Webkit) & #6 \\ \hline
Microsoft Internet Explorer (Trident) & #7 \\ \hline
librsvg & #8 \\\hline
\end{tabular}}

}

\theoremstyle{plain}
\newtheorem{satz}{Satz}
\newtheorem{beweis}{Beweis}
\newtheorem{beispiel}{Beispiel}

\theoremstyle{definition}
\newtheorem{mydef}{Definition}

\newcommand{\NFSatz}[2]{\begin{satz}#1\end{satz}#2}

\newcommand{\NFDef}[2]{\begin{mydef}#1\end{mydef}#2}

\newcommand{\NFBeweis}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFBeweisschritt}[2]{{\bfseries Beweisschritt} #1 \\ #2}

\newcommand{\Smiley}[1]{$\ddot\smile$}

\newcommand{\NFBeispiel}[2]{\begin{beweis}#1\end{beweis}#2}

\newcommand{\NFFrage}[3]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{#1}: #2} \\
#3
\end{myshaded}

}

\newcommand{\NFFrageB}[2]{

\definecolor{shadecolor}{gray}{0.9}\begin{myshaded}{\itshape \uline{Frage}: #1} \\
#2
\end{myshaded}

}

\newcommand{\NFVertiefung}[1]{
{\bfseries Vertiefung:} \\
Der Inhalt des folgenden Abschnitts ist eine Vertiefung des Stoffes. Für die nächsten Kapitel ist es nicht notwendig, dass du dieses Kapitel gelesen hast.

}

document/headers/title.tex

\publishers{en.wikibooks.org}
\title{Haskell}

document/headers/unicodes.tex

\newcommand{\R}{\ensuremath{\mathbb{R}}}
\newcommand{\N}{\ensuremath{\mathbb{N}}}
\newcommand{\Z}{\ensuremath{\mathbb{Z}}}
\newcommand{\Q}{\ensuremath{\mathbb{Q}}}
\renewcommand{\C}{\ensuremath{\mathbb{C}}}

document/images/1.pdf

Eq

Ord
Num

Show Read

FloatingRealFrac

Real Fractional

Bounded

RealFloat

FunctorMonadPlus

Monad

Integral

Enum

Int, Integer Float, Double

Float, Double

Float, Double

Float, Double
(), Bool, Char, Ordering,

Int, Integer, Float,
Double

Int, Integer,
Float, Double

All except IO,
IOError, (->)

All except
IO, (->)

All except
IO, (->)

All except
IO, (->)

Int, Integer,
Float, Double

Int, Char, Bool, ()
Ordering,tuples

IO, [], Maybe

IO, [], Maybe IO, [], Maybe

document/images/12.pdf

document/images/13.pdf

document/images/28.pdf

⊥

[] ⊥:⊥

():⊥⊥:[] ⊥:⊥:⊥

():[] ():⊥:⊥ ⊥:():⊥ ⊥:⊥:[] ⊥:⊥:⊥:⊥

… … … …

document/images/4.pdf

s1 (v1,s2)
pA pB

(v2,s3)

pB = f v1

pA >>= f

pAB

p

Input and output
(states and results)

State transition caused by a
processor p

"Same value" (information flow)

Processor

pAB = pA >>= f
 = state $ \ s1 -> (v2, s3)
 where
 (v1, s2) = runState pA s1
 pB = f v1
 (v2, s3) = runState pB s2

document/images/5.pdf

document/images/dump2

