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Abstract

The dynamic transcriptional mechanisms that govern eukaryotic cell function can now be
analyzed by RNA sequencing (RNAseq). However, the packages currently available for the
analysis of raw sequencing data do not provide automatic analysis of complex experimental
designs with multiple biological conditions and multiple analysis time-points.
The MultiRNAflow suite combines several packages in a unified framework allowing ex-
ploratory and supervised statistical analysis of temporal data for multiple biological conditions.
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1 Introduction

1.1 Context
In eukaryotic cells, genes are expressed in the form of RNA molecules during the transcrip-
tional process which are then translated into proteins with a cellular function. In resting
cells, at the steady state, transcription is affected by stochastic phenomena generating a
transcriptional noise within cells. After modification of the cellular environment (cellular
stress, receptor activation), hundreds of genes are activated, inducing a dynamic temporal
transcriptional response allowing an adapted response of the cells to the initial modification of
the environment [1]. Alterations in these temporal transcriptional responses are at the origin
of pathologies (e.g. cancer) and are extensively studied by biologists [2] through sometimes
complex experimental designs.
Recent technological developments now make it possible to quantify the transcription of all
genes in the genome by sequencing RNA molecules (RNAseq). These analysis generate raw
count data whose properties (discrete data) are different from the fluorescence intensity data
(continuous data) generated by previous microarray techniques. These data are presented as
a transcriptome table reporting, for each sample, the number of reads for each gene, obtained
from the alignment of collected RNA transcripts to a reference genome. The raw count of
a gene (or transcript) corresponds to the number of reads mapped to the RNA sequence of
this gene (or transcript).
The number of reads of a gene depends on the length of the gene and experimental or
systematic errors may occur during sequencing (uncertainty on sequencing depth, effective
library sizes...), which require the transformation of the original raw counts.
The first method developed consists to compute count per million (CPM). Although the pre-
vious method corrects the effective library sizes problem, it should not be used for comparison
between samples [3, 4], particularly if samples belong to different biological conditions and/or
time points.
New methods of normalization have been developed in order to be able to compare gene ex-
pression between samples which belong to different biological conditions and/or time points.
These methods of normalization, ensure that differences between samples are only due to
their membership to different biological conditions and/or time points. The most used R
packages for normalization are DESeq2 [5] and EdgeR [6].

Another motivation of normalization is to deduce a number of RNA transcripts of genes. This
requires the so called reads per kilobase of transcripts per million reads mapped (RPKM) [7]
or transcripts per million (TPM) [8, 4], as these methods correct both the effective library
sizes and the dependence of the number of reads of a gene with its length.
The two goals of normalization of raw counts data are 1) to allow for unsupervised analysis of
data (within samples or between samples) and 2) to compare gene reads in different biological
condition and/or time points, to detect so-called Differentially Expressed (DE) genes.
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1.2 Context
Several R packages propose tools to normalize data, realize unsupervised analysis and find
DE genes, such as IDEAL [9], RNASeqR [10], SeqGSEA
[11] and RNAflow [12]. These packages use DESeq2 [5] and/or EdgedR [6] in order to realize
the normalization and DE analysis. All of them can detect DE genes in samples belonging to
different biological conditions, although RNASeqR is limited to only two biological conditions.
Some of them also perform GO enrichment analysis. However, these packages were not
designed to deal with temporal data, although they could be adapted to this situation. None
of them offer a unified and automatized framework to analyze RNA-seq data with both
several time points and more than two biological conditions. Furthermore, these packages
do not allow to automatically select subsets of genes that can be relevant for GO enrichment
analysis, such as genes which are specific to a given biological condition and/or to a given
time, or genes with particular DE patterns.

1.3 Our R package MultiRNAflow
The MultiRNAflow [13] suite gathers in a unified framework methodological tools found in
various existing packages allowing to perform:

1. Exploratory (unsupervised) analysis of the data.
2. Statistical (supervised) analysis of dynamic transcriptional expression (DE genes), based

on DESeq2 package [5].
3. Functional and GO analysis of subsets of genes automatically selected by the package,

such as specific genes or genes with a given DE temporal pattern.
The package automates a commonly used workflow of analysis for studying complex biological
phenomena (used e.g. in [14]).

1.4 Supported dataset
The package supports transcriptional RNAseq raw count data (and can be adapted to single
cell RNAseq) from an experimental design with multiple conditions and/or multiple times.
The experimental design supported by our packages assumes that there is a reference time
noted t0, distinct from the other times noted t1 to tn, which corresponds to a set of reference
measurements to which the others are to be compared (e.g. as in [14], where t0 corresponds
to the basal state of the cell before activation of a cell receptor, and the experiments at times
t1 to tn measure gene expression at different times after activation of the receptor). Our
package is not designed to analyze experimental designs requiring to compare measurements
between any pairs of times.
The package provides numerous graphical outputs that can be selected by the user. To
illustrate these outputs, we gather in Figure 1 a selection of graphics obtained from the
dataset of [15], which analyzes the role of invalidation of Bmal1 and Cry1/2 genes on murine
transcriptional dynamics. The experimental map contains 4 biological conditions (Bmal1
wild type (wt), Bmal1 knock-out (ko), Cry1/2 wt and Cry1/2 ko) and 6 time points each
(t0 = 0h, t1 = 4h, t2 = 8h, t3 = 12h, t4 = 16h and t5 = 20h), with 4 replicates (Figure 1.A).

The dataset is a table of raw counts where lines correspond to genes and columns correspond
to samples. Each sample shows the raw counts of an individual sequencing, corresponding
to a biological condition, an individual sampling in this biological condition and a time.
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In this document, we illustrate the use of our package on four examples of datasets (see
section Dataset used as examples in the package) corresponding to four cases:

• Case 1. Samples belong to different biological conditions.
• Case 2. Measures were realized at different time points.
• Case 3. Samples belong to two biological conditions and measures were realized at

different time points.
• Case 4. Samples belong to different biological conditions and measures were realized

at different time points.

1.5 Steps of the algorithm
The package MultiRNAflow realizes the following steps:

• Normalization, realized with the R package DESeq2 [5].
• Exploratory data unsupervised analysis which includes

• Visualization of individual patterns using factorial analysis with the R package
FactoMineR [16].

• Visualization of biological conditions and/or temporal clusters with the R package
ComplexHeatmap [17]

• Visualization of groups of genes with similar temporal behavior with the R package
Mfuzz [18, 19]

• Statistical supervised analysis of the transcriptional response of different groups of
individuals over time with the R package DESeq2 [5], which includes

• Temporal statistical DE analysis
• Statistical DE analysis by biological condition
• Combination of temporal and biological condition statistical DE analysis
• Gene Ontology (GO) enrichment analysis using the R package gprofiler2

[20] (Figure 1.K), and automatic generation of outputs that can be implemented in
DAVID [21], Webgestalt [22] (Figure 1.L), GSEA [23] (Figure 1.M), gProfiler [24],
Panther [25], ShinyGO [26], Enrichr [27] and GOrilla [28]. for further analysis
using these databases.

Below, we give a short description of each of these steps before a full description of the
package outputs for four examples of datasets. Figure1 illustrates the short description below.
It gathers a selection of graphs produced by our package for the Example of MultiRNAflow
in case 4, several time points and more than two biological conditions: Mouse dataset 2 [15]
corresponding to case 4.
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Figure 1: Outputs from the package MultiRNAflow with a dataset containing several biological conditions
and several time points (experimental design shown in (A)). Exploratory analysis includes 3D PCA (B),
temporal clustering of expression (C) and detailed temporal gene expression (D). Supervised statistical
analysis (experimental map shown in (E)) includes DE genes between each time and the reference time
for each condition (F and G); specific DE genes for each condition at each time (H) or at least at one time
point (I); signature DE genes of each condition and each time (J). GO enrichment analysis is realized with
the R package gprofiler2 (K) or by generating input files for several GO software programs, such as We-
bgestalt (L) or GSEA (M).
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1.5.1 Normalization

The function DATAnormalization() of our package allows to realize the three methods of
normalization proposed in DESeq2 and RPKM, which must be performed on raw counts for
analysis (like DE analysis):

• Relative log expression (rle) [29]. Each column of the raw counts is scaled by a specific
scalar called size factors, estimated using the "median ratio method".

• Regularized logarithm (rlog) [5]. This method of normalization transforms the count
data to the log2 scale in a way that minimizes differences between samples for rows (so
genes) with small counts. This transformation removes the dependence of the variance
on the mean, particularly the high variance of the logarithm of count data when the
mean is low. This method of normalization is realized by the R function rlog() of the
package DESeq2.

• Variance Stabilizing Transformation (vst) [29]. This method of normalization is similar
to the rlog normalization. The vst normalization is faster but the rlog normalization is
more robust in the case when the size factors vary widely. This method of normalization
is realized by the R function vst() of the package DESeq2.

As mentioned in the DESeq2 manual, the rle transformation is used to realize DE analysis
and the rlog and vst transformations are advised for unsupervised analysis (factorial analysis,
clustering) or other machine learning methods.
In addition, the function DATAnormalization() allows to plot the distribution of normalized
read counts for each sample using boxplots.

1.5.2 Exploratory data analysis (unsupervised analysis)

1.5.2.1 Factorial analysis

Factorial analysis is realized by the two functions PCAanalysis() and HCPCanalysis() which
implement two methods: Principal Component Analysis (PCA) and Hierarchical Clustering
on Principle Components (HCPC). The two methods allow to visualize the temporal evo-
lution of the transcription within each group of individuals and similarities or differences in
transcriptional behaviors between groups. Of note, the PCA visualization is optimized thanks
to the dynamic 3D PCA (see Figure 1.B) allowing several viewing angles.

• Case 1. In the PCA graphs, samples are colored according to biological condition.
• Case 2. In the PCA graphs, consecutive time points for a same sample are linked to

help visualization of temporal patterns.
• Cases 3 and 4. The PCA graphs combine the two previous displaying.
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1.5.2.2 Visualization of groups of genes with similar temporal behavior

The R function MFUZZanalysis() allows, in case 2, case 3 and case 4, to find the most
common temporal behavior among all genes and all individuals in a given biological condition.
This is done using the R package Mfuzz [18, 19] based on soft clustering. When there are
several replicates per time, the Mfuzz package realizes soft clustering from the mean expres-
sion per time for each gene (see Figure 1.C). When there are several biological conditions,
the algorithm realizes the Mfuzz analysis for each biological condition.
As with most clustering method, we need to find out the optimal number of clusters. Although
a method is already implemented in the Mfuzz package, this method seems to fail when
the number of genes is too big. Our function MFUZZclusternumber() finds the optimal
number of cluster using kmeans() from the R package stats [30] or HCPC() from the R
package FactoMineR [16]. Among the outputs, MFUZZclusternumber() returns

• a graph indicating the selected number of clusters for each biological condition
• the results of the soft clustering for each biological condition (see Figure 1.C)

1.5.2.3 Visualization of the data

The R function DATAplotExpressionGenes() allows to plot gene expression profiles of a
selection of genes according to time and/or biological conditions (see Figure 1.D). The user
can either use raw counts data or normalized data.

• Case 1. The output is a graph where are plotted: a box plot, a violin plot, and error
bars (standard deviation) for each biological condition.

• Case 2. The output is a graph where are plotted: the evolution of the expression of
each replicate across time (red lines) and the evolution of the mean and the standard
deviation of the expression across time (black lines).

• Cases 3 and 4. The output is a graph where are plotted: the evolution of the mean
and the standard deviation of the expression across time for each biological condition.
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1.5.3 Statistical analysis of the transcriptional response of different biological
conditions of individuals over time

1.5.3.1 Differentially expressed (DE) genes with DESeq2

The function DEanalysisGlobal() search for DE genes.
Case 1. Our algorithm searches for differentially expressed (DE) genes between all pairs
of biological conditions. This allows in particular to determine which genes are specific to
each biological condition. A gene is called specific to a biological condition A, if the gene is
DE between A and any other biological conditions, but not DE between any pairs of other
biological conditions.
Among the outputs, DEanalysisGlobal() returns

• a Venn barplot which gives the number of genes for each possible intersection. We
consider that a set of pairs of biological conditions forms an intersection if there is at
least one gene which is DE for each of these pairs of biological conditions, but not for
the others.

• a barplot which gives the number of specific (and over- and under-expressed, also often
called up- and down-regulated) genes per biological condition.

Case 2. Our algorithm looks for differentially expressed genes between each time ti (1 ≤
i ≤ n) and the reference time t0.
Among the outputs, DEanalysisGlobal() returns

• an alluvial graph of differentially expressed (DE) genes.
• a Venn barplot which gives the number of genes per temporal pattern. By temporal

pattern, we mean the set of times ti such that the gene is DE between ti and the
reference time t0.

Case 3 and Case 4. Our algorithm realizes a mix of the two previous cases. First, for each
biological condition, the algorithm realizes Case 2. Then for each time, the algorithm realizes
Case 1. We then can find specific genes. A gene is called specific to a biological condition
A at a time ti, if the gene is DE between A and any other biological conditions at time ti,
but not DE between any pairs of other biological conditions at time ti. The algorithm also
finds signature genes: a gene is called signature of a biological condition A at a given time
ti if the gene is specific for A at time ti and DE between ti versus t0 for A.
Among the outputs, DEanalysisGlobal() returns

• An alluvial graph of differentially expressed (DE) genes, for each biological condition
(see Figure 1.G).

• A barplot which gives the number of DE genes per time, for each biological condition
(see Figure 1.F).

• A barplot which gives the number of specific genes for each biological condition, one
per time (see Figure 1.H).

• An alluvial graph of genes which are specific at least at one time, for each biological
condition (see Figure 1.I).

• A graph which gives for each biological condition, the number of signature genes and
non signature genes per time ti versus the reference time t0 (see Figure 1.J).

11



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

1.5.3.2 Heatmaps, ratio intensity (MA) plots and volcano plots

Clustering of samples versus genes allows visualization of correlations between gene expres-
sions according to biological conditions or times. Clustering of samples versus samples allows
visualization of correlations between individuals and groups. Given the high number of genes
in a dataset, the heatmaps are realized after the supervised analysis in order to reduce the
number of genes.

1.5.3.3 Gene ontology and gene enrichment

Gene Ontology (GO) enrichment analysis search for a functional profile of DE genes and better
understand the underlying biological processes. We recommend the most used online tools
and software: GSEA [23] (see Figure 1.M), DAVID [21], WebGestalt [22] (see Figure 1.L),
g:Profiler [24], Panther [25], ShinyGO [26], Enrichr [27] and GOrilla [28]. Each of these
softwares and online tools requires specific input files in order to realize their analysis. The
R function GSEApreprocessing() automatically creates all required files.
Alternatively, the function GSEAquickAnalysis() provides a GSEA analysis with the R pack-
age gprofiler2 [20]. Among the ouputs, GSEAquickAnalysis() returns

• a lollipop graph (Figure 2) showing the most important Gene Ontologies ranked by their
− log10(pvalue). The y-axis indicates the MaxNumberGO most significant gene ontologies
and pathways associated to the selected DE genes. The gene ontologies and pathways
are sorted into descending order. The x-axis indicates the −log10(pvalues). The
higher is a lollipop the more significant is a gene ontology or pathway. A lollipop is
yellow if the pvalues is smaller than 0.05 (significant) and blue otherwise.

• A Manhattan plot (Figure 3) ranking all genes ontologies according to the functional
database (G0::BP, G0::CC, G0::MF and KEGG)
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1.6 Dataset used as examples in the package
In order to explain the use of each function in our package, we use four datasets.

1.6.1 Example of MultiRNAflow in case 1, several biological conditions: Mouse
dataset 1

The Mouse dataset 1 [31] is accessible on the Gene Expression Omnibus (GEO) database
with the accession number GSE169116.
This dataset contains the transcription profile of 12 mice belonging to 4 biological conditions:

• 3 mice with wild type Notch1 and wild type Tcf1
• 3 mice with wild type Notch1 and Tcf1 knocked-down
• 3 mice with Notch1 induced and wild type Tcf1
• 3 mice with Notch1 induced and Tcf1 knocked-down.

The dataset contains temporal expression data of 39017 genes [31].
To illustrate the use of our package in case 1, we selected 500 genes giving a representative
sample of each DE profile across biological conditions, in particular genes that are specific to
each biological condition.
This sub dataset is saved in the file RawCounts_Antoszewski2022_MOUSEsub500.

1.6.2 Example of MultiRNAflow in case 2, several time points: Fission dataset

The Fission dataset [32] is accessible on the Gene Expression Omnibus (GEO) database
with the accession number GSE56761. The dataset can also be obtained with the R package
"fission" [32].
This dataset contains the temporal transcription profile of 18 wild type fission yeasts (wt) and
18 fission yeasts where atf1 is knocked-out (mut), hence 36 samples. The dataset contains
temporal expression data of 7039 genes. Data were collected 0, 15, 30, 60, 120 and 180
minutes after an osmotic stress. The gene atf1 codes for a transcription factor which alters
sensitivity to oxidative stress.
To illustrate the use of our package in case 2, we focus on the biological condition wt and se-
lect 500 genes giving a representative sample of each temporal DE profile in this biological con-
dition. This sub dataset is saved in the file RawCounts_Leong2014_FISSIONsub500wt.
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1.6.3 Example of MultiRNAflow in case 3, several time points and two biological
conditions: Leukemia dataset

The Leukemia dataset [14] is accessible on the Gene Expression Omnibus (GEO) database
with the accession number GSE130385.
This dataset contains the temporal transcription profile of 3 Proliferating (P) and 3 Non
Proliferating (NP) primary chronic lymphocytic leukemia (CLL) B-cells samples. Data were
collected at 0, 1h, 1h30, 3h30, 6h30, 12h, 24h, 48h and 96h after cell stimulation (so
(3 + 3) × 9 = 54 samples in total). The latest time point corresponds to the emergence of
the proliferation clusters. The dataset contains temporal expression data of 25369 genes.
To illustrate the use of our package in case 3 with two biological conditions, we selected 500
genes giving a representative sample of each DE profile across time and biological conditions,
in particular genes that are signature genes of each biological condition. This sub dataset is
saved in the file RawCounts_Schleiss2021_CLLsub500.

1.6.4 Example of MultiRNAflow in case 4, several time points and more than
two biological conditions: Mouse dataset 2

The Mouse dataset 2 [15] is accessible on the Gene Expression Omnibus (GEO) database
with the accession number GSE135898.
This dataset contains the temporal transcription profile of 16 mice with Bmal1 and Cry1/2
knocked-down under an ad libitum (AL) or night restricted feeding (RF) regimen. Data were
collected at 0h, 4h, 8h, 12h, 16h and 20h. Therefore, there are six time points and eight
biological conditions. As there are only two mice per biological condition, we decided not to
take into account the effect of the regimen. This leads to 4 biological conditions with 4 mice
in each. The dataset contains temporal expression data of 40327 genes.
To illustrate the use of our package in case 3 with more than two biological conditions, we
take 500 genes, over the global 40327 genes in the original dataset. This sub dataset is saved
in the file RawCounts_Weger2021_MOUSEsub500.
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2 Preamble

2.1 R version and R packages to install
Before installing the necessary packages, you must install (or update) the R software in a
version superior or equal to 4.2.1 "Funny-Looking Kid" (released on 2022/06/23) from CRAN
(Comprehensive R Archive Network).
Then, in order to use the MultiRNAflow package, the following R packages must be installed:

• From CRAN: reshape2 (>= 1.4.4), ggplot2 (>= 3.4.0), ggalluvial (>= 0.12.3), ggrepel
(>= 0.9.2), FactoMineR (>= 2.6), factoextra (>= 1.0.7), plot3D (>= 1.4), plot3Drgl
(>= 1.0.3), ggplotify (>= 0.1.2), UpSetR (>= 1.4.0), gprofiler2 (>= 0.2.1).

• From CRAN and usually already included by default in R: graphics (>= 4.2.2), grDe-
vices (>= 4.2.2), grid (>= 4.2.2), utils (>= 4.2.2), stats (>= 4.2.2).

• From Bioconductor: SummarizedExperiment (>= 1.28.0), DESeq2 (>= 1.38.1), Com-
plexHeatmap (>= 2.14.0), Mfuzz (>= 2.58.0).

Before installing a package, for instance the package FactoMineR, the user must check if the
package is already installed with the command library(FactoMineR). If the package has not
been previously installed, the user must use the command install.packages("FactoMineR")

(packages from CRAN). For beginners in programming, we recommend to follow the steps
below for importing CRAN and Bioconductor packages.
For the packages which must be download from CRAN,
Cran.pck <- c("reshape2", "ggplot2", "ggrepel", "ggalluvial",

"FactoMineR", "factoextra",

"plot3D", "plot3Drgl", "ggplotify", "UpSetR", "gprofiler2")

the user can copy and paste the following lines of code for each package in order to download
the missing packages.
Select.package.CRAN <- "FactoMineR"

if (!require(package=Select.package.CRAN,

quietly=TRUE, character.only=TRUE, warn.conflicts=FALSE)) {

install.packages(pkgs=Select.package.CRAN, dependencies=TRUE)

}# if(!require(package=Cran.pck[i], quietly=TRUE, character.only=TRUE))

If the package is already installed (for instance here "FactoMineR"), the previous lines of
code will return nothing.
For the packages which must be download from Bioconductor,
Bioconductor.pck <- c("SummarizedExperiment", "S4Vectors", "DESeq2",

"Mfuzz", "ComplexHeatmap")

the user must first copy and paste the following lines of code in order to install "BiocManager"
if (!require(package="BiocManager",

quietly=TRUE, character.only=TRUE, warn.conflicts=FALSE)) {

install.packages("BiocManager")

}# if(!require(package="BiocManager", quietly=TRUE, character.only=TRUE))
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then copy and paste the following lines of code in order to install the version 3.16 of biocon-
ductor (it works with R version 4.2.0)
BiocManager::install(version="3.18")

and then copy and paste the following lines of code for each package in order to download
the missing packages.
Select.package.Bioc <- "DESeq2"

if(!require(package=Select.package.Bioc,

quietly=TRUE, character.only=TRUE, warn.conflicts=FALSE)){

BiocManager::install(pkgs=Select.package.Bioc)

}## if(!require(package=Select.package.Bioc, quietly=TRUE, character.only=TRUE))

If the package is already installed (for instance here "DESeq2"), the previous lines of code
will return nothing.
Once all packages have been installed, the user may load our package.
library(MultiRNAflow)

2.2 Main functions
Our package contains 38 functions among which 11 are main functions. The user should
only use

• DATAprepSE() to store all information about the dataset in a standardized way (Sum-
marizedExperiment class object)

• these main functions for exploratory data analysis (unsupervised analysis)
• DATAnormalization(). This function allows to normalize raw counts data and

the results will be used by the functions PCAanalysis(), HCPCanalysis(),
MFUZZanalysis() and DATAplotExpressionGenes().

• PCAanalysis(). The function realizes the PCA analysis.
• HCPCanalysis(). The function realizes the clustering analysis with the R package

HCPC.
• MFUZZanalysis(). The function realizes the temporal clustering analysis with

the R package Mfuzz
• DATAplotExpressionGenes(). This function allows to plot the profile expression

of all chosen genes.
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• these main functions for supervised analysis
• DEanalysisGlobal(). This function realizes the differential expression analysis.
• DEplotVolcanoMA(). The function plots and save all Volcano and MA plots

from the output of DEanalysisGlobal().
• DEplotHeatmaps(). The function plots a correlation heatmap and a heatmap

of the normalized data for a selection of DE genes.
• GSEAQuickAnalysis(). The function realizes the GSEA analysis with the R

package gprofiler2.
• GSEApreprocessing(). The function saves files to be used by 8 GSEA software

and online tools.

2.3 Load of the dataset
If the user wants to use our package with one of the dataset included in MultiRNAflow, he
must first write in the R console either
data("RawCounts_Antoszewski2022_MOUSEsub500")

in order to load the Example of MultiRNAflow in case 1, several biological conditions: Mouse
dataset 1, either
data("RawCounts_Leong2014_FISSIONsub500wt")

in order to load the Example of MultiRNAflow in case 2, several time points: Fission dataset,
either
data("RawCounts_Schleiss2021_CLLsub500")

in order to load the Example of MultiRNAflow in case 3, several time points and two biological
conditions: Leukemia dataset, or
data("RawCounts_Weger2021_MOUSEsub500")

in order to load the Example of MultiRNAflow in case 4, several time points and more than
two biological conditions: Mouse dataset 2.
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2.4 Structure of the dataset
The dataset must be a data.frame containing raw counts data. If it is not the case, the
function DATAprepSE() will stop and print an error. Each line should correspond to a gene,
each column to a sample, except a particular column that may contain strings of characters
describing the names of the genes. The first line of the data.frame should contain the names
of the columns (strings of characters) that must have the following structure.
data("RawCounts_Leong2014_FISSIONsub500wt")

colnames(RawCounts_Leong2014_FISSIONsub500wt)

## [1] "Gene" "wt_t0_r1" "wt_t0_r2" "wt_t0_r3" "wt_t1_r1" "wt_t1_r2"

## [7] "wt_t1_r3" "wt_t2_r1" "wt_t2_r2" "wt_t2_r3" "wt_t3_r1" "wt_t3_r2"

## [13] "wt_t3_r3" "wt_t4_r1" "wt_t4_r2" "wt_t4_r3" "wt_t5_r1" "wt_t5_r2"

## [19] "wt_t5_r3"

In this example, "Gene" indicates the column which contains the names of the different
genes. The other column names contain all kind of information about the sample, includ-
ing the biological condition, the time of measurement and the name of the individual (e.g
patient, replicate, mouse, yeasts culture...). Other kinds of information can be stored in the
column names (such as patient information), but they will not be used by the package. The
various information in the column names must be separated by underscores. The order of
these information is arbitrary but must be the same for all columns. For instance, the sample
"wt_t0_r1" corresponds to the first replicate (r1) of the wild type yeast (wt) at time t0
(reference time).

The information located to the left of the first underscore will be considered to be in position
1, the information located between the first underscore and the second one will be considered
to be in position 2, and so on. In the previous example, the biological condition is in position
1, the time is in position 2 and the replicate is in position 3.

In most of the functions of our package, the order of the previous information in the col-
umn names will be indicated with the inputs Group.position, Time.position and Individ

ual.position. Similarly the input Column.gene will indicate the number of the column
containing gene names. For example, in the previous dataset, the function DATAprepSE()
must be called with the following arguments:
resSEexample <- DATAprepSE(RawCounts=RawCounts_Leong2014_FISSIONsub500wt,

Column.gene=1,

Group.position=NULL,

Time.position=2,

Individual.position=3)

Here, the argument Column.gene=1 means that the first column of the dataset contain genes
name, Time.position=2 means that the time of measurements is between the first and the
second underscores in the columns names, Individual.position=3 means that the name
of the individual is between the second and the third underscores in the columns names
and Group.position=NULL means that there is only one biological condition in the dataset
(corresponding to case 2). Similarly, Time.position=NULL would mean that there is only one
time of measurement for each individual (corresponding to case 2) and Column.gene=NULL

would mean that there is no column containing gene names.
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2.5 Structure of the output
The output of the main functions (see Section 2.2) is a SummarizedExperiment class object.
The following lines of this section and Figure 4 come from the vignette of the bioconductor
package SummarizedExperiment.
The SummarizedExperiment class is used to store rectangular matrices of experimental re-
sults, which are commonly produced by sequencing experiments such as RNA-Seq. Each
SummarizedExperiment object stores

• the experiment data SummarizedExperiment (RNAseq raw counts data, normalized data
...) which can be retrieved with the R function SummarizedExperiment::assays()

• information and features of samples (phenotypes for instance) which can be retrieved
with the R function SummarizedExperiment::colData()

• information and features of genes (length of genes, gene ontology, DE genes ...) which
can be retrieved with the R function SummarizedExperiment::rowData()

• Meta-data (any other kind of information). S4Vectors::metadata() is just a simple
list, so it is appropriate for any experiment wide metadata the user wishes to save,
such as storing model formulas, description of the experimental methods, publication
references ...

We illustrate the main functions of the package and how to recover the different outputs of
the package from the SummarizedExperiment object int the following sections.

Figure 4: Summarized Experiment structure
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3 Detailed analysis of a dataset with several times
point and two biological conditions (case 3)
In this section we use the Chronic lymphocytic leukemia (CLL) subdataset
RawCounts_Schleiss2021_CLLsub500 (see subsection Example of MultiRNAflow in case
3, several time points and two biological conditions: Leukemia dataset) in order to explain
the use of our package in case 3 when there are only two biological conditions.

3.1 Preprocessing step with DATAprepSE()
The preprocessing step is realized by our R function DATAprepSE() to store all information
about the dataset in a standardized way (SummarizedExperiment class object). The user
must realize this step in order to realize exploratory data analysis (unsupervised analysis,
section 3.2) or statistical analysis of the transcriptional response (supervised analysis, section
3.3).
The following lines of code realize the preprocessing step.
SEresleuk500 <- DATAprepSE(RawCounts=RawCounts_Schleiss2021_CLLsub500,

Column.gene=1,

Group.position=2,

Time.position=4,

Individual.position=3,

VARfilter=0,

SUMfilter=0,

RNAlength=NULL)

The inputs VARfilter and SUMfilter allow to filter the dataset by keeping only rows (i.e.
genes) such as the sum or the variances of counts is greater than the selected threshold. The
user can also filter genes by keeping only those which have a known transcript length with
the input RNAlength.
The function returns a SummarizedExperiment class object containing

• general information about the dataset
• information to be used for exploratory data analysis
• a DESeqDataSet class object (DESeq2obj) to be used for statistical analysis of the

transcriptional response.
names(S4Vectors::metadata(SEresleuk500))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(S4Vectors::metadata(SEresleuk500)$Results)

## List of 2

## $ UnsupervisedAnalysis:List of 5

## ..$ Normalization : NULL

## ..$ PCA : NULL

## ..$ HCPC : NULL
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## ..$ Mfuzz : NULL

## ..$ GenesExpression: NULL

## $ SupervisedAnalysis :List of 5

## ..$ Normalization : NULL

## ..$ DEanalysis : NULL

## ..$ VolcanoMAplots: NULL

## ..$ Heatmaps : NULL

## ..$ Rgprofiler2 : NULL

All results of the different analysis presented below will be stored in Results of S4Vectors::metadata().
We will show in each section how to retrieve information and plots.
Write ?DATAprepSE in your console for more information about the function.

3.2 Exploratory data analysis (unsupervised analysis)

3.2.1 Normalization with DATAnormalization()

The following lines of code realize the normalization step from the results of the function
DATAprepSE() (subsection 3.1)
SEresNORMleuk500 <- DATAnormalization(SEres=SEresleuk500,

Normalization="vst",

Blind.rlog.vst=FALSE,

Plot.Boxplot=FALSE,

Colored.By.Factors=TRUE,

Color.Group=NULL,

path.result=NULL)

If Plot.Boxplot=TRUE a boxplot showing the distribution of the normalized expression
(Normalization="vst" means that the vst method is used) of genes for each sample is
returned. If the user gives information about transcript length with the input RNAlength of the
function DATAprepSE (section 3.1), the user can set Normalization="rpkm" to normalize
the dataset with the RPKM formula.
If the user wants to see the results of the normalization, he must first executing the following
lines of code.
## Save 'Results' of the metadata in an object

resleuk500 <- S4Vectors::metadata(SEresNORMleuk500)$Results

## Save the results of Normalization in an object

resNORMleuk500 <- resleuk500[[1]][[1]]

###

names(S4Vectors::metadata(SEresNORMleuk500))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(resleuk500, max.level=2)

## List of 2

## $ UnsupervisedAnalysis:List of 5
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## ..$ Normalization :List of 2

## ..$ PCA : NULL

## ..$ HCPC : NULL

## ..$ Mfuzz : NULL

## ..$ GenesExpression: NULL

## $ SupervisedAnalysis :List of 5

## ..$ Normalization : NULL

## ..$ DEanalysis : NULL

## ..$ VolcanoMAplots: NULL

## ..$ Heatmaps : NULL

## ..$ Rgprofiler2 : NULL

The user can see that UnsupervisedAnalysis$Normalization is no longer NULL and now
contains two elements : the method of normalization used (resNORMleuk500$normMethod) and
the boxplot (resNORMleuk500$normBoxplot). Boxplots showing the results of normalization
can be plotted as follows.
resNORMleuk500$normMethod

## [1] "vst"

print(resNORMleuk500$normBoxplot)
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The user can now have access to the normalized data.
normData <- SummarizedExperiment::assays(SEresNORMleuk500)

names(SummarizedExperiment::assays(SEresNORMleuk500))

## [1] "counts" "vst"

"counts" represents the raw counts data and "vst" the normalized data. The user can look
at the normalized data by executing the line normData$vst or normData[[2]].
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If Colored.By.Factors=TRUE, the color of the boxplots would be different for different bio-
logical conditions. By default (if Color.Group=NULL), a color will be automatically applied
for each biological condition. You can change the colors by creating the following data.frame
colorLeuk <- data.frame(Name=c("NP", "P"),

Col=c("black", "red"))

and setting Color.Group=colorLeuk.
The x-labels give biological information, time information and individual information separated
by dots. If the user wants to see the 6th first rows of the normalized data, he can write in
his console
head(SEresNORMleuk500$NormalizedData, n=6).
The user can save the graph in a folder thanks to the input path.result. If path.result=NULL
the results will still be plotted but not saved in a folder.
Write ?DATAnormalization in your console for more information about the function.
Interpretation of the results: When data are not normalized, boxplots of unnormalized log
expression data show large differences in distribution between different samples.
The figure shows that the normalized gene expression distribution of the different samples
is similar. Normalization has therefore been successful, and we can now begin exploratory
analysis of the dataset.

3.2.2 Factorial analysis: PCA with PCAanalysis() and clustering with HCPC-
analysis()

3.2.2.1 PCA (case 3)

When samples belong to different biological conditions and different time points, the following
lines of code return from the results of the function DATAnormalization() (Section 3.2.1):

• The results of the R function PCA() from the package FactoMineR.
• one 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window

(only if motion3D=FALSE) where samples are colored with different colors for different
biological conditions. Furthermore, lines are drawn between each pair of consecutive
points for each individual (if Mean.Accross.Time=FALSE, otherwise lines will be drawn
only between mean values of all individuals for each time point and biological condi-
tions).

• one 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window
(only if motion3D=FALSE) for each biological condition, where samples are colored with
different colors for different time points. Furthermore, lines are drawn between each
pair of consecutive points for each sample (if Mean.Accross.Time=FALSE, otherwise
lines will be drawn only between mean values of all individuals for each time point and
biological conditions).

• the same graphs described above but without lines.
SEresPCALeuk500 <- PCAanalysis(SEresNorm=SEresNORMleuk500,

gene.deletion=NULL,

sample.deletion=NULL,

Plot.PCA=FALSE,
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Mean.Accross.Time=FALSE,

Color.Group=NULL,

Cex.label=0.9, Cex.point=0.8, epsilon=0.2,

Phi=25, Theta=140,

motion3D=FALSE,

path.result=NULL, Name.folder.pca=NULL)

The graphs are
• stored in an SE object (see below how to visualize the elements)
• displayed if Plot.PCA=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
If the user wants to see the results of the PCA analysis, he must first execute the following
lines of code.
## Save 'Results' of the metadata in an object

resleuk500 <- S4Vectors::metadata(SEresPCALeuk500)$Results

## Save the results of normalization in an object

resPCALeuk500 <- resleuk500[[1]][[2]]

###

names(S4Vectors::metadata(SEresPCALeuk500))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(resleuk500, max.level=2, give.attr=FALSE)

## List of 2

## $ UnsupervisedAnalysis:List of 5

## ..$ Normalization :List of 2

## ..$ PCA :List of 9

## ..$ HCPC : NULL

## ..$ Mfuzz : NULL

## ..$ GenesExpression: NULL

## $ SupervisedAnalysis :List of 5

## ..$ Normalization : NULL

## ..$ DEanalysis : NULL

## ..$ VolcanoMAplots: NULL

## ..$ Heatmaps : NULL

## ..$ Rgprofiler2 : NULL

names(resPCALeuk500)

## [1] "nb.quali.var" "List.Factors"

## [3] "PCAresults" "PCA_2D"

## [5] "PCA_3D" "PCA_2DtemporalLinks"

## [7] "PCA_3DtemporalLinks" "PCA_BiologicalCondition_NP"

## [9] "PCA_BiologicalCondition_P"
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The user can see that UnsupervisedAnalysis$PCA is no longer NULL and now contains 9
elements :

• The results of PCA (PCAresults) which can be retrieved by executing the following
line of code in your console resPCALeuk500$PCAresults

• resPCALeuk500$PCA_2D and resPCALeuk500$PCA_2DtemporalLinks contain respectively
2D PCA with all biological conditions without and with temporal links. The following
lines of codes plot the 2D PCA with temporal links

print(resPCALeuk500$PCA_2DtemporalLinks)
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• resPCALeuk500$PCA_3D and resPCALeuk500$PCA_3DtemporalLinks contain respectively
3D PCA with all biological conditions without and with temporal links. The following
lines of codes plot the 3D PCA with temporal links

print(resPCALeuk500$PCA_3DtemporalLinks)
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• resPCALeuk500$PCA_BiologicalCondition_NP and resPCALeuk500$PCA_BiologicalCondition_P

contain the different 2D and 3D PCA plots for each biological condition. The following
lines of codes plot the 3D PCA with temporal links returns the 3D PCA with temporal
links for the biological condition P.

print(resPCALeuk500$PCA_BiologicalCondition_P$PCA_3DtemporalLinks)
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By default (if Color.Group=NULL), a color will be automatically assigned to each biological
condition. The user can change the colors by creating the following data.frame
colorLeuk <- data.frame(Name=c("NP","P"),

Col=c("black","red"))

and setting Color.Group=colorLeuk. The user cannot change the color associated to each
time point.
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If the user wants to delete, for instance, the genes ’ABCA7’ and ’ADAM28’ (respectively the
second and sixth gene) and/or delete the samples ’CLL_P_r1_t1’ and ’CLL_P_r2_t2’, he
can set

• gene.deletion=c("ABCA7","ADAM28") and/or
sample.deletion=c("CLL_P_r1_t1", "CLL_P_r2_t2")

• gene.deletion=c(2, 6) and/or sample.deletion=c(3, 13).
The integers in gene.deletion and sample.deletion represent respectively the row
numbers and the column numbers of RawCounts where the selected genes and samples
are located.

Write ?PCAanalysis in your console for more information about the function.
Interpretation of the results: The three graphs clearly show that PCA has made it possible
to discern the temporal evolution of transcription within each biological condition. The first
two graphs also clearly distinguishes the samples according to the biological conditions.

3.2.2.2 HCPC (case 3)

The lines of code below return from the results of the function DATAnormalization() (see
Section 3.2.1):

• The results of the R function HCPC() from the package FactoMineR.
• A dendrogram
• A graph indicating by color for each sample, its cluster, the biological condition and

the time point associated to the sample.
• One 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window

(only if motion3D=FALSE). These PCA graphs are identical to the outputs of PCAanaly
sis() with all samples but samples are colored with different colors for different clusters.

The input SEresNorm can be either
• SEresNorm=SEresNORMleuk500 and the results of HCPCanalysis() will be added in the

SE object which contains the results of DATAnormalization()
• or SEresNorm=SEresPCALeuk500 and the results of HCPCanalysis() will be added in the

SE object which contains the results of DATAnormalization() and PCAanalysis().
SEresHCPCLeuk500 <- HCPCanalysis(SEresNorm=SEresPCALeuk500,

gene.deletion=NULL,

sample.deletion=NULL,

Plot.HCPC=FALSE,

Phi=25,Theta=140,

Cex.point=0.7,

epsilon=0.2,

Cex.label=0.9,

motion3D=FALSE,

path.result=NULL,

Name.folder.hcpc=NULL)

The graphs are
• stored in an SE object (see below how to visualize the elements)
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• displayed if Plot.HCPC=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
If the user wants to see the results of the HCPC analysis, he must first execute the following
lines of code.
## Save 'Results' of the metadata in an object

resleuk500 <- S4Vectors::metadata(SEresHCPCLeuk500)$Results

## Save the results of HCPC in an object

resHCPCLeuk500 <- resleuk500[[1]][[3]]

###

names(S4Vectors::metadata(SEresHCPCLeuk500))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(resleuk500, max.level=2, give.attr=FALSE)

## List of 2

## $ UnsupervisedAnalysis:List of 5

## ..$ Normalization :List of 2

## ..$ PCA :List of 4

## ..$ HCPC :List of 6

## ..$ Mfuzz : NULL

## ..$ GenesExpression: NULL

## $ SupervisedAnalysis :List of 5

## ..$ Normalization : NULL

## ..$ DEanalysis : NULL

## ..$ VolcanoMAplots: NULL

## ..$ Heatmaps : NULL

## ..$ Rgprofiler2 : NULL

names(resHCPCLeuk500)

## [1] "resHCPC" "Samples.FactorCluster"

## [3] "Dendrogram" "Cluster_SampleDistribution"

## [5] "PCA2DclustersHCPC" "PCA3DclustersHCPC"

The user can see that UnsupervisedAnalysis$HCPC is no longer NULL and now contains 6
elements :

• The results of HCPC (resHCPC) can be retrieved by executing the following line of code
in your console resHCPCLeuk500$resHCPC

• resHCPCLeuk500$resHCPCLeuk500 contains the dendrogram. The following lines of
codes plot the dendrogram.

print(resHCPCLeuk500$Dendrogram)
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• resHCPCLeuk500$Cluster_SampleDistribution contains the graph indicating for each
sample, its cluster, the biological condition and the time point associated to the sample,
using a color code. The following lines of codes plot the 3D PCA with temporal links

print(resHCPCLeuk500$Cluster_SampleDistribution)
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• resPCALeuk500$PCA2DclustersHCPC and resPCALeuk500$PCA3DclustersHCPC contain
the 2D and 3D PCA plots where samples are colored with different colors for different
clusters. The following lines of codes plot the 3D PCA.

print(resHCPCLeuk500$PCA3DclustersHCPC)
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Write ?HCPCanalysis in your console for more information about the function.
Interpretation of the results: This HCPC analysis shows that

• cluster 1 contains all samples taken at measurement times t0, t1 and t2 of both bio-
logical conditions.

• cluster 2 contains all samples taken at measurement times t3, t4, t5 and t6 of both
biological conditions.

• cluster 3 contains all samples taken at measurement times t7 and t8 of both biological
conditions.

This indicates that the expression of genes at these three groups of times are very different.

3.2.3 Temporal clustering analysis with MFUZZanalysis()

The following function realizes the temporal clustering analysis. It takes as input, a number of
clusters (DataNumberCluster) that can be chosen automatically if DataNumberCluster=NULL
and the results of the function DATAnormalization() (see Section 3.2.1). The lines of code
below return for each biological condition

• the summary of the results of the R function mfuzz() from the package Mfuzz.
• the scaled height plot, computed with the HCPC() function, and shows the number

of clusters chosen automatically (if DataNumberCluster=NULL). If Method="hcpc", the
function plots the scaled within-cluster inertia, but if Method="kmeans", the function
plots the scaled within-cluster inertia. As the number of genes can be very high, we
recommend to select Method="hcpc" which is by default.

• the output graphs from the R package Mfuzz showing the most common temporal
behavior among all genes for each biological condition. The plots below correspond to
the biological condition ’P’.

The input SEresNorm can be either
• SEresNorm=SEresNORMleuk500 and the results of MFUZZanalysis() will be added in the

SE object which contains the results of DATAnormalization()

31



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

• either SEresNorm=SEresPCALeuk500 and the results of MFUZZanalysis() will be added in
the SE object which contains the results of DATAnormalization() and PCAanalysis()

• or SEresNorm=SEresHCPCLeuk500 and the results of MFUZZanalysis() will be added in
the SE object which contains the results of DATAnormalization(), PCAanalysis() and
HCPCanalysis().

SEresMfuzzLeuk500 <- MFUZZanalysis(SEresNorm=SEresHCPCLeuk500,

DataNumberCluster=NULL,

Method="hcpc",

Membership=0.7,

Min.std=0.1,

Plot.Mfuzz=FALSE,

path.result=NULL,

Name.folder.mfuzz=NULL)

## 0 genes excluded.

## 6 genes excluded.

## 0 genes excluded.

## 9 genes excluded.

The excluded genes are those which standard deviation are under a certain threshold (the R
function mfuzz() from the package Mfuzz).
The graphs are

• stored in an SE object (see below how to visualize the elements)
• displayed if Plot.Mfuzz=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
If the user wants to see the results of the Mfuzz analysis, he must first execute the following
lines of code.
## Save 'Results' of the metadata in an object

resleuk500 <- S4Vectors::metadata(SEresMfuzzLeuk500)$Results

## Save the results of Mfuzz in an object

resMfuzzLeuk500 <- resleuk500[[1]][[4]]

###

names(S4Vectors::metadata(SEresMfuzzLeuk500))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(resleuk500, max.level=2, give.attr=FALSE)

## List of 2

## $ UnsupervisedAnalysis:List of 5

## ..$ Normalization :List of 2

## ..$ PCA :List of 4

## ..$ HCPC :List of 6

## ..$ Mfuzz :List of 5

## ..$ GenesExpression: NULL
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## $ SupervisedAnalysis :List of 5

## ..$ Normalization : NULL

## ..$ DEanalysis : NULL

## ..$ VolcanoMAplots: NULL

## ..$ Heatmaps : NULL

## ..$ Rgprofiler2 : NULL

names(resMfuzzLeuk500)

## [1] "Data.Mfuzz" "Result.Mfuzz" "ClustersNumbers"

## [4] "Mfuzz.Plots.Group_NP" "Mfuzz.Plots.Group_P"

The user can see that UnsupervisedAnalysis$HCPC is no longer NULL and now contains 6
elements :

• The user can execute the command resMfuzzLeuk500$DataClustSel to see the number
of cluster associated to each biological condition.

• The user can execute the command head(resMfuzzLeuk500$Data.Mfuzz) in order to
see the data used for the Mfuzz analysis, and head(resMfuzzLeuk500$Result.Mfuzz) in
order to see for each gene, the temporal cluster associated to each biological condition.

• resMfuzzLeuk500$ClustersNumbers contains the graph indicating the selected cluster
for each biological condition. The following lines of codes plot this graph.

print(resMfuzzLeuk500$ClustersNumbers)
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• resMfuzzLeuk500$Mfuzz.Plots.Group_NP and resMfuzzLeuk500$Mfuzz.Plots.Group_P

contains the different temporal clusters for respectively the biological condition P and
NP. The following lines of codes plot the temporal clusters for the biological condition
P.

print(resMfuzzLeuk500$Mfuzz.Plots.Group_P)
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Other temporal information are shown in the alluvial graph of the subsection DE analysis
with DEanalysisGlobal() that can be compared with the previous graphs.
Write ?MFUZZanalysis in your console for more information about the function.
Interpretation of the results: We observe that the biological condition P admits at least
3 important clusters. Clusters 2 and 3 are interesting because they show either a significant
peak at time t3 or an abrupt change in behavior. This suggests that cell activation causes a
significant change in gene expression at time t3.

3.2.4 Genes expression profile with DATAplotExpressionGenes()

The lines of code below allow to plot, from the results of the function DATAnormalization()
(see Section 3.2.1), for each biological condition: the evolution of the 25th gene expression
of the three replicates across time and the evolution of the mean and the standard deviation
of the 25th gene expression across time. The color of the different lines are different for
different biological conditions.
The input SEresNorm can be either

• SEresNorm=SEresNORMleuk500 and the results of DATAplotExpressionGenes() will be
added in the SE object which contains the results of DATAnormalization()

• either SEresNorm=SEresPCALeuk500 and the results of DATAplotExpressionGenes() will
be added in the SE object which contains the results of DATAnormalization() and PCA

analysis()

• either SEresNorm=SEresHCPCLeuk500 and the results of DATAplotExpressionGenes()

will be added in the SE object which contains the results of DATAnormalization(),
PCAanalysis() and HCPCanalysis().

• or SEresNorm=SEresMfuzzLeuk500 and the results of DATAplotExpressionGenes() will
be added in the SE object which contains the results of DATAnormalization(), PCAanal
ysis(), HCPCanalysis() and MFUZZanalysis().
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SEresEVOleuk500 <- DATAplotExpressionGenes(SEresNorm=SEresMfuzzLeuk500,

Vector.row.gene=c(25, 30),

Color.Group=NULL,

Plot.Expression=FALSE,

path.result=NULL,

Name.folder.profile=NULL)

The graphs are
• stored in an SE object (see below how to visualize the elements)
• displayed if Plot.Expression=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
If the user wants to see the results of the DATAplotExpressionGenes(), he must first execute
the following lines of code.
## Save 'Results' of the metadata in an object

resleuk500 <- S4Vectors::metadata(SEresEVOleuk500)$Results

## Save the results of DE analysis in an object

resEVOleuk500 <- resleuk500[[1]][[5]]

###

names(S4Vectors::metadata(SEresEVOleuk500))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(resleuk500, max.level=2, give.attr=FALSE)

## List of 2

## $ UnsupervisedAnalysis:List of 5

## ..$ Normalization :List of 2

## ..$ PCA :List of 4

## ..$ HCPC :List of 6

## ..$ Mfuzz :List of 5

## ..$ GenesExpression:List of 2

## $ SupervisedAnalysis :List of 5

## ..$ Normalization : NULL

## ..$ DEanalysis : NULL

## ..$ VolcanoMAplots: NULL

## ..$ Heatmaps : NULL

## ..$ Rgprofiler2 : NULL

names(resEVOleuk500)

## [1] "ARL4C_profile" "ATP5G1_profile"

• resEVOleuk500$ARL4C_profile or resEVOleuk500[[1]] contains the graph or expres-
sion profile of gene ARL4C_profile, and resEVOleuk500$ARL4C_profile or resEVOleuk500[[2]]
contains the graph or expression profile of gene ATP5G1_profile
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print(resEVOleuk500$ARL4C_profile)
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By default (if Color.Group=NULL), a color will be automatically assigned to each biological
condition. The user can change the colors by creating the following data.frame
colorLeuk <- data.frame(Name=c("NP", "P"), Col=c("black", "red"))

and setting Color.Group=colorLeuk. If the user wants to select several genes, for instance the
97th, the 192th, the 194th and the 494th, he needs to set Vector.row.gene=c(97,192,194,494).
Write ?DATAplotExpressionGenes in your console for more information about the function.
Interpretation of the results: The expression profile of the ARL4C gene is interesting, since
the behavior of this gene is similar in both biological conditions over the first 4 time points
(up to t3). From t4 to t8, expression of the normalized gene is much lower in the P biological
condition. Stimulation of the P cell membrane therefore cascades to modify the expression
of several genes, resulting in inhibition of ARL4C gene expression.

3.3 Statistical analysis of the transcriptional response (supervised
analysis)

3.3.1 DE analysis with DEanalysisGlobal()

The lines of code below
• returns a data.frame. See subsection Data.frame summarizing all the DE analysis (case

3)
• plots the following graphs

• Results from the temporal statistical analysis (case 2 for each biological condi-
tion). See subsection Graphs from the results of the temporal statistical analysis

• Results from the statistical analysis by biological condition (case 1 for each fixed
time). See subsection Graphs from the results of the biological condition analysis.
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• Results from the combination of temporal and biological statistical analysis. See
subsection Graphs from the results of the combination of temporal and biological
statistical analysis

The input SEres can be either
• SEres=SEresleuk500, and the results of DEanalysisGlobal() will be stored in the initial

SE object
• either SEres=SEresNORMleuk500 and the results of DEanalysisGlobal() will be added

in the SE object which contains the results of DATAnormalization()
• either SEres=SEresPCALeuk500 and the results of DEanalysisGlobal() will be added in

the SE object which contains the results of DATAnormalization() and PCAanalysis()

• either SEres=SEresHCPCLeuk500 and the results of DEanalysisGlobal() will be added
in the SE object which contains the results of DATAnormalization(), PCAanalysis()

and HCPCanalysis().
• either SEres=SEresMfuzzLeuk500 and the results of DEanalysisGlobal() will be added

in the SE object which contains the results of DATAnormalization(), PCAanalysis(),
HCPCanalysis() and MFUZZanalysis().

• or SEres=SEresEVOleuk500 and the results of DEanalysisGlobal() will be added in
the SE object which contains the results of DATAnormalization(), PCAanalysis(),
HCPCanalysis(), MFUZZanalysis() and DATAplotExpressionGenes().

SEresDELeuk500 <- DEanalysisGlobal(SEres=SEresEVOleuk500,

pval.min=0.05,

pval.vect.t=NULL,

log.FC.min=1,

LRT.supp.info=FALSE,

Plot.DE.graph=FALSE,

path.result=NULL,

Name.folder.DE=NULL)

## [1] "Preprocessing"

## [1] "Differential expression step with DESeq2::DESeq()"

## [1] "Case 3 analysis : Biological conditions and Times."

## [1] "DE time analysis for each biological condition."

## [1] "DE group analysis for each time measurement."

## [1] "Combined time and group results."

## data("Results_DEanalysis_sub500")

## SEresDELeuk500 <- Results_DEanalysis_sub500$DE_Schleiss2021_CLLsub500

Due to time consuming of the DE analysis, we stored in the object Results_DEanalysis_sub500
(uncommented lines) a list of three objects

• Results_DEanalysis_sub500$DE_Schleiss2021_CLLsub500, stored the results of DEanal
ysisGlobal() with RawCounts_Schleiss2021_CLLsub500.

• Results_DEanalysis_sub500$DE_Antoszewski2022_MOUSEsub500, stored the results of
DEanalysisGlobal() with RawCounts_Antoszewski2022_MOUSEsub500.

• Results_DEanalysis_sub500$DE_Leong2014_FISSIONsub500wt, stored the results of DE
analysisGlobal() with RawCounts_Leong2014_FISSIONsub500wt.

The graphs are
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• stored in an SE object (see below how to visualize the elements)
• displayed if Plot.DE.graph=TRUE (see the following subsections 3.3.1.2, 3.3.1.3 and

3.3.1.4)
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Write ?DEanalysisGlobal in your console for more information about the function.

3.3.1.1 Data.frame summarizing all the DE analysis (case 3)

The output data.frame can be extracted with the following line of code,
DEsummaryLeuk <- SummarizedExperiment::rowData(SEresDELeuk500)

As we use abbreviated column names, we propose a glossary in order to help the user to
understand meaning of each column. The glossary of the column names can be extracted
with the following lines of code,
resDELeuk500 <- S4Vectors::metadata(SEresDELeuk500)$Results[[2]][[2]]

resGlossaryLeuk <- resDELeuk500$Glossary

and then write DEsummaryLeuk and resGlossaryLeuk in the R console.
The data.frame DEsummaryLeuk contains

• gene names (column 1)
• Results from the temporal statistical analysis (case 2 for each biological condition)

• pvalues, log2 fold change and DE genes between each time ti versus the reference
time t0, for each biological condition (3×(T−1)×Nbc = 3×8×2 = 48 columns).

• Nbc = 2 binary columns (1 and 0), one per biological condition (with Nbc the
number of biological conditions). A ’1’ in one of these two columns means that
the gene is DE at least between one time ti versus the reference time t0, for the
biological condition associated to the column (see Section 3.3.1.2).

• Nbc = 2 columns where each element is succession of 0 and 1, one per biological
condition. The positions of ’1,’ in one of these two columns, indicate the set of
times ti such that the gene is DE between ti and the reference time t0, for the
biological condition associated to the column. So each element of the column is
what we called previously, a temporal pattern.

• Results from the statistical analysis by biological condition (case 1 for each fixed time)
• pvalues, log2 fold change and DE genes between each pairs of biological condi-

tions, for each fixed time. (3× Nbc×(Nbc−1)
2 × T = 3× 1× 9 = 27 columns).

• T = 9 binary columns (1 and 0), one per time. A ’1’ in one of these columns,
means that the gene is DE between at least one pair of biological conditions, for
the fixed time associated to the column.

• Nbc × T = 2 × 9 = 18 binary columns, which give the specific genes for each
biological condition at each time ti. A ’1’ in one of these columns means that the
gene is specific to the biological condition at the time associated to the column.
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’0’ otherwise. A gene is called specific to a given biological condition BC1 at a
time ti, if the gene is DE between BC1 and any other biological conditions at
time ti, but not DE between any pair of other biological conditions at time ti.

• Nbc × T = 2 × 9 = 18 columns filled with -1, 0 or 1. A ’1’ in one of these
columns means that the gene is up-regulated (or over-expressed) for the biological
condition at the time associated to the column. A gene is called up-regulated for
a given biological condition BC1 at time ti if the gene is specific to the biological
condition BC1 at time ti and expressions in BC1 at time ti are higher than in
the other biological conditions at time ti. A ’-1’ in one of these columns means
that the gene is down-regulated (or under-expressed) for the biological condition
at the time associated to the column. A gene is called down-regulated for a
given biological condition at a time ti BC1 if the gene is specific to the biological
condition BC1 at time ti and expressions in BC1 at time ti are lower than in the
other biological conditions at time ti. A ’0’ in one of these columns means that
the gene is not specific to the biological condition at the time associated to the
column.

• Nbc = 2 binary columns (1 and 0). A ’1’ in one of these columns means the gene
is specific at least at one time ti, for the biological condition associated to the
column. ’0’ otherwise.

• Results from the combination of temporal and biological statistical analysis

• Nbc × T = 2 × 9 = 18 binary columns, which give the signature genes for each
biological condition at each time ti. A ’1’ in one of these columns means that the
gene is a signature gene to the biological condition at the time associated to the
column. ’0’ otherwise. A gene is called signature of a biological condition BC1 at
a given time ti, if the gene is specific to the biological condition BC1 at time ti
and DE between ti versus the reference time t0 for the biological condition BC1.

• Nbc = 2 binary columns (1 and 0). A ’1’ in one of these columns means the gene
is signature at least at one time ti, for the biological condition associated to the
column. ’0’ otherwise.

3.3.1.2 Graphs from the results of the temporal statistical analysis

From the temporal statistical analysis, the user can plot the following graphs.
Nbc = 2 alluvial graphs, one per biological condition (with Nbc the number of biological
conditions). The code below prints the alluvial graph for the biological condition P.
print(resDELeuk500$DEplots_TimePerGroup$Alluvial.graph.Group_P)
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Alluvial graph of genes which are DE at least at one time,
for the biological condition P

Description The x-axis of the graph is labeled with all times except t0. For each vertical
barplot, there are two strata: 1 and 0 whose sizes indicate respectively the number of
DE genes and of non DE genes, between the time corresponding to the barplot and the
reference time t0. The alluvial graph is composed of curves, each corresponding to a
single gene, which are gathered in alluvia. An alluvium is composed of all genes having
the same curve: for example, an alluvium going from the stratum 0 at time t1 to the
stratum 1 at time t2 corresponds to the set of genes which are not DE at t1 and are
DE at time t2. Each alluvium connects pairs of consecutive barplots and its thickness
gives the number of genes in the alluvium. The color of each alluvium indicates the
temporal group, defined as the set of genes which are all first DE at the same time
with respect to the reference time t0.

Interpretation of the results The alluvial graph can be used to determine the number of
DE genes at least at one time for a given biological condition, since this is the size
of each barplot. Using these graphs alone (one for each biological condition), we can
compare the number of DE genes at least one time for all biological conditions. This
graph also provides information on all temporal patterns and also the number of genes
present in each of these patterns. According to the graph, the two most important DE
temporal patterns for biological condition P are: "00111111" and "00000011". This
allows us to deduce that times t3 and t7 are very important. This can also be visualized
by the size of each alluvium at time t1 which gives the number of genes in each time
group.

Nbc = 2 graphs showing the number of DE genes as a function of time for each temporal
group, one per biological condition. By temporal group, we mean the sets of genes which are
first DE at the same time. The code below prints the graph for the biological condition P.
print(resDELeuk500$DEplots_TimePerGroup$NumberDEgenes.acrossTime.perTemporalGroup.Group_P)
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Time evolution of the number of genes which are DE at least at one time within each temporal group,
for  the biological condition  P

Description The graphs plot the time evolution of the number of DE genes within each
temporal group, one per biological condition. The x-axis labels indicate all times except
t0.

Interpretation of the results This graph confirms the importance of time groups t3 and t7.
Genes belonging to time groups t1 and t2 seem to correspond to genes upstream of the
activation cascade after stimulation of the cell membrane, and have a direct impact on
hub genes which activate numerous biological pathways. This would explain the very
large number of genes belonging to the time group t3. Time t7 corresponds to genes
downstream of the activation cascade, and is probably largely made up of genes with
a direct or indirect role in cell proliferation. This can be checked using our GO tools
(see Section 3.4).

One barplot showing the number of DE genes up-regulated and down-regulated per time,
for each biological condition. The graph shows the number of DE genes per time, for each
biological condition. The x-axis labels indicate all times except t0. The code below prints
the barplot.
print(resDELeuk500$DEplots_TimePerGroup$NumberDEgenes_UpDownRegulated_perTimeperGroup)
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Description For each DE gene, we compute the sign of the log2 fold change between time
ti and time t0. If the sign is positive (resp. negative), the gene is categorized as
up-regulated (resp. down-regulated). In the graph, the up-regulated (resp. down-
regulated) genes are indicated in orange (resp. in light blue).

Interpretation of the results This graph shows that the number of DE genes is greater in
biological condition P at all times, especially at times t1, t3 and t7. This means that
in many biological pathways, there are far more genes activated or inhibited in the
biological condition P, and these are the genes that interest biologists.

2×Nbc = 4 upset graphs, realized with the R package UpSetR [33], showing the number of
DE genes belonging to each DE temporal pattern, for each biological condition. By temporal
pattern, we mean the set of times ti such that the gene is DE between ti and the reference
time t0.
print(resDELeuk500$DEplots_TimePerGroup$VennBarplot.withNumberUpRegulated.Group_P)
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Description The graphs plot the number of genes in each DE temporal pattern in a Venn
barplot, one per biological condition. By DE temporal pattern, we mean a subset of
times in t1, . . . , tn. We say that a gene belongs to a DE temporal pattern if the gene is
DE versus t0 only at the times in this DE temporal patterns. For each gene in a given
DE temporal pattern, we compute the number of DE times where it is up-regulated
and we use a color code in the Venn barplot to indicate the number of genes in a
temporal pattern that are up-regulated a given number of times (dark blue if it is
always down-regulated, lighter blue if it is up-regulated only once, etc). For example,

• the size of the dark blue barplot of the first barplot ("ti.vs.t0_0up") gives the
number of genes which are DE between t3 versus t0, t4 versus t0, ..., t7 versus t0
and t8 versus t0 and always down-regulated at each of this six times compared to
t0

• the size of the light blue barplot of the first ninth ("ti.vs.t0_2up") gives the
number of genes which are DE between t6 versus t0, t7 versus t0 and t8 versus t0
and up-regulated at only two times among t6, t7 and t8 compared to t0.

The same graph is also given without colors with the R command print(resDELeuk500$DEplots_TimePerGroup$VennBarplot.Group_P).
Interpretation of the results This graph identifies the most important temporal patterns

for each biological condition and shows whether the genes in these temporal patterns are
over- or under-expressed. In our case, the graph confirms that the two most important
temporal patterns for biological condition P are: "00111111" and "00000011". More-
over, whatever the temporal pattern, almost all genes are either always over-expressed
compared to t0 or always under-expressed compared to t0.

One alluvial graph, for DE genes which are DE at least at one time for each biological
condition
print(resDELeuk500$DEplots_TimePerGroup$AlluvialGraph_DE.1tmin_perGroup)
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Attribute

Specific

Common

Alluvial graph of genes which are DE at least at one time for each biological condition

Description The alluvial graph is quite simple here because there are only 2 biological con-
ditions. It shows common and no common genes between which are DE at least at one
time for the two biological conditions.
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Interpretation of the results This graph shows that majority of DE genes are common
between both biological condition.

3.3.1.3 Graphs from the results of the biological condition analysis

From the statistical analysis by biological condition, the function plots the following graphs.
One barplot showing the number of specific genes per biological condition, for each time.
print(resDELeuk500$DEplots_GroupPerTime$NumberSpecificGenes_UpDownRegulated_perBiologicalCondition)
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Attribute

DownRegulated

UpRegulated

Description A gene is called specific to a given biological condition BC1 at a time ti, if the
gene is DE between BC1 and any other biological conditions at time ti, but not DE
between any pair of other biological conditions at time ti. If the levels expression of
a specific genes of the biological condition BC1 ii higher (resp. lower) in BC1 than
the other biological conditions then the gene is categorized as specific up-regulated
(resp. down-regulated). In the graph, the up-regulated (resp. down-regulated) genes
are indicated in red (resp. in blue). As there are only two biological conditions here,
the number of DE genes is equal to the number of specific genes and the number of
specific up-regulated (resp. down-regulated) genes in condition P at any time ti is
equal to the number of specific down-regulated (resp. up-regulated) genes in condition
NP at the same time ti.

Interpretation of the results We can see that the times when the number of specific DE
genes is highest are t3, t4 and t7. This means that it is at these times that real differ-
ences appear between P and NP cells. What’s also interesting is the high proportion of
over-expressed genes in the P biological condition at most measurement times, imply-
ing that cell proliferation is more impacted by "stimulatory" biological pathways than
by "inhibitory" ones.

alluvial graph showing the number of DE genes which are specific at least at one time for
each group, plotted only if there are more than two biological conditions (which is not the
case here).
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(
Nbc

2

)
=

(
4
2

)
= 6 upset graph showing the number of genes corresponding to each possible

intersection in a Venn barplot at a given time, plotted only if there are more than two
biological conditions (which is not the case here). We recall that a set of pairs of biological
conditions forms an intersection at a given time ti when there is at least one gene which is
DE for each of these pairs of biological conditions at time ti, but not for the others at time
ti

3.3.1.4 Graphs from the results of the combination of temporal and biological sta-
tistical analysis

From the combination of temporal and biological statistical analysis, the function plots the
following graphs.
One barplot showing the number of signature genes and DE genes (but not signature) per
time, for each biological condition.
print(resDELeuk500$DEplots_TimeAndGroup$Number_DEgenes_SignatureGenes_UpDownRegulated_perTimeperGroup)
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Attribute

DownRegulated

SignatureDownRegulated

SignatureUpRegulated

UpRegulated

Description A gene is called signature of a biological condition BC1 at a given time ti, if
the gene is specific to the biological condition BC1 at time ti and DE between ti versus
the reference time t0 for the biological condition BC1. For each DE gene, we compute
the sign of the log2 fold change between time ti and time t0.

• If the sign is positive (resp. negative) for the biological condition P (resp. NP)
and the gene is specific to P (resp. NP) then the gene is categorized as signature
up-regulated (resp. down-regulated) to the biological condition P (resp. NP).
In the graph, the up-regulated (resp. down-regulated) genes are indicated in red
(resp. in blue).

• If the sign is positive (resp. negative) for the biological condition P (resp. NP)
and the gene is not specific to P (resp. NP) then the gene is categorized as
up-regulated (resp. down-regulated) to the biological condition P (resp. NP). In
the graph, the up-regulated (resp. down-regulated) genes are indicated in orange
(resp. in light blue).

45



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

Interpretation of the results The times when the number of DE genes (here it is the same
as specific) is highest are t3, t4 and t7. This means that it is at these times that
real differences appear between P and NP cells. What’s also interesting is the high
proportion of over-expressed genes in the P biological condition at most measurement
times, implying that cell proliferation is more impacted by "stimulatory" biological
pathways than by "inhibitory" ones.

One barplot showing the number of genes which are DE at least at one time, specific at least
at one time and signature at least at one time, for each biological condition.
print(resDELeuk500$DEplots_TimeAndGroup$Number_DEgenes1TimeMinimum_Specific1TimeMinimum_Signature1TimeMinimum_perBiologicalCondition)
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Interpretation of the results The barplot summarizes well the combination of temporal and
biological analysis because the figure gives for each biological condition the number of
genes which are DE at least at one time, the number of specific genes at least at one
time and the number of signature genes at least at one time.

One alluvial graph for DE genes which are signature at least at one time for each biological
condition, only if there are more than two biological conditions (which is not the case here).
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3.3.2 Volcano plots, ratio intensity (MA) plots and Heatmaps with DEplotVol-
canoMA() and DEplotHeatmaps()

3.3.2.1 Volcano and MA plots (case 3)

The following lines of code allow to plot

•
(
Nbc

2

)
×T +(T −1)×Nbc =

Nbc(Nbc−1)
2 ×T +(T −1)×Nbc = 25 volcano plots (with

Nbc = 2 the number of biological conditions and T = 9 the number of time points).

•
(
Nbc

2

)
× T + (T − 1)×Nbc = 25 MA plots.

allowing to separate non DE genes, DE genes below a threshold of log2 fold change and DE
genes above a threshold of log2 fold change.
SEresVolcanoMAleuk <- DEplotVolcanoMA(SEresDE=SEresDELeuk500,

NbGene.plotted=2,

SizeLabel=3,

Display.plots=FALSE,

Save.plots=FALSE)

If the user wants to save the graphs, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• either a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
If the user wants to display the graph, he must set Display.plots=TRUE.
If the user wants to see the results of the DEplotVolcanoMA, he must first execute the
following lines of code.
## Save 'Results' of the metadata in an object

resleuk500 <- S4Vectors::metadata(SEresVolcanoMAleuk)$Results

## Save the results of DEplotVolcanoMA in an object

resVolMAleuk500 <- resleuk500[[2]][[3]]

###

names(S4Vectors::metadata(SEresVolcanoMAleuk))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(resleuk500, max.level=2, give.attr=FALSE)

## List of 2

## $ UnsupervisedAnalysis:List of 5

## ..$ Normalization :List of 2

## ..$ PCA :List of 4

## ..$ HCPC :List of 6

## ..$ Mfuzz :List of 5

## ..$ GenesExpression:List of 2
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## $ SupervisedAnalysis :List of 5

## ..$ Normalization :List of 2

## ..$ DEanalysis :List of 4

## ..$ VolcanoMAplots:List of 3

## ..$ Heatmaps : NULL

## ..$ Rgprofiler2 : NULL

names(resVolMAleuk500)

## [1] "highest2DEgenes" "Volcano" "MAplots"

resVolMAleuk500$Volcano and resVolMAleuk500$MAplots contain the volcano and MA plots
• between each time ti versus the reference time t0 for each biological condition,
• between each pair of biological condition for each time point,

as can be seen with the following line of code
str(resVolMAleuk500$Volcano, max.level=1, give.attr=FALSE)

## List of 11

## $ NP:List of 8

## $ P :List of 8

## $ t0:List of 1

## $ t1:List of 1

## $ t2:List of 1

## $ t3:List of 1

## $ t4:List of 1

## $ t5:List of 1

## $ t6:List of 1

## $ t7:List of 1

## $ t8:List of 1

and resVolMAleuk500$highest2DEgenes contains the NbGene.plotted most important genes
for each volcano and MA plot. If we call PVg and FCg respectively the p-value and log fold
change of a gene g for a given volcano plot, then the most important genes for each volcano
and MA plot are those which maximize PV 2

g + FC2
g .

The following lines plot the volcano plot for the biological condition P between t2 and t0

print(resVolMAleuk500$Volcano$P$P_t2_vs_t0)
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and the following lines plot the MA plot for the biological condition P between t2 and t0.
print(resVolMAleuk500$MA$P$P_t2_vs_t0)
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Interpretation of the results of volcano plot The most over-expressed (resp. under-expressed)
genes are to the right (resp. left) of the volcano plot, and the most significant (resp.
least significant) genes are at the top (resp. bottom) of the volcano plot. The volcano
plot thus enables rapid visual identification of the "best" DE genes, which should have
the lowest possible pvalue and the highest possible absolute log2 fold change.

Interpretation of the results of MA plot Highly expressed genes are to the right of the
graph, and genes at the top (resp. bottom) of the graph are the most over-expressed
(resp. under-expressed). The "interesting" genes are therefore at the top right and
bottom right.

Write ?DEplotVolcanoMA in your console for more information about the function.
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3.3.2.2 Heatmaps (case 3)

The following lines of code allow to plot a correlation heatmap between samples (correlation
heatmap) and a heatmap across samples and genes called Zscore heatmap, for a subset of
genes that can be selected by the user. The second heatmap is build from the normalized
count data after being both centered and scaled (Zscore).
The input SEresDE can be either

• SEresDE=SEresDELeuk500, and the results of DEplotHeatmaps() will be added in the
SE object which contains the results of DEanalysisGlobal()

• or SEresDE=SEresVolcanoMAleuk and the results of DEplotHeatmaps() will be added
in the SE object which contains the results of DEanalysisGlobal() and DEplotVol

canoMA().
SEresHeatmapLeuk <- DEplotHeatmaps(SEresDE=SEresVolcanoMAleuk,

ColumnsCriteria=c(18, 19),

Set.Operation="union",

NbGene.analysis=20,

SizeLabelRows=5,

SizeLabelCols=5,

Display.plots=FALSE,

Save.plots=FALSE)

For the Zscore heatmap, The subset of genes is selected as followss
1. the user selects one or more binary column of the data.frame DEsummaryLeuk (see

Section 3.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryLeuk to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that the sum of the selected columns of DEsummaryLeuk
given in ColumnsCriteria is >0. This means that the selected genes are those
having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that the product of the selected columns of DEsumma

ryLeuk given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that only one element of the selected columns of DEsum
maryLeuk given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If the user wants to save the graphs, the input Save.plots must be
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• either Save.plots=TRUE, and the graph will be saved in the same location than the
input path.result of the function DEanalysisGlobal().

• or a strings of characters giving the path to a folder where the graphs will be saved.
The user then chooses the path of the folder where results can be saved.

If the user wants to display the graph, he must set Display.plots=TRUE.
If the user wants to see the results of the DEplotHeatmaps, he must first execute the
following lines of code.
## Save 'Results' of the metadata in an object

resleuk500 <- S4Vectors::metadata(SEresHeatmapLeuk)$Results

## Save the results of DEplotHeatmaps in an object

resHeatmapLeuk <- resleuk500[[2]][[4]]

###

names(S4Vectors::metadata(SEresHeatmapLeuk))

## [1] "RAWcolnames" "colGene" "colDataINFO"

## [4] "RNAfiltering" "DESeq2obj" "Results"

## [7] "SEidentification"

str(resleuk500, max.level=2, give.attr=FALSE)

## List of 2

## $ UnsupervisedAnalysis:List of 5

## ..$ Normalization :List of 2

## ..$ PCA :List of 4

## ..$ HCPC :List of 6

## ..$ Mfuzz :List of 5

## ..$ GenesExpression:List of 2

## $ SupervisedAnalysis :List of 5

## ..$ Normalization :List of 2

## ..$ DEanalysis :List of 4

## ..$ VolcanoMAplots:List of 3

## ..$ Heatmaps :List of 4

## ..$ Rgprofiler2 : NULL

names(resHeatmapLeuk)

## [1] "Zscores" "CorrelationMatrix" "Heatmap_Zscore"

## [4] "Heatmap_Correlation"

• resHeatmapLeuk$CorrelationMatrix contains the correlation matrix between samples
• resHeatmapLeuk$Zscores contains the matrix of scaled rle normalized data of the

NbGene.analysis selected genes.
• resHeatmapLeuk$Heatmap_Correlation contains the heatmap associated to the matrix

resHeatmapLeuk$CorrelationMatrix (correlation heatmap).
• resHeatmapLeuk$Heatmap_Zscore contains the heatmap associated to the matrix

resHeatmapLeuk$CorrelationMatrix (Zscore heatmap).
The following lines of code plot the correlation heatmap and the Zscore heatmap

51



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

print(resHeatmapLeuk$Heatmap_Correlation)
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print(resHeatmapLeuk$Heatmap_Zscore)
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Write ?DEplotHeatmaps in your console for more information about the function.

3.4 Gene Ontology (GO) analysis with GSEAQuickAnalysis() and
GSEApreprocessing()

3.4.1 Gene ontology with the R package gprofiler2

The lines of code below realize an enrichment analysis with the R package gprofiler2 for a
selection of genes. Beware, an internet connection is needed. The function returns
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• a data.frame (output metadata(SEresgprofiler2Leuk)$Rgprofiler2$GSEAresults) giv-
ing information about all detected gene ontologies for the list of associated genes.

• a lollipop graph (see section Gene ontology and gene enrichment). The y-axis indicates
the MaxNumberGO most significant gene ontologies and pathways associated to the se-
lected genes. The gene ontologies and patways are sorted into descending order. The
x-axis indicates the −log10(pvalues). The higher is a lollipop the more significant is
a gene ontology or pathway. A lollipop is yellow if the pvalues is smaller than 0.05
(significant) and blue otherwise.

• A Manhattan plot (see section Gene ontology and gene enrichment) indicating all genes
ontologies ordered according to the functional database (G0::BP, G0::CC, G0::MF and
KEGG)

The input SEresDE can be either
• SEresDE=SEresDELeuk500, and the results of GSEAQuickAnalysis() will be added in the

SE object which contains the results of DEanalysisGlobal()
• either SEresDE=SEresVolcanoMAleuk and the results of GSEAQuickAnalysis() will be

added in the SE object which contains the results of DEanalysisGlobal() and DE

plotVolcanoMA().
• or SEresDE=SEresHeatmapLeuk and the results of GSEAQuickAnalysis() will be added in

the SE object which contains the results of DEanalysisGlobal(), DEplotVolcanoMA()
and DEplotHeatmaps().

SEresgprofiler2Leuk <- GSEAQuickAnalysis(Internet.Connection=FALSE,

SEresDE=SEresHeatmapLeuk,

ColumnsCriteria=c(18),

ColumnsLog2ordered=NULL,

Set.Operation="union",

Organism="hsapiens",

MaxNumberGO=20,

Background=FALSE,

Display.plots=FALSE,

Save.plots=FALSE)

##

## head(SEresgprofiler2Leuk$GSEAresults)

As GSEAQuickAnalysis() requires an internet connection, we needed to add the input
Internet.Connection in order to be sure to pass the tests realized on our package by Bio-
conductor. The input Internet.Connection is set by default to FALSE and as long as Inter

net.Connection=FALSE, no enrichment analysis will be done. Once the user is sure to have
an internet connection, the user may set Internet.Connection=TRUE in order to realize the
enrichment analysis.
The subset of genes is selected as follows

1. the user selects one or more binary column of the data.frame DEsummaryLeuk (see
Section 3.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryLeuk to be selected.

2. Three cases are possible:
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• If Set.Operation="union" then the rows extracted from the different datasets
(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that the sum of the selected columns of DEsummaryLeuk
given in ColumnsCriteria is >0. This means that the selected genes are those
having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that the product of the selected columns of DEsumma

ryLeuk given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that only one element of the selected columns of DEsum
maryLeuk given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If ColumnsLog2ordered is a vector of integers, the enrichment analysis will take into account
the genes order as the first genes will be considered to have the highest biological importance
and the last genes the lowest. It corresponds to the columns number of DEsummaryLeuk (the
output of DEanalysisGlobal()) which must contains log2 fold change values. The rows of
DEsummaryLeuk (corresponding to genes) will be decreasingly ordered according to the sum
of absolute log2 fold change (the selected columns must contain log2 fold change values)
before the enrichment analysis. If ColumnsLog2ordered=NULL, then the enrichment analysis
will not take into account the genes order.
If the user wants to save the graphs, the input Save.plots must be

• either Save.plots=TRUE, and the graph will be saved in the same location than the
input path.result of the function DEanalysisGlobal().

• or a strings of characters giving the path to a folder where the graphs will be saved.
The user then chooses the path of the folder where results can be saved.

SEresgprofiler2Leuk contains the results of enrichment analysis where selected genes are
those DE at time t7 for the biological condition P.
To retrieve the results, the user must first execute
resgprofiler2Leuk <- S4Vectors::metadata(SEresgprofiler2Leuk)$Results[[2]][[5]]

• resgprofiler2Leuk$GSEAresults contains a matrix which gives the results of the GSEA
analysis: GO terms, GO names, p-value, GOparents, genes associated to each GO ...

• resgprofiler2Leuk$selectedGenes contains the list of selected genes
• resgprofiler2Leuk$lollipopChart contains the lollipop graph of the GSEA analysis

(see Figure 2)
• resgprofiler2Leuk$manhattanPlot contains the Manhattan graph of the GSEA anal-

ysis (see Figure 3).
As expected in Section 3.3.1.2, DE genes at time t7 for the biological condition P are linked
to the cellular proliferation.
Write ?GSEAQuickAnalysis in your console for more information about the function.
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3.4.2 Preprocessing for GSEA, DAVID, WebGestalt, gProfiler, Panther, ShinyGO,
Enrichr and GOrilla

The following lines of code will generate all files, for a selection of genes, in order to use
the following software and online tools : GSEA, DAVID, WebGestalt, gProfiler, Panther,
ShinyGO, Enrichr and GOrilla.
SEresPreprocessingLeuk <- GSEApreprocessing(SEresDE=SEresDELeuk500,

ColumnsCriteria=c(18, 19),

Set.Operation="union",

Rnk.files=FALSE,

Save.files=FALSE)

The subset of genes is selected as follows
1. the user selects one or more binary column of the data.frame DEsummaryLeuk (see

Section 3.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryLeuk to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that the sum of the selected columns of DEsummaryLeuk
given in ColumnsCriteria is >0. This means that the selected genes are those
having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that the product of the selected columns of DEsumma

ryLeuk given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts, normalized data and DEsummaryLeuk) included in the SE object SEres
DELeuk500 are those such that only one element of the selected columns of DEsum
maryLeuk given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If the user wants to save the files, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• either a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
Write ?GSEApreprocessing in your console for more information about the function.
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4 Quick description of the analysis of a dataset with
several biological conditions (case 1)
In this section we use the mouse subdataset RawCounts_Antoszewski2022_MOUSEsub500
(see the subsection 1.6.1) in order to explain the use of our package in Case 1 (several bio-
logical conditions and a single time).
Most of the outputs in Case 1 are of a similar form as those shown in Case 3 (Section 3),
except for some outputs whose list is precisely given below

• Subsection 4.2.3 page 61
• Subsection 4.3.1.2 page 63.

Furthermore, as there is only one time point, no Mfuzz analysis is realized.

4.1 Preprocessing step with DATAprepSE()
The preprocessing step is mandatory and is realized by our R function DATAprepSE() to
store all information about the dataset in a standardized way (SummarizedExperiment class
object, see Section 2.5). It can be done using the following lines of code.
SEresPrepMus1 <- DATAprepSE(RawCounts=RawCounts_Antoszewski2022_MOUSEsub500,

Column.gene=1,

Group.position=1,

Time.position=NULL,

Individual.position=2)

The function returns
• A SummarizedExperiment class object containing all information of the dataset to be

used for exploratory data analysis
• A DESeqDataSet class object to be used for statistical analysis of the transcriptional

response.
Write ?DATAprepSE in your console for more information about the function.

4.2 Exploratory data analysis (unsupervised analysis)

4.2.1 Normalization with DATAnormalization()

The following lines of code realize the normalization step from the results of the function
DATAprepSE() (subsection 4.1)
SEresNormMus1 <- DATAnormalization(SEres=SEresPrepMus1,

Normalization="rle",

Blind.rlog.vst=FALSE,

Plot.Boxplot=TRUE,

Colored.By.Factors=TRUE,

Color.Group=NULL,

path.result=NULL)
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If Plot.Boxplot=TRUE a boxplot showing the distribution of the normalized expression (Nor
malization="rle" means that the rle method is used) of genes for each sample is returned.
If Colored.By.Factors=TRUE, the color of the boxplots will be different for different biological
conditions. By default (if Color.Group=NULL), a color will be automatically assigned for each
biological condition. Colors can be changed by creating the following data.frame
colMus1 <- data.frame(Name=c("N1wtT1wt", "N1haT1wt", "N1haT1ko", "N1wtT1ko"),

Col=c("black", "red", "green", "blue"))

and setting Color.Group=colMus1.
The x-labels give biological information and individual information separated by dots. If the
user wants to see the 6th first rows of the normalized data, he can write in his console
head(res.Norm.Mus500$NormalizedData, n=6).
The user can save the graph in a folder thanks to the input path.result. If path.result=NULL
the results will still be plotted but not saved in a folder.
Write ?DATAnormalization in your console for more information about the function.

4.2.2 Factorial analysis: PCA with PCAanalysis() and clustering with HCPC-
analysis()

4.2.2.1 PCA (case 1)

When samples belong only to different biological conditions, the lines of code below return
from the results of the function DATAnormalization()

• the results of the R function PCA() from the package FactoMineR.
• one 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window

(only if motion3D=FALSE) where samples are colored with different colors for different
biological conditions.
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SEresPCAMus1 <- PCAanalysis(SEresNorm=SEresNormMus1,

sample.deletion=NULL,

gene.deletion=NULL,

Plot.PCA=TRUE,

Mean.Accross.Time=FALSE,

Color.Group=NULL,

Cex.label=0.8,

Cex.point=0.7, epsilon=0.2,

Phi=25,Theta=140,

motion3D=FALSE,

path.result=NULL)
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The graphs are
• stored in an SE object
• displayed if Plot.PCA=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
By default (if Color.Group=NULL), a color will be automatically assigned to each biological
condition. The user can change the colors by creating the following data.frame
colMus1 <- data.frame(Name=c("N1wtT1wt", "N1haT1wt", "N1haT1ko", "N1wtT1ko"),

Col=c("black", "red", "green", "blue"))

colMus1

## Name Col

## 1 N1wtT1wt black

## 2 N1haT1wt red

## 3 N1haT1ko green

## 4 N1wtT1ko blue

and setting Color.Group=colMus1.
If the user wants to delete, for instance, the genes ’ENSMUSG00000064842’ and ’ENS-
MUSG00000051951’ (respectively the second and forth gene) and/or delete the samples
’N1wtT1wt_r2’ and ’N1haT1wt_r5’, he can set

• gene.deletion=c("ENSMUSG00000064842","ENSMUSG00000051951") and/or
sample.deletion=c("N1wtT1wt_r2","N1haT1wt_r5")

• gene.deletion=c(2,4) and/or sample.deletion=c(3,6).
The integers in gene.deletion and sample.deletion represent respectively the row
numbers and the column numbers of RawCounts where the selected genes and samples
are located.

Write ?PCAanalysis in your console for more information about the function.
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4.2.2.2 HCPC (case 1)

The user can realize the clustering with HCPC using the function HCPCanalysis() as below.
The following lines of code return from the results of the function DATAnormalization()

• The results of the R function HCPC() from the package FactoMineR.
• A dendrogram
• A graph indicating for each sample, its cluster and the biological condition associated

to the sample, using a color code
• One 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window

(only if motion3D=FALSE). These PCA graphs are identical to the outputs of PCA-
analysis() but samples are colored with different colors for different clusters.

SEresHCPCMus1 <- HCPCanalysis(SEresNorm=SEresNormMus1,

gene.deletion=NULL,

sample.deletion=NULL,

Plot.HCPC=FALSE,

Cex.label=0.8, Cex.point=0.7, epsilon=0.2,

Phi=25, Theta=140,

motion3D=FALSE,

path.result=NULL)

The graphs are
• stored in an SE object
• displayed if Plot.HCPC=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Write ?HCPCanalysis in your console for more information about the function.
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4.2.3 Genes expression profile with DATAplotExpressionGenes()

The lines of code below allow to plot, from the results of the function DATAnormalization(),
the expression profile of the 10th gene showing for each biological condition: a box plot and
error bars (standard deviation). Each box plot, violin plot and error bars is associated to the
distribution of the expression of the 10th genes in all samples belonging to the corresponding
biological condition.
resEVOmus1500 <- DATAplotExpressionGenes(SEresNorm=SEresNormMus1,

Vector.row.gene=c(10),

Color.Group=NULL,

Plot.Expression=TRUE,

path.result=NULL)
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If the user wants to select several genes , for instance the 28th, the 38th, the 39th and the
50th, he needs to set Vector.row.gene=c(28,38:39,50).
The graphs are

• stored in an SE object
• displayed if Plot.Expression=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
By default (if Color.Group=NULL), a color will be automatically assigned to each biological
condition. The user can change the colors by creating the following data.frame
colMus1 <- data.frame(Name=c("N1wtT1wt", "N1haT1wt", "N1haT1ko", "N1wtT1ko"),

Col=c("black", "red", "green", "blue"))

and setting Color.Group=colMus1.
Write ?DATAplotExpressionGenes in your console for more information about the function.
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4.3 Statistical analysis of the transcriptional response (supervised
analysis)

4.3.1 DE analysis with DEanalysisGlobal()

The function below
• returns a data.frame. See subection Data.frame summarising all the DE analysis (case

1).
• plots the following graphs

• an upset graph, realized with the R package UpSetR [33], which corresponds to a
Venn diagram barplot. If there are only two biological conditions, the graph will
not be plotted. See subsection Description of graphs

• a barplot showing the number of specific genes per biological condition. See
subection Description of graphs.

Due to time consuming of the DE analysis, we stored in the object Results_DEanalysis_sub500
(uncommented lines) a list of three objects

• Results_DEanalysis_sub500$DE_Schleiss2021_CLLsub500, stored the results of DEanal
ysisGlobal() with RawCounts_Schleiss2021_CLLsub500.

• Results_DEanalysis_sub500$DE_Antoszewski2022_MOUSEsub500, stored the results of
DEanalysisGlobal() with RawCounts_Antoszewski2022_MOUSEsub500.

• Results_DEanalysis_sub500$DE_Leong2014_FISSIONsub500wt, stored the results of DE
analysisGlobal() with RawCounts_Leong2014_FISSIONsub500wt.

SEresDEMus1 <- DEanalysisGlobal(SEres=SEresPrepMus1,

pval.min=0.05,

pval.vect.t=NULL,

log.FC.min=1,

LRT.supp.info=FALSE,

Plot.DE.graph=FALSE,

path.result=NULL,

Name.folder.DE=NULL)

## [1] "Preprocessing"

## [1] "Differential expression step with DESeq2::DESeq()"

## [1] "Case 1 analysis : Biological conditions only"

## data("Results_DEanalysis_sub500")

## SEresDEMus1 <- Results_DEanalysis_sub500$DE_Antoszewski2022_MOUSEsub500

The graphs are
• stored in an SE object
• displayed if Plot.DE.graph=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Write ?DEanalysisGlobal in your console for more information about the function.
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4.3.1.1 Data.frame summarising all the DE analysis (case 1)

The output data.frame can be extracted with the following line of code,
DEsummaryMus1 <- SummarizedExperiment::rowData(SEresDEMus1)

As we use abbreviated column names, we propose a glossary in order to help the user to
understand meaning of each column. The glossary of the column names can be extracted
with the following lines of code,
resDEMus1 <- S4Vectors::metadata(SEresDEMus1)$Results[[2]][[2]]

resGlossaryMus1 <- resDEMus1$Glossary

and then write DEsummaryMus1 and resGlossaryMus1 in the R console.
The data.frame contains

• gene names (column 1)
• pvalues, log2 fold change and DE genes between each pairs of biological conditions (for

a total of 3× Nbc×(Nbc−1)
2 = 3× 6 = 18 columns).

• a binary column (1 and 0) where 1 means that the gene is DE between at least one
pair of biological conditions.

• Nbc = 4 binary columns (with Nbc the number of biological conditions), which give the
specific genes for each biological condition. A ’1’ in one of these columns means that
the gene is specific to the biological condition associated to the column. 0 otherwise. A
gene is called specific to a given biological condition BC1, if the gene is DE between BC1
and any other biological conditions, but not DE between any pair of other biological
conditions.

• Nbc = 4 columns filled with -1, 0 and 1, one per biological condition. A ’1’ in one of
these columns means that the gene is up-regulated (or over-expressed) for the biological
condition associated to the column. A gene is called up-regulated for a given biological
condition BC1 if the gene is specific to the biological condition BC1 and expressions in
BC1 are higher than in the other biological conditions. A ’-1’ in one of these columns
means the gene is down-regulated (or under-expressed) for the biological condition as-
sociated to the column. A gene is called down-regulated for a given biological condition
BC1 if the gene is specific to the biological condition BC1 and expressions in BC1 are
lower than in the other biological conditions. A ’0’ in one of these columns means that
the gene is not specific to the biological condition associated to the column.

4.3.1.2 Description of graphs

The user can plot three graphs.
One upset graph. The graph plots the number of genes corresponding to each possible
intersection in a Venn barplot. We say that

• a set of pairs of biological conditions forms an intersection when there is at least one
gene which is DE for each of these pairs of biological conditions, but not for the others.

• a gene corresponds to a given intersection if this genes is DE for each pair of biological
conditions in the intersection, but not for the others.
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The following line of code plots the Venn barplot
print(resDEMus1$VennBarplot)
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The second column of Venn barplot the gives the number of genes corresponding to the
intersection{

{N1wtT1wt, N1haT1wt}, {N1wtT1wt, N1haT1ko}, {N1wtT1wt, N1wtT1ko}
}

.

In other words, this is the number of genes DE between
• N1wtT1wt versus N1haT1wt
• N1wtT1wt versus N1haT1ko
• N1wtT1wt versus N1wtT1ko

and not DE between any other pairs of biological conditions. Note that this columns actually
gives the number of specific genes to the biological condition N1wtT1wt.
One barplot. The graph plots for each biological condition BC1

• The number of up- and down-regulated genes which are specific to the biological con-
dition BC1.

• The number of genes categorized as “Other.” A gene belongs to the “Other” category
if it is DE between BC1 and at least one other biological condition and not specific.

The following line of code plots the barplot
print(resDEMus1$NumberDEgenes_SpecificAndNoSpecific)
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One barplot. The second barplot is the same graph without the “Other” category will be
plotted too. If there are only two biological condition, only the second barplot will be plotted.
The following line of code plots the second barplot
print(resDEMus1$NumberDEgenes_SpecificGenes)
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4.3.2 Volcano plots, ratio intensity (MA) plots and Heatmaps with DEplotVol-
canoMA() and DEplotHeatmaps()

4.3.2.1 Volcano and MA plots (case 1)

The following lines of code allow to plot

•
(
Nbc

2

)
= Nbc(Nbc−1)

2 = 6 volcano plots (with Nbc = 4 the number of biological
conditions).

• Nbc(Nbc−1)
2 = 6 MA plots.

allowing to separate non DE genes, DE genes below a threshold of log2 fold change and DE
genes above a threshold of log2 fold change (see Section 3.3.2.1 for more details).
SEresVolcanoMAMus1 <- DEplotVolcanoMA(SEresDE=SEresDEMus1,

NbGene.plotted=2,

SizeLabel=3,

Display.plots=FALSE,

Save.plots=FALSE)

If the user wants to save the graphs, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• or a string of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
If the user wants to display the graph, he must set Display.plots=TRUE.
Write ?DEplotVolcanoMA in your console for more information about the function.

4.3.2.2 Heatmaps (case 1)

The following lines of code allow to plot a correlation heatmap between samples (correlation
heatmap) and a heatmap across samples and genes called Zscore heatmap, for a subset of
genes that can be selected by the user. The second heatmap is build from the normalized
count data after being both centered and scaled (Zscore).
SEresVolcanoMAMus1 <- DEplotHeatmaps(SEresDE=SEresDEMus1,

ColumnsCriteria=2,#c(2,4),

Set.Operation="union",

NbGene.analysis=20,

SizeLabelRows=5,

SizeLabelCols=5,

Display.plots=FALSE,

Save.plots=FALSE)

For the Zscore heatmap, The subset of genes is selected as followss
1. the user selects one or more binary column of the data.frame DEsummaryMus1 (see

Section 4.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryMus1 to be selected.
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2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts and normalized data and DEsummaryMus1) included in the SE object
SEresDEMus1 are those such that the sum of the selected columns of DEsummary

Mus1 given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus1) included in the SE object
SEresDEMus1 are those such that the product of the selected columns of DEsumma
ryMus1 given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus1) included in the SE object
SEresDEMus1 are those such that only one element of the selected columns of
DEsummaryMus1 given in ColumnsCriteria is >0. This means that the selected
genes are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If the user wants to save the graphs, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• or a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
If the user wants to display the graph, he must set Display.plots=TRUE.
Write ?DEplotHeatmaps in your console for more information about the function.
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4.4 Gene Ontology (GO) analysis with GSEAQuickAnalysis() and
GSEApreprocessing()

4.4.1 Gene ontology with the R package gprofiler2

The lines of code below realize an enrichment analysis with the R package gprofiler2 for a
selection of genes. Beware, an internet connection is needed. The function returns

• a data.frame (output metadata(SEresgprofiler2Mus1)$Rgprofiler2$GSEAresults) giv-
ing information about all detected gene ontologies for the list of associated genes.

• a lollipop graph (see section Gene ontology and gene enrichment). The y-axis indicates
the MaxNumberGO most significant gene ontologies and pathways associated to the se-
lected genes. The gene ontologies and patways are sorted into descending order. The
x-axis indicates the −log10(pvalues). The higher is a lollipop the more significant is
a gene ontology or pathway. A lollipop is yellow if the pvalues is smaller than 0.05
(significant) and blue otherwise.

• A Manhattan plot (see section Gene ontology and gene enrichment) indicating all genes
ontologies ordered according to the functional database (G0::BP, G0::CC, G0::MF and
KEGG)

SEresgprofiler2Mus1 <- GSEAQuickAnalysis(Internet.Connection=FALSE,

SEresDE=SEresDEMus1,

ColumnsCriteria=2,

ColumnsLog2ordered=NULL,

Set.Operation="union",

Organism="mmusculus",

MaxNumberGO=10,

Background=FALSE,

Display.plots=FALSE,

Save.plots=FALSE)

##

## head(4Vectors::metadata(SEresgprofiler2Mus1)$Rgprofiler2$GSEAresults)

As GSEAQuickAnalysis() requires an internet connection, we needed to add the input
Internet.Connection in order to be sure to pass the tests realized on our package by Bio-
conductor. The input Internet.Connection is set by default to FALSE and as long as Inter

net.Connection=FALSE, no enrichment analysis will be done. Once the user is sure to have
an internet connection, the user may set Internet.Connection=TRUE in order to realize the
enrichment analysis.
The subset of genes is selected as follows

1. the user selects one or more binary column of the data.frame DEsummaryMus1 (see
Section 4.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryMus1 to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts and normalized data and DEsummaryMus1) included in the SE object
SEresDEMus1 are those such that the sum of the selected columns of DEsummary

Mus1 given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.
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• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus1) included in the SE object
SEresDEMus1 are those such that the product of the selected columns of DEsumma
ryMus1 given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus1) included in the SE object
SEresDEMus1 are those such that only one element of the selected columns of
DEsummaryMus1 given in ColumnsCriteria is >0. This means that the selected
genes are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If ColumnsLog2ordered is a vector of integers, the enrichment analysis will take into account
the genes order as the first genes will be considered to have the highest biological importance
and the last genes the lowest. It corresponds to the columns number of DEsummaryMus1, the
output of DEanalysisGlobal(), which must contains log2 fold change values. The rows of
DEsummaryMus1 (corresponding to genes) will be decreasingly ordered according to the sum
of absolute log2 fold change (the selected columns must contain log2 fold change values)
before the enrichment analysis. If ColumnsLog2ordered=NULL, then the enrichment analysis
will not take into account the genes order.
If the user wants to save the graphs, the input Save.plots must be

• either Save.plots=TRUE, and the graph will be saved in the same location than the
input path.result of the function DEanalysisGlobal().

• or a strings of characters giving the path to a folder where the graphs will be saved.
The user then chooses the path of the folder where results can be saved.

Write ?GSEAQuickAnalysis in your console for more information about the function.
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4.4.2 Preprocessing for GSEA, DAVID, WebGestalt, gProfiler, Panther, ShinyGO,
Enrichr and GOrilla

The following lines of code will generate all files, for a selection of genes, in order to use
the following software and online tools : GSEA, DAVID, WebGestalt, gProfiler, Panther,
ShinyGO, Enrichr and GOrilla.
SEresPreprocessingMus1 <- GSEApreprocessing(SEresDE=SEresDEMus1,

ColumnsCriteria=2,

Set.Operation="union",

Rnk.files=FALSE,

Save.files=FALSE)

The subset of genes is selected as follows
1. the user selects one or more binary column with the input ColumnsCriteria which

corresponds to the column number of rowData(SEresDEMus1)
2. Then the subset of genes will be

• If Set.Operation="union" then the rows extracted from the different datasets
included in SEresDEMus1 are those such that the sum of the selected columns of
SummarizedExperiment::rowData(SEresDEMus1) by ColumnsCriteria is >0.

• If Set.Operation="intersect" then the rows extracted from the different datasets
included in SEresDEMus1 are those such that the product of the selected columns
of SummarizedExperiment::rowData(SEresDEMus1) by ColumnsCriteria is >0.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
included in SEresDEMus1 are those such that only one element of the selected
columns of SummarizedExperiment::rowData(SEresDEMus1) by ColumnsCriteria

is >0.
If the user wants to save the files, the input Save.plots must be

• either Save.plots=TRUE, and the graph will be saved in the same location than the
input path.result of the function DEanalysisGlobal().

• or a strings of characters giving the path to a folder where the graphs will be saved.
The user then chooses the path of the folder where results can be saved.

Write ?GSEApreprocessing in your console for more information about the function.

70



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

5 Quick description of the analysis of a dataset with
several time points (case 2)
In this section we use the fission yeast subdataset RawCounts_Leong2014_FISSIONsub500wt
(see the subsection Example of MultiRNAflow in case 2, several time points: Fission dataset)
in order to explain the use of our package in Case 2 (several times point and a single bio-
logical condiion).
Most of the outputs in Case 2 are of a similar form as those shown in Case 3 (Section 3),
except for the output described in Subsection 5.2.4 page 75 which can be considered as
slightly different.

5.1 Preprocessing step with DATAprepSE()
The preprocessing step is mandatory and is realized by our R function DATAprepSE() to
store all information about the dataset in a standardized way (SummarizedExperiment class
object, see Section 2.5). It can be done using the following lines of code.
SEresPrepFission <- DATAprepSE(RawCounts=RawCounts_Leong2014_FISSIONsub500wt,

Column.gene=1,

Group.position=NULL,

Time.position=2,

Individual.position=3)

The function returns
• A SummarizedExperiment class object containing all information of the dataset to be

used for exploratory data analysis
• A DESeqDataSet class object to be used for statistical analysis of the transcriptional

response.
Write ?DATAprepSE in your console for more information about the function.

5.2 Exploratory data analysis (unsupervised analysis)

5.2.1 Normalization with DATAnormalization()

The following lines of code realize the normalization step from the results of the function
DATAprepSE() (subsection 5.1).
SEresNormYeast <- DATAnormalization(SEres=SEresPrepFission,

Normalization="rlog",

Blind.rlog.vst=FALSE,

Plot.Boxplot=FALSE,

Colored.By.Factors=TRUE,

Color.Group=NULL,

Plot.genes=FALSE,

path.result=NULL)

If Plot.Boxplot=TRUE a boxplot showing the distribution of the normalized expression
(Normalization="rlog" means that the rlog method is used) of genes for each sample is
returned.
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If Colored.By.Factors=TRUE, the color of the boxplots would be different for different time
points. In case 2, the option Color.Group is not used. The x-labels indicate time information
and individual information separated by a dot.
If the user wants to see the 10 first rows of the normalized data, he can write in his console
head(SEresNormYeast$NormalizedData, n=10).
The user chooses the path of the folder where the graph can be saved. If path.result=NULL,
results are plotted but not saved.
Write ?DATAnormalization in your console for more information about the function.

5.2.2 Factorial analysis: PCA with PCAanalysis() and clustering with HCPC-
analysis()

5.2.2.1 PCA (case 2)

When samples belong only to different times of measure, the lines of code below return from
the results of the function DATAnormalization()

• the results of the function PCA()

• one 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window
(only if motion3D=FALSE) where samples are colored with different colors for different
time points. Furthermore, lines are drawn in gray between each pair of consecutive
points for each individual (if Mean.Accross.Time=FALSE, otherwise lines will be drawn
only between mean values of all individuals for each time point).

• the same graphs as above but without lines (not shown).
SEresPCAyeast <- PCAanalysis(SEresNorm=SEresNormYeast,

gene.deletion=NULL,

sample.deletion=NULL,

Plot.PCA=FALSE,

Mean.Accross.Time=FALSE,

Cex.label=0.8, Cex.point=0.7, epsilon=0.3,

Phi=25,Theta=140,

motion3D=FALSE,

path.result=NULL)

The graphs are
• stored in an SE object
• displayed if Plot.PCA=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
The user cannot select a color for each time. A specific palette is automatically used.
These figures show that the temporal behavior is similar between individuals.
If the user wants for instance, to perform the PCA analysis without the genes ’SPAC212.11’
and ’SPNCRNA.70’ (first and third gene) and/or without the samples ’wt_t0_r2’ and ’wt_t1_r1’,
he can set
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• either gene.deletion=c("SPAC212.11","SPNCRNA.70") and/or
sample.deletion=c("wt_t0_r2","wt_t1_r1"),

• or gene.deletion=c(1,3) and/or sample.deletion=c(3,5).
The integers in gene.deletion and sample.deletion represent respectively the row
numbers (resp. the column numbers) of RawCounts corresponding to genes (resp.
samples) that need to be removed from RawCounts.

Write ?PCAanalysis in your console for more information about the function.

5.2.2.2 HCPC (case 2)

The user can realize the clustering with HCPC using the function HCPCanalysis() as below.
The following lines of code return from the results of the function DATAnormalization()

• The results of the R function HCPC() from the package FactoMineR.
• A dendrogram
• A graph indicating for each sample, its cluster and the biological condition associated

to the sample, using a color code
• One 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window

(only if motion3D=FALSE). These PCA graphs are identical to the outputs of PCA-
analysis() but samples are colored with different colors for different clusters.

SEresHCPCyeast <- HCPCanalysis(SEresNorm=SEresNormYeast,

gene.deletion=NULL,

sample.deletion=NULL,

Plot.HCPC=FALSE,

Cex.label=0.9,

Cex.point=0.7,

epsilon=0.2,

Phi=25,Theta=140,

motion3D=FALSE,

path.result=NULL)

The graphs are
• stored in an SE object
• displayed if Plot.HCPC=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Write ?HCPCanalysis in your console for more information about the function.

5.2.3 Temporal clustering analysis with MFUZZanalysis()

The following function realizes the temporal clustering analysis. It takes as input, a number of
clusters (DataNumberCluster) that can be chosen automatically if DataNumberCluster=NULL
and the results of the function DATAnormalization() (see Section 5.2.1). The lines of code
below return for each biological condition

• the summary of the results of the R function mfuzz() from the package Mfuzz.
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• the scaled height plot, computed with the HCPC() function, and shows the number
of clusters chosen automatically (if DataNumberCluster=NULL). If Method="hcpc", the
function plots the scaled within-cluster inertia, but if Method="kmeans", the function
plots the scaled within-cluster inertia. As the number of genes can be very high, we
recommend to select Method="hcpc" which is by default.

• the output graphs from the R package Mfuzz showing the most common temporal
behavior among all genes for each biological condition. The plots below correspond to
the biological condition ’P’.

SEresMfuzzYeast <- MFUZZanalysis(SEresNorm=SEresNormYeast,

DataNumberCluster=NULL,

Method="hcpc",

Membership=0.5,

Min.std=0.1,

Plot.Mfuzz=FALSE,

path.result=NULL)

## 0 genes excluded.

## 31 genes excluded.

The graphs are
• stored in an SE object
• displayed if Plot.Mfuzz=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Write ?MFUZZanalysis in your console for more information about the function.

74



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

5.2.4 Genes expression profile with DATAplotExpressionGenes()

The lines of code below plot, from the results of the function DATAnormalization(),
• the evolution of the 17th gene expression of all three replicates across time (purple

lines)
• the evolution of the mean and the standard deviation of the 17th gene expression across

time (black lines).
SEresEVOyeast <- DATAplotExpressionGenes(SEresNorm=SEresNormYeast,

Vector.row.gene=c(17),

Plot.Expression=TRUE,

path.result=NULL)
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The graphs are
• stored in an SE object
• displayed if Plot.Expression=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
If the user wants to select several genes, for instance the 1st, the 2nd, the 17th and the 19th,
he needs to set Vector.row.gene=c(1,2,17,19).
Write ?DATAplotExpressionGenes in your console for more information about the function.
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5.3 Statistical analysis of the transcriptional response for the four
dataset (supervised analysis)

5.3.1 DE analysis with DEanalysisGlobal()

The function below
• returns a data.frame. See subsection Data.frame summarising all the DE analysis (case

2).
• plots the following graphs

• an alluvial graph. See subsection Description of graphs
• a graph showing the number of DE genes as a function of time for each temporal

group. By temporal group, we mean the sets of genes which are first DE at the
same time. See subsection Description of graphs

• a barplot showing the number of DE genes (up- or down-regulated) for each time.
See subsection Description of graphs.

• two upset graphs, realized with the R package UpSetR [33], showing the number
of DE genes belonging to each DE temporal pattern. By temporal pattern, we
mean the set of times ti such that the gene is DE between ti and the reference
time t0. See subsection Description of graphs.

The commented lines take too much time, uncomment them in order to use the function
DEanalysisGlobal(). Due to time consuming of the DE analysis, we stored in the object
Results_DEanalysis_sub500 (uncommented lines) a list of three objects

• Results_DEanalysis_sub500$DE_Schleiss2021_CLLsub500, stored the results of DEanal
ysisGlobal() with RawCounts_Schleiss2021_CLLsub500.

• Results_DEanalysis_sub500$DE_Antoszewski2022_MOUSEsub500, stored the results of
DEanalysisGlobal() with RawCounts_Antoszewski2022_MOUSEsub500.

• Results_DEanalysis_sub500$DE_Leong2014_FISSIONsub500wt, stored the results of DE
analysisGlobal() with RawCounts_Leong2014_FISSIONsub500wt.

# DEyeastWt <- DEanalysisGlobal(SEres=SEresPrepFission, log.FC.min=1,

# pval.min=0.05, pval.vect.t=NULL,

# LRT.supp.info=FALSE, Plot.DE.graph =FALSE,

# path.result=NULL, Name.folder.DE=NULL)

data("Results_DEanalysis_sub500")

DEyeastWt <- Results_DEanalysis_sub500$DE_Leong2014_FISSIONsub500wt

The graphs are
• stored in an SE object
• displayed if Plot.DE.graph=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Write ?DEanalysisGlobal in your console for more information about the function.
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5.3.1.1 Data.frame summarising all the DE analysis (case 2)

The output data.frame can be extracted with the following line of code,
DEsummaryFission <- SummarizedExperiment::rowData(DEyeastWt)

As we use abbreviated column names, we propose a glossary in order to help the user to
understand meaning of each column. The glossary of the column names can be extracted
with the following lines of code,
resDEyeast <- S4Vectors::metadata(DEyeastWt)$Results[[2]][[2]]

resGlossaryFission <- resDEyeast$Glossary

and then write DEsummaryFission and resGlossaryFission in the R console.
The data.frame contains

• gene names
• pvalues, log2 fold change and DE genes between each time ti versus the reference time

t0 (for a total of T − 1 = 5 columns).
• a binary column (1 and 0) where 1 means that the gene is DE at least at between one

time ti versus the reference time t0.
• a column where each element is succession of 0 and 1. The positions of ’1’ indicate

the set of times ti such that the gene is DE between ti and the reference time t0. So
each element of the column is what we called previously, a temporal pattern.

5.3.1.2 Description of graphs

The function returns the following plots
1. An alluvial graph. The x-axis of the alluvial graph is labeled with all times except t0.

For each vertical barplot, there are two strata: 1 and 0 whose sizes indicate respectively
the number of DE genes and of non DE genes, between the time corresponding to the
barplot and the reference time t0. The alluvial graph is composed of curves, each
corresponding to a single gene, which are gathered in alluvia. An alluvium is composed
of all genes having the same curve: for example, an alluvium going from the stratum
0 at time t1 to the stratum 1 at time t2 corresponds to the set of genes which are not
DE at t1 and are DE at time t2. Each alluvium connects pairs of consecutive barplots
and its thickness gives the number of genes in the alluvium. The color of each alluvium
indicates the temporal group, defined as the set of genes which are all first DE at the
same time with respect to the reference time t0.

2. A graph giving the time evolution of the number of DE genes within each temporal
group. The x-axis labels indicate all times except t0.

3. A barplot showing the number of DE genes per time. The x-axis labels indicate all
times except t0. For each DE gene, we compute the sign of the log2 fold change
between time ti and time t0. If the sign is positive (resp. negative), the gene is
categorized as up-regulated (resp. down-regulated). In the graph, the up-regulated
(resp. down-regulated) genes are indicated in red (resp. in blue).
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4. An upset graph, realized with the R package UpSetR [33], plotting the number of genes
in each DE temporal pattern in a Venn barplot. By DE temporal pattern, we mean a
subset of times in t1, . . . , tn. We say that a gene belongs to a DE temporal pattern
if the gene is DE versus t0 only at the times in this DE temporal patterns. For each
gene in a given DE temporal pattern, we compute the number of DE times where it is
up-regulated and we use a color code in the Venn barplot to indicate the number of
genes in a temporal pattern that are up-regulated a given number of times.

5. The same upset graph is also plotted without colors.

5.3.2 Volcano plots, ratio intensity (MA) plots and Heatmaps with DEplotVol-
canoMA() and DEplotHeatmaps()

5.3.2.1 Volcano and MA plots (case 2)

The following lines of code allow to plot
• T − 1 = 6− 1 = 5 volcano plots (with T = 6 the number time points)
• T − 1 = 5 MA plots

allowing to separate non DE genes, DE genes below a threshold of log2 fold change and DE
genes above a threshold of log2 fold change (see Section 3.3.2.1 for more details).
SEresVolcanoMAFission <- DEplotVolcanoMA(SEresDE=DEyeastWt,

NbGene.plotted=2,

SizeLabel=3,

Display.plots=FALSE,

Save.plots=TRUE)

If the user wants to save the graphs, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• either a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
If the user wants to display the graph, he must set Display.plots=TRUE.
Write ?DEplotVolcanoMA in your console for more information about the function.
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5.3.2.2 Heatmaps (case 2)

The following lines of code allow to plot a correlation heatmap between samples (correlation
heatmap) and a heatmap across samples and genes called Zscore heatmap, for a subset of
genes that can be selected by the user. The second heatmap is build from the normalized
count data after being both centered and scaled (Zscore).
SEresHeatmapFission <- DEplotHeatmaps(SEresDE=DEyeastWt,

ColumnsCriteria=2,

Set.Operation="union",

NbGene.analysis=20,

Color.Group=NULL,

SizeLabelRows=5,

SizeLabelCols=5,

Display.plots=TRUE,

Save.plots=FALSE)
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SPAC29A4.17cSPAC14C4.10cSPBC713.09SPBC3E7.13cSPNCRNA.646SPAC1687.14cSPBPB2B2.02SPBC211.07cSPBC23E6.01cSPAC23C4.05cSPAC23A1.14cSPAPB2B4.04cSPAC6C3.04SPBC1685.12cSPBC609.03SPBC1778.10cSPAC4A8.04SPCC4F11.02SPAC227.03cSPBC2F12.15cSPAC4G8.05SPAC26H5.04SPBC106.13SPAC23E2.01SPBC725.02SPBC1734.08SPBC32H8.07SPBC16A3.09cSPAP32A8.02SPCC1235.03SPBC713.11cSPCC23B6.01cSPBC4B4.08SPBC21C3.19SPBC725.03SPAC22H10.12cSPNCRNA.1165SPAC4G8.10SPCC16A11.08SPAC31G5.21SPAC17C9.11cSPBC365.20cSPNCRNA.577SPAC26H5.09cSPAC19A8.05cSPAC6G10.03cSPCC70.10SPNCRNA.1258SPAC31G5.18cSPAC1006.01SPNCRNA.650SPAC1399.04cSPAPB1A10.02SPBC1711.11SPNCRNA.1364SPNCRNA.1104SPNCRNA.1123SPNCRNA.620SPAC11D3.16cSPAC5D6.07cSPBC1105.19SPNCRNA.836SPNCRNA.1506SPAC4F10.17SPAC22H10.13SPBC1289.14SPAC513.07SPAC521.03SPBC30D10.14SPAC3C7.14cSPCC965.07cSPNCRNA.887SPAC29B12.13SPAPB1E7.08cSPAC186.02cSPBC23G7.10cSPNCRNA.1171SPAC20G4.05cSPAC15A10.05cSPBC3B8.07cSPAC212.09cSPBC119.05cSPAC3G9.04SPAC29B12.14cSPAC890.02cSPBC17G9.13cSPAC8C9.09cSPCC622.16cSPAC1399.06SPBC20F10.04cSPCC622.09SPAPB1A10.14SPBC19C2.05SPNCRNA.910SPNCRNA.1667SPBC23G7.11SPAC1F3.02cSPAC343.04cSPAC4F10.08SPAC14C4.07SPBC1198.01SPAC13G7.05SPAC458.05SPAC20G4.02cSPAC12G12.12SPAC22G7.11cSPAC4C5.03SPCC576.04SPCC61.03SPBC649.03SPAC1687.09SPAC821.04cSPBC23G7.06cSPAC9E9.04SPBC4F6.06SPBC15D4.02SPAC19B12.10SPBC17D11.01SPAC2H10.01SPCC63.08cSPAC24H6.11cSPAC664.15SPAC2C4.07cSPAC4G9.19SPBC56F2.05cSPAC343.21SPBC359.02
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For the Zscore heatmap, The subset of genes is selected as followss
1. the user selects one or more binary column of the data.frame DEsummaryFission (see

Section 5.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryFission to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that the sum of the selected columns of DEsummaryFis
sion given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that the product of the selected columns of DEsummary
Fission given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that only one element of the selected columns of DEsum
maryFission given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If the user wants to save the graphs, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• either a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
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If the user wants to display the graph, he must set Display.plots=TRUE. Write ?DEplotHe

atmaps in your console for more information about the function.

5.4 Gene Ontology (GO) analysis with GSEAQuickAnalysis() and
GSEApreprocessing()

5.4.1 Gene ontology with the R package gprofiler2

The lines of code below realize an enrichment analysis with the R package gprofiler2 for a
selection of genes. Beware, an internet connection is needed. The function returns

• a data.frame (output metadata(SEresGprofiler2Fission)$Rgprofiler2$GSEAresults)
giving information about all detected gene ontologies for the list of associated genes.

• a lollipop graph (see section Gene ontology and gene enrichment). The y-axis indi-
cates the MaxNumberGO most significant gene ontologies and pathways associated to the
selected genes. The gene ontologies and patways are sorted into descending order of
−log10(pvalues). The x-axis indicates the −log10(pvalues). The higher is a lollipop
the more significant is a gene ontology or pathway. A lollipop is yellow if the pvalues
is smaller than 0.05 (significant) and blue otherwise.

• A Manhattan plot (see section Gene ontology and gene enrichment) indicating all genes
ontologies ordered according to the functional database (G0::BP, G0::CC, G0::MF and
KEGG)

SEresGprofiler2Fission <- GSEAQuickAnalysis(Internet.Connection=FALSE,

SEresDE=DEyeastWt,

ColumnsCriteria=2,

ColumnsLog2ordered=NULL,

Set.Operation="union",

Organism="spombe",

MaxNumberGO=20,

Background=FALSE,

Display.plots=FALSE,

Save.plots=FALSE)

##

## head(SEresGprofiler2Fission$GSEAresults)

As GSEAQuickAnalysis() requires an internet connection, we needed to add the input
Internet.Connection in order to be sure to pass the tests realized on our package by Bio-
conductor. The input Internet.Connection is set by default to FALSE and as long as Inter

net.Connection=FALSE, no enrichment analysis will be done. Once the user is sure to have
an internet connection, the user may set Internet.Connection=TRUE in order to realize the
enrichment analysis.
The subset of genes is selected as follows

1. the user selects one or more binary column of the data.frame DEsummaryFission (see
Section 5.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryFission to be selected.

2. Three cases are possible:
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• If Set.Operation="union" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that the sum of the selected columns of DEsummaryFis
sion given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that the product of the selected columns of DEsummary
Fission given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that only one element of the selected columns of DEsum
maryFission given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If ColumnsLog2ordered is a vector of integers, the enrichment analysis will take into account
the genes order as the first genes will be considered to have the highest biological importance
and the last genes the lowest. It corresponds to the columns number of DEsummaryFission,
the output of DEanalysisGlobal(), which must contains log2 fold change values. The rows
of DEsummaryFission (corresponding to genes) will be decreasingly ordered according to the
sum of absolute log2 fold change (the selected columns must contain log2 fold change values)
before the enrichment analysis. If ColumnsLog2ordered=NULL, then the enrichment analysis
will not take into account the genes order.
If the user wants to save the graphs, the input Save.plots must be

• either Save.plots=TRUE, and the graph will be saved in the same location than the
input path.result of the function DEanalysisGlobal().

• or a strings of characters giving the path to a folder where the graphs will be saved.
The user then chooses the path of the folder where results can be saved.

Write ?GSEAQuickAnalysis in your console for more information about the function.
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5.4.2 Preprocessing for GSEA, DAVID, WebGestalt, gProfiler, Panther, ShinyGO,
Enrichr and GOrilla

The following lines of code will generate all files, for a selection of genes, in order to use
the following software and online tools : GSEA, DAVID, WebGestalt, gProfiler, Panther,
ShinyGO, Enrichr and GOrilla.
SEresPreprocessingYeast <- GSEApreprocessing(SEresDE=DEyeastWt,

ColumnsCriteria=2,

Set.Operation="union",

Rnk.files=FALSE,

Save.files=FALSE)

The subset of genes is selected as follows
1. the user selects one or more binary column of the data.frame DEsummaryFission (see

Section 5.3.1.1) with the input ColumnsCriteria which contains the column numbers
of DEsummaryFission to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that the sum of the selected columns of DEsummaryFis
sion given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that the product of the selected columns of DEsummary
Fission given in ColumnsCriteria is >0. This means that the selected genes are
those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryFission) included in the SE object
DEyeastWt are those such that only one element of the selected columns of DEsum
maryFission given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If the user wants to save the files, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• or a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
Write ?GSEApreprocessing in your console for more information about the function.
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6 Quick description of the analysis of a dataset with
several time points and more than two biological
conditions (case 4)
In this section we use the mouse subdataset RawCounts_Weger2021_MOUSEsub500
(see Subsection Example of MultiRNAflow in case 4, several time points and more than two
biological conditions: Mouse dataset 2) in order to explain the use of our package in Case 4
(several times point and more than two biological conditions).
Most of the outputs in Case 4 are of a similar form as those shown in Case 3 (Section 3),
except for some outputs whose list is precisely given below

• Subsection 6.3.1.2 page 91
• Subsection 6.3.1.3 page 93.

6.1 Preprocessing step with DATAprepSE()
The preprocessing step is mandatory and is realized by our R function DATAprepSE() to
store all information about the dataset in a standardized way (SummarizedExperiment class
object, see Section 2.5). It can be done using the following lines of code.
SEresPrepMus2 <- DATAprepSE(RawCounts=RawCounts_Weger2021_MOUSEsub500,

Column.gene=1,

Group.position=1,

Time.position=2,

Individual.position=3)

The function returns
• SummarizedExperiment class object containing all information of the dataset to be

used for exploratory data analysis
• DESeqDataSet class object to be used for statistical analysis of the transcriptional

response.
Write ?DATAprepSE in your console for more information about the function.

84



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

6.2 Exploratory data analysis (unsupervised analysis)

6.2.1 Normalization with DATAnormalization()

The following lines of code realize the normalization step from the results of the function
DATAprepSE() (subsection 6.1).
SEresNormMus2 <- DATAnormalization(SEres=SEresPrepMus2,

Normalization="vst",

Blind.rlog.vst=FALSE,

Plot.Boxplot=FALSE,

Colored.By.Factors=TRUE,

Color.Group=NULL,

path.result=NULL)

If Plot.Boxplot=TRUE a boxplot showing the distribution of the normalized expression
(Normalization="vst" means that the vst method is used) of genes for each sample is
returned.
If Colored.By.Factors=TRUE, the color of the boxplots would be different for different bio-
logical conditions. By default (if Color.Group=NULL), a color will be automatically applied
for each biological condition. You can change the colors by creating the following data.frame
colMus2 <- data.frame(Name=c("BmKo", "BmWt" ,"CrKo", "CrWt"),

Col=c("red", "blue", "orange", "darkgreen"))

and setting Color.Group=colMus2.
The x-labels give biological information, time information and individual information separated
by dots. If the user wants to see the 6th first rows of the normalized data, he can write in
his console head(SEresNormMus2$NormalizedData, n=6)

The user can save the graph in a folder thanks to the input path.result. If path.result=NULL
the results will still be plotted but not saved in a folder.
Write ?DATAnormalization in your console for more information about the function.
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6.2.2 Factorial analysis: PCA with PCAanalysis() and clustering with HCPC-
analysis()

6.2.2.1 PCA (case 4)

When samples belong to different biological conditions and different time points, the previous
lines of code return from the results of the function DATAnormalization():

• The results of the R function PCA() from the package FactoMineR.
• one 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window

(only if motion3D=FALSE) where samples are colored with different colors for different
biological conditions. Furthermore, lines are drawn between each pair of consecutive
points for each individual (if Mean.Accross.Time=FALSE, otherwise lines will be drawn
only between mean values of all individuals for each time point and biological condi-
tions).

• one 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window
(only if motion3D=FALSE) for each biological condition, where samples are colored with
different colors for different time points. Furthermore, lines are drawn between each
pair of consecutive points for each sample (if Mean.Accross.Time=FALSE, otherwise
lines will be drawn only between mean values of all individuals for each time point and
biological conditions).

• the same graphs described above but without lines.
SEresPCAmus2 <- PCAanalysis(SEresNorm=SEresNormMus2,

gene.deletion=NULL,

sample.deletion=NULL,

Plot.PCA=FALSE, motion3D=FALSE,

Mean.Accross.Time=FALSE,

Color.Group=NULL,

Cex.label=0.6, Cex.point=0.7, epsilon=0.2,

Phi=25, Theta=140,

path.result=NULL,

Name.folder.pca=NULL)

The graphs are
• stored in an SE object
• displayed if Plot.PCA=TRUE
• similar to those described in subsection PCA (case 3).
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
By default (if Color.Group=NULL), a color will be automatically applied for each biological
condition. You can change the colors by creating the following data.frame
colMus2 <- data.frame(Name=c("BmKo", "BmWt", "CrKo", "CrWt"),

Col=c("red", "blue", "orange", "darkgreen"))

and setting Color.Group=colMus2. The user cannot change the color associated to each time
point.
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If you want to delete, for instance, the genes ’ENSMUSG00000025921’ and ’ENSMUSG00000026113’
(respectively the second and sixth gene) and/or delete the samples ’BmKo_t2_r1’ and
’BmKo_t5_r2’, set

• gene.deletion=c("ENSMUSG00000025921", "ENSMUSG00000026113") and/or
sample.deletion=c("BmKo_t2_r1", "BmKo_t5_r2")

• gene.deletion=c(2,6) and/or sample.deletion=c(3,13).
The integers in gene.deletion and sample.deletion represent respectively the row
numbers and the column numbers of RawCounts where the selected genes and samples
are located.

Write ?PCAanalysis in your console for more information about the function.

6.2.2.2 HCPC (case 4)

The user can realize the clustering with HCPC using the function HCPCanalysis() as below.
The following lines of code return from the results of the function DATAnormalization()

• The results of the R function HCPC() from the package FactoMineR.
• A dendrogram
• A graph indicating for each sample, its cluster and the biological condition associated

to the sample, using a color code
• One 2D PCA graph, one 3D PCA graph and the same 3D PCA graph in a rgl window

(only if motion3D=FALSE). These PCA graphs are identical to the outputs of PCA-
analysis() but samples are colored with different colors for different clusters.

SEresHCPCmus2 <- HCPCanalysis(SEresNorm=SEresNormMus2,

gene.deletion=NULL,

sample.deletion=NULL,

Plot.HCPC=FALSE,

Phi=25,Theta=140,

Cex.point=0.6,

epsilon=0.2,

Cex.label=0.6,

motion3D=FALSE,

path.result=NULL,

Name.folder.hcpc=NULL)

The graphs are
• stored in an SE object
• displayed if Plot.HCPC=TRUE
• similar to those described in subsection HCPC (case 3).
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Write ?HCPCanalysis in your console for more information about the function.
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6.2.3 Temporal clustering analysis with MFUZZanalysis()

The following function realizes the temporal clustering analysis. It takes as input, a number of
clusters (DataNumberCluster) that can be chosen automatically if DataNumberCluster=NULL
and the results of the function DATAnormalization() (see Section 6.2.1). The lines of code
below return for each biological condition

• the summary of the results of the R function mfuzz() from the package Mfuzz.
• the scaled height plot, computed with the HCPC() function, and shows the number

of clusters chosen automatically (if DataNumberCluster=NULL). If Method="hcpc", the
function plots the scaled within-cluster inertia, but if Method="kmeans", the function
plots the scaled within-cluster inertia. As the number of genes can be very high, we
recommend to select Method="hcpc" which is by default.

• the output graphs from the R package Mfuzz showing the most common temporal
behavior among all genes for each biological condition. The plots below correspond to
the biological condition ’P’.

SEresMfuzzLeuk500 <- MFUZZanalysis(SEresNorm=SEresNormMus2,

DataNumberCluster=NULL,

Method="hcpc",

Membership=0.5,

Min.std=0.1,

Plot.Mfuzz=FALSE,

path.result=NULL, Name.folder.mfuzz=NULL)

## 0 genes excluded.

## 31 genes excluded.

## 0 genes excluded.

## 25 genes excluded.

## 0 genes excluded.

## 38 genes excluded.

## 0 genes excluded.

## 22 genes excluded.

The graphs are
• stored in an SE object
• displayed if Plot.Mfuzz=TRUE
• similar to those described in subsection Temporal clustering analysis with MFUZZanal-

ysis().
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
Other temporal information are shown in the alluvial graph of the subsection ?? that can be
compared with the previous graphs.
Write ?MFUZZanalysis in your console for more information about the function.
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6.2.4 Plot expression of data with DATAplotExpressionGenes()

In this section we use the mouse subdataset RawCounts_Weger2021_MOUSEsub500
(see Subsection Example of MultiRNAflow in case 4, several time points and more than two
biological conditions: Mouse dataset 2) in order to explain DATAplotExpressionGenes() in
case 3 when there are more than two biological conditions.
The previous lines of code allow to plot, from the results of the function DATAnormal-
ization(), for each biological condition: the evolution of the 17th gene expression of the
three replicates across time and the evolution of the mean and the standard deviation of the
17th gene expression across time. The color of the different lines are different for different
biological conditions.
SEresEVOmus2 <- DATAplotExpressionGenes(SEresNorm=SEresNormMus2,

Vector.row.gene=c(17),

Color.Group=NULL,

Plot.Expression=FALSE,

path.result=NULL)

The graphs are
• stored in an SE object
• displayed if Plot.Expression=TRUE
• saved in a folder if the user selects a folder path in path.result. If path.result=NULL

the results will not be saved in a folder.
By default (if Color.Group=NULL), a color will be automatically assigned to each biological
condition. The user can change the colors by creating the following data.frame
colMus2 <- data.frame(Name=c("BmKo", "BmWt", "CrKo", "CrWt"),

Col=c("red", "blue", "orange", "darkgreen"))

and setting Color.Group=colMus2.
If the user wants to select several genes, for instance the 97th, the 192th, the 194th and the
494th, he needs to set Vector.row.gene=c(97,192,194,494).
Write ?DATAplotExpressionGenes in your console for more information about the function.
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6.3 Statistical analysis of the transcriptional response for the four
dataset (supervised analysis)

6.3.1 DE analysis with DEanalysisGlobal()

To keep the execution time of the algorithm fast, we will take only three biological conditions
and three times.
Sub3bc3T <- RawCounts_Weger2021_MOUSEsub500[, seq_len(73)]

SelectTime <- grep("_t0_", colnames(Sub3bc3T))

SelectTime <- c(SelectTime, grep("_t1_", colnames(Sub3bc3T)))

SelectTime <- c(SelectTime, grep("_t2_", colnames(Sub3bc3T)))

Sub3bc3T <- Sub3bc3T[, c(1, SelectTime)]

SEresPrepMus23b3t <- DATAprepSE(RawCounts=Sub3bc3T,

Column.gene=1,

Group.position=1,

Time.position=2,

Individual.position=3)

The lines of code above
• return a data.frame. See subsection Data.frame summarizing all the DE analysis (case

3).
• plot the following graphs (similar to those described in section DE analysis with DE-

analysisGlobal())
• Results from the temporal statistical analysis (case 2 for each biological condi-

tion). See subsection Graphs from the results of the temporal statistical analysis
• Results from the statistical analysis by biological condition (case 1 for each fixed

time). See subsection Graphs from the results of the biological condition analysis.
• Results from the combination of temporal and biological statistical analysis. See

subsection Graphs from the results of the combination of temporal and biological
statistical analysis

SEresDE3tMus2 <- DEanalysisGlobal(SEres=SEresPrepMus23b3t,

pval.min=0.05,

pval.vect.t=NULL,

log.FC.min=1,

LRT.supp.info=FALSE,

Plot.DE.graph=FALSE,

path.result=NULL, Name.folder.DE=NULL)

## [1] "Preprocessing"

## [1] "Differential expression step with DESeq2::DESeq()"

## [1] "Case 3 analysis : Biological conditions and Times."

## [1] "DE time analysis for each biological condition."

## [1] "DE group analysis for each time measurement."

## [1] "Combined time and group results."

The output data.frame can be extracted with the following line of code,
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DEsummaryMus2 <- SummarizedExperiment::rowData(SEresDE3tMus2)

As we use abbreviated column names, we propose a glossary in order to help the user to
understand meaning of each column. The glossary of the column names can be extracted
with the following lines of code,
resDEmus2 <- S4Vectors::metadata(SEresDE3tMus2)$Results[[2]][[2]]

resGlossaryMus2 <- resDEmus2$Glossary

and then write DEsummaryMus2 and resGlossaryMus2 in the R console.
The following subsection will show graphs not shown in DE analysis with DEanalysisGlobal().

6.3.1.1 Graphs from the results of the temporal statistical analysis

As we are in the similar case described in section Graphs from the results of the temporal
statistical analysis, the results will not be described here.

6.3.1.2 Graphs from the results of the biological condition analysis

As we are in case 4, the results are more complex.
One barplot showing the number of specific genes per biological condition and no specific
genes (category ’Other’), for each time.
resDEmus2$DEplots_GroupPerTime$NumberDEgenes_SpecificAndNoSpecific_perBiologicalCondition
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One barplot showing the number of specific genes per biological condition, for each time.
This is the same barplot than in section Graphs from the results of the biological condition
analysis
resDEmus2$DEplots_GroupPerTime$NumberSpecificGenes_UpDownRegulated_perBiologicalCondition
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See Section Graphs from the results of the biological condition analysis for more information
about specific genes.(
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= 3 upset graph showing the number of genes corresponding to each possible

intersection in a Venn barplot at a given time, only if there are more than two biological
conditions (which the case here). We recall that a set of pairs of biological conditions forms
an intersection at a given time ti when there is at least one gene which is DE for each of
these pairs of biological conditions at time ti, but not for the others at time ti. The following
line of code plots the Venn barplot for the time t1.
resDEmus2$DEplots_GroupPerTime$VennBarplot_BiologicalConditions_atTime.t1
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alluvial graph showing the number of DE genes which are specific at least at one time for
each group, only if there are more than two biological conditions (which is the case here).
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resDEmus2$DEplots_GroupPerTime$AlluvialGraph_SpecificGenes1tmin_perBiologicalCondition
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6.3.1.3 Graphs from the results of the combination of temporal and biological sta-
tistical analysis

From the combination of temporal and biological statistical analysis, the function plots the
following graphs. The only difference with the section Graphs from the results of the combi-
nation of temporal and biological statistical analysis is the following graph.
One alluvial graph for DE genes which are signature at least at one time for each biological
condition, only if there are more than two biological conditions (which is not the case here).
print(resDEmus2$DEplots_TimeAndGroup$Alluvial_SignatureGenes_1TimeMinimum_perGroup)
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6.3.2 Volcano plots, ratio intensity (MA) plots and Heatmaps with DEplotVol-
canoMA() and DEplotHeatmaps()

6.3.2.1 Volcano and MA plots (case 4)

The following lines of code allow to plot

•
(
Nbc

2

)
×T +(T −1)×Nbc =

Nbc(Nbc−1)
2 ×T +(T −1)×Nbc = 56 volcano plots (with

Nbc = 4 the number of biological conditions and T = 6 the number of time points).

•
(
Nbc

2

)
× T + (T − 1)×Nbc = 56 MA plots.

allowing to separate non DE genes, DE genes below a threshold of log2 fold change and DE
genes above a threshold of log2 fold change (see Section 3.3.2.1 for more details).
SEresVolcanoMAmus2 <- DEplotVolcanoMA(SEresDE=SEresDE3tMus2,

NbGene.plotted=2,

SizeLabel=3,

Display.plots=FALSE,

Save.plots=FALSE)

For more details, see Section 3.3.2.
If the user wants to save the graphs, the input Save.plots must be

• either Save.plots=TRUE, and the graph will be saved in the same location than the
input path.result of the function DEanalysisGlobal().

• or a strings of characters giving the path to a folder where the graphs will be saved.
The user then chooses the path of the folder where results can be saved.

If the user wants to display the graph, he must set Display.plots=TRUE.
Write ?DEplotVolcanoMA in your console for more information about the function.

6.3.2.2 Heatmaps (case 4)

The following lines of code allow to plot a correlation heatmap between samples (correlation
heatmap) and a heatmap across samples and genes called Zscore heatmap, for a subset of
genes that can be selected by the user. The second heatmap is build from the normalized
count data after being both centered and scaled (Zscore).
SEresHeatmapMus2 <- DEplotHeatmaps(SEresDE=SEresDE3tMus2,

ColumnsCriteria=2:5,

Set.Operation="union",

NbGene.analysis=20,

SizeLabelRows=5,

SizeLabelCols=5,

Display.plots=FALSE,

Save.plots=FALSE)

Both graphs are similar to those described in subsection Heatmaps (case 2) and Heatmaps
(case 1).
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For the Zscore heatmap, The subset of genes is selected as followss
1. the user selects one or more binary column of the data.frame DEsummaryMus2 (see

Section 6.3.1) with the input ColumnsCriteria which contains the column numbers of
DEsummaryMus2 to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that the sum of the selected columns of DEsumma

ryMus2 given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that the product of the selected columns of DEsum
maryMus2 given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that only one element of the selected columns of
DEsummaryMus2 given in ColumnsCriteria is >0. This means that the selected
genes are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If the user wants to save the graphs, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• either a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
If the user wants to display the graph, he must set Display.plots=TRUE.
Write ?DEplotHeatmaps in your console for more information about the function.
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6.4 Gene Ontology (GO) analysis with GSEAQuickAnalysis() and
GSEApreprocessing()

6.4.1 Gene ontology with the R package gprofiler2

The lines of code below realize an enrichment analysis with the R package gprofiler2 for a
selection of genes. Beware, an internet connection is needed. The function returns

• a data.frame (output metadata(SEresGprofiler2Mus2)$Rgprofiler2$GSEAresults) giv-
ing information about all detected gene ontologies for the list of associated genes.

• a lollipop graph (see section Gene ontology and gene enrichment). The y-axis indicates
the MaxNumberGO most significant gene ontologies and pathways associated to the se-
lected genes. The gene ontologies and patways are sorted into descending order. The
x-axis indicates the −log10(pvalues). The higher is a lollipop the more significant is
a gene ontology or pathway. A lollipop is yellow if the pvalues is smaller than 0.05
(significant) and blue otherwise.

• A Manhattan plot (see section Gene ontology and gene enrichment) indicating all genes
ontologies ordered according to the functional database (G0::BP, G0::CC, G0::MF and
KEGG)

SEresGprofiler2Mus2 <- GSEAQuickAnalysis(Internet.Connection=FALSE,

SEresDE=SEresDE3tMus2,

ColumnsCriteria=2:5,

ColumnsLog2ordered=NULL,

Set.Operation="union",

Organism="mmusculus",

MaxNumberGO=20,

Background=FALSE,

Display.plots=FALSE,

Save.plots=FALSE)

##

## head(SEresGprofiler2Mus2$GSEAresults)

As GSEAQuickAnalysis() requires an internet connection, we needed to add the input
Internet.Connection in order to be sure to pass the tests realized on our package by Bio-
conductor. The input Internet.Connection is set by default to FALSE and as long as Inter

net.Connection=FALSE, no enrichment analysis will be done. Once the user is sure to have
an internet connection, the user may set Internet.Connection=TRUE in order to realize the
enrichment analysis.
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The subset of genes is selected as follows
1. the user selects one or more binary column of the data.frame DEsummaryMus2 (see

Section 6.3.1) with the input ColumnsCriteria which contains the column numbers of
DEsummaryMus2 to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that the sum of the selected columns of DEsumma

ryMus2 given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that the product of the selected columns of DEsum
maryMus2 given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that only one element of the selected columns of
DEsummaryMus2 given in ColumnsCriteria is >0. This means that the selected
genes are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If ColumnsLog2ordered is a vector of integers, the enrichment analysis will take into account
the genes order as the first genes will be considered to have the highest biological importance
and the last genes the lowest. It corresponds to the columns number of DEsummaryMus2, the
output of DEanalysisGlobal(), which must contains log2 fold change values. The rows of
DEsummaryMus2 (corresponding to genes) will be decreasingly ordered according to the sum
of absolute log2 fold change (the selected columns must contain log2 fold change values)
before the enrichment analysis. If ColumnsLog2ordered=NULL, then the enrichment analysis
will not take into account the genes order.
If the user wants to save the graphs, the input Save.plots must be

• either Save.plots=TRUE, and the graph will be saved in the same location than the
input path.result of the function DEanalysisGlobal().

• or a strings of characters giving the path to a folder where the graphs will be saved.
The user then chooses the path of the folder where results can be saved.

Write ?GSEAQuickAnalysis in your console for more information about the function.

97



MultiRNAflow: An R package for integrated analysis of temporal RNA-seq data with multiple biological con-
ditions

6.4.2 Preprocessing for GSEA, DAVID, WebGestalt, gProfiler, Panther, ShinyGO,
Enrichr and GOrilla

The following lines of code will generate all files, for a selection of genes, in order to use
the following software and online tools : GSEA, DAVID, WebGestalt, gProfiler, Panther,
ShinyGO, Enrichr and GOrilla.
SEresPreprocessingMus2 <- GSEApreprocessing(SEresDE=SEresDE3tMus2,

ColumnsCriteria=2:5,

Set.Operation="union",

Rnk.files=FALSE,

Save.files=TRUE)

The subset of genes is selected as follows
1. the user selects one or more binary column of the data.frame DEsummaryMus2 (see

Section 6.3.1) with the input ColumnsCriteria which contains the column numbers of
DEsummaryMus2 to be selected.

2. Three cases are possible:
• If Set.Operation="union" then the rows extracted from the different datasets

(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that the sum of the selected columns of DEsumma

ryMus2 given in ColumnsCriteria is >0. This means that the selected genes are
those having at least one ’1’ in one of the selected columns.

• If Set.Operation="intersect" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that the product of the selected columns of DEsum
maryMus2 given in ColumnsCriteria is >0. This means that the selected genes
are those having ’1’ in all of the selected columns.

• If Set.Operation="setdiff" then the rows extracted from the different datasets
(raw counts and normalized data and DEsummaryMus2) included in the SE object
SEresDE3tMus2 are those such that only one element of the selected columns of
DEsummaryMus2 given in ColumnsCriteria is >0. This means that the selected
genes are those having ’1’ in only one of the selected columns.

3. Finally, the selected subset of genes will be the NbGene.analysis genes extracted in
step 2 above, which have the highest sum of absolute log2 fold change.

If the user wants to save the files, the input Save.plots must be
• either Save.plots=TRUE, and the graph will be saved in the same location than the

input path.result of the function DEanalysisGlobal().
• or a strings of characters giving the path to a folder where the graphs will be saved.

The user then chooses the path of the folder where results can be saved.
Write ?GSEApreprocessing in your console for more information about the function.
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7 Session info
Here is the output of sessionInfo() on the system on which this document was compiled.

• R Under development (unstable) (2025-10-20 r88955), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
• Base packages: base, datasets, grDevices, graphics, methods, stats, tcltk, utils
• Other packages: Biobase 2.71.0, BiocGenerics 0.57.0, BiocStyle 2.39.0,

DynDoc 1.89.0, Mfuzz 2.71.0, MultiRNAflow 1.9.0, e1071 1.7-16, generics 0.1.4,
knitr 1.50, widgetTools 1.89.0

• Loaded via a namespace (and not attached): BiocManager 1.30.26,
BiocParallel 1.45.0, Cairo 1.7-0, ComplexHeatmap 2.27.0, DESeq2 1.51.0, DT 0.34.0,
DelayedArray 0.37.0, FactoMineR 2.12, Formula 1.2-5, GenomicRanges 1.63.0,
GetoptLong 1.0.5, GlobalOptions 0.1.2, IRanges 2.45.0, MASS 7.3-65, Matrix 1.7-4,
MatrixGenerics 1.23.0, R6 2.6.1, RColorBrewer 1.1-3, Rcpp 1.1.0, S4Arrays 1.11.0,
S4Vectors 0.49.0, S7 0.2.0, Seqinfo 1.1.0, SparseArray 1.11.1,
SummarizedExperiment 1.41.0, TH.data 1.1-4, UpSetR 1.4.0, XVector 0.51.0,
abind 1.4-8, backports 1.5.0, base64enc 0.1-3, bookdown 0.45, broom 1.0.10,
bslib 0.9.0, cachem 1.1.0, car 3.1-3, carData 3.0-5, circlize 0.4.16, class 7.3-23,
cli 3.6.5, clue 0.3-66, cluster 2.1.8.1, coda 0.19-4.1, codetools 0.2-20,
colorspace 2.1-2, compiler 4.6.0, crayon 1.5.3, data.table 1.17.8, dendextend 1.19.1,
dichromat 2.0-0.1, digest 0.6.37, doParallel 1.0.17, dplyr 1.1.4, emmeans 2.0.0,
estimability 1.5.1, evaluate 1.0.5, factoextra 1.0.7, farver 2.1.2, fastmap 1.2.0,
flashClust 1.01-2, foreach 1.5.2, fs 1.6.6, ggalluvial 0.12.5, ggplot2 4.0.0,
ggplotify 0.1.3, ggpubr 0.6.2, ggrepel 0.9.6, ggsignif 0.6.4, glue 1.8.0, gprofiler2 0.2.3,
grid 4.6.0, gridExtra 2.3, gridGraphics 0.5-1, gtable 0.3.6, highr 0.11,
htmltools 0.5.8.1, htmlwidgets 1.6.4, httr 1.4.7, iterators 1.0.14, jquerylib 0.1.4,
jsonlite 2.0.0, labeling 0.4.3, lattice 0.22-7, lazyeval 0.2.2, leaps 3.2, lifecycle 1.0.4,
locfit 1.5-9.12, magick 2.9.0, magrittr 2.0.4, matrixStats 1.5.0, misc3d 0.9-1,
multcomp 1.4-29, multcompView 0.1-10, mvtnorm 1.3-3, parallel 4.6.0, pillar 1.11.1,
pkgconfig 2.0.3, plot3D 1.4.2, plot3Drgl 1.0.5, plotly 4.11.0, plyr 1.8.9, png 0.1-8,
proxy 0.4-27, purrr 1.1.0, rappdirs 0.3.3, reshape2 1.4.4, rgl 1.3.24, rjson 0.2.23,
rlang 1.1.6, rmarkdown 2.30, rstatix 0.7.3, sandwich 3.1-1, sass 0.4.10, scales 1.4.0,
scatterplot3d 0.3-44, shape 1.4.6.1, splines 4.6.0, stats4 4.6.0, stringi 1.8.7,
stringr 1.5.2, survival 3.8-3, tibble 3.3.0, tidyr 1.3.1, tidyselect 1.2.1, tinytex 0.57,
tkWidgets 1.89.0, tools 4.6.0, vctrs 0.6.5, viridis 0.6.5, viridisLite 0.4.2, withr 3.0.2,
xfun 0.54, xtable 1.8-4, yaml 2.3.10, yulab.utils 0.2.1, zoo 1.8-14
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