
RNA-Seq Data Pathway and Gene-set Analysis Workflows

Weijun Luo (luo_weijun AT yahoo.com)

October 31, 2025

1 Introduction

In this tutorial, we describe the GAGE (Luo et al., 2009) /Pahview (Luo and Brouwer, 2013) workflows on RNA-Seq data
pathway analysis and gene-set analysis (or GSEA). We first cover a full workflow from reads counting, data preprocessing,
gene set test, to pathway visualization Section 4. It is called the native workflow, because GAGE/Pahview provides most
functionality for the high level analysis. The same workflow can be used for GO analysis and other types of gene set
(enrichment) analyses Section 5, and can have different choices of input per gene scores Section 6. GAGE and Pahview
are versatile tools. They can take the output from all the major RNA-Seq analysis tools and carry on for pathway analysis
or visualization. In Section 7, we also describe joint pathway analysis workflows with common RNA-Seq analysis tools.
All these workflows are essentially implemented in R/Bioconductor.

The workflows cover the most common situations and issues for RNA-Seq data pathway analysis. Issues like data
quality assessment are relevant for data analysis in general yet out the scope of this tutorial. Although we focus on RNA-
Seq data here, but pathway analysis workflow remains similar for microarray, particularly step 3-4 would be the same.
Please check gage and pathview vigenttes for details.

Note the Pathview Web server provides a generic yet comprehensive workflow for both regular and integrated pathway
analysis of multiple omics data (Luo et al., 2017), as shown in Example 4 online.

Note here we focuse on KEGG pathways, which is good for most regular analyses. If you are interested in working
with other major pathway databases, including Reactome, MetaCyc, SMPDB, PANTHER, METACROP etc, you can use
SBGNview. Please check SBGNview + GAGE based pathway analysis workflow.

2 Cite our work

Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter Woolf. GAGE: generally applicable gene
set enrichment for pathway analysis. BMC Bioinformatics, 2009. doi:10.1186/1471-2105-10-161.

Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration and visu-
alization. Bioinformatics, 29(14):1830-1831, 2013. doi: 10.1093/bioinformatics/btt285.

3 Quick start: RNA-Seq pathway analysis in about 40 lines

This is the concise version, please check the full version workflow below for details.

> ##step 0: setup (also need to map the reads outside R)
> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
> BiocManager::install(c("pathview", "gage", "gageData", "GenomicAlignments",
+ "TxDb.Hsapiens.UCSC.hg19.knownGene"))

1

mailto:luo_weijun@yahoo.com
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/gage.pdf
http://bioconductor.org/packages/devel/bioc/vignettes/pathview/inst/doc/pathview.pdf
https://pathview.uncc.edu/
https://pathview.uncc.edu/example4
https://github.com/datapplab/SBGNview
https://bioconductor.org/packages/devel/bioc/vignettes/SBGNview/inst/doc/pathway.enrichment.analysis.html
http://www.biomedcentral.com/1471-2105/10/161
http://bioinformatics.oxfordjournals.org/content/29/14/1830.full

> ##step 1: read counts
> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")
> library(GenomicAlignments)
> fls <- list.files("tophat_all/", pattern="bam$", full.names =T)
> bamfls <- BamFileList(fls)
> flag <- scanBamFlag(isSecondaryAlignment=FALSE, isProperPair=TRUE)
> param <- ScanBamParam(flag=flag)
> gnCnt <- summarizeOverlaps(exByGn, bamfls, mode="Union",
+ ignore.strand=TRUE, singleEnd=FALSE, param=param)
> hnrnp.cnts=assay(gnCnt)

> ##step 2: preprocessing
> require(gageData) #demo only
> data(hnrnp.cnts) #demo only
> cnts=hnrnp.cnts
> sel.rn=rowSums(cnts) != 0
> cnts=cnts[sel.rn,]
> ##joint workflow with DEseq/edgeR/limma/Cufflinks forks here
> libsizes=colSums(cnts)
> size.factor=libsizes/exp(mean(log(libsizes)))
> cnts.norm=t(t(cnts)/size.factor)
> cnts.norm=log2(cnts.norm+8)

> ##step 3: gage
> ##joint workflow with DEseq/edgeR/limma/Cufflinks merges around here
> library(gage)
> ref.idx=5:8
> samp.idx=1:4
> data(kegg.gs)
> cnts.kegg.p <- gage(cnts.norm, gsets = kegg.gs, ref = ref.idx,
+ samp = samp.idx, compare ="unpaired")

> ##step 4: pathview
> cnts.d= cnts.norm[, samp.idx]-rowMeans(cnts.norm[, ref.idx])
> sel <- cnts.kegg.p$greater[, "q.val"] < 0.1 &
+ !is.na(cnts.kegg.p$greater[,"q.val"])
> path.ids <- rownames(cnts.kegg.p$greater)[sel]
> sel.l <- cnts.kegg.p$less[, "q.val"] < 0.1 &
+ !is.na(cnts.kegg.p$less[,"q.val"])
> path.ids.l <- rownames(cnts.kegg.p$less)[sel.l]
> path.ids2 <- substr(c(path.ids, path.ids.l), 1, 8)
> library(pathview)
> pv.out.list <- pathview(gene.data = cnts.d, pathway.id = path.ids2,
+ species = "hsa")

4 The native workflow

This workflow is native to GAGE/Pathview and takes the full advantage of their special design (Luo et al., 2009) (Luo
and Brouwer, 2013). The gene expression and pathway level analysis are done using the default setting of the tools, i.e.

2

pair-wise comparison and single sample analysis (Luo et al., 2009). Therefore, this workflow has no limitation on sample
size or experimental design. In addition, you can analyze and visualize pathway changes in every single experiment or
sample (Figure 2). The test statistics are summarized across samples at pathway level instead of gene level (Luo et al.,
2009). The analysis results are more sensitive, informative and consistent than the latter approach.

4.1 Preparation: read mapping and package installation

This preparation step is not part of the RNA-Seq data pathway analysis workflow literally. But we have to go through
these tasks to prepare for the analysis.

The raw reads data in zipped FASTQ format were downloaded from ArrayExpress website. This is the example data
used in the at the RNA-Seq section of the R/Bioconductor NGS course. They worked with reads mapped to chromosome
14 only, here we work with all reads/genes for a practical pathway analysis.

We use TopHat2 to map the raw reads to the reference human genome (hg19). And then use SAMtools to index
the mapped reads. Tophat webpage describes how to install TopHat and SAMtools, prepare the reference genome and
use these tools. As an example, below is the code I used to map, index and process the read data for the first sample
(ERR127302). You can write a shell script to do so for all samples (ERR127302-9). This step takes a couple of hours on
a 8-core processor for each sample. You may run parallel jobs for multiple samples if you have access to HPC.

tophat2 -p 8 -o tophat_out_1 ref/hg19 ERR127302_1.fastq.gz ERR127302_2.fastq.gz
cd tophat_out_1
samtools index accepted_hits.bam
mkdir -p tophat_all
ln -s tophat_out_1/accepted_hits.bam tophat_all/ERR127302.bam
ln -s tophat_out_1/accepted_hits.bam.bai tophat_all/ERR127302.bam.bai

The pathway analysis workflow is implemented all in R/Bioconductor. You need to install the relevant packages
within R if you haven’t done so, you will need to work with R 3.0 and Bioconductor 2.13 or newer versions. Note that
gageData provides the demo RNA-Seq data and ready-to-use KEGG and GO gene set data. The installation may take a
few minutes. From this point on, we are working fully under R excpet noted otherwise. Of course, you need to start R
first.

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
> BiocManager::install(c("pathview", "gage", "gageData", "GenomicAlignments",
+ "TxDb.Hsapiens.UCSC.hg19.knownGene"))

Besides these packages, you will also need to install one of DESeq, DESeq2, edgeR, limma and Cufflinks (non-
Bioconductor) if you want to use the joint workflow described in Section 7.

And we are then ready for the pathway analysis workflow. The workflow has 4 distinct steps, and we describe each
of them in details below.

4.2 Step 1: Count the reads mapped to each gene

In this step, we need to extract exon regions by gene (i.e. Annotation of known gene models). It is important to make sure
that the gene annotation uses the same version and source of reference genome in the reads mapping step above, in our
case, hg19. We then count and summarize the reads mapped to each known gene/exon regions using package Rsamtools
(and GenomicRanges). Here, we used the files "accepted_hits.bam" in tophat output directories, which have been
renamed after the sample names and collected in to the "tophat_all" directory above. This step may take ten minutes
or longer on a single-core cpu. You may use multiple cores if available.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

3

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/
http://www.bioconductor.org/help/course-materials/2013/SeattleMay2013/
http://ccb.jhu.edu/software/tophat/tutorial.shtml

> library(GenomicAlignments)
> fls <- list.files("tophat_all/", pattern="bam$", full.names =T)
> bamfls <- BamFileList(fls)
> flag <- scanBamFlag(isSecondaryAlignment=FALSE, isProperPair=TRUE)
> param <- ScanBamParam(flag=flag)
> #to run multiple core option: library(parallel); options("mc.cores"=4)
> gnCnt <- summarizeOverlaps(exByGn, bamfls, mode="Union",
+ ignore.strand=TRUE, singleEnd=FALSE, param=param)
> hnrnp.cnts=assay(gnCnt)

4.3 Step 2: Normalize and process read counts

We divide the read counts by the total number of mapped reads for each sample as to normalize over the library size and
sequence depth. We don’t count for the gene length because it will be cancelled out in the relative expression level for
each gene. Genes with 0 counts across all samples are removed (either before or after normalization is the same). We
add a small yet appropriate positive count number (+8) to all genes before doing log2 transformation, as to avoid -Inf and
stablize the variance at low expression end. The DEseq package vignette describes a sophisticated "Variance stabilizing
transformation" in detail. We may do MA plot as to check the processed data variances using MA plot (Figure 1). You
may further do principle component analysis (PCA) plot to check the overall variances and similarity between samples
(not shown).

For this step on, we can actually work on the pre-mapped raw read counts data from steps aboved, i.e. hnrnp.cnts
stored in gageData.

> require(gageData)
> data(hnrnp.cnts)
> cnts=hnrnp.cnts
> dim(cnts)

[1] 22932 8

> sel.rn=rowSums(cnts) != 0
> cnts=cnts[sel.rn,]
> dim(cnts)

[1] 17192 8

> libsizes=colSums(cnts)
> size.factor=libsizes/exp(mean(log(libsizes)))
> cnts.norm=t(t(cnts)/size.factor)
> range(cnts.norm)

[1] 0.0 999179.9

> cnts.norm=log2(cnts.norm+8)
> range(cnts.norm)

[1] 3.0000 19.9304

> #optional MA plot
> pdf("hnrnp.cnts.maplots.pdf", width=8, height=10)
> op=par(lwd=2, cex.axis=1.5, cex.lab=1.5, mfrow=c(2,1))
> plot((cnts.norm[,6]+cnts.norm[,5])/2, (cnts.norm[,6]-cnts.norm[,5]),

4

http://bioconductor.org/packages/release/bioc/html/DESeq.html

+ main="(a) Control vs Control", xlab="mean", ylab="change",
+ ylim=c(-5,5), xlim=c(0,20), lwd=1)
> abline(h=0, lwd=2, col="red", lty="dashed")
> plot((cnts.norm[,1]+cnts.norm[,5])/2, (cnts.norm[,1]-cnts.norm[,5]),
+ main="(b) Knockdown vs Control", xlab="mean", ylab="change",
+ ylim=c(-5,5), xlim=c(0,20), lwd=1)
> abline(h=0, lwd=2, col="red", lty="dashed")
> dev.off()

null device
1

4.4 Step 3: Gene set test with GAGE

Here, we do gene set test to select the signficantly perturbed KEGG pathways using GAGE (Luo et al., 2009). For more
information on GAGE analysis please check the main gage vignette and the paper (Luo et al., 2009). You may also
explore advanced GAGE analysis options and view the gene-level perturbations using heatmaps or scatter plot (Figure 3)
or pathway-level perturbations using heatmaps (Figure 1 in the main vignette). Below we only do one directional tests,
but you may also consider two directional tests as described in the main gage vignette.

> library(gage)
> ref.idx=5:8
> samp.idx=1:4
> data(kegg.gs)
> #knockdown and control samples are unpaired
> cnts.kegg.p <- gage(cnts.norm, gsets = kegg.gs, ref = ref.idx,
+ samp = samp.idx, compare ="unpaired")

4.5 Step 4: Pathway visualization with Pathview

We then visualize the gene expression perturbations in significant KEGG pathways using Pathview (Figure 2). For more
information on Pathview please check the main pathview vignette and the paper (Luo and Brouwer, 2013).

> #differential expression: log2 ratio or fold change, uppaired samples
> cnts.d= cnts.norm[, samp.idx]-rowMeans(cnts.norm[, ref.idx])
> #up-regulated pathways (top 3) visualized by pathview
> sel <- cnts.kegg.p$greater[, "q.val"] < 0.1 &
+ !is.na(cnts.kegg.p$greater[,"q.val"])
> path.ids <- rownames(cnts.kegg.p$greater)[sel]
> path.ids2 <- substr(path.ids, 1, 8)
> library(pathview)
> pv.out.list <- sapply(path.ids2[1:3], function(pid) pathview(
+ gene.data = cnts.d, pathway.id = pid,
+ species = "hsa"))
> #down-regulated pathways (top 3) visualized by pathview
> sel.l <- cnts.kegg.p$less[, "q.val"] < 0.1 &
+ !is.na(cnts.kegg.p$less[,"q.val"])
> path.ids.l <- rownames(cnts.kegg.p$less)[sel.l]
> path.ids.l2 <- substr(path.ids.l, 1, 8)
> pv.out.list.l <- sapply(path.ids.l2[1:3], function(pid) pathview(

5

http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/gage.pdf
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/gage.pdf
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/gage.pdf
http://bioconductor.org/packages/release/bioc/vignettes/pathview/inst/doc/pathview.pdf

0 5 10 15 20

−
4

−
2

0
2

4
(a) Control vs Control

mean

ch
an

ge

0 5 10 15 20

−
4

−
2

0
2

4

(b) Knockdown vs Control

mean

ch
an

ge

Figure 1: MA plots on processed gene-wise read counts.

6

+ gene.data = cnts.d, pathway.id = pid,
+ species = "hsa"))

5 GO analysis and other gene set analyses

GAGE’s capability for GO analysis and other types of gene set analyses has long been under-appreciated partially because
we always use the term "pathway analysis" (Luo et al., 2009). We have demonstrate the RNA-Seq data workflow with
KEGG pathway analysis above, as well as in the main gage vignette. GAGE is equally well applicable for GO analysis
and other gene set analyses (Luo et al., 2009). In fact, the Biological Process terms have similar definitions to KEGG
pathways. GAGE analysis on Biological Process could be even more informative as it includes more comprehensive and
detailed pathway/process definition.

> library(gageData)
> data(go.sets.hs)
> data(go.subs.hs)
> lapply(go.subs.hs, head)

$BP
[1] 1 2 3 4 5 6

$CC
[1] 11973 11974 11975 11976 11977 11978

$MF
[1] 13299 13300 13301 13302 13303 13304

> #Molecular Function analysis is quicker, hence run as demo
> cnts.mf.p <- gage(cnts.norm, gsets = go.sets.hs[go.subs.hs$MF],
+ ref = ref.idx, samp = samp.idx, compare ="unpaired")
> #Biological Process analysis takes a few minutes if you try it
> #cnts.bp.p <- gage(cnts.norm, gsets = go.sets.hs[go.subs.hs$BP],
> # ref = ref.idx, samp = samp.idx, compare ="unpaired")

GO definition doesn’t included molecular interactions hence not able to visulize like KEGG pathway graphs (Figure
2). However, you may check the gene expression patterns in signficant GO terms using gage’s geneData function (Figure
3).

> for (gs in rownames(cnts.mf.p$less)[1:3]) {
+ outname = gsub(" |:|/", "_", substr(gs, 12, 100))
+ geneData(genes = go.sets.hs[[gs]], exprs = cnts.norm, ref = ref.idx,
+ samp = samp.idx, outname = outname, txt = T, heatmap = T,
+ limit = 3, scatterplot = T)
+ }

6 Per gene score choices

GAGE does pair-wise comparison between samples by default (Luo et al., 2009), which makes GAGE applicable for
arbitrary sample sizes or columan numbers (from 1 to many), and more sensitive than other methods. In other words,
GAGE uses sample wise fold change as per gene score/statistics in gene set test. However, per gene scores from group

7

http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/gage.pdf

(a)

(b)

Figure 2: Expression perturbations in signficant pathways visualized by Pathview (a) hsa03013 RNA transport; or (b)
hsa04512 ECM-receptor interaction.

8

E
R

R
12

73
04

E
R

R
12

73
05

E
R

R
12

73
03

E
R

R
12

73
02

E
R

R
12

73
08

E
R

R
12

73
09

E
R

R
12

73
07

E
R

R
12

73
06

9806

3674

8754

1605

1758

4811

1301

3688

3679

1634

6696

7045

64093

25903

7422

27076

2817

169611

2199

375790

64129

6678

59277

633

43

4059

3956

1893

2006

3491

59339

7057

−1 1
Value

Color Key

(a)

4 6 8 10 12 14 16

4
6

8
10

12
14

16

Control

E
xp

er
im

en
t

Sample 1
Sample 2

(b)

Figure 3: Expression perturbations in a signficant GO MF terms, "GO:0050840 extracellular matrix binding", visualized
by (a) heatmap with dendrograms; and (b) scatter plot.

9

wise comparison including mean fold change, t-stats, f-stats, correlation (with quantitative phenotypes/traits), etc can all
be used with GAGE. We demonstrate GAGE analysis with mean fold change and t-stats as input below. But t-stats are not
recommended here because of the small sample size (4). Nontheless, the selected top gene sets or pathways are similar to
results from the main workflow above.

> cnts.t= apply(cnts.norm, 1, function(x) t.test(x[samp.idx], x[ref.idx],
+ alternative = "two.sided", paired = F)$statistic)
> cnts.meanfc= rowMeans(cnts.norm[, samp.idx]-cnts.norm[, ref.idx])
> range(cnts.t)

[1] -42.14549 59.50588

> range(cnts.meanfc)

[1] -4.818676 2.749263

> cnts.t.kegg.p <- gage(cnts.t, gsets = kegg.gs, ref = NULL, samp = NULL)
> cnts.meanfc.kegg.p <- gage(cnts.meanfc, gsets = kegg.gs, ref = NULL, samp = NULL)

7 Joint workflows with common RNA-Seq analysis tools

Currently, the most common RNA-Seq data analysis tools include DESeq (Anders and Huber, 2010), DESeq2 (Love
et al., 2014), edgeR (Robinson et al., 2010), Limma (Smyth, 2004) and Cufflinks (Trapnell et al., 2012). Many users
are already familiar with them, and countless analyses have been done and published using them. All these tools except
Cufflinks are implemented in R/Bioconductor. It is very convenient to combine these tools with GAGE/Pahview for
joint pathway analysis workflows. In other words, these tools do differential expression analysis first, and GAGE/Pahview
then takes their results for pathway or gene set analysis. Compared to the native workflow in Section 4 above, these tools
essentially make a detour starting in step 2 and ending at step 3 (replacing the internal data preparation of GAGE). Other
steps, i.e. preparation and step 1 and 4 largely remain the same. Below are example workflows with each one of these
analysis tools.

Notice the all of these tools output fold change (log ratio). Some of them, including Limma and Cufflinks, also
output test-statistics. Below we will use fold changes for all workflows. But test-statistics can still be used, particularly
for well designed experiments with sufficient sample size. We will show a complete pathway analysis workflow with
DESeq2. For all other tools, our demos only include the upstream different expression analysis with fold change results,
because the downstream GAGE/Pathview steps remain the same.

7.1 DESeq2

DESeq has two versions in Bioconductor, DEseq and DESeq2. The latter is preferred. It is faster and simpler, more
importantly the fold change values are cleaner and more sensible, i.e. no -Inf or Inf values.

First, DESeq2 for differential expression analysis. Here we assume that we have gone through the earlier steps till the
fork point right after the code line cnts=cnts[sel.rn,] in the native workflow above.

> library(DESeq2)
> grp.idx <- rep(c("knockdown", "control"), each=4)
> coldat=DataFrame(grp=factor(grp.idx))
> dds <- DESeqDataSetFromMatrix(cnts, colData=coldat, design = ~ grp)
> dds <- DESeq(dds)
> deseq2.res <- results(dds)
> #direction of fc, depends on levels(coldat$grp), the first level
> #taken as reference (or control) and the second one as experiment.

10

> deseq2.fc=deseq2.res$log2FoldChange
> names(deseq2.fc)=rownames(deseq2.res)
> exp.fc=deseq2.fc
> out.suffix="deseq2"

Next, GAGE for pathway analysis, and Pathview for visualization. We only visualize up-regulated pathways here,
down-regulated pathways can be done the same way (see also the above native workflow). Notice that this step (the same
code) is identical for DESeq, edgeR, Limma and Cufflinks workflows, hence skipped in other workflows below.

> require(gage)
> data(kegg.gs)
> fc.kegg.p <- gage(exp.fc, gsets = kegg.gs, ref = NULL, samp = NULL)
> sel <- fc.kegg.p$greater[, "q.val"] < 0.1 &
+ !is.na(fc.kegg.p$greater[, "q.val"])
> path.ids <- rownames(fc.kegg.p$greater)[sel]
> sel.l <- fc.kegg.p$less[, "q.val"] < 0.1 &
+ !is.na(fc.kegg.p$less[,"q.val"])
> path.ids.l <- rownames(fc.kegg.p$less)[sel.l]
> path.ids2 <- substr(c(path.ids, path.ids.l), 1, 8)
> require(pathview)
> #view first 3 pathways as demo
> pv.out.list <- sapply(path.ids2[1:3], function(pid) pathview(
+ gene.data = exp.fc, pathway.id = pid,
+ species = "hsa", out.suffix=out.suffix))

Here we used GAGE to infer the signficant pathways. But we are not limited to these pathways. We can use Pathview
to visualize RNA-Seq data (exp.fc here) on all interesting pathways directly. We may also do GO and other types of gene
set analysis as described in native workflow above.

7.2 DESeq

DEseq analysis is bit lengthier and slower, although it is still a most used RNA-Seq analysis tool in Bioconductor. Note
that we need to remove the -Inf or Inf values in the fold changes.

Here we assume that we have gone through the earlier steps till the fork point right after the code line cnts=cnts[sel.rn,]
in the native workflow above.

> library(DESeq)
> grp.idx <- rep(c("knockdown", "control"), each=4)
> cds <- newCountDataSet(cnts, grp.idx)
> cds = estimateSizeFactors(cds)
> cds = estimateDispersions(cds)
> #this line takes several minutes
> system.time(
+ deseq.res <- nbinomTest(cds, "knockdown", "control")
+)
> deseq.fc=deseq.res$log2FoldChange
> names(deseq.fc)=deseq.res$id
> sum(is.infinite(deseq.fc))
> deseq.fc[deseq.fc>10]=10
> deseq.fc[deseq.fc< -10]=-10
> exp.fc=deseq.fc
> out.suffix="deseq"

11

The following GAGE and Pathview steps remain the same as in Subsection DESeq2. You may also carry out GO and
other gene set analyses as decribed in the native workflow.

7.3 edgeR

The edgeR package is another most used and the earliest RNA-Seq analysis tool in Bioconductor. It is probably the first
one using negative binomial distribution to model RNA-Seq data (Robinson et al., 2010).

Here we assume that we have gone through the earlier steps till the fork point right after the code line cnts=cnts[sel.rn,]
in the native workflow above.

> library(edgeR)
> grp.idx <- rep(c("knockdown", "control"), each=4)
> dgel <- DGEList(counts=cnts, group=factor(grp.idx))
> dgel <- calcNormFactors(dgel)
> dgel <- estimateCommonDisp(dgel)
> dgel <- estimateTagwiseDisp(dgel)
> et <- exactTest(dgel)
> edger.fc=et$table$logFC
> names(edger.fc)=rownames(et$table)
> exp.fc=edger.fc
> out.suffix="edger"

The following GAGE and Pathview steps remain the same as in Subsection DESeq2. You may also carry out GO and
other gene set analyses as decribed in the native workflow.

7.4 Limma

Limma is the most used expression data analysis tool and a most downloaded package in Bioconductor. It is best known
for microarray analysis, but RNA-Seq data analysis has also been implemented recently. Note that edgeR package is
needed here too.

Here we assume that we have gone through the earlier steps till the fork point right after the code line cnts=cnts[sel.rn,]
in the native workflow above.

> library(edgeR)
> grp.idx <- rep(c("knockdown", "control"), each=4)
> dgel2 <- DGEList(counts=cnts, group=factor(grp.idx))
> dgel2 <- calcNormFactors(dgel2)
> library(limma)
> design <- model.matrix(~grp.idx)
> log2.cpm <- voom(dgel2,design)
> fit <- lmFit(log2.cpm,design)
> fit <- eBayes(fit)
> limma.res=topTable(fit,coef=2,n=Inf,sort="p")
> limma.fc=limma.res$logFC
> names(limma.fc)=limma.res$ID
> exp.fc=limma.fc
> out.suffix="limma"

The following GAGE and Pathview steps remain the same as in Subsection DESeq2. You may also carry out GO and
other gene set analyses as decribed in the native workflow.

12

7.5 Cufflinks

Cufflinks is a most popular RNA-Seq analysis tool. It is developed by the same group as TopHat. It is implemented
independent of Bioconductor. However, we can read its gene differential expression analysis results into R easily. The
result file is named gene_exp_diff, and here is the description is provided on Cufflinks webpage. Notice that the
gene sybmols need to converted to Entrez Gene IDs, which are used in KEGG pathways (many research species) and GO
gene sets.

> cuff.res=read.delim(file="gene_exp.diff", sep="\t")
> #notice the column name special character changes. The column used to be
> #cuff.res$log2.fold_change. for older versions of Cufflinks.
> cuff.fc=cuff.res$log2.FPKMy.FPKMx.
> gnames=cuff.res$gene
> sel=gnames!="-"
> gnames=as.character(gnames[sel])
> cuff.fc=cuff.fc[sel]
> names(cuff.fc)=gnames
> gnames.eg=pathview::id2eg(gnames, category ="symbol")
> sel2=gnames.eg[,2]>""
> cuff.fc=cuff.fc[sel2]
> names(cuff.fc)=gnames.eg[sel2,2]
> range(cuff.fc)
> cuff.fc[cuff.fc>10]=10
> cuff.fc[cuff.fc< -10]=-10
> exp.fc=cuff.fc
> out.suffix="cuff"

The following GAGE and Pathview steps remain the same as in Subsection DESeq2. You may also carry out GO and
other gene set analyses as decribed in the native workflow.

References

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome Biology, 11(10):
R106, 2010. ISSN 1465-6906. doi: 10.1186/gb-2010-11-10-r106. URL http://genomebiology.com/2010/
11/10/R106.

Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biology, 15:550, 2014. URL http://dx.doi.org/10.1186/
s13059-014-0550-8.

Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration and
visualization. Bioinformatics, 29(14):1830–1831, 2013. doi: 10.1093/bioinformatics/btt285. URL http://
bioinformatics.oxfordjournals.org/content/29/14/1830.full.

Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter Woolf. GAGE: generally applicable gene set
enrichment for pathway analysis. BMC Bioinformatics, 10(1):161, 2009. URL http://www.biomedcentral.
com/1471-2105/10/161.

Weijun Luo, Gaurav Pant, Yeshvant K Bhavnasi, Steven G Blanchard, and Cory Brouwer. Pathview Web: user friendly
pathway visualization and data integration. Nucleic Acids Research, Web server issue:gkx372, 2017. doi: 10.1093/nar/
gkx372. URL https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx372.

13

http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/index.html#differential-expression-tests
http://genomebiology.com/2010/11/10/R106
http://genomebiology.com/2010/11/10/R106
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/s13059-014-0550-8
http://bioinformatics.oxfordjournals.org/content/29/14/1830.full
http://bioinformatics.oxfordjournals.org/content/29/14/1830.full
http://www.biomedcentral.com/1471-2105/10/161
http://www.biomedcentral.com/1471-2105/10/161
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx372

Mark D. Robinson, Davis J. McCarthy, and Gordon K. Smyth. edgeR: a bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics, 26(1):139–140, 2010. doi: 10.1093/bioinformatics/btp616.
URL http://bioinformatics.oxfordjournals.org/content/26/1/139.abstract.

Gordon K. Smyth. Linear models and empirical bayes methods for assessing differential expression in microarray exper-
iments. Statistical Applications in Genetics and Molecular Biology, 3(1):Article 3, 2004.

Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R. Kelley, Harold Pimentel, Steven L.
Salzberg, John L. Rinn, and Lior Pachter. Differential gene and transcript expression analysis of RNA-seq experiments
with TopHat and Cufflinks. Nature Protocols, 7(3):562–578, 2012.

14

http://bioinformatics.oxfordjournals.org/content/26/1/139.abstract

	Introduction
	Cite our work
	Quick start: RNA-Seq pathway analysis in about 40 lines
	The native workflow
	Preparation: read mapping and package installation
	Step 1: Count the reads mapped to each gene
	Step 2: Normalize and process read counts
	Step 3: Gene set test with GAGE
	Step 4: Pathway visualization with Pathview

	GO analysis and other gene set analyses
	Per gene score choices
	Joint workflows with common RNA-Seq analysis tools
	DESeq2
	DESeq
	edgeR
	Limma
	Cufflinks

