The latex-lab-context package
Providing context for template instances and code that
needs to know where and when it is executed

ETEX Project®

v0.5b 2025-10-09

Abstract

1 Introduction

In this module we implement the concept of “contexts” within the document and de-
pending on the current context formatting behavior might change. The main application
for this is in instances of templates (where things can be easily automated to react to
context), but it is probably also applicable to other situations (but these might need
more thought).

1.1 Definition of a “context”

The “context” is an attribute of every point of the formatted document, i.e., at each point
during the formatting one can determine in which “context” the formatting happens and
based on this adjust the formatting method.

The “context” is not an entirely flat structure: we distinguish between the “primary
context” and the “secondary context” both of which can be changed individually based
on a number of rules as discussed below.

Any context is denoted by a name ( [a-z]* letters only). The empty name is allowed
to ease specification of the common case (i.e., the default “primary context” is the main
galley and by default no “secondary context” is specified).

1.2 The “primary context”

The “primary context” is described with a fixed (but extensible?) set of names:
o (empty) denotes that we are in “galley” context producing text for the page;

e caption denotes that we are typesetting the caption text of a \caption command
— this is also used for captions outside of floats,

o footnote denotes that we are typesetting the footnote text;

o float denotes that we are typesetting a float;

*Initial implementation done by Frank Mittelbach



\SetPrimaryContext

o marginal denotes that we are typesetting a marginal;
e header denotes that we are typesetting the running header;
o footer denotes that we are typesetting the running footer.

When the “primary context” is set it replaces the current “primary context” and
resets the “secondary context” to (empty). The setting is local, i.e., it obeys grouping.

It would be possible to be more granular, i.e., differentiate between types of float
etc. But for now I suggest to start out with this small set.

We may want to require that a context name is declared before its first use, e.g., via
\DeclarePrimaryContext (right now this is not necessary.

1.3 The “secondary context”

The “secondary context” concerns itself (for now) only with font size changes, because
that is most commonly a cause for layout changes. It is described through a fixed (but
extensible?) set of names:

o (empty) denotes that there is no special secondary context, i.e., that we are pro-
ducing material in \normalsize;

e tiny denotes that we are typesetting in \tiny font size;

o and similarly for scriptsize, footnotesize, small, large, Large, LARGE, huge,
and Huge.

The above list of secondary contexts are automatically set by the standard I TEX font size
commands (as part of \@setfontsize). Classes that use additional font size commands
but do not use the BTEX 22 command for this need to explicitly set the secondary context
with \SetSecondaryContext if they want their size be recognized as a context.

2 Setting context

\SetPrimaryContext {(new context)}

The (new context) should be a name consisting only of lowercase letters a—z (and to
make sense only a name that is actually used—typos will go undetected).

This declaration checks if there is a rule for the combination of the current context
and the requested (new context) (see \DeclarePrimaryContextRule) and if so applies
it to determine to which context the “primary context” should be set. If there is no such
rule then (new context) will be used unconditionally.

As a second action the command executes \SetSecondaryContext{}, i.e., it clears
the “secondary context”.

The effects are local, i.e., both context changes revert to the previous value at the
end of the current group.



\DeclarePrimaryContextRule \DeclarePrimaryContextRule {(current)}{(new)}{(result)}

This declaration defines the rule that when the current primary context is (current) and
(new) is requested as the new context then instead (result) is made the new “primary
context”.

If * is used in the first argument then this indicates any current context and thus
(new) is always replaced by (result). This can be more concisely written as

\DeclarePrimaryContextRule* {(new)}{(result)}

if preferred.
Declaring such rules is a global operation.

\SetSecondaryContext \SetSecondaryContext {(new context)}

The (new context) should be a name consisting only of lowercase letters a—z (and to
make sense only a name that is actually used—typos will go undetected).

This declaration checks if there is a rule for the combination of the current secondary
context and the requested (new context) (see \DeclareSecondaryContextRule) and if
so applies it to determine to which context the “secondary context” should be set. If
there is no such rule then (new context) will be used unconditionally.

The effect is local, i.e., the context change reverts to the previous value at the end
of the current group.

\DeclareSecondaryContextRule \DeclareSecondaryContextRule {(current)}{(new)}{(result)}

This declaration defines the rule that when the current secondary context is (current)
and (new) is requested as the new context then instead (result) is made the new “sec-
ondary context”.

If * is used in the first argument then this indicates any current context and thus
(new) is always replaced by (result). This can be more concisely written as

\DeclareSecondaryContextRule* {(new)}{(result)}

if preferred.
Declaring such rules is a global operation.

3 Context usage in template instances

If a template instance is used via \UseInstance{ (type)}{(inst-name)} then this normally
results in calling up an instance of type (type) with the name (inst-name).!

However, when the “primary context” and/or the “secondary context” is non-empty
then \UselInstance searches for an instance that is especially tailored to the current
context. This works as follows:

o Thestring: (primary context):(secondary context) isappended to (inst-name)
and if that instance exist it is used.?

o If not then (inst-name):(primary context) is tried next.

1Such instances are defined with \DeclareInstance or \DeclareInstanceCopy, see the documentation
in 1ttemplates-doc.pdf.

?Note that this means that if the (primary context) is empty we effectively append : :(secondary
context).



o If that doesn’t exist either then (inst-name) is used as usual.

This means it becomes trivial to alter the behavior of instances if they appear in a
special typesetting context. For example, in M TEX 2¢ display blocks, e.g., lists, center,
etc., all changed their vertical spacing setup if the surrounding text was in \small or in
\footnotesize (but did nothing if you typeset in, say, \Large which had the strange
effect that lists in \Large or \huge got whatever was set by a size command that changed
list parameters).

With the new context model all you have to do is to provide additional in-
stances, e.g., if itemize-1 is the instance name for itemized lists on the first level then
itemize-1:footnote would be the instance to be used if an itemize environment is used
within a footnote.

In addition (or alternatively) you could setup itemize-1::Large which would be
selected if the itemize is in the main galley (empty primary context) and the fontsize at
the outside is \Large.

4 Notes

With special classes, e.g., 1tx-talk, additional primaries could be added (and secondaries
could be using the modes rather than or in addition to the fontsizes). Or the modes could
be part of the primary names . ... Could do with some experimentation what works best.

If the design of a class requires identical behavior in different contexts, e.g., the same
behavior in header and footer, it is possible to simplify the setup by only specifying
the design for the header context and then declaring:

\DeclarePrimaryContextRule{*}{footer}{header}

One can also add new primary or secondary contexts simply by making use of
\Set...Context declarations with a new name and then use these named contexts when
setting up special instance versions.

What is currently not so easy is to get rid of context names that have been set
up, e.g., to use your own wipple and wopple as secondary contexts and make sure that
fontsize commands to not overwrite the context. Right now that would require a lot of
rules like

\DeclareSecondaryContextRule{wipple}{tiny}Hwipple}
\DeclareSecondaryContextRule{wipple}{footnotesize}{wipple}
\DeclareSecondaryContextRule{wipple}{scriptsize}{wipple}

so perhaps this interface needs changes or some augmentation, if such thing turn out to be
useful, e.g., supporting \DeclareSecondaryContextRule{*}{tiny}{*} to indicate this.

Another possibility is to support several independent dimensions as secondary con-
texts (then “fontsize” could be one and the “wipple-wopple” one the other. which of
these are used when instances are selected could then (perhaps) be a function of the
template type but for a heading type looking at front/main/back matter would be more
appropriate.>

Bottom line, what is here is nothing more than a first prototype and likely to change
to some extent.

3Then, of course, a primary context change would not reset any secondary context.



\1_context_primary_str

\1_context_secondary_str

\DebugContextsOn
\DebugContexts0Off
\context_debug_on:

\context_debug_off:

\DebugTemplatesOn
\DebugTemplates0ff
\template_debug_on:

\template_debug_off:

\@setfontsize

\@float

5 Currently mainly internal interfaces

This variable holds the current primary context name (or is empty if we are in the context
of the main galley).

This variable holds the current secondary context name (or is empty if we are typesetting
in \normalsize). It is by default automatically set by all fontsize commands in core
IMTEX. If additional secondary contexts are used then the variable may not be empty
even if we are typesetting in \normalsize

6 Debugging

These commands enable/disable debugging messages for context related processing.

These commands enable/disable debugging messages for template related processing.
(Belongs into 1ttemplates.dtx one day.)

7 Changes to internals of BKTEX

This command has be augmented to execute \SetSecondaryContext with the name of
the current fontsize command as the context argument.

This command has been augmented to execute \SetPrimaryContext{float}. This re-
sults in the body of all real floats being typeset in the primary float context. Not
covered are packages or methods that make floats not using \@float or making pseudo
floats, e.g., something not floating but having a caption.

8 Implementation

(xpackage)
(eo=tag)

\ProvidesExplPackage {latex-lab-testphase-context}
{\1tlabcontextdate}
{\1tlabcontextversion}



6

8

\g__context_debug_boo

1

\__context_debug:n
\__context_debug_typeout:n

\context_debug_on:
\context_debug_off:

\__context_debug_gset:13

\DebugContextsOn
\DebugContextsOff

10

11

N

30

31

2

{Providing context for instance, etc.}

(xpackage)
(@@=context)

\RequirePackage{latex-lab-testphase-block}

8.0.1 Debugging

\bool_new:N \g__context_debug_bool

\cs_new_eq:NN \__context_debug:n \use_none:n
\cs_new_eq:NN \__context_debug_typeout:n \use_none:n

(End of definition for \__context_debug:n and \__context_debug_typeout:n.)

\cs_new_protected:Npn \context_debug _on:
{
\bool_gset_true:N \g__context_debug_bool
\__context_debug_gset:
}

\cs_new_protected:Npn \context_debug_off:
{
\bool_gset_rfalse:N \g__context_debug_bool
\__context_debug_gset:
}

\cs_new_protected:Npn \__context_debug_gset:
{
\cs_gset_protected:Npx \__context_debug:n ##1
{ \bool_if:NT \g__context_debug_bool {##1} }
\cs_gset_protected:Npx \__context_debug_typeout:n ##1
{ \bool_if:NT \g__context_debug_bool { \typeout{[Context]~ ==>~ ##1} } }
}

(End of definition for \context_debug_on:, \context_debug_off:, and \__context_debug_gset:. These
functions are documented on page 5.)

\cs_new_protected:Npn \DebugContextsOn { \context_debug on: }
\cs_new_protected:Npn \DebugContextsOff { \context_debug off: }

\DebugContextsOff



(End of definition for \DebugContextsOn and \DebugContextsOff. These functions are documented on
page 5.)

\1_context_primary_str Variable to hold the name of the current primary context.
53 \str_new:N \1_context_primary_str
(End of definition for \1_context_primary_str. This function is documented on page 5.)

\SetPrimaryContext Change the context: if the target context is empty, just do it. Otherwise if we have a
rule for the current context and new context use that; otherwise if there is a star rule
apply that; otherwise set the new value as requested,

52 \cs_new_protected:Npn \SetPrimaryContext #1 {
35 \str_set:Ne \1_context_primary_str

36 { \tl_if_empty:nF { #1 }

37 { \cs_if_exist_use:cF

38 { g__context_primary_ \1l_context_primary_str _ #1 _tl }
39 { \cs_if_exist_use:cF

0 { g__context_primary_ * _ #1 _tl1 }

41 { #1 }

2 F

43 3

B 3}

s \__context_debug_typeout:n{set~primary~ <-~ \1_context_primary_str }
Also reset the secondary context.

%  \SetSecondaryContext {}
a7 }

(End of definition for \SetPrimaryContext. This function is documented on page 2.)
\DeclarePrimaryContextRule Rules are simply stored in macro names:
s \cs_new_protected:Npn \DeclarePrimaryContextRule #1#2#3 {
2 \tl_gclear_new:c { g__context_primary_ #1 _ #2 _tl }
50 \tl_gset:cn { g__context_primary_ #1 _ #2 _tl1 } {#3}

51 F

(End of definition for \DeclarePrimaryContextRule. This function is documented on page 3.)

\1_context_secondary_str Variable to hold the name of the current secondary context. [TODO: perhaps to be
replaced by a multi-dimensional solution]

52 \str_new:N \1_context_secondary_str
(End of definition for \1_context_secondary_str. This function is documented on page 5.)

\SetSecondaryContext Similar to \SetPrimaryConteXt.



\DeclareSecondaryContextRule

\@setfontsize

67

68

83

\cs_new_protected:Npn \SetSecondaryContext #1 {
\str_set:Ne \1_context_secondary_str
{ \tl_if_empty:nF { #1 }
{ \cs_if_exist_use:cF
{ g__context_secondary_ \1_context_secondary_str _ #1 _tl }
{ \cs_if_exist_use:cF
{ g__context_secondary_ * _ #1 _tl1 }
{#1 }
}
}
}
\__context_debug_typeout:n{set~ secondary~ <-~ \1_context_secondary_str }

}

(End of definition for \SetSecondaryContext. This function is documented on page 3.)

\cs_new_protected:Npn \DeclareSecondaryContextRule #1#2#3 {
\tl_gclear_new:c { g__context_secondary_ #1 _ #2 _tl }
\tl_gset:cn { g__context_secondary_ #1 _ #2 _tl1 } {#3}

}

(End of definition for \DeclareSecondaryContextRule. This function is documented on page 3.)

8.1 Supporting font size changes as a secondary context

We try to be careful when setting the name as we don’t know if \string returns a
backslash or not.

\def\@setfontsize#1#2#3{\Onomath#1},
\ifx\protect\@typeset@protect
\let\@currsize#1}

\begingroup
\escapechar\m@ne
\expandafter
\endgroup
\expandafter
\SetSecondaryContext
\expandafter {\string#1}}
\fi
\fontsize{#2}{#3}\selectfont
}

If we are typesetting in \normalsize we don’t want that as as the context, so here is a
first application of a rule.

\DeclareSecondaryContextRule{*}{normalsize}{}

(End of definition for \@setfontsize. This function is documented on page 5.)



\@float

\__template use instance aux:nn

85

8.2 Supporting primary context
8.2.1 Float context

This should work with most float pages. There are of course some classes or packages
that produce pseudo floats without calling \@float. These need to be handled separately
by adding a \SetPrimaryContext in their code.

+ \AddToHook{cmd/@float/before}{\SetPrimaryContext{float}}

(End of definition for \@float. This function is documented on page 5.)

8.2.2 Caption context

[TODO: in latex-lab-float] \@makecaption is redefined there and the context should be
set in that command (or its replacement one day).
[TODO: longtable and anything else that runs around producing \captions]

8.2.3 Footnote context

[TODO: in latex-lab-footnote]

8.2.4 Header context
[TODO: |

8.2.5 Footer context
[TODO: |

8.2.6 Marginal context
[TODO: |

8.3 Changes to lttemplates.dtx code

@Q@=template
P

This is the command that is used by \UseInstance to select and execute a requested
instance. So we now have to have a little more logic here.

In the normal case (both primary and secondary context are empty) we now have 3 tests.
We have up to 4 tests if only primary is non-empty and up to 5 tests if secondary is
non-empty.

\cs_set_protected:Npn \__template_use_instance_aux:nn #1#2 {
\__template_debug:n { \str_if_empty:NF \1_context_primary_str
{ \__template_debug_typeout:n {primary~ context~ is~
’\1_context_primary_str’ } } }
\__template_debug:n { \str_if_empty:NF \1_context_secondary_str
{ \__template_debug_typeout:n {secondary~ context~ is~
’\1_context_secondary_str’ } } }
\tl_if_empty:NTF \1__context_secondary_tl
{
\str_if_empty:NTF \1_context_primary_str



% {

o7 \__template_if_instance_exist:nnTF { #1 } { #2 }

98 { \__template_use_existing instance:nn { #1 } { #2 } }

99 { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} }

100 }

101 {

102 \__template_if_instance_exist:nnTF { #1 } { #2 : \1l_context_primary_str }
103 { \__template_use_existing_instance:nn { #1 }

104 { #2 : \1_context_primary_str } }
105 {

106 \__template_if_instance_exist:nnTF { #1 } { #2 }

107 { \__template_use_existing_instance:nn { #1 } { #2 } }

108 { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} }
109 }

110 }

111 }

112 {

113 \__template_if_instance_exist:nnTF { #1 }

114 { #2 : \l_context_primary_str

115 : \1_context_secondary_str }

116 { \__template_use_existing instance:nn { #1 }

117 { #2 : \1_context_primary_str : \1_context_secondary_str } }

118 {

119 \str_if_empty:NTF \1_context_primary_str

120 {

121 \__template_if_instance_exist:nnTF { #1 } { #2 }

122 { \__template_use_existing instance:nn { #1 } { #2 } }

123 { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} }
124 }

125 {

126 \__template_if_instance_exist:nnTF { #1 }

127 { #2 : \1l_context_primary_str }

128 { \__template_use_existing_instance:nn { #1 }

129 { #2 : \1l_context_primary_str } }
130 {

131 \__template_if_instance_exist:nnTF { #1 } { #2 }

132 { \__template_use_existing_instance:nn { #1 } { #2 } }

133 { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} }
134 }

135 }

136 }

137 3

138 F

(End of definition for \__template_use_instance_aux:nn.)

\_ template use existing instance:nn  We combine all debugging info for an execution of the instance in one macro, to be used
when we know for sure that this instance exists.

130 \cs_new_protected:Npn \__template_use_existing instance:nn #1#2 {
1o \__template_debug_typeout:n{use~ ’#1’~ instance:~ #2 \on@line }
141 \use:c { \c__template_instances_root_tl #1 / #2 }

142 F

(End of definition for \__template_use_existing_instance:nn.)

10



8.3.1 Debugging of templates

\g__template_debug_bool

123 \bool_new:N \g__template_debug_bool

\__template_debug:n
\__template_debug_typeout:n
144 \cs_new_eq:NN \__template_debug:n \use_none:n
45 \cs_new_eq:NN \__template_debug_typeout:n \use_none:n

(End of definition for \__template_debug:n and \__template_debug_typeout:n.)

\template_debug_on:
\template_debug_off:
\__template_debug_gset 14 \cs_new_protected:Npn \template_debug on:

w7 {

148 \bool_gset_true:N \g__template_debug_bool
149 \__template_debug_gset:

150 }

151 \cs_new_protected:Npn \template_debug_off:

152 {

153 \bool_gset_false:N \g__template_debug_bool
154 \__template_debug_gset:

155 }

156 \cs_new_protected:Npn \__template_debug_gset:

157 {

158 \cs_gset_protected:Npx \__template_debug:n ##1

159 { \bool_if:NT \g__template_debug_bool {##1} }

160 \cs_gset_protected:Npx \__template_debug_typeout:n ##1

161 { \bool_if:NT \g__template_debug_bool { \typeout{[Template]~ ==>~ ##1} } }
162 }

(End of definition for \template_debug_on:, \template_debug_off:, and \__template_debug_gset:.
These functions are documented on page 5.)

\DebugTemplatesOn
\DebugTemplatesOff

163 \cs_new_protected:Npn \DebugTemplatesOn { \template_debug_on: }
161 \cs_new_protected:Npn \DebugTemplatesOff { \template_debug_off: }

165 \DebugTemplatesOn

(End of definition for \DebugTemplatesOn and \DebugTemplatesOff. These functions are documented
on page 5.)

166 (/package)

11



(xlatex-lab)

\ProvidesFile{context-latex-lab-testphase.ltx}
[\1tlabcontextdate\space v\ltlabcontextversion\space
latex-lab wrapper context]

> \RequirePackage{latex-lab-testphase-context}

4 (/latex-lab)

12



	1 Introduction
	1.1 Definition of a "context"
	1.2 The "primary context"
	1.3 The "secondary context"

	2 Setting context
	3 Context usage in template instances
	4 Notes
	5 Currently mainly internal interfaces
	6 Debugging
	7 Changes to internals of LaTeX
	8 Implementation
	8.0.1 Debugging
	8.1 Supporting font size changes as a secondary context
	8.2 Supporting primary context
	8.2.1 Float context
	8.2.2 Caption context
	8.2.3 Footnote context
	8.2.4 Header context
	8.2.5 Footer context
	8.2.6 Marginal context

	8.3 Changes to lttemplates.dtx code
	8.3.1 Debugging of templates





