
idiogram package

Karl Dykema

October 31, 2025

Bioinformatics Special Program, Van Andel Research Institute

1 Standard idiogram plots
idiogram displays cytogenetic banding information in the plot margin and calls
a secondary plotting function to display associated data at the same relative
scale. Cytogenetic data for human, mouse, and rat genomes are currently in-
cluded. We have written this due to a large volume of traditional cytogenetic
data currently available.

The data is arranged by associating feature identifiers to genomic location
using a chromLoc annotation object build using the buildChromLocation from
the annotation package. As such is a vector of data is to be plotted, the ’names’
attribute of the vector MUST to contain the gene identifiers. Likewise if a
matrix of data is to be plotted, the ’rownames’ attribute of the matrix MUST
to the gene identifiers.

To date, ’plot’ can be called for vector data, while ’maplot’ and ’image’ can
be called for matrix data. Most additional plotting arguments can be passed
down via However, the idiogram function plots the axis independently.
Therefore arguments like ’cex.axis’ are not passed via the ’plot’ function. The
’cex.axis’,’col.axis’, and ’font.axis’ are intercepted from ... and redirected to the
’axis’ call. Other parameters that effect the axis should be set via ’par’.

Below some example data is set up to plot an idiogram.

> if(require(hu6800.db) && require(golubEsets)){
+ library(golubEsets)
+ data(golubTrain)
+ library(hu6800.db)
+ library(idiogram)
+ library(annotate)
+
+ hu.chr <- buildChromLocation("hu6800")
+ ex <- golubTrain@exprs[,1]
+ colors <- rep("black",times=length(ex))
+ colors[ex > 10000] <- "red"

1

+ pts <- rep(1,times=length(ex))
+ pts[ex > 10000] <- 2
+ }

> if(require(hu6800.db) && require(golubEsets)){
+ idiogram(ex,hu.chr,chr="1",col=colors,
+ pch=pts,font.axis=2,cex.axis=1)
+ }

1

0 5000 10000 15000 20000

q44

q42
q41
q32
q31
q25
q24
q22

q12
p11
p13
p21
p22

p31

p32
p34

p36

Figure 1: An idiogram

2 Interactive idiogram plots
Many investigators have their favorite region of interest, and would find it useful
to dynamically interact with their idiogram plots. This has been added through
the idiograb function. This has made an easier way for researchers to identify
specific genes within cytogenetic regions of interest.

idiograb has been written to take an idiogram call as one of its arguments.
Two points are first clicked on to determine the coordinates of a rectangular
region. All names of genes within that region are then returned in a vector.

2

3 Using idiogram with other packages
Many useful packages can be used in conjunction with idiogram. In this section,
we will show how to use the limma package to determine differentially expressed
genes and then plot them with midiogram. Please see the limma tutorial for
more information.

The topTable function returns a data frame with information about dif-
ferentially expressed genes. Here we show how you would use the results of
topTable ("t") and a chromLocation object that contains chip-specific anno-
tation information. In this case, we need to create a vector of values with the
names attribute set to the corresponding gene name. A colors vector is created
with "gray" as the base color, and then altered to accentuate the values with an
absolute value of greater than 1. Please note, the actual data was not included
with this package to save space. This is only example code.

data <- t$M
names(data) <- rownames(t)
colors <- rep("gray",length(data))
colors[which(data>1)] <- "red"
colors[which(data<(-1))] <- "blue"
names(colors) <- names(data)
midiogram(data,chromLocation,xlim=c(-5,5),col=colors,pch=20)

3

	Standard idiogram plots
	Interactive idiogram plots
	Using idiogram with other packages

