1 Installation

lcmsPlot is a Bioconductor package and to install it we have to use BiocManager.

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("lcmsPlot")

2 Load data

The dataset used in this vignette originates from a prepared sample spiked with known standards, specifically L-Proline and L-Kynurenine. These compounds are highlighted throughout the vignette and serve as concrete examples to illustrate the different steps of the workflow.

To support reproducibility and hands-on exploration, example data files are provided in inst/extdata/standards-mzml.zip.

Two types of files are included:

  • An MS1-only file, which is suitable for tasks such as peak detection, feature alignment, and quantitation.
  • An MS2 file, which additionally enables exploration of fragmentation spectra for compound identification and spectral matching.
library(lcmsPlot)

exdir <- tempdir()

# Unzip the file containing the mzML files
utils::unzip(
    system.file("extdata", "standards-mzml.zip", package = "lcmsPlot"),
    exdir = exdir
)

mzml_dir <- file.path(exdir, "mzml")

samples_metadata <- data.frame(
    sample_id = c(
        "l-proline-MS1",
        "l-proline-MS2",
        "l-kynurenine-MS1",
        "l-kynurenine-MS2"),
    sample_name = c(rep("L-Proline", 2), rep("L-Kynurenine", 2)),
    ms_level = c(1, 2, 1, 2)
)

3 Overview of the data

The following figure illustrates the presence of the two spiked standards, L-Proline and L-Kynurenine, in the MS1-only samples. For each compound, an extracted ion chromatogram is generated using its expected m/z value and retention time, with narrow tolerances to precisely capture the corresponding signal.

ms1_samples_metadata <- samples_metadata |> dplyr::filter(ms_level == 1)
ms1_raw_files <- file.path(
    mzml_dir,
    paste0(ms1_samples_metadata$sample_id, ".mzML"))

lcmsPlot(ms1_raw_files, metadata = ms1_samples_metadata) +
    lp_chromatogram(
        features = data.frame(
            sample_id = c("l-proline-MS1", "l-kynurenine-MS1"),
            mz = c(116.0703793, 209.091824),
            rt = c(425.74, 365.72)
        ),
        ppm = 5,
        rt_tol = 5
    ) +
    lp_facets(facets = "sample_name", free_x = TRUE, ncol = 2)

Next, we plot the chromatograms together with their corresponding MS2 spectra, extracted from the scan closest to the specified retention time for each compound. This allows direct inspection of both chromatographic behavior and fragmentation patterns in a single visualization.

ms2_samples_metadata <- samples_metadata |> dplyr::filter(ms_level == 2)
ms2_raw_files <- file.path(
    mzml_dir,
    paste0(ms2_samples_metadata$sample_id, ".mzML"))

lcmsPlot(ms2_raw_files, metadata = ms2_samples_metadata) +
    lp_chromatogram(
        features = data.frame(
            sample_id = c("l-proline-MS2", "l-kynurenine-MS2"),
            mz = c(116.0703793, 209.091824),
            rt = c(425.74, 365.72)
        ),
        ppm = 5,
        rt_tol = 5
    ) +
    lp_spectra(
        rt = c("l-proline-MS2" = 425.74, "l-kynurenine-MS2" = 365.72),
        mode = "closest",
        ms_level = 2) +
    lp_facets(facets = "sample_name", free_x = TRUE, ncol = 2)

4 Custom themes

You can fully customise the appearance of your plots by modifying the underlying ggplot2 object. To do this, simply extract the plot using the lp_get_plot() function, which returns the raw ggplot2 object, and then apply any desired theme settings. This gives you complete flexibility to tailor the visualisation to your needs; for example, adjusting fonts, colors, backgrounds, grid lines, or margins. By leveraging custom themes, you can ensure consistency with your project/manuscript’s style guidelines, improve readability, or highlight specific aspects of your data.

Firstly, define the custom theme using the ggplot2 theme function:

my_custom_theme <- function() {
    ggplot2::theme(
        # Title
        plot.title = ggplot2::element_text(
            size = 16,
            margin = ggplot2::margin(b = 15)),
        
        # Axis labels
        axis.title = ggplot2::element_text(
            size = 11,
            face = "bold",
            color = "#1d293d"),
        
        # Facet strip
        strip.text = ggplot2::element_text(
            color = "#1d293d",
            size = 9,
            hjust = 0,
            margin = ggplot2::margin(t = 3, r = 10, b = 6, l = 10)
        ),
        strip.background = ggplot2::element_rect(
            color = "#90a1b9",
            fill = "#e2e8f0",
            linewidth = 0.8),
        
        # Box around the panel
        panel.border = ggplot2::element_rect(
            color = "#90a1b9",
            fill = NA,
            linewidth = 1),
        
        # Customize grid lines inside the plot
        panel.grid.major = ggplot2::element_line(
            color = "#e2e8f0",
            linewidth = 0.5),
        panel.grid.minor = ggplot2::element_line(
            color = "#e2e8f0",
            linewidth = 0.5)
    )
}

Generate the plot with lcmsPlot, retrieve the underlying plot object using lp_get_plot(), and then apply the custom theme:

lcmsPlot(ms1_raw_files, metadata = ms1_samples_metadata) +
    lp_chromatogram(
        features = data.frame(
            sample_id = c("l-proline-MS1", "l-kynurenine-MS1"),
            mz = c(116.0703793, 209.091824),
            rt = c(425.74, 365.72)
        ),
        ppm = 5,
        rt_tol = 5
    ) +
    lp_facets(facets = "sample_name", free_x = TRUE, ncol = 2) +
    lp_get_plot() +
    my_custom_theme()

5 Session Info

sessionInfo()
#> R Under development (unstable) (2026-01-15 r89304)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] lcmsPlot_0.99.16 BiocStyle_2.39.0
#> 
#> loaded via a namespace (and not attached):
#>  [1] sass_0.4.10         generics_0.1.4      digest_0.6.39      
#>  [4] magrittr_2.0.4      evaluate_1.0.5      grid_4.6.0         
#>  [7] RColorBrewer_1.1-3  bookdown_0.46       fastmap_1.2.0      
#> [10] jsonlite_2.0.0      ProtGenerics_1.43.0 mzR_2.45.0         
#> [13] tinytex_0.58        BiocManager_1.30.27 scales_1.4.0       
#> [16] codetools_0.2-20    jquerylib_0.1.4     cli_3.6.5          
#> [19] rlang_1.1.7         Biobase_2.71.0      withr_3.0.2        
#> [22] cachem_1.1.0        yaml_2.3.12         otel_0.2.0         
#> [25] tools_4.6.0         parallel_4.6.0      BiocParallel_1.45.0
#> [28] dplyr_1.2.0         ncdf4_1.24          ggplot2_4.0.2      
#> [31] BiocGenerics_0.57.0 vctrs_0.7.1         R6_2.6.1           
#> [34] magick_2.9.0        lifecycle_1.0.5     pkgconfig_2.0.3    
#> [37] pillar_1.11.1       bslib_0.10.0        gtable_0.3.6       
#> [40] glue_1.8.0          Rcpp_1.1.1          xfun_0.56          
#> [43] tibble_3.3.1        tidyselect_1.2.1    knitr_1.51         
#> [46] dichromat_2.0-0.1   farver_2.1.2        htmltools_0.5.9    
#> [49] patchwork_1.3.2     rmarkdown_2.30      labeling_0.4.3     
#> [52] compiler_4.6.0      S7_0.2.1