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1 Introduction

FunciSNP assist in identifying putative functional SNP in LD to previously annotated GWAS
SNPs (tagSNP). Extracting information from the 1000 genomes database (1kg) by relative
genomic position of GWAS tagSNP currated for a particular trait or disease, FunciSNP aims
to integrate the two information with sequence information provided by peaks identified from
high-throughput sequencing. FunciSNP assumes user will provide peaks identified using any
available ChIP peak algorithm, such as FindPeaks, HOMER, or SICER. FunciSNP will
currate all 1kg SNPs which are in linkage disequilibrium (LD) to a known disease associated
tagSNP and more importantly determine if the 1kg SNP in LD to the tagSNP overlaps a
genomic biological feature.

Correlated SNPs are directly imported from the current public release of the 1000 genomes
database. 1000 genomes ftp servers available for the 1000 genomes public data:

� National Center for Biotechnology Information (NCBI)1

� European Bioinformatics Institute (EBI)2

1ftp://ftp-trace.ncbi.nih.gov/1000genomes/
2ftp://ftp.1000genomes.ebi.ac.uk/vol1/
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Correlated SNPs in LD to a tagSNP and overlapping genomic biological features are
known as putative functional SNPs.

This vignette provides a ‘HOW-TO’ guide in setting up and running FunciSNP on your
machine. FunciSNP was developed with the idea that a user will have uninterupted high-
speed internet access as well as a desktop machine with more than 4 multiple cores. If
user is using a windows machine, multiple cores options will not work and thus total time
to complete initial FunciSNP analysis will take longer than expected. Be sure you have
uninterupted computing power when using a windows machine. If using a linux machine,
please use ‘screen’ (see ‘man screen’ for more information).

1.1 Benchmark

Using a 64bit Linux machine running 11.04 Ubuntu OS with 24G RAM and 8 cores connected
to a academic high-speed internet port, the amount of time to complete 99 tagSNP across
20 different biofeatures took less than 30 min to complete. We anticipate about 2 hours to
complete the same analysis using one core.

1.2 Genome-Wide Association Studies SNP (GWAS SNP)

Genome-wide association studies (GWASs) have yielded numerous single nucleotide poly-
morphisms (SNPs) associated with many phenotypes. In some cases tens of SNPs, called
tagSNPs, mark many loci of single complex diseases such as prostate (> 50 loci), breast
(> 20 loci), ovarian (>10 loci), colorectal (>20 loci) and brain cancer (>5 loci) for which
functionality remains unknown. Since most of the tagSNPs (>80%) are found in non-protein
coding regions, finding direct information on the functional and/or causal variant has been
an important limitation of GWAS data interpretation.

1.3 1000 genomes project (1kg)

The 1000 genomes project recently released a catalog of most human genomic variants (minor
allele frequency of >0.1%) across many different ethnic populations. Initially, the 1000
genomes project goal was to sequence up to 1000 individuals, but has since sequenced more
than 2000 individuals, thereby increasing our current knowledge of known genomic variations
which currently sits at just over 50 million SNPs genome wide (approx. 2% of the entire
genome and on average 1 SNP every 60 base pairs)

1.4 Genomic features (Biofeatures)

With the advent of advanced sequencing technologies (next-generation sequencing, NGS),
genomic regulatory areas in non-coding regions have been well characterized and annotated.
Coupled with chromatin immuno-precipitation for a protein (e.g. transcription factor of hi-
stone) of interest, also known as ChIPseq, the technology have provided us with a unique
view of the genomic landscape, thereby providing a wealth of new knowledge for genomics
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research. Work by large consortia groups such as the Encyclopedia of DNA Elements (EN-
CODE), the Roadmap Epigenomics Mapping Consortium and The Cancer Genome Atlas
(TCGA), have made publicly available a growing catalog of many different histone marks,
transcription factors and genome-wide sequencing datasets for a variety of different diseases
and cell lines, including well characterized cancer cell lines such as MCF7 (breast cancer),
HCT116 (colon cancer), U87 (brain cancer) and LNCaP (prostate cancer).

2 Installing and Loading FunciSNP

To obtain a copy of FunciSNP , you will need to install BiocInstaller via Bioconductor:
library(BiocInstaller); biocLite(”FunciSNP”);
If you download the source code from the bioconductor page which lists FunciSNP, you

can install FunciSNP by following the instructions described in R CRAN. By installing
FunciSNP from source, the package assumes you have all the required libraries installed.

� Rsamtools (>= 1.6.1)

� rtracklayer(>= 1.14.1)

� GGtools (>= 4.0.0)

� methods

� ChIPpeakAnno (>= 2.2.0)

� GenomicRanges

� TxDb.Hsapiens.UCSC.hg19.knownGene

� VariantAnnotation

� plyr

� org.Hs.eg.db

� snpStats

The following loads the FunciSNP library in R.

> options(width=80);

> library(FunciSNP);

> package.version("FunciSNP");

[1] "1.24.0"
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3 Running getFSNPs to identify putative functional

SNPs

Before running getFSNPs , two input files are required. A list of tagSNPs and a folder with
all available biological features (peak files in BED format).

3.1 Create a GWAS SNP file

GWAS SNPs (tagSNP) should be listed in a tab or whitespace separated file. Three columns
are required for each tagSNP:

� Position (chrom:position)

� rsID (rsXXXXXXXX)

� population (EUR, AFR, AMR, ASN, or ALL)

‘Positon’ should be the exact postion for each rsID as reported by human genome build
hg19 (chrom:postion). ‘rsID’ should contain a unique rsID as determined by the 1000
genomes database (1kg)3 for each identified ‘tagSNP’. Population should be a three letter
code to determine original ethnic population for which the associated ‘tagSNP’ was identi-
fied. The three letter code should be either European (EUR), Asian (ASN), African (AFR),
American (AMR), or All (ALL). List each tagSNP per ethnic population. If similar rsID
was identified in multiple ethnic population, list each duplicate tagSNP separately with the
appropriate ethnic pouplation.

Several GWAS SNPs significantly associated with Glioblastoma multiforme (GBM)4 were
collected for this example. GBM is a brain cancer with median survival at less than 12
months, making this form of cancer one of the most aggressive of all cancer types. Currently,
there is no known function of any of these associated tagSNPs. In this example, GBM
includes lower grade glioma, therefore we use the ‘glioma’ to label all objects.

> ## Full path to the example GWAS SNP regions file for Glioblastoma

> # (collected from SNPedia on Jan 2012)

> glioma.snp <- file.path(system.file('extdata', package='FunciSNP'),

+ dir(system.file('extdata',package='FunciSNP'), pattern='.snp$'));

> gsnp <- read.delim(file=glioma.snp,sep=" ",header=FALSE);

> gsnp;

V1 V2 V3

1 11:118477367 rs498872 EUR

2 5:1286516 rs2736100 ASN

3 9:22068652 rs4977756 EUR

4 20:62309839 rs6010620 EUR

3Be sure the rsID is located in this browser: http://browser.1000genomes.org/
4See http://www.snpedia.com/index.php/Glioma
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Now, glioma.snp contains the full path to the GWAS tagSNP.

3.2 Biofeatures in BED format

Each biofeature used to identify correlated SNP should be in standard BED format5. Each
biofeature should be stored in one folder and should have file extension ‘*.bed’.

Here is an example of three different biofeatures used for this glioma example. NRSF
and PolII (both transcription factors) where extracted from a recent release of ENCODE, as
well as promoters of approximately 38,000 gene transcription start sites (TSS). Promoters
are identified as +1000 to -100 base pair of each annotated TSS. In addition, we include
all known DNAseI sites as supplied by ENCODE as well as FAIRE data. In additoin, we
used known CTCF sites to differentiate the DNAseI. The DNAseI and FAIRE data were
extracted in April of 2012 and they represent the best known regions across several different
cell lines. In addition, for the FAIRE data, we selected peaks with p-values less than 0.01.

> ## Full path to the example biological features BED files

> # derived from the ENCODE project for Glioblastoma U-87 cell lines.

> glioma.bio <- system.file('extdata',package='FunciSNP');

> #user supplied biofeatures

> as.matrix(list.files(glioma.bio, pattern='.bed$'));

[,1]

[1,] "TFBS_Nrsf_U87.bed"

[2,] "TFBS_Pol2_U87.bed"

> #FunciSNP builtin biofeatures

> as.matrix(list.files(paste(glioma.bio, "/builtInFeatures", sep=""),

+ pattern='.bed$'));

[,1]

> nrsf.filename <- list.files(glioma.bio, pattern='.bed$')[1];

> pol2.filename <- list.files(glioma.bio, pattern='.bed$')[2];

> Ctcf <- ctcf_only

> Dnase1 <- encode_dnase1_only

> Dnase1Ctcf <- encode_dnase1_with_ctcf

> Faire <- encode_faire

> Promoters <- known_gene_promoters

> Nrsf <- read.delim(file=paste(glioma.bio, nrsf.filename,sep="/"), sep="\t",

+ header=FALSE);

> PolII <- read.delim(file=paste(glioma.bio, pol2.filename,sep="/"), sep="\t",

+ header=FALSE);

> dim(Nrsf);

5See UCSC FAQ: http://genome.ucsc.edu/FAQ/FAQformat
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[1] 1264 6

> dim(PolII);

[1] 10918 6

> dim(Ctcf);

NULL

> dim(Dnase1);

NULL

> dim(Dnase1Ctcf);

NULL

> dim(Faire);

NULL

> dim(Promoters);

NULL

> ## Example of what the BED format looks like:

> head(Nrsf);

V1 V2 V3 V4 V5 V6

1 chr5 178601706 178602140 Merged-chr5-178601923-1 0 +

2 chr5 178850156 178850592 Merged-chr5-178850374-1 0 +

3 chr5 179015119 179015553 Merged-chr5-179015336-1 0 +

4 chr7 23844 24636 Merged-chr7-24240-1 0 +

5 chr7 65601 66065 Merged-chr7-65833-1 0 +

6 chr7 128907 129421 Merged-chr7-129164-1 0 +

As an example, Nrsf was created to illustrate the format needed for each biofeatures. To
run getFSNPs, only the path to the folder to each biofeature is required (glioma.bio).

7



3.3 getFSNPs analysis using two inputs

To run the example data could take more than 5 minutes, thus the R code is commented out
for this tutorial. If you are interested in running the glioma example from scratch, please
uncomment the following and rerun in your R session. NOTE: The main method to run
FunciSNP is getFSNPs .

> ## FunciSNP analysis, extracts correlated SNPs from the

> ## 1000 genomes db ("ncbi" or "ebi") and finds overlaps between

> ## correlated SNP and biological features and then

> ## calculates LD (Rsquare, Dprime, distance, p-value).

> ## Depending on number of CPUs and internet connection, this step may take

> ## some time. Please consider using a unix machine to access multiple cores.

>

> # glioma <- getFSNPs(snp.regions.file=glioma.snp, bio.features.loc = glioma.bio,

> # bio.features.TSS=FALSE);

As an alternative, glioma was pre-run and stored in the package as an R object. To call
this data object, simily run the following commands.

> data(glioma);

> class(glioma);

[1] "TSList"

attr(,"package")

[1] "FunciSNP"

Now, glioma contains the R data structure that holds all the results for this particular
analysis. Each tagSNP is stored as a slot which contains associated correlated SNP and
overlapping biofeature. It also contains a number of different annotations (see below for more
details). To see a brief summary of the results (summary), type the following commands:

> glioma;

TagSNP List with 4 Tag SNPs and

1855 nearby, potentially correlated SNPs, that overlap at least one biofeature

$`R squared: 0.1`

Total R.sq>=0.1 Percent

tagSNPs 4 4 100.00

1K SNPs 1855 131 7.06

Biofeatures 6 6 100.00

$`R squared: 0.5`

Total R.sq>=0.5 Percent
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tagSNPs 4 3 75.00

1K SNPs 1855 64 3.45

Biofeatures 6 4 66.67

$`R squared: 0.9`

Total R.sq>=0.9 Percent

tagSNPs 4 1 25.0

1K SNPs 1855 13 0.7

Biofeatures 6 3 50.0

As you can quickly observe from the above analysis, using 4 tagSNPs position and 7
different biological features (ChIPseq for ‘NRSF’, ‘PolII’, promoters of approx. 38,000 genes,
DNAseI sites, DNAseI sites with CTCFs, FAIRE, CTCFs) as two types of input, FunciSNP
identified 1809 1kg SNPs that overlap at least one biofeature. Each 1kg SNP contains an
Rsquare value to the associated tagSNP. As a result, the first output (glioma), summarizes
the analysis subsetted in three different Rsquare values (0.1, 0.5 and 0.9). If we consider
Rsquare cutoff at 0.9 (Rsquare ≥ 0.9), 14 1kg SNPs overlapping at least one biofeature. This
value represents 0.77% of the total (1809). In addition, at this Rsquare cutoff, 3 biological
features are represented among the 14 1kg SNPs.

> summary(glioma);

TagSNP List with 4 Tag SNPs and

1855 nearby, potentially correlated SNPs, that overlap at least one biofeature

Number of potentially correlated SNPs

overlapping at least x biofeatures, per Tag SNP at a specified R squared

$`R squared: 0.1 in 4 Tag SNPs with a total of `

bio.1 bio.2 bio.3 bio.4

rs2736100 2 0 0 0

rs4977756 17 4 0 0

rs498872 29 9 0 0

rs6010620 83 20 9 4

TOTAL # 1kgSNPs 131 33 9 4

$`R squared: 0.5 in 3 Tag SNPs with a total of `

bio.1 bio.2 bio.3 bio.4

rs4977756 7 3 0 0

rs498872 6 2 0 0

rs6010620 51 10 5 3

TOTAL # 1kgSNPs 64 15 5 3

$`R squared: 0.9 in 1 Tag SNPs with a total of `

bio.1 bio.2
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rs6010620 13 2

TOTAL # 1kgSNPs 13 2

Running summary however will output a slightly different report yet just as informative.
At three different Rsquare cutoffs (0.1, 0.5, 0.9), the summary output illustrates the tagSNP
with the total number of 1kg SNPs overlapping a total number of biofeatures. For example,
at Rsquare ≥ 0.5, tagSNP ‘rs6010620’ is assocated with 53 different 1kg SNPs which overlap
at least one biofeature, and 11 of them overlap at least two biofeatures.

Each newly identified 1kg SNP is now defined as putative functional SNP since they are
in LD to an associated tagSNP and they overlap at least one interesting biological feature.
Thus, each 1kg SNP can now be defined as ‘YAFSNP’ or ‘putative functional SNP.’

4 Annotating newly identified putative functional SNPs

All known genomic features (exon, intron, 5’UTR, 3’UTR, promoter, lincRNA or in gene
desert (intergentic)) are used to annotate each newly identified YAFSNP as described above.
Information stored in this glioma.anno is used for all summary plots, table, and to output
results in BED format (see following sections for more details). The following step will output
the data.frame.

> glioma.anno <- FunciSNPAnnotateSummary(glioma);

> class(glioma.anno);

[1] "data.frame"

> gl.anno <- glioma.anno;

> ## remove rownames for this example section.

> rownames(gl.anno) <- c(1:length(rownames(gl.anno)))

> dim(gl.anno);

[1] 2470 28

> names(gl.anno);

[1] "chromosome" "bio.feature.start"

[3] "bio.feature.end" "bio.feature"

[5] "corr.snp.id" "corr.snp.position"

[7] "tag.snp.id" "tag.snp.position"

[9] "D.prime" "R.squared"

[11] "p.value" "distance.from.tag"

[13] "population.count" "population"

[15] "nearest.lincRNA.ID" "nearest.lincRNA.distancetoFeature"

[17] "nearest.lincRNA.coverage" "nearest.TSS.refseq"
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[19] "nearest.TSS.GeneSymbol" "nearest.TSS.ensembl"

[21] "nearest.TSS.coverage" "nearest.TSS.distancetoFeature"

[23] "Promoter" "utr5"

[25] "Exon" "Intron"

[27] "utr3" "Intergenic"

> head(gl.anno[, c(1:18,20:28)]);

chromosome bio.feature.start bio.feature.end bio.feature

1 5 1200710 1201809 knownGene.Promoters.known

2 5 1211569 1212494 EncodeFaire.known

3 5 1211569 1212494 EncodeFaire.known

4 5 1211569 1212494 EncodeFaire.known

5 5 1211569 1212494 EncodeFaire.known

6 5 1221979 1222994 EncodeFaire.known

corr.snp.id corr.snp.position tag.snp.id tag.snp.position D.prime

1 chr5:1201778 1201778 rs2736100 1286516 NA

2 chr5:1212406 1212406 rs2736100 1286516 1

3 chr5:1212431 1212431 rs2736100 1286516 NA

4 chr5:1212445 1212445 rs2736100 1286516 1

5 chr5:1212490 1212490 rs2736100 1286516 NA

6 chr5:1221997 1221997 rs2736100 1286516 1

R.squared p.value distance.from.tag population.count population

1 NA 1 -84738 286 ASN

2 0.002275140 1 -74110 286 ASN

3 NA 1 -74085 286 ASN

4 0.002275140 1 -74071 286 ASN

5 NA 1 -74026 286 ASN

6 0.002700915 1 -64519 286 ASN

nearest.lincRNA.ID nearest.lincRNA.distancetoFeature nearest.lincRNA.coverage

1 TCONS_00010241 -40360 upstream

2 TCONS_00010241 -50988 upstream

3 TCONS_00010241 -51013 upstream

4 TCONS_00010241 -51027 upstream

5 TCONS_00010241 -51072 upstream

6 TCONS_00010241 -60579 upstream

nearest.TSS.refseq nearest.TSS.ensembl nearest.TSS.coverage

1 NM_001003841 ENST00000304460 inside

2 NM_001003841 ENST00000304460 inside

3 NM_001003841 ENST00000304460 inside

4 NM_001003841 ENST00000304460 inside

5 NM_001003841 ENST00000304460 inside

6 NM_182632 ENST00000324642 upstream
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nearest.TSS.distancetoFeature Promoter utr5 Exon Intron utr3 Intergenic

1 69 YES NO YES NO NO NO

2 10697 NO NO NO YES NO NO

3 10722 NO NO YES NO NO NO

4 10736 NO NO YES NO NO NO

5 10781 NO NO YES NO NO NO

6 -3472 NO NO YES NO NO NO

> summary(gl.anno[, c(1:18,20:28)]);

chromosome bio.feature.start bio.feature.end

Length:2470 Min. : 1190775 Min. : 1191397

Class :character 1st Qu.: 22102754 1st Qu.: 22103702

Mode :character Median : 62315624 Median : 62324005

Mean : 56309305 Mean : 56311568

3rd Qu.: 62365185 3rd Qu.: 62366592

Max. :118574381 Max. :118574590

bio.feature corr.snp.id corr.snp.position

EncodeDnaseI_only.known : 463 rs1291208 : 4 Min. : 1190800

EncodeDnaseI_withCTCF.known: 10 rs1291209 : 4 1st Qu.: 22102896

EncodeFaire.known :1016 rs1295810 : 4 Median : 62317710

knownGene.Promoters.known : 420 rs143566670: 4 Mean : 56310408

TFBS_Nrsf_U87 : 13 rs183316902: 4 3rd Qu.: 62365808

TFBS_Pol2_U87 : 548 rs186971726: 4 Max. :118574557

(Other) :2446

tag.snp.id tag.snp.position D.prime R.squared

rs2736100: 365 Min. : 1286516 Min. :0.0037 Min. :0.0000

rs4977756: 418 1st Qu.: 22068652 1st Qu.:0.8934 1st Qu.:0.0010

rs498872 : 432 Median : 62309839 Median :1.0000 Median :0.0045

rs6010620:1255 Mean : 56305808 Mean :0.8594 Mean :0.0933

3rd Qu.: 62309839 3rd Qu.:1.0000 3rd Qu.:0.0259

Max. :118477367 Max. :1.0000 Max. :0.9776

NA's :1427 NA's :1427

p.value distance.from.tag population.count population

Min. :0.0000 Min. :-100000 Min. :286.0 ASN: 365

1st Qu.:1.0000 1st Qu.: -31474 1st Qu.:379.0 EUR:2105

Median :1.0000 Median : 13384 Median :379.0

Mean :0.8198 Mean : 4600 Mean :365.3

3rd Qu.:1.0000 3rd Qu.: 30547 3rd Qu.:379.0

Max. :1.0000 Max. : 99950 Max. :379.0

nearest.lincRNA.ID nearest.lincRNA.distancetoFeature
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TCONS_00010241: 365 Min. :-266862

TCONS_00015797: 418 1st Qu.: -85894

TCONS_00020001: 432 Median : 57458

TCONS_00027984: 88 Mean : 9749

TCONS_00028269:1167 3rd Qu.: 79664

Max. : 246019

nearest.lincRNA.coverage nearest.TSS.refseq nearest.TSS.ensembl

downstream:1564 NM_003823 :600 ENST00000480273:600

inside : 21 NM_004936 :366 ENST00000276925:366

upstream : 885 NM_001144758:232 ENST00000361465:232

NM_020062 :129 ENST00000266077:129

NM_017806 :112 ENST00000486025:112

NM_007180 :106 ENST00000264029:106

(Other) :925 (Other) :925

nearest.TSS.coverage nearest.TSS.distancetoFeature Promoter utr5

downstream: 195 Min. :-156104.0 NO :2205 NO :2296

inside : 865 1st Qu.: -9952.0 YES: 265 YES: 174

upstream :1410 Median : -709.5

Mean : -10244.2

3rd Qu.: 4161.0

Max. : 30391.0

Exon Intron utr3 Intergenic

NO :2219 NO : 842 NO :2189 NO :2128

YES: 251 YES:1628 YES: 281 YES: 342

> rm(gl.anno);

As you can see, each tagSNP (‘tag.snp.id’) is associated with an identifiable YAFSNP
(‘corr.snp.id’) and each are associated with a biological feature (‘bio.feature’). Additional
columns are included which assist in summarizing the final results.

Now, if you prefer, you can use several functions to help summarize and plot the final
analysis or you can use your own set of scripts to further summarize the results. Either case,
the final results are stored in glioma.anno.

5 Summarize FunciSNP results

The following sections describe methods to summarize and plot the newly identified YAFS-
NPs.
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5.1 Summary table used to describe newly identified YAFSNPs

Using a specified Rsquare value (0-1) to subset the data, a table is generated which sum-
marizes the total number of YAFSNPs, associated tagSNPs, and number of overlapping
biofeatures. This will provide user a first look at the total number of available YAFSNP at
a particular Rsquare cutoff.

The output is very similar to the output generated by calling glioma. But instead of
getting a summary report three distinct Rsquare cutoffs, you can now specify the Rsquare
cutoffs. In this case, we used rsq = 0.44 (to get a more objective rsq value, see figure 1 on
page 17.

> FunciSNPtable(glioma.anno, rsq=0.44);

Total R.sq>=0.44 Percent

tagSNPs 4 4 100.00

1K SNPs 1855 72 3.88

Biofeatures 6 5 83.33

If ‘geneSum’ argument is set to ‘TRUE’, a list of gene names is reported instead which
informs on the nearest gene symbols to the set of YAFSNPs. Only unique gene symbols are
reported since multiple distinct YAFSNP can be near the same gene.

> FunciSNPtable(glioma.anno, rsq=0.44, geneSum=TRUE);

Gene_Names

1 ARFRP1

2 CDKN2B

3 LIME1

4 PHLDB1

5 RTEL1

6 SLC2A4RG

7 STMN3

8 TERT

9 TNFRSF6B

10 TREH

5.2 Summary of correlated SNPs overlapping biofeatures

FunciSNPsummaryOverlaps function helps to determine the total number of YAFSNPs over-
lapping a number of different biofeatures. This is similar to running summary on glioma

above, except now you can specifically call the function and set a pre-determined ‘rsq’ value
to subset the data and thereby obtain a more objective and informative result.

> FunciSNPsummaryOverlaps(glioma.anno)
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bio.1 bio.2 bio.3 bio.4

rs2736100 128 10 1 0

rs4977756 112 43 1 0

rs498872 124 34 4 0

rs6010620 431 115 31 9

TOTAL # 1kgSNPs 795 202 37 9

Using a ‘rsq’ value, the output is subsetted to summarize the results with Rsquare values
≥ ‘rsq’.

> FunciSNPsummaryOverlaps(glioma.anno, rsq=0.44)

bio.1 bio.2 bio.3 bio.4

rs2736100 1 0 0 0

rs4977756 9 3 0 0

rs498872 7 3 0 0

rs6010620 55 13 7 3

TOTAL # 1kgSNPs 72 19 7 3

5.3 Summary of correlated SNPs for a number of different tagSNPs

After running FunciSNPsummaryOverlaps , the next question one would like to know is which
correlated SNPs overlapping a number of different biofeatures for a number of associated
tagSNP. Thus, in the example above, we have determined that we are interested in learning
more about the YAFSNPs associated with ‘rs6010620’ and which overlap at least 3 different
biofeatures.

> rs6010620 <- FunciSNPidsFromSummary(glioma.anno, tagsnpid="rs6010620",

+ num.features=2, rsq=0.44);

> #summary(rs6010620);

> dim(rs6010620);

[1] 36 28

> class(rs6010620);

[1] "data.frame"

> ## See FunciSNPbed to visualize this data in a genome browser.
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6 Plot FunciSNP results

6.1 Default plot

FunciSNPplot is a function developed to plot various types of plots to summarize and assist
end-user in making informed discoveries of FunciSNP results. Plots can be stored in a folder
for future reference. Most plots were created in with the idea that they can be directly
outputted in presentations or publication formats.

The following example plots the distribution of the Rsquare values for each YAFSNP
(Figure 1, page 17). We recommend attempting this plot before subsetting any data by
a specified rsq value. The distribution helps to identify a specific Rsquare value that will
provide the most informative discovery.

> pdf("glioma_dist.pdf")

> FunciSNPplot(glioma.anno)

> dev.off()

null device

1

Figure 1 (page 17) illustrates the total number of YAFSNPsbinned at different Rsquare
cutoffs. As you can see in this figure (1, page 17), there are a total of 13 YAFSNP with an
Rsquare ≥ 0.9. Since this plot does not take into consideration unique YAFSNP the number
may represent duplicate YAFSNP since they may overlap more than one biological feature.

6.2 Split by tagSNP

Using ‘splitbysnp’ argument, the same type of plot as above (Figure 1, page 17) is generated,
however the total number of YAFSNPs are now divided by the associated tagSNP (Figure 2,
page 18). It should be clear from this plot that 3 of the 4 tagSNP have a number of YAFSNP
with Rsquares ≥ 0.5. And one tagSNP contains many more YAFSNP (‘rs6010620’).

> FunciSNPplot(glioma.anno, splitbysnp=TRUE)

> ggsave("glioma_dist_bysnp.pdf")

6.3 Heatmap of 1kg SNPs by tagSNP vs Biofeature

Now, if you are interested in knowing which biofeature and associated tagSNP contains the
most number of 1kg SNPs, run the following.

> pdf("glioma_heatmap.pdf")

> FunciSNPplot(glioma.anno, heatmap=TRUE, rsq = 0.1)

> dev.off()

pdf

2
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Figure 1: Distribution of Rsquare values of all YAFSNPs. Each marked bin contains the
total number of YAFSNPs (correlated SNPs). The sum of all the counts would total the
number of correlated SNPs.

6.4 TagSNP and Biofeature Summary

Using ‘tagSummary’ argument will automatically save all plots in a specific folder. This is
done because this function will generate a summary plot for each biofeature. The first plot
(Figure 4, page 20) is a scatter plot showing the relationship between Rsquare and Distance
to tagSNP for each YAFSNP.

> ## Following will output a series of plots for each biofeature at rsq=0.5

> FunciSNPplot(glioma.anno, tagSummary=TRUE, rsq=0.5)

Finished plotting 1 / 6

Finished plotting 2 / 6
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Figure 2: Distribution of Rsquare values of all YAFSNPs divided by the tagSNP and by its
genomic location.

Finished plotting 3 / 6

Finished plotting 4 / 6

Finished plotting 5 / 6

Finished plotting 6 / 6

Figure 4 on page 20 helps identify the relative postion of all newly identified YAFSNP
to the associated tagSNP. As highlighted in figure 4, it is clear that tagSNP ‘rs6010620’
contains many more YAFSNP with Rsquares ≥ 0.5, and the majority of them are within
40,000 base pairs of the tagSNP. There are a few YAFSNP which are more than 50,000 base
pairs away while some are within 5,000 base pairs.

The second plot (Figure 5, page 21) is a histogram distribution of total number of YAF-
SNPs at each Rsquare value. This plot is similar to Figure 2 on page 18, except it is further
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Figure 3: Heatmap of the number of 1kg SNPs by relationship between tagSNP and biofea-
ture.

divided by biofeature. Each set of plot is further divided by tagSNP to help identify locus
with the most identifiable YAFSNP. This argument is best used in conjunction with a ‘rsq’
value.

6.5 Genomic Feature Summary

Using ‘genomicSum’ argument set to ‘TRUE’ will output the overall genomic distribution
of the newly identified YAFSNPs (Figure 6, page 22). Using ‘rsq’ value, the plot is divided
into all YAFSNPs vs subset. This type of plot informs the relative enrichment for genomic
features.
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Figure 4: Scatter plot showing the relationship between Rsquare and Distance to tagSNP
for each getFSNPs

> pdf("glioma_genomic_sum_rcut.pdf")

> FunciSNPplot(glioma.anno, rsq=0.5, genomicSum=TRUE, save=FALSE)

> dev.off()

pdf

2

Figure 6 on page 22 illustrates the distribution of the YAFSNP by genomic features. It
is clear by using an Rsquare cutoff of 0.5, there is a slight enrichment of YAFSNP in introns
and exonds and a depletion at promoters and other coding regions as well as intergentic
regions.
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Figure 5: Histogram distribution of number of correlated SNPs at each Rsquare value

7 Visualize FunciSNP results in a genomic browser

(outputs BED format)

Finally, after evaluating all results using the above tables and plots functions, a unique
pattern emerges that helps identify a unique cluster of tagSNP and biofeature that can
identify a set of YAFSNPs. To better visualize and to get a better perspective of the location
of each newly identified YAFSNP, the results can be outputted using FunciSNPbed .

FunciSNPbed outputs a unique BED file which can be used to view in any genomic
browser which supports BED formats. To learn more about BED formats, see UCSC Genome
Browser FAQ (http://genome.ucsc.edu/FAQ/FAQformat).

> ## will output to current working directory.

> FunciSNPbed(glioma.anno, rsq=0.22);
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Figure 6: Stacked bar chart summarizing all correlated SNPs for each of the identified
genomie features: exon, intron, 5UTR, 3UTR, promoter, lincRNA or in gene desert. Rsquare
cutoff at 0.5. This plot is most informative if used with a rsq value.

Total corSNP (RED): 103

Total tagSNP (BLK): 4

> # FunciSNPbed(rs6010620, rsq=0.5);

Each tagSNP which is in LD to a corresponding YAFSNP overlapping at least one biofea-
ture is colored black, while the YAFSNP is colored red. The initial position is provided by
the first tagSNP and the first linked YAFSNP. We recommend using UCSC genome browser
to view your BED files. This is useful so you can view all public and private tracks in rela-
tion to FunciSNP results. As an example, see Figure 7 on page 23 or visit this saved UCSC
Genome Browser session: http://goo.gl/xrZPD.
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Figure 7: FunciSNP results viewed in UCSC genome browser. Top track represents Fun-
ciSNP results, second track is the known GWAS hits.

8 Contact information

Questions or comments, please contact Simon G. Coetzee (scoetzee NEAR gmail POINT
com) or Houtan Noushmehr, PhD (houtan NEAR usp POINT br).

9 sessionInfo

� R version 3.5.0 (2018-04-23), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 16.04.4 LTS
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� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,
utils

� Other packages: AnnotationDbi 1.42.0, Biobase 2.40.0, BiocGenerics 0.26.0,
FunciSNP 1.24.0, FunciSNP.data 1.15.0, GenomeInfoDb 1.16.0,
GenomicFeatures 1.32.0, GenomicRanges 1.32.0, IRanges 2.14.0, S4Vectors 0.18.0,
TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2, ggplot2 2.2.1

� Loaded via a namespace (and not attached): AnnotationFilter 1.4.0,
BSgenome 1.48.0, BiocInstaller 1.30.0, BiocParallel 1.14.0, Biostrings 2.48.0,
ChIPpeakAnno 3.14.0, DBI 0.8, DelayedArray 0.6.0, GO.db 3.6.0,
GenomeInfoDbData 1.1.0, GenomicAlignments 1.16.0, MASS 7.3-50, Matrix 1.2-14,
ProtGenerics 1.12.0, R6 2.2.2, RBGL 1.56.0, RCurl 1.95-4.10, RSQLite 2.1.0,
Rcpp 0.12.16, Rsamtools 1.32.0, SummarizedExperiment 1.10.0,
VariantAnnotation 1.26.0, VennDiagram 1.6.20, XML 3.98-1.11, XVector 0.20.0,
ade4 1.7-11, assertthat 0.2.0, biomaRt 2.36.0, bit 1.1-12, bit64 0.9-7, bitops 1.0-6,
blob 1.1.1, colorspace 1.3-2, compiler 3.5.0, curl 3.2, digest 0.6.15, ensembldb 2.4.0,
formatR 1.5, futile.logger 1.4.3, futile.options 1.0.1, graph 1.58.0, grid 3.5.0,
gtable 0.2.0, httr 1.3.1, idr 1.2, labeling 0.3, lambda.r 1.2.2, lattice 0.20-35,
lazyeval 0.2.1, limma 3.36.0, magrittr 1.5, matrixStats 0.53.1, memoise 1.1.0,
multtest 2.36.0, munsell 0.4.3, pillar 1.2.2, pkgconfig 2.0.1, plyr 1.8.4,
prettyunits 1.0.2, progress 1.1.2, regioneR 1.12.0, reshape 0.8.7, rlang 0.2.0,
rtracklayer 1.40.0, scales 0.5.0, seqinr 3.4-5, snpStats 1.30.0, splines 3.5.0,
stringi 1.1.7, stringr 1.3.0, survival 2.42-3, tibble 1.4.2, tools 3.5.0, zlibbioc 1.26.0

Our recent paper describing FunciSNP and FunciSNP.data can be found in the Journal
Nucleic Acids Research (doi:10.1093/nar/gks542).
This document was proudly made using LATEXand Sweave.
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