© Ericsson 2002-2013. 4/6/2018

=
2

ERICSSON

TTCN-3 COURSE

PRESENTATION MATERIAL

TESTCOMPETENCE CENTER
ERICSSON HUNGARY

http://ttcn.ericsson.se/

Copyright © Ericsson AB 2018. All rights reserved.

This program and the accompanying materials
are made available under the terms of the Eclipse Public License v1.0

which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html

LZT 123 7751 Uen, Rev R1N

© Ericsson 2002-2013. 4/6/2018

Copyright © Ericsson AB 2018. All rights reserved.

This program and the accompanying materials
are made available under the terms of the Eclipse Public License v1.0
which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html

LZT 123 7751 Uen, Rev R1N 2

© Ericsson 2002-2013.

CONTENTS

Protocols and Testing

Introduction to TTCN-3

TTCN-3 module structure

Type system

Constants, variables, module parameters
Program statements and operators
Timers

Test configuration

Functions and testcases

Verdicts

Configuration operations

Data templates

Abstract communication operations
Behavioral statements

Sample test case implementation

= 1O |00 [N | |W N |= W
s lBIRISIBIS IR |5

(4}

-
N
o

-
N
(4]

-
(4]
w

-
©
N

N
o
»

N
w
-

LZT 123 7751 Uen, Rev R1N

4/6/2018

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

. PROTOCOLS AND TESTING

WHAT IS "PROTOCOL"™?
DEFINITIONS

PROTOCOL VERIFICATION, TESTING AND
VALIDATION

CONTENTS

LZT 123 7751 Uen, Rev R1N 4

© Ericsson 2002-2013. 4/6/2018

PROTOCOL

LZT 123 7751 Uen, Rev R1N 5

© Ericsson 2002-2013. 4/6/2018

= |

COMMUNICATIONS PROTOCOLS

* Protocolis a set of rules that controls the communication
» syntactical rules (static part):
» define format (layout) of messages

* semantical rules (dynamic part):

» describe behavior (how messages are exchanged) and
meaning of messages

A protocol is a set of rules that controls the communication between entities in
different systems.

Protocols define format (syntax), order of messages sent and received among network
entities, as well as actions taken on message transmission or reception (behaviour).

Behaviour of the protocols can be defined using natural language (e.g. English) or some
formal description technique. Examples for the latter: SDL, Estelle and Lotos. They are
compilable specification languages. None of them has outweighed the others.

*ASN.1 Abstract Syntax Notation One (ITU-T X.680-X.699)
*TTCN-3 Testing and Test Control Notation version 3 (ETSI ES 201 873)

*UML Unified Modeling Language (http://www.omg.org/uml/, ITU-T Z.109 [SDL combined
with UML])

*SDL: Specification & Description Language. (ITU-T Z.100-Z.109) Most popular in the
industry.

*MSC Message Sequence Charts (ITU-T Z.120-Z.129)

+LOTOS: Language of Temporal Ordering Specifications (ISO8807) is widely used in the
academic world. LOTOS is based on communicating processes.

*Estelle (1ISO9074) is based on extended finite automata.

LZT 123 7751 Uen, Rev R1N 6

© Ericsson 2002-2013.

PROTOCOL TECHNOLOGY

Informal K
specification I

Formal |
specification I

|
Implementationl.[Test cases]

* Ambiguous
* Not complete

+ ASN.1, TTCN-3,...
« UML, SDL, MSC, ...
+ Verification, validation

» Conformance tests

LZT 123 7751 Uen, Rev R1N

4/6/2018

© Ericsson 2002-2013.

TESTING

Verdict:

pass,

fail,

inconclusive

* Black box testing

~Implementation/System
Under Test

-Point of Control and
Observation

* Not possible to test all the
situations

—~Test Purposes

LZT 123 7751 Uen, Rev R1N

4/6/2018

© Ericsson 2002-2013. 4/6/2018

FORMALTECHNIQUES IN CONFORMANCE E

ASSESSMENT
Protocol
* Verification: specification
— Check correctness of formal model 2 1 Modeling

Verification Fbrmal protocol

description

* Testing (black-box):

- Check if Implementation Under Test (IUT)
conforms to its specification

- Experiments programmed into Test Cases :
- Validation: l
— Ensure correctness of test cases of ATS b

TestPurposes 1 : Validation
ATS

l Testexecution

Testresults

ATS: Abstract Test Suite, a collection of Abstract Test Cases.
ETS: Executable Test Suite, a set of Executable Test Cases.
IUT: Implementation Under Test

LZT 123 7751 Uen, Rev R1N 9

© Ericsson 2002-2013. 4/6/2018

TESTTYPES

« Conformance testing

— Function tests
* Regression tests
- System tests

* Interoperability testing

* Performance (Load) testing

LZT 123 7751 Uen, Rev R1N 10

© Ericsson 2002-2013.

= |

TEST CASES IN BLACK-BOX TEST

Implementation of Test Purpose

Stimulus) non-blocking
— TP defines an experiment alternatives
* Focus on a single requirement | "5.°cking events
« Returns verdict (pass, fail, inconclusive) Q

Typically a sequence of action-observation- e
verdict update:

non-blocking

- Action (stimulus): non-blocking / R
(e.g. transmit PDU, start timer) v b.'ockingm :
— Observation (event): takes care of multiple (’\A) :

alternative events (e.g. expected PDU, N
unexpected PDU, timeout)

Black-box testing means that the internal structure of the tested software product is not known: the
only way to test it is to send a message ("'stimulus”) to the system and to analyse the received
response. The latter is compared to the due response determined beforehand using the reference
specification. If the comparison ("pattern matching") between the real and the expected response
fails, the test case is considered as "failed" otherwise "passed”.

The test script language must have means to match the expected and the received messages
even if the message elements arrive in different order, or some of them (the optional ones) are
missing. Usually, there are more than one possible responses; all of them must be accepted.

Once the match is determined, the next stimulus is constructed taking into consideration the data
having received in the response, and so on.

The test script language must be prepared to determine that the expected response is not received
within the specified time frame: it must handle timing ("temporal") requirements.

3.3.118 test purpose: A prose description of a well defined objective of testing, focusing on a
single conformance requirement or a set of related conformance requirements as specified in the
appropriate OSI specification (e.g. verifying the support of a specific value of a specific parameter).
3.3.3 abstract test case: A complete and independent specification of the actions required to
achieve a specific test purpose, defined at the level of abstraction of a particular Abstract Test
Method, starting in a stable testing state and ending in a stable testing state. This specification may
involve one or more consecutive or concurrent connections.

Note 1: The specification should be complete in the sense that it is sufficient to enable a test
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence
of test events).

Note 2: The specification should be independent in the sense that it should be possible to execute
the derived executable test case in isolation from other such test cases (i.e. the specification
should always include the possibility of starting and finishing in the “idle” state).

3.3.31 executable test case: A realization of an abstract test case.

3.3.107 test case: An abstract or executable test case.

Abbreviations
IUT: Implementation Under Test
SUT: System Under Test

LZT 123 7751 Uen, Rev R1N

4/6/2018

11

© Ericsson 2002-2013. 4/6/2018

INDEPENDENCE AND STRUCTURE OF E
ABSTRACT TEST CASES

* Abstract test cases should contain

- preamble: sequence of test events
to drive IUT into initial testing state
from the starting stable testing state

- test body: sequence of test events

to achieve the test purpose ».
— postamble: sequence of test events

which drive IUT into a finishing stable

testing state

* Preamble/postamble may be absent

=)

preambIeA body postamble

» Starting stable testing state and finishing [%)
stable testing state are the idle state in e -
TTCN-3

3.3.121 testing state: A state encountered during testing, comprising the combination of
the states of the SUT, the test system, the protocols for which control and observation is
specified in the ATS, and, if relevant, the state of the underlying service.

3.3.93 stable testing state: A testing state which can be maintained, without prescribed
Lower Tester behaviour, sufficiently long to span the gap between one test case and the
next in a test campaign.

3.3.47 initial testing state: The testing state in which a test body starts.

3.3.110 test event: An indivisible unit of test specification at the level of abstraction of the
specification (e.g. sending or receiving a single PDU).

3.3.117 (test) preamble: The sequences of test events from the starting stable testing
state of the test case up to the initial testing state from which the test body will start.

3.3.105 test body: The sequences of test events that achieve the test purpose.

3.3.116 (test) postamble: The sequences of test events from the end of the test body up
to the finishing stable testing state(s) for the test case.

LZT 123 7751 Uen, Rev R1N 12

© Ericsson 2002-2013. 4/6/2018

REQUIREMENTS ON TEST SUITES

« All test cases in an ATS must be sound

— Exhaustive test case results pass verdict if IUT is correct
(practically impossible with finite number of test cases)

— Sound test case gives fail verdict if IUT behaves incorrectly
— Complete test case is both sound and exhaustive
* Must not terminate with none or error verdict

ATS is exhaustive if all test cases are exhaustive (all passing implementations are
compliant)

ATS is sound if all test cases are sound (all implementations that do not pass are not
compliant)

ATS is complete if all test cases are both sound and exhaustive

LZT 123 7751 Uen, Rev R1N 13

© Ericsson 2002-2013. 4/6/2018

PHASES OF BLACK-BOX (FUNCTIONAL) E
TESTING

» Test purpose definition
- Formally or informally
* TTCN-3 Abstract Test Suite (ATS)
- design or generation
* Executable Test Suite (ETS) implementation
- using the Means of Testing (MoT)
* Test execution against the Implementation Under Test (IUT)
- with MoT
* Analysis of test results
- verdicts, logs (validation)

LZT 123 7751 Uen, Rev R1N 14

© Ericsson 2002-2013. 4/6/2018

ABSTRACT TEST SUITE DESIGN

« Manual design:

- ldentify test purposes from protocol specification based on
the test requirements

- Implement abstract test cases from test purposes using a
standardized test notation (TTCN-3)

* Automatic design:
— Generate test purposes and abstract test cases directly from formal
protocol specification in e.g. UML, SDL, ASN.1

- Requires formal protocol specification
— Computer Aided Test Generation (CATG) is an open problem
- Model Based Testing

Once the protocol specification is formalised, it is theoretically possible to generate
executable test cases automatically. However, this procedure, called Computer Aided
Test Generation (CATG) is only being developed.

Otherwise, one needs to design abstract test cases manually. Manual test suite design
starts with the formulation of test purposes from protocol specification. Test purposes are
implemented in test cases.

LZT 123 7751 Uen, Rev R1N 15

© Ericsson 2002-2013. 4/6/2018

= |

TEST EXECUTION

» Realize Executable Test Suite (ETS) from Abstract Test Suite (ATS) using
the chosen Means of Testing (MoT)

- MoT=TITAN
— ATS->ETS = build project

» Execute the ETS on the test system against the IUT
- execute in TITAN

* Observe the verdict of executed test cases
- pass, fail, inconclusive (none, error)

The test system is the link between “abstract” and “executable”. It derives executable
test cases from abstract test cases and executable test suites (ETSs) from abstract test
suites (ATSs). The test system and any additional equipment and procedures that may be
required for the execution of test cases together are called the Means of Testing.

LZT 123 7751 Uen, Rev R1N 16

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

. INTRODUCTION TO TTCN-3

HISTORYOF TTCN
TTCN-2TO TTCN-3 MIGRATION
TTCN-3 CAPABILITIES, APPLICATION AREAS
PRESENTATION FORMATS
STANDARD DOCUMENTS

CONTENTS

LZT 123 7751 Uen, Rev R1N 17

© Ericsson 2002-2013. 4/6/2018

= |

HISTORY OF TTCN

» Originally: Tree and Tabular Combined Notation

* Designed for testing of protocol implementations based on the OSI Basic
Reference Model in the scope of Conformance Testing Methodology and
Framework (CTMF)

» Versions 1 and 2 developed by ISO (1984 - 1997) as part of the widely-
used ISO/IEC 9646 conformance testing standard

* TTCN-2 (ISO/IEC 9646-3 == ITU-T X.292) adopted by ETSI

- Updates/maintenance by ETSI in TR 101 666 (TTCN-2++)
+ Informal notation: Independent of Test System and SUT/IUT
* Complemented by ASN.1 (Abstract Syntax Notation One)
- Used for representing data structures
» Supports automatic test execution (e.g. SCS)
* Requires expensive tools (e.g. ITEX for editing)

Test notation is used to describe abstract test cases. The test notation can be an
informal notation (without formally defined semantics) or a Formal Description Technique
(FDT). TTCN-2 is an informal notation with clearly defined, but not formally defined
semantics.a

The International Organization for Standardization (ISO*) has standardised first two
versions of TTCN. The very same standard has been adopted as ITU-T and ETSI
standard. Data structure definitions written in ASN.1 can be imported to TTCN-2.

TTCN-2 test cases can be edited using special software, e.g. ITEX. Executable test
cases are produced and run with help of e.g. SCS.

Abbreviations:

ETSI
IEC International Engineering Consortium
ITU-T International
SCS System Certification System
(Ericsson's TTCN test case execution platform)
ITEX Interactive TTCN Editor and eXecutor

(from the Swedish firm Telelogic)

* Because "International Organization for Standardization" would have different abbreviations in different
languages ("IOS" in English, "OIN" in French for Organisation internationale de normalisation), it was decided
at the outset to use a word derived from the Greek isos, meaning "equal”. Therefore, whatever the country,
whatever the language, the short form of the organization's name is always ISO.

LZT 123 7751 Uen, Rev R1N 18

© Ericsson 2002-2013. 4/6/2018

TTCN-2TO TTCN-3 MIGRATION

* TTCN-2 was getting used in other areas than Conformance Test
(e.g. Integration, Performance or System Test)

* TTCN-2 was too restrictive to cope with new challenges (0Sl)

* The language was redesigned to get a general-purpose test description
language for testing of communicating systems

— Breaks up close relation to Open Systems Interconnections model

— TTCN's tabular graphical representation format (TTCN.GR) is getting
obsolete by TTCN-3 Core Language

— Some concepts (e.g. snapshot semantics) are preserved, others (abstract
data type) reconsidered while some are omitted (ASP, PDU)

— TTCN-3 is not fully backward compatible
* Name changed: Testing and Test Control Notation

Language development was being done in the following framework:
ETSI MTS/STFs 133, 156, 213, 253

TTCN-3 can be used for protocol testing (for mobile and Internet protocols),
supplementary service testing, module testing, the testing of CORBA-based platforms,
the testing of Application Programming Interfaces (APIs) and many more applications.
The language is not restricted to conformance testing, but can be used for
interoperability, robustness, regression, system, and integration testing.

The syntax of TTCN-3 is new, but the language has retained (and improved upon) much
of the well proven capabilities of its predecessors. Its main features include:

*Dynamic, concurrent testing configurations

*Synchronous and asynchronous communication mechanisms
*Encoding information and other attributes (including user extensibility)
«Data and signature templates with powerful matching mechanisms
*Type and value parameterization

*Assignment and handling of test verdicts

*Test suite parameterization and test case selection mechanisms
*Combined use of TTCN-3 with ASN.1

*Well defined syntax, interchange format and static semantics
*Optional presentation formats (eg. tabular conformance presentation format, MSC
(Message Sequence Chart) format)

*Precise execution algorithm (operational semantics)

*Execution and control of test cases

LZT 123 7751 Uen, Rev R1N 19

© Ericsson 2002-2013.

TTCN-3 STANDARD DOCUMENTS

= |

¢ Multi-part ETSI Standard v4.2.1 (2010)

— ES 201 873-1: TTCN-3 Core Language

— ES 201 873-2: Tabular Presentation Format (TFT)

— ES 201 873-3: Graphical format for TTCN-3 (GFT)

— ES 201 873-4: Operational Semantics

— ES 201 873-5: TTCN-3 Runtime Interface (TRI)

- ES 201 873-6: TTCN-3 Control Interface (TCl)

— ES 201 873-7: Using ASN.1 with TTCN-3 (old Annex D)

— ES 201 873-8: TTCN-3: The IDL to TTCN-3 Mapping

— ES 201 873-9: Using XML schema with TTCN-3

- ES 201 873-10: Documentation Comment Specification
» Available for download at: http://www.ttcn-3.o0rg/

The latest ETSI TTCN-3 Core Language standard edition dates from 2005. The exact

URL is http://ttcn.ericsson.se/standardization/downloads.shtml#ttcnv3.

LZT 123 7751 Uen, Rev R1N

4/6/2018

20

© Ericsson 2002-2013.

]

TTCN-3 PRESENTATION FORMATS

Text format T

* Core Language
— is the textual common
interchange format
between applications
- can be edited as text or
accessed via GUIs offered
by various presentation
formats
* Tabular Presentation Format
(TFT)
~ Table proformas for
language elements
- conformance testing
* Graphical Presentation Format
(GFT)
* User defined proprietary
formats

© Ericsson 2002-2013. | LZT 123 7751 Uen, Rev RIN | 2013-02-07 | Page 21

The Core Language has a textual format, that, as opposed to the mp format of the
TTCN-2 language, can be read by humans.

Tabular format was originally meant to facilitate the migration from TTCN-2 to TTCN-3. It
is sparingly used nowadays.

In the graphical format (similarly to MSC) it is not possible to define types, templates etc.
User Defined Formats are open to anyone.

LZT 123 7751 Uen, Rev R1N

4/6/2018

21

© Ericsson 2002-2013. 4/6/2018

EXAMPLE IN CORE LANGUAGE

function P049901 (integer FL) runs on MyMTC
{
LO0.send (A _RL3(FL, CREFl, 16));
TAC.start;
alt {
[] LO.receive (A RC1((FL+1l) mod 2)) {
TAC.stop;
setverdict (pass) ;
}
[] TAC.timeout {
setverdict (inconc) ;
}
[] any port.receive {
setverdict (fail) ;
}

}
END_PTC1() ; // postamble as function call

Core Language is the basic language. White space or new line characters are not taken
into consideration; it makes it similar to a programming language. Different TTCN-3
applications use it for data interchange.

You should not strive to understand the example, rather get a look and feel of it. It looks
like any ordinary programming language.

LZT 123 7751 Uen, Rev R1N 22

© Ericsson 2002-2013.

EXAMPLE IN TABULAR FORMAT

Function

Name MyFunction (integer paral)
Group
Runs On MyComponentType
[Return Type boolean
Camments example function definition

Local Def Name Type Initial Value Caments
MyLocalvar boolean false local variable
MyLocalConst const float 60 local constant
MyLocalTimer timer 15 * MyLocalConst local timer

Behaviour

if (paral == 21) {

}
if (MyLocalvar) {

}

MyLocalVar := true;

MyLocalTimer.start;
MyLocalTimer.timeout;

return (MyLocalvar);

Detailed Comments |detailed comments

Tabular Presentation Format resembles the most the TTCN-2 format, it is specified
mainly for compatibility reasons. Editing is done in strictly specified tables, but data is

saved in Core Language.

The example shows the same extract in Tabular Format: we can fill in the name of the
test case, any comments, the type of the variables. The behaviour is specified as text in

the next raw.

LZT 123 7751 Uen, Rev R1N

4/6/2018

23

© Ericsson 2002-2013.

EXAMPLE IN GFT FORMAT

function mewGuest(float eatingTime)
rurs onr MeeType
self Pl

car SeazdssignmentType aSeat:
ar GuestType mewFIC := rull: H
timer Ti := maxWaitingTime:

war defmule def
:= aetivate (3tandardDefauls()) i

standardSeatBeguese
n >

cE
=CFcype

ale T SeathssignmentType
T -> value aSeat

‘r,evFTC = GuestType.creates: |
|

Fonbe:: self:CP, newPTC:CE): ‘

H

ap (newPTC:P1,
system:gPCO[aSeat.numbez]):

newPTC.stare

aGuest(1200.0))

ctivePTCs := activePTCs + 1;
reatedPICs := createdPICs + 15

e FeatRejectType
3

function

var JeatAssignmentType aleat:
var GuestType newPIC := mull:

simer

var default def := activate(StandasdDefauls()):

// Reguest for a seat
P1.send(standardSeacRequest):

ales
0

}
(9}
1
n

}
1

retuzn;

}

1.3tarts

newGuest (£loat eatingTime) runs om MeeType [

T1 := mawWaitingTimes

Bl.receive (JeathssignmentType:?) -> value afeas [
newPIC := Guestlype.cceate:

connectself:CP, mewPTC:CE):
map (newPIC:P1, system:gPCO[afeat.number]):

newPTC.stars (aGuess(1200.0)):
activePTCs := activePTCa+l; // Update MIC variables

ereatedPICs := createdPTCa+l;

Fl.receive (JeatiejectType:?) [// ¥o seat assigned
setverdict (inconc):

Tl.vimeous { // No answer on seat requess
setverdict (inconc) s

Graphical Presentation Format reminds the Test Sequence Chart or MSC. The
messages sent and received are represented by arrows; there are additional special
symbols for dynamic behaviour, cycles, decisions. For the time being, no editing program
handling this format is known to us, however, there are programs capable of displaying

Core Language programs in Graphical Format.

The perpendicular lines symbolize the components or, more precisely, the ports of the
components. The horizontal arrows represent the messages sent and received. Boxes of
various shape are representing the diverse operations coded in the Core Language.

LZT 123 7751 Uen, Rev R1N

4/6/2018

24

© Ericsson 2002-2013.

INTERWORKING WITH OTHER LANGUAGESH

ASN.1 Types

R values
& values

C/C++ functions

dala constdanis

IDL

& XML document

Other types

XML schema (XSD)

* TTCN can be integrated with
other 'type and value'
systems

* Fully harmonized with ASN.1
(version 2002 except XML
specific ASN.1 features)

* C/C++ functions and
constants can be used

* Harmonization possible with
other type and value systems
(possibly from proprietary
languages) when required

The most important language TTCN-3 can interwork with is ASN.1. TTCN-3 has been
designed from the beginning to ensure that definitions written in ASN.1 can be imported
into test suites without the need for any modifications. With other words, when a protocol
is specified in ASN.1 there is no need to rephrase it. Likewise, information in other format
can be reused, e.g. functions written in C++ can be called from within the TTCN-3
module. It is planned to harmonize TTCN-3 with XML (eXtended Markup Language) and
IDL (Interface Definition Language), but it can be harmonized with other 'type & value'

system.

LZT 123 7751 Uen, Rev R1N

4/6/2018

25

© Ericsson 2002-2013. 4/6/2018

TTCN-31S A PROCEDURAL LANGUAGE E
(LIKE MOST OF THE PROGRAMMING LANGUAGES)

TTCN-3 = C-like control structures and operators plus
Abstract Data Types

Templates and powerful matching mechanisms

Event handling

Timer management

Verdict management

Abstract (synchronous and asynchronous) communication
Concurrency

Test specific constructions: alt, interleave, default, altstep

+ + + + + + + +

TTCN-3is a procedural language,

i.e., using the concept of the unit and scope. Unit corresponds to TTCN-3 modules, which are
built of procedures (functions). Scope is the viewing range of a definition. There are seven
scoping units in TTCN-3; they are dealt with later.

Abstract Data Types
Data can be specified independently from its coding and physical representation.

Templates

When sending a message, templates make possible to parameterise the message. When
receiving a message, parameters or wildcards in templates render possible to accept or reject
('to match") a group of possible messages.

Event handling

While executing the program, we can wait for different events. The incidental arrival of these
independent events Influences the further program execution. Events are among others:
reception of a message, completion of a test component, timer expiration.

Timer management
Timers can be started, stopped. The actual value of a timer can be read as well whether a given
timer is running. The expiration of a timer can be checked.

Verdict management
Test verdict can be pass, fail, inconclusive, none or error. The final verdict is determined with
regard to the outcome of each test step.

Abstract communication

Between the test executor system and the implementation under test there are two different
communication possibilities. Message based communication is asynchronous while procedure
based communication is synchronous. There is communication also between components.

Concurrency
Parallel test components (PTCs) are working concurrently, they can be created and destroyed.

Test specific constructions: alt, interleave, default, altstep
...are used to specify message reception behavior

LZT 123 7751 Uen, Rev R1N 26

© Ericsson 2002-2013. 4/6/2018

TEST ARRANGEMENT AND ITSTTCN-3 a
MODEL

Test System = SUT

A
} ASPs | ASPs
Pco Networkl‘mI

Network

LZT 123 7751 Uen, Rev R1N 27

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

. TTCN-3 MODULE
STRUCTURE

SYNTACTICALRULES
MODULE
MODULE DEFINITIONS PART
MODULE CONTROL PART
GENERALSYNTAXRULES
MODULE PARAMETERS

CONTENTS

The principal building blocks of TTCN-3 are modules.

The module definitions part specifies the top-level definitions of the module and may
import identifiers from other modules. TTCN-3 does not support the definition of variables
in the module definitions part. This means that global variables cannot be defined in
TTCN-3.

The module control part may contain local definitions and describes the execution order
of the actual test cases. A test case shall be defined in the module definitions part and
called in the control part.

General syntax rules describe the file format, capitalisation, delimiters, identifiers etc.

The module parameter list defines a set of values that are supplied by the test
environment at run-time. During test execution these values shall be treated as constants.
Module parameters shall be defined within the module definition part only.

LZT 123 7751 Uen, Rev R1N 28

© Ericsson 2002-2013. 4/6/2018

TTCN-3 SYNTACTICAL RULES AND E
NOTATIONAL CONVENTIONS

+ Keywords always use lower case letters e.g.: testcase
* Identifiers e.g.: Tinky Winky
— consist of alphanumerical characters and underscore
— case sensitive
- must begin with a letter
+ Comment delimiters: like in C/C++
- C-style “Block” comments e.g.: /* enclosed remark */
- Block comments must not be nested
- C++-style line comments e.g.: // lasts until EOL
» Statement separator is the semicolon

- Mandatory except before or after } character, where it is optional
eg.:{ £f1(); log(”Hello World!'”) }

 |In this material:

- Red letters orjred frames | : erroneous examples

Keywords are listed in table A.3 of the ETSI standard 201 873-1. These words must not
be used as identifiers.

Identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase
letters (A-Z) and numeric digits (0-9). Use of the underscore (_) symbol is also allowed.
An identifier shall begin with a letter.

Comments written in free text may appear anywhere in a TTCN-3 specification.

LZT 123 7751 Uen, Rev R1N 29

© Ericsson 2002-2013. 4/6/2018

= |

TTCN-3 MODULES

module <modulename> « Module - Top-level unit of TTCN-3
[obj id <object identiﬁer>] * A test suite consists of one or more
{ modules
* A module contains a module
Module definitions and an (optional) module
Definitions Part control part.
* Modules can have run-time
Module parameters —> module parameters
Control Part * Modules can have attributes

}

[with { <attributes> 1}]

A test suite consists of one ore more modules. There is no hierarchy between modules.
Modules are written as free text files: line breaks or paragraph marks may be used
without restrictions. A module consists of a (optional) definitions part, and a (optional)
module control part. Usually, the definitions part is longer, the control part only states the
execution order of the test cases. Module parameters are supplied to the module at run-
time and are considered constant during test execution. Module attributes give additional
information, like coding rules or the size of a table.

The beginning of a module is indicated in the header by the keyword "module” followed
by the module name (here:modulename). Thereafter between curly brackets appears the
definitions part followed by the control part. Module attributes (here: the encoding rule
valid for the whole module) may be given after the closing curly bracket of the module.
Attributes are introduced by the keyword "with" whereas the attributes themselves are
listed between curly brackets.

LZT 123 7751 Uen, Rev R1N 30

© Ericsson 2002-2013. 4/6/2018

MODULE DEFINITIONS PART

A
Definitions in module definitions part are
globally visible within the module Module Parameters
* Module parameters are external Data Types
arameters, which can be set at test
P) ? Constants .
execution
Signatures

+ Data Type definitions are based on the

TTCN-3 predefined types e

Signature Templates

» Constants, Templates and Signatures

define the test data Communication Ports

Test Components
* Ports and Components are used to set

up Test Configurations Functions

* Functions, Altsteps and Test Cases Altsteps

describe dynamic behaviour of the tests Test Cases

Module Parameters are supplied by the test environment at run-time and are treated as
constants during test execution.

Data Types : a common name for simple basic types, basic string types, structured
types, the special data type and all user defined types based on them.

Procedure Signatures (or signatures for short) are needed for procedure-based
communication.

Templates are used to either transmit a set of distinct values or to test whether a set of
received values matches the template specification. A template can be thought of as
being a set of instructions to build a message for sending or to match a received
message. Message Templates are used over message based ports, whereas Signature
Templates are used over procedure based ports.

Test components are connected via their Communication Ports. Each port is modelled
as an infinite FIFO queue which stores the incoming messages or procedure calls until
they are processed.

Test Components are the owner of the ports. Each test component has a unique
reference created during the execution of a test case.

Altsteps are special functions used to specify and structure test behaviour.
Test Cases are functions running on MTC and returning the result of the test ("verdict").

LZT 123 7751 Uen, Rev R1N 31

© Ericsson 2002-2013.

= |

MODULE CONTROL PART

y T A
control

{

Control Part :
Local Definitions

lest Case Execution .

}

y 4
[with ({ <attributes>} |

The main function ofa TTCN-3
module: the main module’s control
part is started when executing a Test
Suite

Local definitions, such as variables
and timers may be in the control part

Test Cases are usually executed from
the module control part

Basic programming statements may
be used to selectand control the
execution of the test cases

The module control part manages the execution of the test cases.

In the module control part the execute statement is used to start test cases. Program
statements may be used in the control part of a module to specify such things as the
order in which the test cases are to be executed or the number of times a test case may
be run. Variables, timers etc. (if any) defined in the control part of a module are only
locally visible, i.e., they shall be passed into the test case by parameterization when

required.

As the result of the execution of a test case a test case verdict of either none, pass,

inconclusive, fail or error shall be returned.

LZT 123 7751 Uen, Rev R1N

4/6/2018

32

© Ericsson 2002-2013. 4/6/2018

MODULES CAN IMPORT DEFINITIONS E
FROM OTHER MODULES

module M1 T°d"‘1e M2
{

2 import from M1 all;
type integer I;

type set S { type record R {
T E1 S £l
il | e
} }
const I one := 1;

control {

testcase tc() runs on CT execute (tc())
S }

}
control { .. }

Modules can import definitions from any module. Identifiers imported from other modules
are globally visible throughout the importing module. It is possible to import to various
extent:

+single definitions;

«groups of definitions;

«all templates, functions and types;
«all definitions.

The default import mechanism imports referenced definitions without their identifier. A
recursively imported definition, in turn, is imported together with all referenced definitions,
i.e. the identifier of all referenced definitions becomes visible and usable in the importing
module.

LZT 123 7751 Uen, Rev R1N 33

© Ericsson 2002-2013. 4/6/2018

IMPORTING DEFINITIONS

// Importing all definitions
import from MyModule all;

// Importing definitions of a given type
import from MyModule { template all };

// Importing a single definition
import from MyModule { template t MyTemplate };

// To avoid ambiguities, the imported definition may be
// prefixed with the identifier of the source module
MyModule.t MyTemplate // means the imported template
t_MyTemplate // means the local template

It is possible to re-use definitions specified in different modules using the import
statement. An import statement can be used anywhere in the module definitions part. It
shall not be used in the control part.

TTCN-3 supports the import of the following definitions: module parameters, user defined
types, signatures, constants, external constants, data templates, signature templates,
functions, external functions, altsteps and test cases.

The rules of importing are depicted in the chapter 7.5 of ETSI standard ES 201 873-1.

Legend: the import options preceded by comments in red are not implemented in the
TITAN environment.

LZT 123 7751 Uen, Rev R1N 34

© Ericsson 2002-2013.

= |

VERSION INFORMATION

« Specifies if the TTCN-3 module requires a minimum version of another
TTCN-3 module or a minimum version of TITAN.

module’s own version information can
} be specified in an extension attribute
with { B
extension “wersion R1A”;— ‘

module supplier ({ ‘

|}

TITAN RS8C or later. module can be specified

module X has to be compiled with minimum version of an imported

module X { module importer ({

e \ import from supplier all;

} }

with { ‘ with { _
extension “requires TITAN R8C”; extension “requires supplier R2A”

} }

It is possible to re-use definitions specified in different modules using the import
statement. An import statement can be used anywhere in the module definitions part. It
shall not be used in the control part.

TTCN-3 supports the import of the following definitions: module parameters, user defined
types, signatures, constants, external constants, data templates, signature templates,
functions, external functions, altsteps and test cases.

The rules of importing are depicted in the chapter 7.5 of ETSI standard ES 201 873-1.

Legend: the import options preceded by comments in red are not implemented in the
TITAN environment.

LZT 123 7751 Uen, Rev R1N

4/6/2018

35

© Ericsson 2002-2013.

= |

AN EXAMPLE: “HELLO, WORLD!" IN TTCN-3

module MyExample {

type port PCOType PT message {
inout charstring;

}

type component MTCType CT {
port PCOType PT My PCO;

}

testcase tc_HelloW ()

runs on MTCType CT system MTCType CT

{
map (mtc:My PCO, system:My PCO) ;
My PCO.send ("Hello, world!”):;
setverdict (pass);

}

control {

execute (tc HelloW())
}

This classical example illustrates how many definitions should be made to complete a
module.

The main point is the testcase called HelloW. The message is sent over the port
My_PCO defined previously.

The port, component, testcase definition form the module definitions part followed by the
module control part.

LZT 123 7751 Uen, Rev R1N

4/6/2018

36

© Ericsson 2002-2013.

=
>

ERICSSON

IV. TYPE SYSTEM

OVERVIEW
BASICAND STRUCTUREDTYPES
VALUE NOTATIONS
SUB-TYPING

CONTENTS

LZT 123 7751 Uen, Rev R1N

4/6/2018

37

© Ericsson 2002-2013. 4/6/2018

TTCN-3TYPE SYSTEM

* Predefined basic types
- well-defined value domains and useful operators

» User-defined structured types

- built from predefined and/or other structured types
» Sub-typing constructions

- Restrict the value domain of the parent type
* Aliasing

» Type compatibility
» Forward referencing permitted in module definitions part

TTCN-3 supports a number of predefined basic types. These basic types include ones
normally associated with a programming language, such as integer, boolean and string
types, as well as some TTCN-3 specific ones such as objid and verdicttype. Structured
types such as record types, set types and enumerated types can be constructed from
these basic types.

User-defined type is defined by subtyping of a basic type, defining a structured type or
constraining the anytype to a single type by the dot notation.

Definitions in the module definitions part may be made in any order but forward
references should be avoided for readability reasons.

Sub-types are user-defined types formed from simple basic and basic string types using
lists, ranges and length restrictions.

Parameterisation: all user-defined type definitions support static value parameterization
(i.e. this parameterization shall be resolved at compile-time); template, signature,
testcase, altstep and function support dynamic value parameterization (i.e. this
parameterization shall be resolvable at run-time).

Type compatibility: TTCN-3 is not strongly typed. For non-structured variables,
constants, templates etc. the value "b" is compatible to type "A" if type "B" resolves to the
same root type as type "A" and it does not violate subtyping (e.g. ranges, length
restrictions) of type "A". In the case of structured types (except the enumerated type, that
is never compatible with other basic or structured types) a value "b" of type "B" is
compatible with type "A", if the effective value structures of type "B" and type "A" are
compatible. The communication operations are exceptions to the weaker rule of type
compatibility and require strong typing.

LZT 123 7751 Uen, Rev R1N 38

© Ericsson 2002-2013. 4/6/2018

SIMPLE BASIC TYPES

* integer
- Represents infinite set of integer values
—Valid integer values: 5, -19, 0
s float
- Represents infinite set of real values
—-Valid float values: 1.0, -5.3E+14
*boolean: true, false
* objid
—objectidentifier e.g.:objid { itu_t(0) 4 etsi }
* verdicttype
— Stores preliminary/final verdicts of test execution
-5 distinctvalues: none, pass, inconc, fail, error

Integer: a type with distinguished values which are the positive and negative whole
numbers, including zero.

Float: a type to describe floating-point numbers. Floating point numbers are represented
in TTCN-3 as: <mantissa> x <10Q><exponent>.

Boolean: a type consisting of two distinguished values: true, false.

Objid: a type whose distinguished values are the set of all object identifiers conforming to
clause 6.2 of ITU-T Recommendation X.660.

Verdicttype: a type for use with test verdicts consisting of 5 distinguished values.

LZT 123 7751 Uen, Rev R1N 39

© Ericsson 2002-2013. 4/6/2018

= |

BASIC STRING TYPES

*bitstring
- A type whose distinguished values are the ordered sequences of bits
- Valid bitstring values: B, ’'0’B, ’101100001’'B
- No space allowed inside

* hexstring

- Ordered sequences of 4bits nibbles, represented as hexadecimal
digits:0 1 2 3456 78 9abcde fABCDETF

- Valid hexstring values: '’'H, '5'H, 'F’H, 'A5’'H, ’'50A4F’'H
* octetstring

— Ordered sequences of 8bit-octets, represented as even number of
hexadecimal digits

- Valid octetstring values: '’0, 'A5’0, ’'C74650'0, ’af’oO
- invalid octetstring values: 1’0, ’A50’0,

Bitstring: a type whose distinguished values are the ordered sequences of zero, one, or
more bits.

Hexstring: a type whose distinguished values are the ordered sequences of zero, one, or
more hexadecimal digits, each corresponding to an ordered sequence of four bits.

Octetstring: a type whose distinguished values are the ordered sequences of zero or a
positive even humber of hexadecimal digits (every pair of digits corresponding to an
ordered sequence of eight bits).

LZT 123 7751 Uen, Rev R1N 40

© Ericsson 2002-2013. 4/6/2018

= |

BASIC STRING TYPES CONTINUED

* charstring

- Values are the ordered sequences of characters of ISO/IEC 646
complying to the International Reference Version (IRV) - formerly
International Alphabet No.5 (I1A5) described in ITU-T Recommendation
T.50

- In between double quotes
= Double quote inside a charstring is represented by a pair of
double quotes
- Valid charstring values: 7”7, ”abc”, ””"hello!”"”
- Invalid charstring values: ”“Linképing”, ”Café”
*universal charstring
- UCS-4 coded representation of ISO/IEC 10646 characters: 79"

— May also contain characters referenced by quadruples, e.g.:
= char (0, 0, 40, 48)

Universal charstring: The "quadruple" is capable to denote a single character and
denotes the character by the decimal values of its group, plane, row and cell according to
ISO/IEC 10646.

LZT 123 7751 Uen, Rev R1N 41

© Ericsson 2002-2013.

SPECIALTYPES (1)

= |

canytype

- Introduced to allow mapping of CORBA IDL to TTCN-3;

- Defined as a shorthand for the union of all known types ina TTCN-3
module, where known type embraces all built-in types, user-defined
types, imported ASN.1 and other imported external types.

- The fieldnames of the any type shall be uniquely identified by the
corresponding type names using the "dot" notation.

- Performance problems — not to use unless explicitly necessary!

= all used types must be listed at the end of the module
- with {extension “anytype ... “}

module my Module {
type record MyRec {integer i, float f}
control { var anytype v_any;
v_any.charstring := “three”;
v_any.MyRec := {{ 1,true} }
} with { extension “anytype charstring, MyRec”}

CORBA Common Object Request Broker Architecture
IDL Interface Description Language

The specification of CORBA IDL can be read by following the Uniform Resource Locator:

http://www.omg.org/technology/documents/idi2x_spec_catalog.htm

module my_Module {

type integer money;

type record MyRec {

integer i,

float f

}

control {

var anytype v_any;

V_any.integer := 3;

[/l ischosen(v_any.integer) == true
v_any.charstring := “three”;

}

}

with {

extension “anytype integer, charstring” // adds two fields
extension “anytype MyRec” // adds a third field
extension “anytype money” // adds the money type

}

LZT 123 7751 Uen, Rev R1N

4/6/2018

42

© Ericsson 2002-2013. 4/6/2018

= |

SPECIALTYPES (2)

Configuration types are used to define the architecture of the test system:
* port
- A port type defines the allowed message and signature types between
test components — Test Configuration
* component
- Component type defines which ports are associated with a component
— Test Configuration
* address
- Single user defined type for addressing components
- Used
= to interconnect components
— Test Configuration
= in send to/receive from operations and sender clause
— Abstract Communication Operations

Address shall only be used in receive and send operations of ports mapped to test
system interface. Only one definition of type address may exist in a test suite.

SUT: System Under Test

Each port type definition shall have list(s) indicating the allowed collection of message
types and/or procedures together with the allowed communication direction.

Component definitions shall be made in the module definitions part. It is possible to
define constants, variables and timers local to a particular component.

LZT 123 7751 Uen, Rev R1N 43

© Ericsson 2002-2013.

SPECIALTYPES (3)

= |

e default

- Implementation
dependent type for
storing the default
reference

— A default reference is the
result ofan activate
operation

- The default reference can
be used to a
deactivate given
default
— Behavioral Statements

function P0O49901 (integer FL) runs

on MyMTC
{

L0.send (A_RL3(FL, CREF1,
16));

TAC.start;

alt {

[1] LO.receive (A _RC1(FL)) {
TAC.stop;
setverdict (pass) ;

[] TAC. timeout {

}
[] any port.receive ({
setverdict (fail) ;

}
END_PTC1() ;

setverdict (inconc) »

Received messages are usually examined in an alt statement. When no branch of the alt
matches the received message, the previously activated default(s) are examined. It is
possible to have several defaults activated at same time and deactivate them one by one.

LZT 123 7751 Uen, Rev R1N

4/6/2018

44

© Ericsson 2002-2013.

=]

OVERVIEW OF STRUCTURED TYPE SYNTAX

» General syntax of structured type definitions:
type <kind- [element-type] <identifier- [{ body }1[;]
* kind is mandatory, it can be:
record, set, union, enumerated, record of, set of
element-type is only used with record of, set of
» body is used only with record, set, union, enumerated;
it is a collection of comma-separated list of elements
» Elements consist of <field-type> <field-id> [optional]
except at enumerated
element-type and field-type can be a reference to any basic or user-
defined data type or an embedded type definition
« field-ids have local visibility (may not be globally unique)

LZT 123 7751 Uen, Rev R1N

4/6/2018

45

© Ericsson 2002-2013.

STRUCTURED TYPES - record, set

type record MyRecordType {
integer fieldl optional,
boolean field2

// example record type def.

» User defined abstract container types representing:
- record: ordered sequence of elements
— set: unordered list of elements
* Optional elements are permitted (using the optional keyword)

// example set type def.

type set MySetType {
integer fieldl optional,
boolean field2

}

In the above example, "type" of the elements is integer or boolean, their "identifier" is
field1 or field2. The same identifiers may be used in both record and set, because it is not
mandatory to use globally unique names.

Optional elements may or may not be present when assigning value to the constructs.

A record or a set may be an element of another record or set.

LZT 123 7751 Uen, Rev R1N

4/6/2018

46

© Ericsson 2002-2013.

DIFFERENCE BETWEEN
record AND set TYPES

record - ordering of elements is fixed
set — order of elements is indifferent

o {field1:=0,
field2 := true }

o {field1:=0,
field2 := false }

o {field1:=1,

* { field1 := omit, field2:=true}

field2 := true}

etc.

¢ { field1 := omit,
field2:=true}

MyRecordType

. {field1:=0,
field2 := true}

= { field2 :=true,
field1:=0}

| *{field1 := omit,

field2:= true} °{field2:=true,

field1:=1}
* {field1:=0,
field2 := false }
etc.

* { field2 := false
field1 := omit

MySetType

The main difference between record and set is the following: elements of a record must

be referenced in the same order as defined, whereas elements of a set may be
referenced in arbitrary order. In other words, the ordering of the set fields is not

significant.

LZT 123 7751 Uen, Rev R1N

4/6/2018

47

© Ericsson 2002-2013.

VALUE ASSIGNMENT NOTATION

= |

» Values may be explicitly assigned to fields
- not present optional elements must be set to omit
- values of the unlisted elements remain unbound
— applicable for: record, set, union

var MyRecordType v_myRecordl := {
fieldl := 1,
field2 := true

}

var MyRecordType v_myRecord?2

{

field2 := true // fieldl presents, but unbound
}
var MySetType v;mySetl = {

field2 := true,

fieldl := omit // fieldl is not present

}

Value notation: notation by which an identifier is associated with a given value or range

of a particular type

Assignment notation: in the curly brackets following the name of the record or set, the
element identifier must be present to designate which element is the value is assigned to.
It is important to know that every identifier of the record or set must be listed. Omitted

optional elements must be given the value "omit" otherwise its value remains
undetermined (unbound), resulting in run-time error.

LZT 123 7751 Uen, Rev R1N

4/6/2018

48

© Ericsson 2002-2013. 4/6/2018

= |

VALUE LIST NOTATION

* Value list notation
- Elements are assigned in the order of their definition
— All elements must present, dropped optional elements must
explicitly specified using the omit keyword
- Assigning the “not used symbol” (hyphen: -) leaves the value of the
element unchanged
- Valid for: record, record of, set of and array, but not for set

Vvar MyRecordType v_myRecord3 := { 1, true }

var MyRecordType v_myRecord4 := { omit, true }

var MyRecordType v_myRecord5 := { -, true } // <unbound>,true
v_myRecord5 := { 1, - } // 1, true

var MySetType v _mySet2 := { 1, true } // not for set

var MyRecordType v_myRecord6é := { true } // not all fields!

Value-list notation: in the curly brackets following the name of the record, values of the
elements are listed one by one. Every identifier of the record must be listed. Omitted
optional elements must be given the value "omit" otherwise its value remains
undetermined (unbound), resulting in run-time error. In contrast to value assignment
notation, all elements must appear inside the initializer. Application of the hyphen (-)
leaves the corresponding field unchanged. Attention! Such a field is unbound unless it
has been given a value earlier. It is not allowed to mix value-list notation and assignment
notation in the same context! The not-used symbol is only valid in value-list notation.

LZT 123 7751 Uen, Rev R1N 49

© Ericsson 2002-2013.

STRUCTURED TYPES - NESTED VALUES

]

type record InternalType {
boolean fieldl,
integer field2 optional
i
type record RecType {
integer fieldl,
InternalType field2

15

const RecType c rec := {
fieldl := 1,
field2 := { fieldl :=
field2 :=

}
}:

// same as previous, but with
const RecType c rec2 := { 1,

true,
omit

value list
{ true,

omit } }

LZT 123 7751 Uen, Rev R1N

4/6/2018

50

© Ericsson 2002-2013.

FIELD REFERENCES

* Reference or “dot” notation
— Can not be used at specification, only for previously defined

variables

- Referencing structured type fields
— Applicable in dynamic parts (e.g. function, control) only

.v_myRecordZ.fieldl

:= omit;

v_mySetl.fieldl := v_myRecord2.fieldl;

type record Rl {
integer i,
boolean b

}

type record R2 {
Rl 1,

integer i2

var R2 r2;
r2.32 = 2-
r2.ri.1 =1-
¥2-i =117

LZT 123 7751 Uen, Rev R1N

4/6/2018

51

© Ericsson 2002-2013.

STRUCTURED TYPES —union

» User defined abstract container type representing a single alternative
chosen from its elements

Optional elements are forbidden (make no sense)

* More elements can have the same type as long as their identifiers differ
* Only a single element can present in a union value

Value list assignment cannot be used!

* The ischosen (union-ref.field-id) predefined function returns true if
union-ref contains the field-id element

Union type is useful to model a structure which can take one of a finite number of known
types.

LZT 123 7751 Uen, Rev R1N

4/6/2018

52

© Ericsson 2002-2013. 4/6/2018

= |

STRUCTURED TYPES - union (EXAMPLE)

// union type definition MyUnionType
type union MyUnionType {
integer numberl,

integer number?2, *{ number1:=0}

charstring string
} ¢ { string := "mystring" }
// union value notation e { number2:= 0}

var MyUnionType v myUnion := tri "abc' |
ey \ . - . |
{numberl := 12} Ustring:=ebc=}

var MyUnionType v_myUnion; « { number1 := 1} etc.
v_myUnion := {numberl := 12}

v_myUnion.numberl := 12; . { string = -m}
// usage of ischosen

if(ischosen(v_myUnion.numberl)) £ - }

For the union type, assignment notation and dot notation may be used. (First, respective
second row in the example on the middle of the slide.) Value-list notation (listing of
element values without their identifiers) must not be used.

LZT 123 7751 Uen, Rev R1N 53

© Ericsson 2002-2013.

g

STRUCTURED TYPES - record of, set of

» User defined abstract container type representing an ordered /unordered
sequence consisting of the same element type

» Value-list notation only (there is no element identifier!)

// record of types; variable-length array;
// length restriction is possible

type record of integer ROI;

var RO v il = { 1, 2; 3 };

// set of types, the order is irrelevant
type set of MySetType MySetList;
var MySetList v _msl := {
v_mySetl, { field2 := true, fieldl := omit }, v _mySetl
};

remember:

var MySetType v_mySetl := {
field2 := true, 3
fieldl := omit

}

The only difference between record of and set of appears when comparing them. Two
records of are only equal when they contain the equal elements in the same order. Two
sets of are equal if there is exactly one pair for each element.

These records and sets can be considered similar to an ordered array and an unordered
array respectively.

LZT 123 7751 Uen, Rev R1N

4/6/2018

54

© Ericsson 2002-2013.

STRUCTURED TYPES - NESTED TYPES

= |

« Similarly to other notations (e.g. ASN.1) TTCN-3 type definitions may be
nested (multiple times)

« The embedded definition have no identifier associated

// nested type definition:
// the inner type ”set of integer” has no identifier

| type record of set of integer OuterType;

// ..could be replaced by two separate type definitions:
| type set of integer InnerType;

| type record of InnerType OuterType;

LZT 123 7751 Uen, Rev R1N

4/6/2018

55

© Ericsson 2002-2013. 4/6/2018

= |

* Individual elements of basic string, record of and set of types can be
accessed using array syntax

* Indexing starts by zero and proceeds from left to right

INDEXING

var bitstring v _bs := '10001010'B;

var ROI v_il := { 100, 2, 3, 4 };

// the operations below on the variables above
v_bs[2] := '1'B; // results: v _bs = '10101010'B
v_il[0] := 1; // results: v il = {1, 2, 3, 4}

» Only a single element of a string can be accessed at a time

v_bs[0..3] := ’0000'B; // Error!!!

When indexing a string type element, index corresponds to different units of length in
function of the string type. A bitstring is indexed by bits, a hexstring by hexadecimal digits,
an octetstring by octets and finally a character string by characters.

LZT 123 7751 Uen, Rev R1N 56

© Ericsson 2002-2013.

NOT-USED, omit AND UNBOUND

= |

* unbound - uninitialized value

* omit - structured type’s optional field not present

* not-used (“-”) — preserves the original value, in value list notation only

var ROI u, v := { -, 2, - }; // v = {<unbound>, 2, <unbound>}
log(sizeof(v)); // 3

v[0] :=1; // v== {1, 2, <unbound> }

u = v;

vis{= =3 /Mlv=1{1, 2, 3}

var MyRecordType rl, r2, r3, r4;

rl := { field2 := true } // rl == { <unbound>, true }
r2 := { -, true }; // r2 == { <unbound>, true } = rl
r3 := { omit, true }; // r3 == { omit, true } !'= rl
r4d := { 1 }; // PARSE ERROR!

‘type record MyRecordType {

integer fieldl optional,
boolean field2
}

NOTEZ1: The comments at the assignment examples of r2 and r3 might be misleading:

an unbound value never can be a right-hand-side value, not even for relational operators!

It causes a run time error!

NOTEZ2: Just for convenience: the typedefs. from one of the earlier slides:

/I example record type def.
type record MyRecordType {
integer field1 optional,
boolean field2
}
/I example set type def.
type set MySetType {
integer field1 optional,
boolean field2

LZT 123 7751 Uen, Rev R1N

4/6/2018

57

© Ericsson 2002-2013. 4/6/2018

= |

STRUCTURED TYPES — enumerated

* Implements types which take only a distinct named set of values (literals)

‘ type enumerated Ex1 {tuesday, friday, wednesday, monday}; l

* Enumerationitems (literals):
Must have a locally (notglobally) unique identifier
» Shall only be reused within other structured type definitions
Must not collide with local or global identifiers
— Distinctinteger values may optionally be associated with enumeration items

type enumerated Ex2 {tuesday(l) ,friday(5), wednesday, monday};

» Operations on enumerations
must always use literals —integer values are only for encoding!
- are restricted to assignment, equivalence and comparing (<,>) operators
* enumeratedversus integer types
— Enumerated types are never compatible with other basic or structured
types!

For each enumeration without an assigned integer value, the system successively
associates an integer number in the textual order of the enumerations, starting at the left-
hand side, beginning with zero, by step 1 and skipping any number occupied in any of the
enumerations with a manually assigned value. These values are only used by the system
to allow the use of relational operators.

LZT 123 7751 Uen, Rev R1N 58

© Ericsson 2002-2013.

(EXAMPLES)

// enumerated types
type enumerated Wdayl {monday, tuesday, wednesday};
type enumerated Wday2 {monday(l), tuesday(5), wednesday};

var Wdayl v_11 := monday; //variable of type Wdayl
var Wdayl v_12 := wednesday; //variable of type Wdayl
// v 11 > v 12 is false

var Wday2 v _21 := monday; //variable of type Wday2
var Wday2 v_22 := wednesday; //variable of type Wday2
[/ v 21 > v 22 is true

// V_ll > v_22 causes error: different types of variables!

// v_11 > 2 causes error: enumerated is not integer

STRUCTURED TYPES - enumerated E

Although the TTCN-3 standard does not require it, it is a good practice to begin user-
defined type names with uppercase letters and to use lowercase letters as the first letter
of element, variable and constant names. That's why weekdays are written in small letters
violating English orthography.

Comparison is only possible between two elements of the same enumeration type.

LZT 123 7751 Uen, Rev R1N

4/6/2018

59

© Ericsson 2002-2013. 4/6/2018

= |

SUB-TYPING

* Deriving a new type child from an existing parent type by restricting the new
type’s domain to a subset of the parent types value domain:
- D(child) ¢ D(parent)
* child has the same root type as parent

* Applicable to elements of
structured types also

» Various sub-typing constructs:
— value range,
— value list,
- length restriction,
- patterns,
- type alias.

—— parent

42

| child || 11673

etc.
‘ -1248 v

One way to create user-defined types is sub-typing a basic type. (The two other ways
already discussed are defining a structured type or constraining the anytype to a single
type by the dot notation.) By sub-typing the value set of the original type is restricted to
certain values. In case of string types also the length of the string can be restricted.
Mathematically spoken, the set D(New) is the proper subset of set D(basic) and has the
same type as the original basic type.

universal charstring / charstring types can be sub-typed with patterns (not supported in
TITAN yet, as of v1.6.pl3 (R6D))

LZT 123 7751 Uen, Rev R1N 60

© Ericsson 2002-2013. 4/6/2018

g

SUB-TYPING: VALUE RANGE RESTRICTIONS

* Value-range subtype definition is applicable only for integer,
charstring, universal charstring and float types
- for charstrings: restricts the permitted characters!

type integer MyIntegerRange (1 .. 100);
type integer MyIntegerRange8 (0 .. infinity):;
type charstring MyCharacterRange ("k" .. "w");

* -infinity/infinity keywords can be used instead of a value
indicating that there is no lower/upper boundary

* Note that -infinity/infinity are NOT values and cannot be used in
expressions, thus the following example is invalid:

var integer v invalid := infinity; // error!!!

TTCN-3 permits the specification of a range of values of type integer, charstring,
universal charstring and float. The lower boundary and the upper boundary are included
in the range of permitted values. In the case of charstring and universal charstring
types, the boundaries mean character positions according to the coding rules of the
respective character set.

The keyword infinity may be used in order to specify an infinite integer or float range.

LZT 123 7751 Uen, Rev R1N 61

© Ericsson 2002-2013. 4/6/2018

g

SUB-TYPING: VALUE LIST RESTRICTIONS

« Value list restriction subtype is applicable for all basic type as well as in
fields of structured types:

.type charstring SideType ("left", "right");
type integer MyIntegerList (1, 2, 3, 4);
type record MyRecordList {
charstring userid ("ethxyz", "eraxyz"),
charstring passwd ("xxxxxx", "yyyyyy")
bi

* For integer and float types it is permitted to mix value list and value
range subtypes:

type integer MyIntegerListAndRange (1..5, 7, 9);

The subtype defined by this list enumerated in parentheses restricts the allowed values of
the subtype to those values in the list. The values in the list shall be of the root type and
shall be a true subset of the values defined by the root type.

For values of type integer, charstring, universal charstring and float it is possible to mix
lists and ranges. Within charstring and universal charstring subtype definitions, lists and
ranges shall not be mixed in the same subtype definition. For values of type bitstring,
hexstring, octetstring it is possible to mix lists and length restrcitions.

Note: in sub-typing we use parenthesizes around the value list, while in value-notation we
use curly braces around the value lists

LZT 123 7751 Uen, Rev R1N 62

© Ericsson 2002-2013. 4/6/2018

= |

SUB-TYPING: LENGTH RESTRICTIONS (1)

» Length restrictions are applicable for basic string types.
» The unit of length depends on the constrained type:
—bitstring - bit,
—hexstring — hexa digit,
— octetstring — octet,

- charstring/universal charstring — character

// length exactly 8 bits
type bitstring MyByte length(8) ;

// length exactly 8 hexadecimal digits
type hexstring MyHex length(8) ;

// minimum length 4, maximum length 8 octets
type octetstring MyOct length(4 .. 8);

For the upper bound the keyword infinity may also be used to indicate that there is no
upper limit for the length. The upper boundary shall be greater than or equal to the lower
boundary. The lower boundary and the upper boundary are included in the range of
permitted values.

Length restriction can only be either a concrete number or a
range. Other (e.g. value list) not allowed

type octetstring MyOct length(4 .. 8, 11);
type octetstring MyOct length(4 , 8);
Both wrong

LZT 123 7751 Uen, Rev R1N 63

© Ericsson 2002-2013. 4/6/2018

= |

* length keyword is used to restrict the number of elements in record of
and set of.

* Itis permitted to use a range inside the length restriction

SUB-TYPING: LENGTH RESTRICTIONS (2)

// a record of exactly 10 integers
type record length(10) of integer RecOfExample;

// a record of a maximum of 10 integers
type record length(0..10) of integer RecOfExamplf;

// a set of at least 10 integers
type set length(10..infinity) of integer RecOfExampg;

According to table 3 in chapter 6.0 of ETSI ES 201 873-1 VV2.2.1 length restriction of the
structured types record of and set of is considered as sub-typing. Chapter 6.2.0, on the
other hand, only allows sub-typing of on simple basic and basic string types.

LZT 123 7751 Uen, Rev R1N 64

© Ericsson 2002-2013. 4/6/2018

= |

SUB-TYPING: PATTERNS

* charstring and universal charstring types can be restricted with

patterns (= charstring value patterns)
» All values denoted by the pattern shall be a true subset of the type being

sub-typed

// all permitted values have prefix abc and postfix xyz
type charstring MyString (pattern "abc*xyz");

// a character preceded by abc and followed by xyz
type charstring MyString2 (pattern "abc?xyz")

//all permitted values are terminated by CR/LF
type charstring MyString3 (pattern "*\r\n")

type MyString MyString3 (pattern "d*xyz");
/* causes an error because MyString does not contain a
value starting with character ‘d’*/

type charstring MyString2 (pattern "abc?\g{0,0,1,113}");
[* causes an error because a universal char {0,0,1,113} is not allowed in the
charstring type */

/lall permitted universal string values are terminated by CR/LF
type universal charstring MyUString (pattern "*\r\n")

LZT 123 7751 Uen, Rev R1N 65

© Ericsson 2002-2013. 4/6/2018

= |

SUB-TYPING: TYPE ALIAS

* an alternative name to an existing type;

» similar to a subtype definition, but the subtype restriction tag (value list,
value or length restriction) is missing.

‘type MyType MyAlternativeName;

Type aliasing is defined in TTCN-3 BNF only, but it is implemented in TITAN.

LZT 123 7751 Uen, Rev R1N 66

© Ericsson 2002-2013. 4/6/2018

OVERVIEW OF SUB-TYPE CONSTRUCTS E
FORTTCN-3TYPES

Class of type Type name (keyword) Sub-Type
integer, float range, list
Simple basic types T
boolean, objid, verdicttype list
bitstring, hexstring, .
octetstring list, length
Basic string types . | i
charstring, range, list, length,
universal charstring pattern
record, set, union, enumerated list
Structured types {
record of, set of list, length
Special data types anytype list
>
NOTE:

List subtyping of the types “record”, “record of”, “set”, “set of”, “union”, “enumerated”,
“anytype” are possible when defining a new constrained type from an already existing
parent type but not directly at the declaration of the first parent type.

LZT 123 7751 Uen, Rev R1N 67

© Ericsson 2002-2013. 4/6/2018

TYPE COMPATIBILITY IN TITAN

» Deviations from TTCN-3:

- Aliased types and sub-types are treated to be equivalent to their
unrestricted root types

- Different structured types are incompatible to each other

- Two array types are compatible if both have the same size and index
offset and the types of the elements are compatible according to the
rules above

« Built-in functions available for converting between incompatible types:

|int2char (65)=="A” // ASCII(65): letter A
int2str (65)=="65"
hex2str (" FABABA’ H) =="FABABA”

Type compatibility is a language feature, which allows to use values or templates of a
given type as actual values of another type (e.g. at assignments, as actual parameters at
calling a function, referencing a template etc. or as a return value of a function)

An example for type compatibility of structured types is given in chapter 6.7.2 of ETSI ES
201 873-1.

LZT 123 7751 Uen, Rev R1N 68

© Ericsson 2002-2013. 4/6/2018

PREDEFINED CONVERSION FUNCTIONS

universal

SO\ Erom integer. fioat bitstring hexstring octetstring charstring charatnng

R char2int
integer float2int bit2int hex2int oct2int unichar2int
str2int

‘&\\&W&\\\\\\\\

pitstring int2bit & hex2bit
N

N

s 4 w
N _
octetstring int2oct &\ bit2oct hex2oct

int2char

charstring THE2SED float2str | bit2str hex2str

.-, [NI

log2str; enum2int >

© Ericsson 2002-2013. | LZT 123 7751 Uen, Rev RN | 2013-02-07 | Page 69

Conversion functions span the gap between different simple variable types.

A function at the intersection of a given column and a row has an in parameter indicated
in the column header and returns the value type indicated in the row header.

The detailed description of predefined functions is given in annex C of the ETSI standard
ES 201 873-1.

Green letters indicate TITAN extensions, not included in the standard.

Difference between functions with 'str' and 'char' in their names is explained with the
following examples:

int2char (66) = "B", int2str (66) = "66".

LZT 123 7751 Uen, Rev R1N 69

© Ericsson 2002-2013. 4/6/2018

AW

V. CONSTANTS, VARIABLES,
MODULE PARAMETERS

CONSTANT DEFINITIONS
VARIABLE DEFINITIONS
ARRAYS
MODULE PARAMETER DEFINITIONS

ON

LZT 123 7751 Uen, Rev R1N 70

© Ericsson 2002-2013.

CONSTANT DEFINITIONS

» Constants can be defined at any place of a TTCN-3 module

* The visibility is restricted to the scope unit of the definition
(global, local constants)

* const keyword

‘// simple type constant definition

const integer c myConstant := 1;

* The value of the constant shall be assigned when defined.

|const integer ¢ myConstanu; // parse error! |

* The value assignment may be done externally

‘external const integer c _myExternalConst;

« Constants may be defined for all basic and structured types

Constants defined in module definitions part are globally (= anywhere in the module)
visible. Those defined in the module control part, test cases, functions and altsteps are
only locally (=within the same scope unit) visible. The ones defined in component type
definitions are visible in functions, test cases and altsteps referencing that component
type by a runs on-clause.

No forward referencing allowed in constant definitions except in module definition part.

LZT 123 7751 Uen, Rev R1N

4/6/2018

71

© Ericsson 2002-2013.

CONSTANT DEFINITIONS (2)

» The value notation appropriate for the constant type shall be used to
initialize a constant

// compound types - nesting is allowed

// constant definition using assignment notation:

const SomeRecordType c_myConstl := {
fieldl := ”"My string”,
field2 := { field2l1l := 5, field22 := ’"4F’0 }

}

// record type constant definition using value list
const SomeRecordType c_myConst2 := {
"My string”, { 5, "4F’0 } }
// record of constant
const SomeRecordOfType ¢ myNumbers := { 0, 1, 2, 3}

Both assignment notation and the short-hand value list notation may be used when
assigning value to a constant.

LZT 123 7751 Uen, Rev R1N

4/6/2018

72

© Ericsson 2002-2013. 4/6/2018

g

VARIABLE DEFINITIONS

* Variables can be used only within control, testcase, function,
altstep, component type definition and block of statements scope units

* No global variables — no variable definition in module definition part

control { var integer il }

« Iteration counter of for loops

for(var integer i:=1; i<9; i:=i+1) { /*.*/ }

« Optionally, an initial value may be assigned to a variable

control { var integer il := 1 }

Variables defined in the module control part, test cases, functions and altsteps are only
locally (=within the same scope unit) visible. The ones defined in component type
definitions are visible in functions, test cases and altsteps referencing that component
type by a runs on-clause. An initial value may be assigned to the variable.

The naming convention (ETH/R-04:000010 Uen rev. A) generally requires that the
variable names should be prefixed by ‘v’. However, the prefix may be omitted for non-
protocol related variables like loop counters, for loop control variables, variables used in
calculations etc.

LZT 123 7751 Uen, Rev R1N 73

© Ericsson 2002-2013. 4/6/2018

VARIABLE DEFINITIONS (2)

« Uninitialized variable remains unbound
« Variables of the same type can be defined in a list

const integer c myConst := 3;
control {
// list of local variable definitions
var integer v_myIntl, v _myInt2 := 2*c myConst;
// v_myIntl is unbound
log(v_myInt2); // v_myInt2 ==

Forward references shall never be made inside the module control part, test case
definitions, functions and altsteps. This means forward references to local variables, local
timers and local constants shall never occur.

Although initial value assignment is optional, a variable defined must receive a value
assigned somewhere in the program, otherwise a reference to it results in run-time error
(reference to an unbound value).

In the last example, v_myIntl remains unbound, while v_myInt2 has the value
2*c_myConst=6.

LZT 123 7751 Uen, Rev R1N 74

© Ericsson 2002-2013. 4/6/2018

ARRAYS

« Arrays can be defined wherever variable definitions are allowed

| 1/ integer array of 5 elements with indexes 0 .. 4
var integer v_myArrayl([5];

* Array indexes start from zero unless otherwise specified
- Lower and upper bounds may be explicitly set:

var integer v_myBoundedArray[3..5]; // array of 3 integers
v_myBoundedArray[3] := 1; // first element
v_myBoundedArray[5] := 3; // last element

Multi-dimensional arrays

// 2x3 integer array
var integer v _myArray2[2] [3]; // indices from (0,0) to (1,2)

It is important to realize that a single figure in brackets specifies the number of elements
(=array dimension). When a range is given, however, the two figures give the lower
respective the upper index value.

In the first case, the maximum index value is one less then the figure indicated in the
brackets; in the latter case, the maximum index value equals to the last figure indicated in
brackets.

LZT 123 7751 Uen, Rev R1N 75

© Ericsson 2002-2013. 4/6/2018

ARRAYS (2)

» Value list notation may be used to set array values

v_myArrayl := {1,2,3,4,5}; // one dimensional array
{{12,13,14},{22,23,24}}; // 2D array

v_myArray2

* A multidimensional array may be replaced by record of types:

// 2x3 integer matrix with 2D array

var integer v_myArray2[2][3];

// equivalent IntMatrix definition using record of types
type record length(3) of integer IntVector;

type record length(2) of IntVector IntMatrix;

// v_myArray2 and v_myArray2WithRecordOf are equivalent
// from the users’ perspective

var IntMatrix v _myArray2WithRecordOf;

* record of arrays withoutlength restriction may contain any number of
elements

A multidimensional array may be replaced by nested record of types. The number of
record of types equals to the number of indices of the array. The length of the individual
records correspond to the value of the array indices.

LZT 123 7751 Uen, Rev R1N 76

© Ericsson 2002-2013. 4/6/2018

MODULE PARAMETERS

» Parametervalues
Can be set in the test environment (e.g. configurationfile)
May have default values
Remain constants during testrun

» Parameters can be imported from another module

» Can only take values, templates are forbidden

module MyModule

{
modulepar integer tsp myParla := 0, tsp myParlb;
// module parameter w/o default value
modulepar octetstring tsp myPar2;

The module parameter list defines a set of values that are supplied by the test
environment at run-time. During test execution these values shall be treated as constants.
Module parameters are defined by listing their identifiers and types following the keyword
modulepar. Module parameters shall be defined within the module definition part only.
Redefinition of module parameters is not allowed.

It is allowed to specify default values for module parameters.

LZT 123 7751 Uen, Rev R1N 77

© Ericsson 2002-2013. 4/6/2018

SCOPES

* TTCN-3 provides seven basic units of scope:
- module definition part (module) - global

- control part of a module (control)
— block of statements ({...})

- functions (function)

- altsteps (altstep)

- test cases (testcase)

- component types (component) - ‘runs on’ clause

« ldentifiers must be unique within the entire scope hierarchy

The scope unit is the region of the TTCN-3 source within which (constant, timer,
variable, etc.) definitions may have effect, within which multiple definitions of the same
name are prohibited, and outside of which definitions inside the unit do not have effect.

Definitions made in the module definition part but outside of other scope units are
globally visible in the module. So are imported identifiers.

Definitions made in the module control part have local visibility, i.e. can be used within
the control part only.

Definitions made in a test component type may be used only in functions, test cases
and altsteps referencing that component type by a runs on-clause.

Functions, altsteps and test cases are individual scope units without any hierarchical
relation between them, i.e. definitions made at the beginning of their body have local
visibility.

Definitions within block of statements (e.qg. for, if-else, while, do-while, alt, interleave)
have local visibility within the statement concerned.

LZT 123 7751 Uen, Rev R1N 78

© Ericsson 2002-2013.

VISIBILITY MODIFIERS

= |

* On module level

module modulel

{

friend module module2;

type integer module2Type;

public type integer module2TypePublic;
friend type integer module2TypeFriend;
private type integer module2TypePrivate;
} // end of module

—public definition is visible in every module importing the module. (default)
~ private the definitionis only visible withinthe same module.
— friend thedefinitionis only visible withinthe friend declared module.

module module2

{

import from modulel all;

const module2Type c¢ m2t:= 1;
//OK, type is implicitly public
const module2TypePublic c m2tp :
//OK, type is explicitly public
const module2TypeFriend c m2tf

//OK, modulel is friend of module2

2;

3;

const module2TypePrivate c m2tpr

to module2

= 4;
//NOK, module2TypePrivate is private

LZT 123 7751 Uen, Rev R1N

4/6/2018

79

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

VI. PROGRAM STATEMENTS
AND OPERATORS

EXPRESSIONS
ASSIGNMENTS
PROGRAM CONTROLSTATEMENTS
OPERATORS
EXAMPLE

CONTENTS

LZT 123 7751 Uen, Rev R1N 80

© Ericsson 2002-2013.

EXPRESSIONS, ASSIGNMENTS,
log, action AND stop

= |

Statement

Expression

Condition (Boolean expression)
Assignment (not an operator!)

Print entries into log

Stimulate or carry out an action

Stop execution

Keyword or symbol
e.g. 2*f1(vl,c2)+1

e.g. x+y<z

' LHS := RHS

eg.v := { 1, f2(vl) }
‘log(a);

log(a, ...) ;

log(”a = ", a);

action(”Press button!”);

stop;

Basic program statements can be used in the module control part, functions, altsteps

and test cases.

Expressions are specified using the operators shown on the following two slides.

An assignment binds the variable on the left side to the value of the expression on the

right side.

Logging enables to write a string or a variable value to a log file in an implementation

dependent manner.

LZT 123 7751 Uen, Rev R1N

4/6/2018

81

© Ericsson 2002-2013. 4/6/2018

= |

PROGRAM CONTROL STATEMENTS

Statement Synopsis
If-else statement if (<condition>) { <stmt>} [else {<stmt>}]
Select-Case statement select (<expression>) {

case (<template>) { <statement>}
[case (<template-list>) { <statement>} |

[case else { <statement-}]

}
For loop [£ox (<init>; <condition>; <expr>) { <stmt>}
While loop - while (<condition>) { <statement-}
Do-while loop [do { <statement> } while (<condition>);
Label definition | 1abel <labelname>;
Jump to label A goto <labelname>;

An if-else statement is used to denote branching in the program execution based on a
Boolean expression (condition).

The select-case statement permits branching based on the calculated value of an
expression. The statement block of the first branch containing a matching template inside
its case is executed. The statement block of the case else is run when none of the cases
match.

The select case statement is an alternative to using if .. else if .. else statements when
comparing a value to

one or several other values. The statement contains a header part and zero or more
branches. Never more than one of the

branches is executed.

The for statement defines a counter loop. The first statement (init) is used to initialize the
counter variable. If the Boolean expression (cond) is true, the loop terminates. The
second assignment (expr) is used to manipulate (increase or decrease) the index
variable.

A while loop is executed as long as the loop condition holds.

The do while loop is identical to a while loop with the exception that the loop condition
shall be checked at the end of each loop iteration. This means that the instruction is
executed at least once.

Label definition allows the specification of labels (a specific place in the program code).
Jump to alabel performs a jump to a previously defined label.

Used in the control part of a module, the stop statement terminates the execution of the
module control part. When used in a test case, altstep or function with runs on clause, it
terminates the relevant test component.

LZT 123 7751 Uen, Rev R1N 82

© Ericsson 2002-2013. 4/6/2018

break AND continue

* break
— Leaves innermost loop
— or alternative within alt or interleave statement

e continue

— Forces next iteration of innermost loop

econtinue

Forces next iteration of innermost loop
Not for taking new snapshotin alt or interleave statement -> repeat

LZT 123 7751 Uen, Rev R1N 83

© Ericsson 2002-2013.

OPERATORS (1)

4/6/2018

Addition +0p or op4 + Op;,
Subtraction | “OPOrops—0pP2 | op, op,, op,, result:
)) Multiplication ops * op, integer, float
Arithmetical R T
division ops / op,
Modulo op; mod Op,)
op4, Op,, result: integer
Remainder op; rem 0P,
String Concatenation op; & OpP, op4, Op,, result: *string
Equal | OP1==0p; op4, op,: all;
Not equal op,s '=0p; result: boolean
Relati | Less than ops < Op;
elationa [Oop4, OP,: int s ‘£loat,
Greater than op; > op; P P2 JBTEeS e
enumerated;
Less than or equal | 0Py == 0Ps | result: boolean
Greater than or equal | ops; >=0p;

Operands of arithmetic operators shall be of type integer or float, except for mod and rem
which shall be used with integer types only. The result is of the same type as the
operands, operands must not have different types. Both mod and rem have the same

result for positive arguments but they differ for negative ones. See Table 7in 7.1.1 in
ETSIES 201 873-1V4.4.1 (2012-04).

The operators rem and mod compute on operands of type integer and
have a result of type integer. The operations x rem y and x mod y
compute the rest that remains from an integer division of x by y.
Therefore, they are only defined for non-zero operands y. For positive x
and y, both x rem y and x mod y have the same result but for negative
arguments they differ.

Formally, mod and rem are defined as follows:
xremy =x-y*(xly)
xmody =xrem |y| when x >=0
=0 when x <0 and xrem |y| =0
=]yl + xrem|y| whenx<0andxrem |y| <0 ETSI

Effect of mod and rem operator
X -3-2-10123

Concatenation is performed from left to right on compatible string types. The result type
is the root type of the operands.

The relational operators equal and not equal may be applied on all compatible types. All
other relational operators shall have only operands of type integer, float or instances of
the same enumerated types. The result type of these operations is boolean.

LZT 123 7751 Uen, Rev R1N 84

© Ericsson 2002-2013. 4/6/2018

= |

OPERATORS (2)

Category Operator Format Type of operands and result
NOT not op
R AND op1 and 0p2
Logical | OR 1 op - op, op4, Op,, result: boolean
1 ox 0P2
exclusive OR | ops; xor op;
NOT not4b op
Bitwi AND Op; and4b OpP; | op, op,, Op,, result: bitstring,
RIS OR op; or4b op, hexstring, octetstring
exclusive OR | ops xoxr4b op,
shift | left | OP1 << 0P | opy, result: bitstring, hexstring,
I right ops >> 0p, octetstring; Op,: integer
left op4 <@ op, op,, result: bitstring, hexstring,
Rotate | right op, @> 0p; octetstring, (universal)

charstring; Op,: integer

The operands and the result of logical operations shall be of type boolean.

The bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and
bitwise xor. The unary operator not4b inverts the individual bit values of its operand. The
operands shall be of type bitstring, hexstring or octetstring. The result type shall be the
root type of the operands.

Shift operators perform the shift left and shift right operations. Their left-hand operand
shall be of type bitstring, hexstring or octetstring. Their right-hand operand shall be of
type integer and its value of e.g. 1 means a shift of one bit, one hexadecimal digit and one
octet, respectively, according to the three possible left-hand operand types. The result
type shall be the same as that of the left operand.

Rotate operators perform the rotate left and rotate right operations. Their left-hand
operand shall be of type bitstring, hexstring, octetstring, charstring or universal charstring.
Their right-hand operand shall be of type integer and its value of e.g. 1 means a rotate of
one bit, one hexadecimal digit, one octet and one character, respectively, according to
the possible left-hand operand types. The result type shall be the same as that of the left
operand.

LZT 123 7751 Uen, Rev R1N 85

© Ericsson 2002-2013.

OPERATOR PRECEDENCE
Precedence Operatortype Operator

Highest parentheses ()
Unary +, -
Binary *, /, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4db
Binary ordb
Binary <<, >>, <@, @>
Binary <, >, <=, >=
Binary ==, 1=
Unary not
Binary and
Binary xor
Binary or

Lowest

Note: The assignment symbol :=, structure field symbol . , function calling (),indexing []

are not operators!

LZT 123 7751 Uen, Rev R1N

4/6/2018

86

© Ericsson 2002-2013.

SAMPLE PROGRAM STATEMENTS AND E
EXPRESSIONS

function f MyFunction (integer pl y, integer pl i)
{ var integer x, j;

for (j :=1; Jj<=pli; j :=3J + 1)
{
if (j < pl y)
{ x:=73 *ply;
log(x)
}

else { x := j * 3;}

Is the value of j is less than pl_y, then x will get the value of j multiplied by the parameter
pl_y, otherwise it will have the value of three times j. The value x will only be converted to
a character string and logged when the flag equals true.

The procedure described above will be executed in a for loop. The number of executions
is controlled by the value of the parameter pl_i.

The whole process is called in a function (f_MyFunction). The function has two
parameters: pl_y sets the multiplication factor of j, while pl_i controls how many times the
calculation is repeated.

LZT 123 7751 Uen, Rev R1N

4/6/2018

87

© Ericsson 2002-2013.

=
2

ERICSSON

VII. TIMERS

TIMER DECLARATIONS
TIMER OPERATIONS

LZT 123 7751 Uen, Rev R1N

4/6/2018

88

© Ericsson 2002-2013. 4/6/2018

= |

* Timers are defined using the timer keyword at any place where variable
definitions are permitted:

TIMER DECLARATION

timer T1; // Tl timer is defined

» Timers measure time in seconds unit
» Timer resolution is implementation dependent

» The default duration of a timer can be assigned at declaration using non-
negative float value:

'// T2 timer is defined with default duration of 1s
ltimer T2 :=1.0;

* Any number of timers can be used in parallel
* Timers are independent
» Timers can be passed as parameters to functions and altsteps

Timers can be defined and used in the module control part, test cases, functions and
altsteps. Additionally, timers can be defined in component type definitions. These timers
can be used in test cases, functions and altsteps which are running on the given
component type.

LZT 123 7751 Uen, Rev R1N 89

© Ericsson 2002-2013. 4/6/2018

]

STARTING TIMERS

» Timers can be started using the start operation:

‘Tl.start{2.5); // started for 2.5s (Tl has no default!) ‘

* Parameter can be omitted when the timer has a default duration:

T2.start; // T2 is started with its default duration 1s
T2.start(2.5); // started for 2.5s (overrides default)

 Start is a non-blocking operation i.e. timers run in the background (execution
continues immediately after start)

+ Starting a running timer restarts it inmediately

» Trying to start a timer without duration results in error:

timer T3; // T3 has no default duration
T3.start; // ERROR: T3 has no duration!!!

When starting a timer, the optional timer value parameter shall be used if no default
duration is given, or if it is desired to override the default value specified in the timer
definition. When a timer duration is overridden, the new value applies only to the current
instance of the timer, any subsequent start operation for this timer, which do not specify a
duration, shall use the default duration.

The start operation may be applied to a running timer, in which case the timer is stopped
and re-started.

LZT 123 7751 Uen, Rev R1N 90

© Ericsson 2002-2013.

SUPERVISING TIMERS

g

« The timeout operation waits a timer to expire (blocking operation)

T myTimer.timeout; // waits for T myTimer to expire

// any timer and all timer keywords refer to timers
// visible in current scope
any timer.timeout; // wait until “some” timer expires

all timer.timeout; // wait for all timers expire

The timeout operation allows to check expiration of a timer, or of all timers, in a scope
unit in which the timeout operation has been called. The timeout shall not be used in a
boolean expression, but it can be used to determine an alternative in an alt statement

LZT 123 7751 Uen, Rev R1N

4/6/2018

91

© Ericsson 2002-2013. 4/6/2018

EXPIRATION OF TIMERS

* When the duration of a timer expires, then:
— timeout eventis generated and
timer is stopped automatically
timer T := 5.0;
T.start;
T.timeout; // block until timer expiry

* Timers can be stopped any time using the stop operation
— The RTE stops all running timers at the end of the Test Case
Stopping idle timers results run-time warning

T.stop;
// stopping all timers in scope
all timer.stop;

The stop operation is used to stop a running timer. The elapsed time of a stopped timer
is set to the float value zero (0.0). An already stopped timer may be stopped again,
although it does not have any effect.

RTE: Run Time Environment

LZT 123 7751 Uen, Rev R1N 92

© Ericsson 2002-2013. 4/6/2018

OTHER TIMER OPERATIONS: E
RUNNING, READ

The runningoperation can be used to determine if a timer is running (returns
a booleanvalue, does not block)

| // "do something” if T myTimer is running

if (T _myTimer.running) { /* do something */ }

Timers count from zero upwards

The running timer’s elapsed value can be retrieved and optionally saved into
a float variable using the read operation:

W7 Reading the timer’s elapsed time

‘var float v_myVar := T myTimer.read;

» read returns zero for an inactive timer:

‘timer T myTimer2;

|var float v myVar2 := T myTimer2.read; // v myVar2 = 0.0
‘ = = 2,

The running timer operation is used to check whether a timer has been started and has
neither timed out nor been stopped.

The read operation is used to retrieve the time that has elapsed since the specified timer
was started. The operation returns a value of type float. Applying the read operation on an
inactive timer will return the value zero.

LZT 123 7751 Uen, Rev R1N 93

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

VIII. TEST CONFIGURATION

TESTCOMPONENTS AND COMMUNICATION PORTS
TEST COMPONENT DEFINITIONS
COMMUNICATION PORT DEFINITIONS
EXAMPLES

CONTENTS

LZT 123 7751 Uen, Rev R1N 94

© Ericsson 2002-2013. 4/6/2018

= |

TEST CONFIGURATION

* IUT is a black box that must be put into context (i.e. test configuration) for
testing

» Test configuration contains a set of components interconnected via their
well-defined ports and the system component, which models the IUT itself

- components execute test behavior (except system)
- ports describe the components’ interfaces

- type and number of components in a test configuration as well as the
number of ports in components depends on the tested entity

» Test configuration in TTCN-3 is concurrent and dynamic
— components execute parallel processes
— at the beginning of the testcase the test configuration must be
established — Configuration Operations
- test configuration can be changed during test execution

The abstract test configuration consists of components. The components are
interconnected by means of ports. In the course of the test, the components themselves
may emerge and disappear, their interconnection vary, in other words, the test
configuration is dynamic.

The tested implementation (IUT, Implementation Under Test) is considered a black box,
i.e., its internal structure is hidden from the tester. A special test component, called the
test system interface (or System for short) interfaces the ports of the real world to the
abstract world of components.

LZT 123 7751 Uen, Rev R1N 95

© Ericsson 2002-2013.

TEST ARRANGEMENT AND ITSTTCN-3
MODEL-TESTERIS APEERENTITY OF IUT

= |

Test System

=

SuT

IUT

ASPs

PCO Network LSAR

In most of the cases Tester behaves as a peer entity of the IUT/SUT

Main Test Component (mtc)
System Component (system)
mtc and system are of the same type

LZT 123 7751 Uen, Rev R1N

4/6/2018

96

© Ericsson 2002-2013. 4/6/2018

TTCN-3 VIEW OF TESTING - E
DISTRIBUTED TESTER

Abstract Test System A SuT

coordination g J\J n— C

PTC

connection

IUT

)

N =
Service
Primitives

The Implementation Under Test (IUT) is usually located inside the System Under Test
(SUT). The test system is connected to the SUT through a Network. The connection
points between the IUT and the Network respective between the test system and the
network are called Service Access Points (SAPS).

Communication between the Abstract Test System Interface (mapping the Real Test
System Interface to the abstract world) and the Test Components is carried in Abstract
Service Primitives (ASPs). ASP is an implementation-independent description of an
interaction between the test system and the SUT. ASPs are usually described in the
specification of the tested protocol.

Communication within the test system (between the components) runs through
associated ports. The association between components (on the slide: Parallel Test
Components [PTCs] and the Main Test Component [MTC]) is called connection and is set
up using the connect keyword. The association between components and the Abstract
Test System Interface is called mapping and is set up using the map keyword.

LZT 123 7751 Uen, Rev R1N 97

© Ericsson 2002-2013. 4/6/2018

GRAPHICAL REPRESENTATION OF H
COMPONENTS AND PORTS

comptype_CT

LZT 123 7751 Uen, Rev R1N 98

© Ericsson 2002-2013.

COMMUNICATION PORTS

» Ports describe the interfaces of components

« Communication between components proceeds via ports
- ports always belong to components
- type and number of ports depend on the tested entity

* There are two port categories:
- message-based ports for asynchronous communication
- procedure-based ports for synchronous communication

* Interfaces connecting the TTCN-3 components with the real IUT are
implemented in C++ and are called test ports (TITAN specific!)

The components are interconnected via test ports. TTCN-3 defines the port
communication model through which messages are exchanged (message based ports) or
procedures are called (procedure based ports). The interconnection is called mapping
between System and components and connecting between components.

LZT 123 7751 Uen, Rev R1N

4/6/2018

99

© Ericsson 2002-2013. 4/6/2018

= |

PORT COMMUNICATION MODEL

* The port communication is full duplex
- the direction of certain message and signature types (in, out,
inout) can be restricted in the port type definition

* Incoming data is stored in the FIFO queue of the port until the owner
component processes them

+ Outgoing data is transmitted immediately (without buffering)

+ Communication can be realized only between peer ports
- Internal (component-to-component) communication
= between connected ports > Communication Operations
- External (component-to-system) communication
= between mapped ports —» Communication Operations
= test ports to be added

Information (messages, procedure calls or both) are exchanged between associated
communication ports of the components. Internal (component-to-component)
communication happens between connected ports whereas external (component-to-
system) communication happens between mapped ports.

Ports are bidirectional, but have a list enumerating the allowed messages together with
their direction (in, out, inout).
The infinite FIFO queue stores the incoming messages or procedure calls until they are

processed by the component owning that port. A queue overflow (in a real
implementation a queue is never infinite) is treated as a test case error.

LZT 123 7751 Uen, Rev R1N 100

© Ericsson 2002-2013. 4/6/2018

a

COMMUNICATION PORT TYPE DEFINITION

« in: list of message types and/or
signatures allowed to be
received;

* out: list of message types and/or
signatures allowed to be sent;

¢ inout: shorthand for in + out

containing the same members

© Ericsson 2002-2013. | LZT 123 7751 Uen, Rev RIN | 2013-02-07 | Page 101

When defining a message based port type, the messages allowed to pass that port must
be listed together with their direction. When defining a procedure based port type, the
procedure signatures allowed must be listed. A mixed port a shorthand notation for two
ports, i.e. a message-based port and a procedure-based port with the same name.

The attributes defined with the keyword with may define e.g. the coding rules used for the
messages passing the port. Such a rule may be for example whether the most os the less
significant bit should be sent first through the port.

LZT 123 7751 Uen, Rev R1N 101

© Ericsson 2002-2013. 4/6/2018

]

PORT TYPE DEFINITION (EXAMPLE)

// Definition of a message-based
type port MyPortType PT message
{

in ASP RxTypel, ASP RxType2;
out ASP_TxType;

inout integer, octetstring;

}

® Ericsson 2002-2013. | LZT 123 7751 Uen, Rev R1N | 2013-02-07 | Page 102

A message based port is defined by enumerating the allowed message types together
with their direction.

LZT 123 7751 Uen, Rev R1N 102

© Ericsson 2002-2013. 4/6/2018

TEST COMPONENTS

» Test components are the building blocks of test configurations
« Components execute test behavior
* Three types of test components:

- Main Test Component (MTC)

- Test System Interface (or shortly system)

- Parallel Test Component (PTC)

» Exactly one MTC and one system component are always generated
automatically in all test configurations (as the first two components)

* The (runs on clause of) test case defines the component type used by
MTC and system components

* Any number of PTCs can be created and destroyed on demand

The abstract test configuration consists of components. The components are
interconnected by means of ports. In the course of the test, the components themselves
may emerge and disappear, their interconnection vary, in other words, the test
configuration is dynamic.

Within every test configuration there shall be one (and only one) main test component
(MTC) created automatically at the start of each test case execution.

Parallel test components (PTCs) can dynamically be created during execution of a test
case by the explicit use of the create operation.

The tested implementation (IUT, Implementation Under Test) is considered a black box,
i.e., its internal structure is hidden from the tester. A special test component, called the
test system interface (or System for short) interfaces the ports of the real world to the
abstract world of components.

LZT 123 7751 Uen, Rev R1N 103

© Ericsson 2002-2013. 4/6/2018

= |

COMPONENT TYPE DEFINITION

AN Component type definitions

type component « in module definitions part
<identifier_CT> « describe TTCN-3 test components by
{ — defining thele poxts
Component * may contain variable/timer/constant
- . definitions — visible in all
vanab’:g.’;:.’:ﬁ‘;nswnt components of this type
Communication
port definitions
}
A
port <PortTypeRef> <Portlds> ;

A test configuration consists of a set of inter-connected test components with well-defined
communication ports.

Test component type definitions shall be made in the module definitions part. The actual
configuration of components is achieved by performing create operations within the test
case behavior.

The component type defines which ports are associated with a component. The port
names in a component definition are local to that component i.e. another component may
have ports with the same names.

It is possible to define constants, variables and timers local to a particular component.

A component type definition is used to define the test system interface, too because,
conceptually, component type definitions and test system interface definitions have the
same form (both are collections of ports defining possible connection points).

It does not make sense to define timers, variables or constants in the system component
as the latter serves as an image of the physical world.

LZT 123 7751 Uen, Rev R1N 104

© Ericsson 2002-2013. 4/6/2018

=]

COMPONENT TYPE DEFINITION (EXAMPLE)

// Definition of a test component type
type component MyComponentType CT

{// ports owned by the component:

port MyPortType PT PCO;

port MyPortType PT PCO Array[10];

// component-wide definitions:

const bitstring c_MyConst := ’1001’B;
var integer v_MyVar;
timer T MyTimer := 1.0;

The component type MyComponentType_CT owns a port called PCO and a port array
PCO_Array containing 10 ports of type MyPortType_PT.

In each component instance of this type local copies of the ports, the variable (v_MyVar)
and the timer (T_MyTimer) are generated, and the constant (c_MyConst) will be visible.

LZT 123 7751 Uen, Rev R1N 105

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

IX. FUNCTIONS AND
TESTCASES

OVERVIEW OF FUNCTIONS
FUNCTION DEFINITIONS
PARAMETERIZATION
PREDEFINED FUNCTIONS
TESTCASE DEFINITIONS
VERDICT HANDLING
CONTROLLING TEST CASE EXECUTION

CONTENTS

LZT 123 7751 Uen, Rev R1N 106

© Ericsson 2002-2013. 4/6/2018

ABOUT FUNCTIONS

» Describe test behavior, organize test execution and structure
computation

Can be defined:
— within a module — externally
- with reference to a component — without it

May have multiple parameters (value, timer, template, port);
- parameters can be passed by value or by reference

* May return a value at termination

In TTCN-3, functions are used to specify and probe behavior and to structure
computation in a module.

Usually, a function is defined in TTCN-3 (using the keyword function) but may be defined
as an external function (using the keyword external) implemented in one or more C++
source files.

A function must be defined with reference to a component (“runs on”) if the function uses
variables, constants, timers and ports that are defined in a component type definition.

Parameter passing mechanism (by value or by reference) can be chosen for each
parameter separately. Parameters passed by value are read-only parameters. Those
passed by reference may even be altered by the function.

LZT 123 7751 Uen, Rev R1N 107

© Ericsson 2002-2013.

= |

FUNCTION DEFINITION

* The optional runs on clause
restricts the execution of the
function onto the instances of
a specific ComponentType

([formal parameterlist |) ’ 5 - BUT: local definitions of

3
=

ComponentType (ports!!

[runs on <ComponentType> etc.) can be used

[return <returnValueType> | « The optional return clause
specifies the type of the value
that the function must
explicitly return using the
return statement

* Local definitions may contain
constants, variables and timers
visible in the function

The function header:

scontains the list of formal parameters of the function. When no parameters are used,
empty brackets must be written;

the usually optional runs on clause must be present if the function uses variables,
constants, timers and ports that are defined in a component type definition;

the keyword return is only used if the function returns a parameter. A function can only
return a single value of a given type.

The local definitions are optional. When present, the constants, variables and timers
defined here are only visible within the function.

The keyword return must conclude the program part. It must be followed by an
expression resulting in the same type as defined in the header when the return keyword
was used in the header. Notice that the bold and underscored “return” keyword has two
different meanings!

LZT 123 7751 Uen, Rev R1N

4/6/2018

108

© Ericsson 2002-2013. 4/6/2018

= |

» The type, number and order of actual parameters shall be the same as of
the formal parameters;

» All variables in the actual parameter list must be bound:

FUNCTION INVOCATION (1)

function £ MyF 1 (integer pl 1, boolean pl 2) ({};
f MyF 1(4, true); //function invocation

+ Empty parentheses indicate in both definition and invocation if formal
parameter list is empty:

function £ MyF 2() return integer { return 28 };

var integer v_two := f MyF 2(); //function invocation

The formal parameters of the function f_MyF_1 are pl_1 and pl_2. Their types are integer
and boolean, respectively. When invoking the function, the actual parameter list contains
the parameters of the corresponding type in the same order as defined.

By the way: the program part of the function defined is empty, in other words, the function
does not do anything.

The formal parameter list of the function f_MyF_2 is empty thus it is invoked with two
brackets after the function name standing for an empty parameter list. The program
always return the integer value 28 (see the code between the curly brackets). The
returned values is of integer type (cf. the function definition) and that’s why it can be
assigned to the variable v_two, the latter being of the same type.

LZT 123 7751 Uen, Rev R1N 109

© Ericsson 2002-2013. 4/6/2018

FUNCTION INVOCATION (2)

Operands of an expression may invoke a function:
function £ 3(boolean pl b) return integer ({
if(pl_b) { return 2 } else { return 0 }
};
control {
var integer i := 2 * £ 3(true) + £ 3(2 > 3); // i==
}

The functionbelow uses the ports defined in MyCompType CT

function £ MyF 4() runs on MyCompType CT ({
P1 PCO.send(4);
P2 PCO.receive(’FA’O)

}

Functions with a return value may be invoked in expressions. On the slide above, the
function f_3 returns the value 2 if the parameter is true, otherwise the value returned will

be 0.
The first summand has the value of two times two, the second summand equals zero,

thus, the variable i results in four.

The function f_4 is defined with reference to a component (MyCompType_CT) because it
makes use of the ports having been defined in that component.

LZT 123 7751 Uen, Rev R1N 110

© Ericsson 2002-2013.

REFERENCE

PARAMETERS PASSED BY VALUE AND BY E

function £ 0()
{

var integerv_int:=0;

£f 1(v_int); =4
//v_int == 2

£ 2(v_int);
//v_int

£f 3(v_int);
//v_int LTI

function £ _1(inintegerpl i)
et var integer j;
s 3 1= pli; //3 =
01" pli:=1
}
function £ 2 (out integer pl i)
[oapanniemnetd > var integer
......... 133
j :=pl i; //3j undef!
pl i =2
i reed}
function £ 3
......... {igemt ioteger pl 1)
2-.u-{'.'" var integer
37
... j r=pli; //3 ==
.......... pl i :=3
}

By default, parameters are passed by value (optionally denoted by the keyword in). To
pass parameters by reference, the keywords out or inout shall be used.

In parameters may only be read inside the parameterized function, i.e., the parameter is
only allowed on the right-hand side of an assignment.

Out parameters may only be written inside the parameterized function, i.e., the parameter

is only allowed on the left-hand side of an assignment.

Inout parameters may only be both read and written inside the parameterized function,
i.e., the parameter is only allowed on the both sides of an assignment.

LZT 123 7751 Uen, Rev R1N

4/6/2018

111

© Ericsson 2002-2013. 4/6/2018

DEFAULT VALUES

* in parameters may have default values
 at invocation
- “=” (hyphen) skips the parameter with default value

- simply leaving out (if it is the last, or all the following have default
values)

— default value may be overwritten

function f MyFDef (integer i, integer j:=2, integer k) {}
function f MyFDef2 (integer i, integer j:=2, integer k:=3) {}

// invocation

£ MyFpef(1,-,3); // £ MyFDef(1,2,3);
f MyFDef(1,5,3); // £ MyFDef(1,5,3);
f MyFDef2(1,5,7);// £ MyFDef2(1,5,7);
f MyFDef2(1,5); // £ MyFDef2(1,5,3);
f MyFDef2 (1) ; // £ MyFDef2(1,2,3);

LZT 123 7751 Uen, Rev R1N 112

© Ericsson 2002-2013. 4/6/2018

PREDEFINED FUNCTIONS

Length/size functions
Return length of string value in appropriate unit lengthof (sfrvalue)
Return number of elements in array, record/set of sizeof (ofvalue)

Stnng functions

Return part of str matching the specified pattern regexp(str, RE, grpno)
Return the specified portion of the input string substx(str,idx, cnt)
Replace specified part of str with repl replace(str,idx, cnt, rpl)

Presence/choice functions

Determine if an optional record or set field is present ispresent(fieldref)
Determine the chosen alternative in a union type ischosen(fieldref)

Other functions

Generate random float number rnd([seed])

Returns the name of the currently executing test case testcasename ()

The functions lengthof resp. sizeof give the length of a string respective the number of
elements in the referenced constructed type.

The functions regexp and substr return a specific part of the referenced string.

The function ischosen returns the Boolean value true if the element given in the
parameter is selected in the union. The parameter contains the the reference to the union
element in dot notation format.

The function ispresent returns the Boolean value true if the optional field given in the
parameter is present in the record or set. The parameter contains the the reference to the
record or set field in dot notation format.

The rnd function returns a pseudorandom float number r where 1 >r 2 0. The function
may optionally be initialized by a seed value. The same seed value results in the same
sequence of pseudorandom numbers.

The testcasename function returns the unqualified name of the actually
executing test case.

The detailed description of predefined functions is given in annex C of the ETSI standard
ES 201 873-1.

LZT 123 7751 Uen, Rev R1N 113

© Ericsson 2002-2013. 4/6/2018

PREDEFINED CONVERSION FUNCTIONS

universal

SO\ Erom integer. fioat bitstring hexstring octetstring charstring charatnng

R char2int
integer float2int bit2int hex2int oct2int unichar2int
str2int

‘&\\&W&\\\\\\\\

pitstring int2bit & hex2bit
N

N

s 4 w
N _
octetstring int2oct &\ bit2oct hex2oct

int2char

charstring THE2SED float2str | bit2str hex2str

.-, [NI

log2str; enum2int >

© Ericsson 2002-2013. | LZT 123 7751 Uen, Rev RIN | 2013-02-07 | Page 114

Conversion functions span the gap between different simple variable types.

A function at the intersection of a given column and a row has an in parameter indicated
in the column header and returns the value type indicated in the row header.

The detailed description of predefined functions is given in annex C of the ETSI standard
ES 201 873-1.

Green letters indicate TITAN extensions, not included in the standard.

Difference between functions with 'str' and 'char' in their names is explained with the
following examples:

int2char (66) = "B", int2str (66) = "66".

LZT 123 7751 Uen, Rev R1N 114

© Ericsson 2002-2013. 4/6/2018

=]

NEW PREDEFINED FUNCTIONS

log2str (log-arguments) return charstring
Returns formatted output of arguments instead of placing them to log file

(TITAN)

// Save output of log statement instead of
var charstring str
str := log2str(”Value of v is:”, v);

enum2int (enumeration-reference) return integer
Gives integer value associated with enumeration item

type enumerated E { zero, one, two, three };
var E e := one;
integer i := enum2int(one); // i ==

isvalue (inline-template) return boolean
Returns true if argument template contains specific value or omit

LZT 123 7751 Uen, Rev R1N 115

© Ericsson 2002-2013. 4/6/2018

A testcase

A special function, which is always executed (runs) on the MTC;

In the module control part, the execute () statement is used to start
testcases;

The result of test case execution is always of verdicttype
— with the possible values: none, pass, inconc, fail or error;

* testcases can be parameterized.

The Main Test Component (MTC) and Test System Interface (TSI or System for short)
are implicitly instantiated (created) when the test case is started. TSI may be omitted if
only the MTC is instantiated during test execution. In this case, MTC type defines the TSI
ports implicitly.

A testcase has no return clause, must not use the return statement. Instead, the result of
the test case execution is done in a verdict type variable. This internal verdict variable is
associated with each component instance and the MTC determines the final verdict
based on the verdicts returned by the Parallel Test Components and the Main Test
Component.

TC can be started directly from control part, or from a function running on the control part
(i.e., MTC is not yet created) using the execute() statement.

LZT 123 7751 Uen, Rev R1N 116

© Ericsson 2002-2013. 4/6/2018

= |

« Component type of MTC is defined
in the header’s mandatory runs
on clause

testcase DEFINITION

([formal parameterlist |) ' 5

* Test System Interface (TSI) is
modeled by a component in the

runs on <MTCcompType> §
= optional system clause

[system <TSlcompType> |
» Can be parameterized similarly to

functions

» Local constant, variable and timer
definitions are visible in the test
case body only

The program part defines the
testcase behavior

The testcase header:

scontains the list of formal parameters of the test case. When no parameters are used,
empty brackets must be written;

*the mandatory runs on clause specifies the Main Test Component which the test case is
running on. This makes the test ports visible to the MTC;

the keyword system is only used if a distinct Test System Interface (TSI) is used.
Otherwise, MTC type defines the TSI ports implicitly.

the local definitions are optional. When present, the constants, variables and timers
defined here are only visible within the test case.

the program part (test case body) defines the behavior of the Main Test Component
(MTC)

LZT 123 7751 Uen, Rev R1N 117

© Ericsson 2002-2013. 4/6/2018

testcase DEFINITION (EXAMPLE)

module MyModule {
// Example 1: MTC & System present in the configuration
testcase tc_MyTestCase()
runs on MyMTCType CT
system MyTestSystemType SCT
{ /* test behavior described here */ }

// Example 2: Configuration consists only of an MTC
testcase tc MyTestCase2 ()

runs on MyMTCType CT
{ /* test behavior described here */ }

The first example shows a configuration where both the Main Test Component (here:

MyMTCType_CT) and the Test System Interface (here: MyTestSystemType_SCT) are
present.

The second example shows a configuration where only the Main Test Component is
present.

LZT 123 7751 Uen, Rev R1N 118

© Ericsson 2002-2013. 4/6/2018

RUNNING TEST CASES

* The execute statement initiates test case execution
— mandatory parameter: testcase name;
— optional parameter: execution time limit;
- returns a verdict (none, pass, inconc, fail or error).
* A test case terminates on termination of Main Test Component

— the final verdict of a test case is calculated based on the final local
verdicts of the different test components.

vl MyVerdict := execute(tc TestCaseName (), 5.0);

Timer may be used to supervise the execution of a test case. This may be
done using an explicit timeout in the

execute statement. If the test case does not end within this duration, the
result of the test case execution shall be an

error verdict and the test system shall terminate the test case. The timer
used for test case supervision is a system timer

and need not be declared or started.

LZT 123 7751 Uen, Rev R1N 119

© Ericsson 2002-2013. 4/6/2018

CONTROLLING TEST CASE EXECUTION - E
EXAMPLES

control {
// Test cases return verdicts:
var verdicttype vl MyVerdict := execute(tc MyTestCase()):

// Test case execution time may be supervised:
vl MyVerdict := execute(tc_MyTestCase2(), 0.5);

// Test cases can be used with program statements:
for (var integer x := 0; x < 10; x := x+1)
{ execute(tc MyTestCase()) 1}’

// Test case conditional execution:
if (vl_sSelExpr) { execute(tc MyTestCase2()) };
} // end of the control part

The module control part describes the execution order of the actual test cases.

The instruction after the first comment executes the test case (tc_MyTestCase) and
stores the resulting verdict in a variable (vI_MyVerdict).

The next instruction shows how to put an optional time limit (here: 0.5 second) on the test
case execution time. When the time limit expires without a returned verdict, the final
verdict is set to "error" and the test components are stopped.

The third program statement executes the test case (tc_MyTestCase) ten times.

In the last example the test case (tc_MyTestCase) is only executed when the variable
vl_SelExpr has the value true.

LZT 123 7751 Uen, Rev R1N 120

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

X. VERDICTS

verdicttype VS. BUILT-IN VERDICT

OPERATIONS FORBUILT-IN VERDICT
MANAGEMENT

VERDICT OVERWRITING LOGIC

CONTENTS

LZT 123 7751 Uen, Rev R1N 121

© Ericsson 2002-2013.

= |

verdicttype

* verdicttype
— is a built-in TTCN-3 special type
— can be the type of constant, module parameter or variable
» Constants, module parameters and variables of verdicttype get their
values via assignment
* verdicttype variables
— usually store the result of execution
- can change their value without restriction

ivar verdicttype vl MyVerdict := fail, vl TCVerdict;
vl MyVerdict := pass; // vl MyVerdict == pass

// save final verdict of test case execution
vl_TCVerdict = execute(tc_TC());

Local variables of type verdicttype can be used to store verdicts. The value of such a
variable can be manipulated using common assignments. Assigning a different value to a
verdicttype variable always overwrites the existing value.

LZT 123 7751 Uen, Rev R1N

4/6/2018

122

© Ericsson 2002-2013. 4/6/2018

= |

BUILT-IN VERDICT

* MTC and all PTCs have an instance of built-in verdict object containing
the current verdict of execution

* initialized to none at component creation

* Manipulated with setverdict () and getverdict operations according
to the “verdict overwriting logic”

testcase tc TCO() runs on MyMTCType CT ({
var verdicttype v := getverdict; // v == none
setverdict (fail) ;
v := getverdict; // v == fail
setverdict (pass) ;
v := getverdict; // v == fail

}

MTC and PTCs each have a built-in or local verdict. The test case author can alter local
verdict during test case execution in each component using the following operations.

The setverdict operation is used to set local verdict in test cases, altsteps and functions.
The operation may be applied several times in a component resulting in a final local
verdict determined according the rules shown on the next slide. "Local" means local to a

component.
The getverdict operation returns current value of the built-in verdict of the component.

LZT 123 7751 Uen, Rev R1N 123

© Ericsson 2002-2013. 4/6/2018

VERDICT OVERWRITING LOGIC

Result Partial verdict
Former value of
: none ass

pass pass pass inconc

fail fail fail fail

The verdict overwriting logic determines the resulting verdict in function of the former
verdict every time the operation setverdict is applied in a module. The verdict only can
change for the worse, i.e., the following sequence alone is possible: none > pass > inconc
> fail > error.

LZT 123 7751 Uen, Rev R1N 124

© Ericsson 2002-2013.

VERDICT OVERWRITING RULES IN
PARALLELTEST CONFIGURATIONS

= |

Global verdict returned by
the test case at termination

« [Each test component has its own local verdict initialized to none at its
creation; the verdict is modified later by setverdict ()

* Global verdict returned by the test case is calculated from the local
verdicts of all components in the test case configuration.

MTC ?

setverdict(fail)

setverdict (inconc)

setverdict (pass)

Test case (global) verdict is computed based on the local verdicts of involved test

components. The execute statement returns the global verdict following the test case

termination.

LZT 123 7751 Uen, Rev R1N

4/6/2018

125

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

XI. CONFIGURATION
OPERATIONS

CREATINGAND STARTING OF COMPONENTS
ADDRESSING AND SUPERVISING COMPONENTS
CONNECTING AND MAPPING OF COMPONENTS

PORT CONTROL OPERATIONS
EXAMPLE

CONTENTS

LZT 123 7751 Uen, Rev R1N 126

© Ericsson 2002-2013. 4/6/2018

DYNAMIC NATURE OF TEST E
CONFIGURATIONS

» Test configurationin TTCN-3 is DYNAMIC:
- MUST be explicitly set up at the beginning of each test case;

- MTC is the only test component, which is automatically generated in test
configurations; it takes the component type as specified in the “runs on”
clause of the testcase;

— PTCs can be created or destroyed on demand,;

- ports can be connected and disconnected at any time when needed.
» Consequences:

— connections of a terminated PTC are automatically released;

- sending messages to an unconnected/unmapped port results in dynamic
test case error;

- disconnected or unmapped ports can be reconnected while their owner
Parallel Test Component is running;

Dynamic nature of test configurations means that parallel test components may be
created and destroyed as needed. The same is valid for the connections between
components.

LZT 123 7751 Uen, Rev R1N 127

© Ericsson 2002-2013.

= |

CREATING PARALLEL COMPONENTS

» Parallel Test Components (PTCs) must be created as needed using the create
operation.
* The create alive operation creates an alive PTC (an alive component can be
restarted after it is stopped)
* The create operation creates the component and returns by the unique
component reference of the newly created component
— this reference is to be stored in a Component Type (address) variable

* The ports of the component are initialized and started.
The component itself is not started.

* Sample code:

var CompType CT vc CompRef;
vc_CompRef := CompType CT.create;

// vc_CompRef holds the unique component reference

Ports and components are used to set up test configurations. Components are
the owner of the ports. Test components are working concurrently, they can be
created and destroyed.

The MTC is the only test component which is automatically created when a test
case starts. All other test components (the PTCs) shall be created explicitly at
any point in a behavior description by any other (running) component using the
create operation. A component is created with its full set of ports and empty input
gueues. All component variables and timers are reset to their initial value (if any)
and all component constants are reset to their assigned values.

The create operation shall return the unique component reference of the newly
created instance. The unique reference to the component will typically be stored
in a variable and can be used for connecting instances and for communication
purposes such as sending and receiving. Variables holding component
references shall be of a a previously defined component type (and not one of the
built-in component type).

LZT 123 7751 Uen, Rev R1N

4/6/2018

128

© Ericsson 2002-2013. 4/6/2018

=]

COMPONENT NAME AND LOCATION

« ~ can be specified at component creation

// Specifying component name

ptcl := newl CT.create (”NewPTCl”) ;

// Specifying component name and location
ptc2 := newl CT.create (”NewPTC2”, ”1.1.1.1");
// Name parameter can be omitted with dash
ptc3 := newl CT.create(-, "hostgroup3”);
* Name:

— appears in printout and log file names (meta character %n)
— can be used in test port parameters, component location constraints
and logging options of the configuration file
* Location:
- contains IP address, hostname, FQDN or refers to a group defined in
groups section of configuration file

Fully Qualified Domain Name (FQDN)

LZT 123 7751 Uen, Rev R1N 129

© Ericsson 2002-2013. 4/6/2018

= |

REFERENCING COMPONENTS

Referencing components is important when setting up connections or
mappings between components or identifying sender or receiver at ports,
which have multiple connections

» Components can be addressed by the component reference obtained at
component creation:

var ComponentType CT vc CompReference;
vc_CompReference := ComponentType CT.create;

MTC can be referred to using the keyword mtc
» Each component can refer to itself using the keyword self
* The system component’s reference is system.

When defining a variable to store a component reference, care must be taken to use the
same component type as has the component to be created.

LZT 123 7751 Uen, Rev R1N 130

© Ericsson 2002-2013. 4/6/2018

CONNECTING COMPONENTS

» Connecting components means connecting their ports;
* The connect operation is used to connect component ports;

* A connection to be established is identified by referencing the two
components and the two ports to be connected,;

* A port may be connected to several ports (1-to-N connection).

vc A := A CT.create; // vc A: component reference
vc B := B CT.create; // vc B: component reference
connect (ve_A:A PCO, vc B:B PCO); // A PCO: port name

A_PCO B_PCO
vc_A] (vc_ B

A_CT B CT

A connection can forward messages, procedure calls or both depending on the
operation type of the involved ports. The direction of the message flow (in:
incoming, out: outgoing, inout: both ways) can be limited at port definition.

The connect operation can only connect consistent ports of test components. It
means that on outgoing port may only be connected to an incoming port and vice
versa. Another condition is that the messages defined for both ports must match,
i.e., the incoming port must be able to receive all outgoing messages from the
connected port. A connection can be set up between a pair of running ports at
any time.

Limitations: A port owned by component A shall not be connected with two or
more ports owned by A or component B. If a port has more than 1 connections
then all outgoing messages must be explicitly addressed.

Connections between two test components can be manipulated by a 3™
component as well.

LZT 123 7751 Uen, Rev R1N 131

© Ericsson 2002-2013. 4/6/2018

MAPPING A TEST SYSTEM INTERFACE B |
PORT TO A COMPONENT

* The map operation is used to establish a connection between a port of the
system and a port of a component;

- Test port must be added

* A mapping to be established is identified by referencing the two
components (one of them must be the system component) and the two
ports to be connected,;

* Only one-to-one mapping is allowed.

vc C := C_CT.create; L/ vc _C: component reference
map (ve_C:C_PCO, system:SYS PCO); // SYS PCO: port ref.

C_PCO SYS_PCO

system_CT

Mappings carry data between Test System and the Implementation (or System)
Under Test (IUT/SUT).

Mappings and connections are equivalent from the abstract communication’s
point of view. It is not allowed, however, to connect to a mapped port or to map to
a connected port.

Connections ("loop back™) within the test system interface are not allowed.

LZT 123 7751 Uen, Rev R1N 132

© Ericsson 2002-2013. 4/6/2018

BASIC EXAMPLES FOR VALID H
CONNECTIONS

LZT 123 7751 Uen, Rev R1N 133

© Ericsson 2002-2013. 4/6/2018

VALID MAPPINGS

LZT 123 7751 Uen, Rev R1N 134

© Ericsson 2002-2013.

INVALID CONNECTIONS AND MAPPINGS

= |

. - —

-

LZT 123 7751 Uen, Rev R1N

4/6/2018

135

© Ericsson 2002-2013.

DYNAMIC TEST CONFIGURATION

= |

» Creating or destroying connection between two ports
of different parallel test components

connect (vc_A : Al PCO, vc_B : Bl PCO);
disconnect (vc_A : Al PCO, vc B : Bl PCO);

» Creating or destroying connection between a port of SUT
and a port of a TTCN-3 test component

map (system:SYS PCO, vc_B:Bl PCO);
unmap (system: SYS PCO, vc B:B1l PCO) ;

port references

* Where vc_A, vc_B are component references, A1 PCO and B1_PCO are

LZT 123 7751 Uen, Rev R1N

4/6/2018

136

© Ericsson 2002-2013. 4/6/2018

STARTING COMPONENTS

» The start () operation can be used to start a TTCN-3 function (behavior)
on a given PTC
* The argument function:

- shall either refer (clause “runs on”) to the same component type as the
type of the component about to be started or shall have no runs on
clause at all;

- can have in ("value") parameters only;

- shall not return anything

* Non-alive type PTCs can be started only once
* Alive PTCs can be started multiple times

function f behavior (integer i) runs on CompType CT
{ /* function body here */ }

vc_CompReference.start(f_behavior(17));

Once a component has been created and connected, the execution of its behavior has to
be started. This is done by using the start operation. Every component can only be
started once. The function start() is non-blocking, execution continues immediately.

LZT 123 7751 Uen, Rev R1N 137

© Ericsson 2002-2013. 4/6/2018

]

TERMINATING COMPONENTS

* MTC terminates when the executed testcase finishes

* PTC terminates when the function that it is executing has finished
(implicit stop) or the component is explicitly stopped/killed using the
stop/kill operation

* PTCs cannot survive MTC termination: the RTE kills all pending PTCs at
the end of each test case execution.

* The stop operation releases all resources of a ephemeral PTC,;
alive PTC resources are suspended but remain preserved

» The kill operation releases all resources of the PTC

self.kill; // suicide of a test component
ve A.stop; //terminating a component with reference vc A

all component.stop;//terminating all parallel components

Using the all component keyword, all (parallel) components may only be stopped from the
Main Test Component (MTC).

stop = self.stop

LZT 123 7751 Uen, Rev R1N 138

© Ericsson 2002-2013.

WAITING FORA PTC TO TERMINATE

=]

* The done operation

— blocks execution while a PTC is running;

- does not block otherwise (finished, failed, stopped or killed)
* The killed operation

- blocks while the referred PTC is alive

- does not block otherwise

- is the same as done on normal PTC

vc_A.done; // blocks execution until vc A terminates

all component.done; // blocks the execution until all
// parallel test components terminate

vc B.killed; // wait until vc B alive component is killed

LZT 123 7751 Uen, Rev R1N

4/6/2018

139

© Ericsson 2002-2013. 4/6/2018

CHECKING THE STATE OF A PARALLEL E
COMPONENT

* The running operation returns
- true if PTC was started but not stopped yet
- false otherwise (if PTC was not started or already finished)

* The alive operation checks if PTC is currently alive or not:
- true if a normal PTC was created but not stopped or

if an alive PTC was created but not killed yet
— false otherwise (PTC does not exist any more)

if (ve_A.running) { /*do something if vc A is active!*/ }

while (any component.running) { /* do something if at least
one component is running */ }

if (not vc _B.alive) { /*do something if vc B not alivex*/ }
vc B.killed; // wait until vc B alive component is killed

The running operation returns a Boolean value depending on the active or passive state
of the referenced component. The done operation blocks the execution until the
referenced component has terminated when used as a stand-alone statement. (It can
also be used as an alternative in an alt statement.)

Components can be in following states:
* non-existing or not created (running == error, done == error)
« created but not yet started (running == false, done blocks execution)
« started and running (running == true, done blocks execution)

« finished execution or stopped or a test case error occurred (running == false,
done does not block)

When the all component keyword is used instead of a component reference in the
running operation (allowed only in the Main Test Component [MTC]), it will return
true if all PTCs started but not stopped explicitly by another component are executing
their behavior.

When the any component keyword is used instead of a component reference in the
running operation (allowed only in the MTC), it will return true if at least one PTC is
executing its behavior.

When the all component keyword is used instead of a component reference in the done
operation (allowed only in the MTC), execution continues if no one PTC is executing
its behavior or if no PTC has been created or started.

When the any component keyword is used instead of a component reference in the done
operation (allowed only in the MTC), execution continues if at least one PTC has
terminated or stopped.

LZT 123 7751 Uen, Rev R1N 140

© Ericsson 2002-2013.

PTC STATE MACHINE

t/ | create/creation of a non-alive PTC

~ -~ done/mo match killed/no match

Inactive running/false alive/true

i o N ~
stop/"component terminates” (s now 22) e s | start/"component executes function”
killV* component terminates” (see note 25)
done/mo match killed/no match

running/true alive/orue

| “run-time error*/error

i
stop/" component terminates”® (see now Ja) oo : TN
killV/* component terminates® (see note Jb) \ starterror |/ Error
“retum from function®/" component terminates” \\\ (e mote 3)
"completion of funchon*/"component terminates” | start/error

B

\,/ Killed stop/mull Gesnote 200 kill/null (see note 26)
\\ done/match killed/match
T — running/false alive/false
NOTE 1. (a) Stop can be either a stop, self stop or a stop from another te st component,
(b) Kill can be either a kill, seif kill, a kill from another test component or a kill from the test system (in emor

cases)
NOTE 2 (a) Stop can be from another test component only,
(b) Kill can be from another test component or from the test system (in error cases)only
NOTE 3. Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test

case terminates and the overall test case result will be error

o
C

LZT 123 7751 Uen, Rev R1N

4/6/2018

141

© Ericsson 2002-2013.

ALIVE PTC STATE MACHINE

create alive/creation of an alive PTC
t/ done/no match killed/no match
runningfalse aliveltrue

/ "~ Inactive)

stop/"component stops” (see note 2a) 1\

~
| start/ compenent executes functicn”
killV/*component terminates” (see note 26) N | done'no match killed/no match
e runninglrue alivelrue
Running) 5
kill”* component terminates” (see note 1b) N s | “run-time error*/error

start/erro Error

start/"component (e note 3)

executes function®

/1 stop/mull Gsee mote 2
done/match
killed/no matc

stop/“component stops” (se note k)
“return from functon*/* component terminates”
*completion of function®/"component terminates”

stop/null (we note 20

Kill/null (we now 25) .
done/match P
killed/match L
running/false y o
alive/false

) component terminates® note 25,
killV* comp 1 (we) start/errar

NOTE 1. (a) Stop can be either a stop, self stop or a stop from another te st component,
(b) Kill can be either a kill, seif kill, a kill from another test component or a kill from the test system (in emor
cases)

NOTE 2 (a) Stop can be from another test component only,
(b) Kill can be from another test component or from the test system (in error cases) only

NOTE 3. Whenever a test component enters its error state, the error verdict is assigned to its local verdict, the test
case terminates and the overall test case result will be error

LZT 123 7751 Uen, Rev R1N

4/6/2018

142

© Ericsson 2002-2013.

MTC STATE MACHINE

execute/" creates the MTC* and "starts the testcase”

done/mno match killed/no match
S — running/trie alive/true

<Error N Running

(seemote 3)

starterror stop/* component terminates” (seenote Ia)
stop from another comp onent/error K/ component tenminates” Gee note 3b)
kill from another oon": onent/error “completing of the test case”/" component terminates”

“run-time emror*/error =
<Ki]led\

(bee note 2)

NOTE 1: (a) Stop can be either a stop, self stop, a stop from another test component,
(b) Kill can be either a kill, self kill, a kill from another test component or a kill from the test system (in emor

cases)
NOTE 2. All remaining PTCs shall be killed as well and the testcase terminates
NOTE 3. Whenever the MTS enters its error state, the error verdict is assigned to its local verdict, the test case

terminates and the overall test case result will be error

LZT 123 7751 Uen, Rev R1N

4/6/2018

143

© Ericsson 2002-2013.

HANDLING

SPECIALFEATURES OF COMPONENT

]

* The running, alive, done, killed and stop operations can be
combined with the special any component or all component as well

as with the self and mtc keywords

Operation any component | all component self | mtc system

running YES* YES* YES* | NO NO
ome YES* YES* YES* | NO NO
ot NO YES* YES | YES NO

YES* = from MTC only!

YES# = from PTCs only!

LZT 123 7751 Uen, Rev R1N

4/6/2018

144

© Ericsson 2002-2013.

RELATIONSHIP BETWEEN E

COMPONENT TYPE, ROLE, REFERENCE

type port Interface PT messa { inout PDU; }
type port StdIO_PT message {‘nout charstring; }

port Interface PT p;
port StdIO PT io;
} type component SYSTEM SCT {
port Interface PT p;

reference }

type component MTC CT { /

mtc

MTC_CT SYSTEM_SC®” | reference

testcase tc_l() runs on MTC_C
map (mtc:p, system:p)
}

system SYSTEM SCT {

The mtc and system components are automatically created in the beginning of test case
execution and destroyed when the test execution finishes. The test case itself is executed
on the mtc. The system component does not run any behavior as it acts as a logical
model of the IUT.

The runs on clause of the executed test case determines the component type of the mtc,
while the system clause specifies the component type used for system.

The component type definition enlists the resources of a particular type component, e.g.
how many and what kind of interfaces the component has.

The port type definition declares operation mode of the interface
(message=asynchronous, procedure=synchronous) and enlists the type of messages (or
signatures at a procedural port), which can traverse the port.

LZT 123 7751 Uen, Rev R1N

4/6/2018

145

© Ericsson 2002-2013. 4/6/2018

ELEMENTARY STEPS OF SETTING UP THE E
TEST CONFIGURATION

1) Create PTCs (ports of components are created and started
automatically) — create

2) Establish connections and mappings — connect Ormap
3) Start behavioronPTCs - start
4) Wait for PTCs to complete— done orall component.done

LZT 123 7751 Uen, Rev R1N 146

© Ericsson 2002-2013. 4/6/2018

= |

EXAMPLE TEST CONFIGURATION

vc_B. done;

tc()
mtc

Elementary steps of setting up the test configuration:

1) Create PTCs (ports of components are created and started automatically)
2) Establish connections and mappings

3) Start behavior on PTCs remotely

4) Wait for PTCs to complete

LZT 123 7751 Uen, Rev R1N 147

© Ericsson 2002-2013. 4/6/2018

EXTENDING COMPONENT TYPES

* Reuse of existing component type definitions:

- “Derived” component type inherits all resources (ports, timers,
variables, constants)of extended “parent” component type(s)

* Restrictions:
- no cyclic extensions
— avoid name clashes between different definitions

type component oldl CT ({ type component old2 CT {
var integer i; timer T;
port MyPortType P; port MyPortType Q;

} }

type component new CT extends oldl CT, old2 CT ({
port NewPortType R; // includes P,Q,R,i and T!
}

LZT 123 7751 Uen, Rev R1N 148

© Ericsson 2002-2013. 4/6/2018

2]

"RUNS ON-COMPATIBILITY"

* Function/altstep/testcase with “runs on” clause referring to an
extended componenttype can also be executed on all derived

component types

function £() runs on oldl CT {
P.receive (integer:?) -> value 1i;

}

ptc := newl CT.create;
ptc.start(f()); // OK: newl CT is derived from oldl CT

LZT 123 7751 Uen, Rev R1N 149

© Ericsson 2002-2013.

g

VISIBILITY MODIFIERS

* In component member definitions
- public functions/testcases/altsteps running on that component can
access the definition
- private only the functions/testcases/altsteps runs on the component
type directly can access the definition which
- friend modifieris notavailable within component types.

type component new CT extends oldl_CT
{}:

type component oldl CT { function £ set int() runs on new CT
var integer i; {i:=01} //OK
public var charstrings v_char; function f set char() runs on new CT
private var boolean v _bool; { v char = "_a"] /70K L
port MyPortType P; —
} function £_set bool () runs on new CT
{v_bool := true }

//NOK, v _bool is private

The scope unit is the region of the TTCN-3 source within which (constant, timer,
variable, etc.) definitions may have effect, within which multiple definitions of the same
name are prohibited, and outside of which definitions inside the unit do not have effect.

Definitions made in the module definition part but outside of other scope units are
globally visible in the module. So are imported identifiers.

Definitions made in the module control part have local visibility, i.e. can be used within
the control part only.

Definitions made in a test component type may be used only in functions, test cases
and altsteps referencing that component type by a runs on-clause.

Functions, altsteps and test cases are individual scope units without any hierarchical
relation between them, i.e. definitions made at the beginning of their body have local
visibility.

Definitions within block of statements (e.qg. for, if-else, while, do-while, alt, interleave)
have local visibility within the statement concerned.

LZT 123 7751 Uen, Rev R1N

4/6/2018

150

© Ericsson 2002-2013. 4/6/2018

g

PORT CONTROL OPERATIONS

» Ports are automatically started at component creation and stopped when
the component terminates (implicit stop)

* The stop operation shuts down the port (input queue contents are
inaccessible) connections are NOT released!

» The halt operation blocks new incoming messages, but the messages in
port queue remain intact and receivable

* The clear operation clears the port queue

» The start operation clears the queue and restarts the port

A PCO.halt; //no new messages can get into port queue
A PCO.stop; //no more activity on A _PCO
A PCO.clear; //removes all messages from port gqueue

A PCO.start; //clears port queue and restarts port

Ports are already running when the component is started. All ports are automatically
stopped by the run-time environment when their owner component has finished
execution.

None of the above operations affect connections and mapping of ports.

Receiving operations block on stopped ports until the port is restarted (provided no
defaults are active).

The contents of port queue can still be matched and read on halted ports.

LZT 123 7751 Uen, Rev R1N 151

© Ericsson 2002-2013. 4/6/2018

SUMMARY OF CONFIGURATION H
OPERATORS (1)

Crete new parallel testcomponent CT.create

Create an alive component | CT.create alive
Connecttwo components connect(cl:pl,c2:p2)
Disconnect two components disconnect(cl:pl,c2:p2)
Connect (map) component to system map (cl:pl,c2:p2)

Unmap port from system unmap (cl:pl,c2:p2)

Get MTC address mtc

Get test system interface address system

Get own address self

Start execution of test component pte.start(£())

Where CT is a component type definition; ptcis a PTC; £ () is a function;
¢, cl, c2 are component references and p, p1, p2 are port identifiers

Configuration operations are used to set up and control test components. These
operations shall only be used in test cases, functions and altsteps (i.e. not in the module
control part).

LZT 123 7751 Uen, Rev R1N 152

© Ericsson 2002-2013.

OPERATORS (2)

SUMMARY OF CONFIGURATION

Operation
Check terminationofa PTC

Keyword

pte.running

Checkifa PTCis alive

ptc.alive

Stop execution of test component c.stop

Kill an alive component | c.kill

Wait for termination of a test component ptc.done
Wait for a PTC to be killed | pte.killed
Start or restart port (queue is cleared!) p.start
Stop port and block incoming messages p.stop
Pause port operation p-halt
Remove messages from the input queue p.clear

Where c is a component reference; ptc is a PTC and p is a port identifier

Configuration operations are used to set up and control test components. These
operations shall only be used in test cases, functions and altsteps (i.e. not in the module

control part).

LZT 123 7751 Uen, Rev R1N

4/6/2018

153

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

XIl. DATA TEMPLATES

INTRODUCTION TO TEMPLATES
TEMPLATE MATCHING MECHANISMS
INLINE TEMPLATES
MODIFIED TEMPLATES
PARAMETERIZED TEMPLATES
PARAMETERIZED MODIFIED TEMPLATES
TEMPLATE HIERARCHY

CONTENTS

LZT 123 7751 Uen, Rev R1N 154

© Ericsson 2002-2013.

TEMPLATE CONCEPT

Message to send

TYPE: REQUEST
ID:23

FROM: 231.23.45.4
TO:232.22.22.22
FIELD1: 1234
FIELDZ2: "Hello” |

Acceptable answer

)

TYPE: RESPONSE

ID: SAME as in REQ.

FROM: 230.x - 235.x

TO:231.23.454

FIELD1:800-900

FIELD2: Do not care I

LZT 123 7751 Uen, Rev R1N

4/6/2018

155

© Ericsson 2002-2013. 4/6/2018

DATATEMPLATES

» A template is a pattern that specifies messages.

* A template for sending messages
— may contain only specific values or omit;

— usually specifies a message to be sent (but may also be received
when the expected message does not vary).

» A template for receiving messages
— describes all acceptable variants of a message;

- contains matching attributes; these can be imagined as extended
regular expressions;

— can be used only to receive: trying to send a message using a receive
template causes dynamic test case error.

Template: something that establishes or serves as a pattern.

Templates are used either to test whether a set of received values matches the template
specification or to transmit a set of distinct values.

Templates used to receive messages have the advantage that all valid message variants
may be described in a single template. When a message arrives, the program can decide
whether it is a valid one or not. This procedure is called matching.

Templates used to send messages are advantageous because they can be
parameterized, thus, reused. All fields of these templates must have a determined value
at the point when a message is sent using them. These templates may be used to receive

messages as well, but only when all fields of the expected message are fixed and known
beforehand.

LZT 123 7751 Uen, Rev R1N 156

© Ericsson 2002-2013. 4/6/2018

= |

TEMPLATE MATCHING PROCEDURE

Match ©
Successful

Taken out of queue
’ Does the message match |

this template?

message i @ template

l detalled
description of the
expected message
No match ®
Unsuccessful
Remains in queue "

The runtime environment (RTE) compares the received message with the predefined
template describing all valid message variants. When the message is one of the valid
messages (it fits into the template), the match is successful.

LZT 123 7751 Uen, Rev R1N 157

© Ericsson 2002-2013. 4/6/2018

TEMPLATE SYNTAX

template <type> <identifier>| formal parameter list |
[modifies <base template identifier>] := <body>

« <type> can be any simple or structured type;

« <body> uses the assignment notation for structured types, thus, it may
contain nested value assignments;

» the optional formal parameter list contains a fixed number of parameters;
the formal parameters themselves can be templates or values;

» the optionalmodifies keyword denotes that this template is derived
from an existing <base template identifier> template;

» constants, matching expressions, templates and parameter references
shall be assigned to each field of a template.

Type determines the structure of the template, i.e., its fields.
Identifier is the name of the template. It is used when we want to refer to the template.

The formal parameter list provides the list of the parameters of the template. These
optional parameters are used to alter the template at every invocation.

The keyword modifies denotes derived template where only some of the fields of the
original template are changed. Both templates have the same fields.

The template body lists the permitted values for all fields.

LZT 123 7751 Uen, Rev R1N 158

© Ericsson 2002-2013. 4/6/2018

SAMPLE TEMPLATE

type record MyMessageType ({
integer fieldl optional,
charstring field2,
boolean field3 };

template MyMessageType tr MyTemplate
(boolean pl param) //formal parameter list
= { //template body between braces
fieldl := 2,
field2 (ZBZ, 2oL ZOT)
field3 pl param

» Syntax similarto variable definition

- Not only concrete values, but also matching mechanisms may
stand at the right side of the assignment

First, we define a record (MyMessageType) containing three fields, the first one
being optional.

The type of the template will be the one just defined. The template we'll define is
called tr_MyTemplate. In the template name prefix, 't' stands for 'template' and 'r'
for receiving.

The template accepts the following messages: the first field must be present, but
its content is don't care. The second field may have the value B, O or Q. The
value of the last field must be in function of the parameter pl_param either true or
false.

The template can be used for receiving only, because it contains an undefined
field (the first one).

LZT 123 7751 Uen, Rev R1N 159

© Ericsson 2002-2013. 4/6/2018

g

MATCHING MECHANISMS

» Determination of the accepted message variants is done on a per field
basis.

* The following possibilities exist on field level:
- listing accepted values;
- listing rejected values;
- value range definition;
— accepting any value;
- "don't care” field.
» The following possibilities exist on field value level:
- matching any element;
- matching any number of consecutive elements.
- using the function regexp()

Matching checks whether the received message fits in the set of accepted messages.
The check is done for each field of the template independently. A message is accepted
("matches") when all fields contain accepted values.

The matching mechanisms are depicted in the annex B.1 of ETSI ES 201 873-1.

LZT 123 7751 Uen, Rev R1N 160

© Ericsson 2002-2013. 4/6/2018

= |

SPECIFIC VALUE TEMPLATE

» Contains constant values or onit for optional fields

» Template consisting of purely specific values is equivalent to a constant
— use the constant instead!
» Applicable to all basic and structured types

« Can be sent and received

// Template with specific value and the equivalent constant
template integer Five := 5;
const integer Five := 5; // constant is more effective here

// Specific values in both fields of a record template
template MyRecordType SpecificValueExample := {

fieldl := omit,

field2 := false
};

LZT 123 7751 Uen, Rev R1N 161

© Ericsson 2002-2013.

VALUE LIST AND COMPLEMENTED VALUEE
LIST TEMPLATES

+ Value list template enlists all accepted values.

« Complemented value list template enlists all values that will not be
accepted.

» Syntax is similar to that of value list subtype definition.
» Applicable to all basic and structured types.

// Value list template
template charstring tr SingleABorxC := (”A”, ”B”, "C");

// Complemented value list template for structured type

template MyRecordType tr ComplementedTemplateExample := {
fieldl := complement (1, 101, 201),
field2 := true // this is a specific value template field

|

The simplest template lists all discrete message values that will be accepted.
Complemented values list lists the values which will not be accepted.

Both lists refer to fields of the template, i.e., both notations may be mixed in different
fields of the same template.

LZT 123 7751 Uen, Rev R1N

4/6/2018

162

© Ericsson 2002-2013.

VALUE RANGE TEMPLATE

= |

range subtype:

// Value range
template float
template integer tr FitsToOneByte

tr NearPi := (3.14 ..

template integer tr GreaterThanZero :

* Value range template can be used with integer, float and (universal)
charstring types (and types derived from these).

* Syntax of value range definition is equivalent to the notation of the value

255);
. infinity) ;

template must be a single character string
— Determines the permitted characters

* Lower and upper boundary of a (universal) charstring value range

= ("A"

// Match strings consisting of any number of A, B and C
template charstring tr PermittedAlphabet

HC") ;

Range indicates the upper and the lower boundaries of acceptable values. An expression
evaluating to a specific integer or float value can be used when setting the boundaries.

The lower boundary (written after the left parenthesis) must be less than the upper

boundary (written before the right parenthesis).

LZT 123 7751 Uen, Rev R1N

4/6/2018

163

© Ericsson 2002-2013. 4/6/2018

INTERMIXED VALUE LIST AND VALUE E
RANGE TEMPLATE

» Value list template can be combined with value range template.
* The value range can be specified as an element of a value list:

// Intermixed value list and range matching
template integer tr Intermixed := ((0..127), 200, 255);

// Matches strings consisting of any number of capital
// letters or "Hello"
template charstring tr_ NotThatGood :=

((ravoonzr); "Hello™) ;

Note: The syntax differs from the intermixed value list and value range subtype
construction’s notation:

type integer Intermixed (0..127,255);

LZT 123 7751 Uen, Rev R1N 164

© Ericsson 2002-2013.

ANY VALUE TEMPLATE-"?

» Matches all valid values for the concerned template field type;
* Does not match when the optional field is omitted;

» Applicable to all basic and structured types.

» A template containing ? field can NOT be sent.

// Any value template
template integer tr AnyInteger := ?;

// Any value template for structured type fields

template MyRecordType tr ComplementedTemplateExample := {
fieldl := complement (1, 101, 201),
field2 := ?

),

The matching symbol "?" (AnyValue) is used to indicate that any valid incoming value is
acceptable. It can be used on values of all types. A template field that uses the any value
mechanism matches the corresponding incoming field if, and only if, the incoming field
evaluates to a single element of the specified type.

LZT 123 7751 Uen, Rev R1N

4/6/2018

165

© Ericsson 2002-2013. 4/6/2018

= |

ANY VALUE OR NONE TEMPLATE - *

» Matches all valid values for the concerned template field type;

» can only be used for optional fields: accepts any valid value including
omit for that field,;

applicable to all basic and structured types.

A template containing * field can NOT be sent.

// Any value or none template

template bitstring tr AnyBitstring := *;

// Any value or none template for structured type fields

template MyRecordType tr AnyValueOrNoneExample := {
fieldl := *, // NOTE: This field is optional!
field2 := ? // NOTE: This field is mandatory!

|

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming
value, including omission of that value, is acceptable. It can be used on values of all
types, provided that the template field is defined as optional.

A template field that uses this symbol matches the corresponding incoming field if, and
only if, either the incoming field evaluates to any element of the specified type, or if the
incoming field is absent.

Note: The template tr_AnyBitstring can only be used as an optional field of another
template.

LZT 123 7751 Uen, Rev R1N 166

© Ericsson 2002-2013. 4/6/2018

= |

MATCHING INSIDE VALUES

« ? matches an arbitrary element,
* matches any number of consecutive elements;

» applicable inside bitstring, hexstring, octetstring, record of,
set of types and arrays;

* not allowed for charstring and universal charstring:
- pattern shall be used instead! (see next slide)

// Using any element matching inside a bitstring value
// Last 2 bits can be '0' or '1'
template bitstring tr AnyBSValue := ’101101??'B;

// Any elements or none in record of
// '2' and '3' must appear somewhere inside in that order
template ROI tr TwoThree := { *, 2, 3, * };

The matching symbol "?" is used to indicate that it replaces single elements of a string
(except character strings), a record of, a set of or an array. It shall be used only within
values of string types, record of types, set of types and arrays.

The matching symbol "*" is used to indicate that it replaces none or any number of
consecutive elements of a string (except character strings), a record of, a set of or an
array. The "*" symbol matches the longest sequence of elements possible, according to
the pattern as specified by the symbols surrounding the "*".

LZT 123 7751 Uen, Rev R1N 167

© Ericsson 2002-2013. 4/6/2018

= |

charstring MATCHING - pattern

* Provides regular expression-based pattern matching for charstring and
universal charstring values.

* Format: pattern <charstring>
where <charstring> contains a TTCN-3 style regular expression.

« Patterns can be used in templates only.

// Matches charstrings with the first character "a"
// and the last one "z"
template charstring tr 0 := pattern "a*z";

// Match 3 character long strings such as AAC, ABC,
template charstring tr 01 := pattern "A?C";

Character patterns can be used in templates to define the format of a required character
string to be received.

TTCN-3 pattern expressions have little common with standard regular expressions!
Note: pattern matching for universal charstring is not implemented in TITAN yet!

LZT 123 7751 Uen, Rev R1N 168

© Ericsson 2002-2013. 4/6/2018

= |

pattern METACHARACTERS

2 Matches any single character
* Matches any number of any character
#(n,m) Repeats the preceding expression at least n but at most m times
#n Repeats the preceding expression exactly n times
+ Repeats the preceding expression one or several times (postfix); the same
as #(1,)
[1Specifies character classes: matches any char. from the specified class
- Hyphen denotes character range inside a class
~ Caret in first position of a class negates class membership
e.g. [*0-9] matches any non-numerical character
() Creates a group expression
| Denotes alternative expressions
{} Inserts and interprets the user-defined string as a regular expression
\ Escapes the following metacharacter, e.g. \\ escapes \
\d Matches any numerical digit, equivalent to [0-9]
\w Matches any alphanumeric character, equivalentto [0-%a-zA-Z]
\t TABULATOR, \n NEWLINE, \r CR, \” DOUBLE QUOTE
\g{group, plane, row, cell}
Matches the universal character specified by the quadruple

In addition to literal characters, character patterns allow the use of meta-characters. If it is
required to interpret any metacharacter literally it should be preceded with the
metacharacter '\'.

“” means a range, if before and after there is no space!
inside [] char set may be defined e.g. [aft] ---aorfort

[ad-]aordor—(- can be only at the LAST position!)

LZT 123 7751 Uen, Rev R1N 169

© Ericsson 2002-2013. 4/6/2018

= |

SAMPLE PATTERNS

» Set expression

// Matches any charstring beginning with a capital letter
template charstring tr 1 := pattern "[A-Z]*";

» Reference expression

// Matches 3 characters long charstrings like "AxB"
var charstring cg _in := "?x?";
template charstring tr 2 := pattern "{cg_in}";

* Multiple match

// Matches a string containing at least 3 at most 5 capitals
template charstring tr 4 := pattern ”[A-Z]#(3,5)"”;

// Matches any ASN.1l type name
template charstring tr 3 :=
pattern 7[A-Z] (—#(,1)\w#(1,))#(,)"; >

The pattern used in template tr_3 explained: it begins with a capital letter, followed by
(zero or more hyphen and at least one letter or number) and the section inside the
parentheses may be repeated several times.

LZT 123 7751 Uen, Rev R1N 170

© Ericsson 2002-2013.

THE FUNCTION regexp ()

function regexp (<input-string>, <regexp>, <group-number>)

return <type of input-string>;

* returns a substring of <input-string>, which is the content of
(<group-number> + 1)1 group matching the <regexp>

» <input-string> type can be any (universal)charstring

 the type of returned value equals to the type of the input string

control {
var charstring v_string := 70036 (1) 737-7698";
var charstring v_regexp :=
70036 #(,)\((\d#(1,))\) #(,) [\d-1#(1,)”;
var charstring v_result := regexp(v_string, v_regexp, 0);

}Y// v_result contains the number in parentheses, i.e. 1

The function is used to extract a substring from the input string (on the slide: v_string). It
is used mainly with textual protocols.

The substring to be extracted is the one matching the regular expression (on the slide:
v_regexp). The last argument of the function (on the slide: 0) denotes the cardinal
number of the group in the regexp, 0 being the first match. A group is enclosed in
parentheses, where the first parenthesis must not be preceded by a '# or a'\'.

LZT 123 7751 Uen, Rev R1N

4/6/2018

171

© Ericsson 2002-2013. 4/6/2018

MATCHING MECHANISMS (2)

« Value attributes on field level:
- length restriction;
- ifpresent modifier.

» Special matching for set of types:
- subset and superset matching.

» Special matching for record of types:
- permutation matching.

» Predefined functions operating on templates:
—match ()
—valueof ()

LZT 123 7751 Uen, Rev R1N 172

© Ericsson 2002-2013. 4/6/2018

LENGTH RESTRICTION

» Matches values of specified length — length can be a range.

» The unit of length is determined by the template’s type.

* Permitted only in conjunction with other matching mechanism
(e.g. 2 or ¥)

» Applicable to all basic string types and record-of/set-of types

%// Any value template with length restriction

| template charstring tr FourLongCharstring := ? length(4);
// type record of integer ROI;
‘template ROI tr One2TenIntegers := ? length(1l..10);

// Standalone length modifier is not allowed!
template bitstring tr ERROR := length(3) ; // Parse error!!!

The length restriction attribute is used to restrict the length of string values and the
number of elements in a set of, record of or array structure.

LZT 123 7751 Uen, Rev R1N 173

© Ericsson 2002-2013.

= |

PRESENCE ATTRIBUTE - ifpresent

» Used together with an other matching mechanism for constraining,
ifpresent can be applied only to optional fields.

* Operation mode:
— Absent optional field (omit) —» always match
- Present optional field — other matching mechanism decides matching

* Presence attribute makes sense with all matching mechanisms except ?
and * (* is equivalentto ? ifpresent)

// Presence attribute with structured type fields

template MyRecordType tr IfpresentExample := {
fieldl := complement (1, 101, 201) ifpresent,
field2 := ?

| I

A template field that uses ifpresent matches the corresponding incoming field if, and only
if:

the incoming field matches according to the associated matching mechanism, or
«if the incoming field is absent.

Not to be confused with the predefined function ispresent() which checks whether an
optional field is present in the actual instance of the referenced data object.

LZT 123 7751 Uen, Rev R1N

4/6/2018

174

© Ericsson 2002-2013.

g

SUBSET AND SUPERSET TEMPLATES

« Applicable to set of types only.
* subset matches if all elements of the incoming field are defined in the
subset

type set of integer SOI;

template SOI tr SOIb := subset (1, 2, 3);
// Matches {1,3,2} and {1,3}

// Does not match {4,3,2} and {0,1,2,3,4}

» superset matches if all elements of the defined superset can be found in
the incoming field

template SOI tr SOIp := superset (1, 2, 3);
// Matches {1,3,1,2} and {0,1,2,3,4}
// Does not match { 1 , 3} (2 is missing) and {4 , 3 , 2} (1 is missing)

A field that uses SubSet matches the corresponding incoming field if, and only if, the
incoming field contains only elements defined within the SubSet, and may contain less.

A field that uses SuperSet matches the corresponding incoming field if, and only if, the
incoming

field contains at least all of the elements defined within the SuperSet, and may contain
more.

Vvalue e set of : value c subset: For all value in set of such that value is a subset of
subset.

In the superset example, the group {4,3,2} does not match because '1' is missing. The
excess '4' would not hinder the match.

LZT 123 7751 Uen, Rev R1N

4/6/2018

175

© Ericsson 2002-2013. 4/6/2018

PERMUTATION

* Applicable to record of types only
* permutation matches all permutations of enlisted elements (i.e. the
very same elements enlisted in any order)

type record of integer ROI;

template ROI tr ROIa := { permutation (1, 2, 3) };

// Matches {1,3,2} and {2,1,3}

// Does not match {4;3,2}, {0;1,2,3} and {1,2}' 15 siasing}

LZT 123 7751 Uen, Rev R1N 176

© Ericsson 2002-2013. 4/6/2018

i

MATCHING AND TYPES

- - . %) [-] A O] e N
What kind of matching _mechams?ms are H g g S 5 A 5 & ?
applicable to which types? =3 sslec|9|s 2 %o g @
> |FE|*E| |.|B|%8|:|%

Y = permitted g 5 > |8 |2]§ i

N = not applicable s 2 3 3 3, &

s s| 2| |38]¢8

= 5

boolean

integer, float

bitstring,octetstring, hexstring

charstring,
universal charstring

record, set, union, enumerated
record of

set of

Specific value template, mentioned in the first column, matches the corresponding
incoming field value if, and only if, the incoming field value has exactly the same value as
the value to which the expression in the template evaluates. Thus, it cannot be regarded
as a veritable matching mechanism, as it only accepts a fixed value.

LZT 123 7751 Uen, Rev R1N 177

© Ericsson 2002-2013. 4/6/2018

= |

THE match () PREDEFINED FUNCTION

function match (<value>, <template>) return boolean;

* Thematch () predefined function can be used to check, if the specified
<value> matches the given <template>.

* true is returned on success

// Use of match()
control {

var MyRecordType v_MRT := {
fieldl := omit, field2 := true
};
if (match(v_MRT, tr IfPresentExample)) { log("match") }
else { log("no match") }
} // "match" has been written to the log

The function can be interpreted as an extended 'equality’ operation. It compares the value
of a variable with a template and returns 'true’ if the template matches the value of the
variable as it is the case in the example on the slide.

LZT 123 7751 Uen, Rev R1N 178

© Ericsson 2002-2013. 4/6/2018

= |

THE valueof () PREDEFINED FUNCTION

function wvalueof (<template>) return <type of template>;
» The valueof () predefined function can be used to convert a specific
value <template> into a value.

» The returned value can be saved into a variable whose type is equivalent to
the <type of template>.

* Permitted for specific value templates only!

v// Use of valueof ()
control {
var MyRecordType v_MRT;
v_MRT :
V_MRT :
i

valueof (t_SpecificValueExample) ; // OK

valueof (tr_IfPresentExample); // dynamic error!!

Specific values template means that each field of the template shall resolve to a single
value.

LZT 123 7751 Uen, Rev R1N 179

© Ericsson 2002-2013. 4/6/2018

TEMPLATES ARE NOT VALUES

* Value types in TTCN-3

1 // literal value

const integer c := 1; // constant value
modulepar integer mp := 1; // module parameter value
var integer v := 1; // variable value

» Specific value templates vs. general (receive) templates

1; // specific value template

template integer tl1

template integer t2 ?; // receive template

» Comparing values with values or templates

c==1and ¢c == mp and mp == v // true: all values

tl == ¢ // error: comparing template with a value

valueof (t1) == v // true: tl may be converted to a value
valueof (t2) == v // error:t2 cannot be converted to a value
match(mp,t2) == true // true: mp matches t2

LZT 123 7751 Uen, Rev R1N 180

© Ericsson 2002-2013. 4/6/2018

TEMPLATE VARIANTS

* Inline templates
* Inline modified templates

» Template modification

* Template parameterization

» Template hierarchy

LZT 123 7751 Uen, Rev R1N 181

© Ericsson 2002-2013. 4/6/2018

INLINE TEMPLATES

+ Defined directly in the sending or receiving operation
* Syntax:

[<type> : | <matching> ‘

* Usually ineffective, recommended to use in simple cases only
(e.g. receive any value of a specific type)

// Ex1: receive any value of a given type

portl PCO.receive (BCCH MESSAGE:?) ;

// Ex2: value range of integer
portl PCO.receive((0..7));

// Ex3: compound types (nesting is possible)

portl PCO.receive (MyRecordType:{ fieldl := ¥*,
field2 := 2 });

Inline templates do not have identifiers and are valid for that single operation. Inline
templates must not have parameters.

The type identifier may be omitted when the value unambiguously identifies the type, see
Ex2 on the slide.

The typical use is depicted in Ex1. It is used mainly for value redirect and sender redirect.

LZT 123 7751 Uen, Rev R1N 182

© Ericsson 2002-2013. 4/6/2018

MODIFIED TEMPLATES

// Parent template:

template MyMsgType t MyMessagel := {
fieldl := 123,
field2 := true

}
// Modified template:
template MyMsgType t MyMessage2 modifies t MyMessagel :=

{
field2 := false

}
// t_MyMessage2 is the same as t MyMessage3 below

template MyMsgType t MyMessage3 := {
fieldl := 123,
field2 := false

Instead of specifying a new template, it is possible to modify an existing template when
only a few fields change.

The modifies keyword denotes the parent template from which the new, or modified
template shall be derived.

This parent template may be either an original template or a modified template.

LZT 123 7751 Uen, Rev R1N 183

© Ericsson 2002-2013. 4/6/2018

INLINE MODIFIED TEMPLATES

« Defined directly in the communication operation

+ Valid only for that one operation (No identifier, no reusability)
* Can not be parameterized

» Usually ineffective, not recommended to use!

template MyRecordType t 1 := {
fieldl := omit,
field2 := false

}

control {

port PCO.receive (modifies t 1 := { fieldl := * });

LZT 123 7751 Uen, Rev R1N 184

© Ericsson 2002-2013.

TEMPLATE PARAMETERIZATION (1)

= |

» Value formal parameters accept as actual parameter:
- literal values
- constants, module parameters & variables

// Value parameterization
template MyMsgType t MyMessage

(integer pl int, // first parameter
integer pl int2 // second parameter
) =
{ // template body follows
fieldl := pl int,
field2 := t MyMessagel (pl int2, omit)

}
// Example use of this template
Pl PCO.send(t MyMessage(l, vl integer 2))

Templates for both sending and receiving operations can be parameterized. On the slide,

the first one is appearing. This slide shows the use of value parameters.
The message sent on P1_PCO will have the following structure:

the 18t field is integer, its value equals to 1;
the 2n field is structured (MyMsgType) and has two subfields:

its 1st subfield is integer, its value is determined by the variable vl_integer_2;
its 2nd subfield is not present.

LZT 123 7751 Uen, Rev R1N

4/6/2018

185

© Ericsson 2002-2013. 4/6/2018

]

TEMPLATE PARAMETERIZATION (2)

« Parameterizing modified templates
— The formal parameter list of the parent template must be included;
— additional (to the parent list) parameters may be added

template MyMsgType MyMessaged
(integer par int, boolean par bool) :=

{
fieldl := par int,
i — Formal parameter
= = 13hg sehLy list of the parent
field3 := "00FF00’'0O

) template must be
} // and fully repeated here!

template MyMsgType MyMessage2 g S ’
(integer par int, boolean paf;bool, octetstring par oct)
modifies MyMessaged :=

{
field3 := par oct

}

It is not allowed to modify a field, which is parameterized in the parent template. Thus, in
the example on the slide field1 and filed2 cannot be modified while field3 can.

LZT 123 7751 Uen, Rev R1N 186

© Ericsson 2002-2013.

TEMPLATE PARAMETERIZATION (3)

]

« Template formal parameters can accept as actual parameter:

— literal values
— constants, module parameters & variables, omit

+ matching symbols (?, * etc.) and templates

// Template-type parameterization

template integer tr Int := ((3..6), 88, 555));
template MyIETy'pe tr Temple(template integer pl_int)
{ f1 := 1, f2 := pl_int } q
// Can be used: ; Note the
. 12 late
P1 PCO.send(tr TemplPm(5 ; cup
- (- P ()) keyword!
Pl PCO.receive (tr_ TemplPm(?)); ;
Pl_PCO.receive (tr_ TemplPm (tr_Int o) E
Pl PCO.receive (tr_TemplPm((3..55)))
P1 PCO.receive (tr_ TemplPm(complement (3,5,9));

LZT 123 7751 Uen, Rev R1N

4/6/2018

187

© Ericsson 2002-2013.

RESTRICTED TEMPLATES

=

Templates can be restricted to
- (omit) evaluate to a specific
value or omit
- (present) evaluate to any
template except omit

- (value) specific value but the
entire template must not be
omit

Applicable to any kind of templates
(i.e. template definitions, variable
templates and template formal
parameters)

ge | TE|Se
H w
E o [o] o
- wKE| g P
~ p [0 W
[\ 8o ~-
o S o o
omit Ok error | error
Specific value Ok ok ok
template
Receive error ok error
template

function f omit(template (omit) integer p)

{}

function f present(template (present) integer p)
function f value (template (value) integer p) {}

{}

LZT 123 7751 Uen, Rev R1N

4/6/2018

188

© Ericsson 2002-2013. 4/6/2018

=]

RESTRICTED TEMPLATE EXAMPLES

// omit restriction

function f omit(template (omit) integer p) {}
f omit(omit); // Ok

f omit(integer:?); // Error

f omit(1); // Ok

// present restriction

function f_present(template (present) integer p) {}
f present(omit); // Error: omit is excluded

f present(integer:?); // Ok

f present(1l); // Ok

// value restriction

function f_yalue(template (value) integer p) {}

f value (omit) ; // Error: entire argument must not be omit
f value (integer:?); // Error: not value

f value(l); // Ok

LZT 123 7751 Uen, Rev R1N 189

© Ericsson 2002-2013.

TEMPLATE VARIABLES

+ Templates can be stored in so called template variables
* Template variable
— may change its value several times

— assignment and access to its elements are permitted
(e.g. reference and index notation permitted)

— must not be an operand of any TTCN-3 operators

control {
var template integer vt := ?;
var template MySetType vs :=
{ fieldl:= ?, field2 := true};
vt = (1,2.3); /[Ok
vs.fieldl := 2; // Ok
}

LZT 123 7751 Uen, Rev R1N

4/6/2018

190

© Ericsson 2002-2013. 4/6/2018

TEMPLATE HIERARCHY

» Practical template structure/hierarchy depends on:
- Protocol: complexity and structure of ASPs, PDUs
- Purpose of testing: conformance vs. load testing
» Hierarchical arrangement:
- Flat template structure — separate template for everything
- Plain templates referring to each other directly

- Modified templates: new templates can be derived by modifying an
existing template (provides a simple form of inheritance)

- Parameterized templates with value or template formal parameters
— Parameterized modified templates
+ Flat structure — hierarchical structure
- Complexity increases, number of templates decreases
- Not easy to find the optimal arrangement

LZT 123 7751 Uen, Rev R1N 191

© Ericsson 2002-2013.

TEMPLATE HIERARCHY -
TYPICAL SITUATIONS

L]
1 15 20
* |_omit (10..20)

modified template

parametrized template

template parameter

LZT 123 7751 Uen, Rev R1N

4/6/2018

192

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

XIl. ABSTRACT
COMMUNICATION
OPERATIONS

ASYNCHRONOUS COMMUNICATION
SEND, RECEIVE, CHECK AND TRIGGER OPERATIONS
PORT CONTROL OPERATIONS (START,STOP, CLEAR)
VALUE AND SENDER REDIRECTS
SEND TO AND RECEIVE FROM OPERATIONS
SYNCHRONOUS COMMUNICATION

CONTENTS

LZT 123 7751 Uen, Rev R1N 193

© Ericsson 2002-2013. 4/6/2018

ASYNCHRONOUS COMMUNICATION

send receive

non-blocking blocking

LZT 123 7751 Uen, Rev R1N 194

© Ericsson 2002-2013. 4/6/2018

= |

send AND receive SYNTAX

» <Portld> . send (<ValueRef>)
where <Portld> is the name of a message port containing an out or inout
definition for the type of <ValueRef> and <ValueRef> can be:
— Literal value; constant, variable, specific value template (i.e. send
template) reference or expression

» <Portld> . receive (<TemplateRef>) or <Portld>.receive
where <Portld> is the name of a message port containing an in or inout
definition for the type of <TemplateRef> and <TemplateRef> can be:

- Literal value; constant, variable, template (even with matching
mechanisms) reference or expression; inline template

LZT 123 7751 Uen, Rev R1N 195

© Ericsson 2002-2013.

SEND AND RECEIVE OPERATIONS

= |

» Send and receive operations can be used only on connected ports

- Sending or receiving on a port, which has neither connections nor
mappings results in test case error

» The send operation is non-blocking

* The receive operation has blocking semantics
(except if it is used within an alt or an interleave statement!)

* Arriving messages stay in the incoming queue of the destination port
* Messages are sent and received in order

» The receive operation examines the 15t message of the port’s queue, but
extracts this only if the message matches the receive operation’s template

LZT 123 7751 Uen, Rev R1N

4/6/2018

196

© Ericsson 2002-2013. 4/6/2018

SEND AND RECEIVE EXAMPLES

NBAP@ @ VBAP

RNC
X) “Hello!” P msc

AXE
“Hello!”

MSG.send (”Hello!”) ; MSG.receive (”“Hello!”) ;

AXE

wsc @I “Hello” “Hil") usc

MSG.send (”Hi!”) ;
MSG.send (”Hello!”) ;

MSG. receive (”“Hello!”) ;

LZT 123 7751 Uen, Rev R1N 197

© Ericsson 2002-2013.

=

CHECK-RECEIVE AND TRIGGER VS. RECEIVE

» Check-receive operation blocks until a message is present in the port’s
queue, then it decides, if the 15t message of the port’s queue matches our
template or not;

The message itself remains untouched on the top of the queue!

- Usage:
<Portld> . check (receive (<TemplateRef>)) ;
<Portld> . check;
any port.check;

» Trigger operation blocks until a message is arrived into the port’s queue
and extracts the 15t message from the queue:

- If the top message meets the matching criteria —» works like receive
- Otherwise the message is dropped without any further action

- Usage:

- <Portld> . trigger (<TemplateRef>) ;

- <Portld> . trigger; (equivalentto <Portld>.receive;)

<Portld>.check; checks if there is anything waiting in
the queue

LZT 123 7751 Uen, Rev R1N

4/6/2018

198

© Ericsson 2002-2013. 4/6/2018

TRIGGER EXAMPLES

NBAP@) @ NBAP

RNC B B AXE
msG @) Hello!”) vsc “Hello!”

MSG. send (”Hello!”) ; MSG. trigger (”Hello!”) ;

NBAP@ @ NBAP

RNC \ 1 [S) kL AXE
MSG) H‘ Hl- .MSG “He"o!”

MSG.send (”Hi!'”) ;
MSG.send(”Hello!”) ;

MSG. trigger (”Hello!”) ;

LZT 123 7751 Uen, Rev R1N 199

© Ericsson 2002-2013. 4/6/2018

VALUE AND SENDER REDIRECT E

» Value redirect stores the matched message into a variable

» Sender redirect saves the component reference or address of the matched
message’s originator

» Works with both receive and trigger

template MsgType MsgTemplate := { /* valid content */ }

var MsgType MsgVar;
var CompRef Peer;
// save message matched by MsgTemplate into MsgVar

PortRef .receive (MsgTemplate) -> value MsgVar;
// obtain sender of message

PortRef .receive (MsgTemplate) -> sender Peer;
// extract MsgType message and save it with its sender
PortRef.trigger (MsgType:?) -> value MsgVar sender Peer;

/I obtain sender of message in queue w/o removing it
PortRef.check(receive(MsgTemplate) -> sender Peer);

LZT 123 7751 Uen, Rev R1N 200

© Ericsson 2002-2013. 4/6/2018

send to AND receive from

Components A, B, C are of the same type
P has 2 connections and 1 mapping in
component A
* How does component A tell to the RTE that it
waits for an incoming message from
component B?

p.receive (TemplateRef) from B;

* How does component A send a message to
system?
p.send(Msg) to system;

//send a reply for the previous message
p.receive (Request Msg) -> sender CompVar;
p-send(Msg) to CompVar;

LZT 123 7751 Uen, Rev R1N 201

© Ericsson 2002-2013. 4/6/2018

EXAMPLES OF ASYNCHRONOUS E
COMMUNICATION OPERATIONS

MyPort PCO.send(f Myf 3(true));

MyPort PCO.receive(tr MyTemplate(5, v _MyVar));

MyPort PCO.receive (MyType:?) -> value v_MyVar; // N
MyPort PCO.receive (MyType:?) -> value v_MyVar sender Peer;
any port.receive;

MyPort PCO.check (receive(A < B)) from MyPeer;

MyPort PCO.trigger(5) -> sender MyPeer;

LZT 123 7751 Uen, Rev R1N 202

© Ericsson 2002-2013. 4/6/2018

SUMMARY OF ASYNCHRONOUS H
COMMUNICATION OPERATIONS

Operation Keyword

Send a message send
Receive a message receive
Trigger on a given message trigger
Check for a message in port queue check

LZT 123 7751 Uen, Rev R1N 203

© Ericsson 2002-2013. 4/6/2018

SYNCHRONOUS COMMUNICATION

call getcall

getreply or reply or
catch exception raise exception
blocking blocking

LZT 123 7751 Uen, Rev R1N 204

© Ericsson 2002-2013. 4/6/2018

EXAMPLES OF SYNCHRONOUS E
COMMUNICATION OPERATIONS

signature MyProc3 (out integer MyParl, inout boolean MyPar2)

return integer

exception (charstring) ;
// Call of MyProc3
MyPort.call (MyProc3:{ -, true }, 5.0) to MyPartner ({

[] MyPort.getreply (MyProc3:{?, ?}) -> value MyResult param
(MyParlVar MyPar2Var) { }

[1] MyPort.catch(MyProc3, “Problem occured”) ({
setverdict (fail) ; stop; }
[] MyPort.catch (timeout) ({
setverdict (inconc) ; stop; }
}
// Reply and exception to an accepted call of MyProc3
MyPort.reply (MyProc3:{5,MyVar} value 20) ;
MyPort.raise (MyProc3, “Problem occured”) ;

signature MyProc3 (out integer MyParl, inout boolean MyPar2) //
signature definition

return integer
exception (charstring);
// Call of MyProc3
MyPort.call (MyProc3:{ -, true }, 5.0) to MyPartner {
//5.0 - guarding timer, after expiration timeout exception generated

// after call, return value (getreply) and exception (catch) MUST be
handled
[] MyPort.getreply (MyProc3:{?, ?}) -> value MyResult

// return value is stored in MyResult
param
(MyParlVar,MyPar2vVar) { }
// values of the out/inout parameters stored in MyParlVar,MyPar2Var
[] MyPort.catch (MyProc3, “Problem occured”) {
// catch user defined exception
setverdict (fail); stop; }
[] MyPort.catch(timeout) {
//catch timeout exception (5.0s in this concrete case)
setverdict (inconc); stop; }
}
// Reply and exception to an accepted call of MyProc3
MyPort.reply (MyProc3:{5,MyVar} value 20); // reply
MyPort.raise (MyProc3, “Problem occured”); // exception

LZT 123 7751 Uen, Rev R1N 205

© Ericsson 2002-2013. 4/6/2018

SUMMARY OF SYNCHRONOUS H
COMMUNICATION OPERATIONS

Operation Keyword

Invoke (remote) procedure call call
| Reply to a (remote) procedure call reply
Raise an exception raise
Accept (remote) procedure call getcall
‘Handle response from a previous call ' getreply
Catch exception (from called entity) catch
Checkreply or exception check

LZT 123 7751 Uen, Rev R1N 206

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

XIV. BEHAVIORAL
STATEMENTS

SEQUENTIALBEHAVIOR
ALTERNATIVE BEHAVIOR
ALT STATEMENT,SNAPSHOT SEMANTICS
GUARD EXPRESSIONS, ELSE GUARD
ALTSTEPS
DEFAULTS
INTERLEAVE STATEMENT

CONTENTS

LZT 123 7751 Uen, Rev R1N 207

© Ericsson 2002-2013. 4/6/2018

SEQUENTIAL EXECUTION BEHAVIOR E
FEATURES

* Program statements are executed in order
» Blocking statements block the execution of the component

— all receiving communication operations, timeout, done, killed
* Occurrence of unexpected event may cause infinite blocking

// x must be the first on queue P, y the second

P.receive(x); // Blocks until x appears on top of queue P
P.receive(y); // Blocks until y appears on top of queue P
// When y arrives first then P.receive(x) blocks -> error

LZT 123 7751 Uen, Rev R1N 208

© Ericsson 2002-2013. 4/6/2018

= |

PROBLEMS OF SEQUENTIAL EXECUTION

* Unable to prevent blocking operations from dead-lock
i.e. waiting for some event to occur, which does not happen

// Assume all queues are empty

P.send(x); // transmit x on P -> does not block

P.start; // launch T timer to guard reception
P.receive(x); // wait for incoming x on P -> blocks
T.timeout; // wait for T to elapse

// ~** does not prevent eventual blocking of P.receive (x)

* Unable to handle mutually exclusive events

// x, y are independent events

A.receive(x); // Blocks until x appears on top of queue A
B.receive(y); // Blocks until y appears on top of queue B
// y cannot be processed until A.receive (x) is blocking

LZT 123 7751 Uen, Rev R1N 209

© Ericsson 2002-2013. 4/6/2018

SOLUTION: ALTERNATIVE EXECUTION E
—alt STATEMENT

* Go for the alternative that happens earliest!
« Alternative events can be processed using the alt statement

* alt declares a set of alternatives covering all events, which ...
— can happen: expected messages, timeouts, component termination;
- must not happen: unexpected faulty messages, no message
received
... in order to satisfy soundness criterion
« All alternatives inside alt are blocking operations

¢« The format of alt statement:

alt { // declares alternatives

// 1%t alternative (highest precedence)
// 2" alternative

Ll e

// last alternative (lowest precedence)
} // end of alt

LZT 123 7751 Uen, Rev R1N 210

© Ericsson 2002-2013. 4/6/2018

ALTERNATIVE EXECUTION BEHAVIOR E
EXAMPLES

« Take care of unexpected event and timeout:

P.send(req)
T.start;

i =

alt {

[1 P.receive(resp) ({

/* actions to do and exit alt */ }
[1 any port.receive { /* handle unexpected event */ }

[] T.timeout { /* handle timer expiry and exit */ }
}

LZT 123 7751 Uen, Rev R1N 211

© Ericsson 2002-2013. 4/6/2018

SNAPSHOT SEMANTICS

Take a snapshot reflecting current state of test system
For all alternatives starting with the 1st:

a) Evaluate guard: false — 2

b) Evaluate event: would block —» 2

c) Discard snapshot; execute statement block and exit alt > READY
3. -1

@alt{

ez guard; (event,) block of statements;
[] portl.receive (t_A) || - E———)

guard, (event,) block of statements,
EES NN port2.receive { o}

N =

gurd,,) (e ve'nt,) block of statements,
v |RERg] timer_X.timeout {; e ;)

A

The execution of alt starts with taking a “snapshot”. The snapshot represent the current
state of the test system including timers, port queues, components, etc. The alternatives
enlisted within the alt statement are evaluated on the contents of the snapshot.

When none of the alternatives are successful, the run-time environment takes a new
shapshot and the execution resumes with the first alternative.

The execution proceeds until a single successful alternative is found or when the run-time
environment can determine that no alternative can ever be successful. In the former case
the statement block of the successful alternative is executed. Then, the next statement

following the alt is executed. In the latter case the execution terminates with dynamic test
case error.

The snapshot is only valid until the execution gets to the statement block! That is why the
alt statement can be nested.

LZT 123 7751 Uen, Rev R1N 212

© Ericsson 2002-2013. 4/6/2018

FORMAT OF ALTERNATIVES

» Guard condition enables or disables the alternative:
— Usually empty: [1 equivalentto [true]
— Can contains a condition (boolean expression): [x > 0]
— Occasionally the else keyword: [else] — else branch
= but it makes the semantics completely different!
» Blocking operation (event):
— Any of receive, trigger, getcall, getreply, catch, check,
timeout, done orkilled
— altstep invocation —» altstep
- May be empty only in [else] guard
» Statement block:
- Describes actions to be executed on event occurrence
— Optional: can be empty (i.e. {} or ;)

The alt statement consists of alternatives. Alternatives normally consist of guard, event
and statement block. The event used in alt can only be a receiving (or blocking) event.
The semantics of these blocking statements change when used within the alt statement!

LZT 123 7751 Uen, Rev R1N 213

© Ericsson 2002-2013. 4/6/2018

= |

alt STATEMENT EXECUTION SEMANTICS

» Alternatives are processed according to snapshot semantics
- Alternatives are evaluated in the same context (snapshot) such that each
alternative event has “the same chance”
* alt waits for one of the declared events to happen then executes
corresponding statement block using sequential behavior!
- i.e. only a single declared alternative is supposed to happen
* alt quits after completing the actions related to the event that happened
first
« First alternative has highest priority, last has the least
* When no alternatives apply —» programming error (not sound) —» dynamic
testcase error!

LZT 123 7751 Uen, Rev R1N 214

© Ericsson 2002-2013. 4/6/2018

NESTED alt STATEMENT

alt {
[l P.receive(l)
{
P.send(2)
alt { // embedded alt
[] P.receive(3) { P.send(4) }
[1 any port.receive { setverdict (fail); }
[] any timer.timeout { setverdict(inconc) }
} // end of embedded alt
}
[] any port.receive { setverdict(fail); }
[] any timer.timeout { setverdict(inconc) }

}

The repeat keyword can appear only as the last statement within statements blocks of alt
statements. Then, istead of jumping to the next statement following the alt, the execution
is continued from the beginning of the alt with a new snapshot.

LZT 123 7751 Uen, Rev R1N 215

© Ericsson 2002-2013. 4/6/2018

THE repeat STATEMENT

» Takes a new snapshot and re-evaluates the alt statement
« Can appear as last statement in statement blocks of statements

» Can be used for example to filter “keep alive” messages :

P.send(req)

T.start;

M =

alt {

[1 P.receive (resp) { /* actions to do and exit alt */ }
[]1 P.receive(keep_alive) { /* handle keep alive message */

repeat }
[1 any port.receive { /* handle unexpected event */ }
[] T.timeout { /* handle timer expiry and exit */ }

}

The repeat keyword can appear only as the last statement within statements blocks of alt
statements. Then, istead of jumping to the next statement following the alt, the execution
is continued from the beginning of the alt with a new snapshot.

LZT 123 7751 Uen, Rev R1N 216

© Ericsson 2002-2013. 4/6/2018

= |

THE else GUARD

» Guard contains else and blocking event is absent

+ Execution continues with the else branch, when none of the previous
alternatives satisfied at first snapshot

» Consequently, an alt with else:
- takes only a single snapshot — never blocks execution
- does not wait for any declared event to happen

- goes on immediately with the actions of the event, which happened
before taking the snapshot or jumps to statement block of else branch

alt { // 1 snapshot is taken here
[] A.receive(x) { /* extract x if available in A */ }
[1] any port.receive { /* remove anything */ }

[else] { /* continue here when none of above applied */ }
} // end of alt

The else guard does not have an accompanying event because it is always successful.

LZT 123 7751 Uen, Rev R1N 217

© Ericsson 2002-2013.

STRUCTURING ALTERNATIVE BEHAVIOR - E
altstep

AN : Collection of a set of
altstep <as_identifier- dsommon® alternatives

5 » Run-time expansion

e s _
s * Invoked in-line, inside alt
o=

statements or activated as
default Run-time

Local Definitions parameterization
» Optional runs on clause

1 |
St il « No return value
[guard,] Local definitions deprecated

[with { <Attributes>} |

([Formal parameter list])
[runs on <ComponentType> |

{

Local definitions within altsteps are deprecated. When initializing a local variable with a
function having side-effect (I.e. doing something else in addition to initializing the variable)
then this side-effect may be executed multiple times. Consequently, variables should be
initialized with constant only!

Side-effect is for instance the sending of a message. In the above situation we could not
know how many times this message is sent!

LZT 123 7751 Uen, Rev R1N

4/6/2018

218

© Ericsson 2002-2013. 4/6/2018

THREE WAYSTO USE altstep

* Directinvocation:
- Expands dynamically to an alt statement

* Dynamic invocation from alt statement:
- Attaches further alternatives to the place of invocation

» Default activation:

- Automatic attachment of activated al tstep branches to the end
of each alt/blocking operation

LZT 123 7751 Uen, Rev R1N 219

© Ericsson 2002-2013. 4/6/2018

= |

USING altstep — DIRECT INVOCATION

// Definition in module definitions part
altstep as MyAltstep(integer pl i) runs on My CT {
[1 PCO.receive(pl i) {..}
[1 PCO.receive(tr Msg) {..}
}
// Use of the altstep
testcase tc_101() runs on My CT {
as MyAltstep(4); // Direct altstep invocation..
}

// .. has the same effect as
testcase tc 101() runs on My CT {
alt {

[] PCO.receive(4) ({..}

[1 PCO.receive(tr Msqg) {..}
}

LZT 123 7751 Uen, Rev R1N 220

© Ericsson 2002-2013. 4/6/2018

W

USING altstep - INVOCATIONIN alt

port1.receive (CR_T) (Wl QS CICI USSP

[Tl vA CYTVEY block of statementsy || block of statements,
[Telg W -Y-2WV2Y block of statements,, | block of statements,

block of statements,,

|
1
port2.receive block of statementsy ||
port3.receive block of statementsy 1|

LZT 123 7751 Uen, Rev R1N 221

© Ericsson 2002-2013. 4/6/2018

MOTIVATION - DEFAULTS

» Error handling at the end of each alt instruction
— Collect these alternatives into an altstep
— Activate as default
— Automatically copied to the end of each alt

alt {
[1 P.xreceive (1)
{
P.send(2)
alt { // embedded alt

[- ¥
[] any port.receive { setverdict (fail); }
[] any timer.timeout { setverdict(inconc) }
}
}

any port.receive { setverdict(fail); }
]any timer.timeout { setverdict(inconc) 1}

}

LZT 123 7751 Uen, Rev R1N 222

© Ericsson 2002-2013. 4/6/2018

USING altstep - ACTIVATED AS DEFAULT

porti.receive (CR_T)|Wole qdS CIC ull &
port2.receive(cR2_TWNo)[ele QeI #S C1C =11 58

any port.receive block of statements, argﬁglastg% ‘g?tf;lggg
T.timeout block of statements,, after regular
alternatives

component
L Instance
defaults
: as_myAltstep
any port.receive block of statementsy, |
block of statementsy |
>

LZT 123 7751 Uen, Rev R1N 223

© Ericsson 2002-2013. 4/6/2018

ACTIVATION OF altstep TO DEFAULTS

» Altsteps can be used as default operations:
— activate: appends an altstep with given actual parameters to the current
default context, returns a unique default reference
deactivate: removes the given default reference from the context

altstep asl() runs on CT {
[] any port.receive { setverdict(fail)}
[] any timer.timeout { setverdict(inconc)}

}

var default dl:= activate(asl())

deactivate (dl) ;

* Defaults can be used for handling:
- Incorrect SUT behavior
- Periodic messages that are out of scope of testing
* There are only dynamic defaults in TTCN-3
* The default context of a PTC can be entirely controlled run-time
» Defaults have no effect within an alt, which contains an else guard! >

Defaults have no effect within an alt, which contains an else guard!

LZT 123 7751 Uen, Rev R1N 224

© Ericsson 2002-2013. 4/6/2018

STANDALONE RECEIVING STATEMENTS a
VS. alt

» Default context contains a list of altsteps that is implicitly appended:
— At the end of all alt statements except those with else branch
— After all stand-alone blocking receive/timeout/done ... operations (!!)

* Any standalone receiving statement (receive, check, getcall,
getreply, done, timeout) behaves identically as if it was embedded into
an alt statement!

MyPort PCO.receive (tr_ MyMessage) ;

* ... is equivalent to:

alt {
[1 MyPort PCO.receive(tr MyMessage) {}

LZT 123 7751 Uen, Rev R1N 225

© Ericsson 2002-2013. 4/6/2018

STANDALONE RECEIVING STATEMENTS E
VS. default

» Activated default branches are appended to standalone receiving
statements, too!

var default d := activate (myAltstep(2))
MyTimer.timeout;

* ... is equivalent to:

alt {
[] MyTimer.timeout {}
[] MyPort.receive (MyTemplate (2))
{ MyPort.send (MyAnswer) ; repeat }
[] MyPort.receive
{ setverdict(fail) }

LZT 123 7751 Uen, Rev R1N 226

© Ericsson 2002-2013.

MULTIPLE DEFAULTS

=]

» Default branches are appended in the opposite order of their activation
to the end of alt, therefore the most recently activated default branch
comes before of the previously activated one(s)

altstep asl() runs on CT {

[1] T.timeout { setverdict (inconc) 1}

}

altstep as2() runs on CT {

[] any port.receive { setverdict(fail) }
}

altstep as3() runs on CT {

[] PCO.receive (MgmtPDU:?) {}

}

var default dl, d2, d3; // evaluation order
dl := activate(asl()); // +d1i

d2 := activate(as2()); // +d2+d1l
d3 := activate(as3()); // +d3+d2+dl
deactivate (d2) ; // +d3+d1l

d2 := activate(as2()); // +d2+d3+dl

LZT 123 7751 Uen, Rev R1N

4/6/2018

227

© Ericsson 2002-2013. 4/6/2018

INTERLEAVED BEHAVIOR

» Specifies the interleaved handling of events
» Alternative events can occur in any order but exactly once
» Can be modeled with a number of alt statements

s 7._/;,4! :\\t\:‘\‘ﬁajernaﬁves
SRR il T N~ e il
‘ ‘ .

The number of alt statements used for modeling a single interleave statement grows
exponentially with the number of blocking operations used within the interleave
statement.

LZT 123 7751 Uen, Rev R1N 228

© Ericsson 2002-2013. 4/6/2018

SAMPLE interleave STATEMENT

» Difference from alt:

— All events must happen exactly once

— Alternative execution (i.e. snapshot semantics) applies within
statement block as well

— Execution may continue on different branch when an operation
blocks the actual one and resume later from the same place

interleave {
[]:P.receive(l) }*g.receive(Z%j:R.receive(3):}
[1 Q.receive(4) { P.send(a): R.receive(5) }

[1 R.receive (6) e i

{ P.receivé(7); Q.send (b) ; Q.receive(8) }
T.timeout { R.send(c) > }
/ end of interleave i

p L 4 4

[]
}

L 4 v

P.receive(9) }

SN 4

Execution segments are shown with arrows. Alternative segments are evaluated using
shapshot semantics and executed interleaved.

LZT 123 7751 Uen, Rev R1N 229

© Ericsson 2002-2013. 4/6/2018

INTERLEAVE RESTRICTIONS

* Guard must be empty

* No control statements (for, while, do-while, goto, stop,
repeat, return) permitted in interleave branches

* No activate/deactivate, no altstep invocation
No call of functions including communication operations

LZT 123 7751 Uen, Rev R1N 230

© Ericsson 2002-2013.

STATEMENTS

OVERVIEW OF BEHAVIORALCONTROL

]

Sequential behaviour

Statement Keyword or symbol

Alternative behaviour alt { ... }
Interleaved behaviour interleave { ... }
Activate default activate
Deactivate default deactivate
Returning control return

Repeating an alt, altstep or default repeat

LZT 123 7751 Uen, Rev R1N

4/6/2018

231

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

XV. SAMPLE TEST CASE
IMPLEMENTATION

TEST PURPOSE IN MSC
TEST CONFIGURATION
MULTIPLE IMPLEMENTATIONS

CONTENTS

LZT 123 7751 Uen, Rev R1N 232

© Ericsson 2002-2013. 4/6/2018

2]

SAMPLE TEST CASE IMPLEMENTATION

M » Single component test configuration

CT CT
» Test purpose defined by MSC:
tester T - Simple request-response protocol
f A - Answer time less than 5 s
T<5.0 } X i - Result is pass for displayed operation,
B otherwise the verdict shall be fail
T<50- B —
I——
T<5.0 1 7_7_27“_7:_ —
X
pass

LZT 123 7751 Uen, Rev R1N 233

© Ericsson 2002-2013.

FIRST IMPLEMENTATION
WITHOUT TIMING CONSTRAINTS

type port PT message {
out A, B, C;
in X, ¥, Z;

}

type component CT {
port PT P;

}

o

.send(a) ;
.receive (x) ;
.send (b) ;
.receive (y) ;
.send(c) ;
.receive (z) ;
setverdict (pass) ;

L L

testcase testl() runs on CT {
map (mtc:P, system:P);

* Test case testl results error verdict
on incorrect IUT behavior — test case
is not sound!

tester IUT

error

* Lower case identifiers refer to valid
data of appropriate upper case type!

LZT 123 7751 Uen, Rev R1N

4/6/2018

234

© Ericsson 2002-2013.

SOUND IMPLEMENTATION

testcase test2() runs on CT {
timer T:=5.0; map(mtc:P, system:P);

P.send(a) ;

alt {

[] P.receive(x) {setverdict (pass)}
[] P.receive {setverdict(fail)}

[1 T.timeout {setverdict(inconc)}

}

.send(b)

type port PT message {
out A, B, C;
in X, Y, Z;

}

type component CT {
port PT P;

}

alt {

[] P.receive(y) {setverdict (pass)}
[] P.receive {setverdict(fail)}

[] T.timeout {setverdict(inconc)}

}

P.send(c) ;

alt {

[] P.receive(z) {setverdict (pass)}
[] P.receive {setverdict(fail)}

[] T.timeout {setverdict(inconc)}
}

« This test case works fine, but its
operation is hard to follow
between copy/paste lines!

LZT 123 7751 Uen, Rev R1N

4/6/2018

236

© Ericsson 2002-2013.

ADVANCED IMPLEMENTATION

testcase test3() runs on CT {
var default d := activate(as()):

map (mtc:P, system:P);
P.send(a) ; T.start;
.receive (x) ;
.send(b) ; T.start;
.receive (y) ;
.send(c) ; T.start;
.receive (z) ;

W gg o

deactivate(d) ;
setverdict (pass) ;

}

altstep as() runs on CT {

[] P.receive {setverdict(fail)}
[1] T.timeout {setverdict(inconc)}
}

type port PT message {
out A, B, C;
in X, ¥, Z;

}

type component CT {
timer T := 5.0; —
port PT P;

}

behavior

» This example demonstrates one specific use of defaults
» Compact solution employing defaults for handling incorrect IUT

LZT 123 7751 Uen, Rev R1N

4/6/2018

237

© Ericsson 2002-2013. 4/6/2018

ERICSSON

LZT 123 7751 Uen, Rev R1N 239

© Ericsson 2002-2013. 4/6/2018

=
>

ERICSSON

COURSE EVALUATION

HELPUS TO IMPROVE THE COURSE!

PLEASE FILLIN THE EVALUATION FORM AT

HTTP://TTCN.ERICSSON.SE/ =>TRAINING SERVICES =>
EVALUATION FORM
HTTP://INTERNAL.ERICSSON.COM/PAGE/HUB_INSIDE/SUPPORT/RD/
TOOLS/TITAN/TRAINING/EVALUATION_FORM/INDEX.JSP

THE END

LZT 123 7751 Uen, Rev R1N 240

