
 Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

Linux Kernel State Tracing Facility

Function Specifications

Version 01-08

 Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

Revision History

Rev Date Author Description

1.00 2001.10.09 serizawa,

nakamura,

hatasaki

Initial version.

1.01 2001.12.14 serizawa,

nakamura,

hatasaki

- Add description about buffer lists (in 3., 4.2.2, 4.5.1.3, 4.5.2.4)
- Add details about return values (in 4.5.1，4.5.2)

- log_cpu -> log_procssor
- Event facility code is limited as LOG_KERN, and add description

that "It will be changed to LOG_LKST in the future.".
- Add 4.3 Device interface
- Add 4.4 Initialization (from IOCTL() to initialize)
- And more clarifications.

1.02 2002.03.31 serizawa,

nakamura,

hatasaki

- ETRC -> LKST
- Add description about LKST logging daemon (in 2.1, 2.2, 4.4,).
- Add description about how to insert new trace points (in 4.6).
- Add descriptions about new IOCTLs and functions (in 4.7.1, 4.7.2).
- Add descriptions about command interfaces (in 4.7.3).
- And more clarifications.

1.03 2002.04.12 serizawa,

nakamura,

hatasaki

- Add some description about related projects (in 2.3)
- Add description about how to insert new trace points (in 4.6).
- Add descriptions about IOCTLs and functions (in 4.7.1, 4.7.2).
- Add description about new command (in 4.7.3).

1.04 2002.04.26 hatasaki - Modify description about lkstlogd command (in 4.7.3).

1.05 2002.06.27 hatasaki - Modify description about IOCTLs and functions (in 4.7.1, 4.7.2)
- Add descriptions about lkstbuf command (in 4.7.3).

1.06 2002.08.30 hatasaki - Modify description about how to insert trace points(in 4.6)
- Modify description about lkst_evhandler_register() (in 4.7.2)
- Add descriptions about some event handler functions (in 4.7.2).
- Modify description about lkstbuf command (in 4.7.3)

1.07 2002.12.05 hiramatsu - Modify descriptions about structure of the event buffer(in 4.2.2)
- Add and Modify descriptions about IOCTLs(in 4.7.1)
-

1.08 2003.07.24 hiramatsu - Add and Modify descriptions about LKST_ARG(in 4.6)
- Modify descriptions about lkstbuf(in 4.7.3.32)
-

 Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

 Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

Table of Contents

1. ABSTRACT .. 1

2. INTRODUCTION .. 1

2.1 PURPOSE OF LKST ... 1
2.2 DESIGN CONCEPT .. 2
2.3 RELATED PROJECTS .. 2

3. FUNCTION OVERVIEW ... 3

4. DETAILED DESCRIPTION .. 4

4.1 EVENTS TO BE RECORDED.. 4
4.1.1 Data to be recorded ... 4
4.1.2 Type of events to be recorded... 5

4.2 METHOD OF RECORDING EVENTS.. 5
4.2.1 Mask controlling and functions to record events. .. 5
4.2.2 Structure of the event buffer .. 6

4.3 DEVICE INTERFACE .. 6
4.4 LOG OUTPUT AND FORMATTING .. 7
4.5 INITIALIZATION ... 7
4.6 INSERT NEW TRACE POINTS .. 8
4.7 FUNCTIONS ... 11

4.7.1 Device Interface... 11
4.7.2 Kernel Functions.. 40
4.7.3 User Commands.. 59

- 1 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

1. Abstract

 This document describes the specifications of Linux Kernel State Tracer, which is a kernel state tracing
facility for Linux systems. In the followings, Linux Kernel State Tracer is abbreviated to LKST.

2. Introduction

2.1 Purpose of LKST

Help Linux attain the reliability and availability needed by mission-critical systems.
 Linux must be more reliable to be used more widely in mission-critical systems. System venders
should adequately examine the feasibility of using Linux in their systems, but this is not easy for them to
do because the kinds of hardware supported by Linux are still increasing rapidly and because the Linux
kernel itself is evolving rapidly. LKST was therefore developed in an effort not only to provide the
information kernel programmers need for debugging efficiently but also to expand availability of this
debugging information, for example even in OS crashes. This will improve the quality of Linux systems
by speeding the fixing of faults, debugging, and the evolution of the Linux kernel.
 A kernel programmer who wants to find out what the fundamental causes of system faults are needs a
log of the state transition of the kernel. Someone referring to this log can trace what happened before the
faults. And a log of hardware events such as interrupts will help solve problem caused by hardware or
will at least help determine whether the problem is caused by hardware or software. Such logs will
make it possible for failures to be analyzed by system engineers who know little or nothing about the
Linux kernel.
 These state-transition and hardware-event logs will be especially important when the OS crashes and
thus should be retrieved then. But the only operations available when the OS crashes are such basic
ones as a simple memory dump. This means the logs should be as small as possible.
 Furthermore, such logs should be collected in the system itself even when the failure occurs in a
customer system. The overhead for logging thus needs to be so small overhead that it can be acceptable
for customer systems already in service and so small that the logging can be made part of the standard
Linux kernel.

- 2 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

2.2 Design concept

Obtain detailed information about kernel failures.
 LKST records not only stack traces and the values of CPU registers, but also important state transitions
of the kernel, modifications of important variables, and hardware events. And in addition to recording
these events, it records information related to them.

Support logging retrieval anytime, even when the OS crashes or enters an infinite loop.
The logs recorded by LKST should be preserved into files for latter fault analysis. But files of logs that
are not concerned with the faults should be erased or overwritten to save space of storages.
The logs also should be kept small enough that they can be retrieved by a simple memory dump. LKST
should also provide a means of exporting logs, such as serial console output.

Minimize logging overhead, even in a multiprocessor system.
Because LKST is to be used in customer systems, it should require only minimal resources. And
because it should be made part of the standard kernel modifications from the original should be
minimized (i.e., LKST should collect information at the fewest possible points). Furthermore, LKST
should avoid lock overhead in multiprocessor systems.

Support user-extensible traps to allow customized error collection and monitoring.
Information to be collected may differ system by system. Users may need data the standard LKST
features don’t collect, so users should be able to customize the LKST functions called when events occur.

Conformance to the standard.
Information from LKST should conform to POSIX Draft Standard (1003.25). Also LKST should be
controlled via APIs that conform to this standard.

2.3 Related projects

LKST uses Kernel Hooks as hooks in the kernel, and uses LKCD for kernel crash dump function.
The following are projects that may be of concern to those interested in LKST
(For details, refer to the respective URL).

LTT (Linux Trace Toolkit, http://www.opersys.com/LTT/index.html)
Kernel Hooks (http://oss.software.ibm.com/developerworks/opensource/linux/projects/kernelhooks/)
LKCD (Linux Kernel Crash Dump, http://oss.sgi.com/projects/lkcd/)
Linux Event Logging for Enterprise-Class Systems (http://evlog.sourceforge.net/)
dProbes (http://oss.software.ibm.com/developerworks/opensource/linux/projects/dprobes/)
Kernel Tracer in IKD (Integrated Kernel Debugging Facilities,

 ftp://ftp.kernel.org/pub/linux/kernel/people/andrea/ikd/)

- 3 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

3. Function overview

LKST logs event information required for fault analysis at trace points in a kernel, and stores this
information in a memory in order of the times at which the events occurred.
 Figure 3-1 shows a block diagram of LKST

Interrupt/ Exception
handler

Process manager Event buffers
(Per CPU)

System Call stub

User-defined
trace points

Selective
masking

panic()/printk()

LKST Device

Libraries, Application programs

Kernel

Trace
Points
(Events)

User-defined
extensions

LKST commands LKST Daemon

default

shift
Log_static

User-defined
User-defined2

Event
handlers

Figure 3-1 LKST block diagram.

LKST provides the following functions:
- Masking of events to be logged.
- Getting the event logs in the event buffers.
- Restoring the event logs into files. This is a function of logging daemon of LKST.
- Managing the event buffers. i.e., creating, deleting and selecting.
- Adding/Deleting the event-handler function invoked when events are logged.
- Getting LKST status.
All of the basic functions of LKST are built into a kernel, and has interfaces as a pseudo device. Therefore,
a library and an application program can execute these functions through an ioctl system call.

LKST can get event log entries from the event buffers either by reading an event buffer (using an API that
LKST provides) or by picking up event log entries from a kernel memory image obtained by existing tools
etc.

- 4 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4. Detailed Description

4.1 Events to be recorded

4.1.1 Data to be recorded

 LKST records two kinds of data into an event log entry when an event occurred:
•Data to be recorded common to all events.
•Data to be recorded specialized by each type of event (this data is listed in a table in the Appendix).

The data for all events is listed in Table 4-1. These table entries conform to the POSIX Draft Standard
(1003.25).

Table 4-1. Data to be recorded in all events.
Member Type Member Name Description

posix_log_recid_t Log_recid System-assigned ID of the event record
int Log_event_type Event identification code
uid_t Log_uid Effective user ID associated with the event
gid_t Log_gid Effective group ID associated with the event
pid_t Log_pid Process ID associated with the event
pid_t Log_pgrp Process group associated with the event
struct timespec Log_time Event time stamp
unsigned int Log_flags Bitmap of event flags
pthread_t Log_thread Thread ID associated with event
posix_log_procid_t log_processor Processor ID associated with event

 LKST also records the information listed in Table 4-2. LKST always stores these same values into all the
entries..

Table 4-2. Other information defined in POSIX (1003.25) (Fixed value).
Member Type Member

Name
Description Value

Size_t log_size Size of the event record variable data sizeof(lkst_arg_t)*4
Int log_format Format of variable data PXLOG_BINARY
Posix_log_facility_t log_facility Event facility code LOG_KERN (*1)
Posix_log_severity_t log_severity Event severity code LOG_DEBUG

*1: This will be chainged to LOG_LKST in the future.

- 5 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.1.2 Type of events to be recorded

 There are two kinds of costs for recording events: the increase in the number of dynamic steps, and the cost
of maintenance due to modification of the original kernel. To minimize both costs, LKST should collect as
much information as possible from the fewest invocations.

 LKST limits data collection according to the following criteria:
1. Passage of paths where many control flows concentrate, such as entry points of system calls, functions that

process input/output of network packets.
2. Important state transitions in the kernel, such as process states, interrupts, and exceptions.
3. Events generated by LKST itself (for maintenance).

Details are described in a table in the Appendix.

4.2 Method of recording events

4.2.1 Mask controlling and functions to record events.

 LKST can control the recording of events according to whether or not the events are masked. Masked
events are not recorded in the event buffer.
 The mask for each type of event is controllable. In the following part of this paper, a set of masks is called
a maskset. LKST can select one maskset at a time, and users need to register a maskset before it can be
selected.

Event

Record event

Don’t record event

Current maskset
Process switch

System call
spinlock

Interrupt

printk

Network

×

×

×

×

×

×

maskset to record Nothing

Process switch
System call

spinlock
Interrupt

printk

Network

maskset to record ALL

Process switch
System call

spinlock
Interrupt

printk

Network ×

maskset for Trace Level 3

Process switch
System call

spinlock
Interrupt

printk

Network

×

×

×

maskset for Trace Level 2

Process switch
System call

spinlock
Interrupt

printk

Network

×

×

×

×

×

○

maskset for Trace Level 1

Figure 4-1. Masksets.

 LKST has the following three masksets by default: (1) a maskset to record no event, (2) a maskset to record
all events, (3) a maskset to record events defined before kernel compilation (not shown in Figure 4-1).

- 6 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

 Users suspend the recording of events by selecting the first type of these maskset and resume recording by
selecting any other maskset.

 Events are recorded in the event buffer by a function called an “event handler,” and an event handler can be
defined for each type of event. Therefore, actual contents of a maskset consists are pairs of an ID for type of
event and an ID of event-handler. In the followings, this pair called “maskset entry”.
 Furthermore, users can register a user-defined function as an optional event handler. Using this mechanism,
for example, users can register a function that compresses events in the event buffer.

4.2.2 Structure of the event buffer

 The event buffer is actually several sets of circular buffers. To avoid lock overhead in multiprocessor
systems, each CPU has a different table of buffers. The buffer to record can be changed by using IOCTL or a
kernel function. Therefore, while execution of interested command, use different buffers for recording in order
to avoid buffer overrun. Users can retrieve any buffer, and can free unused buffers. Furthermore, users can
create new buffer even when LKST is active.
 Each buffer has an ID indicating the ID of next buffer. Said IOCTL and the kernel function shift current
buffer to the buffer indicated by the next ID. Furthermore, you can change the buffer to record directly by
giving an ID.
 There are two limitations of the buffer. The first is that the size of a buffer will be limited as times of 4KB.
The second is that LKST will not use all of entries. Several entries in the head of buffers preserved for events
recorded while buffer shifting.
 On overrun, LKST generates an “Overrun event”1 by itself. As mentioned above, each event can
correspond to an independent event handler, and users can customize the way LKST behaves when an overrun
occurs.

LKST has a buffer which allocated statically for special purpose. LKST uses it to record events occurred in
initialization procedure, or events of LKST internal error. This buffer is not assigned any ID and written by a
special API and a special handler nor able to delete.

4.3 Device interface

 LKST has a character device for user interface. The major number of the device is displayed in
/proc/devices on the entry of "lkst". And the minor number is 0.
 This device accepts only open(), close(), ioctl() and read(). Only the process that issued
ioctl(LKST_IOC_BUFFER_SETRMOD) can issue read().

1 The event type of this event is "LKST_BUFF_OVFLOW".

- 7 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.4 Log output and formatting

 To get logs, a user can choose several methods for the purpose. Purposes and methods are described in
Table 4-3.

Table 4-3. Purposes and methods of getting logs.
 Purpose

Methods Kernel
debugging

Performance
evaluation,

etc

OS
failure

Service
failure

Description

Magic SysRQ ◎ △ ○ × LKST outputs logs to a console when
SysRQ key is pushed. It can be used on
Kernel failure but size will be limited.

LKST command △ ◎ × ○ “lkstbuf read” command. It is easy to use,
and suits to use in a shell scripts.

with LKCD ○ × ◎ × LKCD patched by LKST can extruct
LKST buffers from a crash dump.

Logging daemon △ △ × ◎ This daemon can preserve latest logs
recorded before the fault, and also can
limit the sum of files used as output.

4.5 Initialization

 LKST is automatically initialized. If LKST is configured as a kernel module, initializer of LKST is called
from module initializer. Otherwise, it is called kernel initializer in linux/init/main.c.

Initializer of LKST executes following processes to start LKST:
- Allocate event-buffers
- Allocate the memory area needed for the control area
- Register special masksets
- Register event-handler-functions for default use
- Set current maskset as LKST_MASKSET_ID_RDEFAULT; i.e., the initializer starts recording of events.

The special maskets are the three kinds of masksets described below:
#define LKST_MASKSET_ID_RNOTHING 0
 Maskset for recording no event

#define LKST_MASKSET_ID_RALL 1
 Maskset for recording all events

#define LKST_MASKSET_ID_RDEFAULT 2
 Maskset for recording events defined before kernel compilation

- 8 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.6 Insert new trace points

LKST can trace events of user’s programs or modules by inserting trace points.
Procedure to insert trace points is described blow:

 (1) Add definition of a new event type to lkst_events.h (*) as follows:

 LKST_ETYPE_DEF(event-ID, priority, hook-type, event-name, description,

event name string, filter, arg1 description, arg2 desc., arg3 desc., arg4 desc.)

 event-ID --- Value of the event type(0x000..0xfff)
 0x000-0x0ff preset by LKST for kernel events.
 0x100-0x1ff for user use
 0x200-0xeff reserved
 0xf00-0xfff for LKST internal use
 priority --- Priority of the event type(0x00..0xff)
 hook-type --- Type of hook header for Kernel Hooks
 Specify either the following according to the insertion
 location of the HOOK macro.

 - NORMAL: If you insert HOOK macro in the kernel,
 use this type.
 - MODULE: If you insert HOOK macro in the module,
 use this type.
 - INLINE: If you insert HOOK macro in the in-line
 function of the kernel, use this type.
 If you insert the same HOOK macro,
 in the two or more places, use this.
 NOTE: If you insert HOOK macro in the in-line
 function of the module, use MODULE type.
 event-name --- Mnemonic of the event type
 description --- Description of the event type
 event name string, filter, arg1 description..

--- event name, filter type, and argument data descriptions for log formatter.

 (example)
 LKST_ETYPE_DEF(0x100, 0x0A, NORMAL, NEW_EVENT, NEW_EVENT,

“user added event”,0 , “data1”, “data2”, ”data3”, ”data4”)

(*) “/include/linux/lkst_events.h” in LKST kernel source.

- 9 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

(2) Insert hook macro where users want to trace.

 Add following sentence to the file to be added the trace point.
 #include <linux/lkst.h>

 - LKST_HOOK_INLINE(event-name, argument1, argument2, argument3, argument4)
 The case of inserting HOOK macro in the in-line function or the
 macro function. If you insert the same HOOK macros in the two or more
 places, use this.

 - LKST_HOOK(event-name, argument1, argument2, argument3, argument4)
 The case except the above-mentioned.

 * event-name : It should be the same as what defined by the
 LKST_ETYPE_DEF macro.
 * argument1..4 : 64Byre long data aquired at the trace point.

 If user want to get 32bit data, use LKST_ARG32() macro.
 LKST_ARG32(high, low) high: upper 32bit / low: lower 32bit
 And If user want to get pointer data, use LKST_ARGP() macro.
 LKST_ARGP(pointer)
 (LKST_ARGP() absorbs difference between architectures (64bit/32bit)))
 Ands If user use LKST_ARG() macro, it expand bit-width depends on
 CONFIG_DEBUG_LKST_DONOT_EXPAND_ARGBITS kernel configuration.
 LKST_ARG(data)

 (Example)
 LKST_HOOK(0x100, LKST_ARG(data1), LKST_ARG32(data2, data3),
 LKST_ARG(data4), LKST_ARGP(ptr1))

- 10 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<Insert trace-points to module>
When the trace point is in the module, the macro for declaration of HOOK header is put in it. And the macro
for the initialization and termination of HOOK is inserted respectively in the function of the
module-initialization and module-termination.

 Declaration macro for HOOK header
 Insert the following macro in the module. (Do not insert within any functions in the module)
 LKST_HOOK_DECLARE(event-name) -- Declaration for LKST_HOOK
 LKST_HOOK_DECLARE_INLINE(event-name) -- Declaration for LKST_HOOK_INLINE

 Initialization macro
 Insert the following macro in initialization function of the module.
 LKST_HOOK_INIT_MODULE(event-name, ret-variable)

 Termination macro
 Insert the following macro in cleanup function of the module.
 LKST_HOOK_TERMINATE_MODULE(event-name, ret-variable)

 * event-name : It should be the same as what defined by the
 LKST_ETYPE_DEF macro.
 * ret-valiable : variable which receives return value.

 (Example)
 LKST_HOOK_DECLARE(NEW_EVENT);
 static int __init testmod_init(void)
 {
 int ret;
 LKST_HOOK_INIT_MODULE(NEW_EVENT, ret);

 return ret;
 }
 static void __exit testmod_exit(void)
 {
 int ret;
 LKST_HOOK_TERMINATE_MODULE(NEW_EVENT, ret);
 }
 module_init(testmod_init);
 module_exit(testmod_exit);

- 11 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7 FUNCTIONS

4.7.1 Device Interface

All IOCTL commands must be called by the superuser.

4.7.1.1 Controling LKST Status
4.7.1.11. ioctl(LKST_IOC_TRC_STATUS)

<FUNCTION>
Return a current status of LKST.

<SYNOPSIS>
#include <linux/lkst.h>

int ioctl(int fd, int request, struct lkst_trc_status *trc_status)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_TRC_STATUS”
trc_status address of an lkst_trc_status structure object

struct lkst_status_param {
 unsigned long online_cpu; /* bitmap of online cpus*/
 lkst_maskset_id current_maskset_id; /* current selected maskset ID */
 lkst_buffer_id write_buf[LKST_CPU_MAX]; /* current writing buffer ID */
 lkst_buffer_id read_buf[LKST_CPU_MAX]; /* current reading buffer ID */
 int maskset_num; /* total number of registered masksets */
 int evhandler_num; /* total number of registered event handlers */
 int static_buffer_recid; /* recid of the static buffer*/
 size_t static_buffer_size; /* size of the static buffer*/
};

<RETURN VALUE>
0 success
EINVAL Argument trc_status is invalid

and/or Failed to execute copy_to/from_user().
EPERM Was called by someone other than the superuser..

- 12 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<DESCRIPTION>
Return a current status of LKST to a user-specified area.
On success, this IOCTL stores the current status of LKST in an area to which the argument trc_status points
as a structure lkst_trc_status type, and returns 0. The online_cpu has a bitmap describing which CPUs are
online. A currently selected maskset ID is stored in the current_maskset_id. Currently writing kernel-event
buffer IDs for each CPUs are stored in the corresponding entries of the write_buf. array. Also reading buffer
IDs are stored in the read_buf array. The total number of registered masksets is stored in the maskset_num.
The total number of event handlers is stored in the evhandler_num. The static_buffer_recid and the
static_buffer_size denote the recid of the static shared buffer and the size respectively.
On error, this IOCTL returns a nonzero value described above, and the values of the argument are not assured.

<REFERENCES>
ioctl(LKST_IOC_TRC_START), ioctl(LKST_IOC_TRC_STOP),
ioctl(LKST_IOC_MASKSET_LIST), ioctl(LKST_IOC_EVHANDLER_LIST),
ioctl(LKST_IOC_BUFFER_LIST)

4.7.1.12. ioctl(LKST_IOC_TRC_START)

<FUNCTION>
Start LKST event tracing.

<SYNOPSIS>
#include <linux/lkst.h>

int ioctl(int fd, int request)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_TRC_START”

<RETURN VALUE>
0 success
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Start LKST event tracing.
On success, this IOCTL changes currently selected maskset to the maskset ID which has been saved by
ioctl(LKST_IOC_TRC_STOP), and returns 0. If the saved maskset has been deleted, currently selected
maskset is changed to LKST_MASKSET_ID_RDEFAULT.
On error, this IOCTL returns a nonzero value described above.

<REFERENCES>

- 13 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

ioctl(LKST_IOC_TRC_STATUS), ioctl(LKST_IOC_TRC_STOP),

4.7.1.13. ioctl(LKST_IOC_TRC_STOP)

<FUNCTION>
Stop LKST event tracing.

<SYNOPSIS>
#include <linux/lkst.h>

int ioctl(int fd, int request)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_TRC_STOP”

<RETURN VALUE>
0 success
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Stop LKST event tracing.
On success, this IOCTL changes currently selected maskset to LKST_MASKSET_ID_RNOTHING, and
saves previously selected maskset ID, and returns 0. The saved maskset ID is used by
ioctl(LKST_IOC_TRC_START).
On error, this IOCTL returns a nonzero value described above.

<REFERENCES>
ioctl(LKST_IOC_TRC_STATUS), ioctl(LKST_IOC_TRC_START),

- 14 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.2 Maskset Control
4.7.1.21. ioctl(LKST_IOC_MASKSET_READ)

<FUNCTION>
Read contents of maskset.

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_maskset.h>
#include <linux/lkst_evhandler.h>

int ioctl(int fd, int request, struct lkst_maskset_param *maskset_param)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_MASKSET_READ”
maskset_param address of an lkst_maskset_param structure object

struct lkst_maskset_param {
 lkst_maskset_id id; /* maskset ID */
 size_t maskset_size; /* maskset size*/
 struct lkst_maskset_body *maskset /* address of a maskset contents returned area */
};

struct lkst_maskset_body {
 char name[LKST_MASKSET_NAME_LEN]; /* maskset name */
 lkst_maskset_table_len len; /* total number of maskset entries */
 struct lkst_maskset_entry entry[LKST_MASKSET_TABLE_LEN_MAX];
 /* maskset entry */
}

struct lkst_maskset_entry {
 int event_type; /* corresponding type of event */
 lkst_evhandler_id id; /* event handler ID */
}

- 15 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
ENOMEM Kernel cannot allocate memory area to be used by this IOCTL.
EINVAL Argument maskset or maskset_size is invalid.
 and/or Specified maskset ID (id) is invalid.

and/or Specified maskset does not exist.
EPERM Was called by someone other than the superuser.

<EXPLANATION>
Return contents of specified maskset.
A maskset to be read is specified by the member id of an lkst_maskset_param structure object to which the
argument maskset_param points. If id specifies LKST_MASKSET_ID_VOID, currently selected maskset
is specidifed automatically. The member maskset_size specifies the size of the area to which the contents of
maskset are returned (*), and the member maskset specifies the virtual address of the area.
On success, this IOCTL stores the contents of the specified maskset in the area that the member maskset
points to as a structure lkst_maskset_body type, and returns 0. The name of the maskset is stored to the
member name as a null-terminated string. A type of event and a corresponding event handler ID are stored
in the member entry as a structure lkst_maskset_entry type, and the total number of maskset entries is stored
as the member len. The member event_type and id of the lkst_maskset_entry structure object respectively
specify the type of event and the event handler ID.
On error, this IOCTL returns a nonzero value described above. In this case, the values of the argument are not
assured.
(*) To get maskset_size, use LKST_MASKSET_SIZE([number of maskset entries]) macro.

<REFERENCES>
ioctl(LKST_IOC_MASKSET_WRITE), ioctl(LKST_IOC_MASKSET_SET),
ioctl(LKST_IOC_MASKSET_LIST), ioctl(LKST_IOC_MASKSET_DELETE)

4.7.1.22. ioctl(LKST_IOC_MASKSET_WRITE)

<FUNCTION>
Register a new maskset

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_maskset.h>
#include <linux/lkst_evhandler.h>

int ioctl(int fd, int request, struct lkst_maskset_param *maskset_param)

- 16 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_MASKSET_WRITE”
maskset_param address of an lkst_maskset_param structure object

struct lkst_maskset_param {
 lkst_maskset_id id; /* maskset ID */
 size_t maskset_size; /* maskset size*/
 struct lkst_maskset_body *maskset /* address of a maskset stored area */
};

struct lkst_maskset_body {
 char name[LKST_MASKSET_NAME_LEN]; /* maskset name */
 lkst_maskset_table_len len; /* total number of maskset entries*/
 struct lkst_maskset_entry entry[LKST_MASKSET_TABLE_LEN_MAX];
 /* maskset entry */
}

struct lkst_maskset_entry {
 int event_type; /* corresponding type of event */
 lkst_evhandler_id id; /* event handler ID */
}

<RETURN VALUE>
0 success
ENOMEM Kernel cannot allocate memory area to be used by this IOCTL.
 and/or Memory area for the new maskset exceeds LKST available area.
EINVAL Argument maskset or maskset_size is invalid.
 and/or Specified maskset ID is invalid and maskset name is not specified.
 and/or Specified event_type is invalid.
 and/or Specified event-handler ID is invalid.
 and/or Specified event-handler does not exist.
 and/or Specify to record lock events with waking daemon process up.
EBUSY Specified maskset is collapsed (Overwrite case).
 and/or No available Maskset ID .
EPERM Was called by someone other than the superuser.

- 17 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<DESCRIPTION>
Register a new maskset.
This IOCTL loads a new maskset specified by the member maskset of an lkst_maskset_param structure
object to which the argument maskset_param points. The size of the maskset is specified by the member
maskset_size (*). The member id of the structure specifies the ID of new maskset. If id specifies
LKST_MASKSET_ID_VOID, unused ID is allocated automatically. The allocated ID is sored in the
member id. Users store contents of the new maskset in the area that the member maskset points to as a
structure lkst_maskset_body type. The maskset name is stored as the member name of the
lkst_maskset_body structure object, as a null-terminated string. A type of event and a corresponding event
handler ID are stored in the member entry as a structure lkst_maskset_entry type, and the total number of
maskset entries is stored as the member len. The member event_type and id of the lkst_maskset_entry
structure object respectively specify a type of event and an event handler ID.
On success, this IOCTL registers the member maskset of the maskset_param structure object that a user
prepared, and this IOCTL returns 0.
On error (e.g., the specified event handler does not exist), this IOCTL returns a nonzero value described above.
In this case, the values of the argument are not assured.
(*) To get maskset_size, use LKST_MASKSET_SIZE([number of maskset entries]) macro.
<Attention> Users do not allow recording lock events(event_type is 0x080 – 0x08F) while waking daemon
process up(specify event-handler LKST_EVHANDLER_ID_BUFFER_SHIFT_DW as event handler of
LKST_ETYPE_LKST_BUFF_OVFLOW event).

<REFERENCES>
ioctl(LKST_IOC_MASKSET_READ), ioctl(LKST_IOC_MASKSET_SET),
ioctl(LKST_IOC_MASKSET_LIST), ioctl(LKST_IOC_MASKSET_DELETE)

4.7.1.23. ioctl(LKST_IOC_MASKSET_SET)

<FUNCTION>
Switch a currently selected maskset

<SYNOPSIS>

#include <linux/lkst.h>
#include <linux/lkst_maskset.h>

int ioctl(int fd, int request, lkst_maskset_id id)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_MASKSET_SET”
id maskset ID

- 18 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
EINVAL Specified new maskset ID is invalid.
 and/or Specified new maskset does not exist.
EBUSY Currently selected maskset is not initialized.
 and/or Try to change maskset while LKST is stopped.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Switch the currently selected maskset to a specified maskset.
On success, this IOCTL switches the current maskset to a maskset that the argument id specifies and returns 0.
On error (e.g., the specified maskset does not exist), this IOCTL returns a nonzero value described above.

<REFERENCES>
ioctl(LKST_IOC_MASKSET_READ), ioctl(LKST_IOC_MASKSET_WRITE),
ioctl(LKST_IOC_MASKSET_LIST), ioctl(LKST_IOC_MASKSET_DELETE),
ioctl(LKST_IOC_TRC_STOP)

4.7.1.24. ioctl(LKST_IOC_MASKSET_LIST)
<FUNCTION>
Return a list of registered masksets

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_maskset.h>

int ioctl(int fd, int request, struct lkst_maskset_listparam *maskset_listparam)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_MASKSET_LIST”
maskset_listparam address of an lkst_maskset_listparam structure object

struct lkst_maskset_listparam {
 lkst_maskset_id current_id; /* current maskset ID */
 size_t listent_size; /* size of the listent */
 struct lkst_maskset_listent *listent /* area to store the list of masksets */
};

- 19 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

struct lkst_maskset_listent {
 lkst_maskset_id id; /* maskset ID */
 char name[LKST_MASKSET_NAME_LEN]; /* maskset name */
 lkst_maskset_table_len len; /* total number of maskset entries */
}

<RETURN VALUE>
0 success
ENOMEM Kernel cannot allocate memory area to be used by this IOCTL
EINVAL Argument listent and/or listent_size is invalid.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Return a list of IDs, names, and total number of entries of registered masksets.
The argument maskset_listparam is the address of an lkst_maskset_listparam structure object, the member
listent specifies the area to which result is returned as a list of structure lkst_maskset_listent type. In the list,
this IOCTL stores entries in ascending order of maskset ID. The member listent_size specifies the size of the
area (*). If listent_size is smaller than actual size of the list, this IOCTL stores the list up to the size of
listent_size. Each maskset ID is stored as the member id of the lkst_maskset_listent structure object, name of
each maskset is stored as the member name, and the total number of maskset entries is stored as the member
len.
On success, this IOCTL stores the list into listent, and stores currently selected maskset ID into current_id,

and returns 0.
On error, This IOCTL returns a nonzero value described above. In this case, the values of the argument are
not assured.
(*) To get listent_size, use ioctl(LKST_IOC_TRC_STATUS) for getting total number of masksets and then
use LKST_MASKSET_LISTENT_SIZE([number of masksets]) macro.

<REFERENCES>
ioctl(LKST_IOC_MASKSET_READ), ioctl(LKST_IOC_MASKSET_WRITE),
ioctl(LKST_IOC_MASKSET_SET), ioctl(LKST_IOC_MASKSET_DELETE),
ioctl(LKST_IOC_TRC_STATUS)

- 20 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.25. ioctl(LKST_IOC_MASKSET_DELETE)

<FUNCTION>
Delete a maskset

<SYNOPSIS>

#include <linux/lkst.h>
#include <linux/lkst_maskset.h>

int ioctl(int fd, int request, lkst_maskset_id id)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_MASKSET_DELETE”
id maskset ID

<RETURN VALUE>
0 success
EINVAL A Special maskset is specified.
 and/or Specified maskset ID does not exist.
EBUSY Specified maskset ID is currently selected.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Delete a specified maskset.
On success, this IOCTL deletes the maskset specified by the argument id and returns 0. Users cannot,
however, delete a currently selected maskset. And masksets with IDs from 0 to 2 are special maskset and
thus cannot be deleted.
On error (e.g., the specified maskset does not exist or a user tries to delete special maskset), this IOCTL
returns a nonzero value described above.

<REFERENCES>
ioctl(LKST_IOC_MASKSET_READ), ioctl(LKST_IOC_MASKSET_WRITE),
ioctl(LKST_IOC_MASKSET_SET), ioctl(LKST_IOC_MASKSET_LIST)

- 21 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.26. ioctl(LKST_IOC_EVHANDLER_LIST)

<FUNCTION>
Return a list of registered event-handlers

<SYNOPSIS>
#include <linux/lkst_evhandler.h>

int ioctl(int fd, int request, struct lkst_evhandler_listparam *evhandler_listparam)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_EVHANDLER_LIST”
evhandler_listparam address of an lkst_evhandler_listparam structure object

struct lkst_evhandler_listparam {
 size_t listent_size; /* size of the listent */
 struct lkst_evhandler_listent *listent; /* area to store the list of event handlers */
};

struct lkst_evhandler_listent {
 lkst_ evhandler_ id id; /* event handler ID */
 char name[LKST_EVHANDLER_NAME_LEN]; /* event handler name */
}

<RETURN VALUE>
0 success
ENOMEM Kernel cannot allocate memory area to be used by this IOCTL.
EINVAL Argument listent or listent_size is invalid.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Return the list of IDs and names of registered event-handlers.
The argument evhandler_listparam is the address of an lkst_evhandler_listparam structure object, the
member listent specifies the area to which result is returned as a list of structure lkst_evhandler_listent type.
In the list, this IOCTL stores entries in ascending order of event handler ID. The member listent_size
specifies the size of the area (*). If listent_size is smaller than actual size of the list, this IOCTL stores the
list up to the size of listent_size. Each event handler ID is stored as the member id of the
lkst_evhandler_listent structure object, name of each event handler is stored as the member name.

- 22 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

On success, this IOCTL stores the list into listent, and returns 0.
On error, this IOCTL returns nonzero value described above. In this case, the values of the argument are not
assured.
(*) To get listent_size, use ioctl(LKST_IOC_TRC_STATUS) for getting total number of event-handlers and
then use LKST_EVHANDLER_LISTENT_SIZE([number of event-handlers]) macro.

<REFERENCES>
ioctl(LKST_IOC_EVHANDLER_CTRL), ioctl(LKST_IOC_TRC_STATUS)

4.7.1.27. ioctl(LKST_IOC_EVHANDLER_CTRL)
<FUNCTION>
Invoke an event-handler-control-function.

<SYNOPSIS>
#include <linux/lkst_evhandler.h>

int ioctl(int fd, int request, struct lkst_evhandler_ctrl_param *evhandler_ctrl_param)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value” LKST_IOC_EVHANDLER_CTRL”

evhandler_ctrl_param address of an evhandler_ctrl_param structure object

struct lkst_evhandler_ctrl_param {
 lkst_ evhandler_id id; /* event handler ID */
 void *buf; /* a communication area for control-function */
 size_t bufsize; /* size of the communication area */
 int ret; /* return value from control-function */
}

<RETURN VALUE>
0 success
ENOMEM Kernel cannot allocate memory area to be used by this IOCTL.
EINVAL Specified event-handler ID is invalid.
 and/or Argument buf and/or bufsize is invalid.
 and/or Specified event-handler-control-function does not exist.
EPERM Was called by someone other than the superuser.

- 23 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<DESCRIPTION>
Invoke an event-handler-control-function of a specified event handler ID.
An event-handler-control-function to invoke is specified by the member id of an lkst_evhandler_ctrl_param
structure object which the argument evhandler_ctrl_param points. The member buf and bufsize
respectively specify the address of a communication area and the size of it. The communication area is used
as an argument for the invoked function. Users store suitable values in the area according to the function.
On success, this IOCTL invokes the specified event-handler-control-function by taking the communication
area as its argument. After the function is completed, this IOCTL stores the return value of the function as
the member ret of the lkst_evhandler_ctrl_param structure object and returns 0.
On error (e.g., the specified event-handler-control-function does not exist), this IOCTL returns a nonzero value
described above. In this case, the values of the argument are not assured.

<REFERENCES>
ioctl(LKST_IOC_EVHANDLER_LIST)

- 24 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.3 Buffer Control
4.7.1.31. ioctl(LKST_IOC_BUFFER_READ)

<FUNCTION>
Read a kernel-event buffer

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, struct lkst_log_buffer *lbuffer)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value "LKST_IOC_BUFFER_READ"
lbuffer address of an lkst_log_buffer structure object

- 25 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

struct lkst_log_buffer {
int cpu; /* cpu number */
size_t read_size; /* the number of event records to read*/

 lkst_buffer_id id; /* processor number */
 size_t result_read_size; /* the number of read event records */
 struct timeval xtime; /* xtime */
 lkst_tsc_t tsc; /* machine cycle */
 lkst_cpu_freq_t cpu_freq; /* cpu clockspeed in kHz */
 struct lkst_log_record *buffer; /* address of a buffer to store event records */
 int endian_big; /* byte order, 0 if little endian */
 int buf_ver; /* LKST buffer version */
 char arch[LKST_ARCH_NAME_LEN]; /* Architecture name */
};

struct lkst_log_record {
 struct posix_log_entry posix; /* log form specified by POSIX */
 lkst_arg_t log_arg1; /* 1st argument acquired at a trace point*/
 lkst_arg_t log_arg2; /* 2nd argument acquired at a trace point */
 lkst_arg_t log_arg3; /* 3rd argument acquired at a trace point */
 lkst_arg_t log_arg4; /* 4th argument acquired at a trace point */
}

struct posix_log_entry {
 unsigned int log_magic;
 posix_log_recid_t log_recid; /* ID of the event record */
 size_t log_size; /* size of the event record variable data */
 int log_format; /* format of variable data */
 int log_event_type; /* event identification code */
 posix_log_facility_t log_facility; /* event facility code */
 posix_log_severity_t log_severity; /* event severity code */
 uid_t log_uid; /* effective user ID associated with the event */
 gid_t log_gid; /* effective group ID associated with the event */
 pid_t log_pid; /* process ID associated with event */
 pid_t log_pgrp; /* process group associated with event */
 struct timespec log_time; /* event time stamp */
 unsigned int log_flags; /* bitmap of event flag */
 unsigned int log_thread; /* thread ID associated with event */
 posix_log_procid_t log_processor /* Processor ID associated with event */
};

- 26 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
EINVAL Argument buffer and/or read_size is invalid.
 and/or Specified buffer ID is invalid.
 and/or Specified buffer does not exist.

and/or Failed to execute copy_to/from_user().
EPERM Was called by someone other than the superuser.
ENOMEM Kernel does not have enough memory to operate.

<DESCRIPTION>
Events are recorded on the kernel-event buffers in order of the time when the events occurred. By using this
IOCTL, users can get a list of the event log entries from the kernel-event buffers.
The size of event log entries (which size is sizeof(struct lkst_log_record)) to be read is specified by the
member read_size (*) of an lkst_log_buffer structure object to which the argument lbuffer points. The
member buffer specifies a virtual address of an area to which the event log entries are returned, and the
member id and the member cpu specify the ID and the CPU of the kernel-event buffer from which the event
log entries are read respectively. Especially, when id is LKST_BUFFER_ID_VOID and cpu is '-1', this
IOCTL reads from static shared buffer.
On success, this IOCTL reads the specified kernel-event buffer from head of the buffer, and stores a list of the
event log entries in the area to which buffer points as a structure lkst_log_record type. In case that reading
process reaches end before reading up to read_size or is caught up by writing process, this IOCTL stops
reading and stores the actual size of read event log entries as the member result_read_size of the
lkst_log_buffer structure object. Otherwise, result_read_size is equal to read_size. For each buffers,
LKST stores a pair of struct timeval and machine cycle counter at the same time. the former represents time in
the real world, and the latter can be compared with the time in the event buffers. Therefore, these and CPU
frequency can be used as a compensation value for acquiring time stamp of the event log entry. In the
members xtime , tsc, cpu_freq are copy of said timeval, machinecycle and CPU frequency. And in the
members endian_big , buf_ver, arch are stored byte order, LKST buffer version and machine architecture
name for analizing read events, if endian_big is 0, the byte order of the events are little endian. After them,
this IOCTL returns 0.
On error, this IOCTL returns a nonzero value described above. In this case, the read pointer is not updated
and the values of the argument are not assured.
(*)LKST internal kernel-event buffer is composed with entries which size is
LKST_SIZEOF_LKST_EVENT_RECORD in byte. To get the value of argument read_size, please
calculate the value by yourself. Following formula is an example;

read_size = buffer_read_size * sizeof(struct lkst_log_record) /
 LKST_SIZEOF_LKST_EVENT_RECORD

- 27 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_LINK), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_SHIFT),
ioctl(LKST_IOC_BUFFER_JUMP),ioctl(LKST_IOC_BUFFER_LIST),
ioctl(LKST_IOC_BUFFER_SETRMOD),

4.7.1.32. ioctl(LKST_IOC_BUFFER_CREATE)

<FUNCTION>
Create a new kernel-event buffer

<SYNOPSYS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, struct lkst_buffer_param *buffer_param)

<ARGUMENTS>
fd file descriptor (Return value opening LKST device.)
request value “LKST_IOC_BUFFER_CREATE"
buffer_param address of an lkst_buffer_param structure object

struct lkst_buffer_param {

lkst_buffer_id id; /* event buffer ID */
lkst_buffer_id next; /* event buffer ID of next buffer */
int cpu; /* cpu number */
size_t size; /* size of kernel-event buffer */
size_t result_size; /* result size of kernel-event buffer */

};

- 28 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
EINVAL Specified buffer ID is invalid.
 and/or Specified buffer has already exist.
 and/or Specified CPU number is invalid.
 and/or size of the buffer is too small or large.
EBUSY LKST has not been initialized (otherwise previous buffer of the
 specified buffer is collapsed by access violation).
ENOSPC No available Buffer ID.
ENOMEM Kernel cannot allocate buffer area.
 and/or Memory area for the new buffer exceeds LKST available area.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This IOCTL creates a new kernel-event buffer in the kernel space. The ID of the buffer to be created is
specified by the member id of an lkst_buffer_param structure object, that is pointed by an argument
buffer_param. If id specifies LKST_BUFFER_ID_VOID, unused ID is allocated automatically. The
allocated ID is sored in the member id. The CPU by which events are recorded into the new buffer is
specified by the member cpu. If the cpu specifies `-1`, new buffers are created for all CPUs. The size of
new buffer is specified by the member size. The value of size should be times of 4KB, otherwise, this IOCTL
treat the value of size as the largest times of 4KB number that does not exceed size. The member next
specifies the buffer ID to which new buffer is linked. Note, you can specify the buffer that is not exist yet to
the next. Until it is referred, LKST does never check whether it exists.
On success, this IOCTL creates a new buffer and inserts the buffer into the table of a buffer which correspond
to the CPU specified by cpu. The allocated buffer size is stores as the member result_size. The new buffer,
however, isn't be selected as a buffer to record yet. To start recording to the new buffer, use
ioctl(LKST_IOC_BUFFER_JUMP) with an ID of the buffer and a CPU owns that buffer .
On error, this IOCTL returns nonzero value described above described above. In this case, this IOCTL
doesn't allocate memory for the new buffer.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_LINK), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_SHIFT),
ioctl(LKST_IOC_BUFFER_JUMP),ioctl(LKST_IOC_BUFFER_LIST),
ioctl(LKST_IOC_BUFFER_SETRMOD),

- 29 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.33. ioctl(LKST_IOC_BUFFER_SHIFT)

<FUNCTION>
Switch currently selected kernel-event buffer to next one

<SYNOPSYS>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, int cpu)

<ARGUMENTS>
fd file descriptor (Return value opening LKST device.)
request value “LKST_IOC_BUFFER_SHIFT"
cpu cpu number

<RETURN VALUE>
0 success
EINVAL Specified CPU number is invalid.

and/or Next buffer of currently selected buffer does not exist.
EBUSY LKST has not been initialized (otherwise currently
 selected buffer and/or next buffer of currently
 selected buffer is collapsed by access violation).

<DESCRIPTION>
This IOCTL switch the buffer to record.
The CPU corresponding to the buffer to switch is specified by the cpu. This IOCTL set a buffer pointed by
the member next of the old current buffer as the new current buffer. If the buffer pointed by the next does
not exist, this IOCTL do nothing and returns as an error.
On success, this IOCTL switch the buffer and returns 0.
On error, this IOCTL returns nonzero value described above described above. In this case, this IOCTL does
not switch the buffer.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_LINK), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_LIST), ioctl(LKST_IOC_BUFFER_SETRMOD),

- 30 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.34. ioctl(LKST_IOC_BUFFER_JUMP)

<FUNCTION>
Switch currently selected kernel-event buffer to specified one

<SYNOPSYS>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, lkst_buffer_jumpparam jump_param)

<ARGUMENTS>
fd file descriptor (Return value opening LKST device.)
request value “LKST_IOC_BUFFER_JUMP"
jump_param address of an lkst_buffer_jumpparam structure object

struct lkst_buffer_jumpparam {
 int cpu; /* cpu number */
 lkst_buffer_id dest; /* destination buffer id */
};

<RETURN VALUE>
0 success
EINVAL Specified CPU number is invalid.

and/or Next buffer of currently selected buffer does not exist.
EBUSY LKST has not been initialized (otherwise currently
 selected buffer and/or next buffer of currently
 selected buffer is collapsed by access violation).

<DESCRIPTION>
This IOCTL switch the buffer to record. (Likely to ioctl(LKST_IOC_BUFFER_SHIFT))
The CPU corresponding to the buffer to switch is specified by the member cpu of the jump_param argument.
This IOCTL set a buffer pointed by the member dest of the jump_param argument as the new current buffer.
If the buffer pointed by the dest does not exist, this IOCTL do nothing and returns as an error.
On success, this IOCTL switch the buffer and returns 0.
On error, this IOCTL returns nonzero value described above described above. In this case, this IOCTL does
not switch the buffer.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_LINK), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_LIST), ioctl(LKST_IOC_BUFFER_SETRMOD),

- 31 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

ioctl(LKST_IOC_BUFFER_SHIFT)

4.7.1.35. ioctl(LKST_IOC_BUFFER_LINK)
<FUNCTION>
Assign destination buffer used when performing buffer shift, to another buffer.

<SYNOPSYS>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, lkst_buffer_linkparam link_param)

<ARGUMENTS>
fd file descriptor (Return value opening LKST device.)
request value “LKST_IOC_BUFFER_LINK"
link_param address of an lkst_buffer_linkparam structure object

struct lkst_buffer_linkparam {
 int cpu; /* cpu number */
 lkst_buffer_id id, next; /* source and destination buffer id */
};

<RETURN VALUE>
0 success
EINVAL Specified CPU number is invalid.

and/or destination buffer is the same buffer (link the buffer itself).
EBUSY LKST has not been initialized (otherwise currently
 selected buffer and/or next buffer of currently
 selected buffer is collapsed by access violation).

<DESCRIPTION>
This IOCTL assigns destination buffer used when performing buffer shift, to another buffer.
The pair of the member id and cpu of the structure lkst_buffer_linkparam type specify an event-buffer. And
the member next specifies the destination buffer to be switched from the buffer specified by former two
members. When the next specifies LKST_BUFFER_ID_VOID, this IOCTL assigns the buffer to terminal
buffer (the buffer does not have any destination buffer, so "buffer shift" operation always fails on this buffer).
However if the next specifies id itself, this IOCTL fails operation.
You can make buffers ring structure with this IOCTL (instead of ioctl(LKST_IOC_BUFFER_RING)). Also
you can make tree structure, and combination of both.
On success, this IOCTL assigns the buffer specified by the member next, to the buffer specified by the
member id and cpu and returns 0.

- 32 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

On error (e.g., the next specifies id itself), this IOCTL returns a nonzero value described above.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_JUMP), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_LIST), ioctl(LKST_IOC_BUFFER_SETRMOD),
ioctl(LKST_IOC_BUFFER_SHIFT)

4.7.1.36. ioctl(LKST_IOC_BUFFER_DELETE)
<FUNCTION>
Delete a kernel-event buffer

<SYNOPSYS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, lkst_buffer_delparam del_param)

<ARGUMENTS>
fd file descriptor (Return value opening LKST device.)
request value “LKST_IOC_BUFFER_DELETE"
del_param address of an lkst_buffer_delparam structure object

struct lkst_buffer_delparam {
 int cpu; /* cpu number */
 lkst_buffer_id id; /* buffer id to be deleted */
};

<RETURN VALUE>
0 success
EINVAL Cannot delete the buffer of ID=0.
and/or Specified buffer ID is invalid.

EBUSY Specified buffer ID is currently used.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Delete a specified kernel-event buffer.
On success, this IOCTL deletes the buffer specified by the member id and the member cpu of the del_param
and returns 0.
On error (e.g., the specified buffer does not exist or a user tries to delete special buffer), this IOCTL returns a

- 33 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

nonzero value described above.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_LINK), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_SHIFT), ioctl(LKST_IOC_BUFFER_SHIFT),
ioctl(LKST_IOC_BUFFER_CREATE),ioctl(LKST_IOC_BUFFER_LIST),
ioctl(LKST_IOC_BUFFER_SETRMOD),

4.7.1.37. ioctl(LKST_IOC_BUFFER_LIST)
<FUNCTION>
Return a list of kernel-event buffers

<SYNOPSYS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, struct lkst_buffer_listparam *buffer_listparam)

<ARGUMENTS>
fd file descriptor (Return value opening LKST device.)
request value “LKST_IOC_BUFFER_LIST"
buffer_listent address of an lkst_buffer_listparam structure object

struct lkst_buffer_listparam {
 int cpu; /* cpu number of the buffer */
 int listent_num; /* num of the listent */
 int buffer_num; /* num of the buffers */
 lkst_buffer_id write_buf; /* current writing buffer */
 lkst_buffer_id read_buf; /* current reading buffer */
 lkst_buffer_id rq_head; /* head of read queue */
 lkst_buffer_id rq_tail; /* tail of read queue*/
 pid_t owner; /* owner pid */
 int read_pos; /* reading position */
 struct lkst_buffer_listent *listent; /* area to store the list of event buffers*/
};

struct lkst_buffer_listent {
 size_t size; /* buffer size */
 int write_offset; /* offset to write */
 int baseid; /* base counter */

- 34 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

 lkst_buffer_id id, next; /* buffer ID of own/next buffer */
 lkst_buffer_id rq_prev, rq_next; /* buffer ID of read-queue previous/next buffer */
};

<RETURN VALUE>
0 success
ENOMEM Kernel cannot allocate memory area to be used by this ioctl.
EINVAL Argument listent or listent_size is invalid.
and/or Argument listent_size is too small or large.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Return a list of registered kernel-event buffers.
The argument buffer_listparam is the address of an lkst_buffer_listparam structure object, the member cpu
specifies CPU by which buffers are owned. The member listent specifies the area to which result is returned
as a list of structure lkst_buffer_listent type. In the list, this IOCTL fills entries in ascending order of buffer
ID. The member listent_num specifies the number of the entries. If listent_num is smaller than actual
number of the list, this IOCTL stores the list up to the number of listent_num. How many buffers are owned
by this CPU is stored in the member buffer_num by this IOCTL. Also the IDs of currently recording buffer
and reading buffer are stored in the member write_buf and read_bnf respectively. And the member
rq_head and rq_tail mean the head of buffer read queue and tail respectively. The member owner is PID of
read process executing read system call, when the value of owner is equal to PID_MAX+1, there is no read
processes on this CPU(see ioctl(LKST_IOC_BUFFER_SETRMOD)). The value of the member read_pos
means where you can begin to read from the buffer specified by read_buf. Each buffer ID is stored as the
member id of the lkst_buffer_listent structure object, and the buffer size is stored as the member size. The
member write_offset and baseid are used by generating recid (serial record id) of event-log entries. The
member rq_prev and rq_next represent a pair of link pointers in the buffer read queue. And the member
next represents the destination buffer of "shift" operation.
On success, this IOCTL stores the list into listent, and returns 0.
On error, This IOCTL returns a nonzero value described above. In this case, the values of the argument are
not assured.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_RING), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_SHIFT), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_SETRMOD),

- 35 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.38. ioctl(LKST_IOC_BUFFER_RING)
<CAUTION>
THIS FUNCTION IS NO LONGER SUPPORTED. INSTEAD OF USING THIS IOCTL, YOU CAN USE
IOCTL(LKST_IOC_BUFFER_LINK) TO CREATE RING STRUCTURE. SEE
IOCTL(LKST_IOC_BUFFER_LINK) FOR MORE DETAIL.

- 36 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.39. ioctl(LKST_IOC_BUFFER_SETRMOD)

<FUNCTION>
Set reading mode of a buffer from opened virtual device.

<SYNOPSYS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int ioctl(int fd, int request, struct lkst_buffer_srmodparam *sp)

<ARGUMENTS>
fd file descriptor (Return value opening LKST device.)
request value “LKST_IOC_BUFFER_SETRMOD"
sp address of an lkst_buffer_srmodparam structure object

struct lkst_buffer_srmodparam {
 int cpu; /* cpu number */

int mode; /* reading mode */
struct timeval xtime; /* xtime */

 lkst_tsc_t tsc; /* machine cycle */
lkst_cpu_freq_t cpu_freq; /* cpu clockspeed in kHz */

 int endian_big; /* byte order, 0 if little endian */
 int buf_ver; /* LKST buffer version */
 char arch[LKST_ARCH_NAME_LEN]; /* Architecture name */
};

<RETURN VALUE>
0 success
EINVAL Argument cpu or mode is invalid.
EBUSY Specified buffer list is already assigned by other process.
and/or Caller process is already set to read other buffer list.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This IOCTL enables process to perform read() system call by binding the process to specified CPU and makes
the process into the "owner". This IOCTL is mainly used by daemon process. But also anyone who want to
perform read() system call can use this IOCTL.
The argument sp is the address of an lkst_buffer_srmodparam structure object, the member cpu specifies a
CPU number correspond to a buffer list. The member mode specifies reading mode among RAW/STD.(*)
On success, this IOCTL does above, and stores time stamp information, and return 0. In the members xtime ,

- 37 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

tsc, cpu_freq are stored timeval, machinecycle and CPU frequency for base time of recorded events. And in
the members endian_big , buf_ver, arch are stored byte order, LKST buffer version and machine architecture
name for analizing recorded events, if endian_big is 0, the byte order of the recorded events are little
endian.(They were same as said in discripton of ioctl(LKST_IOC_BUFFER_READ).)
On error, This IOCTL returns a nonzero value described above. In this case, this IOCTL fails to set reading
mode of buffer.
(*)Only STD mode is supported on ver 1.4.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_LIST), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_SHIFT), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_LINK),

- 38 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.1.4 Trace Output
4.7.1.41. ioctl(LKST_IOC_ENTRY_LOG)

<FUNCTION>
Tell LKST that a specified event has occurred.

<SYNOPSIS>
#include <linux/lkst.h>

int ioctl(int fd, int request, struct lkst_entry_args *trace_arg)

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
request value “LKST_IOC_ENTRY_LOG"
trace_arg address of an lkst_entry_args structure object

struct lkst_entry_args {
 int event_type; /* corresponding event type */
 lkst_arg_t log_arg1; /* 1st argument acquired at a trace point*/
 lkst_arg_t log_arg2; /* 2nd argument acquired at a trace point */
 lkst_arg_t log_arg3; /* 3rd argument acquired at a trace point */
 lkst_arg_t log_arg4; /* 4th argument acquired at a trace point */
};

<RETURN VALUE>
0 success
EINVAL Argument listent or listent_size is invalid.
EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Tell LKST that a specified event has occurred. This command always exits properly. Users can use this
IOCTL as trace point.
An lkst_entry_arg structure object to which the argument entry_arg points specifies information for the entry,
the member event_type specifies the type of event that is occurred, and the member log_arg1, log arg2, log
arg3, and log_arg4 specify 64bit-long values acquired at the trace point of the event
This IOCTL first checks whether the specified event handler ID is masked. If it is, this IOCTL returns 0 and
exits.
If the specified event handler ID is not masked, this IOCTL invokes the event-handler-function corresponding
to the specified even-handler ID. After finishing the function process, this IOCTL returns 0 and exits.
On error, This IOCTL returns a nonzero value described above. In ths case, this IOCTL fails to tell event
occurring.

- 39 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<REFERENCES>
IOCTL(LKST_IOC_MASKSET_LIST), IOCTL(LKST_IOC_EVHANDLER_LIST)

4.7.1.5 System calls(LKST specified)
4.7.1.51. read() system call

<FUNCTION>
read lkst virtual device.

<SYNOPSIS>
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

<ARGUMENTS>
fd file descriptor(Return value opening LKST device.)
buf the address of user-side buffer.
count the size to read.

<RETURN VALUE>
0 success
EINVAL the address of buffer or the size of buffer is invalid.
EBUSY this process is not bound to any CPU yet.
EPERM Was called by someone other than the superuser

<DESCRIPTION>
The read() system call reads entries from the read queue of buffers owned by the CPU that has been bound to
reading process. The read-queue is a doubly linked list of buffers. Each CPU owns a different read-queue of
cause. The buffers in the read-queue are ordered by writing. When the read() system call is called, read
process starts reading from the buffer that positioned at the head of this read-queue. At the same time, the
buffer is removed from the read-queue. If the process reads out the buffer and there is still space in buf, it try
to continue to read from next buffer that positioned at the head of the read-queue. If the read-queue is empty,
the process will wait to fill the read-queue. However, before calling read() system call, the process sets
O_NONBLOCK to file descriptor with fctrl() system call, the process does not wait and returns immediately.

<REFERENCES>
ioctl(LKST_IOC_BUFFER_LIST), ioctl(LKST_IOC_BUFFER_READ),
ioctl(LKST_IOC_BUFFER_SHIFT), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_DELETE), ioctl(LKST_IOC_BUFFER_LINK),

- 40 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2 Kernel Functions

4.7.2.1 Congfoling LKST Status
4.7.2.11. lkst_trc_status()

<FUNCTION>
Return a current status of LKST.

<SYNOPSIS>

#include <linux/lkst.h>

int lkst_trc_status(struct lkst_status_param *trc_status)

<ARGUMENTS>
trc_status address of an lkst_status_param structure object

struct lkst_status_param {
 unsigned long online_cpu; /* bitmap of online cpus*/
 lkst_maskset_id current_maskset_id; /* current selected maskset ID */
 lkst_buffer_id write_buf[LKST_CPU_MAX]; /* current writing buffer ID */
 lkst_buffer_id read_buf[LKST_CPU_MAX]; /* current reading buffer ID */
 int maskset_num; /* total number of registered masksets */
 int evhandler_num; /* total number of registered event handlers */
 int static_buffer_recid; /* recid of the static buffer*/
 size_t static_buffer_size; /* size of the static buffer*/
};

<RETURN VALUE>
0 success
-EPERM Was called by someone other than the superuser..

<DESCRIPTION>
This function provides the same function of IOCTL(LKST_IOC_TRC_STATUS)

<REFERENCES>
lkst_trc_start(), lkst_trc_stop(), lkst_maskset_list(), lkst_evhandler_list(), lkst_buffer_list(),

- 41 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2.12. lkst_trc_statrt()

<FUNCTION>
Start LKST event tracing.

<SYNOPSIS>
#include <linux/lkst.h>

int lkst_trc_start()

<ARGUMENTS>
No arguments

<RETURN VALUE>
0 success
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of IOCTL(LKST_IOC_TRC_START)

<REFERENCES>
lkst_trc_status(), ,lkst_trc_stop()

4.7.2.13. lkst_trc_stop()

<FUNCTION>
Stop LKST event tracing.

<SYNOPSIS>
#include <linux/lkst.h>

int lkst_trc_stop()

<ARGUMENTS>
No arguments

<RETURN VALUE>
0 success
-EPERM Was called by someone other than the superuser.

- 42 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<DESCRIPTION>
This function provides the same function of IOCTL(LKST_IOC_TRC_STOP)

<REFERENCES>
lkst_trc_status(), ,lkst_trc_start()

4.7.2.2 Maskset Contrl
4.7.2.21. lkst_maskset_read()
<FUNCTION>
Read contents of maskset.

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_maskset.h>
#include <linux/lkst_evhandler.h>

int lkst_maskset_read(struct lkst_maskset_param *maskset_param)

<ARGUMENTS>
maskset_param address of an lkst_maskset_param structure object

struct lkst_maskset_param {
 lkst_maskset_id id; /* maskset ID */
 size_t maskset_size; /* maskset size*/
 struct lkst_maskset_body *maskset /* address of a maskset contents returned area */
};

struct lkst_maskset_body {
 char name[LKST_MASKSET_NAME_LEN]; /* maskset name */
 lkst_maskset_table_len len; /* total number of maskset entries */
 struct lkst_maskset_entry entry[LKST_MASKSET_TABLE_LEN_MAX];
 /* maskset entry */
}

struct lkst_maskset_entry {
 int event_type; /* corresponding type of event */
 lkst_evhandler_id id; /* event handler ID */
}

- 43 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
-ENOMEM Kernel cannot allocate memory area to be used by this function.
-EINVAL Argument maskset or maskset_size is invalid.
 and/or Specified maskset ID (id) is invalid.
 and/or Specified maskset does not exist.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_MASKSET_READ).

<REFERENCES>
lkst_maskset_write(), lkst_maskset_set(), lkst_maskset_list(), lkst_maskset_delete()

4.7.2.22. lkst_maskset_write()

<FUNCTION>
Register a new maskset

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_maskset.h>
#include <linux/lkst_evhandler.h>

int lkst_maskset_write(struct lkst_maskset_param *maskset_param)

<ARGUMENTS>
maskset_param address of an lkst_maskset_param structure object

struct lkst_maskset_param {
 lkst_maskset_id id; /* maskset ID */
 size_t maskset_size; /* maskset size*/
 struct lkst_maskset_body *maskset /* address of a maskset stored area */
};

struct lkst_maskset_body {
 char name[LKST_MASKSET_NAME_LEN]; /* maskset name */
 lkst_maskset_table_len len; /* total number of maskset entries*/
 struct lkst_maskset_entry entry[LKST_MASKSET_TABLE_LEN_MAX];
 /* maskset entry */
}

- 44 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

struct lkst_maskset_entry {
 int event_type; /* corresponding type of event */
 lkst_evhandler_id id; /* event handler ID */
}

<RETURN VALUE>
0 success
-ENOMEM Kernel cannot allocate memory area to be used by this function.
 and/or Memory area for the new maskset exceeds LKST available area.
-EINVAL Argument maskset or maskset_size is invalid.
 and/or Specified maskset ID is invalid.
 and/or Specified event_type is invalid.
 and/or Specified event-handler ID is invalid.
 and/or Specified event-handler does not exist.
 and/or Specify to record lock events with waking daemon process up.
-EBUSY Specified maskset is collapsed (Overwrite case).
 and/or No available Maskset ID.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_MASKSET_WRITE).

<REFERENCES>
lkst_maskset_read(), lkst_maskset_set(), lkst_maskset_list(), lkst_maskset_delete()

4.7.2.23. lkst_maskset_set()

<FUNCTION>
Switch a currently selected maskset

<SYNOPSIS>

#include <linux/lkst.h>
#include <linux/lkst_maskset.h>

int lkst_maskset_set(lkst_maskset_id id)

<ARGUMENTS>
id maskset ID

- 45 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
-EINVAL Specified new maskset ID is invalid.
 and/or Specified new maskset does not exist.
-EBUSY Currently selected maskset is not initialized.
 and/or Try to change maskset while LKST is stopped.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_MASKSET_SET).

<REFERENCES>
lkst_maskset_read(), lkst_maskset_write(), lkst_maskset_list(), lkst_maskset_delete(),
lkst_trc_stop()

4.7.2.24. lkst_maskset_list()

<FUNCTION>
Return a list of registered masksets

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_maskset.h>

int lkst_maskset_list(struct lkst_maskset_listparam *maskset_listparam)

<ARGUMENTS>
maskset_listparam address of an lkst_maskset_listparam structure object

struct lkst_maskset_listparam {
 lkst_maskset_id current_id; /* current maskset ID */
 size_t listent_size; /* size of the listent */
 struct lkst_maskset_listent *listent /* area to store the list of masksets */

};

struct lkst_maskset_listent {
 lkst_maskset_id id; /* maskset ID */
 char name[LKST_MASKSET_NAME_LEN]; /* maskset name */
 lkst_maskset_table_len len; /* total number of maskset entries */
}

- 46 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
-ENOMEM Kernel cannot allocate memory area to be used by this function.
-EINVAL Argument listent and/or listent_size is invalid.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_MASKSET_LIST).

<REFERENCES>
lkst_maskset_read(), lkst_maskset_write(), lkst_maskset_set(), lkst_maskset_delete(), lkst_trc_status()

4.7.2.25. lkst_maskset_delete()

<FUNCTION>
Delete a maskset

<SYNOPSIS>

#include <linux/lkst.h>
#include <linux/lkst_maskset.h>

int lkst_maskset_delete(lkst_maskset_id id)

<ARGUMENTS>
id maskset ID

<RETURN VALUE>
0 success
-EINVAL A Special maskset is specified.
 and/or Specified maskset ID does not exist.
-EBUSY Specified maskset ID is currently selected.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_MASKSET_DELETE).

<REFERENCES>
lkst_maskset_read(), lkst_maskset_write(), lkst_maskset_set(), lkst_maskset_list()

- 47 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2.26. lkst_maskset_get_id()
<FUNCTION>
Find a maskset ID by name.

<SYNOPSIS>
#include <linux/lkst_maskset.h>
#include <linux/lkst_private.h>

int lkst_maskset_get_id(const char *name)

<ARGUMENTS>
name the name of a maskset

<RETURN VALUE>
maskset ID success
-EINVAL Specified maskset name is invalid.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Find maskset ID by specified maskset name.
On success, this function returns the maskset ID which has specified name. If the event-handler does not exist,
it returns LKST_MASKSET_ID_VOID.
On error, this function returns a negative value described above.

<REFERENCES>
lkst_maskset_read(), lkst_maskset_write(), lkst_maskset_set(), lkst_maskset_list()

- 48 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2.3 Event Handler Control
4.7.2.31. lkst_evhandler_list()

<FUNCTION>
Return a list of registered event handlers

<SYNOPSIS>
#include <linux/lkst_evhandler.h>

int lkst_evhandler_list(struct lkst_evhandler_listparam *evhandler_listparam)

<ARGUMENTS>
evhandler_listparam address of an lkst_evhandler_listparam structure object

struct lkst_evhandler_listparam {
 size_t listent_size; /* size of the listent */
 struct lkst_evhandler_listent *listent; /* area to store the list of event handlers */
};

struct lkst_evhandler_listent {
 lkst_ evhandler_ id id; /* event handler ID */
 char name[LKST_EVHANDLER_NAME_LEN]; /* event handler name */
}

<RETURN VALUE>
0 success
-ENOMEM Kernel cannot allocate memory area to be used by this fuction.
-EINVAL Argument listent or listent_size is invalid.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_EVHANDLER_LIST).

<REFERENCES>
lkst_evhandler_ctrl(), lkst_evhandler_register(), lkst_evhandler_unregister(), lkst_evhandler_get_id(),
lkst_trc_status()

- 49 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2.32. lkst_evhandler_ctrl()

<FUNCTION>
Invoke an event-handler-control-function.

<SYNOPSIS>
#include <linux/lkst_evhandler.h>

int lkst_evhandler_ctrl(struct lkst_evhandler_ctrl_param *evhandler_ctrl_param)

<ARGUMENTS>
evhandler_ctrl_param address of an evhandler_ctrl_param structure object

struct lkst_evhandler_ctrl_param {
 lkst_ evhandler_id id; /* event handler ID */
 void *buf; /* a communication area for control-function */
 size_t bufsize; /* size of the communication area */
 int ret; /* return value from control-function */
}

<RETURN VALUE>
0 success
-ENOMEM Kernel Cannot allocate memory area to be used by this function.
-EINVAL Specified event-handler ID is invalid.
 and/or Argument buf and/or bufsize is invalid.
 and/or Specified event-handler-control-function does not exist.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_EVHANDLER_CTRL).

<REFERENCES>
lkst_evhandler_list(), lkst_evhandler_register(), lkst_evhandler_unregister(), lkst_evhandler_get_id()

- 50 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2.33. lkst_evhandler_register()

<FUNCTION>
Register an event-handler-function and an event-handler-control-function

<SYNOPSIS>
#include <linux/lkst_evhandler.h>
#include <linux/lkst_private.h>

int lkst_evhandler_register(lkst_ evhandler_id id, const char *name,

 void *evhandler, int *evhandler_ctrl)

<ARGUMENTS>
id event handler ID
name event handler name
evhandler address of an event-handler-function
evhandler_ctrl address of an event-handler-control-function

<RETURN VALUE>
Registered event-handler ID success
-EINVAL Specified event-handler ID is invalid.
 and/or Specified event-handler name is invalid.
 and/or Specified event-handler function is NULL.
-ENOSPC No available event-handler ID.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Register an event-handler-function and an event-handler-control-function to a specified event handler ID.
The event-handler-function and the event-handler-control-function to register must be defined as prescribed
format (*1).
The argument id specifies the event handler ID to register (*2). If id specifies
LKST_EVHANDLER_ID_VOID, unused ID is allocated automatically. The argument name specifies the
name of the event handler, and the name must be unique. The argument evhandler and evhandler_ctrl
respectively specify the addresses of the event-handler-function and the event-handler-control-function.
On success, this function registers the specified event-handler-function and event-handler-control-function to
the specified event handler ID and returns registered event handler ID.
On error, this function returns a negative value described above.

- 51 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

(*1)Prescribed format of event-handler-function and event-handler-control-function
<event-handler-function>

void [function name](void *phookrec, int event_type,
 lkst_arg_t log_arg1, lkst_arg_t log_arg2, lkst_arg_t log_arg3, lkst_arg_t log_arg4)

 Argument:
 phookrec reserved argument for Kernel Hooks (do not use in event handler function)
 event_type type of event;
 log_arg1, log_arg2, log_arg3, log_arg4 arguments acquired at a trace point

<event-handler-control-function>

int [function name](void *buf, size_t bufsize)
 arguments:
 buf address of a communication area
 bufsize size of the communication area
 return value:
 On success, return 0.
 On error, returns a nonzero number.

(*2) The ID number of event handler is allocated as follows
 0x000-0x01f reserved for LKST internal use.
 0x020-0x0ff for user use

<REFERENCES>
lkst_evhandler_list(), lkst_evhandler_ctrl(), lkst_evhandler_unregister(), lkst_evhandler_get_id()

4.7.2.34. lkst_evhandler_unregister()

<FUNCTION>
Unregister an event-handler-function and an event-handler-control-function

<SYNOPSIS>
#include <linux/lkst_evhandler.h>
#include <linux/lkst_private.h>

int lkst_evhandler_unregister(lkst_ evhandler_id id)

<ARGUMENTS>
id event handler ID

- 52 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<RETURN VALUE>
0 success
-EINVAL Specified event-handler ID is invalid.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Unregister specified ID of an event-handler-function and an event-handler-control-function.
On success, this function unregisters the specified ID of event-handler-function and
event-handler-control-function and returns 0.
On error, this function returns a nonzero value described above.
(Attention) Users cannot unregister LKST reserved event-handlers.

<REFERENCES>
lkst_evhandler_list(), lkst_evhandler_ctrl(), lkst_evhandler_register()

4.7.2.35. lkst_evhandler_get_id()

<FUNCTION>
Find an event-handler ID by name.

<SYNOPSIS>
#include <linux/lkst_evhandler.h>
#include <linux/lkst_private.h>

int lkst_evhandler_get_id(const char *name)

<ARGUMENTS>
name event handler name

<RETURN VALUE>
event-handler ID success
-EINVAL Specified event-handler name is invalid.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
Find event-handler ID by specified event-handler name.
On success, this function returns the event-handler ID which has specified event-handler name. If the
event-handler does not exist, it returns LKST_EVHANDLER_ID_VOID.
On error, this function returns a negative value described above.

- 53 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<REFERENCES>
lkst_evhandler_list(), lkst_evhandler_ctrl(), lkst_evhandler_register()

4.7.2.4 Buffer Control
4.7.2.41. lkst_buffer_read()

<FUNCTION>
Read a kernel event buffer

<SYNOPSIS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int lkst_buffer_read(struct lkst_log_buffer *lbuffer)

<ARGUMENTS>
lbuffer address of an lkst_log_buffer structure object

struct lkst_log_buffer {
 size_t read_size; /* the number of event records to read*/
 lkst_buffer_id id; /* processor number */
 size_t result_read_size; /* the number of read event records */
 struct timeval xtime; /* xtime */
 lkst_tsc_t tsc; /* machine cycle */
 lkst_cpu_freq_t cpu_freq; /* cpu clockspeed in kHz */
 struct lkst_log_record *buffer; /* address of a buffer to store event records */
 int endian_big; /* byte order, 0 if little endian */
 int buf_ver; /* LKST buffer version */
 char arch[LKST_ARCH_NAME_LEN]; /* Architecture name */
};

struct lkst_log_record {
 struct posix_log_entry posix; /* log form specified by POSIX */
 lkst_arg_t log_arg1; /* 1st argument acquired at a trace point*/
 lkst_arg_t log_arg2; /* 2nd argument acquired at a trace point */
 lkst_arg_t log_arg3; /* 3rd argument acquired at a trace point */
 lkst_arg_t log_arg4; /* 4th argument acquired at a trace point */
}

- 54 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

struct posix_log_entry {
 unsigned int log_magic;
 posix_log_recid_t log_recid; /* ID of the event record */
 size_t log_size; /* size of the event record variable data */
 int log_format; /* format of variable data */
 int log_event_type; /* event identification code */
 posix_log_facility_t log_facility; /* event facility code */
 posix_log_severity_t log_severity; /* event severity code */
 uid_t log_uid; /* effective user ID associated with the event */
 gid_t log_gid; /* effective group ID associated with the event */
 pid_t log_pid; /* process ID associated with event */
 pid_t log_pgrp; /* process group associated with event */
 struct timespec log_time; /* event time stamp */
 unsigned int log_flags; /* bitmap of event flag */
 unsigned int log_thread; /* thread ID associated with event */
 posix_log_procid_t log_processor /* Processor ID associated with event */
};

<RETURN VALUE>
0 success
-EINVAL Argument buffer and/or read_size is invalid.
 and/or Specified buffer ID is invalid.
 and/or Specified buffer does not exist.
-EBUSY Specified buffer is collapsed(or not initialized).
 and/or Specfied buffer is in ring structure.
 and/or Reading mode of specified buffer is already set.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_BUFFER_READ).

<REFERENCES>
lkst_buffer_ring(), lkst_buffer_create(), lkst_buffer_delete(), lkst_buffer_shift),
lkst_buffer_list(),lkst_buffer_setrmod()

- 55 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2.42. lkst_buffer_create()

<FUNCTION>
Create a new kernel-event buffer

<SYNOPSYS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int lkst_buffer_create(lkst_buffer_id id, size_t size, lkst_buffer_id next)

<ARGUMENTS>
lkst_buffer_id id event buffer ID
size_t size; the size of kernel-event buffer
lkst_buffer_id next the id of buffer of destination.

<RETURN VALUE>
0 success
-EINVAL Specified buffer ID is invalid.

and/or Specified buffer has already exist.
and/or Specified CPU number is invalid.
and/or size of the buffer is too small or large.

-EBUSY LKST has not been initialized (otherwise previous buffer of the
 specified buffer is collapsed by access violation).
 and/or No available Buffer ID.
 and/or Buffer list of specified CPU is already set reading mode.
-ENOMEM Kernel cannot allocate buffer area.
 and/or Memory area for the new buffer exceeds LKST available area.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_BUFFER_CREATE).

<REFERENCES>
lkst_buffer_read(), lkst_buffer_ring(), lkst_buffer_delete(), lkst_buffer_shift(),
lkst_buffer_list(),lkst_buffer_setrmod()

- 56 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.2.43. lkst_buffer_jump()

<FUNCTION>
Switch currently selected kernel-event buffer to specified one

<SYNOPSYS>
#include <linux/lkst_buffer.h>

int lkst_buffer_jump(lkst_buffer_id next)

<ARGUMENTS>
cpu cpu number

<RETURN VALUE>
0 success
-EINVAL Specified buffer id is invalid.
-EAGAIN Buffers is now busy.
-EINVAL Next buffer of currently selected buffer does not exist.
-EBUSY LKST has not been initialized (otherwise currently
 selected buffer and/or next buffer of currently
 selected buffer is collapsed by access violation).

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_BUFFER_JUMP). However this can switch to
only the buffer owned by the same CPU.

<REFERENCES>
lkst_buffer_read(), lkst_buffer_ring(), lkst_buffer_delete(), lkst_buffer_create(),
lkst_buffer_list(),lkst_buffer_setrmod()

4.7.2.44. lkst_buffer_shift()

<FUNCTION>
Switch currently selected kernel-event buffer to next one

<SYNOPSYS>
#include <linux/lkst_buffer.h>

int lkst_buffer_shift(void)

<RETURN VALUE>

- 57 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

0 success
-EINVAL The buffer referred by the member next of current buffer is invalid.
-EAGAIN Buffers is now busy.
-EINVAL Next buffer of currently selected buffer does not exist.
-EBUSY LKST has not been initialized (otherwise currently
 selected buffer and/or next buffer of currently
 selected buffer is collapsed by access violation).

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_BUFFER_SHIFT). However this can switch to
only the buffer owned by the same CPU.

<REFERENCES>
lkst_buffer_read(), lkst_buffer_ring(), lkst_buffer_delete(), lkst_buffer_create(),
lkst_buffer_list(),lkst_buffer_setrmod()

4.7.2.45. lkst_buffer_delete()

<FUNCTION>
Delete a kernel-event buffer

<SYNOPSYS>
#include <linux/lkst.h>
#include <linux/lkst_buffer.h>

int lkst_buffer_delete(lkst_buffer_id id)

<ARGUMENTS>
id kernel-event buffer id

<RETURN VALUE>
0 success
-EINVAL Cannot delete the buffer of ID=0.
 and/or Specified buffer ID is invalid.
-EBUSY Specified buffer ID is currently used.
 and/or Specified buffer is set reading mode.
-EPERM Was called by someone other than the superuser.

<DESCRIPTION>
This function provides the same function of ioctl(LKST_IOC_BUFFER_DELETE).

- 58 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

<REFERENCES>
lkst_buffer_read(), lkst_buffer_ring(), lkst_buffer_create(), lkst_buffer_shift(),
lkst_buffer_list(),lkst_buffer_setrmod()

4.7.2.46. lkst_buffer_list()

<DEFUNCT>
THIS FUNCTION IS NO LONGER SUPPORTED. INSTEAD OF USING THIS FUNCTION, YOU CAN
REFER ENTRIES OF THE lkst_cpu ARRAY DIRECTORY.

4.7.2.47. lkst_buffer_ring()

<DEFUNCT>
THIS FUNCTION IS NO LONGER SUPPORTED. INSTEAD OF USING THIS FUNCTION, YOU CAN
MODIFY ENTRIES OF THE buffer_table ARRAY THAT IS THE MENBER OF THE lkst_current
DIRECTORY.
<CAUTION>
!!YOU MUST NOT MODIFY ANY MEMBERS OF ANOTHER ENTRY OF lkst_cpu EXCEPT THE
ENTRY DEFINED BY THE lkst_current MACRO!!

4.7.2.48. lkst_buffer_setrmod()

<DEFUNCT>
THIS FUNCTION IS NO LONGER SUPPORTED. NOW, SETRMOD FUNCTION IS JUST SUPPORTED
BY IOCTL.

- 59 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.3 User Commands

4.7.3.1 Controling LKST status
4.7.3.11. lkst

<NAME>
lkst - Control status of LKST.

<SYNOPSIS>
lkst command

<DESCRIPTION>
This command controls status of LKST. This start or stop event tracing, and display a current status such as
number of masksets, buffers, event-handlers, id of currently selected maskset, and buffer of all CPUs.

<COMMANDS>
all Outputs a current status and lists of all buffers, masksets, and event-handlers.

stat/status
 Output a current status.

start Start event tracing.

stop Stop event tracing.

version/ver
 Print version information.

help Print help message.

<RETURN VALUE>
0 success
Except 0 failure

<REFERENCES>
lkstm, lkstbuf, lksteh,
ioctl(LKST_IOC_TRC_STATUS), ioctl(LKST_IOC_BUFFER_LIST),
ioctl(LKST_IOC_MASKSET_LIST), ioctl(LKST_IOC_EVHANDLER_LIST)

- 60 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.3.2 Maskset Control
4.7.3.21. lkstm

<NAME>
lkstm - Control maskset in LKST.

<SYNOPSIS>
lkstm command [option(s)]

<DESCRIPTION>
This command controls maskset in LKST, such as reading, writing, deletion, changing, and displaying list of
all masksets.

<COMMANDS>
all Output a list of masksets and display content of all masksets.

delete/del -m maskset_id | -n maskset_name
 Delete a maskset.
 <options>
 -m maskset_id
 Specify the id of a maskset to delete.
 -n maskset_name
 Specify the id of a maskset to delete.

list/ls
 Output a list of all masksets.

read [-m maskset_id | -n maskset_name] [-A] [-a] [-d]
 Output a content of maskset.
 <options>
 -m maskset_id
 Specify an id of a maskset to read.
 -n maskset_name
 Specify the id of a maskset to read. If both maskset_id adn maskset__name are omitted,

read currently selected maskset.
 -A
 Read all masksets.
 -a
 Do not omit not registered event type. It ignored if "-d" option is specified.
 -d
 Do not display a description of each event type.

- 61 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

set -m maskset_id | -n maskset_name
Change currently selected maskset.
<options>
-m maskset_id
Specify the id of a maskset to select.
-n maskset_name
Specify the name of a maskset to select.

write [-m maskset_id] [-f file_name] [-n maskset_name] [-S]
 Write a new maskset.
 <options>
 -m maskset_id
 Specify an id of the maskset to be written. If omitted, empty id is selected automatically.
 -f file_name
 Specify a file which the content of the maskset is written. If ommited, standard input is

used as input. This file can be created by "read" command as template.
 -n maskset_name
 Specify the name of new maskset. If omitted, the name of new maskset is set as "new_maskset0".
 When it is already used, change to "new_maskset1". And when it is used too, change to

"new_maskset2", and so on (in other words, this increments tag number).
 -S
 Change a currently selected maskset to the written maskset.

find -n maskset_name
 Find the id of a maskset from its name.
 <option>
 -n maskset_name
 Specify the name of a maskset to find.
 NOTE:
 If no maskset has maskset_name, then outputs 255(=LKST_MASKSET_ID_VOID).

config/conf [-m maskset_id | -n maskset_name] <event_type> <event-handler_id>
 Config a maskset
 <options>
 -m maskset_id
 Specify the id of a maskset to configure.
 -n maskset_name
 Specify the name of a maskset to configure. If both of id and name are omitted, currently selected
 maskset is configured.
 event_type
 Specify the type of an event to change.

- 62 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

 event-handler_id
 Specify the id of an event-handler to change to.

version/ver
 Print version information.

help Print help message.

<RETURN VALUE>
0 success
Except 0 failure

<REFERENCES>
lkst,
ioctl(LKST_IOC_MASKSET_READ), ioctl(LKST_IOC_MASKSET_WRITE)
ioctl(LKST_IOC_MASKSET_LIST), ioctl(LKST_IOC_MASKSET_SET),
ioctl(LKST_IOC_MASKSET_DELETE)

- 63 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.3.3 Buffer Control
4.7.3.31. lkstlogd

<NAME>
lkstlogd - Linxu Kernel State Traccer logging utility.

<SYNOPSIS>
lkstlogd [-a] [-b buffer_size] [-l limit_size] [-n number] [-hv]

<DESCRIPTION>
lkstlogd supports to analyze faults which do not crash kernel; typically faults as follows:

 A certain application can never start.
 A certain daemon process ends suddenly, but the cause is unknown.

lkstlogd provides functions as follows:

When a specific signal is sent to lkstlogd, lkstlogd starts to write event logs, which is recorded by lkst, to a
specified file. And lkstlogd continues writing the file until the signal is sent again.

In addition, when another special signal is sent, lkstlogd saves currently writing file and creates new one.

<OPTIONS>
-a
 Start to write event logs to a file with starting lkstlogd.

-b buffer_size[K|M]
 Specify buffer size to create at initialization. buffer_size is followed by K and M suffixes
 representing size in Kilo bytes and Mega bytes, respectively. (Default 2MByte)

-l limit_size[K|M]
 Specify a maximum size of log file in byte.
 If the file size has reached the maximum size, lkstlogd rewinds the write pointer to head of the file.
 limit_size is followed by K and M suffixes representing size in Kilo bytes and Mega bytes,
 respectively. The default size if 10MByte.

-n number
 Specify number of buffer (for each CPU) to create at initialization. (Default 2)

-f log_file_name
 Specify log file name.

- 64 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

-h
 Print help message.

-v
 Print version information.

<OUTPUT FORMAT>
 Same as output of lkstbuf command.

<SIGNALS>
lkstlogd receives signals. To send signal to lkstlogd, use `kill` command as follow.
 kill -SIGNAL `cat /var/run/lkstlogd.pid`

 SIGHUP
 Re-initialize lkstlogd. All the opened files are closed, and all child processes are

terminated. Then lkstlogd is restarted.

 SIGTERM
 Terminate lkstlogd.

 SIGUSR1
 Start to write event logs to a file.
 When lkstlogd receives it again, lkstlogd stops writing logs.

 SIGUSR2
 Change a file to write event logs.

<FILES>
/var/log/lkst/sebuf<cpu_number>.<serial_number>
 lkstlogd writes event logs to different files for each CPU.
 In addition, when lkstlogd receives SIGUSR2, saves currently writing file, and create new

file of which serial_number is increased by 1, and start writing to the file.
 This file can be changed by using ‘-f’ option.

 /var/run/lkstlogd.pid
 This file holds process id of lkstlogd.
 lkstlogd checks presence of this file at first. If it is, lkstlogd exits as error.

- 65 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

 /etc/sysconfig/lkstlogd
 Configuration file for lkstlogd.
 This file format is shown as follows:

 # comment
 LKSTLOGDOPTION="-l 8388608"

 # at line head shows this line is comment sentence.

In LKSTLOGDOPTION, start options of lkstlogd are written.
 This file is read and interpreted by rc file at system initialization.

<REFERENCES>
lkstbuf,
ioctl(LKST_IOC_BUFFER_READ)

4.7.3.32. lkstbuf

<NAME>
lkstbuf - Control kernel event buffer in LKST.

<SYNOPSIS>
lkstbuf command [option(s)]

<DESCRIPTION>
This command controls kernel event buffer in LKST such as creation, deletion, changing, reading, formatting,
and listing of all buffers.

<COMMANDS>
link/ln -b buffer_id [-n next_buffer_id] [-c cpu_id]
 Change destination buffer for the shift operation.
 <options>
 -b buffer_id
 Specify the id of a buffer.
 -n next_buffer_id
 Specify the id of the destination buffer. If omitted, clear destination of specified buffer.
 NOTE: You can specify a buffer dosen't exist yet to destination, except itself. However,
 you must fail to shift while it doesn't exist.
 -c cpu_id
 Specify an id of a CPU of which the buffer is created. The id must be same as described
 in "/proc/cpuinfo". If omitted, new buffers are created for all CPUs. In this case

- 66 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

 specified buffer_id is ignored.

shift [-c cpu_id]
 Change currently selected buffer to next buffer.
 NOTE: If destination buffer does not exist, this operation would fail.
 <option>
 -c cpu_id
 Specify an id of a CPU of which buffer is changed. If omitted, buffer of all CPUs is changed.
 The id must be same as described in "/proc/cpuinfo".

jump -b buffer_id [-c cpu_id]
 Change currently selected buffer to specified buffer.
 <options>
 -b buffer_id
 Specify the id of a buffer of destination.
 -c cpu_id
 Specify an id of a CPU of which buffer is changed. If omitted, buffer of all CPUs is changed.

The id must be same as described in "/proc/cpuinfo".

create [-b buffer_id] [-c cpu_id] [-n next_buffer_id] -s size
 Create a new kernel event buffer.
 <options>
 -s size[K|M]
 Specify a size of the buffer. size is followed by K and M suffixes representing size in Kilo
 bytes and in Mega bytes, respectively.
 -b buffer_id
 Specify an id of a buffer to be created. If omitted, the empty id is selected automatically.
 -n next_buffer_id
 Specify the id of the destination buffer. If omitted, clear the destination of new buffer.
 -c cpu_id
 Specify an id of a CPU of which the buffer is created. The id must be same as described
 in "/proc/cpuinfo". If omitted, new buffers are created for all CPUs. In this case,
 specified buffer_id is ignored.

delete/del -b buffer_id [-c cpu_id]
 Delete a kernel event buffer.
 <options>
 -b buffer_id
 Specify an id of a buffer to be deleted.
 -c cpu_id
 Specify an id of a CPU of which the buffer is created. The id must be same as described

- 67 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

 in "/proc/cpuinfo". If omitted, new buffers are created for all CPUs. In this case,
 specified buffer_id is ignored.

list/ls [-c cpu_id] [-v]
 Output a list of all kernel event buffers.
 <options>
 -c cpu_id
 Specify the id of a CPU to list. The id must be same as described in "/proc/cpuinfo".
 If omitted, all buffers those have buffer_id id are deleted in each CPU (if exist).
 -v
 Specify that the list of buffers display as verbose format.

read [-c cpu_id] [-b buffer_id] [-f output_file] [-n number]
read -S [-f output_file] [-n number]
 Read the contents of an event buffer/event buffers.
 <options>
 -c cpu_id
 Specify the id of a cpu to read from. If omitted, all buffers those have buffer_id id are read.
 -b buffer_id
 Specify the id of a buffer to be read. If omitted, all buffers owned by cpu_id are read.
 Neither cpu_id nor buffer_id is specified, all buffers in system are read (except for static buffer)
 -S
 Specify that the command read from static buffer.
 -f output_file
 Specify the output file. If omitted, this command displays the content.
 -n number
 Specify the number of read entry of the buffer. If omitted, all entries of the buffer are read.

print -f input_file [-c cpu_id] [-e event_name ...] [-h] [-n entry_num] [-r] [-C [-S]]

Display LKST trace data.
 <options>
 -f input_file

Specify the file name of binary trace data, which is created by using lkstbuf read or lkstlogd.
(Also use kerenl crash dump file by using LKCD.)
If omitted, kernel buffer is read directly.
-c cpu_id
Specify the cpu number.
-e event_name ...
Specify event filter. Enumerate the names of events which you want to trace.
(Event name list is displayed by option -h.) Each event is separated by comma.

- 68 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

example(1) Display only "system_call_entry" and "system_call_exit".
-e system_call_entry,system_call_exit
If you don't want to trace some events, specify "!" followed by the names of the events,
like "!system_call_entry". You can specify "all" to specify all events.

 example(2) Display all events except for "system_call_entry" and "system_call_exit".
-e all,!system_call_entry,!system_call_exit

NOTE: Enumerated event name is evaluated from the left to the right. If both display and
non-display are specified for the same event, the specification of the right side is
given to priority.
-e all,!spin_lock => display all events except spin_lock
-e !spin_lock,all => display all events
-e !spin_lock,spin_lock => the same as "-e spin_lock"
-e spin_lock,!spin_lock => the same as "-e !spin_lock"

-h
Display command help. (Also event name list is displayed.)
-n entry_num
Specify the number of output entry.
-r
Reverse the order of output record. (default : time descending sort)
-C [-S]
Dislpay trace data by CSV format.
The meaning of column in the CSV format is explained.
First column is event name or event number.
Second column is CPU number.
Third column is process id.
4th-8th columns are date which an event caused.

 ...,day of week, month, day, hour,year,...
9th column is name of parameter.
10th column is value of parameter.(under 32bit)
11th column is value of parameter.(upper 32bit)

 ... following ,same mean 9th-11th column.
when you specify -S option, print short format of date as follows(4th-5th colums)
 ...,second,usecond

version/ver
 Print version information.

help Print help message.

<RETURN VALUE>
0 success

- 69 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

Except 0 failure

<REFERENCES>
lkst,
ioctl(LKST_IOC_BUFFER_READ), ioctl(LKST_IOC_BUFFER_LIST),
ioctl(LKST_IOC_BUFFER_SHIFT), ioctl(LKST_IOC_BUFFER_CREATE),
ioctl(LKST_IOC_BUFFER_DELETE)

4.7.3.4 Event-handler Control
4.7.3.41. lksteh

<NAME>
lksteh - Control event-handler in LKST.

<SYNOPSIS>
lksteh command [option(s)]

<DESCRIPTION>
This command controls event-handler in LKST, such as displaying a list of event-handler and invoking an
event-handler-control-function.

<COMMANDS>
control/ctrl/c -e event_handler_id [-f file_name]
 Invoke an event-handler-control-function.
 <options>
 -e event_handler_id
 Specify an id of the event-handler-control-function to be invoked.
 -f file_name
 Specify an name of input file in which the data to be passed to the function is written.

If omitted, NULL data is passed.

list/ls
 Output a list of all event-handlers.

version/ver
 Print version information.

help Print help message.

<RETURN VALUE>
0 success

- 70 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

Except 0 failure

<REFERENCES>
lkststat,
ioctl(LKST_IOC_EVHANDLER_CTRL), ioctl(LKST_IOC_EVHANDLER_LIST)

4.7.3.5 Trace Output
4.7.3.51. lkstlogger

<NAME>
lkstlogger - Tells LKST that a specified event has occurred.

<SYNOPSIS>
lkstlogger command
lkstlogger -ev event_type [-a1 data1] [-a2 data2] [-a3 data3] [-a4 data4]

<DESCRIPTION>
This command tells LKST that a specified event has occurred. This command always exits properly. Users can
use this command as trace point.

<COMMANDS>
version/ver
 Print version information.

help
 Print help message.

<OPTIONS>
-ev event_type
 Specify an occurred event type.

-a1 data1 -a2 data2 -a3 data3 -a4 data4
 Specify variable data to be transferred to LKST. If ommited, the data is specified as zero.

<RETURN VALUE>
0 Success
Except 0 failure

<REFERENCES>
ioctl(LKST_IOC_ENTRY_LOG)

- 71 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

4.7.3.6 Log formatter
4.7.3.61. logformat.pl

<NAME>
logformat.pl - Display LKST trace data.

<SYNOPSIS>
logformat.pl [-c cpu_id] [-e event_name ...] [-h] [-n entry_num] [-r] filename

<DESCRIPTION>
logformat.pl is a Perl Script that displays LKST trace data.
Argument "filename" must be specified the file name of binary trace data, which is created by using
lkstbuf read or lkstlogd. (Also use kerenl crash dump file by using LKCD.)

<OPTIONS>
-c cpu_id

Specify the cpu number.

-e event_name ...

Specify event filter.
Enumerate the names of events which you want to trace.
(Event name list is displayed by option -h.) Each event is separated by comma.

example(1) Display only "system_call_entry" and "system_call_exit".

-e system_call_entry,system_call_exit
If you don't want to trace some events, specify "!" followed by the names of the events,
like "!system_call_entry". You can specify "all" to specify all events.

example(2) Display all events except for "system_call_entry" and "system_call_exit".

-e all,!system_call_entry,!system_call_exit

NOTE:
Enumerated event name is evaluated from the left to the right.
If both display and non-display are specified for the same event, the specification of the right side is
given to priority.

-e all,!spin_lock => display all events except spin_lock
-e !spin_lock,all => display all events
-e !spin_lock,spin_lock => the same as "-e spin_lock"
-e spin_lock,!spin_lock => the same as "-e !spin_lock"

- 72 -

Copyright (C) Hitachi, Ltd., 2001-2002. All rights reserved.

-h
Display command help.
(Also event name list is displayed.)

-n entry_num

Specify the number of output entry.

-r

Reverse the order of output record.
(default : time descending sort)

<REFERENCES>
lkstbuf, lkstlogd.

