
Adapting Agile Methodology to Overcome Social 

Differences in Project Members

Hitoshi Ozawa and Lan Zhang 

OGIS RI Co., Ltd. 

Tokyo, Japan 

Ozawa_Hitoshi@ogis-ri.co.jp, Zhang_Lan@ogis-ri.co.jp 

 

 
Abstract— Projects often consist with members with 

different values that may cause conflicts within the team 
causing decrease in members' motivation, involvement, and 
cohesiveness. In our experiences with offshoring Japanese 
software development projects to China, we were having 
difficulties with low quality deliverables and high turnover 
rate of Chinese members because of social differences. Our 
attempts to create a common culture were not very successful 
because people in general are less likely to change their basic 
views and behavior in a short period of time. We, however, 
were able to obtain success by acknowledging that differences 
are going to exist and adopting and adapting agile practices in 
consideration of the existence of these differences. 

We will show Kaizen as is used by a Japanese company in 
software development. We will focus on our experiences 
with social differences we've found and how we continuously 
adapted practices in our project to take better advantage of the 
situation as relationship between members changed. It is based 
on our over 10 years of experience in trying to improve a 
software package development at a software company in 
China, which has now become our subsidiary. During our 
attempts, we have learned the importance of agile mentality in 
resolving value difference issues. We believe what we've 
learned in adapting agile practices is not just limited to our 
particular project but can be useful in agile projects in general 
and thus can be used to assist resolve value differences in 
organizations as well. 

Keywords— Scrum; outsourcing; offshore; distributed project; 

socioculture; global software development; communication; 

collaboration 

I.  INTRODUCTION AND BACKGROUND 

OGIS-RI is a wholly owned subsidiary of Osaka Gas 
specializing in offering IT services to the parent company and 
to other large Japanese corporations. OGIS-RI has begun 
experimenting with offshoring projects in China from market 
demand. Executives were behind the project and we had full 
support to make outsourcing succeed. 

This paper is based on our findings and lessons learned 
based on our 10 years of experience in adapting our offshore 
projects to a Chinese software company (currently our 
subsidiary - Shanghai OGIS Tonghua Software Co., Ltd.). 

II.  SOCIOCULTURAL DIFFERENCES 

Software development is human centric and socio-
technical activity. Complex interaction of values, attitudes, 
behavioral norms, beliefs, communication approaches by 
members of a project with vastly different values may give 
rise to misunderstanding and misinterpretation of intent that 
may result in conflict, mistrust, and underutilization of talents. 
Collocated projects may have members with different values 
but it is more commonly an issue in offshore projects because 
value differences of social differences among members are 
much more apparent. 

Japan and China societies seem to share many common 
values such as hierarchical social structure and emphasis on 
social network but have subtle differences. These differences 
may be the result of Japan being an island with agricultural 
society with most citizens not accustomed to other culture 
while China is part of a continent and with society more 
accustomed to diversified cultural exchange. 

A. Hofstede’s Cultural Dimensions 

Geert Hofstede identifies social culture dimensions that 

can be used to measure differences in how society prioritizes 

some basic social concepts. Chinese and Japanese index 

values are close in concepts of individualism - collection, 

power distance, and long-term orientation [5]. However, 

China and Japan differ in the uncertainty avoidance index 

(UAI) - the level of tolerance for uncertainty and ambiguity 

within the society. As shown in Table 1, Japan has a very high 

UAI value of 92 while China has a very low value of 30. 

TABLE 1. HOFSTEDE'S CULTURAL DIMENSIONS INDICES OF JAPAN AND CHINA 

 Japan China 

Individualism-

collectivism 

46 20 

Power distance 54 80 

Uncertainty 

avoidance 

92 30 

Masculinity - 

Femininity 

95 66 

Long-term 

orientation 

80 118 

A culture like Japan with high uncertainty avoidance 

presents little tolerance for ambiguity and prefers detailed 



planning compared to a culture like China with lower 

uncertainty avoidance index. 
High uncertainty avoidance index does not imply people 

are less interested in new technology but are less prone to 
adopt it within an actual project. For example, many Japanese 
engineers are interested in new technology and sales of books 
on new technology are very high. For example, books 
concerning Scrum ranked 2nd and 3rd in Shoeisha, a major 
Japanese IT publisher, computer book ranking (February 
2013). Nevertheless, the adoption rate of agile methodology is 
only 2.4% [7] compared to 35% in the US [4]. 

In offshoring software project, this subtle difference in 
view of risk cause conflicts between Japanese members and 
Chinese members. Japanese members emphasized more on 
reducing "risk" and on improving software quality using 
"proven" practices. They were also more tolerant of conflicts 
because they are less likely to change jobs. Chinese 
developers, however, were more interested in using new 
technology, and they were also more likely to take a "risk" by 
changing jobs when a conflict occurred. 

B. Sociocultural Challenges 

During our offshoring experience with a company in China, 

we detected three Sociocultural challenges related to risk 

avoidance: (1) openness of society, (2) difference in 

willingness to adopt new techniques and technology, and (3) 

problem encountered with implicit communication over 

explicit communication. 

1)  Difference in Openness of society 
As is typical of a society with high value of UAI, Japanese 
society is more closed and close knit. People do not move 
much and still hold community gatherings as well as 
neighborhood activities such as daily trash cleanup and 
neighborhood circular notices. In a similar manner, 
Japanese employees think of employment as a lifetime 
commitment to a company. Japanese companies prefer to 
recruit fresh graduates from school and “teach” them to fit 
with their group instead of hiring experienced people who 
likely have their own ways of doing things. Gaining 
consensus to reduce conflict is valued than gaining higher 
skills to obtain better position. On the other hand, Chinese 
members tended to switch job after acquiring necessary 
skills for a new position. This created confusion and 
conflict between Japanese and Chinese members. 

2) Difference in willingness to adopt new techniques and 

technology 
Japanese society and organization places more emphasis 
on avoiding failure instead of attaining success. Therefore, 
they are more likely to use existing methodology and 
technology and only adopt minor changes. On the other 
hand, Chinese members were more interested in acquiring 
new skills by trying new techniques and technology. 
Difference in organization cultural rate in adopting new 
techniques and technology caused friction between the 
organizations.  

3) Differences in Communication 
There is a difference in implicit knowledge implied by 
Japanese and Chinese cultures. Miscommunication and 

misunderstanding are caused mainly by differences in 
interpretation caused by differences in social context rather 
than from syntactical differences. Implicit knowledge is 
socially embedded within social norms and not easily 
shared out of context. Japanese tend to have more 
"implicit" unwritten meanings in sentences because 
Japanese members usually form a very tightly closed group 
where members understand each other without explicitly 
saying everything. 

III. Methodology 

Issues in a project can be classified into 3 types as shown 
in Table 2: (1) anticipated issue with knowable outcome, (2) 
anticipated issue with an unknown outcome, (3) unanticipated 
issue. Furthermore, the outcome can further be divided into (a) 
outcome that can be resolved, (b) outcome that cannot be 
easily resolved within the current situation, and (c) problems 
that do not affect project outcome. 

TABLE 2. ISSUE ANALYSIS TABLE 

 

(1)Difference 

anticipated 

with known 

outcome 

(2)Difference 

anticipated 

with unknown 

outcome 

(3)Difference 

unanticipated 

(a)Can change 

   

(b)Cannot 

change    

(c)Does not 

affect project 

outcome 
   

As an example, there are some characters such as  
which are common to both Chinese and Japanese but have 
different meanings. To the Chinese, it means greater than 
while to the Japanese, it means equal to or greater than. 
Characters such as these are known in advance and are known 
to affect developed software. However, they can be 
circumvented during the translation process. 

 On the other hand, it is known there are some 
specifications that are implicitly defined and differ between 
the two cultures, but cannot be determined beforehand. In our 
case, error handling was expected to be implemented by the 
Japanese members and was not explicitly written in the 
documents. Chinese member, however, only implemented 
what was written in the specification and did not implement 
error handling. 

An example of unanticipated difference was the high 
turnover from lack of motivation of the Chinese members. 
Lifetime employment is customary in Japanese society and 
turnover by project members were not expected. 

Hofstede's cultural dimensions are a good model to start 
when analyzing culture but in an actual project, member 
interaction does influence each other and the cultural 
dimensional values change over time. To take advantage of 
these changes, situations were re-analyzed and roles and 
processes were adapted to resolvable problems after each 
cycle. Factors influencing problems classified as that cannot 



be changed where investigated to see if they still cannot be 
changed or if they can now be changed if practices and 
conditions were changed. 

IV. LESSONS LEARNED DURING WATERFALL 

METHODOLOGY 

Initial offshore development was done using a waterfall 
methodology because the Japanese members had experience 
with it and felt more comfortable. Most common anticipated 
problems encountered in offshore development such as 
problems arising from geographical dispersion, different time 
zones, and common problems associated with difference in 
languages were resolved during this stage. 

The cost to develop a software was reduced as expected 
but the quality of the software was found to be unacceptable 
during the acceptance test. Chinese members were also 
reluctant to fix the problem because the Chinese society 
associates “concession” with willingness to compensate. 
Japanese member just wanted it fixed but Chinese members 
were reluctant to fix it because they thought it also required 
some compensation. Resubmitting a fixed specification and 
redeveloping the software until quality were satisfactory 
required time and expense such that it resulted in no cost 
benefit of offshoring a project. 

Upon analysis, following 4 reasons were cited as the cause 
of the problem: (1) specification was ambiguous, (2) there was 
a cultural difference in quality acceptance level, (3) 
information sharing was insufficient, and (4) low motivation 
level in Chinese members. 

Japanese members usually work in a tightly closed group 
and understand each other's requirements without having to 
express them explicitly. It is only necessary to explicitly write 
differences from their implicit implied norms. However, it is 
necessary to write a detailed specification to get the software 
they wanted when asking Chinese members to develop a 
software system. This added time and cost of creating 
documents that were unnecessary when developing in Japan. 

Japanese customers request very high quality from the 
beginning. Chinese developers and testers, on the other hand, 
were conducting tests on normal conditions only without any 
test on error nor abnormal conditions. They only conducted 
them when the Product Owner found the software was not 
behaving as expected even after it passed testing. 

In Japan, when the specification is ambiguous, it is 
customary to ask the person who wrote the specification to 
clarify the meaning. Chinese members view questioning as a 
humiliation. Thus, even when the specifications are 
ambiguous, they would try to "resolve" the problem based on 
their cultural norms, knowledge, and experience rather than 
contacting the person who wrote the specification. 

To alleviate this problem, Japanese members were asked to 
write detailed complete specification explicitly. The 
specification was reviewed to weed out miscommunication, 
misunderstanding, and any ambiguities. This required 
considerable time and cost and Japanese members became 
wary of writing further detailed specifications. They 
complained about having to write detailed specifications but 

diligently completed because Japanese usually do not sway 
out from the current group they are in. On the other hand, the 
turnover rate of Chinese developers increased from lower 
motivation. 

V. ADOPTING SCRUM 

We were able to learn and fix several sociocultural 
challenges during waterfall software development, but the 
quality of the finished software was still up to the expected 
level and our customers were not really satisfied. The main 
cause of the problem was detected as being members of the 
development team not fully understanding the specification. 
Both Chinese and Japanese educational systems have a teacher 
talking and students just listening. It is seen as a "humiliation" 
to say they did not fully understand what the teacher is talking 
about. This common characteristic, however, was having a 
negative effect because Chinese Development Team members 
were reporting they were not having any problem to avoid 
“humiliation” of saying they didn’t fully understand the 
specification. 

Both Japanese and Chinese members were unsatisfactory 
with how the project was progressing and Chinese employee 
turnover rate was high. Motivation of Chinese members 
deteriorated very quickly when a key member left the 
company. 

Both Japanese side and Chinese side agreed to use Scrum 
in a hope a new methodology and practice will improve the 
situation but with different reasons. Japanese Product Owner 
is held accountable for the finished deliverables and wanted to 
reduce risk by having shorter development cycles and more 
transparent status reports. Chinese members, on the other hand, 
wanted more authority on development so they would be more 
able to adopt new technologies. After Scrum was adopted, 
Chinese Team decided to use XP practices during each sprint. 

A. Roles 

All our customers were Japanese, so a role of product 
owner was assigned to a Japanese member residing in Japan. 
Roles of scrum master and the development team were 
assigned to the Chinese members in China. The Chinese 
Scrum Master was chosen to because a Scrum Master needs to 
communicate frequently with the Development Team to find 
and remove any obstacles a development team member may 
have. 

To reduce misunderstanding and miscommunication 
between Japanese Product owner and Chinese scrum master, a 
role of Product Owner Proxy was created to bridge implicit 
communication gap between Japanese Product owner and 
Scrum Master and development team. Similarly, the role of a 
liaison between Japanese Product Owner and Chinese Scrum 
Master was assigned to a Chinese member with deep 
understanding of both cultures and languages. It is the 
responsibility of a Product Owner Proxy to act as a liaison 
between the Product Owner on-site with the Development 
Team and to make sure there were no contextual 
misunderstandings about the project expectation between 
Japanese Product Owner and Chinese Scrum Team and to 
arbitrate conflicts when they do.  



Ideally, it would be good to have Product Owner be 
collocated with scrum master and development team and be 
part of the sprint, but we were not able to do that because the 
Japanese Product Owner did not have sufficient understanding 
of Chinese culture and command of the language and the 
expense to send a member to a Chinese office for an extended 
period of time was too high. 

B. Process 

Agile development process initially followed those used 
during waterfall development. Japanese product owner 
gathered requirements from customers in Japan with which 
user stories were written. User stories were sent to the Chinese 
Product Owner Proxy who reviewed the user stories and 
rephrased sentences that may cause misunderstanding or 
miscommunication. 

Fig. 1 shows the communication between roles. A 
Japanese Product Owner who wrote the user stories went to 
the Chinese office for 3 days to explain the specification to the 
Chinese Product Owner Proxy, Scrum Master, and to the 
Development Teams. Chinese Development Team wrote 
backlogs from these user stories that were again reviewed by 
the Product Owner Proxy to make sure there were no 
misunderstandings or miscommunication.  

 

Fig. 1. Communication between roles 

Product Owner, Product Owner Proxy, and the Team 
worked to convert user stories to the Product Backlog and then 
to Sprint Backlog. Software was developed by the 
development team based on this Sprint Backlog with a sprint 
cycle of 2 weeks. 

Product Owner is responsible for clarifying the user stories 
during the planning and during the development stages. If the 
Development Team needs any clarification of the Product 
Backlog during development, they contacted the Product 
Owner. Questions were initially thought to be answered by the 
Product Owner Proxy collocated with the Development Team, 
but it was decided to send to the Production Owner directly 
instead of to the Product Owner Proxy to alleviate 
responsibility issues when a defect was detected. 

Developed software was tested in by the Chinese testing 
team and when it passed all tests, the software was delivered 
to Japanese Product Owner who conducted acceptance tests. A 

Japanese Product Owner sometimes went to China to join the 
testing team to see the quality before conducting an 
acceptance test on his own. 

C. Adapting Scrum 

After each development cycle, agile practices were re-
evaluated during agile retrospective. KPT (Keep, Problem, 
Try) sessions were held. Instead of just looking back at events, 
the current situation between project members were analyzed 
and detected and predictable problems were written into the 
"Issue analysis table" (Table 2). Those that can be changed 
were planned for implementation in the next cycle. Those that 
cannot be were further analyzed to find factors and possible 
solutions were proposed. If all members agree to the solution, 
it was implemented. If there was a disagreement, another 
solution was thought or it was marked as irresolvable at a 
current time. 

The problem of development team members fully not 
understanding the specification persisted in our project. When 
we were using the waterfall methodology and during our 
initial attempt at Scrum, detailed specification was written so 
developers will be able to code programs without fully 
understanding the specification. Writing detailed specification 
required enormous time but let to an activity based mentality 
rather than value based mentality and resulted in Chinese 
member just mechanically rewriting step by step specification 
to computer code.  Nevertheless, the quality of the 
deliverables was still not what we expected. 

Instead of trying to make the document clearer, we 
rethought about the problem and concluded that the problem 
was not that the documents were unclear; it was that the 
members of the project were not fully communicating with 
each other and trying to understand the specification 
thoroughly. 

Our initial attempt was to provide the documents 
beforehand to the development team and to request members 
of development team explain back in their own words to the 
product owner. If there was any misunderstanding, it was 
corrected before Sprint Backlog was written. This only proved 
successful to a limited extent because the time to review 
understanding by development members was limited so not all 
details were verified.  Some detailed feature specifications 
were found to still be ambiguous during development and 
Product Owner were still not being contacted to resolve these 
issues. 

Counter to intuition, our next decision was to make the 
initial user stories very vague so that the Development Team 
would be induced to contact the product owner to find the 
actual detailed meaning. Scrum recommends Product Owner 
to be responsible for expressing user stories clearly, but taking 
this to mean to clearly express all user stories clearly in a 
limited period of time in the early stage of sprint planning was 
actually hindering the Development Team from fully 
understanding the Product Backlog to the level needed 
because it was leading to the lessened requirement to 
communicate. Our initial thought, also, was that specification 
needed to be fully written to prevent misunderstanding 



because of differences in languages and members were not 
really interested in learning a new language. 

 By making the user stories very vague, Team members 
were forced to ask the Product Owner for clarification. This 
initiated much closer interaction between Japanese and 
Chinese members and broke the ice between the two cultural 
groups. Communication became much more frequent and 
defects were detected and fixed earlier. Members were also 
trying to learn each other’s language and increased 
communication was assisting them in this effort. 

 Vague specification, however, requires the Product Owner  
to spend more time to reply to questions from the development 
team. This increase can be lessened if a Product Owner 
actually creates a regular detailed specification along with the 
vague user stories. Detailed specification may be consulted to 
reply to developers’ questions or updated when a better 
alternative solution is found. 

The problem now was adjusting the granularity of the 
initial specification so the questions would not overwhelm the 
product owner. Number of questions to verify specification 
were initially very high because documents contained many 
implicit understandings. Number of question decreased as we 
adjusted granularity of specification. Granularity of documents 
should be adjusted to initially promote communication and 
later to reduce cost. 

Japanese members initially consented adopting Scrum to 
hold more periodic reviews and to better track development 
progress, but later shifted to give the Chinese group more 
autonomy because they seem to know more about what 
motivated them and had a better understanding between 
members. We, also, found Chinese members were actually 
able to contribute much more to making the finished software 
much better because of the accumulated knowledge. 

VI. RESULTS 

Employee retention has been a major problem in offshore 
development. Employees tended to switch job after gaining 
skills to find another job. Time to recruit and train new 
employees, increase skill level, and to have a new member 
settle in with the team were a main problem because it took 
time, incurred cost, and decreased qualities of the deliverables. 

After adopting and adapting agile methodology in projects,  
interaction between members increased. This resulted in better 
understanding between team members and increased members' 
motivation. Employee turnover rate from member 
dissatisfaction decreased from 20% to 0% and quality of the 
software became more stable across projects by retention of 
skilled members.  

Increased communication led to increased trust between 
members. As members began to know each other more, it was 
found that development team members actually knew much 
more than were originally expected. Giving more 
responsibilities to such members resulted in a much better 
software. 

We are still not completely satisfied with the current 
outcome. Members are still not completely proficient in each 

other’s language but members now see this as their own issue 
that needs to be resolved. On the other hand, we still have not 
been able to resolve the issue surrounding QCD (quality, cost, 
delivery). Japanese members still are requesting a detailed 
report while Chinese members complained about requiring too 
much resource to write the reports. No suitable solution has 
yet been found but as the process and practice stabilize, we are 
trying to find a negotiation point where all members can agree 
on. 

VII. LESSONS LEARNED 

Just adopting agile practices was not sufficient to succeed 
in an offshoring project. Our experience taught us the 
following lessons. 

Lesson 1: Continuously adapt roles and processes based on the 
current conditions. If the relationship between members 
change, modify process and tasks assigned to roles to take 
advantage of it. For example, review members and 
organizations trust after a sprint or during the sprint 
retrospective and modify roles and process accordingly. 

Lesson 2: Analyze and find factors concerning differences that 
cannot be changed rather than trying to find the reason for the 
differences. Asking members directly for a reason to a 
problem may not lead to a possible resolution. Chand provides 
an example where workers of an Indian team did not cite 
culture differences as the problem while managers did [1]. 

Lesson 3: Don’t try to force to solve all difference issues. 
Assess how much the difference affects the result of the 
project. Some differences cannot be overcome because they 
are inherited deeply into the culture. Accept those differences 
and try to find a way to take advantage of it instead of trying 
to eliminate it. 

Lesson 4: Try to resolve issues few at a time instead of trying 
to solve them all at once. Give time to allow members to build 
better relationships based on the change. 

Lesson 5: Don’t give up. Even if difference issues cannot be 
resolved now, it may be resolved as project environment 
change. Always keep changing the project environment so 
issues may become resolvable in the future. 

VIII. CONCLUSION 

We were able to go beyond the difficulties of offshore 
development and were able to gain advantages by adopting 
and adapting agile practices. We were able to overcome social  
differences in project members by promoting communications 
between members. We adopted Scrum, but it wasn't just 
assigning roles and process that really improved the project - it 
was creating an environment and practices where members 
were urged to communicate more and understand each other. 

Some of the practices we found successful may not work 
in other environments, but our experience of continuously 
adapting roles and practices to take advantages of changing 
the relationship between members seems to be a general rule 
that can be followed. It was not just enough to define a process 
and setup tools to encourage better communication between 
project members - it was necessary to change our practices as 



well to encourage members to take advantage of them. As a 
result, we were able to increase the quality of the created 
deliverables with members more satisfied with the project. 

 

References 
[1] D. Chand, G. David, R. Galliers, S. Kumar, "An Investigation of How 

Culture Impacts Global Work: Unpacking the Layers of Culture". 

[2] M. Cohn, “Succeeding with Agile: Software Development Using 
Scrum”, Addison-Wesley Professional, 2009. 

[3] S. Deshpande, Valentine Casey, Ita Richardson, Sarah Beecham, 
"Culture in Global Software Development - a Weakness or Strength?". 

[4] Forrester Research Inc. 2010 "Agile Development: Mainstream 
Adoption Has Changed Agility". 

[5] G. Hofstede, "The Hofstede Centre", http://geert-hofstede.com/ 

[6] Y Hsieh, P. Kruchten, E. MacGregor, "Matching Expectations: When 
Culture Wreaks Havoc with Global Software Development". 

[7] IPA/SEC White Paper 2012 on Software Development in Japan 
(Information -technology Promotion Agency, Japan) p.42 figure 4-5-1. 

[8] M. Poppendieck, T. Poppendieck, "Leading Lean Software 
Development", Addison-Wesley Professional, 2010. 

 

 


