Package ‘Dspikeln’

February 19, 2026

Type Package
Title Estimating Absolute Abundance from Microbial Spike-in Controls
Version 1.0.0

Description Provides a reproducible and modular workflow for absolute microbial
quantification using spike-in controls. Supports both single spike-in taxa
and synthetic microbial communities with user-defined spike-in volumes and
genome copy numbers. Compatible with 'phyloseq' and "TreeSummarizedExperiment'
(TSE) data structures. The package implements methods for spike-in validation,
preprocessing, scaling factor estimation, absolute abundance conversion,
bias correction, and normalization. Facilitates downstream statistical
analyses with 'DESeq2’, 'edgeR’, and other Bioconductor-compatible methods.
Visualization tools are provided via 'ggplot2', 'ggtree’, and related packages.
Includes detailed vignettes, case studies, and function-level documentation
to guide users through experimental design, quantification, and interpretation.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
LazyDataCompression xz
Depends R (>=4.1.0)

Imports ape, Biostrings, data.table, DECIPHER, DESeq2, dplyr, edgeR,
flextable, ggalluvial, ggnewscale, ggplot2, ggpubr, ggraph,
ggrepel, ggridges, ggtree, ggtreeExtra, graphics, grDevices,
igraph, limma, matrixStats, methods, microbiome, officer, grid,
reshape2, patchwork, phangorn, phyloseq, randomForest,
RColorBrewer, rlang, S4Vectors, scales, stats, tibble, tidyr,
SummarizedExperiment, TreeSummarizedExperiment, utils, msa,
xml2, ggstar

Suggests Biobase, mia, BiocGenerics, magrittr, BiocManager, cluster,
devtools, DT, e1071, foreach, ggtext, intergraph, knitr,
optparse, plyr, preprocessCore, gpdf, remotes, rmarkdown,
ShortRead, testthat (>= 3.0.0), vegan, viridis

biocViews Microbiome, Preprocessing, QualityControl,
DifferentialExpression, Normalization, Sequencing,
Visualization, Phylogenetics, ExperimentalDesign, Datalmport,
Software

URL https://github.com/mghotbi/Dspikeln

https://github.com/mghotbi/DspikeIn

BugReports https://github.com/mghotbi/DspikeIn/issues
Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

git_url https://git.bioconductor.org/packages/Dspikeln
git_branch RELEASE_3_22

git_last_commit 8a427ff

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Author Mitra Ghotbi [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9185-9993>),
Marjan Ghotbi [ctb] (ORCID: <https://orcid.org/0000-0003-4655-6445>)

Maintainer Mitra Ghotbi <mitra.ghotbi@gmail.com>

Contents

AcceptableRange L
adjusted_prevalence
adjust_abundance_one_third L Lo
alluvial_plot
calculate_list_average_scaling_factors
calculate_spikeln_factors
calculate_spike_percentage
calculate_spike_percentage list
calculate_summary_stats_table L.
color_palette
conclusion
convert_categorical_to_factors L.
convert_phyloseq_to_tseo
convert_to_absolute_counts.
convert_tse_to_phyloseq oo
create_directory L.
create_liSt e
degree_network
detect_common_asvs_taXaot e e e e e e
ExpData-class e
extract_neighbors L.
filter_and_split_abundance,
get_long_format_data
get_otu_table
get_phy_tree e e e
get_reference_Seqt e e e e e
get_sample_data
get_sample_SUMmS e e e e e e
get_tax_table
SM_MEAN . . v v v v v et e e e e e e e e e e e e e e e e e

Contents

https://github.com/mghotbi/DspikeIn/issues
https://orcid.org/0000-0001-9185-9993
https://orcid.org/0000-0003-4655-6445

Contents

Index

3
imbalance_calculate_list_average_scaling_factors 34
Iabel e e 36
load_graphml 38
metadata_full e e 38
MG_shapes e e e 40
my_custom_theme e e 40
node_level metrics e 41
NOrM.CIr L e e e e 42
0 T0) ' B o1 43
norm.DESeq. 43
norm.med L L e e e 44
norm.Poisson L 44
norm.QN e e e e e 45
0 70) ' 0 1) 45
normurle L e e e 46
norm.TC e e 46
norm.TMM e e 47
0 T0) ' 0 10 47
norm.UQ e e e e e 48
normalization_Set e e e e e e e 48
perform_and_visualize_ DA 49
Physeq e 51
physeq_16SOTU e 52
physeq_ITSOTU e e e e e 53
plotbar_abundance 54
plot_core_microbiome_customl 56
plot_spikein_tree_diagnostic e e 57
Pre_processing_hashcodes 59
Pre_processing_species e e e e 60
Pre_processing_species_list oL 62
proportion_adj. 63
quadrant_plot L e 64
RandomForest_selected 65
randomsubsample_Trimmed_evenDepth 67
random_subsample_WithReductionFactor 68
regression_ploto 69
relativized_filtered_taxa. 70
remove_zero_negative_count_samples Lo e 71
ridge_plot_it. 72
set N . . L e, 73
simulate_network_robustness e 73
summ_ASV_OTUID e e e 75
summ_count_phyloseq 76
summ_phyloseq_sampleID oL 76
taxa_barplot 77
tidy_phyloseq_tse 80
L 81
validate_spikein_clade 82
weight_Network 83

4 AcceptableRange

AcceptableRange Acceptable Range Data

Description

This dataset provides reference ranges and sample-level metadata for microbial spike-in perfor-
mance evaluation. It includes taxonomic annotations and summary statistics used in validation and
quality control workflows.

Usage

data(AcceptableRange)

Format

A data frame with the following columns:

Ecoregion_III EPA Level III ecoregion classification.

Genus Genus of the taxon.

Host_genus Host genus from which the sample was derived.

Percentage Observed spike-in percentage.

Phylum Phylum classification of the taxon.

Range Acceptable range category.

Total_Reads_spiked Number of reads matching the spike-in species.
Total_Reads_total Total number of reads per sample.

X Row identifier (optional, may be an index or artifact of data processing).

mean_abundance Mean abundance across all samples.

Value

A data frame of spike-in evaluation metrics and taxonomy annotations.

Source

Internal package dataset.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("AcceptableRange”, package = "DspikelIn”)
head(AcceptableRange)
summary (AcceptableRange$Percentage)

3

adjusted_prevalence 5

adjusted_prevalence Adjust Prevalence in a Microbiome Object

Description

Removes low-prevalence taxa from a phyloseq or TreeSummarizedExperiment object based on
user-specified prevalence thresholds derived from taxa abundance statistics.

Usage

adjusted_prevalence(obj, method = "min"”, output_file = NULL)

Arguments
obj A phyloseq or TreeSummarizedExperiment object.
method Character. Threshold method: one of "min”, "mean”, "median”, or "max".

output_file Optional. Character. Path to save the adjusted object as . rds. Default is NULL,
meaning no file will be saved unless explicitly provided.

Value

The adjusted object of the same class as obj.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

Adjust prevalence in phyloseq
adjusted_physeq <- adjusted_prevalence(physeq_16SOTU, method = "mean")

Convert to TreeSummarizedExperiment
tse_obj <- convert_phyloseq_to_tse(physeq_16S0TU)

Adjust prevalence in TSE
adjusted_tse <- adjusted_prevalence(tse_obj, method = "median")

adjust_abundance_one_third
Adjust Abundance by a Custom Factor

Description

This function normalizes microbial abundance data in a phyloseq or TreeSummarizedExperiment
object by dividing all abundance values by a user-defined factor. It supports both data structures
and preserves their internal metadata.

Usage

adjust_abundance_one_third

adjust_abundance_one_third(obj, factor = 3, output_file = NULL)

adjust_abundance_by_factor(obj, factor = 3, output_file = NULL)

Arguments

obj

factor

output_file

Details

A phyloseqor TreeSummarizedExperiment object containing microbiome count
data.

A numeric value > 0 specifying the divisor applied to abundance counts. De-
fault is 3 (historically used as the one-third normalization factor).

A character string specifying a path to save the adjusted object as . rds. Default
is NULL (no file written).

This function extracts the OTU table (for phyloseq) or assay matrix (for TSE), divides all abundance
values by the provided factor, and reinserts the adjusted table while maintaining the full metadata

structure.

Historically, the function name adjust_abundance_one_third() referred to a fixed normalization
by 3. This generalized version preserves the same function name for backward compatibility and
allows any user-defined divisor.

For clarity, an alias function adjust_abundance_by_factor() is provided.

Value

An adjusted object of the same class (phyloseq or TreeSummarizedExperiment), where the abun-
dance values are divided by the specified factor.

See Also

convert_phyloseq_to_tse

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

Adjust phyloseq object
adjusted_physeq <- adjust_abundance_one_third(physeq_16S0TU, factor = 3)

Convert to TSE and adjust
tse_16SOTU <- convert_phyloseq_to_tse(physeq_16S0TU)
adjusted_tse <- adjust_abundance_one_third(tse_16S0TU, factor = 2)

Using the alias
adjusted_physeq2 <- adjust_abundance_by_factor(physeq_16S0TU, factor = 5)

alluvial_plot

alluvial_plot

Generate an Alluvial Plot for Microbiome Data

Description

This function creates an alluvial plot based on input data, which can be either absolute or relative

abundance data.

Usage
alluvial_plot(

data,

axes = NULL,
abundance_threshold = 10000,
fill_variable = "Phylum”,
silent = TRUE,
abundance_type = "absolute”,
total_reads = NULL,

top_taxa = NULL,

facet_vars = NULL,

text_size = 4,
legend_ncol = 1,

custom_colors = color_palette$MG,

color_mapping = NULL

Arguments

data

axes

A data frame containing abundance and categorical variables.

A character vector specifying the categorical variables for the x-axis.

abundance_threshold

fill_variable
silent
abundance_type

total_reads

top_taxa
facet_vars
text_size
legend_ncol
custom_colors

color_mapping

Value

A numeric value specifying the minimum abundance required for an entity to be
included in the plot. Default is 10000.

A string specifying the variable to be used for fill colors. Default is "Phylum".
Logical. If TRUE, suppresses warnings. Default is TRUE.
A string specifying the type of abundance: "absolute” or "relative”.

Numeric, total number of reads for relative abundance calculation. Default is
NULL.

Integer. The number of top abundant taxa to retain. Default is NULL.

A character vector specifying variables to facet by. Default is NULL.
Numeric, size of text labels. Default is 4.

Integer, number of columns for the legend. Default is 1.

A named vector specifying colors for taxa. Default is color_palette$MG.

A named vector of colors for taxa, overriding custom_colors. Default is NULL.

A ggplot?2 object representing an alluvial plot.

8 alluvial_plot

Note

This function assumes data has already been converted to long format with an "Abundance" column.

Source

Built using ggalluvial, ggplot2, and dplyr for visualization of microbial abundance dynamics.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE) &&
requireNamespace("phyloseq”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)
physeq_subset <- phyloseq::subset_samples(physeq_16SOTU, Animal.type == "Frog")
physeq_subset <- phyloseq: :prune_taxa(
phyloseq: : taxa_sums(physeq_subset) > 0, physeq_subset
)

Convert phyloseq object to long format
pps_Abs <- get_long_format_data(physeq_subset)

Calculate total reads (illustrative)
total_reads <- sum(pps_Abs$Abundance)
message("Total reads in Frog subset: ", total_reads)

Heavy plotting step — wrapped in \donttest{} to reduce build time

alluvial_plot_rel <- alluvial_plot(
data = pps_Abs,
axes = c("Env.broad.scale”, "Host.genus", "Diet"),
abundance_threshold = 9.01,
fill_variable = "Phylum”,
abundance_type = "relative”,
top_taxa = 5,
silent = TRUE,
text_size = 3,
legend_ncol = 1,
custom_colors =
)
print(alluvial_plot_rel)

DspikeIn::color_palette$cool _MG

Convert to TreeSummarizedExperiment (TSE) format
tse_data <- convert_phyloseq_to_tse(physeq_subset)
tse_long <- get_long_format_data(tse_data)

Heavy plotting step — wrapped in \donttest{} to reduce build time

alluvial_plot_abs <- alluvial_plot(
data = tse_long,
axes = c("Env.broad.scale”, "Host.genus"”, "Diet"),
abundance_threshold = 2000,
fill_variable = "Phylum”,
abundance_type = "absolute”,
top_taxa = 5,
silent = TRUE,
text_size = 3,

calculate_list_average_scaling_factors 9

legend_ncol = 1,
custom_colors = Dspikeln::color_palette$cool_MG
)

print(alluvial_plot_abs)

calculate_list_average_scaling_factors

Calculate Sample-specific Average Scaling Factors for Multiple Spike-
in Groups

Description

Computes sample-specific scaling factors for multiple groups of spiked species in a phyloseq or
TreeSummarizedExperiment object. Each group can have its own expected spike-in cell count.
Scaling factors are calculated per sample and averaged across groups. Missing spike-in observations
in a sample will be handled gracefully by averaging available groups.

Usage

calculate_list_average_scaling_factors(
obj,
spiked_species_list,
spiked_cells_list,

merge_method = c("sum”, "max")
)
Arguments
obj A phyloseq or TreeSummarizedExperiment object.

spiked_species_list
A list of character vectors. Each vector contains taxon names (at species level)
for one spike-in group.

spiked_cells_list

A numeric vector specifying the expected number of spike-in cells for each
group. The order must match spiked_species_list.

merge_method Character. Either "sum” or "max"”. Controls how OTUs of each spike-in group
are merged.

Details

The function assumes that the taxonomy table has a Species column. The output is suitable for
downstream absolute quantification pipelines. OTUs belonging to each spike-in group will be

merged using the specified merge_method ("sum" or "max") to obtain a group-specific spike-in
abundance in each sample.

If a sample does not contain any spike-in sequences, a scaling factor of 1 is assigned.

Value

A named numeric vector of sample-specific scaling factors.

10 calculate_spikeln_factors

Notes

* This function does not modify the input object.

* The returned scaling factors are intended to be used for absolute abundance normalization.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Load example phyloseq and TSE objects
data("physeq”, package = "DspikeIn”)
data("tse”, package = "DspikeIn”)

Define spike-in species groups and expected cell counts
spiked_species_list <- list(

c("Pseudomonas aeruginosa”),

c("Escherichia coli"),

c("Clostridium difficile")

)

spiked_cells_list <- c(10000, 20000, 15000)

--- Phyloseq example ---

scaling_phyloseq <- calculate_list_average_scaling_factors(
physeq,

spiked_species_list,
spiked_cells_list,

merge_method = "sum”
)
print(scaling_phyloseq)
--- TreeSummarizedExperiment (TSE) example ---
scaling_tse <- calculate_list_average_scaling_factors(
tse,

spiked_species_list,
spiked_cells_list,
merge_method = "sum

"

)

print(scaling_tse)

calculate_spikelIn_factors

Calculate Scaling Factors for Spiked Species in Phyloseq or TSE Ob-
Jject

Description

Calculates scaling factors for specified spike-in species or genera in a phyloseq or TreeSummarizedExperiment
(TSE) object. It supports genus/species-level detection, removes spike-ins, merges them, computes

scaling factors, and returns a bias-corrected absolute count matrix. The function automatically
handles:Species or genus-level spike-in identification, Safe tree and taxonomy synchronization,
Volume-based scaling (via the spiked.volume field in metadata), Optional export of intermediate

results for traceability (Total_Reads.csv, Spiked_Reads.csv, Scaling_Factors.csv).

calculate_spikeln_factors 11

Usage

calculate_spikeIn_factors(
obj,
spiked_cells,
merged_spiked_species,
output_path = NULL

)

Arguments

obj A phyloseqor TreeSummarizedExperiment object containing microbiome data.

spiked_cells A numeric value for the number of spiked cells per unit volume.
merged_spiked_species
A character vector of spiked taxon names (species or genus).

output_path Optional directory path to save intermediate files (default is NULL).

Value

A list with:

scaling_factors
Named numeric vector of scaling factors per sample.

filtered_obj Input object with spike-in taxa removed.
spiked_species_reads
Data frame with spike-in reads per sample.

total_reads Data frame with total reads per sample.
spiked_species_merged
The merged spike-in taxa as a phyloseq object.

tree Original phylogenetic tree, if available.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE) &&
requireNamespace("phyloseq”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikelIn")

spiked_cells <- 1847
species_name <- spiked_species <- c("Tetragenococcus_halophilus”, "Tetragenococcus_sp.")
merged_spiked_species <- "Tetragenococcus_halophilus”

--- Phyloseq Example ---

spiked_16S_0TU <- phyloseq: :subset_samples(physeq_16S0TU, spiked.volume %in% c("2", "1"))
temp_output_file <- file.path(tempdir(), "merged_physeq_sum.rds")

output_dir <- file.path(tempdir(), "spikeIn_factors_output”)

merged_physeq_sum <- Pre_processing_species(
spiked_16S_0TU,
species_name = merged_spiked_species,
merge_method = "sum”,
output_file = temp_output_file

)

result_physeq <- calculate_spikeIn_factors(

12 calculate_spike_percentage

merged_physeq_sum,
spiked_cells = spiked_cells,
merged_spiked_species = merged_spiked_species,
output_path = output_dir

)

print(result_physeg$scaling_factors)

if (file.exists(temp_output_file)) unlink(temp_output_file, force = TRUE)
if (dir.exists(output_dir)) unlink(output_dir, recursive = TRUE, force = TRUE)

--- TSE Example ---
tse_data <- convert_phyloseq_to_tse(physeq_16S0TU)
merged_tse_sum <- Pre_processing_species(

tse_data,
species_name = merged_spiked_species,
merge_method = "sum”

)

result_tse <- calculate_spikeIn_factors(
merged_tse_sum,
spiked_cells = spiked_cells,
merged_spiked_species = merged_spiked_species

)
print(result_tse$scaling_factors)

--- Final cleanup of any extra leftover RDS files ---
leftover_rds <- list.files(tempdir(), pattern = "merged_physeq.*\\.rds$", full.names = TRUE)
file.remove(leftover_rds[file.exists(leftover_rds)])

}

calculate_spike_percentage

Calculate Spike Percentage for Specified Taxa in a Phyloseq or TSE
Object

Description

In spike-in based absolute quantitation workflows, the acceptable recovery range of spike-in reads is
system dependent, varying with sequencing platform, extraction protocol, and microbial community
structure. This function calculates the percentage of reads, categorizes the results as passed or failed,
optionally saves the results as DOCX and CSV files.It also visualizes the relationship between
observed spike-in abundance and total reads, stratified across user-defined recovery intervals, to
empirically determine the optimal range for quality control.

Usage

calculate_spike_percentage(
obj,
merged_spiked_species = NULL,
merged_spiked_hashcodes = NULL,
output_file = NULL,
passed_range = c(0.1, 11)

calculate_spike_percentage 13

Arguments

obj A phyloseq or TreeSummarizedExperiment object containing the microbial
data.
merged_spiked_species
A character vector of spiked taxa names (can be from any taxonomic level).
merged_spiked_hashcodes
A character vector of spiked hashcodes (ASV/OTU IDs) to check in the dataset.
Default is NULL.

output_file A character string specifying the path to save the output files. Default is NULL
(no files are written).

passed_range A numeric vector of length 2 specifying the range of percentages to categorize
results as "passed". Default is c(0.1, 11).

Value
A data frame with the following columns:

Sample Sample identifier.

Total_Reads Total number of reads in the sample.

Spiked_Reads Number of reads mapped to the spike-in taxa.

Percentage Percentage of spike-in reads (Spiked_Reads / Total_Reads * 100).

Result Quality control result, either "passed” or "failed”, based on the specified range.

See Also

Pre_processing_species, calculate_spike_percentage

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Load example phyloseq object
data("physeq_16S0TU", package = "DspikelIn")

oo Phyloseq Example -----------
species_name <- c("Tetragenococcus_halophilus”, "Tetragenococcus_sp.")
merged_spiked_species <- "Tetragenococcus_halophilus”

Pre-process the phyloseq object to merge spike-in taxa
merged_physeq <- Pre_processing_species(

physeq_16S0TU,

species_name = species_name,

merge_method = "sum”

)

Perform spike-in percentage calculation
output_docx <- file.path(tempdir(), "spike_summary_physeq.docx")
result_physeq <- calculate_spike_percentage(
obj = merged_physeq,
merged_spiked_species = merged_spiked_species,
output_file = output_docx,
passed_range = c(0.1, 20)
)
print(result_physeq)

14 calculate_spike_percentage_list

oo TSE Example -----------
tse_16SO0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
merged_tse <- Pre_processing_species(

tse_16S0TU,

species_name = species_name,

merge_method = "sum

)

n

output_docx_tse <- file.path(tempdir(), "spike_summary_tse.docx")
result_tse <- calculate_spike_percentage(
obj = merged_tse,
merged_spiked_species = merged_spiked_species,
output_file = output_docx_tse,
passed_range = c(0.1, 20)
)
print(result_tse)

Clean up temporary files
if (file.exists(output_docx)) unlink(output_docx, force = TRUE)
if (file.exists(output_docx_tse)) unlink(output_docx_tse, force = TRUE)

calculate_spike_percentage_list
Calculate Spike-in Percentage for Specified Taxa

Description

Computes the percentage of reads attributed to specified spike-in taxa in a phyloseq or TreeSummarizedExperiment
object. The function merges spike-in taxa, computes percentages, classifies samples into "passed”
or "failed" based on a user-defined threshold, and optionally exports DOCX and CSV reports.

Usage

calculate_spike_percentage_list(
obj,
merged_spiked_species,
output_path = NULL,
passed_range = c(0.1, 11)

)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.
merged_spiked_species
Character vector or list of spike-in species names (at the Species level).

output_path Optional. Character string specifying the output path (DOCX). If NULL (default)
results are not saved.

passed_range Numeric vector of length 2 specifying the accepted percentage range. Default is
c(0.1, 11).

calculate_spike_percentage_list

Details

15

The function automatically detects spike-in OTUs based on the Species column in the taxonomy
table. It works with both phyloseq and TreeSummarizedExperiment objects and produces QC

diagnostics commonly required for spike-in based absolute quantification workflows.

Value

A data. frame with:

Notes

e Sample

* Total_Reads

» Total_Reads_spiked

* Percentage (of spike-in reads)
* Result ("passed"/"failed")

* Assumes the taxonomy table contains a column named Species.

* Supports both phyloseq and TreeSummarizedExperiment objects.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {

Load example phyloseq and TSE objects
data("physeq”, package = "DspikeIn”)
data("tse”, package = "DspikeIn”)

Define merged spike-in species list
spiked_species_list <- c(
"Pseudomonas aeruginosa”,
"Escherichia coli”,
"Clostridium difficile”

Create temporary output paths
temp_docx <- file.path(tempdir(), "merged_result.docx")
temp_csv <- sub("”.docx", ".csv", temp_docx)

--- Phyloseq Example ---
result_physeq <- calculate_spike_percentage_list(
obj = physeq,

merged_spiked_species = spiked_species_list,
output_path = temp_docx,
passed_range = c(0.1, 10)

)

print(result_physeq)

--- TSE Example ---

result_tse <- calculate_spike_percentage_list(
obj = tse,
merged_spiked_species = spiked_species_list,
output_path = temp_docx,
passed_range = c(0.1, 10)

16 calculate_summary_stats_table

print(result_tse)

Clean up
if (file.exists(temp_docx)) unlink(temp_docx, force = TRUE)
if (file.exists(temp_csv)) unlink(temp_csv, force = TRUE)

calculate_summary_stats_table
Calculate Summary Statistics Table

Description

Computes summary statistics (mean, standard deviation, standard error, and quartiles) for numeric
columns of a data frame, and saves the resulting table as a .csv file. This utility is designed for
quick post-analysis summaries and ensures that all numerical columns are summarized consistently
across datasets.

Usage

calculate_summary_stats_table(data, output_path = NULL)

Arguments

data A data frame containing numeric variables.

output_path Optional. Character string specifying the CSV output path. Defaultis "post_eval_summary.csv".

Details

This function provides a concise statistical overview of numeric datasets. It computes central ten-
dency, dispersion, and quartile-based spread metrics and writes the results to a . csv file suitable for
reporting or downstream use.

Value

A data frame containing mean, standard deviation, standard error, first quartile (Q25), median, and
third quartile (Q75) for each numeric column.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
--- Phyloseq example ---
data("physeq”, package = "DspikeIn”)
absolute_count <- phyloseq::otu_table(physeq)

tmp_csv <- file.path(tempdir(), "physeq_summary.csv")
summary_table_physeq <- calculate_summary_stats_table(
data = as.data.frame(absolute_count),
output_path = tmp_csv
)
print(summary_table_physeq)
if (file.exists(tmp_csv)) file.remove(tmp_csv)

color_palette 17

--- TSE example ---
data("tse”, package = "DspikeIn”)
tse_counts <- SummarizedExperiment::assay(tse)

tmp_csv2 <- file.path(tempdir(), "tse_summary.csv")
summary_table_tse <- calculate_summary_stats_table(
data = as.data.frame(tse_counts),
output_path = tmp_csv2
)
print(summary_table_tse)
if (file.exists(tmp_csv2)) file.remove(tmp_csv2)

color_palette Original, Extended, and Nature-Inspired Color Palette Sequence

Description

This object provides multiple color palettes for scientific, exploratory, and publication-grade graph-
ics:

* MG: The original palette.

* extended_palette: MG combined with rainbow colors.

* light MG: A chic pastel palette.

* MG_Awesome: A vibrant and unique 50-color palette for visualization.

* cool_MG: A sophisticated, modern 50-color palette with oceanic, earthy, and high-contrast
tones.

* mix_MG: A randomly mixed unique palette.
* vivid_MG: A vivid and bright 50-color palette.

* Mar_palette: A carefully crafted 40-color nature-inspired palette suitable for high-quality pub-
lications.

Usage

color_palette

Format
A list with eight elements:

MG A character vector of the original color codes.

extended_palette A character vector of extended color codes, combining MG with the rainbow
palette.

light_ MG A character vector of chic pastel color codes.
MG_Awesome A vibrant 50-color palette designed for high-impact visualizations.

cool_MG A sophisticated and modern 50-color palette with oceanic, earthy, and high-contrast
tones.

mix_MG A fully combined and randomly mixed unique palette including Mar_palette.
vivid_MG A vivid and bright 50-color palette.

Mar_palette A 40-color palette inspired by nature, suitable for academic and professional publi-
cations.

18 conclusion

Details

These palettes can be directly used with ggplot2 or other visualization systems supporting manual
color scales.

Value

A named list of character vectors, each containing color hex codes for different palettes.

Examples

Example using the Mar_palette

ggplot2::ggplot(mtcars, ggplot2::aes(x = wt, y = mpg, color = factor(cyl))) +
ggplot2::geom_point(size = 4) +
ggplot2::scale_color_manual(values = color_palette$Mar_palette) +
ggplot2::theme_minimal()

conclusion Compute Summary Statistics for Spiked Species

Description

Computes per-sample spike-in summary statistics from a microbiome object (phyloseq or TSE),
generates a spike-in success report using calculate_spike_percentage(), and returns both the
raw data and a formatted summary table (flextable). The function also attempts to extract and
retain the phylogenetic tree if present.

Usage
conclusion(
obj,
merged_spiked_species,
max_passed_range = 11,

output_path = "merged_data.docx”
)

Arguments

obj A phyloseqor TreeSummarizedExperiment object containing microbiome data.
merged_spiked_species

A character vector of spiked species names.
max_passed_range

Numeric, maximum threshold for passing spike percentage.

output_path Character, file path for the . docx output from calculate_spike_percentage().

Value
A list containing:

summary_stats A flextable summary of the spike statistics.
full_report The full spiked species report as a data. frame.

phy_tree The phylogenetic tree (if available).

convert_categorical_to_factors

Examples
B oo
Example 1: Using phyloseq object
B e
library(DspikelIn)

data("physeq_16S0TU", package = "DspikeIn")

Merge spike-in species
species_name <- c("Tetragenococcus_halophilus”, "Tetragenococcus_sp.")
merged_sum <- Pre_processing_species(

obj = physeq_16S0TU,

species_name = species_name,

merge_method = "sum"”

)

Compute summary statistics
output_doc <- file.path(tempdir(), "summary_phyloseq.docx")

results_physeq <- conclusion(
obj = merged_sum,
merged_spiked_species = "Tetragenococcus_halophilus”,
max_passed_range = 20,
output_path = output_doc
)

print(results_physeq$summary_stats)

o
Example 2: Using TreeSummarizedExperiment object
B oo
tse_16SOTU <- convert_phyloseq_to_tse(physeq_16S0TU)

output_doc_tse <- file.path(tempdir(), "summary_tse.docx")
results_tse <- conclusion(
obj = tse_16S0TU,
merged_spiked_species = "Tetragenococcus_halophilus”,
max_passed_range = 20,
output_path = output_doc_tse
)

print(results_tse$summary_stats)

19

convert_categorical_to_factors
Convert Categorical Columns to Factors in Sample Data

Description

Convert Categorical Columns to Factors in Sample Data

Usage

convert_categorical_to_factors(obj)

20 convert_phyloseq_to_tse

Arguments

obj A phyloseq or TreeSummarizedExperiment object containing microbial data.

Value

A phyloseq object with updated sample data.

Examples

data("physeq_16S0TU", package = "DspikeIn")
ps_factor <- convert_categorical_to_factors(physeq_16S0TU)

convert_phyloseq_to_tse
Convert a phyloseq Object to a TreeSummarizedExperiment

Description

Converts a phyloseq object into a TreeSummarizedExperiment (TSE), preserving key biological
data components. The function supports retention of:

* OTU abundance matrix (as assay).

» Taxonomic classifications (as rowData).

» Sample metadata (as colData).

* Phylogenetic tree (as rowTree, if available).

* Reference sequences (as referenceSeq, if available).

This allows seamless interoperability between phyloseq and Bioconductor ecosystems.

Usage

convert_phyloseq_to_tse(physeq)

Arguments

physeq A valid phyloseq object.

Value

A TreeSummarizedExperiment object with one or more of the following slots:

¢ assays: OTU count matrix.

* rowData: Taxonomy table.

* colData: Sample metadata.

* rowTree: Phylogenetic tree (if present).

* referenceSeq: Reference sequences (if present).

convert_to_absolute_counts 21

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0OTU", package = "DspikelIn")

Create a small subset for fast execution
physeq_sub <- phyloseq: :prune_taxa(
phyloseq: : taxa_names(physeq_16SOTU)[1:10],
phyloseq: :prune_samples(
phyloseq: : sample_names(physeq_16S0TU)[1:5],
physeq_16S0TU
)
)

Example transformation
tse_sub <- convert_phyloseq_to_tse(physeg_sub)
tse_sub

convert_to_absolute_counts
Convert Relative ASV/OTU Counts to Absolute Counts

Description

Converts relative ASV counts in a phyloseq or TreeSummarizedExperiment (TSE) object to ab-
solute counts by multiplying ASV counts by provided scaling factors. Ensures phylogenetic tree
(rowTree) and reference sequences (refseq) are retained if possible.

Usage

convert_to_absolute_counts(obj, scaling_factors, output_dir = NULL)

Arguments

obj A phyloseq or TreeSummarizedExperiment object containing microbial data.

scaling_factors
A named numeric vector of scaling factors for each sample.

output_dir A character string specifying the directory to save the output file (default: NULL).

Value

A list containing:

e absolute_counts: A data frame of absolute counts.

* obj_adj: The modified phyloseq or TreeSummarizedExperiment object.

Note

The output file absolute_counts.csv is written to the specified directory. For CRAN compliance,
use tempdir() when saving files inside examples or vignettes.

22 convert_to_absolute_counts

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

spiked_cells <- 1847
species_name <- spiked_species <- c("Tetragenococcus_halophilus”, "Tetragenococcus_sp.")
merged_spiked_species <- "Tetragenococcus_halophilus”

spiked_16S_0TU <- phyloseq: :subset_samples(physeq_16S0TU, spiked.volume %in% c("2", "1"))
Spiked_16S_sum_scaled <- Pre_processing_species(

spiked_16S_0TU,

species_name,

merge_method = "sum”,

output_file = file.path(tempdir(), "merged_physeq_sum.rds")
)

result <- calculate_spikeIn_factors(
Spiked_16S_sum_scaled,
spiked_cells,
merged_spiked_species

)

scaling_factors <- result$scaling_factors

result_physeq <- convert_to_absolute_counts(
Spiked_16S_sum_scaled,
scaling_factors,
output_dir = tempdir()
)
abs_counts_physeq <- result_physeg$absolute_counts
physeq_adj <- result_physeq$obj_adj

tse_16S0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
spiked_16S_OTU_TSE <- tse_16SOTU[, tse_16S0TU$spiked.volume %in% c("2", "1")]

Spiked_16S_sum_tse_scaled <- Pre_processing_species(
spiked_16S_OTU_TSE,
species_name,
merge_method = "sum”,
output_file = file.path(tempdir(), "merged_tse_sum.rds")
)

result <- calculate_spikeIn_factors(
Spiked_16S_sum_tse_scaled,
spiked_cells,
merged_spiked_species

)

scaling_factors <- result$scaling_factors

result_tse <- convert_to_absolute_counts(
spiked_16S_OTU_TSE,
scaling_factors,
output_dir = tempdir()
)
abs_counts_tse <- result_tse$absolute_counts
tse_adj <- result_tse$obj_adj

convert_tse_to_phyloseq 23

convert_tse_to_phyloseq
Convert a TreeSummarizedExperiment fo a phyloseq Object

Description

Converts a TreeSummarizedExperiment (TSE) object into a phyloseq object, preserving key com-
ponents such as the OTU table, taxonomy, sample metadata, phylogenetic tree, and reference se-
quences (if present). This enables seamless interoperability between Bioconductor and phyloseq
workflows.

Usage

convert_tse_to_phyloseq(tse)

Arguments
tse A TreeSummarizedExperiment object, expected to contain:
* OTU abundance matrix (assay named "counts"”).
* Taxonomy data (as rowData).
» Sample metadata (as colData).
* Optional phylogenetic tree (from rowTree()).
* Optional reference sequences (referenceSeq() accessor).
Value

A phyloseq object with all available components (otu_table, tax_table, sample_data, phy_tree,
refseq) populated accordingly.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

Convert to TSE and back to phyloseq

tse <- convert_phyloseq_to_tse(physeq_16S0TU)
phy <- convert_tse_to_phyloseq(tse)
print(phy)

create_directory Create a Directory and Optionally Set as Working Directory

Description

This function checks if a specified directory exists and creates it if it doesn’t. Optionally, it can also
set the newly created or existing directory as the working directory.

24 create_list

Usage

create_directory(directory_path, set_working_dir = FALSE)

Arguments

directory_path A character string specifying the path of the directory to create.
set_working_dir
A logical value indicating whether to set the directory as the working directory.
Default is FALSE.

Value
NULL. The function prints messages indicating whether the directory was created or already exists,
and if the working directory was set.

Examples

if (interactive()) {
Save the current working directory
old_wd <- getwd()

Use a temporary directory for safe example use
tmp_dir <- file.path(tempdir(), "example_new_dir")

Create the directory and set it as the working directory
create_directory(tmp_dir, set_working_dir = TRUE)

Do something inside tmp_dir...

Restore the original working directory
setwd(old_wd)

Remove the created directory
unlink(tmp_dir, recursive = TRUE, force = TRUE)

create_list Create a List from a Phyloseq or TSE Object

Description

Create a List from a Phyloseq or TSE Object

Usage

create_list(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Value

A list containing the DGE list and updated phyloseq object.

degree_network 25

degree_network Analyze and Visualize a Microbial Network

Description

This function loads a microbial network from a GraphML file or an igraph object, computes node
degree and modularity, assigns node sizes based on degree, and visualizes the network. Edge thick-
ness is determined by weight. It also computes and optionally saves global network metrics.

Usage
degree_network(
graph_path,
save_metrics = TRUE,
metrics_path = "Global_Network_Metrics.csv”,
layout_type = "stress”
)
Arguments
graph_path Character or igraph object. Path to the GraphML file or an already loaded

igraph object.
save_metrics Logical. If TRUE, saves the global metrics as a CSV file.
metrics_path Optional. Path to save the metrics file. Default: "Global_Network_Metrics.csv".

layout_type Character. Layout algorithm: "stress" (default), "graphopt", "fr", "mds", or "kk".

Value

A list containing:

plot A ggplot object displaying the network.
metrics A dataframe with global network metrics.
layout_data The layout used for plotting.

graph The annotated igraph object.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Complete <- load_graphml(system.file("extdata”, "Complete.graphml”, package = "DspikeIn”))

Save metrics to a temporary file
temp_metrics <- file.path(tempdir(), "Global_Network_Metrics.csv")

result <- degree_network(
graph_path = Complete,
save_metrics = TRUE,
metrics_path = temp_metrics

)

print(result$metrics)
print(result$plot)

26 detect_common_asvs_taxa

Clean up temporary file
unlink(temp_metrics)

3

detect_common_asvs_taxa
Detect Common ASVs and Taxa from Multiple Phyloseq or TSE Ob-
jects

Description

This function identifies the common Amplicon Sequence Variants (ASVs) and common taxa de-
tected across multiple phyloseq or TreeSummarizedExperiment (TSE) objects. It extracts ASVs
and taxa using the package’s accessor functions, finds the common ones, and returns a pruned object
containing only the shared features.

Usage
detect_common_asvs_taxa(
obj_list,
output_common_csv = "common_asvs_taxa.csv",
output_common_rds = "common_asvs_taxa.rds",
return_as_df = FALSE
)
Arguments
obj_list A list of phyloseq or TreeSummarizedExperiment objects. All objects in the

list must be of the same class.
output_common_csv
A character string specifying the path to save the pruned ASV/Taxa object as a
CSV file. Default is "common_asvs_taxa.csv". Set to NULL to disable saving.
output_common_rds
A character string specifying the path to save the pruned ASV/Taxa object as an
RDS file. Default is "common_asvs_taxa.rds". Set to NULL to disable saving.

return_as_df A logical indicating whether to return the results as a data frame (TRUE) or as
the original phyloseq/TSE object (FALSE). Default is FALSE.

Details

Optionally, the results can be saved to CSV and RDS files.

Value

A pruned phyloseq or TreeSummarizedExperiment object containing only common ASVs and
taxa. If return_as_df = TRUE, a data frame with common ASVs/taxa is returned instead.

ExpData-class 27

Examples

Not run:
if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Example with phyloseq objects
common_physeq <- detect_common_asvs_taxa(list(physeql, physeq2, physeq3))

Example with TreeSummarizedExperiment objects
common_tse <- detect_common_asvs_taxa(list(tsel, tse2, tse3))

}

End(Not run)

ExpData-class ExpData Virtual Class

Description

This is a virtual superclass to support S4 object structure in DESeqDataSet extension.

extract_neighbors Extract First and Second Neighbors of a Target Node

Description

Extracts the first and second neighbors of a given target node in an igraph network. Users can
provide either an igraph object or a GraphML file path (internal or external).

Usage

extract_neighbors(graph = NULL, target_node, mode = "all")

Arguments
graph Either:
* An igraph object representing a network, OR
* A character string specifying the file path to a GraphML file, OR
e NULL to use "Complete.graphml” from DspikelIn.
target_node Character. The name of the target node.
mode Character. Direction of edges to consider ("all”, "out”, "in").

e "all”: Incoming + outgoing edges (default for undirected graphs).
e "out": Only outgoing edges.
e "in": Only incoming edges.

28 filter_and_split_abundance

Value

A list containing:

first_neighbors

Character vector of first-degree neighbor names.
second_neighbors

Character vector of second-degree neighbor names.

summary Data frame summarizing the extracted neighbors.

Examples

Load the built-in Complete graph
complete_graph <- load_graphml(”Complete.graphml”)
resultl <- extract_neighbors(
graph = complete_graph,
target_node = "0TU69:Basidiobolus_sp”
)

print(resulti$summary)

Load from an external GraphML file (ensure the file path is correct)
external_graph <- load_graphml("~/custom_network.graphml")
extract_neighbors(external_graph, target_node = "SomeNode")

filter_and_split_abundance
Filter and Split Abundance Data by Threshold

Description
Filters low-abundance taxa from a phyloseq or TreeSummarizedExperiment object, splits data
into high- and low-abundance groups, and optionally saves results.

Usage
filter_and_split_abundance(obj, threshold = 0.01, output_prefix = NULL)

Arguments
obj A phyloseq or TreeSummarizedExperiment object.
threshold A numeric value indicating the mean abundance threshold for filtering.

output_prefix A character string specifying the filename prefix for saving. If NULL, files will
not be saved. Default is NULL.
Value
A named list with components:

high Subset with taxa having mean abundance > threshold

low Subset with taxa having mean abundance <= threshold

Each returned element contains a single object of the same class as the input (either phyloseq or
TreeSummarizedExperiment).

get_long_format_data 29

Examples

data("physeq_ITSOTU", package = "DspikeIn")

Return results without saving
output <- filter_and_split_abundance(physeq_ITSOTU, threshold = 0.05)

With saving
tse_ITSOTU <- convert_phyloseq_to_tse(physeq_ITSOTU)

output <- filter_and_split_abundance(tse_ITSOTU,
threshold = 0.05,
output_prefix = file.path(tempdir(), "abund")
)

get_long_format_data Convert a Phyloseq or TSE Object into a Long-Format Data Frame

Description

Converts a phyloseq or TreeSummarizedExperiment object into a long-format data frame, similar
to phyloseq: :psmelt (), for compatibility with visualization functions such as alluvial_plot().

Usage

get_long_format_data(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Value

A long-format data. frame containing taxonomic, abundance, and sample metadata.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

Use a small subset for examples
physeq_small <- phyloseq: :prune_taxa(
phyloseq: : taxa_names(physeq_16SOTU)[1:10],
phyloseq: : prune_samples(
phyloseq: : sample_names(physeq_16SOTU)[1:5],
physeq_16S0TU
)
)

tse_small <- convert_phyloseq_to_tse(physeq_small)
melted <- get_long_format_data(tse_small)
head(melted)

30 get_otu_table

get_otu_table Extract OTU Tax Metadata from Object

Description

Retrieves the OTU table from a phyloseq or TreeSummarizedExperiment object.
Retrieves the OTU table or assay matrix from a phyloseq or TreeSummarizedExperiment object.
Retrieves the OTU table from a phyloseq or TreeSummarizedExperiment object.

Retrieves the OTU table from a phyloseq or TreeSummarizedExperiment object.

Usage

get_otu_table(obj)
get_otu_table(obj)
get_otu_table(obj)

get_otu_table(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Details

This is a thin wrapper that unifies access to assay () (for TreeSummarizedExperiment) and otu_table()
(for phyloseq) into a single function for format-agnostic use.

Ensures consistent extraction across object classes and automatically transposes the phyloseq ma-
trix if taxa are not stored as rows.

Value

A matrix containing OTU count data.
A numeric matrix containing OTU count data.
A matrix containing OTU count data.

A matrix containing OTU count data.

See Also

otu_table, assay

get_phy_tree 31

get_phy_tree Extract Phylogenetic Tree

Description

Retrieves the phylogenetic tree.

Usage
get_phy_tree(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Details

This function wraps phy_tree() and rowTree() for compatibility with both frameworks.

Value

A phylogenetic tree object.

See Also

phy_tree, rowTree

get_reference_seq Extract Reference Sequences

Description

Retrieves the reference sequences (if available) from an object.

Usage

get_reference_seq(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Details

Thin wrapper around refseq() or referenceSeq() for unified sequence retrieval.

Value

A DNAStringSet object containing the reference sequences.

See Also

refseq, referenceSeq

32 get_sample_sums

get_sample_data Extract Sample Data

Description

Retrieves the sample metadata.

Usage

get_sample_data(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Details

Thin wrapper over colData() or sample_data() for unified metadata access across formats.

Value

A data frame with sample metadata.

See Also

sample_data, colData, meta

get_sample_sums Extract Sample Sums from Object

Description
Retrieves the total sequence counts per sample from a phyloseq or TreeSummarizedExperiment
object.

Usage

get_sample_sums(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Value

A numeric vector of total counts per sample.

get_tax_table 33

get_tax_table Extract Taxonomy Table

Description

Retrieves the taxonomy table from an object.

Usage

get_tax_table(obj)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

Details

This is a thin wrapper around rowData() or tax_table() to ensure compatibility across data struc-
tures.

Value

A data frame containing taxonomy annotations.

See Also

tax_table, rowData

gm_mean Calculate Geometric Mean

Description

This documentation provides an overview of normalization methods used for microbiome analysis.
* For Differential Abundance Analysis: DESeq, TMM, or CSS normalization methods handle
compositional biases and library size differences.

* For Compositional Data: CLR normalization accounts for compositional structure by trans-
forming the data into log-ratio format.

 For Simplicity and Ease of Use: TC, UQ, or Median normalization methods are quick but may
not be as robust.

This function calculates the geometric mean of a numeric vector. It removes non-positive and NA
values by default.

Usage

gm_mean(x, na.rm = TRUE)

34 imbalance_calculate_list_average_scaling_factors

Arguments

X A numeric vector.

na.rm Logical. Should missing values (NAs) be removed? Defaults to TRUE.
Details

Overview of Normalization Methods

Value

Geometric mean of x, or NA if no valid values are present.

Normalization Use Cases

These normalization methods are commonly used in microbiome analysis to ensure fair compar-
isons across samples.

Examples

vec <- c(1, 10, 100, 1000)
gm_mean(vec)

imbalance_calculate_list_average_scaling_factors
Calculate Per-Sample Scaling Factors for Multiple Spike-in Groups

Description

Computes per-sample scaling factors for multiple spike-in taxa (e.g., Bacillus_spike, Flavobac-
terium_spike) in either a phyloseq or TreeSummarizedExperiment object. Handles variable spike-
in cell counts per sample and supports "sum” or "max” OTU merging methods.

Usage

imbalance_calculate_list_average_scaling_factors(
obj,
spiked_species_list,
spiked_cells_list,
merge_method = c("sum”, "max"),
normalize = TRUE,
allow_infinite = FALSE,
verbose = FALSE

Arguments

obj A phyloseq: :phyloseqor TreeSummarizedExperiment: : TreeSummarizedExperiment
object.

spiked_species_list
A named list of character vectors giving the spike-in species names (as in tax_table$Species
or rowData()).

imbalance_calculate_list_average_scaling_factors 35

spiked_cells_list
A named list (same length as spiked_species_list) containing scalar or named
numeric vectors of expected spike-in cells per sample.

merge_method "sum” (default) or "max". Defines how OTUs within a spike-in group are merged.

normalize Logical; if TRUE, scaling factors are normalized so that their median equals 1.
Default = TRUE.

allow_infinite Logical; if TRUE, zero spike reads return Inf instead of NA. Default = FALSE.

verbose Logical; if TRUE, prints per-group summaries.

Details

Scaling factors are computed as:

ScalingFactor = ExpectedSpikeCells/ObservedSpikeReads

For each spike-in group:

1. Identify OTUs matching that spike species via the Species column.
2. Merge those OTUs per sample (sum or max).
3. Divide expected spike cells by observed reads.

4. Average across all spike-in groups to produce one factor per sample.

Uses full matrix preallocation (no incremental vector growth) for Bioconductor compliance. Miss-
ing values (zero spike reads) are set to NA or Inf if allow_infinite = TRUE. Samples with all NA
receive scaling = 1.

Value

Named numeric vector of scaling factors (one per sample).

Examples

if (requireNamespace("phyloseq”, quietly = TRUE)) {
library(phyloseq)

Example dataset
otu <- matrix(
c(
6000, 6200, 5900, 6100,
4000, 4200, 3900, 4100,
2000, 1900, 2100, 2050,
1300, 1250, 1350, 1400,
500, 800, 900, 700, # Flavobacterium_spike
900, 1200, 1100, 1000 # Bacillus_spike
),
nrow = 6, byrow = TRUE,
dimnames = list(
c("0TU1", "OTU2", "OTU3", "OTU4",
"Flavobacterium_spike"”, "Bacillus_spike"),
c("s1", "S2", "S3", "S4™")
)
)

tax <- data.frame(

36 label

Kingdom = rep("Bacteria”, 6),

Species = c("OTU1", "OTU2", "OTU3", "OTU4",
"Flavobacterium_spike"”, "Bacillus_spike"),

row.names = rownames(otu)

Fixed: add a column so sample_data is valid
sam <- data.frame(SampleID = c("S1", "S2", "S3", "S4"),
row.names = c("S1", "S2", "S3", "S4"))

ps <- phyloseq(
otu_table(otu, taxa_are_rows = TRUE),
tax_table(as.matrix(tax)),
sample_data(sam)

)

spiked_species_list <- list(
Flavo = "Flavobacterium_spike"”,
Bacillus = "Bacillus_spike”

)

spiked_cells_list <- list(
Flavo = c(S1 = 1e7, S2 = 3e7, S3 = 6e7, S4 = 2e7),
Bacillus = c(S1 = 2e7, S2 = 1e7, S3 = 5e7, S4 = 3e7)
)

Works for both phyloseq and TSE:
factors_phy <- imbalance_calculate_list_average_scaling_factors(
ps, spiked_species_list, spiked_cells_list, normalize = FALSE

)

tss <- convert_phyloseq_to_tse(ps)
factors_tse <- imbalance_calculate_list_average_scaling_factors(
tss, spiked_species_list, spiked_cells_list, normalize = FALSE

)
all.equal(factors_phy, factors_tse)
3
label Label Taxonomic Ranks by Hashcode
Description

Labels ASVs/OTUs in a phyloseq object using a named vector mapping hashcodes to known taxon-
omy labels (e.g., spike-in species, genera, or families). This is especially useful for clearly labeling
synthetic controls or mock taxa.

If the specified taxonomic rank (e.g., "Genus" or "Family") does not exist in the tax_table, it will
be added and filled with NA, followed by inserting your custom labels.

Usage

label(obj, hashcode_label_map, tax_rank = "Species")

label 37

Arguments

obj A phyloseq: :phyloseq object with a populated tax_table().
hashcode_label_map

A named character vector where names are ASV hashcodes (i.e., row names of
the tax table), and values are the taxonomy labels to assign.

tax_rank A character string specifying the taxonomic rank to label (e.g., "Species”,
"Genus", "Family"). Default is "Species”.

Value

A modified phyloseq object with updated taxonomic labels at the specified rank.

See Also

phyloseq: : tax_table()

Examples

if (requireNamespace("phyloseq”, quietly = TRUE)) {
library(phyloseq)

Create dummy tax_table with hashcodes
tax_mat <- matrix(
data = c(

"Bacteria”, NA,

"Bacteria”, NA,

"Bacteria”, NA,

"Bacteria”, NA

),
nrow = 4,
dimnames = list(

c(
"8ac7ad6e4b6501eb143d97f10bcc2b6d”,
"5a92565231c6df8f58871cedf2d1al2a”,
"8bf5a7b0@4cb725bc3d2627b971eb03fb",
"7ael171e44f46ddadcbb53ee6b34a483b"

),

c("Kingdom", "Species")

)
)

ps <- phyloseq::phyloseq(phyloseq::tax_table(tax_mat))

Define hash-to-label map
hash_map <- c(
"8ac7ad6e4b6501eb143d97f10bcc2b6d” = "MockGenus_A",
"5a92565231c6df8f58871c@df2d1al2a” "MockGenus_B"
)

Label genus (automatically adds "Genus” column if missing)
ps <- label(ps, hash_map, tax_rank = "Genus")

Check updated taxonomy
phyloseq: :tax_table(ps)[, "Genus"]

38 metadata_full

load_graphml Load GraphML Without ’id’ Conflicts

Description
Loads a GraphML network from DspikeIn or user path, ensuring all attributes remain intact and
correctly assigning original node names.

Usage

load_graphml(filename = "herp.spiecsym.network.graphml”)

Arguments
filename Name of the GraphML file (default: "herp.spiecsym.network.graphml") or full
file path.
Value

An igraph object representing the network.

metadata_full Metadata for Microbiome Samples

Description

This dataset contains detailed metadata associated with microbiome sequencing samples. It includes
host information, sequencing metrics, environmental classifications, and experimental factors rele-
vant for downstream analyses.

Usage

data(metadata_full)

Format

A data frame with 312 rows and 46 columns:

sample.id Unique identifier for each sample.

Total_Reads_total Total number of sequencing reads before processing.
Total_Reads_spiked Total number of sequencing reads after spiking.
Percentage Relative abundance percentage of the target taxa.

Result Experimental result classification.

beta.distances Beta diversity distances between samples.

Observed Observed microbial richness in the sample.

Chaol Chaol diversity estimator.

metadata_full

ACE Abundance-based Coverage Estimator (ACE).

se.ACE Standard error of ACE.

Shannon Shannon diversity index.

Simpson Simpson diversity index.

InvSimpson Inverse Simpson diversity index.

X16S.biosample 16S rRNA sequencing biosample identifier.
dna.biosample DNA biosample identifier.

data.type General data type classification.
ampliconlibrary.quantification.ng.ul Library quantification (ng/uL).
plate.ID Identifier for the sequencing plate.

well.location Well location on the sequencing plate.

Env.broad.scale Broad-scale environmental classification.

Host.taxon Taxonomic classification of the host.

Host.genus Genus of the host organism.

Host.species Species of the host organism.

Animal.type Classification of the host (e.g., Mammal, Bird).
Animal.ecomode Ecological mode of the host organism.

Clade.Order Taxonomic order of the host.

Family Taxonomic family of the host.

Diet General dietary classification of the host.

Diet.Detailed Detailed dietary classification.

Habitat Habitat description where the sample was collected.
Metamorphosis Indicates whether the species undergoes metamorphosis.
Reproduction Reproductive strategy of the host species.

Ecoregion.III Ecoregion classification (level III).

Ecoregion.IV Ecoregion classification (level IV).

Site Sampling site identifier.

sample.name Human-readable sample name.

biosample.parent Parent biosample identifier.

data.type.1 Secondary data type classification.
ampliconlibrary.quantification.ng.ul.1 Second library quantification (ng/uL).
plate.ID.1 Secondary plate ID (if applicable).

well.location.1 Secondary well location (if applicable).

sample.or.blank Indicates whether the sample is biological or a blank control.
sample.spiked.blank Indicates whether the sample was spiked with a blank.
spiked.volume Volume of spike added to the sample.

swab.presence Indicates whether a swab was used for collection.

MK.spike Molecular spike-in used in the sequencing process.

Value

A data frame containing sample-level metadata for microbiome sequencing analysis.

40

Examples

data(metadata_full)
head(metadata_full)
summary (metadata_full)

my_custom_theme

MG_shapes Predefined Shape Vector for Plot Styling

Description

A numeric vector of point shapes (0-25) for use in ggplot2.

Usage
MG_shapes

Format

An object of class numeric of length 26.

Value

A numeric vector of shape codes.

Examples

Example usage of MG_shapes in ggplot2
ggplot2::ggplot(mtcars, ggplot2::aes(x = wt, y = mpg, shape
ggplot2::geom_point(size = 4) +

factor(cyl))) +

ggplot2::scale_shape_manual(values = MG_shapes[seq_len(3)]) +

my_custom_theme ()

my_custom_theme Custom ggplot2 Theme with Consistent Aesthetics

Description

Creates a custom ggplot2 theme with consistent styling options, including background color, font

size, and axis line formatting.

Usage

my_custom_theme(base_size = 12, font_family = "sans", bg_color = "white")
Arguments

base_size Numeric. Base font size for text elements (default: 12).

font_family Character. Font family to use for text elements (default: "sans").

bg_color Character. Background color of the plot (default: "white").

node_level metrics

Details

41

This function applies a custom theme to ggplot2 plots. It removes unnecessary grid lines, ensures a

clean background, and standardizes text styling.

Value

A ggplot2 theme object.

Examples

library(ggplot2)

p <- ggplot(mtcars, aes(x = wt, y = mpg)) +
geom_point(size = 3) +
my_custom_theme ()

print(p)

node_level_metrics Compute and Visualize Node-Level Network Metrics

Description
Computes various network metrics and generates:

* Two multi-panel visualizations (each with 4 subplots).
* A faceted plot of standardized (Z-score) metrics across communities.

» A formatted flextable summarizing node-level metrics.

Usage

node_level_metrics(graph, save_path = NULL)

Arguments
graph An igraph object representing the network.
save_path Character. A file path (without extension) to save figures and table. Default is
NULL (no saving).
Details

The function computes the following node-level metrics:

Metric Description

Node Node name (character format)

Degree Number of edges connected to the node

Strength Sum of edge weights connected to the node

Closeness Closeness centrality (normalized, based on shortest paths)

Betweenness Betweenness centrality (normalized, measures control over network flow)

EigenvectorCentrality
PageRank
Transitivity

Eigenvector centrality (importance based on connections to influential nodes)
PageRank score (importance based on incoming links)
Local clustering coefficient (tendency of a node to form triangles)

42 norm.clr

Coreness Node’s coreness (from k-core decomposition)

Constraint Burt’s constraint (measures structural holes in a node’s ego network)
EffectiveSize Inverse of constraint (larger values = more non-redundant connections)
Redundancy Sum of constraint values of a node’s alters

Community Community assignment from Louvain clustering

Efficiency Global efficiency (average inverse shortest path length)
Local_Efficiency Local efficiency (subgraph efficiency for a node’s neighbors)

Within_Module_Connectivity Proportion of neighbors in the same community
Among_Module_Connectivity Proportion of neighbors in different communities

Value
A list containing:

* metrics: A data frame with node-level metrics.
* plot1: First multi-panel plot (2x2 layout with 4 subplots)
* plot2: Second multi-panel plot (2x2 layout with 4 subplots)

» facet_plot: A faceted plot showing Z-score standardized metrics across communities.

Examples

library(igraph)

set.seed(42)

For external graphml please use full address
Load internal graphml

Complete <- load_graphml(”Complete.graphml™)

Compute node-level metrics
result <- node_level_metrics(Complete)

View computed metrics
print(result$metrics)

Show the first 4x4 plot
print(result$plots$plotl)

Show the second 4x4 plot
print(result$plots$plot2)

Show facet plot
print(result$facet_plot)

Print metrics and flextable
print(result$metrics)
print(result$flextable)

norm.clr CLR Normalization (Centered Log-Ratio Transformation)

Description

CLR Normalization (Centered Log-Ratio Transformation)

norm.css

Usage

norm.clr(obj)

Arguments

obj A Phyloseq or TreeSummarizedExperiment objects.

Value

A list containing the normalized phyloseq object and scaling factors.

43

norm.css CSS Normalization (Cumulative Sum Scaling)

Description

CSS Normalization (Cumulative Sum Scaling)

Usage

norm.css(obj)

Arguments

obj A Phyloseq or TreeSummarizedExperiment objects.

Value

A list containing the normalized phyloseq object and scaling factors.

norm.DESeq DESeq Normalization with Pseudocount and Integer Conversion

Description

DESeq Normalization

Usage

norm.DESeq(obj, groups, pseudocount = 1)

Arguments
obj A phyloseq or TreeSummarizedExperiment object.
groups A string specifying the grouping variable in sample data.
pseudocount A numeric value added to avoid zeros in the dataset.
Value

A list containing the normalized object (same format as input) and scaling factors.

44 norm.Poisson

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

Example 1: phyloseq input (subset to Animal.type == "Frog")
physeq_frog <- phyloseq: :subset_samples(physeq_16S0TU, Animal.type == "Frog")
result_DESeq_phy <- norm.DESeq(physeq_frog, groups = "Animal.type”, pseudocount = 1)

Example 2: TSE input (convert and subset to Animal.type == "Frog")

tse_16SOTU <- convert_phyloseq_to_tse(physeq_16S0TU)

col_meta <- SummarizedExperiment::colData(tse_16S0TU)

tse_frog <- tse_16SOTU[, which(col_meta$Animal.type == "Frog")]

result_DESeq_tse <- norm.DESeq(tse_frog, groups = "Animal.type"”, pseudocount = 1)

norm.med Median Normalization

Description

Median Normalization

Usage

norm.med(obj, groups)

Arguments
obj A Phyloseq or TreeSummarizedExperiment objects.
groups A string specifying the grouping variable in sample data.
Value

A list containing the normalized phyloseq object and scaling factors.

norm.Poisson Poisson Normalization and Differential Abundance Function

Description

Poisson Normalization and Differential Abundance Function

Usage

norm.Poisson(obj, group_var = NULL, pseudocount = 1e-06)

Arguments
obj A Phyloseq or TreeSummarizedExperiment objects.
group_var A string specifying the grouping variable in sample data (if phyloseq object).

pseudocount A numeric value added to avoid division by zero.

norm.QN

Value

A list containing the normalized data, scaling factor, and differential abundance results.

norm.QN Quantile Normalization (QN) for phyloseq object

Description

Quantile Normalization (QN) for phyloseq object

Usage

norm.QN(obj, filter = FALSE)

Arguments
obj A Phyloseq or TreeSummarizedExperiment objects.
filter Logical, whether to filter low counts.

Value

A list containing the normalized phyloseq object and scaling factors.

norm.rar Rarefying

Description

Rarefying

Usage

norm.rar(obj)

Arguments

obj A Phyloseq or TreeSummarizedExperiment objects.

Value

A list containing the normalized phyloseq object and scaling factors.

46 norm.TC

norm.rle RLE Normalization (Relative Log Expression)

Description

RLE Normalization (Relative Log Expression)

Usage
norm.rle(
obj,
locfunc = stats::median,
type = c("poscounts”, "ratio"),

geo_means = NULL,
control_genes = NULL

)
Arguments
obj A Phyloseq or TreeSummarizedExperiment objects.
locfunc A function to compute the location statistic (default is median).
type A character string specifying the type of normalization ("poscounts" or "ratio").
geo_means A vector of geometric means for each feature.

control_genes A vector of control genes.

Value

A list containing the normalized phyloseq object and scaling factors.

norm.TC TC Normalization (Total Count Scaling)

Description

TC Normalization (Total Count Scaling)

Usage

norm.TC(obj, groups)

Arguments
obj A Phyloseq or TreeSummarizedExperiment objects.
groups A string specifying the grouping variable in sample data.
Value

A list containing the normalized phyloseq object and scaling factors.

norm. TMM 47

norm. TMM TMM Normalization (Trimmed Mean of M component)

Description

TMM Normalization (Trimmed Mean of M component)

Usage

norm.TMM(obj, groups)

Arguments
obj A Phyloseq or TreeSummarizedExperiment objects.
groups A string specifying the grouping variable in sample data.
Value

A list containing the normalized phyloseq object and scaling factors.

norm. tss TSS Normalization (Total Sum Scaling)

Description

TSS Normalization (Total Sum Scaling)

Usage

norm. tss(obj)

Arguments

obj A Phyloseq or TreeSummarizedExperiment objects.

Value

A list containing the normalized phyloseq object and scaling factor

48 normalization_set

norm.UQ UQ Normalization (Upper Quartile)

Description

UQ Normalization (Upper Quartile)

Usage

norm.UQ(obj, groups)

Arguments
obj A Phyloseq or TreeSummarizedExperiment objects.
groups A string specifying the grouping variable in sample data.
Value

A list containing the normalized phyloseq object and scaling factors.

normalization_set Apply the Selected Normalization Method to the Phyloseq and TSE
Objects

Description

Apply the Selected Normalization Method to the Phyloseq and TSE Objects

Usage

normalization_set(obj, method, groups = NULL)

Arguments
obj A phyloseq object.
method A character string specifying the normalization method ("TC", "UQ", "med",
"DESeq", "Poisson", "QN", "TMM", "clr", "rar", "css", "tss", "rle").
groups A column name of group labels from sample data.
Value

A list containing the normalized phyloseq object and scaling factors.

perform_and_visualize_DA 49

Examples

Example with a phyloseq object
if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikelIn")
ps <- physeq_16S0TU
result_phyloseq <- normalization_set(ps, method = "TC", groups = "Host.species”)
head(result_phyloseq$scaling.factor)
normed_physeq <- result_phyloseq$dat.normed

}

Example with a TreeSummarizedExperiment (TSE) object

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikelIn")
tse_16SO0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
result_tse <- normalization_set(tse_16SOTU, method = "clr")
head(result_tse$scaling.factor)
normed_tse <- result_tse$dat.normed

For a full comparison of all normalization methods, see the vignette:
vignette("DspikeIn-with-Phyloseq"”, package = "DspikelIn”)
vignette("DspikeIn-with-TSE", package = "DspikeIn")

H

perform_and_visualize_DA

Perform and Visualize Differential Abundance Analysis with edgeR or
DESeq2

Description

Performs differential abundance analysis using edgeR or DESeq2, and visualizes results with a
volcano plot, a log-fold change bar plot, and a relative abundance bar plot for significantly enriched
taxa. Supports comparisons across one or more variables and allows global FDR correction across
multiple contrasts.

Usage
perform_and_visualize_DA(
obj,
method,
group_var = NULL,
contrast,

pseudocount = 1,
significance_level = 0.05,
output_csv_path = NULL,
target_glom = "Genus"”,

palette = c("#FFEB3B", "#@73B4C"),
global_fdr = TRUE

50 perform_and_visualize_DA

Arguments
obj A phyloseq or TreeSummarizedExperiment object.
method A string: either "edgeR" or "DESeq2".
group_var A string specifying the grouping variable in the sample metadata. Not required
if contrast is a named list for multiple variables.
contrast One of the following:
* A character vector of two levels to compare (e.g., c("Control”, "Treated")).
* A list of such character vectors for multiple contrasts within one grouping
variable.
* A named list of such lists (e.g., list(Treatment = list(c("A", "B"),
c("A", "C")), Genotype =1list(...))).
pseudocount A numeric value used to replace zero or negative counts (default = 1).

significance_level

A numeric value for the FDR threshold to determine significance (default =
0.05).

output_csv_path
Optional path to save results as CSV files. For multiple contrasts, each is saved

separately.
target_glom A string specifying the taxonomic rank to aggregate taxa (default = "Genus").
palette A vector of colors for plotting significant and non-significant points (default =

c("#FFEB3B", "#073B4C")).

global_fdr Logical. If TRUE, applies FDR correction across all contrasts (default = FALSE).

Details

For edgeR, the standard error of log-fold change (IfcSE) is estimated using the formula: 1fcSE =
logFC / sqrt(LR), based on the likelihood ratio test statistic.

When providing multiple contrasts, FDR correction can be applied globally using the global_fdr
= TRUE option.

Value

A list of result objects, or a single result if a single contrast is given. Each result includes:

results A data. frame of differential abundance results with taxonomic annotations.
obj_significant
A filtered phyloseq or TreeSummarizedExperiment object with significant

taxa.
plot A ggplot2 volcano plot.
bar_plot A ggplot?2 bar plot of log fold changes and standard errors.

bar_abundance_plot
A ggplot2 bar plot showing relative abundance of significant taxa across groups.

physeq

Examples

if (requireNamespace("phyloseq”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

Salamander samples belonging to two diet types
ps_sal <- phyloseq::subset_samples(
physeq_16S0TU,
Animal.type == "Salamander” &
Diet %in% c("Insectivore”, "Carnivore")

)

Remove taxa with zero counts

ps_sal <- phyloseq: :prune_taxa(
phyloseq: : taxa_sums(ps_sal) > 0,
ps_sal

)

Differential abundance test at Genus level
da_res <- perform_and_visualize_DA(

obj = ps_sal,

method = "DESeq2”,

group_var = "Diet”,

significance_level = 0.05,

contrast = c("Insectivore”, "Carnivore"),

target_glom = "Genus"”

Visualize results
if (!is.null(da_res$plot)) print(da_res$plot)
head(da_res$results)

Example: multiple contrasts (optional demonstration)

contrast_list <- list(c("Insectivore”, "Carnivore"))
da_multi <- perform_and_visualize_DA(

obj = ps_sal,

method = "DESeq2”,

group_var = "Diet",

significance_level = 0.01,
contrast = contrast_list,
target_glom = "Genus"”,
global_fdr = TRUE

)

if (lis.null(da_multi[[1]]$bar_plot))
print(da_multi[[1]]$bar_plot)

51

physeq

Example Phyloseq Object with Tree and Reference Sequences

52 physeq_16SOTU

Description

A general-purpose phyloseq object for microbiome method development and testing. This syn-
thetic dataset includes OTU abundances, taxonomic classifications, sample metadata, a phyloge-
netic tree, and reference sequences.

Usage
data(physeq)

Format
A phyloseq object with:

otu_table OTU abundance matrix (ASVs samples).
tax_table Taxonomic classification of ASVs.
sample_data Sample-level metadata.

phy_tree A rooted phylogenetic tree of ASVs.

refseq DNA reference sequences corresponding to each ASV.

Value

A phyloseq object with full microbiome data components.

Source

Synthetic data generated for benchmarking and demonstration.

Examples

if (requireNamespace("phyloseq”, quietly = TRUE)) {
data(physeq, package = "DspikeIn")
physeq
phyloseq: : sample_names(physeq)
phyloseq: : taxa_names(physeq)
phyloseq: :phy_tree(physeq)
phyloseq: :refseq(physeq)

physeq_16S0TU Example Phyloseq Object for 16S OTUs

Description

This dataset contains an example phyloseq object representing 16S rRNA gene amplicon sequenc-
ing data. It includes taxonomic assignments, abundance counts, sample metadata, and phylogenetic
information. This object is intended for demonstration and testing of microbiome workflows.

Usage
data(physeq_16S0TU)

physeq_ITSOTU 53

Format
A phyloseq object with:
otu_table Operational Taxonomic Unit (OTU) abundance matrix.
tax_table Taxonomic classification of OTUs.

sample_data Metadata associated with the samples.

phy_tree Phylogenetic tree relating OTUs (if available).

Value

A phyloseq object containing 16S OTU data with taxonomy, sample metadata, and phylogeny.

Source

Internal dataset for microbiome analysis.

Examples

if (requireNamespace("phyloseq”, quietly = TRUE)) {
data(physeq_16S0TU)
physeq_16S0TU
summary (physeq_16S0TU)
phyloseq: : sample_names(physeq_16S0TU)
phyloseq: : taxa_names(physeq_16S0TU)

physeq_ITSOTU Example Phyloseq Object for ITS OTUs

Description

This dataset contains an example phyloseq object representing Internal Transcribed Spacer (ITS)
amplicon sequencing data. It includes taxonomic annotations, OTU abundance counts, and associ-
ated sample metadata, suitable for downstream analysis of fungal communities.

Usage
data(physeq_ITSOTU)

Format
A phyloseq object with:
otu_table Operational Taxonomic Unit (OTU) abundance matrix.
tax_table Taxonomic classification of OTUs.

sample_data Metadata associated with the samples.

phy_tree Phylogenetic tree relating OTUs (if available).

Value

A phyloseq object containing ITS OTU data with taxonomy, sample metadata, and phylogeny.

54 plotbar_abundance

Source

Internal dataset for microbiome analysis.

Examples

if (requireNamespace("phyloseq”, quietly = TRUE)) {
data(physeq_ITSOTU)
physeq_ITSOTU
summary (physeq_ITSOTU)
phyloseq: : sample_data(physeq_ITSOTU)
phyloseq: : taxa_names(physeq_ITSOTU)

plotbar_abundance Taxa Bar Plot Without Aggregation (Relative or Absolute Abundance)

Description

Create a bar plot of relative or absolute abundances of microbial taxa without using taxonomic
glomming (tax_glom). Works on raw or normalized data.

Usage

plotbar_abundance(
physeq,
tax_level = "Genus"”,
normalize = TRUE,
treatment_variable = "Host.taxon",
abundance_type = "relative”,
x_angle = 25,
fill_variable = tax_level,
facet_variable = NULL,
palette = DspikeIn::color_palette$mix_MG,
legend_size = 11,
legend_columns = 1,

x_scale = "free”,
xlab = NULL
)
Arguments
physeq A phyloseq or TreeSummarizedExperiment object.
tax_level A character string indicating the taxonomic rank (e.g., "Genus").
normalize Logical; if TRUE, transforms to relative abundance. Default: TRUE.

treatment_variable
Character; column name in sample metadata for x-axis grouping.

abundance_type Character; either "relative” or "absolute”. Default: "relative”.
x_angle Numeric; angle of x-axis tick labels. Default: 25.

fill_variable Character; variable to fill bars by. Default: same as tax_level.

plotbar_abundance 55

facet_variable Optional; column name for faceting. Default: NULL.
palette A named vector of colors to use for fill_variable.
legend_size Numeric; legend text size. Default: 11.

legend_columns Integer; number of legend columns. Default: 1.

x_scale Character; either "free"” or "fixed" for facet x-axis scale. Default: "free".
xlab Optional; override x-axis label. If NULL, x label is hidden.
Value

A ggplot2 object containing a bar plot of taxa abundance.

Examples

Not run:

Load required package

if (requireNamespace("phyloseq”, quietly = TRUE)) {
Load example data
data("physeq_ITSOTU", package = "DspikeIn”)

Subset: Eurycea salamanders from Blue Ridge, exclude unwanted genera
Des <- physeq_ITSOTU |>

phyloseq: :subset_taxa(Genus != "Dekkera") |>

phyloseq: :subset_samples(Clade.Order == "Caudate") |>
phyloseq: : subset_samples(Host.genus == "Eurycea”) |>
phyloseq: :subset_samples(Ecoregion.III == "Blue Ridge")

Clean taxa: remove NAs or blanks in Phylum, filter low-abundance
Des_filtered <- phyloseq::subset_taxa(Des, !is.na(Phylum) & Phylum != "")
Des_ps <- phyloseq: :prune_taxa(phyloseq::taxa_sums(Des_filtered) > 99, Des_filtered)

Plot taxa abundance with full control
plotbar_abundance(

physeq = Des_ps,

normalize = TRUE,

treatment_variable = "Diet”,
abundance_type = "absolute”,
x_angle = 0,

fill_variable = "Phylum”,
palette = Dspikeln::color_palette$mix_MG,
legend_size = 10,
legend_columns = 1,
x_scale = "free",
xlab = NULL
)
3

End(Not run)

56 plot_core_microbiome_custom

plot_core_microbiome_custom
Plot Core Microbiome Prevalence Heatmap (Phyloseq & TSE Com-
patible)

Description

This function generates a prevalence heatmap of the core microbiome at a specified taxonomic rank.
It allows users to pass custom detection thresholds, prevalence thresholds, and a minimum preva-
lence filter, and it provides an option to order taxa either in ascending or descending abundance.
The plot displays a heatmap showing detection thresholds at different prevalence levels.

Usage
plot_core_microbiome_custom(
obj,
taxrank = "Genus"”,

select_taxa = NULL,

detections = list(prevalences = seq(0.03, 1, 0.01), thresholds = 10*seq(log10(0.03),

log10(1), length = 10), min_prevalence = 0.2, taxa_order = "descending"),
output_core_csv = NULL,
output_core_rds = NULL

)
Arguments

obj A phyloseq or TreeSummarizedExperiment (TSE) object containing micro-
biome data.

taxrank A character string specifying the taxonomic rank to glom taxa. Default is "Genus".

select_taxa A character vector of taxa to select. Default is NULL, meaning no specific taxa
are selected.

detections A list with the following elements:

* prevalences: A numeric vector specifying the prevalence thresholds for
plotting. Default is seq(0.03, 1, 0.01).
* thresholds: A numeric vector specifying the detection thresholds for plot-
ting. Default is 10*seq(log10(3e-2), log10(1), length =10).
* min_prevalence: A numeric value specifying the minimum prevalence
threshold for core microbiome. Default is 0.2.
* taxa_order: A character string indicating whether to order taxa by "as-
cending" or "descending" abundance. Default is "descending".
output_core_csv
Path to save the core microbiome subset as a CSV file. Default is NULL. To avoid
writing to the working directory during examples, use file.path(tempdir(),
"core_microbiome.csv").
output_core_rds
Path to save the core microbiome subset as an RDS file. Default is NULL. Use
file.path(tempdir(), "core_microbiome.rds") to write to a temporary di-
rectory during examples or checks.

plot_spikein_tree_diagnostic 57

Value

A ggplot2 object representing the core microbiome prevalence heatmap.

Source

Uses microbiome::plot_core() for core heatmap visualization

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn")

Subset to only Frog samples (biologically meaningful)
physeq_frog <- phyloseq::subset_samples(

physeq_16S0TU,

Animal.type == "Frog"
)

Remove taxa with zero total abundance

physeq_frog <- phyloseq: :prune_taxa(
phyloseq: : taxa_sums(physeq_frog) > 0,
physeq_frog

)

Relaxed thresholds to ensure visible core taxa
custom_detections <- list(

prevalences = seq(0.03, 1, 0.01),

thresholds = 10%seq(log10(0.03), loglo(1), length = 10),
min_prevalence = 0.3,

taxa_order = "ascending”

)

Temporary output paths (required for Bioconductor examples)
core_csv <- file.path(tempdir(), "core_microbiome_frog.csv")
core_rds <- file.path(tempdir(), "core_microbiome_frog.rds")

Generate the core microbiome prevalence plot
plot_result <- plot_core_microbiome_custom(
obj = physeq_frog,
detections = custom_detections,
taxrank = "Genus",
output_core_csv = core_csv,
output_core_rds = core_rds

)

print(plot_result)

plot_spikein_tree_diagnostic
Spike-in Tree Diagnostic Plot

58 plot_spikein_tree_diagnostic

Description

Diagnostic visualization of spike-in taxa (ASVs/OTUs) on a phylogenetic tree. Works with both
phyloseq and TreeSummarizedExperiment objects (auto-converts internally).

Visual elements:

Tip labels (OTU/ASV names)

* Branch length annotations

* Prevalence (star size on tip)

* Logl0(mean abundance) (bar ring)

» Sample metadata (discrete tile at tip)

Usage
plot_spikein_tree_diagnostic(
obj,
metadata_var,
output_prefix = "spikein_diag",
layout = "circular”,
save_plot = FALSE,
width = 10,
height = 10
)
Arguments
obj A phyloseq or TreeSummarizedExperiment object filtered to spike-in taxa.

metadata_var Character. Sample metadata variable to use as tile color.

output_prefix Character. Filename prefix for saved plot. Default = "spikein_diag".

layout Character. Tree layout. Default = "circular".

save_plot Logical. Save figure if TRUE.

width Numeric. Width of the output plot in inches. Default = 10.

height Numeric. Height of the output plot in inches. Default = 10.
Value

Invisibly returns the ggplot object.

Examples

Not run:
if (
requireNamespace("DspikeIn”, quietly = TRUE) &&

requireNamespace("phyloseq”, quietly = TRUE) &&
requireNamespace("TreeSummarizedExperiment”, quietly = TRUE) &&
requireNamespace("ggplot2”, quietly = TRUE) &&
requireNamespace("ggtree”, quietly = TRUE) &&
requireNamespace("ggtreeExtra”, quietly = TRUE) &&
requireNamespace("ggstar”, quietly = TRUE) &&
requireNamespace("ggnewscale”, quietly = TRUE)

Pre_processing_hashcodes 59

data("physeq_16S0TU", package = "DspikeIn”)
spikein_ps <- phyloseq: :subset_taxa(physeq_16S0TU, Genus == "Tetragenococcus")

plot_spikein_tree_diagnostic(
obj = spikein_ps,

metadata_var = "Animal.type",
save_plot = FALSE

)

oo TSE Example -----------

tse_spikein <- convert_phyloseq_to_tse(spikein_ps)

plot_spikein_tree_diagnostic(
obj = tse_spikein,
metadata_var = "Animal.type",
save_plot = FALSE
)
3

End(Not run)

Pre_processing_hashcodes
Pre-process phyloseq or TSE object based on hashcodes

Description

Subsets, merges, and saves taxa based on hashcodes and a specified merge method ("sum" or
"max"). This function pre-processes a phyloseq or TreeSummarizedExperiment (TSE) object
by subsetting, merging, and saving taxa based on provided hashcodes. It retains taxonomic infor-
mation and creates intermediate datasets for further downstream analysis.

Usage
Pre_processing_hashcodes(
obj,
hashcodes,
merge_method = c("sum”, "max"),
output_prefix = "merged_physeq”
)
Arguments
obj A phyloseq or TreeSummarizedExperiment object.
hashcodes A character vector of taxon hashcodes (OTU row names).

merge_method The method to merge taxa: "sum" or "max".

output_prefix A prefix for the output file names.

Value

A processed phyloseq or TSE object.

60 Pre_processing_species

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn")

Subset to Tetragenococcus species
tetragenococcus_physeq <- phyloseq: :subset_taxa(
physeq_16S0TU,
Species %in% c("Tetragenococcus_halophilus”, "Tetragenococcus_sp.")

)

Extract OTU IDs (hashcodes) for phyloseq object
hashcodes_physeq <- rownames(phyloseq::otu_table(tetragenococcus_physeq))

Remove previous output file if exists
if (file.exists("merged_physeq_processed.rds")) {
file.remove("merged_physeq_processed.rds")

}

Run merging with "sum” method for phyloseq
processed_sum <- Pre_processing_hashcodes(
physeq_16S0TU,
hashcodes = hashcodes_physeq,
merge_method = "sum”

)

Convert to TreeSummarizedExperiment (TSE)
tse_16S0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
tetragenococcus_TSE <- convert_phyloseq_to_tse(tetragenococcus_physeq)

Extract hashcodes for TSE
hashcodes_tse <- rownames(tetragenococcus_TSE)

Run merging with "max"” method for TSE
processed_max <- Pre_processing_hashcodes(

tse_16S0TU,
hashcodes = hashcodes_tse,
merge_method = "max"”

)

Final cleanup of written file
file.remove("merged_physeq_processed.rds")

Pre_processing_species
Pre-process taxa in a phyloseq or TSE object by merging ASVs/OTUs

Description

Merges ASVs/OTUs while ensuring that the phylogenetic tree and reference sequences remain in-
tact. The provided taxonomic name(s) will be searched across all taxonomic levels (e.g., Kingdom,
Phylum, ..Genus, Species). If tree or refseq become mismatched, they are pruned or removed safely.

Pre_processing_species 61

Usage
Pre_processing_species(
obj,
species_name,
merge_method = c("sum”, "max"),
output_file = NULL
)
Arguments
obj A phyloseq or TreeSummarizedExperiment object.

species_name A character vector of exact taxonomic names to merge (matched across all tax-
onomy levels).

merge_method Method used to merge counts: "sum” (default) or "max”.

output_file Optional file path to save the processed object (e.g., file.path(tempdir(),
"output.rds")).

Value

A processed phyloseq or TreeSummarizedExperiment object with merged ASVs/OTUs.

Examples

library(DspikelIn)
data("physeq_16S0TU", package = "DspikeIn")

species_name <- c("Tetragenococcus_halophilus”, "Tetragenococcus_sp.")

Merge species in phyloseq format

merged_sum <- Pre_processing_species(
physeq_16S0TU,
species_name,
merge_method = "sum

)

"

Convert phyloseq to TSE format
tse_16SOTU <- convert_phyloseq_to_tse(physeq_16S0TU)

Merge species in TSE format and write to tempdir
output_rds <- file.path(tempdir(), "merged_TSE_sum.rds")

merged_TSE_sum <- Pre_processing_species(
tse_16S0TU,
species_name,
merge_method = "sum",
output_file = output_rds

62 Pre_processing_species_list

Pre_processing_species_list
Preprocess and Merge Spike-in Species in a Phyloseq or TSE Object

Description

Merges ASVs belonging to user-defined spike-in species by summing or selecting maximum counts,
while preserving all available metadata (taxonomy, sample data, phylogenetic tree, and reference
sequences). This function works for both phyloseq and TreeSummarizedExperiment objects.

Usage
Pre_processing_species_list(
ObJ ’
spiked_species,
merge_method = c("sum”, "max"),
output_file = NULL
)
Arguments
obj A phyloseq or TreeSummarizedExperiment object.

spiked_species Character vector of species names to be processed (matched against the Species
column in taxonomy).

merge_method Either "sum” (default) to sum counts across ASVs or "max” to retain only the
most abundant ASV.

output_file Optional. File path to save the merged object as an . rds file.

Value

A merged object of the same class as the input (phyloseq or TreeSummarizedExperiment).

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq”, package = "DspikeIn”)
data("tse”, package = "DspikeIn”)

spiked_species <- c("Pseudomonas aeruginosa”, "Escherichia coli”, "Clostridium difficile")

Merge in phyloseq object
merged_physeq <- Pre_processing_species_list(

physeq,
spiked_species = spiked_species,
merge_method = "sum”

)

Merge in TreeSummarizedExperiment object
merged_tse <- Pre_processing_species_list(
tse,
spiked_species = spiked_species,
merge_method = "sum”

proportion_adj 63

proportion_adj Proportionally Adjust Abundance

Description

This function normalizes the abundance data in a phyloseq or TreeSummarizedExperiment object
by adjusting each sample’s counts based on a total value, typically the maximum total sequence
count across all samples. The adjusted counts are then rounded to the nearest integer.

Usage

proportion_adj(obj, output_file = "proportion_adjusted.rds")

Arguments

obj A phyloseqor TreeSummarizedExperiment object containing microbiome data.

output_file A character string specifying the output file name for the adjusted object. If
NULL, the object is not saved. Default is "proportion_adjusted.rds".

Details

This function extracts the OTU table (or assay in TSE), normalizes it based on the sample sums, and
updates the original object while maintaining its structure.

Value

A modified object of the same class (phyloseq or TreeSummarizedExperiment) with proportion-
ally adjusted and rounded abundance data.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Load phyloseq object
data("physeq_16S0TU", package = "DspikelIn")

normalized_physeq <- proportion_adj(

physeq_16S0TU,

output_file = file.path(tempdir(), "proportion_adjusted_physeq.rds")
)
print(normalized_physeq)

Convert to TSE and apply
tse_16S0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
normalized_tse <- proportion_adj(
tse_16S0TU,
output_file = file.path(tempdir(), "proportion_adjusted_tse.rds")
)

print(normalized_tse)

64

quadrant_plot

quadrant_plot Generate Custom Quadrant Plots for Node Metrics

Description

This function visualizes relationships between any two node metrics in a quadrant plot. Quadrant
labels dynamically adjust based on the selected X and Y axis metrics.

Usage
quadrant_plot(
metrics,
x_metric = "Degree”,
y_metric = "Redundancy”,
x_threshold = NULL,
y_threshold = NULL,
top_quantile = 0.95,
point_size = 3
)
Arguments
metrics A data. frame containing computed node metrics.
x_metric Character. Column name to use for the x-axis. Default is "Degree”.
y_metric Character. Column name to use for the y-axis. Default is "Redundancy”.
x_threshold Numeric. X-axis threshold for quadrant separation. Defaultis median(x_metric).
y_threshold Numeric. Y-axis threshold for quadrant separation. Defaultis median(y_metric).

top_quantile Numeric. Quantile threshold (0-1) to highlight top nodes. Default is @. 95.

point_size Numeric. Size of the points. Default is 3.

Value

A ggplot object representing the customized quadrant plot.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {

g <- load_graphml("Complete.graphml”)

Compute node-level metrics
result <- node_level_metrics(g)
metrics <- result$metrics

Generate a quadrant plot using Degree and Efficiency
plot <- quadrant_plot(metrics, x_metric = "Degree", y_metric = "Efficiency”)
print(plot)

RandombForest_selected 65

RandomForest_selected Select Important ASVs/OTUs Using Random Forest

Description

This function selects the most important Amplicon Sequence Variants (ASVs) or Operational Taxo-
nomic Units (OTUs) based on a Random Forest model. If a TreeSummarizedExperiment (TSE) is
provided, it is first converted to phyloseq. The function allows filtering and pruning of taxa before
selecting the most important features. Optionally, the selected ASVs/OTUs can be saved as a CSV
file.

Usage

RandomForest_selected(
physeq,
response_var,
minlib = 5000,
prunescale = 1e-05,
ntree = 100,
n_top_predictors = 100,
output_csv = NULL,
na_vars = NULL

Arguments
physeq A phyloseq or TreeSummarizedExperiment (TSE) object containing micro-
biome data.
response_var A character string specifying the response variable from the sample metadata.

minlib A numeric value specifying the minimum library size for filtering low-abundance
taxa. Default is 15000.

prunescale A numeric value specifying the relative abundance threshold for pruning rare
OTUs. Default is 0. 0001.

ntree An integer specifying the number of trees to grow in the Random Forest model.
Default is 100.

n_top_predictors
An integer specifying the number of top ASVs/OTUs to select based on feature
importance. Default is 50.

output_csv An optional character string specifying the output CSV file name. If NULL, no
file is saved. Default is NULL.

na_vars A character vector specifying metadata variables to check for missing values
(NA). If NULL, only response_var is checked.

Value

Returns a pruned phyloseq or TreeSummarizedExperiment (TSE) object containing only the se-
lected ASVs/OTUs. If the input is TSE, the output is converted back to TSE.

66

Source

Based on public API usage of randomForest and phyloseq packages.

See Also

randomForest, prune_taxa

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikelIn")

Perform Random Forest feature selection
rf_physeq <- RandomForest_selected(
physeq_16S0TU,
prunescale = 0.00001,
minlib = 5000,

ntree = 30,

n_top_predictors = 30,

response_var = "Host.genus",

na_vars = c("Habitat”, "Ecoregion.III"”, "Host.genus"”, "Diet")

)
Less aggressive pruning (retain rare taxa)
rf_physeq_relaxed <- RandomForest_selected(
physeq_16S0TU,
response_var = "Host.genus",
minlib = 5000,
prunescale = 0.00001,
na_vars = c("Habitat"”, "Ecoregion.III"”, "Host.genus"”, "Diet”)

)

rf_physeq_strict <- RandomForest_selected(
physeq_16S0TU,
response_var = "Host.genus",
minlib = 20000,
prunescale = 0.0002,

ntree = 200,
n_top_predictors = 30,
na_vars = c("Habitat”, "Ecoregion.III"”, "Host.genus"”, "Diet")

)

Load TreeSummarizedExperiment (TSE) object
tse_16SOTU <- convert_phyloseq_to_tse(physeq_16S0TU)

Perform Random Forest feature selection on TSE object
rf_tse <- RandomForest_selected(

tse_16S0TU,
response_var = "Host.genus",
na_vars = c("Habitat”, "Ecoregion.III"”, "Host.genus"”, "Diet")

RandomForest_selected

randomsubsample_Trimmed_evenDepth 67

randomsubsample_Trimmed_evenDepth
Subsampling to an Equal Sequencing Depth

Description

Performs subsampling to an equal sequencing depth, determined by the sample with the lowest
sequencing depth after excluding very low abundant taxa. It rounds down the result to the nearest
integer (floor). Note: some samples may be lost in this process.

Usage

randomsubsample_Trimmed_evenDepth(
obj,
smalltrim = 0.001,
replace = TRUE,
output_file = NULL

)
Arguments
obj A phyloseqor TreeSummarizedExperiment object containing microbiome data.
smalltrim A numeric value specifying the trimming percentage to exclude very low abun-
dant taxa. Default is 0.001.
replace A logical value indicating whether to sample with replacement. Default is

TRUE.

output_file A character string specifying the output file name for the subsampled object.
Default is NULL, meaning the object will not be saved.

Value

A rarefied phyloseq or TreeSummarizedExperiment object with adjusted sequencing depths.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_ITSOTU", package = "DspikelIn")
tse_ITSOTU <- convert_phyloseq_to_tse(physeq_ITSOTU)
rarefied <- randomsubsample_Trimmed_evenDepth(tse_ITSOTU, smalltrim = 0.001)
print(rarefied)

68 random_subsample_WithReductionFactor

random_subsample_WithReductionFactor
Random Subsampling with Reduction Factor

Description

Performs random subsampling on the OTU table of a phyloseq or TreeSummarizedExperiment
(TSE) object by dividing each ASV count by a specified reduction factor and rounding down to the
nearest whole number. Optionally, the result can be saved to disk as an . rds file.

Usage

random_subsample_WithReductionFactor(
obj,
reduction_factor = 3,
output_file = NULL

)

Arguments

obj A phyloseq or TreeSummarizedExperiment object.

reduction_factor
A numeric value > 1 to reduce counts. Default is 3.

output_file Optional. A character string specifying the . rds file path to save the result. If
NULL, no file will be saved. Default is NULL.

Value

A subsampled object of the same class as the input (phyloseq or TreeSummarizedExperiment).

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE) &&
requireNamespace("phyloseq”, quietly = TRUE) &&
requireNamespace("TreeSummarizedExperiment”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)
red <- random_subsample_WithReductionFactor(physeq_16S0TU, reduction_factor = 10)
summary_stats <- summ_phyloseq_sampleID(red)
print(summary_stats)

tse <- convert_phyloseq_to_tse(physeq_16S0TU)

red_tse <- random_subsample_WithReductionFactor(tse, reduction_factor = 10)
summary_stats <- summ_phyloseq_sampleID(red_tse)

print(summary_stats)

regression_plot

69

regression_plot

Create a Regression Plot with Faceting by Range

Description

This function generates a customizable scatter plot with a linear regression line, statistical equation,
and facets based on a specified range variable. The x and y variables are transformed using a natural
log transformation (log1p) to handle zero values.

Usage

regression_plot(

data,
X_var,
y_var,

custom_range

= c(0.1, 15, 30, 50, 75, 100),

formula =y ~ x,

plot_title

Arguments

data
X_var
y_var

custom_range

formula
plot_title

Value

A ggplot2 object.

See Also

NULL

A data frame containing the variables to plot.
A string specifying the name of the x-axis variable.
A string specifying the name of the y-axis variable.

A numeric vector for defining custom ranges for the *Percentage’ column (de-
fault: ¢(0.1, 15, 30, 50, 75, 100)).

A formula for the regression equation (default: y ~ x).

A string specifying the title of the plot (default: NULL, no title will be shown if
not provided).

stat_regline_equation, stat_cor, facet_wrap

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("metadata_full”, package = "DspikeIn”)

plot_object <- regression_plot(
data = metadata_full,
x_var = "Observed”,
y_var = "Total_Reads_spiked”,
custom_range = c(0.1, 15, 30, 50, 75, 100)

70 relativized_filtered_taxa

Print the plot output
print(plot_object)
3

relativized_filtered_taxa

Filter Taxa from a Phyloseq or TSE Object Based on Custom Thresh-
olds

Description

This function filters taxa from a phyloseq or TreeSummarizedExperiment (TSE) object based on
custom thresholds for percentage of samples, mean abundance, count, and relative abundance.

Usage

relativized_filtered_taxa(
obj,
threshold_percentage = 0.5,
threshold_mean_abundance = 0.001,
threshold_count = 10,
threshold_relative_abundance = NULL

Arguments

obj A phyloseq or TreeSummarizedExperiment object.
threshold_percentage
A numeric value specifying the minimum percentage of samples in which a
taxon must be present to be retained. Default is 0.5.
threshold_mean_abundance

A numeric value specifying the minimum mean abundance of a taxon to be
retained. Default is 0.001.
threshold_count

A numeric value specifying the minimum count of a taxon in a sample to be
considered present. Default is 10.

threshold_relative_abundance
A numeric value specifying the minimum relative abundance of a taxon to be

retained. Default is NULL.
Value

A filtered phyloseq or TSE object containing only the taxa that meet the specified thresholds.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)

Apply relative filtering on taxa
FT <- relativized_filtered_taxa(
physeq_16S0TU,

remove_zero_negative_count_samples 71

threshold_percentage = 0.001,
threshold_mean_abundance = 1,
threshold_count = 5,
threshold_relative_abundance = 0.001

remove_zero_negative_count_samples

Remove Samples with Zero, Negative Counts, or NA Values and Add
Pseudocount

Description

Remove Samples with Zero, Negative Counts, or NA Values and Add Pseudocount

Usage

remove_zero_negative_count_samples(obj, pseudocount = 1e-06)

Arguments
obj A phyloseq or TreeSummarizedExperiment object containing microbial data.
pseudocount A numeric value to add to avoid zero counts.

Value

A phyloseq object with filtered and adjusted OTU table.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
library(DspikelIn)
data("physeq_16S0TU", package = "DspikeIn”)

Remove samples with zero/negative/NA counts and add pseudocount
cleaned_ps <- remove_zero_negative_count_samples(
physeq_16S0TU,
pseudocount = le-6
)
}

72 ridge_plot_it

ridge_plot_it Generate Ridge Plots for Taxonomic Abundance Distribution

Description

This function processes microbiome data (phyloseq or TreeSummarizedExperiment), rarefies the
dataset, performs proportion transformation, and generates ridge plots to visualize the distribution
of relative abundances at a specified taxonomic rank.

Usage

ridge_plot_it(obj, taxrank = "Genus”, rarefaction_depth = NULL, top_n = 10)

Arguments
obj A phyloseq or TreeSummarizedExperiment object containing taxonomic and
abundance data.
taxrank A character string specifying the taxonomic rank for glomming and plotting.

Default is "Genus".
rarefaction_depth

A numeric value specifying the rarefaction depth. If NULL, it is set to 90\ of the
minimum sample sum (for phyloseq). Default is NULL.

top_n An integer specifying the number of top taxa to include in the plot. Default is
10.

Details
This function:

» Rarefies the dataset (if phyloseq) to normalize sample depth.

 Extracts abundance and taxonomic data using get_otu_table() and get_tax_table().
* Aggregates abundance data at the specified taxonomic rank.

* Selects the top n taxa by total abundance.

* Generates a ridge plot to visualize abundance distributions.

Value

A ggplot?2 object representing the ridge plot of the distribution of relative abundances.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Load phyloseq object
data("physeq_16S0TU", package = "DspikeIn”)
ridge_physeq <- ridge_plot_it(physeq_16S0TU, taxrank = "Family"”, top_n = 10)

convert phyloseq object to TSE
tse_16S0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
ridge_tse <- ridge_plot_it(tse_16SOTU, taxrank = "Family", top_n = 10)

set_nf 73

set_nf Set Normalization Factors in the Sample Data of the Phyloseq Object

Description

Set Normalization Factors in the Sample Data of the Phyloseq Object

Usage

set_nf(obj, scaling.factor)

Arguments

obj A phyloseq or TreeSummarizedExperiment object containing microbial data.

scaling.factor A vector of normalization factors.

Value

A phyloseq object with updated sample data.

Examples

if (requireNamespace("phyloseq”, quietly = TRUE)) {
data("physeq_ITSOTU", package = "DspikeIn”)

Create normalization factors (e.g., all ones)
nf <- rep(1, phyloseq::nsamples(physeq_ITSOTU))

Apply normalization factors
physeq_ITSOTU <- Dspikeln::set_nf(physeq_ITSOTU, scaling.factor = nf)

Check the updated sample data
head(phyloseq: : sample_data(physeq_ITSOTU)$norm_factors)

simulate_network_robustness
Simulate Network Robustness under Node Removal

Description

Evaluates the robustness of a network by iteratively removing nodes and measuring the size of the
largest connected component at each step.

Usage
simulate_network_robustness(
graph,
steps = 10,
removal_strategy = "random”,

plot_results = TRUE

74 simulate_network_robustness

Arguments
graph An igraph object representing the network.
steps Integer. Number of nodes to remove. Default is 10.

removal_strategy
Character. Node removal strategy, one of:
* "random” (default): Removes nodes randomly.
* "degree"”: Removes the highest-degree nodes first.
* "betweenness”: Removes the highest-betweenness nodes first.

plot_results Logical. If TRUE, generates and returns a plot of the robustness curve. Default
is TRUE.

Details
Users can specify a node removal strategy from the following options:

* "random'': Removes nodes randomly.
* "degree': Removes the node with the highest degree first.

* "betweenness'': Removes the node with the highest betweenness centrality first.

Important: For the "betweenness” strategy, all edge weights must be positive.

Value

A list containing:

* results: A data.frame with the step number and the relative size of the largest connected
component.

* plot: A ggplot2 object (returned if plot_results = TRUE).

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Complete <- load_graphml(”Complete.graphml”)

Simulate robustness by removing 200 highest-degree nodes
robustness_degree <- simulate_network_robustness(

graph = Complete,

steps = 200,

removal_strategy = "degree”

)

Simulate robustness with random node removal
robustness_random <- simulate_network_robustness(
graph = Complete,
steps = 200,
removal_strategy = "random”

)

Simulate robustness with betweenness-based node removal
robustness_betweenness <- simulate_network_robustness(
graph = Complete,
steps = 200,
removal_strategy = "betweenness”

summ_ASV_OTUID 75

)

Print robustness plots
print(robustness_degree$plot)
print(robustness_random$plot)
print(robustness_betweenness$plot)

summ_ASV_OTUID Summarize ASV Data Based on ASV_ID

Description

This function generates summary statistics (mean, median, standard deviation, standard error, and
quantiles) for each ASV (Amplicon Sequence Variant) in a phyloseq or TreeSummarizedExperiment
object.

Usage

summ_ASV_OTUID(obj)

Arguments
obj A phyloseqor TreeSummarizedExperiment object containing ASV abundance
data.
Details

This function extracts the OTU table (or assay in TSE), computes per-ASV statistics, and returns a
tidy summary data frame.

Value

A data frame containing summary statistics for each ASV.

Examples

Example with a phyloseq object

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_ITSOTU", package = "DspikelIn")
summary_physeq <- summ_ASV_OTUID(physeq_ITSOTU)

Example with a TreeSummarizedExperiment object
tse_ITSOTU <- convert_phyloseq_to_tse(physeq_ITSOTU)
summary_tse <- summ_ASV_OTUID(tse_ITSOTU)

76 summ_phyloseq_sampleID

summ_count_phyloseq Summary Statistics of a Phyloseq or TSE Object

Description
Computes overall summary statistics (mean, median, standard deviation, standard error, and quan-
tiles) for the OTU table in a phyloseq or TreeSummarizedExperiment (TSE) object.

Usage

summ_count_phyloseq(obj)

Arguments
obj A phyloseq or TreeSummarizedExperiment object containing taxonomic and
abundance data.
Value

A data frame with overall summary statistics.

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikelIn")

Summarize counts for the phyloseq object
summary_stats_physeq <- summ_count_phyloseq(physeq_16S0TU)

Convert phyloseq object to a TreeSummarizedExperiment (TSE)
tse_16S0TU <- convert_phyloseq_to_tse(physeq_16S0TU)

Summarize counts for the TSE object
summary_stats_tse <- summ_count_phyloseq(tse_16S0TU)

summ_phyloseq_sampleID
Generate Summary Statistics for Each Sample

Description
Calculates summary statistics (mean, median, standard deviation, standard error, and quartiles) for
each sample in a phyloseq or TreeSummarizedExperiment object.

Usage

summ_phyloseq_sampleID(obj)

taxa_barplot 77

Arguments

obj A phyloseqor TreeSummarizedExperiment object containing microbiome data.

Value
A data frame containing summary statistics per sample, with columns:

e Sample_ID

* Mean

* Median

* Standard Deviation (SD)
e Standard Error (SE)
Q25 (25th percentile)
Q50 (Median)

Q75 (75th percentile)

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16SOTU", package = "DspikelIn")

Summarize the phyloseq object
summary_stats_physeq <- summ_phyloseq_sampleID(physeq_16S0TU)
print(summary_stats_physeq)

Convert to TreeSummarizedExperiment

tse_16SO0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
summary_stats_tse <- summ_phyloseq_sampleID(tse_16SOTU)
print(summary_stats_tse)

taxa_barplot Generate a Taxa Barplot with Relative or Absolute Abundance

Description

This function creates a bar plot of relative or absolute abundances of the top n taxa (OTUs/ASVs) at
a specified taxonomic rank. Non-top taxa are aggregated into an "Others" category, which is always
displayed at the top for clarity. The function supports normalization, faceting, and customization of
plot aesthetics. The plot is built using ggplot2, and the taxa are ordered with "Others" appearing
first.

Usage

taxa_barplot(
physeq,
target_glom = "Genus"”,
custom_tax_names = NULL,
normalize = TRUE,

78 taxa_barplot

treatment_variable = "Treatment”,
abundance_type = "relative”,
x_angle = 25,

fill_variable = target_glom,
facet_variable = NULL,
top_n_taxa = 20,

palette = color_palette$MG,
legend_size = 11,
legend_columns = 1,

x_scale = "free",
xlab = NULL
)
Arguments
physeq A phyloseqor TreeSummarizedExperiment object containing microbiome data.
target_glom A character string specifying the taxonomic rank to plot (e.g., "Genus").

custom_tax_names

A character vector specifying custom taxonomic names for the levels. Default
is NULL.

normalize A logical value indicating whether to normalize sample counts to relative abun-
dances. Default is TRUE.

treatment_variable
A character string specifying the treatment variable for the x-axis (e.g., "Treat-
ment"). Default is "Treatment”.

abundance_type A character string specifying whether to plot "relative” or "absolute"” abun-
dance. Default is "relative”.

x_angle A numeric value specifying the angle of x-axis text labels. Default is 25.

fill_variable A character string specifying the variable to use for filling bar colors. Default is
the same as target_glom.

facet_variable A character string specifying the variable to use for faceting the plot. Default is
NULL (no faceting).

top_n_taxa A numeric value specifying the number of top taxa to include in the plot. Default
is 20.
palette A character vector of color codes or a function generating such a palette. Default

is color_palette$MG.
legend_size A numeric value specifying the size of the legend text. Defaultis 11.

legend_columns A numeric value specifying the number of columns for the legend. Default is 1.

x_scale A character string specifying the x-axis scale in facets. Options are "free” or
"fixed". Default is "free".
xlab A character string specifying the x-axis label. Default is NULL (no label).
Value

A list containing the following components:

barplot A ggplot?2 object representing the taxa barplot.
taxa_data A phyloseq object containing the top taxa and aggregated "Others" taxa.

taxa_barplot 79

Source

Built on public functions from phyloseq and ggplot2 for data transformation and plotting.

Examples

Example 1: Relative abundance barplot (subset to Frog samples for speed)
data("physeq_16S0TU", package = "DspikeIn")

Subset to only 'Frog' samples
physeq_frog <- phyloseq::subset_samples(physeq_16SOTU, Animal.type == "Frog")

Remove taxa with zero abundance
physeq_frog <- phyloseq::prune_taxa(phyloseq: :taxa_sums(physeq_frog) > @, physeq_frog)

Plot relative abundance for the top 5 genera
bp_rel <- taxa_barplot(

physeq = physeq_frog,

target_glom = "Genus"”,

fill_variable = "Family”,

treatment_variable = "Diet”,

abundance_type = "relative”,

top_n_taxa = 5,

legend_size = 9,

x_scale = "fixed",

legend_columns = 1,

x_angle = 15,

palette = Dspikeln::color_palette$MG

)
print(bp_rel$barplot)

Example 2: Absolute abundance barplot (ITS data converted to TSE; Frog subset)
data("physeq_ITSOTU", package = "DspikeIn")

Convert the phyloseq object to TreeSummarizedExperiment

tse_ITSOTU <- convert_phyloseq_to_tse(physeq_ITSOTU)

tse_frog <- tse_ITSOTUL, SummarizedExperiment::colData(tse_ITSOTU)$Animal.type == "Frog"]
tse_frog <- tse_froglrowSums(SummarizedExperiment::assay(tse_frog)) > 0, 1]

Plot absolute abundance for top 5 Families
bp_abs <- taxa_barplot(

physeq = tse_frog,

target_glom = "Family”,

treatment_variable = "Diet”,
fill_variable = "Family”,
abundance_type = "absolute”,
top_n_taxa = 5,

x_angle = 15,

legend_size = 9,

legend_columns = 1,

x_scale = "fixed",

palette = DspikeIn::color_palette$cool _MG
)
print(bp_abs$barplot)

80 tidy_phyloseq_tse

tidy_phyloseq_tse Tidy a Phyloseq or TreeSummarizedExperiment Object

Description

Cleans and standardizes a microbiome dataset, supporting both phyloseq and TreeSummarizedExperiment.
Performs:

¢ Standardization of taxonomic ranks (if available)

» Removal of leading/trailing whitespace in taxa names

* Filtering out zero-count taxa

* Exclusion of "Chloroplast" and "Mitochondria" classifications (if applicable)
Cleans and standardizes a microbiome object by:

* Removing taxonomic prefixes (e.g. k__, p__)

* Trimming whitespace

* Renaming Domain to Kingdom (if present)

* Removing taxa with "Chloroplast" or "Mitochondria" in any rank

* Filtering out taxa with zero total abundance

 Ensuring robust handling of both phyloseq and TreeSummarizedExperiment formats

Usage

tidy_phyloseq_tse(obj)

tidy_phyloseq_tse(obj)

Arguments
obj A phyloseq: :phyloseqor TreeSummarizedExperiment: : TreeSummarizedExperiment
object.
Details

Tidy a Phyloseq Object and Remove Zero/Negative Count Samples

This function standardizes taxonomic ranks, removes unnecessary whitespace, and filters unwanted
classifications, ensuring consistency for downstream analysis.

Value

A cleaned and tidied object of the same class.

A cleaned and filtered object of the same class with updated taxonomy.

tse 81

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
data("physeq_16S0TU", package = "DspikeIn”)
tidy_physeq <- tidy_phyloseq_tse(physeq_16S0TU)

}

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Load example phyloseq object
data("physeq_16S0TU", package = "DspikeIn”)

oo Tidy phyloseq object -----------
tidy_physeq <- tidy_phyloseq_tse(physeq_16S0TU)

oo Tidy TSE object -----------
tse_16SO0TU <- convert_phyloseq_to_tse(physeq_16S0TU)
tidy_tse <- tidy_phyloseq_tse(tse_16S0TU)

3
tse Example TreeSummarizedExperiment (TSE) Object with Tree and Ref-
erence Sequences
Description

This dataset contains synthetic microbiome data stored as a TreeSummarizedExperiment (TSE)
object. The TSE structure includes abundance data, sample metadata, taxonomic annotations, a
phylogenetic tree linking ASVs, and reference sequences. It is suitable for benchmarking prepro-
cessing workflows involving taxonomic merging or filtering.

Usage

data(tse)

Format
A TreeSummarizedExperiment object with:

assays Matrix of observed counts or abundances (ASVs samples).
rowData Taxonomic annotations per ASV.

colData Sample-level metadata.

rowTree A phylogenetic tree object representing ASV relationships.
referenceSeq A DNAStringSet of DNA sequences matching ASVs.

Value
A TreeSummarizedExperiment object with full microbiome context (abundance, taxonomy, tree,
and reference sequences).

Source

Simulated data generated for reproducibility in microbiome pipelines.

82 validate_spikein_clade

See Also

TreeSummarizedExperiment: : TreeSummarizedExperiment ()

Examples

if (requireNamespace("TreeSummarizedExperiment”, quietly = TRUE)) {
data(tse, package = "DspikeIn”)
tse
SummarizedExperiment: :assay(tse)
SummarizedExperiment: :colData(tse)
SummarizedExperiment: :rowData(tse)
TreeSummarizedExperiment: :rowTree(tse)
TreeSummarizedExperiment::referenceSeq(tse)

validate_spikein_clade
Validate Spike-In Clade Consistency with NJ Tree and Bootstrap

Description

Validates whether sample spike-in sequences form a monophyletic clade with known reference
spike-in(s) using a Neighbor-Joining (NJ) tree with Jukes-Cantor correction and bootstrap support.

This function produces:

* A bootstrap-annotated NJ tree
* A boxplot comparing branch lengths
* A histogram of patristic distances

If output_prefix is provided, outputs are saved. Otherwise, they are shown interactively and
recorded in-memory.

Usage

validate_spikein_clade(
reference_fasta,
sample_fasta,
bootstrap = 100,
output_prefix = NULL

Arguments

reference_fasta
Character. Path to FASTA file of reference spike-ins.

sample_fasta Character. Path to FASTA file of sample spike-ins.
bootstrap Integer. Number of bootstrap replicates (default = 100).
output_prefix Character or NULL. File prefix for saving output.

weight_Network 83

Value

A list with:

tree NJ tree (class phylo)

monophyly TRUE if sample spike-ins form a clade
clade_bootstrap Bootstrap support percentage
branch_stats Branch length summary
patristic_distances Patristic distance matrix
tree_plot Tree plot object

branch_boxplot Boxplot object
patristic_histogram Histogram object
summary_text Text summary

alignment Multiple sequence alignment (MSA)
aln_phydat Alignment converted to phyDat

distance_matrix JC69 distance matrix

Examples

ref_fasta <- system.file("extdata”, "Ref.fasta", package = "DspikeIn")
sample_fasta <- system.file("extdata”, "Sample.fasta”, package = "DspikeIn”)
result <- validate_spikein_clade(ref_fasta, sample_fasta)

weight_Network Analyze and Visualize a Microbial Network

Description

Loads a microbial network from the Dspikeln package (Complete.graphml, NoHubs.graphml, or
NoBasid. graphml) or from a user-provided GraphML file. Computes network metrics, assigns
modularity-based node colors (cool _MG from Dspikeln), and visualizes the network using ggraph.
Optionally saves computed global network metrics as a CSV file.

Usage

weight_Network(graph_path = NULL, save_metrics = TRUE)

Arguments

graph_path Character. The GraphML file path. Default (NULL) loads "Complete.graphml”
from Dspikeln. Valid internal options: "Complete.graphml”, "NoHubs.graphml”,
"NoBasid.graphml”. If an external path is provided, the function loads that
instead.

save_metrics Logical. If TRUE, saves the global metrics as a CSV file (in the working directory
or specified by metrics_path).

84 weight_Network

Value

A list containing:

plot A ggplot?2 object displaying the network.
metrics A data. frame with global network metrics.
graph The annotated igraph object.

See Also

cluster_fast_greedy, ggraph, load_graphml

Examples

if (requireNamespace("DspikeIn”, quietly = TRUE)) {
Complete <- load_graphml(”Complete.graphml™)

Run network weighting function on the loaded dataset
Load a specific GraphML dataset from Dspikeln
result <- weight_Network(graph_path = "Complete.graphml™)

Load a custom GraphML file from user directory,
for external graphml please use *xfull address*x*
print(result$plot)

View network metrics

result$metrics

Optional: Clean up generated metrics file if saved
unlink("Global_Network_Metrics.csv")

Index

gm_mean, 33

x NULL
gm_mean, 33

+ datasets
AcceptableRange, 4
color_palette, 17
metadata_full, 38
MG_shapes, 40
physeq, 51
physeq_16S0TU, 52
physeq_ITSOTU, 53
tse, 81

* internal
ExpData-class, 27

* microbiome
gm_mean, 33

+ normalization
gm_mean, 33

AcceptableRange, 4

adjust_abundance_by_factor
(adjust_abundance_one_third), 5

adjust_abundance_one_third, 5

adjusted_prevalence, 5

alluvial_plot, 7

assay, 30

calculate_list_average_scaling_factors,
9
calculate_spike_percentage, 12, 13
calculate_spike_percentage_list, 14
calculate_spikeIn_factors, 10
calculate_summary_stats_table, 16
cluster_fast_greedy, 84
colData, 32
color_palette, 17
conclusion, 18
convert_categorical_to_factors, 19
convert_phyloseq_to_tse, 6, 20
convert_to_absolute_counts, 21
convert_tse_to_phyloseq, 23
create_directory, 23

85

create_list, 24

degree_network, 25

detect_common_asvs_taxa, 26

ExpData-class, 27
extract_neighbors, 27

facet_wrap, 69

filter_and_split_abundance, 28

get_long_format_data, 29

get_otu_table, 30
get_phy_tree, 31
get_reference_seq, 31
get_sample_data, 32
get_sample_sums, 32
get_tax_table, 33
ggraph, 84
gm_mean, 33

imbalance_calculate_list_average_scaling_factors,

34

label, 36
load_graphml, 38, 84

meta, 32
metadata_full, 38
MG_shapes, 40
my_custom_theme, 40

node_level_metrics, 41
norm.clr, 42
norm.css, 43
norm.DESeq, 43
norm.med, 44
norm.Poisson, 44
norm.QN, 45
norm.rar, 45
norm.rle, 46
norm.TC, 46
norm.TMM, 47
norm.tss, 47
norm.UQ, 48

86

normalization_set, 48
otu_table, 30

perform_and_visualize_DA, 49
phy_tree, 31

phyloseq: :phyloseq, 37
phyloseq: : tax_table(), 37
physeq, 51

physeq_16S0TU, 52
physeq_ITSOTU, 53
plot_core_microbiome_custom, 56
plot_spikein_tree_diagnostic, 57
plotbar_abundance, 54
Pre_processing_hashcodes, 59
Pre_processing_species, 13, 60
Pre_processing_species_list, 62
proportion_adj, 63
prune_taxa, 66

qguadrant_plot, 64

random_subsample_WithReductionFactor,
68

randomForest, 66

RandomForest_selected, 65

randomsubsample_Trimmed_evenDepth, 67

referenceSeq, 31

refseq, 31

regression_plot, 69

relativized_filtered_taxa, 70

remove_zero_negative_count_samples, 71

ridge_plot_it, 72

rowData, 33

rowTree, 31

sample_data, 32

set_nf, 73
simulate_network_robustness, 73
stat_cor, 69
stat_regline_equation, 69
summ_ASV_OTUID, 75
summ_count_phyloseq, 76
summ_phyloseq_samplelD, 76

tax_table, 33
taxa_barplot, 77
tidy_phyloseq_tse, 80

TreeSummarizedExperiment: :TreeSummarizedExperiment(),

82
tse, 81

validate_spikein_clade, 82

weight_Network, 83

INDEX

	AcceptableRange
	adjusted_prevalence
	adjust_abundance_one_third
	alluvial_plot
	calculate_list_average_scaling_factors
	calculate_spikeIn_factors
	calculate_spike_percentage
	calculate_spike_percentage_list
	calculate_summary_stats_table
	color_palette
	conclusion
	convert_categorical_to_factors
	convert_phyloseq_to_tse
	convert_to_absolute_counts
	convert_tse_to_phyloseq
	create_directory
	create_list
	degree_network
	detect_common_asvs_taxa
	ExpData-class
	extract_neighbors
	filter_and_split_abundance
	get_long_format_data
	get_otu_table
	get_phy_tree
	get_reference_seq
	get_sample_data
	get_sample_sums
	get_tax_table
	gm_mean
	imbalance_calculate_list_average_scaling_factors
	label
	load_graphml
	metadata_full
	MG_shapes
	my_custom_theme
	node_level_metrics
	norm.clr
	norm.css
	norm.DESeq
	norm.med
	norm.Poisson
	norm.QN
	norm.rar
	norm.rle
	norm.TC
	norm.TMM
	norm.tss
	norm.UQ
	normalization_set
	perform_and_visualize_DA
	physeq
	physeq_16SOTU
	physeq_ITSOTU
	plotbar_abundance
	plot_core_microbiome_custom
	plot_spikein_tree_diagnostic
	Pre_processing_hashcodes
	Pre_processing_species
	Pre_processing_species_list
	proportion_adj
	quadrant_plot
	RandomForest_selected
	randomsubsample_Trimmed_evenDepth
	random_subsample_WithReductionFactor
	regression_plot
	relativized_filtered_taxa
	remove_zero_negative_count_samples
	ridge_plot_it
	set_nf
	simulate_network_robustness
	summ_ASV_OTUID
	summ_count_phyloseq
	summ_phyloseq_sampleID
	taxa_barplot
	tidy_phyloseq_tse
	tse
	validate_spikein_clade
	weight_Network
	Index

