Data

We find some slight discrepancies (in italics) between the number of interactions and the
p-values according to the cumulative binomial distribution. This Table corresponds to Table

1 in Ge et al. (2003).

Table 1: Statistical analysis

Expression-profiling Protein-interaction

experiment data set Total in map Expected Observed
Cell cycle YPD/MIPS pairs 315 12 42
Y2H pairs 305 11 16
Combined pairs 600 22 55

P value

1.57 x 10712
0.11
1.86 x 10~°

The P-value calculations used a cumulative binomial distribution
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In the original cell cycle data clustering analysis, 2945 genes were divided into 30 clusters.
We found that several genes were in fact multiply represented. For each multiply represented
gene, we determined the cluster to which the gene was closest using Euclidean distance from
the cluster mean, and then eliminated the repeated genes. This reduced the total cluster

membership as follows in Table 2.

Table 2: Cluster Membership

Cluster Original Reduced | Cluster Original Reduced | Cluster Original Reduced
1 164 157 11 94 94 21 70 68
2 186 185 12 80 79 22 85 83
3 104 103 13 99 96 23 69 63
4 170 169 14 74 73 24 85 83
5) 152 151 15 115 113 25 76 74
6 104 100 16 99 98 26 50 49
7 101 101 17 83 81 27 64 63
8 148 148 18 101 96 28 68 67
9 147 146 19 73 73 29 51 51

10 89 78 20 84 84 30 60 59
2945 2885



Hypergeometric Distribution

In the literature protein-protein interaction list, there were 315 total interactions, 42 of

which were between intracluster pairs. Suppose all of the possible pairwise interactions are

represented by balls in an urn. Since we have 2885 genes, there are ( 28285 = 4160170 balls
in the urn. If all the balls that represent intracluster interactions are red, and the intercluster
interaction balls are white, then for the reduced cell cycle data set, there are 156205 red
balls and 4003965 white balls. Suppose we select 315 balls at random from this urn. The
probability of drawing 42 or more red balls, assuming all balls are drawn independently of

each other, can be calculated using the hypergeometric distribution. Specifically,

156205 4003965
15 i 315 —i
P(#red balls > 42) = >

o 4160170
315

We would conclude that it is highly unlikely to observe 42 or more red balls in a random
draw of 315 balls.

The hypergeometric distribution is important when we look at the same problem of
intracluster pairs in terms of graphs.

) = 1.797187 x 1072

Transcriptome/Interactome as Graphs

The problem posed in Ge et al. (2001, 2003) can be phrased in terms of graphs. Figure 1
is a graph representation of the interacting protein pairs in the literature list. Each gene
is represented by a node, and if two proteins are known to interact, then an edge is drawn
between the two representative nodes. In this picture the names are left off for simpler
visualization. In Figure 1, there are 298 nodes and 315 edges corresponding to the number
of interacting protein pairs that were observed. There are an additional 2587 nodes of degree
zero that are not pictured. These nodes represent genes that were used in the clustering
analysis, but were not among the list of interacting protein pairs.

The cluster information can also be represented as a graph. For each cluster, draw an
edge connecting a node to any other node with a corresponding gene in the same cluster.
For the cell cycle data, the graph would consist of 30 completely connected subgraphs with
the number of nodes in each subgraph corresponding to the number of genes in each cluster.
Figure 2 is an example of a cluster graph for the first nine members of cluster 1 in the cell
cycle data set. The graphs quickly become quite cumbersome to visualize as more nodes are
added.

The number of intracluster edges can then be represented by counting the number of
edges in the intersection graph. The intersection graph keeps all of the same nodes as in
the PPI and cluster graphs, but only retains the edges that exist in both graphs. Figure 3
demonstrates the 42 observed edges among 65 nodes that are reported in Ge et al. (2003).



Statistical Inference for Graphs

Reference Distribution

Using the hypergeometric distribution to evaluate the statistical significance of observing 42
intracluster pairs, or 42 edges in the intersection graph, is equivalent to taking the 315 edges
from the observed literature PPI graph, randomly reassigning the edges to different node
pairs, and then counting the number of edges in the intersection graph of the randomized PPI
graph and the cluster graph. Doing this many times will result in a reference distribution for
the number of edges in the intersection graph. Figure 4 shows one example of the random
reallocation of the edges in the PPI graph. There were 8 edges in the intersection of this
graph with the cluster graph, the arrangement of which are shown in Figure 5. We will call
this algorithm of permuting the edges the PE method.

Notice that the graph in Figure 4 is composed of several components consisting of a very
small number of nodes. Given the number of nodes and the number of edges that we are
dealing with, this is consistent with the Erdos-Renyi theory of random graphs. The degree
distribution for the random edge graph is exponential; however, the degree distribution for
the PPI graph follows a power law (see Figure 6). As suggested in several other studies of
the structure of PPI networks, our PPI graph appears to be scale-free. There is possibly
cause for concern in using a random edge model as a basis for statistical inference since such
models are likely not representative of actual PPI networks.

An alternative procedure for generating a reference distribution would be to retain the
edge structure of the graph, and randomly permute the node labels (which we will call PN).
This would guarantee that the structure of the PPI graph is from the sample space of possible
PPI graphs. The question of interest is whether or not interacting protein pairs tend to
come from the same cluster. In a random permutation, the node labels are not preferentially
assigned to connected nodes, and so this leads to a natural reference distribution.

Test Statistics

Somewhat surprisingly, the PE and PN models result in similar distributions of the number
of edges in the intersection graph. (See Figure 8.) It is possible, however that the number
of edges in the intersection graph may not be the most descriptive test statistic. Figure 7
shows a graph with 42 edges and 84 vertices that would give the same p-value result as the
observed intersection graph in Figure 3. These two graphs are quite different in terms of the
arrangement of the edges. Figure 3 demonstrates a tendency toward connected components
with greater numbers of nodes. Test statistics involving node degree and edge structure
may give more insight into the structure of the intersection graph, and possibly the relevant
biology.

For test statistics on the intersection graph other than the number of edges, Figure 8
shows that the PE and PN methods do give strikingly different distributions. Specifically,
node degree > 2, node degree > 3, and the number of 3-cycles all have much different
distributions depending on the algorithm. The PN method tends to give nodes with higher
degree, and picks up more 3-cycles. Both of these features are evident in the observed
intersection graph in Figure 3.



We also evaluated the number of connected components as a test statistic using the PE
and PN algorithms. Although the distributions in Figure 8 are not strikingly different, there
is some evidence that the PN algorithm tends to give fewer connected components in the
intersection graph. This corresponds to finding larger groups of genes, possibly functional
modules, that are connected in both the PPI and the cluster graph.

Statistical Theory

Fisher’s Exact Test

Fisher’s exact test is a classic statistical method for assessing independence between out-
comes. The representation of the usual Fisher’s exact test as graphs lends credence to condi-
tioning on the structure of the graph when generating a reference distribution for statistical
inference. Suppose we are interested in clustering eight genes into two distinct groups. We
apply two different clustering methods to the data for these genes, and find the following
two groups:

Clustering method 1: {1,2,3,4},{5,6,7,8}
Clustering method 2: {1,2,3,5},{4,6,7,8}

We can represent these clusters as graphs. Each gene is represented by a node, and edges
connect genes that are in the same cluster.

Cluster graph 1:

1 2 5 B

4 3 g 7
Cluster graph 2:

1 2 4 B

3 3 g 7

A question of interest may be whether the edges in the graph from clustering method 1 are
overrepresented in the graph from clustering method 2. That is, are the two categorizations
independent? For this simple example, the intersection between the two graphs is as follows.

Intersection:



In order to assess whether the number of edges in the intersection graph is more than would
be expected by random chance, we might consider using the hypergeometric distribution
with (28,12,12) as parameters. Suppose there are 28 balls in an urn, 12 of which are red
and 16 of which are white. We then draw 12 balls from this urn. The number of red balls
in that draw would represent the number of edges in the intersection graph. Using the
hypergeometric distribution for inference is equivalent to generating a reference distribution
for the number of edges in the intersection graph by using a random edge model.

Consider a random edge model for generating a reference distribution for the number
of intersecting edges in G;(V, Ef) (|Ef| = ny) and G, (V, E,) (|E,;| = n,). In this model,
one of the graphs is fixed, say Gy, and the edges of the second graph, say G, are randomly
reassigned. The number of intersecting edges, X, then follows a hypergeometric distribution
with parameters N = W, n¢, and n,. Specifically,

v L)
()

In the case of the two cluster graphs, the number of edges in the intersection graph under the
random edge model follows a hypergeometric distribution with parameters N = 28, n,, = 12,
and ny = 12.

The random edge model for the graph highlights an important problem in using the
hypergeometric distribution for inference. Specifically, the structure of the graph is not
preserved, and the random edge-generated reference distibution includes observations that
are outside of our sample space. For example, the random edge model might result in the
following randomized cluster graph 2.

i = max(0,n, — (N —ny)), ..., min(n,, ns).

Random edge allocation on cluster graph 2:

This particular random edge allocation is not possible in the framework under which we are
working, and so we would not want to use the random edge model as a basis for inference.

Consider instead a random node model for the cluster graph. Again, fix cluster graph
1, and randomly permute the nodes on cluster graph 2. The new intersection graph is an



observation from the reference distribution which we will use for inference. Note that the
structure of the graphs is always preserved under the random node model.

The random node model allows for 3 possible intersection graphs with 4, 6, and 12 edges
respectively.

Intersection graph with 4 edges:

Intersection graph with 6 edges:

~N A

Intersection graph with 12 edges:

] 4

Simulations demonstrate that the number of the edges in these graphs corresponds to
Fisher’s exact test. This can also be proven analytically. This result makes sense if we
enter the genes into a 2x2 table using rows and columns as the categorizations using each
clustering method, and perform Fisher’s exact test in the usual way.

XY
Al3]1
113
4 4

Q0 =

Other Statistical Theory Aspects to Consider

The simple demonstration of the PN model and Fisher’s exact test motivates conditioning
on the structure of the graphs in other settings for doing inference on the relatedness of
multiple graphs. In the 2 x 2 table formulation of Fisher’s exact test, the marginal totals are
ancillary, and so inference is made conditional on these statistics. Since we can generate the



same distribution by conditioning on the structure of the two cluster graphs and permuting
the nodes, this suggests that the observed structure of the graphs may in some sense also be
ancillary.

There are many other investigations into latent-variable type models for random graphs
that may help frame hypotheses of interest in terms of reasonable parameters, suggest suf-
ficient and ancillary statistics, and lay further groundwork for doing statistical inference on
multiple graphs.
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Figure 1: Observed Literature Protein-Protein Interaction Graph




Figure 2: Part of the Subgraph for the Genes in Cell Cycle Cluster 1
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Figure 4: Randomly Reassigned Edges in PPI Graph
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Figure 5: Intersection Graph after Random Edge Reassignment
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Figure 6: Node Degree Distributions of PPI Graphs
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Figure 8: Test Statistics
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