
HowTo layout a pathway

Jeff Gentry

October 31, 2025

1 Overview
This article will demonstrate how you can use Rgraphviz to layout and ren-
der pathways, such as the ones available at KEGG (http://www.genome.ad.
jp/kegg/pathway/). For demonstration purposes, we will be working with the
hsa041510 pathway from KEGG (http://www.genome.ad.jp/kegg/pathway/
hsa/hsa04510.html), which is available as a graph object from the graph pack-
age as the integrinMediatedCellAdhesion dataset. This dataset contains the
graph as well as a list of attributes that can be used for plotting. The pathway
graph as rendered by KEGG is seen here:

2 Obtaining the initial graph
At this time, there is no automated way to extract the appropriate information
from KEGG (or other sites) and construct a graph. If one wishes to layout their
own pathways, it requires manual construction of a graph, creating each node
and then recording the edges. Likewise, for any basic attributes (such as the
green/white coloration in the hsa041510 graph), they too must be collected by

1

http://www.genome.ad.jp/kegg/pathway/
http://www.genome.ad.jp/kegg/pathway/
http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html
http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html

hand. For instance, this would be a good time to take advantage of edge weights
by putting in desired values (which can be changed later, if necessary) while
constructing the edges of the graph. We have manipulated some of the weights,
such as the weight between the p85 and p110 nodes, as they are intended to be
directly next to each other. Once constructed, the graph can be saved with the
save command and stored for later use (which has been done already as part
of the integrinMediatedCellAdhesion dataset).

> library("Rgraphviz")
> data("integrinMediatedCellAdhesion")
> IMCAGraph

A graphNEL graph with directed edges
Number of Nodes = 52
Number of Edges = 91

3 Laying out the graph
Laying out a pathway graph is much like dealing with any other graph, except
that typically we want to closely emulate the officially laid out graph (or at
least make it look like an actual pathway - the Graphviz layout methods were
not designed with this task in mind). A lot of experimenation comes into play,
in order to find the right combination of attributes, although there are some
general tips that can help out. The first thing to know is that we will almost
always want to use the dot layout, as that will provide the closest base to work
off. Likewise, the rankdir attribute should be set to LR, to give us the left to
right look of the graph. To see our starting point, here is the IMCAGraph with
just those settings. We will use the attrs list to store all the layout parameters
as we move on.

> attrs <- list(graph=list(rankdir="LR"))
> IMCAGraph <- layoutGraph(IMCAGraph, attrs=attrs)
> renderGraph(IMCAGraph)

2

ITGB

ITGA

ILK

CAV

SHC

FYN

GRB2

SOS
Ha−Ras

Raf

MEK ERK

MYLK

MYO

ACTN

VCL

TLN

PXN

ZYX

VASP

SH3D5

TNS

CAPN CAPNS SRC

FAK BCAR1

CSK

CRK

DOCK1

GRF2

RAP1 JNK

GIT2

ARHGEF

PAK

p85 p110

Phosphatidylinositol signaling system

VAV

PDPK1 AKT

RAC

CDC42

RHO

PI5K

ROCK MYO−P

cell maintenance

cell motility

F−actin

cell proliferation

This plot is not
terrible, in that it conveys the proper information, but the formatting is quite
different from the layout at KEGG, and can be difficult to get a coherent idea
of what is going on. Furthermore, smaller things like the coloration of the
nodes and the shape of the phosphatidylinositol signaling system are not being
represented here. Here is where using other attributes can start to have a
positive effect. Let us first start with the node labels. The default behavior of
renderGraph is to compute a common font size for all node labels in a way that
they all fit their node. There are some long node names in the graph, and we
can determine the length of each node name using the function nchar.

> n <- nodes(IMCAGraph)
> names(labels) <- labels <- n
> nc <- nchar(labels)
> table(nc)

nc
3 4 5 6 7 13 16 18 37

25 13 7 2 1 1 1 1 1

> long <- labels[order(nc, decreasing=TRUE)][1:4]
> long

Phosphatidylinositol signaling system cell proliferation
"Phosphatidylinositol signaling system" "cell proliferation"

3

cell maintenance cell motility
"cell maintenance" "cell motility"

We need to deal with these four long names separately. One option would be
to use an alternative name, maybe an abbreviation. Alternatively, we could
include line feeds into the strings in order to force multi-line text. This is what
we do. The escape sequence for line feeds in R is \n.

> labels[long] <- c(paste("Phosphatidyl-\ninositol\n",
+ "signaling\nsystem", sep=""), "cell\nproliferation",
+ "cell\nmaintenance", "cell\nmotility")

Because we want to change a property of individual nodes we have to use
nodeRenderInfo for the setting. The function matches rendering parameters by
the name of the list item and nodes by the names of the items of the individual
vectors. The parameter we want to modify is label .

> nodeRenderInfo(IMCAGraph) <- list(label=labels)
> renderGraph(IMCAGraph)

The four labels are now plotted as multi-line strings but this has not changed
the layout. Remember that rendering and layout are two distinct processes, and
for changes to affect the latter you have to re-run layoutGraph. Another layout
change we may want to do at this point is to further increase the size of the
nodes with long names to give them a little bit more room for the labels. Also,
we do not want a fixed size for all the nodes but rather allow Graphviz to adapt
the node size to fit the labels. This is controlled by the logical layout parameter
fixedsize.

> attrs$node <- list(fixedsize=FALSE)
> width <- c(2.5, 1.5, 1.5, 1.5)
> height <- c(1.5, 1.5, 1.5, 1.5)
> names(width) <- names(height) <- long
> nodeAttrs <- list(width=width, height=height)
> IMCAGraph <- layoutGraph(IMCAGraph, attrs=attrs,
+ nodeAttrs=nodeAttrs)
> renderGraph(IMCAGraph)

It also makes sense to use a rectangular shape for all but the “Phosphatidylinos-
itol signaling system” node which actually comprises a fairly substantial cellular
subprocess and we want it to be highlighted accordingly. The best way to do
that is to set the shape argument using the nodeRenderInfo function. We can
use “rectangle” as the default and set the “Phosphatidylinositol signaling sys-
tem” node to “ellipse”. The other three nodes with the long names and also the
“F-actin” node represent processes rather than physical objects and we do not
want to plot shapes for them, but display plain text of the node names instead
(Figure ??).

4

> shape <- rep("rectangle", length(n))
> names(shape) <- n
> shape[long[1]] <- "ellipse"
> shape[c(long[2:4], "F-actin")] <- "plaintext"
> nodeRenderInfo(IMCAGraph) <- list(shape=shape)
> IMCAGraph <- layoutGraph(IMCAGraph, attrs=attrs,
+ nodeAttrs=nodeAttrs)
> renderGraph(IMCAGraph)

What is still missing in our graph is some color. Looking at Figure 1 we can see
that there seem to be different classes of nodes, some colored green and others
remaining transparent, and we want to reproduce this color scheme for our plot.

> colors <- rep("lightgreen", length(n))
> names(colors) <- n
> transp <- c("ITGB", "ITGA", "MYO", "ACTN", "JNK", "p110",
+ "Phosphatidylinositol signaling system",
+ "PI5K", "MYO-P", "cell maintenance", "cell motility",
+ "F-actin", "cell proliferation")
> colors[transp] <- "transparent"
> nodeRenderInfo(IMCAGraph) <- list(fill=colors)
> renderGraph(IMCAGraph)

Here the color scheme is now the same as on KEGG, and using an ellipse helps
with the rendering of the phosphatidylinositol signaling system node. However,
we’re still left with the issue that the layout itself doesn’t convey the same
meaning as the original. The output nodes are scattered about, there’s not a
clear sense of where the membrane nodes are, and many nodes that are intended
to be close to each other simply are not. This is where the use of subgraphs
and clusters can help. In Graphviz, a subgraph is an organizational method to
note that a set of nodes and edges belong in the same conceptual space, sharing
attributes and the like. While there is some tendency to have nodes be laid out
near each other in a subgraph, there is no guarantee of this, and the results can
be highly dependent on the layout method (dot , neato, etc). A Graphviz cluster
is a subgraph which is laid out as a separate graph and then introduced into
the main graph. This provides a much stronger guarantee of having the nodes
clustered together visually. For a description of how to specify subgraphs in
Rgraphviz , please see the vignette HowTo Render A Graph Using Rgraphviz.

So here we will define four subgraphs: One will be the membrane nodes, one
will be the output nodes, one will be the cytoskeleton components and the last
will be everything else. It would be possible to specify more subgraphs to try
to help keep things more blocked together like the original graph, but for the
purposes of this document, these are what will be used.

> sg1 <- subGraph(c("ITGA", "ITGB", "ILK", "CAV"), IMCAGraph)
> sg2 <- subGraph(c("cell maintenance", "cell motility",
+ "F-actin", "cell proliferation"), IMCAGraph)

5

> sg3 <- subGraph(c("ACTN", "VCL", "TLN", "PXN", "TNS", "VASP"),
+ IMCAGraph)
> sg4 <- subGraph(setdiff(n, c(nodes(sg1), nodes(sg2), nodes(sg3))),
+ IMCAGraph)

While we have the subgraphs defined, we still have not determined whether
to use these as subgraphs or clusters in Graphviz. Ideally, we would like to
use clusters, as that guarantees that the nodes will be laid out close together.
However, it would also be useful to utilize the rank attribute for the membrane
and output nodes, specifically using the values source and sink respectively.
That will help to get the verticle line up that we see in the KEGG graph and
create more of the left to right pathway feel. The problem is that rank only works
with subgraphs and not clusters. So for the membrane and output subgraphs,
we will be defining them as Graphviz subgraphs, and the other two subgraphs
will be defined as clusters:

> subGList <- vector(mode="list", length=4)
> subGList[[1]] <- list(graph=sg1, attrs=c(rank="source"))
> subGList[[2]] <- list(graph=sg2, attrs=c(rank="sink"))
> subGList[[3]] <- list(graph=sg3, cluster=TRUE)
> subGList[[4]] <- list(graph=sg3, cluster=TRUE)

You can see that subgraphs 1 and 3 have the cluster parameter set to FALSE
as well as having a rank attribute set appropriate. Subgraphs 2 and 4 simply
have the subgraph itself, and will be laid out as a cluster without any special
attributes. Using this subgraph list, we now get:

> IMCAGraph <- layoutGraph(IMCAGraph, attrs=attrs,
+ nodeAttrs=nodeAttrs, subGList=subGList)
> renderGraph(IMCAGraph)

6

ITGB

ITGA

ILK

CAV

SHC

FYN

GRB2

SOS

Ha−Ras

Raf
MEK

ERK

MYLK

MYO

ACTN

VCL

TLN

PXN

ZYX

VASP

SH3D5

TNS

CAPN CAPNS SRC

FAK

BCAR1

CSK

CRK DOCK1

GRF2

RAP1

JNK

GIT2

ARHGEF

PAK

p85

p110

Phosphatidyl−
inositol

signaling
system

VAV

PDPK1 AKT

RAC

CDC42

RHO

PI5K

ROCK
MYO−P

cell
maintenance

cell
motility

F−actin

cell
proliferation

While this is still
not identical to the image on KEGG (and for most graphs, it will be impossible
given current abilities to do so), this layout is now much closer to providing an
accurate visual rendition of the pathway. We can see the output nodes are now
to the right end of the graph, and while not neatly stacked on the left hand side
the membrane nodes are to the left side of the rest. We can also see the F-actin
group in the lower left portion of the graph, representing one of the clusters.

4 Working with the layout
One of the benefits of using Rgraphviz to perform your layout as opposed to using
the static layouts provided by sites like KEGG, is the ability to work with outside
data and visualize it using your graph. The plotExpressionGraph function in
geneplotter can be used to take expression data and then color nodes based on
the level of expression. By default, this function will color nodes blue, green or
red, corresponding to expression levels of 0-100, 101-500, and 501+ respectively.
Here we will use this function along with the fibroEset and hgu95av2.db data
packages and the IMCAAttrs$IMCALocuLink data which maps the nodes to
their LocusLink ID values.

> require("geneplotter")
> require("fibroEset")
> require("hgu95av2.db")

7

> data("fibroEset")
> plotExpressionGraph(IMCAGraph, IMCAAttrs$LocusLink,
+ exprs(fibroEset)[,1], hgu95av2ENTREZID,
+ attrs=attrs,
+ subGList=subGList, nodeAttr=nodeAttrs)

ITGB

ITGA

ILK

CAV

SHC

FYN

GRB2

SOS

Ha−Ras

Raf
MEK

ERK

MYLK
MYO

ACTN

VCL

TLN

PXN

ZYX

VASP

SH3D5

TNS

CAPN CAPNS SRC

FAK

BCAR1

CSK

CRK DOCK1

GRF2

RAP1

JNK

GIT2

ARHGEF

PAK

p85
p110

Phosphatidylinositol signaling system

VAV

PDPK1 AKT

RAC

CDC42

RHO

PI5K

ROCK

MYO−P

cell maintenance

cell motility

F−actin

cell proliferation

One can also sim-
ply choose to layout the pathway based on the needs and desires of a particular
situation. For instance, the following layout could be used in situations where
the node names are the important visual cue, as opposed to the previous exam-
ple where the nodes themselves are being used to demonstrate values:

> z <- IMCAGraph
> nodeRenderInfo(z) <- list(shape="plaintext", fontsize=100)
> nag <- layoutGraph(z, attrs=list(edge=list(arrowsize=2.8, minlen=3)))
> renderGraph(nag)

8

ITGB

ITGA ILK CAV SHC

FYN GRB2

SOS

Ha−Ras

Raf

MEK

ERK

MYLK

MYO

ACTN

VCL

TLN

PXN

ZYX

VASPSH3D5TNS

CAPN

CAPNS

SRC

FAK

BCAR1

CSK

CRK

DOCK1 GRF2

RAP1

JNK

GIT2

ARHGEF

PAK

p85

p110

Phosphatidyl−
inositol

signaling
system

VAVPDPK1

AKT RAC

CDC42

RHO

PI5K

ROCK

MYO−P

cell
maintenance

cell
motility

F−actin

cell
proliferation

5 Conclusions
At this time, laying out a pathway can provide good visual information for
users, although it isn’t yet able to be completely automated nor is it a perfect
science. Yet with a bit of work and experimentation, one can get a fairly close
rendition of what is available on sites like KEGG and have the ability to directly
manipulate the graphs and customize the outputs to demonstrate a variety of
effects. Hopefully as time goes on, we will be able to provide more in the way
of automation in our tools, but even as it exists now, laying out pathways can
provide a valuable tool for users.

6 Sessioninfo
This document was produced using

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

9

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4 grid stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] hgu95av2.db_3.13.0 org.Hs.eg.db_3.22.0 fibroEset_1.53.0
[4] geneplotter_1.89.0 annotate_1.89.0 XML_3.99-0.19
[7] AnnotationDbi_1.73.0 IRanges_2.45.0 S4Vectors_0.49.0

[10] lattice_0.22-7 Biobase_2.71.0 biocGraph_1.73.0
[13] Rgraphviz_2.55.0 graph_1.89.0 BiocGenerics_0.57.0
[16] generics_0.1.4

loaded via a namespace (and not attached):
[1] crayon_1.5.3 vctrs_0.6.5 httr_1.4.7 cli_3.6.5
[5] rlang_1.1.6 DBI_1.2.3 png_0.1-8 xtable_1.8-4
[9] bit_4.6.0 Biostrings_2.79.1 KEGGREST_1.51.0 Seqinfo_1.1.0

[13] fastmap_1.2.0 memoise_2.0.1 compiler_4.6.0 RColorBrewer_1.1-3
[17] RSQLite_2.4.3 blob_1.2.4 pkgconfig_2.0.3 XVector_0.51.0
[21] R6_2.6.1 tools_4.6.0 bit64_4.6.0-1 cachem_1.1.0

together with the following version of graphviz

> graphvizVersion()

$installed_version
[1] ‘2.28.0’

$build_version
[1] ‘2.28.0’

$bundled_graphviz
[1] TRUE

10

	Overview
	Obtaining the initial graph
	Laying out the graph
	Working with the layout
	Conclusions
	Sessioninfo

