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1 Introduction

This vignette demonstrates the utility and flexibility of the R package safe in conducting
tests of functional categories for gene expression studies. Significance Analysis of Function
and Expression (SAFE) is a resampling-based method that is applicable to many different
experimental designs and functional categories. SAFE extends and builds on an approach
first employed in Virtaneva et al. (2001), and defined more rigorously in Barry et al. (2005
and 2008). Gatti et al. (2010) showed that many applications for pathway analysis continue
to utilize methods which are grossly anti-conservative, and would therefore lead to a very
high false-positive rate in the literature. Lastly, in Zhou et al. (2013), we developed a series
of novel analytical approximations of permutation-based tests of pathways. These have
improved properties over the use of random sampling in selecting permutations, and greatly
reduce the computational requirements when inferences are based on the extreme tails of
empirical distributions. It is suggested that users refer to these publications to understand
the SAFE terminology and principles in greater detail.

2 Citing safe

When using the results from the safe package, please cite:

Barry, W.T., Nobel, A.B. and Wright, F.A. (2005) ‘Significance analysis of func-
tional categories in gene expression studies: a structured permutation approach’,
Bioinformatics, 21(9), 1943-1949.

and

Barry, W.T., Nobel, A.B. and Wright, F.A. (2008) ‘A Statistical Framework for
Testing Functional Categories in Microarray Data’, Annals of Applied Statistics,
2(1), 286-315.

The above articles describe the methodological framework behind the safe package.

3 Updates since version 2

The following lists summarize the changes and extended capability of safe that are included
in version 3. Examples of their implementation are illustrated in subsequent sections, and
additional details are given in help documents.

*bbarry@jimmy.harvard.edu



3.1

3.2

Major extensions

A new method for including covariates in safe is implemented with the option argu-
ment Z.mat, and relies on the internal function getXYresiduals. The extension is
discussed in Zhou et al. (2013), and an example is given in subsection 6.7.

A new approach for pathway-analyses with right-censored time-to-event data is also
discussed in Zhou et al. (2013), and an example is given in subsection 6.6. The compu-
tationally intensive method included in version 2 (local = "z.COXPH") is depreciated
and has been removed.

The internal function getCmatrix is updated for improved efficiency and a new op-
tional argument, by.gene = TRUE, to consider pathways at the gene-level instead of
the probeset-level.

New functionality is added to safe to implement parallel processing. Usage instruc-
tions and examples of improved execution times are given in section 10.

For basic experimental designs, safe automatically switches to exhaustive permutation
when there are fewer than what is specified by the default or user. The default for
method = "permutation" remains Pi.mat = 1000.

safe is modified to include the novel analytic approximations to permutation-testing
proposed in Zhou et al. (2013) using a dependent package, safeExpress. Users
interested in this method should contact any of the co-authors for the package source,
which can be installed on any operating system.

Minor changes

Names are attached to all slots of object of class SAFE.
safe.toptable is added for tabulating the output from safe.
Several new options are included in safeplot for visualizing the output from safe.

The user-controlled argument epsilon = 1e-10 corrects a numerical precision issue
when computing empirical p-values in small data sets (n < 15).

The default manner for accounting for multiple testing is switched from error =
"none" to error = "FDR.BH" to adjust p-values by the Benjamini-Hochberg (1995)
estimate of the false discovery rate.

4 SAFE implementation and output

The following Bioconductor packages are required for applying safe to an Affymetrix breast
cancer dataset from Miller et al. (2005).

> library(breastCancerUPP)
> library(hgu133a.db)
> library(safe)



Every SAFE analysis requires as input three elements from an experiment: (1) gene
expression data, (2) phenotype/response information associated with the samples, and (3)
category assignments that are either pre-built or generated from Bioconductor annotation
packages for the array platform.

The expression data should be in the form of an m xn matrix (m = the number of features
in the array platform, n = the number of samples), where appropriate normalization and
other pre-processing steps have been taken. It should be noted that missing values are not
allowed in the expression data, and must be imputed prior to analysis.

This tutorial will use the ExperimentData package breastCancerUPP, containing the
object upp, an ExpressionSet of normalized expression estimates (for 251 samples) that are
concatenated from the Affymetrix U133A and U133B platforms.

One sample characteristic of interest is p53 mutation status, that we append to the
phenotype data for upp. pb3 mutation status is taken from the NCBI’s Gene Expression
Omnibus (Edgar et al., 2002), accession GSE3494 (Miller et al., 2005), where p53+ = 1 and
pd53—=0.

> data(upp)

> ex.upp <- exprs (upp)

> p.upp <- pData(upp)

> data(pb3.stat)

> p.upp <- cbind(p.upp, p53 = p53.stat$pb3)

For the purposes of this vignette, the phenotype and expression data are restricted to
only those samples indicated as Grade 3, and the expression matrix is reduced to only the
non-control probesets on the Affymetrix hgul33a array.

> grade.3 <- which(p.upp$grade == 3)

> p3.upp <- p.upplgrade.3,]

> genes <- unlist(as.list(hgul33aSYMBOL))
> drop <- grep("AFFX", names(genes))

> genes <- genes[-drop]

> e3.upp <- ex.uppl[match(names(genes), rownames(ex.upp)),
+ grade. 3]

> table(p53 = p3.upp$pb3)

p53

0 1

23 31

Probeset IDs are necessary as row names in e3.upp for building gene categories. Here,
the functional categories of interest are REACTOME pathways and are identified internally
by the safe function; the process of generating categories is discussed in more detail in
section 5.

> set.seed(12345)
> results <- safe(e3.upp, p3.upp$p53, platform = "hgul33a.db",
+ annotate = "REACTOME", print.it = FALSE)

Building categories from reactome.db by ENTREZID2503 categories formed



The SAFE framework for testing gene categories is a two-stage process, where “local”
statistics assess the association between expression and the response of interest in a feature-
by-feature manner, and a “global” statistic measures the extent of association in features
assigned to a category relative to the complement. The default local statistic for the two-
sample comparison of p53+ and p53— is the Student’s t-statistic, and the default global
statistic is the Wilcoxon rank sum. Empirical p-values for local and global statistics are
calculated by permutation.

The basic output from safe is an object of class SAFFE. Showing objects of class SAFE
will print details on the type of analysis and the categories that attain a certain level of
significance. In addition, the function safe.toptable is included in version 3.0 of the safe
package to return annotated results as a data.frame for categories with the strongest associ-
ation to response/phenotype. This includes (a) category name; (b) the category size; (c) the
global statistic; (d) nominal empirical p-values; (e) adjusted p-values; and (f) descriptions
of Gene Ontology (GO), REACTOME genesets, or Protein Families (PFAM), if available.

> safe.toptable(results, number = 10)

GenesetID Size Statistic P.value Adj.p.value Descriptic
1 REACTOME:R-HSA-5661231 13 263010 0.001 0.9607 Metallothioneins bind metal
2  REACTOME:R-HSA-804914 3 62524  0.002 0.9607 Transport of fatty acic
3 REACTOME:R-HSA-69183 19 312044 0.003 0.9607 Processive synthesis on the lagging strar
4 REACTOME:R-HSA-8953750 56 768442  0.006 0.9607 Transcriptional Regulation by E2F
5 REACTOME:R-HSA-73817 18 282548 0.006 0.9607 Purine ribonucleoside monophosphate biosynthes:
6 REACTOME:R-HSA-5660526 17 311378  0.007 0.9607 Response to metal ior
7 REACTOME:R-HSA-69166 18 291188  0.007 0.9607 Removal of the Flap Intermediat
8 REACTOME:R-HSA-176417 11 1905639  0.007 0.9607 Phosphorylation of Emi
9  REACTOME:R-HSA-110314 46 671783  0.008 0.9607 Recognition of DNA damage by PCNA-containing replication comple
10 REACTOME:R-HSA-156711 21 340887 0.008 0.9607 Polo-like kinase mediated event

NOTE: As in standard feature-by-feature analyses, it is of critical importance to ac-
count for multiple comparisons when considering a number of categories simultaneously. By
default, safe provides Benjamini-Hochberg (1995) adjusted p-values to control the false-
discovery rate. Several other options for correcting for multiple testing are discussed in
detail in Section 8.

Feature-specific results within a category can be extracted by the gene.results func-
tion. This is useful for investigators interested in knowing which members of a category are
contributing to its significance. The following example demonstrates how the direction and
magnitude of differential expression are displayed by default. A list of two data.frames can
also be returned with the argument print.it = FALSE.

> gene.results(results, cat.name = "REACTOME:R-HSA-69183", gene.names = genes)

Category gene-specific results:
Local: t.Student
Method: permutation

REACTOME:R-HSA-69183 consists of 19 gene features

Upregulated Genes

Gene.Names Local.Stat Emp.pvalue
205628_at PRIM2 3.593 0.001
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A summary of gene-specific results for a category is also available from the safeplot
function. The process of generating SAFE-plots and a more detailed description of the image
are given in section 11.1.

> safeplot(results, cat.name = "REACTOME:R-HSA-69183", gene.names = genes)
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5 Building categories from annotation packages

For the example in section 4, REACTOME categories were built internally in safe as
any term which is annotated to at least two Affymetrix probesets in the filtered dataset



(identified by the rownames of e3.upp). Categories can also be created externally from
safe, and stored efficiently as a sparse matrix using the SparseM package as follows:

> entrez <- unlist(mget (names(genes),hgul33aENTREZID))

> C.mat <- getCmatrix(gene.list = as.list(reactomeEXTID2PATHID),
+ present.genes = entrez,prefix = "REACTOME:",
+ min.size = 10, max.size = 500)

1868 categories formed
> results <- safe(e3.upp, p3.upp$p53, C.mat, print.it = FALSE)

NOTE: For many instances, when performing pathway-analyses in R, it will improve
computational time to create sparse matrices of categories first, and then apply them (or
appropriately subsetted objects) to runs of safe with varying expression datasets or response
vectors. For instance, we will do so in section 6 to illustrate the different experimental designs
that safe can accommodate.

Functional categories can also be derived from other sources of information commonly
provided in Bioconductor AnnotationData packages. For example, the Protein Families
database can be used to generate categories using the argument annotate = "PFAM", or
externally from safe as:

> C.mat2 <- getCmatrix(gene.list = as.list(hgul33aPFAM),
+ present.genes = rownames(e3.upp))

Gene Ontology pathways can also be created from Bioconductor metadata packages.
The argument annotate = "GO.ALL" will form categories from all three ontologies, while
"GO.CC", "GO.BP", or "GO.MF" will restrict sets to Cellular Compartment, Biological Process
or Molecular Function, respectively. It is important to note that in the hierarchical structure
of the GO vocabularies, a gene category is generally thought of as containing the set of array
features directly annotated to a term, and also to any terms beneath it in the ontology. The
C matrix of each can be externally built, under user-defined size restrictions, with the
getCmatrix function, as follows, :

> G0.1list <- as.list(hgu133aGO2ALLPROBES)
> C.mat2 <- getCmatrix(keyword.list = GO.list, GO.ont = "CC",
+ present.genes = rownames (e3.upp))

Statistical methods for pathway-analyses are generally applicable to any other biological
reason for creating a gene-set, but are normally underutilized because of the bioinformatic
challenge of creating, storing, and implementing sets. With safe, the function getCmatrix
gives a user the capability, albeit in a somewhat limited fashion, of storing user-defined
gene-sets in an ordered manner for analyses. For example, the genes that are measured
by the Oncotype DX recurrence score for breast cancer (either all 21 genes, or the 16 non-
housekeeper genes), can be tested as a set as:

> RS.list <- list(Genes21 = c("ACTB","RPLPO","MYBL2","BIRC5","BAG1", "GUSB",
+ "CD68", "BCL2","MMP11","AURKA", "GSTM1","ESR1",
+ "TFRC","PGR","CTSL2","GRB7", "ERBB2", "MKI67",



"GAPDH", "CCNB1", "SCUBE2"),
Genes16 = c("MYBL2","BIRC5","BAG1","CD68","BCL2", "MMP11",
"AURKA","GSTM1","ESR1","PGR", "CTSL2", "GRB7",
"ERBB2","MKI67","CCNB1", "SCUBE2"))
RS.1list <- lapply(RS.list,function(x)
return(names (genes[which(genes Jinj x)])))
C.mat2 <- getCmatrix(keyword.list = RS.list,
present.genes = rownames(e3.upp))

+ vV + VvV + + + +

N

categories formed

\

resultsl <- safe(e3.upp, p3.upp$er, C.mat2, print.it = FALSE)
safe.toptable(resultsl, number = 2, description = FALSE)

v

GenesetID Size Statistic P.value Adj.p.value
Genes21 51 795428  0.004 0.008
Genesl6 38 556879  0.017 0.017

N —

As shown, the 16- and 21-gene sets in the Oncotype Dx assay are significantly correlated
with ER status by THC, which is expected as one of the gene members ("ESR1" above), and
as a widely known prognostic factor for breast cancer. Conversely, no significant association
to p53 is seen (data not shown).

Lastly, with version 3.0 of safe, a new definition of “soft categories” allows for tests
of association to be conducted at the gene-level, instead of the feature-level, of the given
platform. This is performed by using an optional argument to getCmatrix, by.gene = TRUE,
and passing the gene annotation as a character vector to gene .names. In brief, probesets are
downweighted as m%,’ where my is the number of probesets annotated to a given gene. As
such, the size of the category becomes the number of genes, and the default global statistic
becomes a rank-based Wilcoxon linear score statistic. A manuscript is in preparation on
“soft categories”, and their application to gene-level analysis and other unique biological
contexts for pathway-analysis.

6 Experimental designs and local statistics

The two-sample comparison of p53 mutant versus p53 wild type samples is one of several
experimental designs that safe can automatically accommodate. This section describes
the variety of designs, and the corresponding local statistics, along with the arguments in
safe to execute them. NOTE: To decrease computation time in the following examples,
permutation testing is bypassed using the argument Pi.mat = 1.

6.1 Two-sample comparisons

For two-sample comparisons, the response vector can either be given as a (0, 1) vector or a
character vector with two unique elements. When a character vector is passed to safe as the
response, the assignment of the first element of the array becomes Group 1, and is printed
as a warning in the output from gene.results and safeplot. It is critical for the user to
be aware of this assignment and how it defines the direction of differential expression.

By default, a Student’s t-statistic is employed for categorical comparisons, but if unequal
variances are assumed, the Welch t-statistic can be selected using local = "t.Welch". As



shown below, feature-by-feature results are highly correlated between the two statistics, as
expected.

> results2 <- safe(e3.upp, p3.upp$p53, C.mat, local = "t.Welch",
+ Pi.mat = 1, print.it = FALSE)

> cbind(Student = round(results@local.stat[1:3], 3),

+ Welch round (results2@local.stat[1:3], 3))

Student Welch
1007_s_at 0.389 0.378
1053_at 1.262 1.254
117_at 0.278 0.296

6.2 Multi-class designs

For multi-class designs, response vectors should be character or numeric vectors with unique
values for each group. If a character vector with more than two elements is supplied for
y.vec, an ANOVA F-statistic is computed by default; otherwise, an ANOVA test can be
specified with the argument local = "f.ANOVA" for numeric class assignments.

> y.vec <- c("p53-/er-","p53-/er+","p53+/er-",
+ "p53+/er+") [1+p3.upp$er+2+p3. upp$p53]
> table(PHENO = y.vec)

PHENQO
p53+/er+ pb3+/er- pb3-/er+ pb3-/er-
18 13 15 8

> results2 <- safe(e3.upp, y.vec, C.mat, local = "f.ANOVA",
+ Pi.mat = 1, print.it = FALSE)

6.3 Continuous phenotypes

The example below demonstrates how safe can also be used to examine continuous re-
sponses, such as tumor size for the breast cancer data set. Simple linear regression is
performed if a numeric vector with more than two unique values is supplied, or by using the
argument local = "t.LM".

> results2 <- safe(e3.upp, p3.upp$size, C.mat, local = "t.LM",
+ Pi.mat = 1, print.it = FALSE)

6.4 Paired two-sample comparisons

safe includes the paired t-test for matched experiments that are 1 : 1. To implement
this, samples are identified by +/— pairs of integers. Internally, the permutation algorithm
changes from random sampling without replacement, to randomly flipping the signs of each
paired sample.

> y.vec <- rep(1:27,2)*rep(c(-1,1), each = 27)
> results2 <- safe(e3.upp, y.vec, C.mat, local = "t.paired",
+ Pi.mat = 1, print.it = FALSE)



6.5 User-defined local statistics

In addition to these predefined local statistics, safe is structured such that the user can
specify alternative local statistics by defining a function with the following structure. The
primary requirement is that a generic function be loaded which takes as inputs data, the
matrix of expression data, and vector, the response information, as illustrated below. Local
statistics should have a null value of 0, whether they are one-sided or two-sided, to be used
under default arguments. Additional information can be passed as objects in the optional
list, args.local. Here, we create a function for a Wilcoxon signed rank, as a non-parametric
alternative to the paired t-test described above. NOTE: This choice of local statistic should
not be confused with the default global statistic.

> local.WilcoxSignRank<-function(X.mat, y.vec, ...){
+ return(function(data, vector = y.vec, ...) {
+ n <- ncol(data)/2

+ x <- data[, vector > 0][, order( vector[vector > 0])]
+ y <- datal, vector < 0]J[, order(-vector[vector < 0])]
+ ab <- abs(x-y)

+ pm <- sign(x-y)

+ pm.rank <- (pm == 1) * t(apply(ab, 1, rank))

+ return(as.numeric(apply(pm.rank, 1, sum) - n*(n+1)/4))
+})

+

> results3 <- safe(e3.upp, y.vec, C.mat, local = "WilcoxSignRank",
+ Pi.mat = 1, print.it = FALSE)

> cbind(Paired.t = round(results2@local.stat[1:3], 3),

+ Sign.Rank = results3@local.stat[1:3])

Paired.t Sign.Rank

1007_s_at -3.372 -132
1053_at 1.267 46
117 _at -0.793 -67

As a resampling-based method, safe is computationally intensive, so considerations of
efficiency should be made when programming user-defined functions for local and global
statistics. The above example, while simple, is much slower than the default paired t-test
in safe because of its reliance on the apply function. Interfacing with C or another foreign
language is highly suggested for any statistic without a closed solution that can be written
using scalar and matrix operations. Complete instructions on how to design and include
user-defined functions will not be included in this vignette.

6.6 New method for survival analysis

A new approach for pathway-analyses with right-censored time-to-event data is provided
in safe version 3.0, which computes martingale residuals (Therneau et al., 1990) for the
right-censored clinical data, and a score statistic for the association of the continuous resid-
uals to the gene expression estimates. This method is substantially more computationally
efficient when compared to using conventional proportional hazards regression models in our



resampling-based approaches, and has also been applied to other pathway-analysis tools for
gene expression data for this reason (e.g., globaltest (Goeman et al., 2005)). The following
code illustrates how this approach can be applied to the 17 recurrent and 34 non-recurrent
samples in the Grade 3 subset of the breast cancer dataset.

> library(survival)

> layout(matrix(1:2,2,1), heights=c(4,2))
> plot(survfit(Surv(p3.upp$t.rfs, p3.upp$e.rfs) ~ 1),

+ xlab = "Time (days)", ylim = c(.4,1))
o
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drop <- is.na(p3.upp$t.rfs)
Xy <- getCOXresiduals(e3.uppl, !dropl, p3.upp$t.rfs[!drop],
p3.upp$e.rfs[!drop])
results2 <- safe(Xy$X.star, Xy$y.star, C.mat,
Pi.mat = 1, print.it = FALSE)

+ VvV + Vv Vv

6.7 New method for covariate adjustment

Finally, another important extension of the SAFE method allows for resampling-based path-
way analysis to be applied to experimental designs with important covariate information
(noted here as an n x p matrix). In principle, defining local statistics in the presence of
covariates that can be applied to every array feature is straightforward. However, we still
need to handle correlation structures across genes, for which permutation is attractive. The
proper handling of covariates is a challenge in the permutation setting, however, as stan-
dard permutation forces the investigator to permute the covariates relative to either X or
y, but is inappropriate if a covariate is correlated with both X and y. Several permutation
approaches in the presence of covariates are described in Good (2000) for linear regression,
but are not computationally efficient for high-dimensional datasets. Rather, we propose
computing the residuals X, and y, from general or generalized linear regression models for
the n X p covariate matrix Z. Then, the score statistic defined in Zhou et al. (2013) can
be used as the local statistic in resampling-based tests, or in the analytical approximations

10



using a penalty for the loss of degrees of freedom from adjusting for Z. The following code
illustrates how this approach can be applied to the Grade 3 subset of the breast cancer
dataset to test for the association of pathways to p53 mutations after adjusting for estrogen
receptor status.

> table(ER = p3.upp$er, p53 = p3.upp$p53)

p53
ER 0 1

0 8 13

1 15 18

> Xy <- getXYresiduals(e3.upp, p3.upp$p53, Z.mat = p3.uppPer)
> results2 <- safe(Xy$X.star, Xy$y.star, C.mat,
+ Pi.mat = 1, print.it = FALSE)

7 Alternative global statistics

By default, safe conducts two-sided tests, taking the absolute value of local statistics, before
ranking the feature-by-feature results. In this way, one can identify categories showing either
(a) consistent up-regulation, (b) down-regulation, or (c) bi-directional differential expression.
An optional argument in safe allows users to specify one-sided tests of differential expression:
args.global = list(one.sided = TRUE) to consider only features in the positive direction
to be significant.

In the above SAFE analyses, a functional category was compared to its complementary
set of array features with a Wilcoxon rank sum statistic. The merits of using rank-based
statistics for functional analysis are discussed in more detail in Barry et al. (2005). However,
the SAFE framework naturally extends to other statistics used in gene category analyses.
This allows for one to apply test statistics used in other pathway-analysis software in a way
that accounts for gene-gene correlation (see Barry et al., 2008).

7.1 Average difference

Instead of testing the median difference in feature-by-feature association with the Wilcoxon
rank sum, a natural analog would be to test the mean difference, as done in T-profiler
(Boorsma et al., 2005), under an assumption of gene-independence. In safe, this can be
tested more properly under gene-dependence using the argument: global = "AveDiff", as
follows:

> results2 <- safe(e3.upp, p3.upp$p53, C.mat,
+ global = "AveDiff", print.it = FALSE)
> cor(results@global.pval, results2@global.pval, method = "spearman")

[1] 0.9571825

As shown above, highly concordant results are seen overall between these two choices of
global statistics, but the latter will be more sensitive to heavily-tailed empirical distributions
of local statistics. This can occur with outliers and highly influential expression estimates
that are common in most commercial platforms, despite global transformations (e.g., logs)
to minimize heteroscedasticity among features.
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7.2 Gene-list methods

One popular approach to examining categories is through “gene-list enrichment” methods,
that were developed as post hoc means of inference after the array-features with significant
differential expression had been identified. These methods use global statistics that only
consider the dichotomous outcomes of feature-by-feature hypothesis tests (i.e., r probesets
on an Affymetrix platform are differentially expressed, m — r are not), and typically use
Fisher’s Exact test or Pearson’s test for a difference in proportions. Again, p-values are
extremely anti-conservative under the false assumption of gene independence, which can lead
to spurious results. For this reason, we have extended safe to this class of global statistics
such that valid p-values can be obtained. In using the gene-list type global statistics, one
must specify either the list length, as in the example below, or a (one- or two-sided) cut-off
value:

> set.seed(12345)

> results2 <- safe(e3.upp, p3.upp$p53, C.mat, global = "Fisher",

+ args.global = list(one.sided=F, genelist.length = 200),
+ Pi.mat = 1, print.it = FALSE)

Similarly, the Pearson test for difference in proportions (which is equivalent to a Chi-
squared test) can be specified by the argument global = "Pearson", and instead of con-
ditioning on the number of rejected feature-level hypotheses, as in Fisher Exact tests, one
specifies the cutoff for the gene-list. This is done in the same manners as shown above,
where a one-sided or two-sided threshold value for local statistics is declared by the argu-
ment args.global = list(one.sided = FALSE, genelist.cutoff = 2.0).

7.3 Kolmogorov-Smirnov-type tests of enrichment

Lastly, we note that the popular approach to pathway-analysis, Gene Set Enrichment Anal-
ysis (GSEA), rightly accounts for gene-gene correlation through permutation-testing (see
Barry et al., 2008, for discussion). Rather than using a global statistic for comparing cen-
tral tendencies between a category and its complement, Subramanian (2005) proposed a
Kolmorgorov-Smirnov statistic used traditionally as a non-parametric test for more general
differences in distributions.

In safe, this statistic can be used with the argument global = "Kolmogorov", although
we note that this will be more computationally intensive than the above options, since it
cannot rely solely on scalar and matrix operators for calculation. For this reason, it is not
applied in this vignette and may not be feasible for general use, other than for simulation
studies to compare against output from GSEA and other softwares.

8 Adjusting for multiple comparisons in SAFE

As in standard feature-by-feature analyses, it is necessary to account for multiple compar-
isons when considering a set of categories. By default, safe accounts for multiple compar-
isons by reporting the Benjamini-Hochberg (1995) estimate of the false discovery rate (FDR),
error = "FDR.BH", with every nominal p-value. safe also includes options for Bonferroni
correction, error = "FWER.Bonf" or Holm’s step-down procedure, error = "FWER.Holm",
for the family-wise error rate (FWER).
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Since SAFE is a resampling-based test, permutation-based error rate methods have been
incorporated into safe which will control the correlation between tests of categories with
overlapping or non-overlapping but co-regulated genes. This includes Yekutieli-Benjamini
(1999) estimates of the FDR, error = "FDR.YB", and the Westfall-Young (1989) method,
error = "FWER.WY", for controlling the FWER. Although we feel these two permutation-
based procedures for controlling error are superior (by empirically accounting for correlation
among tests), they are more computationally and memory intensive, requiring all permuted
global statistics be stored from resampling. For this reason, we have not included them in
the vignette, and the traditional Benjamini-Hochberg (1995) estimate is selected by default.

9 Bootstrap-based tests in SAFE

In Barry et al. (2008), a bootstrap-based version of SAFE was proposed and shown to
generally be more powerful while controlling Type I error. Two basic methods of hypothesis
testing defined by Efron (1982) are available: 1) The argument method = "bootstrap" or
method = "bootstrap.t" will invoke pivot tests to look for the exclusion of a null value
from Gaussian confidence intervals computed from the resampled mean and variance of the
global statistic; 2) alternatively, method = "bootstrap.q" will invoke tests based on the
exclusion of a null value from the alpha-quantile interval of the resampled global statistic.
The following example is an anecdotal illustration of increased power from bootstrap-
resampling; a more definitive demonstration using simulation appears in Barry et al. (2008).

> set.seed(12345)

> results2 <- safe(e3.upp, p3.uppPer, C.mat2,

+ method = "bootstrap.t', print.it = FALSE)
>

+

round(cbind (Perm = resultsi@global.pval,
Boot.t = results2@global.pval),4)

Perm Boot.t
Genes21 0.004 1e-04
Genesl16 0.017 be-04

Based on the requirements for bootstrap-based hypothesis testing (see Barry et al., 2008),
they can only be performed using 1) Wilcoxon rank sum, 2) average difference, or 3) Pearson
difference in proportions (the pre-defined global statistics).

P-values for local statistics are calculated under bootstrap resampling, using exclusion
of 0 from quantile intervals with args.local = list(boot.test = "q"), and Gaussian
intervals with args.local = list(boot.test = "t"). A null value of 0 must relate to no
differential expression in the supplied local statistics.

By default, the data are resampled B = 1000 times when performing permutation or
quantile bootstrap tests. However, with minimum empirical p-values of %, this may not be
sufficient when testing hundreds or thousands of categories, and > 10-fold more resamples
could be needed if there are several hundred categories being investigated. The Gaussian
bootstrap-based test has the advantage that empirical p-values are not bounded by the
total number of resamples taken, such that small p-values can be obtained without intensive
computational effort.

Moreover, because permutation-resampling is intensive in computation time and memory
requirements, we have recently developed accurate analytic approximations to permutations
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of score statistics that have good performance for even relatively small sample sizes (Zhou et
al., 2013). This approach preserves the essence of controlling Type I error by permutation
pathway analysis, but with greatly reduced computation, and is more accurate than com-
peting moment-based approaches in common use. The method has improved properties, in
terms of mean square error, over the common use of random sampling to select permuta-
tions. These algorithms have been written into a new R package, safeExpress, which can
be called internally by safe using the argument method = express, so that the output is
provided as a SAFFE object. The safeExpress package is available by request to any of the
vignette coauthors.

10 Parallel processing

The default method in safe calculates p-values empirically by resampling. While standard
R conducts each operation sequentially, under parallel processing multiple computational
tasks are executed simultaneously on separate computer processing cores. A new feature in
safe allows users to take advantage of the multiple computing cores commonly available on
servers and PCs to get substantial improvements in computing time by conducting boot-
strap or permutation resampling in parallel. Similar improvements are seen with numerical
approximations in method = "express" by testing individual categories in parallel.

10.1 TImplementation

When executing safe with any available method (permutation, bootstrapping, or “express”),
with error = "none", "FWER.Bonf", or "FDR.BH", users can specify the optional parame-
ter parallel = TRUE to leverage parallel processing. Within safe, the foreach package is
implemented for parallel execution of the requested method for the primary analysis. The
foreach package provides a “frontend” for any available parallel “backend” initialized prior
to calling the safe function. The foreach package is compatible with a variety of back-
ends supporting %dopar’ functionality, and has been tested successfully with doMC, doMPI,
doParallel, and doSNOW. An example invocation is given below, but users should consult
the documentation of these packages for more information on how to initialize a parallel
backend prior to invoking safe with parallel = TRUE. Upon execution, if no such backend
is available, the analysis will proceed in sequence, so conditional coding is not required,
ensuring code portability. When running in parallel, safe uses the doRNG package to allow
users to set seeds for random number generation, enabling reproducible analyses.

#Initialize parallel backend
library(doParallel)
registerDoParallel(cores=4)
set.seed(12345)
results <- safe(e3.upp, p3.upp$p53, platform = "hgul33a.db",
annotate = "REACTOME", print.it = FALSE, parallel=TRUE)

+ V VvV VvV Vv VvV

10.2 Comparison of methods

To demonstrate the efficiency gains possible under parallel processing, a comparison study
was conducted using the Miller et al. (2005) data to compare performance in a variety of
scenarios. To illustrate the breadth of conditions under which SAFE may be implemented,
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Sequential Parallel Rel- || Sequential | Parallel Rel-
n | m | C || Permutation | Permutation | ative || Bootstrap | Bootstrap | ative
SIS |[S 81.5 21.0 3.9 17.8 5.5 3.2
S|L [S 265.8 59.9 4.4 44.0 15.2 2.9
LIS |S 319.5 79.1 4.0 62.9 16.8 3.7
S|S |L 330.0 75.7 4.4 68.3 17.1 4.0
L|S |L 418.4 126.0 3.3 127.2 26.5 4.8
S|L |L 581.4 149.7 3.9 125.7 33.1 3.8
LIL |S 1380.2 343.9 4.0 246.5 65.7 3.8
L|L |L 1476.6 368.3 4.0 246.3 74.1 3.3

Table 1: Average run time (seconds) over 10 executions. “Relative” columns give sequential
execution time divided by parallel execution time. “S” and “L” indicate small or large testing
scenario parameters.

“large” and “small” numbers of samples, probesets, and categories were combined, forming
eight different scenarios for testing. The large sample size uses all of the phenotype data
(251 samples), while the small sample size is limited to only those samples indicated as
Grade 3 (54 samples). The large probeset scenarios use all probesets from the complete
Affymetrix hgul33a array (44928 probesets), while the small scenarios drop the Affymetrix
control probesets and truncate the data to one probeset per gene (12702 probesets). Finally,
the large and small sets of categories are constructed using the Gene Ontology pathways
(12140 or 13873 categories) or the Protein Families database (2061 or 2764 categories),
respectively, depending on the number of probesets being used.

Sequential and parallel analyses using the permutation method used the default setting
of 1000 permutations, and bootstrapping methods used the default of 200 bootstrap re-
samplings. The analyses for each testing scenario was repeated 10 times, and the resulting
average processing times are summarized in table 1. Table 1 was generated using 4 parallel
processing cores on a 64-bit Debian server with two dual-core AMD Opteron processors (four
cores total) with 16GB of RAM, running R version 2.15.2. As expected, parallel executions
of the permutation method were 4-4.5 times faster than sequential executions, and parallel
executions of the bootstrapping method were 3-5 times faster.
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Because computational overhead is minimal outside of the resampling loop, executions
times increase linearly with the number of resamplings but decrease linearly with the number
of cores. The analyses for the permutation method for two testing scenarios were repeated
10 times each using an increasing number of parallel processing cores on a 64-bit Debian
server with a six-core Intel i7-3960X Extreme processor with 48GB of RAM, running R
version 2.15.2. The resulting processing times, relative to the sequential execution time,
are summarized in the figure above. The S-5-S and L-L-L scenarios correspond to those
described for table 1. As the number of samples, probesets, or categories in the data is
increased, so is the computational burden of the resampling loop relative to that outside the
loop. Thus parallel processing shows more substantial improvement relative to sequential
processing for larger data sets.

11 Visualizing pathway-level association in SAFE

11.1 SAFE-plots

Ever since permutation testing for pathway-analysis was used in Virtaneva et al. (2001),
we have advocated that the cumulative distribution function (CDF) of the category be used
to visualize the relative magnitude and direction of differential expression of array features
annotated to the category. By default, the function safeplot will create a figure for the
most significant pathway, as shown in section 4. SAFE-plots of other categories can be
generated with the argument cat.name.

> safeplot(results, cat.name = "REACTOME:R-HSA-140877", gene.names = genes)
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Local statistics (on ranked scale)

SAFE-plots show the empirical CDF for the local statistics from a given category (solid
line), on the rank scale by default, or on an unranked scale with argument rank = FALSE.
A significant category will have more extreme associations to the response of interest than
its complement, resulting in either a right-ward, left-ward, or bidirectional shift in the CDF
away from the overall CDF (dashed line, which is uniform on the ranked scale). The shaded
regions of the plot correspond to the features that pass a nominal level of significance (em-
pirical p-values < 0.05 by default). The features in the category are shown as tick marks
along the top of the graph, and depending on the category size, either all features in the
category are labeled, or only the most extreme ones that will fit in the negative and positive
areas of the plot.

This SAFE-plot shows that the features of KEGG pathway 03030 demonstrate consistent
overexpression in ph3+ samples versus ph3—, including PRIM2, MCM*, and RFC* genes
reaching a nominal level of significance individually. In contrast, KEGG:00072 (above) does
not show a consistent pattern of differential expression, with only a single strongly significant
gene, ACT2, likely driving the association to p53 status.

11.2 Directed acyclic graphs of gene categories

Finally, Gene Ontology is a unique, structured vocabulary where genes are annotated from
broad to narrow levels of classification in a directed acyclic graph (DAG). As such, many
categories are highly related in their gene membership, and visualizing results across the
ontology can be useful in ascertaining the relationship among multiply-significant categories.
The following function interacts with the GOstats and Rgraphviz packages in order to
overlay SAFE results onto the DAG structure in a color-metric manner. By default, nodes
with unadjusted p-values less than 0.001 are drawn in blue; less than 0.01 are drawn in
green; and less than 0.1 are drawn in red. User-defined cutoffs for the three colors can be
specified using the argument color.cutoffs.

> safedag(results2, filter = 1)
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And one can also zoom in on parts of the DAG by specifying a node to be the top of the
graph.

> safedag(results2, filter = 1, top = "GO:0044430")

G0:0016459 G0:0005875,
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