## ----knitr-options, echo = FALSE, message = FALSE, warning = FALSE------------ knitr::opts_chunk$set(collapse = TRUE, comment = "#>") options(max.print = 30) ## ----install-bioc, eval = FALSE, include=TRUE--------------------------------- # BiocManager::install("simPIC") ## ----install-dev, eval = FALSE, include=TRUE---------------------------------- # BiocManager::install( # "sagrikachugh/simPIC", # dependencies = TRUE, # build_vignettes = TRUE # ) ## ----quickstart--------------------------------------------------------------- # Load package suppressPackageStartupMessages({ library(simPIC) }) # Load test data set.seed(567) counts <- readRDS(system.file("extdata", "test.rds", package = "simPIC")) # Estimate parameters est <- simPICestimate(counts) # Simulate data using estimated parameters sim <- simPICsimulate(est) ## ----pic, eval=FALSE, include=TRUE-------------------------------------------- # pic_mat <- PIC_counting( # cells = cells, # fragment_tsv_gz_file_location = fragment_tsv_gz_file_location, # peak_sets = peak_sets # ) ## ----simPICparams------------------------------------------------------------- sim.params <- newsimPICcount() ## ----params------------------------------------------------------------------- sim.params ## ----getParam----------------------------------------------------------------- simPICget(sim.params, "nPeaks") ## ----setParam----------------------------------------------------------------- sim.params <- setsimPICparameters(sim.params, nPeaks = 2000) simPICget(sim.params, "nPeaks") ## ----getParams-setParams------------------------------------------------------ # Set multiple parameters at once (using a list) sim.params <- setsimPICparameters(sim.params, update = list(nPeaks = 8000, nCells = 500) ) # Extract multiple parameters as a list params <- simPICgetparameters( sim.params, c("nPeaks", "nCells", "peak.mean.shape") ) # Set multiple parameters at once (using additional arguments) params <- setsimPICparameters(sim.params, lib.size.sdlog = 3.5, lib.size.meanlog = 9.07 ) params ## ----simPICestimate----------------------------------------------------------- # Get the counts from test data #counts <- readRDS(system.file("extdata", "test.rds", package = "simPIC")) # Check that counts is a dgCMatrix class(counts) typeof(counts) # Check the dimensions, each row is a peak, each column is a cell dim(counts) # Show the first few entries counts[1:5, 1:5] new <- newsimPICcount() new <- simPICestimate(counts) ## estimating using gamma distribution ## new <- simPICestimate(counts, pm.distr = "gamma") ## ----simPICsimulate----------------------------------------------------------- sim <- simPICsimulate(new, nCells = 500) sim ## simulating using gamma distribution ## sim <- simPICsimulate(new, nCells =500, pm.distr = "gamma") ## ----SCE---------------------------------------------------------------------- # Access the counts counts(sim)[1:5, 1:5] # Information about peaks head(rowData(sim)) # Information about cells head(colData(sim)) # Peak by cell matrices names(assays(sim)) ## ----comparison, warning=FALSE------------------------------------------------ sim1 <- simPICsimulate(nPeaks = 2000, nCells = 500) sim2 <- simPICsimulate(nPeaks = 2000, nCells = 500) comparison <- simPICcompare(list(real = sim1, simPIC = sim2)) names(comparison) names(comparison$Plots) ## ----comparison-means--------------------------------------------------------- comparison$Plots$Means ## ----multi-celltype----------------------------------------------------------- #counts <- readRDS(system.file("extdata", "test.rds", package = "simPIC")) sim <- simPICsimulate(new, method = "groups", nGroups = 2, group.prob = c(0.5, 0.5)) ## ----plot--------------------------------------------------------------------- library(SingleCellExperiment) library(scater) sim <- logNormCounts(sim) sim <- scater::runPCA(sim) plotPCASCE(sim,color_by="Group") ## ----multi-celltype-v--------------------------------------------------------- sim_multi <- simPICsimulate(new, method ="groups", nGroups = 2, group.prob = c(0.7, 0.3)) sim_multi <- logNormCounts(sim_multi) sim_multi <- runPCA(sim_multi) plotPCASCE(sim_multi, color_by="Group") ## ----multi-celltype-batch----------------------------------------------------- set.seed(567) sim_batch <- simPICsimulate(new, method="groups", nGroups=2, nBatches=2, group.prob=c(0.5, 0.5), batchCells=c(250,250)) sim_batch <- logNormCounts(sim_batch) sim_batch <- runPCA(sim_batch) plotPCASCE(sim_batch, color_by="Batch", shape_by="Group") ## ----citation----------------------------------------------------------------- citation("simPIC") ## ----sessionInfo-------------------------------------------------------------- sessionInfo()