## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "##" ) ## ----installation, eval = FALSE----------------------------------------------- # # Install stable version from Bioconductor (once available) # BiocManager::install("decemedip") ## ----setup, warning=F, message=F---------------------------------------------- library(SummarizedExperiment) library(dplyr) library(ggplot2) library(decemedip) options(digits = 2) ## ----fig.retina = NULL, fig.align='center', fig.wide = TRUE, echo=FALSE------- # knitr::include_graphics(system.file("figures/method_main_figure.png", package = "decemedip"), dpi = 300) ## ----------------------------------------------------------------------------- data(hg19.ref.cts.se) print(hg19.ref.cts.se) head(granges(hg19.ref.cts.se)) ## ----------------------------------------------------------------------------- data(hg19.ref.anc.se) print(hg19.ref.anc.se) head(granges(hg19.ref.anc.se)) ## ----eval=FALSE--------------------------------------------------------------- # sample_bam_file <- "path/to/bam/files" # paired <- TRUE # whether the sequencing is paired-end ## ----eval=FALSE--------------------------------------------------------------- # output <- decemedip( # sample_bam_file = sample_bam_file, # paired = paired, # cores = 4 # ) ## ----------------------------------------------------------------------------- data(example.hg19.ref.cts.se) data(example.hg19.ref.anc.se) data(example.pdx.counts.cts.se) data(example.pdx.counts.anc.se) ## ----------------------------------------------------------------------------- # read counts of cell type-specific CpGs of the sample 'LuCaP_147CR' counts_cts <- assay(example.pdx.counts.cts.se)[, "LuCaP_147CR"] # read counts of anchor CpGs of the sample 'LuCaP_147CR' counts_anc <- assay(example.pdx.counts.anc.se)[, "LuCaP_147CR"] ## ----eval=TRUE---------------------------------------------------------------- output <- decemedip( counts_cts = counts_cts, counts_anc = counts_anc, ref_cts = example.hg19.ref.cts.se, ref_anc = example.hg19.ref.anc.se, diagnostics = TRUE, cores = 4, iter = 500 ) ## ----message=FALSE------------------------------------------------------------ library(rstan) ## ----eval=TRUE---------------------------------------------------------------- smr_pi.df <- getSummaryOnPi(output$posterior, cell_type_names = colnames(example.hg19.ref.cts.se)) print(smr_pi.df) ## ----fig.fullwidth=TRUE, warning=FALSE, eval=TRUE----------------------------- labels <- gsub("_", " ", smr_pi.df$cell_type) labels <- gsub("(.*) EPIC", "\\1", labels) smr_pi.df |> mutate(cell_type = factor(cell_type, labels = labels)) |> ggplot(aes(cell_type, mean)) + geom_linerange(aes(ymin = `2.5%`, ymax = `97.5%`), position = position_dodge2(width = 0.035), linewidth = 7, alpha = 0.3 ) + geom_linerange(aes(ymin = `25%`, ymax = `75%`), position = position_dodge2(width = 0.035), linewidth = 7, alpha = 1 ) + geom_point( position = position_dodge2(width = 0.035), fill = "white", shape = 21, size = 8 ) + theme_classic() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) ## ----fig.fullwidth=TRUE, warning=FALSE, eval=TRUE----------------------------- plotDiagnostics(output, plot_type = "y_fit") + ylim(0, 300) ## ----------------------------------------------------------------------------- sessionInfo()