
Package ‘MSstatsResponse’
February 19, 2026

Type Package

Title Statistical Methods for Chemoproteomics Dose-Response Analysis

Version 1.0.0

Description Tools for detecting drug-protein interactions and estimating IC50
values from chemoproteomics data. Implements semi-parametric isotonic regression,
bootstrapping, and curve fitting to evaluate compound effects on protein abundance.

URL https://github.com/Vitek-Lab/MSstatsResponse

BugReports https://github.com/Vitek-Lab/MSstatsResponse/issues

License Artistic-2.0

Encoding UTF-8

Depends R (>= 4.5.0)

LazyData false

RoxygenNote 7.3.3

Imports BiocParallel, ggplot2, dplyr, stats, parallel, data.table

Suggests MSstats, MSstatsTMT, tidyverse, boot, purrr, gridExtra,
knitr, rmarkdown, BiocStyle, testthat

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

biocViews Proteomics, MassSpectrometry, StatisticalMethod, Software,
Regression

git_url https://git.bioconductor.org/packages/MSstatsResponse

git_branch RELEASE_3_22

git_last_commit 7b935df

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Author Sarah Szvetecz [aut, cre],
Devon Kohler [aut],
Olga Vitek [aut]

Maintainer Sarah Szvetecz <szvetecz.s@northeastern.edu>

1

https://github.com/Vitek-Lab/MSstatsResponse
https://github.com/Vitek-Lab/MSstatsResponse/issues

2 .extractTemplatesFromData

Contents
.extractTemplatesFromData . 2
bootstrapIC50 . 3
bootstrapIC50LogScale . 4
convertGroupToNumericDose . 4
DIA_MSstats_Normalized . 5
doseResponseFit . 6
fitIsotonicRegression . 7
futureExperimentSimulation . 8
MSstatsPrepareDoseResponseFit . 10
plotHitRateMSstatsResponse . 12
plotIsotonic . 13
predictIC50 . 14
predictIC50Parallel . 16
simulateChemoProteinLevelNonParametric . 17
visualizeResponseProtein . 18

Index 20

.extractTemplatesFromData

Helper function to extract template profiles from user data

Description

Helper function to extract template profiles from user data

Usage

.extractTemplatesFromData(
data,
strong_proteins,
weak_proteins,
no_interaction_proteins,
drug_name,
concentrations

)

Arguments

data Prepared dose-response data
strong_proteins

Vector of protein IDs for strong responders

weak_proteins Vector of protein IDs for weak responders
no_interaction_proteins

Vector of protein IDs for non-responders

drug_name Drug to extract templates for

concentrations Concentrations to include in template (in nM)

bootstrapIC50 3

Value

List with template data for each interaction type

bootstrapIC50 Bootstrap IC50 Estimates and Confidence Interval (ratio scale)

Description

Bootstrap IC50 Estimates and Confidence Interval (ratio scale)

Usage

bootstrapIC50(
dose,
response,
n_samples = 1000,
alpha = 0.1,
increasing = FALSE,
target_response = 0.5,
transform_x = TRUE

)

Arguments

dose Numeric vector of dose values.

response Numeric vector of response values (on log2 scale).

n_samples Number of bootstrap samples (default = 1000).

alpha Significance level for confidence interval (default = 0.10).

increasing Logical. Fit non-decreasing if TRUE.

target_response

Numeric value for response level (default = 0.5).

transform_x Logical. If TRUE, applies log10(dose + 1) transformation. Default = TRUE.

Value

List with mean IC50, CI bounds, and transformed estimates.

4 convertGroupToNumericDose

bootstrapIC50LogScale Bootstrap IC50 Estimates and Confidence Interval (log scale)

Description

Bootstrap IC50 Estimates and Confidence Interval (log scale)

Usage

bootstrapIC50LogScale(
x,
y,
n_samples = 1000,
alpha = 0.05,
increasing = FALSE,
target_response = 0.5

)

Arguments

x Numeric vector of dose values.

y Numeric vector of log2 response values.

n_samples Number of bootstrap samples (default = 1000).

alpha Significance level for confidence interval (default = 0.05).

increasing Logical. Fit non-decreasing if TRUE.
target_response

Numeric value for response level (default = 0.5).

Value

List with mean IC50, CI bounds, and transformed estimates.

convertGroupToNumericDose

Convert MSstats GROUP labels to numeric dose in nM and extract
drug name

Description

Convert MSstats GROUP labels to numeric dose in nM and extract drug name

Usage

convertGroupToNumericDose(group_vector)

Arguments

group_vector A character or factor vector with GROUP labels (e.g., "Dasatinib_003uM")

DIA_MSstats_Normalized 5

Value

A data frame with two columns: dose_nM (numeric), and drug (character).

Examples

Example 1: Basic conversion with mixed units
groups <- c("DMSO", "Dasatinib_001uM", "Dasatinib_010uM",

"Dasatinib_100nM", "Dasatinib_1000nM")
dose_info <- convertGroupToNumericDose(groups)
print(dose_info)

Example 2: Handle multiple drugs
multi_drug_groups <- c("DMSO",

"Dasatinib_001uM", "Dasatinib_010uM",
"Imatinib_001uM", "Imatinib_010uM")

multi_dose_info <- convertGroupToNumericDose(multi_drug_groups)
print(multi_dose_info)

Show unique drugs found
print(unique(multi_dose_info$drug))

DIA_MSstats_Normalized

Example pre-processed DIA-MS dataset

Description

This dataset contains normalized protein-level data from a DIA-MS chemoproteomics experiment,
pre-processed using MSstats.

Usage

DIA_MSstats_Normalized

Format

A data frame with protein-level abundance values and associated MSstats metadata column names.

Details

It is used in the MSstatsResponse vignette to demonstrate data formatting and downstream dose–response
analysis.

The dataset is formatted using the standard MSstats preprocessing workflow. For more information
on preprocessing mass spectrometry–based proteomics experiments, see the vignettes for MSstats
and/or MSstatsTMT.

Below is an example of how such data can be prepared:

Read raw data (example with Spectronaut output)
raw_data <- readr::read_tsv("path/to/spectronaut_report.tsv")

Convert to MSstats format

6 doseResponseFit

msstats_data <- MSstats::SpectronauttoMSstatsFormat(raw_data)

Process data: normalization and protein summarization
processed_data <- MSstats::dataProcess(
msstats_data,
normalization = "equalizeMedians", # or FALSE for no normalization
summaryMethod = "TMP", # Tukey's median polish
MBimpute = TRUE, # Impute missing values
maxQuantileforCensored = 0.999

)

Examples

data("DIA_MSstats_Normalized")
head(DIA_MSstats_Normalized)

doseResponseFit Drug-protein interaction detection tested by F-test (fitted curve vs av-
erage response)

Description

Fits an isotonic regression model to protein abundance data. Performs an F-test to assess the signif-
icance of the dose-response curve and applies FDR correction.

Usage

doseResponseFit(
data,
weights = NULL,
increasing = FALSE,
transform_dose = TRUE,
ratio_response = FALSE

)

Arguments

data Protein-level data, formatted with MSstatsPreparedoseResponseFit().

weights Optional numeric vector of weights. Defaults to equal weights.

increasing Logical. If TRUE, fits a non-decreasing model. If FALSE, fits non-increasing.

transform_dose Logical. If TRUE, applies log10(dose + 1) transformation. Default is TRUE.

ratio_response Logical. If TRUE, converts log2 abundance to ratios relative to DMSO. Default
is FALSE.

Value

A data frame with protein-wise F-test results and BH-adjusted p-values.

fitIsotonicRegression 7

Examples

Load example data
data_path <- system.file("extdata", "DIA_MSstats_Normalized.RDS",

package = "MSstatsResponse")
dia_data <- readRDS(data_path)

Convert GROUP to dose
dose_info <- convertGroupToNumericDose(dia_data$ProteinLevelData$GROUP)
dia_data$ProteinLevelData$dose <- dose_info$dose_nM * 1e-9
dia_data$ProteinLevelData$drug <- dose_info$drug

Prepare data for analysis
prepared_data <- MSstatsPrepareDoseResponseFit(

dia_data$ProteinLevelData,
dose_column = "dose",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities"

)

Subset for quick example
example_data <- prepared_data[prepared_data$protein %in%

unique(prepared_data$protein)[1:5],]

Example 1: Basic interaction detection on log2 scale
interaction_results <- doseResponseFit(

data = example_data,
increasing = FALSE,
transform_dose = TRUE,
ratio_response = FALSE

)

View results
print(interaction_results)

Check significant interactions
significant <- interaction_results[interaction_results$adjust_pval < 0.05,]
print(paste("Found", nrow(significant), "significant interactions"))

Not run:
Example 2: Full dataset analysis
full_results <- doseResponseFit(

data = prepared_data,
increasing = FALSE,
transform_dose = TRUE,
ratio_response = FALSE

)

End(Not run)

fitIsotonicRegression Fit Isotonic Regression Model

8 futureExperimentSimulation

Description

Fits an isotonic regression model to protein intensity data with log-transformed drug doses. Option-
ally performs an F-test to assess the significance of the dose-response curve.

Usage

fitIsotonicRegression(
x,
y,
w = rep(1, length(y)),
increasing = FALSE,
transform_x = TRUE,
ratio_y = FALSE,
test_significance = FALSE

)

Arguments

x Numeric vector of dose values.

y Numeric vector of response values.

w Optional numeric vector of weights. Defaults to equal weights.

increasing Logical. If TRUE, fits a non-decreasing model. If FALSE, fits non-increasing.

transform_x Logical. If TRUE, applies log10(x + 1) transformation. Default is TRUE.

ratio_y Logical. If TRUE, converts log2 abundance to ratios relative to DMSO. Default
is FALSE.

test_significance

Logical. If TRUE, performs F-test to assess significance.

Value

A list representing the isotonic regression model (class = "isotonic_model").

futureExperimentSimulation

Test future experimental design using simulated data with user-defined
or default templates

Description

Test future experimental design using simulated data with user-defined or default templates

Usage

futureExperimentSimulation(
N_proteins = 300,
N_rep = 3,
N_Control_Rep = NULL,
Concentrations = c(0, 1, 3, 10, 30, 100, 300, 1000, 3000),
IC50_Prediction = FALSE,

futureExperimentSimulation 9

data = NULL,
strong_proteins = NULL,
weak_proteins = NULL,
no_interaction_proteins = NULL,
drug_name = NULL

)

Arguments

N_proteins Number of proteins to simulate. Default = 300.

N_rep Number of replicates for each drug concentration. Default = 3.

N_Control_Rep Number of control replicates. If NULL, uses N_rep.

Concentrations Numeric vector of drug concentrations (in nM scale). Default = c(0, 1, 3, 10,
30, 100, 300, 1000, 3000).

IC50_Prediction

Logical. If TRUE, perform IC50 prediction. Default = FALSE.

data Optional. User’s prepared dose-response data (e.g., from MSstatsPrepareDoseRe-
sponseFit). If provided, will extract templates from this data instead of using
defaults.

strong_proteins

Character vector of protein IDs to use as strong interaction templates. Only used
if data is provided.

weak_proteins Character vector of protein IDs to use as weak interaction templates. Only used
if data is provided.

no_interaction_proteins

Character vector of protein IDs to use as no interaction templates. Only used if
data is provided.

drug_name Character. Name of drug to extract templates for. Default = first non-DMSO
drug in data.

Value

A list containing simulated data, MSstats formatted data, dose-response fit results, hit rate plots,
and optionally IC50 predictions.

Examples

Example 1: Quick simulation with default templates (small scale for speed)
sim_results <- futureExperimentSimulation(

N_proteins = 50, # Small number for quick example
N_rep = 2,
N_Control_Rep = 3,
Concentrations = c(0, 10, 100, 1000), # Fewer doses for speed
IC50_Prediction = FALSE

)

View hit rates
print(sim_results$Hit_Rates_Data)

Check simulation results
print(paste("Simulated", nrow(sim_results$Simulated_Data), "data points"))

10 MSstatsPrepareDoseResponseFit

Not run:
Example 2: Full simulation with standard parameters
full_sim <- futureExperimentSimulation(

N_proteins = 3000,
N_rep = 3,
N_Control_Rep = 6,
Concentrations = c(0, 1, 3, 10, 30, 100, 300, 1000, 3000),
IC50_Prediction = TRUE

)

Display power analysis plot
print(full_sim$Hit_Rates_Plot)

Example 3: Using custom templates from your own data
Load and prepare your data
data_path <- system.file("extdata", "DIA_MSstats_Normalized.RDS",

package = "MSstatsResponse")
dia_data <- readRDS(data_path)

dose_info <- convertGroupToNumericDose(dia_data$ProteinLevelData$GROUP)
dia_data$ProteinLevelData$dose <- dose_info$dose_nM * 1e-9
dia_data$ProteinLevelData$drug <- dose_info$drug

prepared_data <- MSstatsPrepareDoseResponseFit(
dia_data$ProteinLevelData,
dose_column = "dose",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities"

)

Run simulation with custom templates
custom_sim <- futureExperimentSimulation(

N_proteins = 1000,
N_rep = 3,
data = prepared_data,
strong_proteins = c("PROTEIN_A"),
weak_proteins = c("PROTEIN_B"),
no_interaction_proteins = c("PROTEIN_C"),
drug_name = "Drug1",
Concentrations = c(0, 1, 10, 100, 1000, 3000)

)

End(Not run)

MSstatsPrepareDoseResponseFit

Prepare data for dose-response fitting with isotonic regression

Description

Prepare data for dose-response fitting with isotonic regression

MSstatsPrepareDoseResponseFit 11

Usage

MSstatsPrepareDoseResponseFit(
data,
dose_column = "dose",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities",
transform_nM_to_M = NULL

)

Arguments

data A data.frame (e.g. data$ProteinLevelData from MSstats)

dose_column Name of the column containing dose values (e.g., "dose")

drug_column Name of column containing treatment name (e.g. drug name)

protein_column Name of the column containing protein identifiers (e.g., "Protein")
log_abundance_column

Name of the column with log-transformed abundance values (e.g., "LogIntensi-
ties")

transform_nM_to_M

Logical. If TRUE, converts dose values from nanomolar (nM) to molar (M) by
multiplying by 10^-9. Use when dose_column contains nM values but analysis
requires M units. Default is NULL (no transformation applied).

Value

A standardized data.frame with columns: dose, response, protein

Examples

Load example data
data_path <- system.file("extdata", "DIA_MSstats_Normalized.RDS",

package = "MSstatsResponse")
dia_data <- readRDS(data_path)

Example 1: Basic data preparation with dose already in M
First add dose column if using GROUP labels
dose_info <- convertGroupToNumericDose(dia_data$ProteinLevelData$GROUP)
dia_data$ProteinLevelData$dose <- dose_info$dose_nM * 1e-9 # Convert to M
dia_data$ProteinLevelData$drug <- dose_info$drug

prepared_data <- MSstatsPrepareDoseResponseFit(
data = dia_data$ProteinLevelData,
dose_column = "dose",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities"

)

Check structure
str(prepared_data)
head(prepared_data)

12 plotHitRateMSstatsResponse

Example 2: Convert dose from nM to M during preparation
dia_data$ProteinLevelData$dose_nM <- dose_info$dose_nM # Keep in nM

prepared_data_converted <- MSstatsPrepareDoseResponseFit(
data = dia_data$ProteinLevelData,
dose_column = "dose_nM",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities",
transform_nM_to_M = TRUE # Convert nM to M

)

Verify conversion
print(unique(prepared_data_converted$dose))

Not run:
Example 3: Working with custom column names
custom_data <- data.frame(

ProteinID = rep(c("P1", "P2"), each = 10),
Treatment = rep(c("DMSO", "Drug1"), 10),
Concentration = rep(c(0, 1, 10, 100, 1000), 4),
Log2Abundance = rnorm(20, mean = 20, sd = 1)

)

prepared_custom <- MSstatsPrepareDoseResponseFit(
data = custom_data,
dose_column = "Concentration",
drug_column = "Treatment",
protein_column = "ProteinID",
log_abundance_column = "Log2Abundance",
transform_nM_to_M = TRUE

)

End(Not run)

plotHitRateMSstatsResponse

Plot hit rates by category

Description

Plot hit rates by category

Usage

plotHitRateMSstatsResponse(results, rep_count, concentration_count)

Arguments

results Output of interaction test from doseResponseFit()

rep_count Number of replicates per concentration in simulation
concentration_count

Number of concentrations in simulation

plotIsotonic 13

Value

A list containing the plot and plot data

plotIsotonic Plot Isotonic Regression Model

Description

Plot Isotonic Regression Model

Usage

plotIsotonic(
fit,
ratio = TRUE,
show_ic50 = FALSE,
drug_name = NULL,
protein_name = NULL,
x_lab = expression(Log[10] ~ "[drug (M)]"),
y_lab = "Log2 Intensity",
title = NULL,
ci = NULL,
legend = FALSE,
theme_style = "classic",
original_label = FALSE

)

Arguments

fit A model object returned by fitIsotonicRegression().

ratio Logical. If TRUE, shows plot on the ratio scale relative to DMSO (i.e. 0-1
scale). Default is FALSE.

show_ic50 Logical. If TRUE, adds vertical line and annotation for IC50.

drug_name Drug name for plotting data.

protein_name Protein name for plot.

x_lab Label for x-axis.

y_lab Label for y-axis.

title Title for the plot.

ci Logical. Include IC50 95% confidence interval bands if TRUE. Default is FALSE.

legend Logical. Show legend if TRUE.

theme_style ggplot2 theme name to apply (default = "classic").

original_label Logical. If TRUE, replace x-axis tick labels with original dose labels.

Value

A ggplot object.

14 predictIC50

predictIC50 Predict IC50 (dose where response = target) for each protein and drug

Description

Predict IC50 (dose where response = target) for each protein and drug

Usage

predictIC50(
data,
n_samples = 1000,
alpha = 0.1,
increasing = FALSE,
transform_dose = TRUE,
ratio_response = TRUE,
bootstrap = TRUE,
BPPARAM = bpparam(),
target_response = 0.5

)

Arguments

data A data frame with columns: protein, drug, dose, response.

n_samples Number of bootstrap samples. Default = 1000.

alpha Confidence level. Default = 0.10.

increasing Logical. If TRUE, fit a non-decreasing trend. Default = FALSE.

transform_dose Logical. If TRUE, applies log10(dose + 1) transformation. Default = TRUE.

ratio_response Logical. If TRUE, use ratio response; else use log2 scale. Default = TRUE.

bootstrap Logical. If FALSE, skip confidence interval bootstrap estimation and only return
IC50. Default = TRUE.

BPPARAM A BiocParallelParam for parallel processing. The recommended usage is
to register a backend once (e.g., register(MulticoreParam(workers=4)) on
Linux/macOS or register(SnowParam(workers=4, type="SOCK")) on Win-
dows) and pass BPPARAM = bpparam(). Default bpparam().

target_response

Numeric, the response fraction (e.g., 0.5, 0.25, 0.75). Default = 0.5.

Value

A data frame with columns: protein, drug, IC50, IC50_lower_bound, IC50_upper_bound.

Examples

Load example data
data_path <- system.file("extdata", "DIA_MSstats_Normalized.RDS",

package = "MSstatsResponse")
dia_data <- readRDS(data_path)

predictIC50 15

Convert GROUP to dose
dose_info <- convertGroupToNumericDose(dia_data$ProteinLevelData$GROUP)
dia_data$ProteinLevelData$dose <- dose_info$dose_nM * 1e-9
dia_data$ProteinLevelData$drug <- dose_info$drug

Prepare data for analysis
prepared_data <- MSstatsPrepareDoseResponseFit(

dia_data$ProteinLevelData,
dose_column = "dose",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities"

)

Subset to fewer proteins for example
example_data <- prepared_data[prepared_data$protein %in%

unique(prepared_data$protein)[1:3],]

Example 1: Quick IC50 estimation without bootstrap (fast)
ic50_quick <- predictIC50(

data = example_data,
bootstrap = FALSE

)
print(ic50_quick)

Not run:
Example 2: Full IC50 estimation with bootstrap confidence intervals
ic50_results <- predictIC50(

data = prepared_data,
n_samples = 1000,
alpha = 0.10,
ratio_response = TRUE,
bootstrap = TRUE

)

Example 3: Parallel processing for large datasets
library(BiocParallel)
ic50_parallel <- predictIC50(

data = prepared_data,
n_samples = 1000,
BPPARAM = bpparam(),
bootstrap = TRUE

)

Example 4: IC50 at different response levels (IC25, IC75)
ic25_results <- predictIC50(

data = prepared_data,
target_response = 0.25,
bootstrap = TRUE

)

End(Not run)

16 predictIC50Parallel

predictIC50Parallel Parallel version of predictIC50 function

Description

Runs predictIC50 on the entire dataset in parallel across proteins.

Usage

predictIC50Parallel(
data,
n_samples = 1000,
alpha = 0.1,
increasing = FALSE,
transform_dose = TRUE,
ratio_response = TRUE,
bootstrap = TRUE,
numberOfCores = 2

)

Arguments

data A data frame with columns: protein, drug, dose, response.

n_samples Number of bootstrap samples. Default = 1000.

alpha Confidence level. Default = 0.10.

increasing Logical. If TRUE, fit non-decreasing trend. Default = FALSE.

transform_dose Logical. If TRUE, applies log10(dose + 1) transformation. Default = TRUE.

ratio_response Logical. If TRUE, use ratio response; else use log2 scale. Default = TRUE.

bootstrap Logical. If TRUE, compute bootstrap CIs. Default = TRUE.

numberOfCores Number of cores for parallel processing. Default = 2.

Value

A data frame with columns: protein, drug, IC50, lower CI, upper CI.

Examples

Load example data
data_path <- system.file("extdata", "DIA_MSstats_Normalized.RDS",

package = "MSstatsResponse")
dia_data <- readRDS(data_path)

Convert GROUP to dose
dose_info <- convertGroupToNumericDose(dia_data$ProteinLevelData$GROUP)
dia_data$ProteinLevelData$dose <- dose_info$dose_nM * 1e-9
dia_data$ProteinLevelData$drug <- dose_info$drug

Prepare data for analysis
prepared_data <- MSstatsPrepareDoseResponseFit(

dia_data$ProteinLevelData,

simulateChemoProteinLevelNonParametric 17

dose_column = "dose",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities"

)

Subset for quick example
example_data <- prepared_data[prepared_data$protein %in%

unique(prepared_data$protein)[1:5],]

Example 1: Quick parallel IC50 without bootstrap (2 cores)
ic50_quick_parallel <- predictIC50Parallel(

data = example_data,
bootstrap = FALSE,
numberOfCores = 2

)
print(ic50_quick_parallel)

simulateChemoProteinLevelNonParametric

Simulate chemoproteomics data at the protein level - non-parametric
approach

Description

Simulate chemoproteomics data at the protein level - non-parametric approach

Usage

simulateChemoProteinLevelNonParametric(
N_proteins = 3000,
TP = 0.333,
TW = 0.333,
TN = 0.333,
concentrations = c(0, 1, 3, 10, 30, 100, 300, 1000, 3000),
rep = 3,
seed = NULL,
var_tech = 0.4,
control_rep = NULL,
template = list(strong_interaction = data.frame(dose = c(), LogIntensities = c()),
weak_interaction = data.frame(dose = c(), LogIntensities = c()), no_interaction =
data.frame(dose = c(), LogIntensities = c())),

outlier_prob = 0.05
)

Arguments

N_proteins Number of proteins in simulation. Default = 3000.

TP Proportion of strong interacting proteins. Default = 0.333.

TW Proportion of weak interacting proteins. Default = 0.333.

TN Proportion of non-interacting proteins. Default = 0.333.

18 visualizeResponseProtein

concentrations Numeric vector of drug concentrations in simulation experiment. Default = c(0,
1, 3, 10, 30, 100, 300, 1000, 3000).

rep Number of replicates for each drug concentration. Default = 3.

seed Simulation seed for reproducibility. Default = 3.

var_tech Combined technical and biological variation. Default = 0.4.

control_rep Number of control replicates. If NULL, uses rep.

template List containing real protein level data representing different levels of interac-
tions.

outlier_prob Probability of sample outlier. Default = 0.05.

Value

A data.frame with simulated chemoproteomics data.

visualizeResponseProtein

Plot isotonic regression fit with optional IC50 for a single protein and
drug

Description

Plot isotonic regression fit with optional IC50 for a single protein and drug

Usage

visualizeResponseProtein(
data,
protein_name,
drug_name,
ratio_response = TRUE,
transform_dose = TRUE,
show_ic50 = TRUE,
add_ci = FALSE,
n_samples = 1000,
alpha = 0.1,
increasing = FALSE,
y_lab = "Ratio Response"

)

Arguments

data Protein-level dataset (e.g., output of MSstatsPrepareDoseResponseFit).

protein_name Character. Protein name to plot.

drug_name Character. Drug name to plot.

ratio_response Logical. If TRUE, compute IC50 on ratio scale; if FALSE, use log2 intensities.

transform_dose Logical. If TRUE, applies log10(dose + 1). Default is TRUE.

show_ic50 Logical. If TRUE, adds vertical line and annotation for IC50.

add_ci Logical. Include IC50 95% confidence interval bands if TRUE. Default is FALSE.

visualizeResponseProtein 19

n_samples Number of bootstrap samples if including confidence intervals. Default is 1000.

alpha Alpha level for confidence intervals. Default is 0.05.

increasing Logical. If TRUE, fits a non-decreasing model. If FALSE, fits non-increasing.

y_lab Character. Label for the y-axis. Default is "Ratio Response".

Value

A ggplot object.

Examples

Load example data
data_path <- system.file("extdata", "DIA_MSstats_Normalized.RDS",

package = "MSstatsResponse")
dia_data <- readRDS(data_path)

Convert GROUP to dose
dose_info <- convertGroupToNumericDose(dia_data$ProteinLevelData$GROUP)
dia_data$ProteinLevelData$dose <- dose_info$dose_nM * 1e-9
dia_data$ProteinLevelData$drug <- dose_info$drug

Prepare data for analysis
prepared_data <- MSstatsPrepareDoseResponseFit(

dia_data$ProteinLevelData,
dose_column = "dose",
drug_column = "drug",
protein_column = "Protein",
log_abundance_column = "LogIntensities"

)

Example 1: Basic dose-response visualization
plot1 <- visualizeResponseProtein(

data = prepared_data,
protein_name = "PROTEIN_A",
drug_name = "Drug1",
ratio_response = TRUE,
show_ic50 = FALSE,
add_ci = FALSE

)
print(plot1)

Example 2: Add IC50 annotation
plot2 <- visualizeResponseProtein(

data = prepared_data,
protein_name = "PROTEIN_A",
drug_name = "Drug1",
ratio_response = TRUE,
show_ic50 = TRUE,
add_ci = FALSE

)
print(plot2)

Index

∗ datasets
DIA_MSstats_Normalized, 5

.extractTemplatesFromData, 2

bootstrapIC50, 3
bootstrapIC50LogScale, 4

convertGroupToNumericDose, 4

DIA_MSstats_Normalized, 5
doseResponseFit, 6

fitIsotonicRegression, 7
futureExperimentSimulation, 8

MSstatsPrepareDoseResponseFit, 10

plotHitRateMSstatsResponse, 12
plotIsotonic, 13
predictIC50, 14
predictIC50Parallel, 16

simulateChemoProteinLevelNonParametric,
17

visualizeResponseProtein, 18

20

	.extractTemplatesFromData
	bootstrapIC50
	bootstrapIC50LogScale
	convertGroupToNumericDose
	DIA_MSstats_Normalized
	doseResponseFit
	fitIsotonicRegression
	futureExperimentSimulation
	MSstatsPrepareDoseResponseFit
	plotHitRateMSstatsResponse
	plotIsotonic
	predictIC50
	predictIC50Parallel
	simulateChemoProteinLevelNonParametric
	visualizeResponseProtein
	Index

