
© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 1

Copyright © Ericsson AB 2018. All rights reserved.

This program and the accompanying materials

are made available under the terms of the Eclipse Public License v1.0

which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 2

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 3

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 4

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 55

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 6

A protocol is a set of rules that controls the communication between entities in
different systems.

Protocols define format (syntax), order of messages sent and received among network
entities, as well as actions taken on message transmission or reception (behaviour).

Behaviour of the protocols can be defined using natural language (e.g. English) or some
formal description technique. Examples for the latter: SDL, Estelle and Lotos. They are
compilable specification languages. None of them has outweighed the others.

•ASN.1 Abstract Syntax Notation One (ITU-T X.680-X.699)

•TTCN-3 Testing and Test Control Notation version 3 (ETSI ES 201 873)

•UML Unified Modeling Language (http://www.omg.org/uml/, ITU-T Z.109 [SDL combined
with UML])

•SDL: Specification & Description Language. (ITU-T Z.100-Z.109) Most popular in the
industry.

•MSC Message Sequence Charts (ITU-T Z.120-Z.129)

•LOTOS: Language of Temporal Ordering Specifications (ISO8807) is widely used in the
academic world. LOTOS is based on communicating processes.

•Estelle (ISO9074) is based on extended finite automata.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 7

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 8

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 9

ATS: Abstract Test Suite, a collection of Abstract Test Cases.

ETS: Executable Test Suite, a set of Executable Test Cases.

IUT: Implementation Under Test

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 10

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 11

Black-box testing means that the internal structure of the tested software product is not known: the
only way to test it is to send a message ("stimulus") to the system and to analyse the received
response. The latter is compared to the due response determined beforehand using the reference
specification. If the comparison ("pattern matching") between the real and the expected response
fails, the test case is considered as "failed" otherwise "passed".

The test script language must have means to match the expected and the received messages
even if the message elements arrive in different order, or some of them (the optional ones) are
missing. Usually, there are more than one possible responses; all of them must be accepted.

Once the match is determined, the next stimulus is constructed taking into consideration the data
having received in the response, and so on.

The test script language must be prepared to determine that the expected response is not received
within the specified time frame: it must handle timing ("temporal") requirements.

3.3.118 test purpose: A prose description of a well defined objective of testing, focusing on a
single conformance requirement or a set of related conformance requirements as specified in the
appropriate OSI specification (e.g. verifying the support of a specific value of a specific parameter).

3.3.3 abstract test case: A complete and independent specification of the actions required to
achieve a specific test purpose, defined at the level of abstraction of a particular Abstract Test
Method, starting in a stable testing state and ending in a stable testing state. This specification may
involve one or more consecutive or concurrent connections.

Note 1: The specification should be complete in the sense that it is sufficient to enable a test
verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence
of test events).

Note 2: The specification should be independent in the sense that it should be possible to execute
the derived executable test case in isolation from other such test cases (i.e. the specification
should always include the possibility of starting and finishing in the “idle” state).

3.3.31 executable test case: A realization of an abstract test case.

3.3.107 test case: An abstract or executable test case.

Abbreviations

IUT: Implementation Under Test

SUT: System Under Test

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 12

3.3.121 testing state: A state encountered during testing, comprising the combination of

the states of the SUT, the test system, the protocols for which control and observation is

specified in the ATS, and, if relevant, the state of the underlying service.

3.3.93 stable testing state: A testing state which can be maintained, without prescribed

Lower Tester behaviour, sufficiently long to span the gap between one test case and the

next in a test campaign.

3.3.47 initial testing state: The testing state in which a test body starts.

3.3.110 test event: An indivisible unit of test specification at the level of abstraction of the

specification (e.g. sending or receiving a single PDU).

3.3.117 (test) preamble: The sequences of test events from the starting stable testing

state of the test case up to the initial testing state from which the test body will start.

3.3.105 test body: The sequences of test events that achieve the test purpose.

3.3.116 (test) postamble: The sequences of test events from the end of the test body up

to the finishing stable testing state(s) for the test case.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 13

ATS is exhaustive if all test cases are exhaustive (all passing implementations are

compliant)

ATS is sound if all test cases are sound (all implementations that do not pass are not

compliant)

ATS is complete if all test cases are both sound and exhaustive

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 14

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 15

Once the protocol specification is formalised, it is theoretically possible to generate
executable test cases automatically. However, this procedure, called Computer Aided
Test Generation (CATG) is only being developed.

Otherwise, one needs to design abstract test cases manually. Manual test suite design
starts with the formulation of test purposes from protocol specification. Test purposes are
implemented in test cases.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 16

The test system is the link between “abstract” and “executable”. It derives executable

test cases from abstract test cases and executable test suites (ETSs) from abstract test

suites (ATSs). The test system and any additional equipment and procedures that may be

required for the execution of test cases together are called the Means of Testing.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 17

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 18

Test notation is used to describe abstract test cases. The test notation can be an

informal notation (without formally defined semantics) or a Formal Description Technique

(FDT). TTCN-2 is an informal notation with clearly defined, but not formally defined

semantics.a

The International Organization for Standardization (ISO*) has standardised first two

versions of TTCN. The very same standard has been adopted as ITU-T and ETSI

standard. Data structure definitions written in ASN.1 can be imported to TTCN-2.

TTCN-2 test cases can be edited using special software, e.g. ITEX. Executable test

cases are produced and run with help of e.g. SCS.

Abbreviations:

ETSI European Telecommunications Standards Institute

IEC International Engineering Consortium

ITU-T International Telecommunication Union

Telecommunication Standardization Sector

SCS System Certification System

(Ericsson's TTCN test case execution platform)

ITEX Interactive TTCN Editor and eXecutor

(from the Swedish firm Telelogic)

* Because "International Organization for Standardization" would have different abbreviations in different

languages ("IOS" in English, "OIN" in French for Organisation internationale de normalisation), it was decided

at the outset to use a word derived from the Greek isos, meaning "equal". Therefore, whatever the country,

whatever the language, the short form of the organization's name is always ISO.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 19

Language development was being done in the following framework:

ETSI MTS/STFs 133, 156, 213, 253

TTCN-3 can be used for protocol testing (for mobile and Internet protocols),

supplementary service testing, module testing, the testing of CORBA-based platforms,

the testing of Application Programming Interfaces (APIs) and many more applications.

The language is not restricted to conformance testing, but can be used for

interoperability, robustness, regression, system, and integration testing.

The syntax of TTCN-3 is new, but the language has retained (and improved upon) much

of the well proven capabilities of its predecessors. Its main features include:

•Dynamic, concurrent testing configurations

•Synchronous and asynchronous communication mechanisms

•Encoding information and other attributes (including user extensibility)

•Data and signature templates with powerful matching mechanisms

•Type and value parameterization

•Assignment and handling of test verdicts

•Test suite parameterization and test case selection mechanisms

•Combined use of TTCN-3 with ASN.1

•Well defined syntax, interchange format and static semantics

•Optional presentation formats (eg. tabular conformance presentation format, MSC

(Message Sequence Chart) format)

•Precise execution algorithm (operational semantics)

•Execution and control of test cases

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 20

The latest ETSI TTCN-3 Core Language standard edition dates from 2005. The exact

URL is http://ttcn.ericsson.se/standardization/downloads.shtml#ttcnv3.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 21

The Core Language has a textual format, that, as opposed to the mp format of the

TTCN-2 language, can be read by humans.

Tabular format was originally meant to facilitate the migration from TTCN-2 to TTCN-3. It

is sparingly used nowadays.

In the graphical format (similarly to MSC) it is not possible to define types, templates etc.

User Defined Formats are open to anyone.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 22

Core Language is the basic language. White space or new line characters are not taken

into consideration; it makes it similar to a programming language. Different TTCN-3

applications use it for data interchange.

You should not strive to understand the example, rather get a look and feel of it. It looks

like any ordinary programming language.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 23

Tabular Presentation Format resembles the most the TTCN-2 format, it is specified

mainly for compatibility reasons. Editing is done in strictly specified tables, but data is

saved in Core Language.

The example shows the same extract in Tabular Format: we can fill in the name of the

test case, any comments, the type of the variables. The behaviour is specified as text in

the next raw.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 24

Graphical Presentation Format reminds the Test Sequence Chart or MSC. The

messages sent and received are represented by arrows; there are additional special

symbols for dynamic behaviour, cycles, decisions. For the time being, no editing program

handling this format is known to us, however, there are programs capable of displaying

Core Language programs in Graphical Format.

The perpendicular lines symbolize the components or, more precisely, the ports of the

components. The horizontal arrows represent the messages sent and received. Boxes of

various shape are representing the diverse operations coded in the Core Language.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 25

The most important language TTCN-3 can interwork with is ASN.1. TTCN-3 has been

designed from the beginning to ensure that definitions written in ASN.1 can be imported

into test suites without the need for any modifications. With other words, when a protocol

is specified in ASN.1 there is no need to rephrase it. Likewise, information in other format

can be reused, e.g. functions written in C++ can be called from within the TTCN-3

module. It is planned to harmonize TTCN-3 with XML (eXtended Markup Language) and

IDL (Interface Definition Language), but it can be harmonized with other 'type & value'

system.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 26

TTCN-3 is a procedural language,
i.e., using the concept of the unit and scope. Unit corresponds to TTCN-3 modules, which are
built of procedures (functions). Scope is the viewing range of a definition. There are seven
scoping units in TTCN-3; they are dealt with later.

Abstract Data Types
Data can be specified independently from its coding and physical representation.

Templates
When sending a message, templates make possible to parameterise the message. When
receiving a message, parameters or wildcards in templates render possible to accept or reject
('to match') a group of possible messages.

Event handling
While executing the program, we can wait for different events. The incidental arrival of these
independent events influences the further program execution. Events are among others:
reception of a message, completion of a test component, timer expiration.

Timer management
Timers can be started, stopped. The actual value of a timer can be read as well whether a given
timer is running. The expiration of a timer can be checked.

Verdict management
Test verdict can be pass, fail, inconclusive, none or error. The final verdict is determined with
regard to the outcome of each test step.

Abstract communication
Between the test executor system and the implementation under test there are two different
communication possibilities. Message based communication is asynchronous while procedure
based communication is synchronous. There is communication also between components.

Concurrency
Parallel test components (PTCs) are working concurrently, they can be created and destroyed.

Test specific constructions: alt, interleave, default, altstep
…are used to specify message reception behavior

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 27

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 28

The principal building blocks of TTCN-3 are modules.

The module definitions part specifies the top-level definitions of the module and may

import identifiers from other modules. TTCN-3 does not support the definition of variables

in the module definitions part. This means that global variables cannot be defined in

TTCN-3.

The module control part may contain local definitions and describes the execution order

of the actual test cases. A test case shall be defined in the module definitions part and

called in the control part.

General syntax rules describe the file format, capitalisation, delimiters, identifiers etc.

The module parameter list defines a set of values that are supplied by the test

environment at run-time. During test execution these values shall be treated as constants.

Module parameters shall be defined within the module definition part only.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 291

Keywords are listed in table A.3 of the ETSI standard 201 873-1. These words must not

be used as identifiers.

Identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase

letters (A-Z) and numeric digits (0-9). Use of the underscore (_) symbol is also allowed.

An identifier shall begin with a letter.

Comments written in free text may appear anywhere in a TTCN-3 specification.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 30

A test suite consists of one ore more modules. There is no hierarchy between modules.

Modules are written as free text files: line breaks or paragraph marks may be used

without restrictions. A module consists of a (optional) definitions part, and a (optional)

module control part. Usually, the definitions part is longer, the control part only states the

execution order of the test cases. Module parameters are supplied to the module at run-

time and are considered constant during test execution. Module attributes give additional

information, like coding rules or the size of a table.

The beginning of a module is indicated in the header by the keyword "module" followed

by the module name (here:modulename). Thereafter between curly brackets appears the

definitions part followed by the control part. Module attributes (here: the encoding rule

valid for the whole module) may be given after the closing curly bracket of the module.

Attributes are introduced by the keyword "with" whereas the attributes themselves are

listed between curly brackets.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 31

Module Parameters are supplied by the test environment at run-time and are treated as

constants during test execution.

Data Types : a common name for simple basic types, basic string types, structured

types, the special data type and all user defined types based on them.

Procedure Signatures (or signatures for short) are needed for procedure-based

communication.

Templates are used to either transmit a set of distinct values or to test whether a set of

received values matches the template specification. A template can be thought of as

being a set of instructions to build a message for sending or to match a received

message. Message Templates are used over message based ports, whereas Signature

Templates are used over procedure based ports.

Test components are connected via their Communication Ports. Each port is modelled

as an infinite FIFO queue which stores the incoming messages or procedure calls until

they are processed.

Test Components are the owner of the ports. Each test component has a unique

reference created during the execution of a test case.

Altsteps are special functions used to specify and structure test behaviour.

Test Cases are functions running on MTC and returning the result of the test ("verdict").

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 32

The module control part manages the execution of the test cases.

In the module control part the execute statement is used to start test cases. Program

statements may be used in the control part of a module to specify such things as the

order in which the test cases are to be executed or the number of times a test case may

be run. Variables, timers etc. (if any) defined in the control part of a module are only

locally visible, i.e., they shall be passed into the test case by parameterization when

required.

As the result of the execution of a test case a test case verdict of either none, pass,

inconclusive, fail or error shall be returned.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 33

Modules can import definitions from any module. Identifiers imported from other modules

are globally visible throughout the importing module. It is possible to import to various

extent:

•single definitions;

•groups of definitions;

•all templates, functions and types;

•all definitions.

The default import mechanism imports referenced definitions without their identifier. A

recursively imported definition, in turn, is imported together with all referenced definitions,

i.e. the identifier of all referenced definitions becomes visible and usable in the importing

module.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 34

It is possible to re-use definitions specified in different modules using the import

statement. An import statement can be used anywhere in the module definitions part. It

shall not be used in the control part.

TTCN-3 supports the import of the following definitions: module parameters, user defined

types, signatures, constants, external constants, data templates, signature templates,

functions, external functions, altsteps and test cases.

The rules of importing are depicted in the chapter 7.5 of ETSI standard ES 201 873-1.

Legend: the import options preceded by comments in red are not implemented in the

TITAN environment.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 35

It is possible to re-use definitions specified in different modules using the import

statement. An import statement can be used anywhere in the module definitions part. It

shall not be used in the control part.

TTCN-3 supports the import of the following definitions: module parameters, user defined

types, signatures, constants, external constants, data templates, signature templates,

functions, external functions, altsteps and test cases.

The rules of importing are depicted in the chapter 7.5 of ETSI standard ES 201 873-1.

Legend: the import options preceded by comments in red are not implemented in the

TITAN environment.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 36

This classical example illustrates how many definitions should be made to complete a

module.

The main point is the testcase called HelloW. The message is sent over the port

My_PCO defined previously.

The port, component, testcase definition form the module definitions part followed by the

module control part.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 37

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 38

TTCN-3 supports a number of predefined basic types. These basic types include ones

normally associated with a programming language, such as integer, boolean and string

types, as well as some TTCN-3 specific ones such as objid and verdicttype. Structured

types such as record types, set types and enumerated types can be constructed from

these basic types.

User-defined type is defined by subtyping of a basic type, defining a structured type or

constraining the anytype to a single type by the dot notation.

Definitions in the module definitions part may be made in any order but forward

references should be avoided for readability reasons.

Sub-types are user-defined types formed from simple basic and basic string types using

lists, ranges and length restrictions.

Parameterisation: all user-defined type definitions support static value parameterization

(i.e. this parameterization shall be resolved at compile-time); template, signature,

testcase, altstep and function support dynamic value parameterization (i.e. this

parameterization shall be resolvable at run-time).

Type compatibility: TTCN-3 is not strongly typed. For non-structured variables,

constants, templates etc. the value "b" is compatible to type "A" if type "B" resolves to the

same root type as type "A" and it does not violate subtyping (e.g. ranges, length

restrictions) of type "A". In the case of structured types (except the enumerated type, that

is never compatible with other basic or structured types) a value "b" of type "B" is

compatible with type "A", if the effective value structures of type "B" and type "A" are

compatible. The communication operations are exceptions to the weaker rule of type

compatibility and require strong typing.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 39

Integer: a type with distinguished values which are the positive and negative whole

numbers, including zero.

Float: a type to describe floating-point numbers. Floating point numbers are represented

in TTCN-3 as: <mantissa> × <10><exponent>.

Boolean: a type consisting of two distinguished values: true, false.

Objid: a type whose distinguished values are the set of all object identifiers conforming to

clause 6.2 of ITU-T Recommendation X.660.

Verdicttype: a type for use with test verdicts consisting of 5 distinguished values.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 40

Bitstring: a type whose distinguished values are the ordered sequences of zero, one, or

more bits.

Hexstring: a type whose distinguished values are the ordered sequences of zero, one, or

more hexadecimal digits, each corresponding to an ordered sequence of four bits.

Octetstring: a type whose distinguished values are the ordered sequences of zero or a

positive even number of hexadecimal digits (every pair of digits corresponding to an

ordered sequence of eight bits).

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 41

Universal charstring: The "quadruple" is capable to denote a single character and

denotes the character by the decimal values of its group, plane, row and cell according to

ISO/IEC 10646.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 42

CORBA Common Object Request Broker Architecture

IDL Interface Description Language

The specification of CORBA IDL can be read by following the Uniform Resource Locator:

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

module my_Module {

type integer money;

type record MyRec {

integer i,

float f

}

control {

var anytype v_any;

v_any.integer := 3;

// ischosen(v_any.integer) == true

v_any.charstring := “three”;

}

}

with {

extension “anytype integer, charstring” // adds two fields

extension “anytype MyRec” // adds a third field

extension “anytype money” // adds the money type

}

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 43

Address shall only be used in receive and send operations of ports mapped to test

system interface. Only one definition of type address may exist in a test suite.

SUT: System Under Test

Each port type definition shall have list(s) indicating the allowed collection of message

types and/or procedures together with the allowed communication direction.

Component definitions shall be made in the module definitions part. It is possible to

define constants, variables and timers local to a particular component.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 44

Received messages are usually examined in an alt statement. When no branch of the alt

matches the received message, the previously activated default(s) are examined. It is

possible to have several defaults activated at same time and deactivate them one by one.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 45

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 46

In the above example, "type" of the elements is integer or boolean, their "identifier" is

field1 or field2. The same identifiers may be used in both record and set, because it is not

mandatory to use globally unique names.

Optional elements may or may not be present when assigning value to the constructs.

A record or a set may be an element of another record or set.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 47

The main difference between record and set is the following: elements of a record must

be referenced in the same order as defined, whereas elements of a set may be

referenced in arbitrary order. In other words, the ordering of the set fields is not

significant.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 48

Value notation: notation by which an identifier is associated with a given value or range

of a particular type

Assignment notation: in the curly brackets following the name of the record or set, the

element identifier must be present to designate which element is the value is assigned to.

It is important to know that every identifier of the record or set must be listed. Omitted

optional elements must be given the value "omit" otherwise its value remains

undetermined (unbound), resulting in run-time error.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 49

Value-list notation: in the curly brackets following the name of the record, values of the

elements are listed one by one. Every identifier of the record must be listed. Omitted

optional elements must be given the value "omit" otherwise its value remains

undetermined (unbound), resulting in run-time error. In contrast to value assignment

notation, all elements must appear inside the initializer. Application of the hyphen (-)

leaves the corresponding field unchanged. Attention! Such a field is unbound unless it

has been given a value earlier. It is not allowed to mix value-list notation and assignment

notation in the same context! The not-used symbol is only valid in value-list notation.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 50

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 51

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 52

Union type is useful to model a structure which can take one of a finite number of known

types.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 53

For the union type, assignment notation and dot notation may be used. (First, respective

second row in the example on the middle of the slide.) Value-list notation (listing of

element values without their identifiers) must not be used.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 54

The only difference between record of and set of appears when comparing them. Two

records of are only equal when they contain the equal elements in the same order. Two

sets of are equal if there is exactly one pair for each element.

These records and sets can be considered similar to an ordered array and an unordered

array respectively.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 55

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 56

When indexing a string type element, index corresponds to different units of length in

function of the string type. A bitstring is indexed by bits, a hexstring by hexadecimal digits,

an octetstring by octets and finally a character string by characters.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 57

NOTE1: The comments at the assignment examples of r2 and r3 might be misleading:

an unbound value never can be a right-hand-side value, not even for relational operators!

It causes a run time error!

NOTE2: Just for convenience: the typedefs. from one of the earlier slides:

// example record type def.

type record MyRecordType {

integer field1 optional,

boolean field2

}

// example set type def.

type set MySetType {

integer field1 optional,

boolean field2

}

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 58

For each enumeration without an assigned integer value, the system successively

associates an integer number in the textual order of the enumerations, starting at the left-

hand side, beginning with zero, by step 1 and skipping any number occupied in any of the

enumerations with a manually assigned value. These values are only used by the system

to allow the use of relational operators.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 59

Although the TTCN-3 standard does not require it, it is a good practice to begin user-

defined type names with uppercase letters and to use lowercase letters as the first letter

of element, variable and constant names. That's why weekdays are written in small letters

violating English orthography.

Comparison is only possible between two elements of the same enumeration type.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 60

One way to create user-defined types is sub-typing a basic type. (The two other ways

already discussed are defining a structured type or constraining the anytype to a single

type by the dot notation.) By sub-typing the value set of the original type is restricted to

certain values. In case of string types also the length of the string can be restricted.

Mathematically spoken, the set D(New) is the proper subset of set D(basic) and has the

same type as the original basic type.

universal charstring / charstring types can be sub-typed with patterns (not supported in

TITAN yet, as of v1.6.pl3 (R6D))

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 61

TTCN-3 permits the specification of a range of values of type integer, charstring,

universal charstring and float. The lower boundary and the upper boundary are included

in the range of permitted values. In the case of charstring and universal charstring

types, the boundaries mean character positions according to the coding rules of the

respective character set.

The keyword infinity may be used in order to specify an infinite integer or float range.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 62

The subtype defined by this list enumerated in parentheses restricts the allowed values of

the subtype to those values in the list. The values in the list shall be of the root type and

shall be a true subset of the values defined by the root type.

For values of type integer, charstring, universal charstring and float it is possible to mix

lists and ranges. Within charstring and universal charstring subtype definitions, lists and

ranges shall not be mixed in the same subtype definition. For values of type bitstring,

hexstring, octetstring it is possible to mix lists and length restrcitions.

Note: in sub-typing we use parenthesizes around the value list, while in value-notation we

use curly braces around the value lists

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 63

For the upper bound the keyword infinity may also be used to indicate that there is no

upper limit for the length. The upper boundary shall be greater than or equal to the lower

boundary. The lower boundary and the upper boundary are included in the range of

permitted values.

Length restriction can only be either a concrete number or a

range. Other (e.g. value list) not allowed

type octetstring MyOct length(4 .. 8, 11);

type octetstring MyOct length(4 , 8);

Both wrong

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 64

According to table 3 in chapter 6.0 of ETSI ES 201 873-1 V2.2.1 length restriction of the

structured types record of and set of is considered as sub-typing. Chapter 6.2.0, on the

other hand, only allows sub-typing of on simple basic and basic string types.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 65

type charstring MyString2 (pattern "abc?\q{0,0,1,113}");

/* causes an error because a universal char {0,0,1,113} is not allowed in the

charstring type */

//all permitted universal string values are terminated by CR/LF

type universal charstring MyUString (pattern "*\r\n")

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 66

Type aliasing is defined in TTCN-3 BNF only, but it is implemented in TITAN.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 67

NOTE:

List subtyping of the types “record”, “record of”, “set”, “set of”, “union”, “enumerated”,

“anytype” are possible when defining a new constrained type from an already existing

parent type but not directly at the declaration of the first parent type.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 68

Type compatibility is a language feature, which allows to use values or templates of a

given type as actual values of another type (e.g. at assignments, as actual parameters at

calling a function, referencing a template etc. or as a return value of a function)

An example for type compatibility of structured types is given in chapter 6.7.2 of ETSI ES

201 873-1.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 69

Conversion functions span the gap between different simple variable types.

A function at the intersection of a given column and a row has an in parameter indicated

in the column header and returns the value type indicated in the row header.

The detailed description of predefined functions is given in annex C of the ETSI standard

ES 201 873-1.

Green letters indicate TITAN extensions, not included in the standard.

Difference between functions with 'str' and 'char' in their names is explained with the

following examples:

int2char (66) = "B", int2str (66) = "66".

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 70

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 71

Constants defined in module definitions part are globally (= anywhere in the module)

visible. Those defined in the module control part, test cases, functions and altsteps are

only locally (=within the same scope unit) visible. The ones defined in component type

definitions are visible in functions, test cases and altsteps referencing that component

type by a runs on-clause.

No forward referencing allowed in constant definitions except in module definition part.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 72

Both assignment notation and the short-hand value list notation may be used when

assigning value to a constant.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 73

Variables defined in the module control part, test cases, functions and altsteps are only

locally (=within the same scope unit) visible. The ones defined in component type

definitions are visible in functions, test cases and altsteps referencing that component

type by a runs on-clause. An initial value may be assigned to the variable.

The naming convention (ETH/R-04:000010 Uen rev. A) generally requires that the

variable names should be prefixed by ‘v’. However, the prefix may be omitted for non-

protocol related variables like loop counters, for loop control variables, variables used in

calculations etc.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 74

Forward references shall never be made inside the module control part, test case

definitions, functions and altsteps. This means forward references to local variables, local

timers and local constants shall never occur.

Although initial value assignment is optional, a variable defined must receive a value

assigned somewhere in the program, otherwise a reference to it results in run-time error

(reference to an unbound value).

In the last example, v_myInt1 remains unbound, while v_myInt2 has the value

2*c_myConst=6.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 75

It is important to realize that a single figure in brackets specifies the number of elements

(=array dimension). When a range is given, however, the two figures give the lower

respective the upper index value.

In the first case, the maximum index value is one less then the figure indicated in the

brackets; in the latter case, the maximum index value equals to the last figure indicated in

brackets.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 76

A multidimensional array may be replaced by nested record of types. The number of

record of types equals to the number of indices of the array. The length of the individual

records correspond to the value of the array indices.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 77

The module parameter list defines a set of values that are supplied by the test

environment at run-time. During test execution these values shall be treated as constants.

Module parameters are defined by listing their identifiers and types following the keyword

modulepar. Module parameters shall be defined within the module definition part only.

Redefinition of module parameters is not allowed.

It is allowed to specify default values for module parameters.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 78

The scope unit is the region of the TTCN-3 source within which (constant, timer,

variable, etc.) definitions may have effect, within which multiple definitions of the same

name are prohibited, and outside of which definitions inside the unit do not have effect.

Definitions made in the module definition part but outside of other scope units are

globally visible in the module. So are imported identifiers.

Definitions made in the module control part have local visibility, i.e. can be used within

the control part only.

Definitions made in a test component type may be used only in functions, test cases

and altsteps referencing that component type by a runs on-clause.

Functions, altsteps and test cases are individual scope units without any hierarchical

relation between them, i.e. definitions made at the beginning of their body have local

visibility.

Definitions within block of statements (e.g. for, if-else, while, do-while, alt, interleave)

have local visibility within the statement concerned.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 79

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 80

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 81

Basic program statements can be used in the module control part, functions, altsteps

and test cases.

Expressions are specified using the operators shown on the following two slides.

An assignment binds the variable on the left side to the value of the expression on the

right side.

Logging enables to write a string or a variable value to a log file in an implementation

dependent manner.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 82

An if-else statement is used to denote branching in the program execution based on a

Boolean expression (condition).

The select-case statement permits branching based on the calculated value of an

expression. The statement block of the first branch containing a matching template inside

its case is executed. The statement block of the case else is run when none of the cases

match.

The select case statement is an alternative to using if .. else if .. else statements when

comparing a value to

one or several other values. The statement contains a header part and zero or more

branches. Never more than one of the

branches is executed.

The for statement defines a counter loop. The first statement (init) is used to initialize the

counter variable. If the Boolean expression (cond) is true, the loop terminates. The

second assignment (expr) is used to manipulate (increase or decrease) the index

variable.

A while loop is executed as long as the loop condition holds.

The do while loop is identical to a while loop with the exception that the loop condition

shall be checked at the end of each loop iteration. This means that the instruction is

executed at least once.

Label definition allows the specification of labels (a specific place in the program code).

Jump to a label performs a jump to a previously defined label.

Used in the control part of a module, the stop statement terminates the execution of the

module control part. When used in a test case, altstep or function with runs on clause, it

terminates the relevant test component.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 83

•continue

Forces next iteration of innermost loop

Not for taking new snapshot in alt or interleave statement -> repeat

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 84

Operands of arithmetic operators shall be of type integer or float, except for mod and rem
which shall be used with integer types only. The result is of the same type as the
operands, operands must not have different types. Both mod and rem have the same
result for positive arguments but they differ for negative ones. See Table 7 in 7.1.1 in
ETSI ES 201 873-1 V4.4.1 (2012-04).

The operators rem and mod compute on operands of type integer and
have a result of type integer. The operations x rem y and x mod y
compute the rest that remains from an integer division of x by y.
Therefore, they are only defined for non-zero operands y. For positive x
and y, both x rem y and x mod y have the same result but for negative
arguments they differ.

Formally, mod and rem are defined as follows:

x rem y = x - y * (x/y)

x mod y = x rem |y| when x >= 0

= 0 when x < 0 and x rem |y| = 0

= |y| + x rem |y| when x < 0 and x rem |y| < 0 ETSI

Effect of mod and rem operator

x -3 -2 -1 0 1 2 3

x mod 3= 0 1 2 0 1 2 0

x rem 3= 0 -2 -1 0 1 2 0

Concatenation is performed from left to right on compatible string types. The result type
is the root type of the operands.

The relational operators equal and not equal may be applied on all compatible types. All
other relational operators shall have only operands of type integer, float or instances of
the same enumerated types. The result type of these operations is boolean.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 85

The operands and the result of logical operations shall be of type boolean.

The bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and

bitwise xor. The unary operator not4b inverts the individual bit values of its operand. The

operands shall be of type bitstring, hexstring or octetstring. The result type shall be the

root type of the operands.

Shift operators perform the shift left and shift right operations. Their left-hand operand

shall be of type bitstring, hexstring or octetstring. Their right-hand operand shall be of

type integer and its value of e.g. 1 means a shift of one bit, one hexadecimal digit and one

octet, respectively, according to the three possible left-hand operand types. The result

type shall be the same as that of the left operand.

Rotate operators perform the rotate left and rotate right operations. Their left-hand

operand shall be of type bitstring, hexstring, octetstring, charstring or universal charstring.

Their right-hand operand shall be of type integer and its value of e.g. 1 means a rotate of

one bit, one hexadecimal digit, one octet and one character, respectively, according to

the possible left-hand operand types. The result type shall be the same as that of the left

operand.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 86

Note: The assignment symbol := , structure field symbol . , function calling (),indexing []

are not operators!

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 87

Is the value of j is less than pl_y, then x will get the value of j multiplied by the parameter

pl_y, otherwise it will have the value of three times j. The value x will only be converted to

a character string and logged when the flag equals true.

The procedure described above will be executed in a for loop. The number of executions

is controlled by the value of the parameter pl_i.

The whole process is called in a function (f_MyFunction). The function has two

parameters: pl_y sets the multiplication factor of j, while pl_i controls how many times the

calculation is repeated.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 88

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 89

Timers can be defined and used in the module control part, test cases, functions and

altsteps. Additionally, timers can be defined in component type definitions. These timers

can be used in test cases, functions and altsteps which are running on the given

component type.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 90

When starting a timer, the optional timer value parameter shall be used if no default

duration is given, or if it is desired to override the default value specified in the timer

definition. When a timer duration is overridden, the new value applies only to the current

instance of the timer, any subsequent start operation for this timer, which do not specify a

duration, shall use the default duration.

The start operation may be applied to a running timer, in which case the timer is stopped

and re-started.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 91

The timeout operation allows to check expiration of a timer, or of all timers, in a scope

unit in which the timeout operation has been called. The timeout shall not be used in a

boolean expression, but it can be used to determine an alternative in an alt statement

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 92

The stop operation is used to stop a running timer. The elapsed time of a stopped timer

is set to the float value zero (0.0). An already stopped timer may be stopped again,

although it does not have any effect.

RTE: Run Time Environment

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 93

The running timer operation is used to check whether a timer has been started and has

neither timed out nor been stopped.

The read operation is used to retrieve the time that has elapsed since the specified timer

was started. The operation returns a value of type float. Applying the read operation on an

inactive timer will return the value zero.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 94

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 95

The abstract test configuration consists of components. The components are

interconnected by means of ports. In the course of the test, the components themselves

may emerge and disappear, their interconnection vary, in other words, the test

configuration is dynamic.

The tested implementation (IUT, Implementation Under Test) is considered a black box,

i.e., its internal structure is hidden from the tester. A special test component, called the

test system interface (or System for short) interfaces the ports of the real world to the

abstract world of components.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 96

In most of the cases Tester behaves as a peer entity of the IUT/SUT

Main Test Component (mtc)

System Component (system)

mtc and system are of the same type

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 97

The Implementation Under Test (IUT) is usually located inside the System Under Test

(SUT). The test system is connected to the SUT through a Network. The connection

points between the IUT and the Network respective between the test system and the

network are called Service Access Points (SAPs).

Communication between the Abstract Test System Interface (mapping the Real Test

System Interface to the abstract world) and the Test Components is carried in Abstract

Service Primitives (ASPs). ASP is an implementation-independent description of an

interaction between the test system and the SUT. ASPs are usually described in the

specification of the tested protocol.

Communication within the test system (between the components) runs through

associated ports. The association between components (on the slide: Parallel Test

Components [PTCs] and the Main Test Component [MTC]) is called connection and is set

up using the connect keyword. The association between components and the Abstract

Test System Interface is called mapping and is set up using the map keyword.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 98

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 99

The components are interconnected via test ports. TTCN-3 defines the port

communication model through which messages are exchanged (message based ports) or

procedures are called (procedure based ports). The interconnection is called mapping

between System and components and connecting between components.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 100

Information (messages, procedure calls or both) are exchanged between associated

communication ports of the components. Internal (component-to-component)

communication happens between connected ports whereas external (component-to-

system) communication happens between mapped ports.

Ports are bidirectional, but have a list enumerating the allowed messages together with

their direction (in, out, inout).

The infinite FIFO queue stores the incoming messages or procedure calls until they are

processed by the component owning that port. A queue overflow (in a real

implementation a queue is never infinite) is treated as a test case error.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 101

When defining a message based port type, the messages allowed to pass that port must

be listed together with their direction. When defining a procedure based port type, the

procedure signatures allowed must be listed. A mixed port a shorthand notation for two

ports, i.e. a message-based port and a procedure-based port with the same name.

The attributes defined with the keyword with may define e.g. the coding rules used for the

messages passing the port. Such a rule may be for example whether the most os the less

significant bit should be sent first through the port.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 102

A message based port is defined by enumerating the allowed message types together

with their direction.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 103

The abstract test configuration consists of components. The components are

interconnected by means of ports. In the course of the test, the components themselves

may emerge and disappear, their interconnection vary, in other words, the test

configuration is dynamic.

Within every test configuration there shall be one (and only one) main test component

(MTC) created automatically at the start of each test case execution.

Parallel test components (PTCs) can dynamically be created during execution of a test

case by the explicit use of the create operation.

The tested implementation (IUT, Implementation Under Test) is considered a black box,

i.e., its internal structure is hidden from the tester. A special test component, called the

test system interface (or System for short) interfaces the ports of the real world to the

abstract world of components.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 104

A test configuration consists of a set of inter-connected test components with well-defined

communication ports.

Test component type definitions shall be made in the module definitions part. The actual

configuration of components is achieved by performing create operations within the test

case behavior.

The component type defines which ports are associated with a component. The port

names in a component definition are local to that component i.e. another component may

have ports with the same names.

It is possible to define constants, variables and timers local to a particular component.

A component type definition is used to define the test system interface, too because,

conceptually, component type definitions and test system interface definitions have the

same form (both are collections of ports defining possible connection points).

It does not make sense to define timers, variables or constants in the system component

as the latter serves as an image of the physical world.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 105

The component type MyComponentType_CT owns a port called PCO and a port array

PCO_Array containing 10 ports of type MyPortType_PT.

In each component instance of this type local copies of the ports, the variable (v_MyVar)

and the timer (T_MyTimer) are generated, and the constant (c_MyConst) will be visible.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 106

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 107

In TTCN-3, functions are used to specify and probe behavior and to structure

computation in a module.

Usually, a function is defined in TTCN-3 (using the keyword function) but may be defined

as an external function (using the keyword external) implemented in one or more C++

source files.

A function must be defined with reference to a component (“runs on”) if the function uses

variables, constants, timers and ports that are defined in a component type definition.

Parameter passing mechanism (by value or by reference) can be chosen for each

parameter separately. Parameters passed by value are read-only parameters. Those

passed by reference may even be altered by the function.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 108

The function header:

•contains the list of formal parameters of the function. When no parameters are used,

empty brackets must be written;

•the usually optional runs on clause must be present if the function uses variables,

constants, timers and ports that are defined in a component type definition;

•the keyword return is only used if the function returns a parameter. A function can only

return a single value of a given type.

The local definitions are optional. When present, the constants, variables and timers

defined here are only visible within the function.

The keyword return must conclude the program part. It must be followed by an

expression resulting in the same type as defined in the header when the return keyword

was used in the header. Notice that the bold and underscored “return” keyword has two

different meanings!

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 109

The formal parameters of the function f_MyF_1 are pl_1 and pl_2. Their types are integer

and boolean, respectively. When invoking the function, the actual parameter list contains

the parameters of the corresponding type in the same order as defined.

By the way: the program part of the function defined is empty, in other words, the function

does not do anything.

The formal parameter list of the function f_MyF_2 is empty thus it is invoked with two

brackets after the function name standing for an empty parameter list. The program

always return the integer value 28 (see the code between the curly brackets). The

returned values is of integer type (cf. the function definition) and that’s why it can be

assigned to the variable v_two, the latter being of the same type.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 110

Functions with a return value may be invoked in expressions. On the slide above, the

function f_3 returns the value 2 if the parameter is true, otherwise the value returned will

be 0.

The first summand has the value of two times two, the second summand equals zero,

thus, the variable i results in four.

The function f_4 is defined with reference to a component (MyCompType_CT) because it

makes use of the ports having been defined in that component.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 111

By default, parameters are passed by value (optionally denoted by the keyword in). To

pass parameters by reference, the keywords out or inout shall be used.

In parameters may only be read inside the parameterized function, i.e., the parameter is

only allowed on the right-hand side of an assignment.

Out parameters may only be written inside the parameterized function, i.e., the parameter

is only allowed on the left-hand side of an assignment.

Inout parameters may only be both read and written inside the parameterized function,

i.e., the parameter is only allowed on the both sides of an assignment.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 112

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 113

The functions lengthof resp. sizeof give the length of a string respective the number of

elements in the referenced constructed type.

The functions regexp and substr return a specific part of the referenced string.

The function ischosen returns the Boolean value true if the element given in the

parameter is selected in the union. The parameter contains the the reference to the union

element in dot notation format.

The function ispresent returns the Boolean value true if the optional field given in the

parameter is present in the record or set. The parameter contains the the reference to the

record or set field in dot notation format.

The rnd function returns a pseudorandom float number r where 1 > r ≥ 0. The function

may optionally be initialized by a seed value. The same seed value results in the same

sequence of pseudorandom numbers.

The testcasename function returns the unqualified name of the actually

executing test case.

The detailed description of predefined functions is given in annex C of the ETSI standard

ES 201 873-1.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 114

Conversion functions span the gap between different simple variable types.

A function at the intersection of a given column and a row has an in parameter indicated

in the column header and returns the value type indicated in the row header.

The detailed description of predefined functions is given in annex C of the ETSI standard

ES 201 873-1.

Green letters indicate TITAN extensions, not included in the standard.

Difference between functions with 'str' and 'char' in their names is explained with the

following examples:

int2char (66) = "B", int2str (66) = "66".

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 115

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 116

The Main Test Component (MTC) and Test System Interface (TSI or System for short)

are implicitly instantiated (created) when the test case is started. TSI may be omitted if

only the MTC is instantiated during test execution. In this case, MTC type defines the TSI

ports implicitly.

A testcase has no return clause, must not use the return statement. Instead, the result of

the test case execution is done in a verdict type variable. This internal verdict variable is

associated with each component instance and the MTC determines the final verdict

based on the verdicts returned by the Parallel Test Components and the Main Test

Component.

TC can be started directly from control part, or from a function running on the control part

(i.e., MTC is not yet created) using the execute() statement.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 117

The testcase header:

•contains the list of formal parameters of the test case. When no parameters are used,

empty brackets must be written;

•the mandatory runs on clause specifies the Main Test Component which the test case is

running on. This makes the test ports visible to the MTC;

•the keyword system is only used if a distinct Test System Interface (TSI) is used.

Otherwise, MTC type defines the TSI ports implicitly.

•the local definitions are optional. When present, the constants, variables and timers

defined here are only visible within the test case.

•the program part (test case body) defines the behavior of the Main Test Component

(MTC)

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 118

The first example shows a configuration where both the Main Test Component (here:

MyMTCType_CT) and the Test System Interface (here: MyTestSystemType_SCT) are

present.

The second example shows a configuration where only the Main Test Component is

present.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 119

Timer may be used to supervise the execution of a test case. This may be

done using an explicit timeout in the

execute statement. If the test case does not end within this duration, the

result of the test case execution shall be an

error verdict and the test system shall terminate the test case. The timer

used for test case supervision is a system timer

and need not be declared or started.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 120

The module control part describes the execution order of the actual test cases.

The instruction after the first comment executes the test case (tc_MyTestCase) and

stores the resulting verdict in a variable (vl_MyVerdict).

The next instruction shows how to put an optional time limit (here: 0.5 second) on the test

case execution time. When the time limit expires without a returned verdict, the final

verdict is set to "error" and the test components are stopped.

The third program statement executes the test case (tc_MyTestCase) ten times.

In the last example the test case (tc_MyTestCase) is only executed when the variable

vl_SelExpr has the value true.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 121

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 122

Local variables of type verdicttype can be used to store verdicts. The value of such a

variable can be manipulated using common assignments. Assigning a different value to a

verdicttype variable always overwrites the existing value.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 123

MTC and PTCs each have a built-in or local verdict. The test case author can alter local

verdict during test case execution in each component using the following operations.

The setverdict operation is used to set local verdict in test cases, altsteps and functions.

The operation may be applied several times in a component resulting in a final local

verdict determined according the rules shown on the next slide. "Local" means local to a

component.

The getverdict operation returns current value of the built-in verdict of the component.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 124

The verdict overwriting logic determines the resulting verdict in function of the former

verdict every time the operation setverdict is applied in a module. The verdict only can

change for the worse, i.e., the following sequence alone is possible: none > pass > inconc

> fail > error.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 125

Test case (global) verdict is computed based on the local verdicts of involved test

components. The execute statement returns the global verdict following the test case

termination.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 126

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 127

Dynamic nature of test configurations means that parallel test components may be

created and destroyed as needed. The same is valid for the connections between

components.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 128

Ports and components are used to set up test configurations. Components are

the owner of the ports. Test components are working concurrently, they can be

created and destroyed.

The MTC is the only test component which is automatically created when a test

case starts. All other test components (the PTCs) shall be created explicitly at

any point in a behavior description by any other (running) component using the

create operation. A component is created with its full set of ports and empty input

queues. All component variables and timers are reset to their initial value (if any)

and all component constants are reset to their assigned values.

The create operation shall return the unique component reference of the newly

created instance. The unique reference to the component will typically be stored

in a variable and can be used for connecting instances and for communication

purposes such as sending and receiving. Variables holding component

references shall be of a a previously defined component type (and not one of the

built-in component type).

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 129

Fully Qualified Domain Name (FQDN)

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 130

When defining a variable to store a component reference, care must be taken to use the

same component type as has the component to be created.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 131

A connection can forward messages, procedure calls or both depending on the

operation type of the involved ports. The direction of the message flow (in:

incoming, out: outgoing, inout: both ways) can be limited at port definition.

The connect operation can only connect consistent ports of test components. It

means that on outgoing port may only be connected to an incoming port and vice

versa. Another condition is that the messages defined for both ports must match,

i.e., the incoming port must be able to receive all outgoing messages from the

connected port. A connection can be set up between a pair of running ports at

any time.

Limitations: A port owned by component A shall not be connected with two or

more ports owned by A or component B. If a port has more than 1 connections

then all outgoing messages must be explicitly addressed.

Connections between two test components can be manipulated by a 3rd

component as well.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 132

Mappings carry data between Test System and the Implementation (or System)

Under Test (IUT/SUT).

Mappings and connections are equivalent from the abstract communication’s

point of view. It is not allowed, however, to connect to a mapped port or to map to

a connected port.

Connections ("loop back") within the test system interface are not allowed.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 133

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 134

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 135

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 136

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 137

Once a component has been created and connected, the execution of its behavior has to

be started. This is done by using the start operation. Every component can only be

started once. The function start() is non-blocking, execution continues immediately.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 138

Using the all component keyword, all (parallel) components may only be stopped from the

Main Test Component (MTC).

stop  self.stop

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 139

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 140

The running operation returns a Boolean value depending on the active or passive state

of the referenced component. The done operation blocks the execution until the

referenced component has terminated when used as a stand-alone statement. (It can

also be used as an alternative in an alt statement.)

Components can be in following states:

• non-existing or not created (running == error, done == error)

• created but not yet started (running == false, done blocks execution)

• started and running (running == true, done blocks execution)

• finished execution or stopped or a test case error occurred (running == false,

done does not block)

When the all component keyword is used instead of a component reference in the

running operation (allowed only in the Main Test Component [MTC]), it will return

true if all PTCs started but not stopped explicitly by another component are executing

their behavior.

When the any component keyword is used instead of a component reference in the

running operation (allowed only in the MTC), it will return true if at least one PTC is

executing its behavior.

When the all component keyword is used instead of a component reference in the done

operation (allowed only in the MTC), execution continues if no one PTC is executing

its behavior or if no PTC has been created or started.

When the any component keyword is used instead of a component reference in the done

operation (allowed only in the MTC), execution continues if at least one PTC has

terminated or stopped.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 141

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 142

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 143

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 144

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 145

The mtc and system components are automatically created in the beginning of test case

execution and destroyed when the test execution finishes. The test case itself is executed

on the mtc. The system component does not run any behavior as it acts as a logical

model of the IUT.

The runs on clause of the executed test case determines the component type of the mtc,

while the system clause specifies the component type used for system.

The component type definition enlists the resources of a particular type component, e.g.

how many and what kind of interfaces the component has.

The port type definition declares operation mode of the interface

(message=asynchronous, procedure=synchronous) and enlists the type of messages (or

signatures at a procedural port), which can traverse the port.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 146

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 147

Elementary steps of setting up the test configuration:

1) Create PTCs (ports of components are created and started automatically)

2) Establish connections and mappings

3) Start behavior on PTCs remotely

4) Wait for PTCs to complete

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 148

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 149

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 150

The scope unit is the region of the TTCN-3 source within which (constant, timer,

variable, etc.) definitions may have effect, within which multiple definitions of the same

name are prohibited, and outside of which definitions inside the unit do not have effect.

Definitions made in the module definition part but outside of other scope units are

globally visible in the module. So are imported identifiers.

Definitions made in the module control part have local visibility, i.e. can be used within

the control part only.

Definitions made in a test component type may be used only in functions, test cases

and altsteps referencing that component type by a runs on-clause.

Functions, altsteps and test cases are individual scope units without any hierarchical

relation between them, i.e. definitions made at the beginning of their body have local

visibility.

Definitions within block of statements (e.g. for, if-else, while, do-while, alt, interleave)

have local visibility within the statement concerned.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 151

Ports are already running when the component is started. All ports are automatically

stopped by the run-time environment when their owner component has finished

execution.

None of the above operations affect connections and mapping of ports.

Receiving operations block on stopped ports until the port is restarted (provided no

defaults are active).

The contents of port queue can still be matched and read on halted ports.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 152

Configuration operations are used to set up and control test components. These

operations shall only be used in test cases, functions and altsteps (i.e. not in the module

control part).

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 153

Configuration operations are used to set up and control test components. These

operations shall only be used in test cases, functions and altsteps (i.e. not in the module

control part).

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 154

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 155

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 156

Template: something that establishes or serves as a pattern.

Templates are used either to test whether a set of received values matches the template

specification or to transmit a set of distinct values.

Templates used to receive messages have the advantage that all valid message variants

may be described in a single template. When a message arrives, the program can decide

whether it is a valid one or not. This procedure is called matching.

Templates used to send messages are advantageous because they can be

parameterized, thus, reused. All fields of these templates must have a determined value

at the point when a message is sent using them. These templates may be used to receive

messages as well, but only when all fields of the expected message are fixed and known

beforehand.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 157

The runtime environment (RTE) compares the received message with the predefined

template describing all valid message variants. When the message is one of the valid

messages (it fits into the template), the match is successful.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 158

Type determines the structure of the template, i.e., its fields.

Identifier is the name of the template. It is used when we want to refer to the template.

The formal parameter list provides the list of the parameters of the template. These

optional parameters are used to alter the template at every invocation.

The keyword modifies denotes derived template where only some of the fields of the

original template are changed. Both templates have the same fields.

The template body lists the permitted values for all fields.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 159

First, we define a record (MyMessageType) containing three fields, the first one

being optional.

The type of the template will be the one just defined. The template we'll define is

called tr_MyTemplate. In the template name prefix, 't' stands for 'template' and 'r'

for receiving.

The template accepts the following messages: the first field must be present, but

its content is don't care. The second field may have the value B, O or Q. The

value of the last field must be in function of the parameter pl_param either true or

false.

The template can be used for receiving only, because it contains an undefined

field (the first one).

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 160

Matching checks whether the received message fits in the set of accepted messages.

The check is done for each field of the template independently. A message is accepted

("matches") when all fields contain accepted values.

The matching mechanisms are depicted in the annex B.1 of ETSI ES 201 873-1.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 161

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 162

The simplest template lists all discrete message values that will be accepted.

Complemented values list lists the values which will not be accepted.

Both lists refer to fields of the template, i.e., both notations may be mixed in different

fields of the same template.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 163

Range indicates the upper and the lower boundaries of acceptable values. An expression

evaluating to a specific integer or float value can be used when setting the boundaries.

The lower boundary (written after the left parenthesis) must be less than the upper

boundary (written before the right parenthesis).

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 164

Note: The syntax differs from the intermixed value list and value range subtype

construction’s notation:

type integer Intermixed (0..127,255);

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 165

The matching symbol "?" (AnyValue) is used to indicate that any valid incoming value is

acceptable. It can be used on values of all types. A template field that uses the any value

mechanism matches the corresponding incoming field if, and only if, the incoming field

evaluates to a single element of the specified type.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 166

The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming

value, including omission of that value, is acceptable. It can be used on values of all

types, provided that the template field is defined as optional.

A template field that uses this symbol matches the corresponding incoming field if, and

only if, either the incoming field evaluates to any element of the specified type, or if the

incoming field is absent.

Note: The template tr_AnyBitstring can only be used as an optional field of another

template.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 167

The matching symbol "?" is used to indicate that it replaces single elements of a string

(except character strings), a record of, a set of or an array. It shall be used only within

values of string types, record of types, set of types and arrays.

The matching symbol "*" is used to indicate that it replaces none or any number of

consecutive elements of a string (except character strings), a record of, a set of or an

array. The "*" symbol matches the longest sequence of elements possible, according to

the pattern as specified by the symbols surrounding the "*".

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 168

Character patterns can be used in templates to define the format of a required character

string to be received.

TTCN-3 pattern expressions have little common with standard regular expressions!

Note: pattern matching for universal charstring is not implemented in TITAN yet!

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 169

In addition to literal characters, character patterns allow the use of meta-characters. If it is

required to interpret any metacharacter literally it should be preceded with the

metacharacter '\'.

“-” means a range, if before and after there is no space!

inside [] char set may be defined e.g. [a f t] --- a or f or t

[a d -] a or d or – (- can be only at the LAST position!)

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 170

The pattern used in template tr_3 explained: it begins with a capital letter, followed by

(zero or more hyphen and at least one letter or number) and the section inside the

parentheses may be repeated several times.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 171

The function is used to extract a substring from the input string (on the slide: v_string). It

is used mainly with textual protocols.

The substring to be extracted is the one matching the regular expression (on the slide:

v_regexp). The last argument of the function (on the slide: 0) denotes the cardinal

number of the group in the regexp, 0 being the first match. A group is enclosed in

parentheses, where the first parenthesis must not be preceded by a '#' or a '\'.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 172

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 173

The length restriction attribute is used to restrict the length of string values and the

number of elements in a set of, record of or array structure.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 174

A template field that uses ifpresent matches the corresponding incoming field if, and only

if:

•the incoming field matches according to the associated matching mechanism, or

•if the incoming field is absent.

Not to be confused with the predefined function ispresent() which checks whether an

optional field is present in the actual instance of the referenced data object.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 175

A field that uses SubSet matches the corresponding incoming field if, and only if, the

incoming field contains only elements defined within the SubSet, and may contain less.

A field that uses SuperSet matches the corresponding incoming field if, and only if, the

incoming

field contains at least all of the elements defined within the SuperSet, and may contain

more.

value  set of : value  subset: For all value in set of such that value is a subset of

subset.

In the superset example, the group {4,3,2} does not match because '1' is missing. The

excess '4' would not hinder the match.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 176

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 177

Specific value template, mentioned in the first column, matches the corresponding

incoming field value if, and only if, the incoming field value has exactly the same value as

the value to which the expression in the template evaluates. Thus, it cannot be regarded

as a veritable matching mechanism, as it only accepts a fixed value.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 178

The function can be interpreted as an extended 'equality' operation. It compares the value

of a variable with a template and returns 'true' if the template matches the value of the

variable as it is the case in the example on the slide.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 179

Specific values template means that each field of the template shall resolve to a single

value.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 180

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 181

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 182

Inline templates do not have identifiers and are valid for that single operation. Inline

templates must not have parameters.

The type identifier may be omitted when the value unambiguously identifies the type, see

Ex2 on the slide.

The typical use is depicted in Ex1. It is used mainly for value redirect and sender redirect.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 183

Instead of specifying a new template, it is possible to modify an existing template when

only a few fields change.

The modifies keyword denotes the parent template from which the new, or modified

template shall be derived.

This parent template may be either an original template or a modified template.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 184

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 185

Templates for both sending and receiving operations can be parameterized. On the slide,

the first one is appearing. This slide shows the use of value parameters.

The message sent on P1_PCO will have the following structure:

the 1st field is integer, its value equals to 1;

the 2nd field is structured (MyMsgType) and has two subfields:

its 1st subfield is integer, its value is determined by the variable vl_integer_2;

its 2nd subfield is not present.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 186

It is not allowed to modify a field, which is parameterized in the parent template. Thus, in

the example on the slide field1 and filed2 cannot be modified while field3 can.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 187

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 188

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 189

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 190

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 191

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 192

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 193

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 194

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 195

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 196

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 197

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 198

<PortId>.check; checks if there is anything waiting in

the queue

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 199

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 200

// obtain sender of message in queue w/o removing it

PortRef.check(receive(MsgTemplate) -> sender Peer);

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 201

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 202

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 203

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 204

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 205

signature MyProc3 (out integer MyPar1, inout boolean MyPar2) //

signature definition

return integer

exception (charstring);

// Call of MyProc3

MyPort.call(MyProc3:{ -, true }, 5.0) to MyPartner {

//5.0 – guarding timer, after expiration timeout exception generated

// after call, return value (getreply) and exception (catch) MUST be

handled

[] MyPort.getreply(MyProc3:{?, ?}) -> value MyResult

// return value is stored in MyResult

param

(MyPar1Var,MyPar2Var) { }

// values of the out/inout parameters stored in MyPar1Var,MyPar2Var

[] MyPort.catch(MyProc3, “Problem occured”) {

// catch user defined exception

setverdict(fail); stop; }

[] MyPort.catch(timeout) {

//catch timeout exception (5.0s in this concrete case)

setverdict(inconc); stop; }

}

// Reply and exception to an accepted call of MyProc3

MyPort.reply(MyProc3:{5,MyVar} value 20); // reply

MyPort.raise(MyProc3, “Problem occured”); // exception

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 206

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 207

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 208

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 209

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 210

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 211

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 212

The execution of alt starts with taking a “snapshot”. The snapshot represent the current

state of the test system including timers, port queues, components, etc. The alternatives

enlisted within the alt statement are evaluated on the contents of the snapshot.

When none of the alternatives are successful, the run-time environment takes a new

snapshot and the execution resumes with the first alternative.

The execution proceeds until a single successful alternative is found or when the run-time

environment can determine that no alternative can ever be successful. In the former case

the statement block of the successful alternative is executed. Then, the next statement

following the alt is executed. In the latter case the execution terminates with dynamic test

case error.

The snapshot is only valid until the execution gets to the statement block! That is why the

alt statement can be nested.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 213

The alt statement consists of alternatives. Alternatives normally consist of guard, event

and statement block. The event used in alt can only be a receiving (or blocking) event.

The semantics of these blocking statements change when used within the alt statement!

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 214

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 215

The repeat keyword can appear only as the last statement within statements blocks of alt

statements. Then, istead of jumping to the next statement following the alt, the execution

is continued from the beginning of the alt with a new snapshot.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 216

The repeat keyword can appear only as the last statement within statements blocks of alt

statements. Then, istead of jumping to the next statement following the alt, the execution

is continued from the beginning of the alt with a new snapshot.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 217

The else guard does not have an accompanying event because it is always successful.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 218

Local definitions within altsteps are deprecated. When initializing a local variable with a

function having side-effect (I.e. doing something else in addition to initializing the variable)

then this side-effect may be executed multiple times. Consequently, variables should be

initialized with constant only!

Side-effect is for instance the sending of a message. In the above situation we could not

know how many times this message is sent!

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 219

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 220

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 221

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 222

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 223

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 224

Defaults have no effect within an alt, which contains an else guard!

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 225

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 226

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 227

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 228

The number of alt statements used for modeling a single interleave statement grows

exponentially with the number of blocking operations used within the interleave

statement.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 229

Execution segments are shown with arrows. Alternative segments are evaluated using

snapshot semantics and executed interleaved.

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 230

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 231

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 232

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 233

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 234

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 236

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 237

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 239

© Ericsson 2002-2013. 4/6/2018

LZT 123 7751 Uen, Rev R1N 240

