
Introduction to Mfuzz package and its graphical user interface

Matthias E. Futschik
SysBioLab, Universidade do Algarve

URL: http://mfuzz.sysbiolab.eu

and

Lokesh Kumar
Institute for Advanced Biosciences, Keio-University, Japan

October 31, 2025

Contents

1 Overview 2

2 Installation requirements 2

3 Data pre-processing 2
3.1 Missing values . 3
3.2 Filtering . 3
3.3 Standardisation . 3

4 Soft clustering of gene expression data 5
4.1 Setting of parameters for FCM clustering . 5
4.2 Cluster cores . 6

5 Cluster stability 8

6 Global clustering structures 8

7 Mfuzzgui - the graphical user interface for the Mfuzz package 9
7.1 Loading data . 10
7.2 Pre-processing . 12
7.3 Clustering . 13
7.4 Cluster Analysis . 13
7.5 Visualisation . 14
7.6 Help . 14

1

1 Overview

Clustering is an important tool in gene expression data analysis - both on transcript as well
as on protein level. This unsupervised classificatiion technique is commonly used to reveal
structures hidden in large gene expression data sets. The vast majority of clustering algorithms
applied so far produce hard partitions of the data, i.e. each gene or protein is assigned exactly
to one cluster. Hard clustering is favourable if clusters are well separated. However, this is
generally not the case for gene expression data, where gene/protein clusters frequently overlap.
Additionally, hard clustering algorithms are often highly sensitive to noise.

To overcome the limitations of hard clustering, soft clustering can be applied offering
several advantages to researchers [1, 2]. First, it generates accessible internal cluster structures,
i.e. it indicates how well corresponding clusters represent genes/proteins. This additional
information can be used for a refined search for regulatory elements. Second, the overall
relation between clusters, and thus a global clustering structure, can be defined. Additionally,
soft clustering is more noise robust and a priori pre-filtering of genes can be avoided. This
prevents the exclusion of biologically relevant genes/proteins from the data analysis.

This vignette gives a short introduction to soft clustering using the Mfuzz package. It
misses some features (such cluster stability) due to the size restrictions for Bioconductor
vignettes. Additional, the graphical user interace (Mfuzzgui is introduced here. Note that we
use microarray data to illustrate the functions of Mfuzz, but other data such as RNA-Seq or
proteomics data can be analysed by Mfuzz as well. The data pre-processing, however, might
need to be adjusted for other types of data. More information regarding this and other issues
can be found in the Questions and Answers section on the Mfuzz webpage:
http://mfuzz.sysbiolab.eu

2 Installation requirements

Following software is required to run the Mfuzz package:

• R (> 2.0.0). For installation of R, refer to http://www.r-project.org.

• R-package: e1071. For installation of these add-on packages, refer to http://cran.r-
project.org.

• Bioconductor package: Biobase. To use the graphical user interface Mfuzzgui, the tcltk
and Tkwidgets package needs to be installed. Refer to http://www.bioconductor.org for
installation.

If these requirements are fulfilled, the Mfuzz add-on R-package can be installed. To see how
to install add-on R-packages on your computer system, start R and type in help(INSTALL).
Optionally, you may use the R-function install.packages(). Once the Mfuzz package is installed,
you can load the package by

> library(Mfuzz)

3 Data pre-processing

To illustrate our approach, we apply soft clustering to yeast cell cycle expression data by Cho
et al. [3]. 6178 genes were monitored at 17 time points over a span of 160 minutes using

2

Affymetrix chips. Note that we do not exclude here the array corresponding to the time-point
of 90 mins which displays irregularities in the expression values measured. Additionally, the
data set was modified by restricting the number of genes to 3000. Thus, results here might
differ from those reported in reference [1].

> data(yeast)

3.1 Missing values

As a first step, we exclude genes with more than 25% of the measurements missing. Note that
missing values should be denoted by NA in the gene expression matrix.

> yeast.r <- filter.NA(yeast, thres=0.25)

49 genes excluded.

Fuzzy c-means like many other cluster algorithms, does not allow for missing values. Thus,
we replace remaining missing values by the average values expression value of the corresponding
gene.

> yeast.f <- fill.NA(yeast.r,mode="mean")

Alternatively (and recommended), the (weighted) k-nearest neighbour method can be used
(mode=‘knn’/‘wknn’). These methods perform usually favourable compared to the simple
method above, but are computationally intensive.

3.2 Filtering

Most cluster analyses published include a filtering step to remove genes which are expressed at
low levels or show only small changes in expression. Different filtering procedures have been
proposed. A popular procedure is the setting of a minimum threshold for variation
Calculation the standard deviation shows, however, that the transition between low and high
values for variation in gene expression is smooth and no particular cut-off point is indicated
(figure 1).

> tmp <- filter.std(yeast.f,min.std=0)

Thus, the value of a filtering threshold remains arbitrary. As no stringent filtering proce-
dure currently exists, we avoided any prior filtering of gene data. This prevents the loss of
genes that may be biologically important.

3.3 Standardisation

Since the clustering is performed in Euclidian space, the expression values of genes were
standardised to have a mean value of zero and a standard deviation of one. This step ensures
that vectors of genes with similar changes in expression are close in Euclidean space:

> yeast.s <- standardise(yeast.f)

Importantly, Mfuzz assumes that the given expression data are fully preprocessed including
any data normalisation. The function standardise does not replace the normalisation step.
Note the difference: Normalisation is carried out to make different samples comparable, while
standardisation (in Mfuzz) is carried out to make transcripts (or genes or proteins) comparable.

3

Figure 1: Standard deviation of gene expression vectors before standardisation. The genes
were ordered by the standard deviation of the corresponding expression vector. A unique
cut-off value for filtering is not prominent.

4

4 Soft clustering of gene expression data

Clustering is often applied to reveal regulatory mechanisms underlying gene expression. It is
well known that regulation of genes is generally not in an ‘on-off’, but gradual manner which
allows a finer control of the genes’ functions. A cluster algorithm should reflect this finding
by differentiating how closely a gene follows the dominant cluster patterns. Soft clustering
appears as a good candidate for this task since it can assign a gene i gradual degrees of
membership µij to a cluster j. The membership values can vary continuously between zero
and one. This feature enables soft clustering to provide more information about the structure
of gene expression data.

Soft clustering is implemented in the function mfuzz using the fuzzy c-means algorithm
(of the e1071 package) based on minimization of a weighted square error function [4]. For soft
clustering, the cluster centroids cj result from the weighted sum of all cluster members and
show the overall expression patterns of clusters. The membership values µij indicate how well
the gene i is represented by cluster cj . Low values µij point to a poor representation of gene i
by cj . Large values µij point to a high correlation of the expression of gene i with the cluster
centroid cj . The membership values are color-encoded in the plots generated by mfuzz.plot.
This can facilitates the identification of temporal patterns in gene cluster (figure 2). You may
also want to check out mfuzz.plot2, which works the same way as mfuzz.plot, but gives you
a larger range of options, some of which are presented if you run example(mfuzz.plot2).

Note that the clustering is based soley on the exprs matrix and no information is used
from the phenoData. In particular, the ordering of samples (arrays) is the same as the ordering
of the columns in the exprs matrix. Also, replicated arrays in the exprs matrix are treated
as independent by the mfuzz function i.e. they should be averagered prior to clustering or
placed into different distinct ExpressionSet objects.

> cl <- mfuzz(yeast.s,c=16,m=1.25)
> mfuzz.plot(yeast.s,cl=cl,mfrow=c(4,4),time.labels=seq(0,160,10))

4.1 Setting of parameters for FCM clustering

For fuzzy c-means clustering, the fuzzifier m and the number of clusters c has to be chosen in
advance. For fuzzifier m, we would like to choose a value which prevents clustering of random
data. Note, that fuzzy clustering can be tuned in such manner, that random data is not
clustered. This is a clear advantage to hard clustering (such as k-means), which commonly
detects clusters even in random data. To achieve this, different options exists: Either the
function partcoef can be used to test, whether random data is clustered for a particular
setting of m (see example of partcoef) or a direct estimate can be achieved using a relation
proposed by Schwaemmle and Jensen [5]:

> m1 <- mestimate(yeast.s)
> m1 # 1.15

Setting of an optimal number of cluster c is usually challanging, especially for short time
series and in case of overlapping clusters. Here, a range of c can be testedand a maximal value
of c can be set which leads to the appearance of empty clusters (see cselection). Also, the
minimum distance Dmin between cluster centroid can be utilized as an cluster validity index.

5

Here, we can monitor Dmin across a range of c [5]. We would expect that Dmin declines
slower after reaching an optimal c (see also example of function Dmin). An alternativee way
is to perform clustering with a range of cluster numbers and subsequently choose the optimal
cluster number based on the assessment of their biological relevance e.g. by GO analyses.

4.2 Cluster cores

Membership values can also indicate the similarity of vectors to each other. If two gene
expression vectors have a high membership value for a specific cluster, they are generally
similar to each other. This is the basis for the definition of the core of a cluster. We define
that genes with membership values larger than a chosen threshold α belong to the α-core of
the cluster. This allows us to define relationships between genes within a cluster. Similarly
to hierarchical clustering, the internal structures of clusters become accessible.

The average within-cluster variation is considerably reduced setting α = 0.7. The use
of the α-threshold can therefore act as a posteriori filtering of genes. This contrasts with
previously discussed procedures which demand the problematic setting of a threshold a priori
to the cluster analysis To extract list of genes belonging to the cluster cores, the acore function
can be used.

6

Figure 2: Soft clusters of yeast cell cycle expression data. Yellow or green colored lines
correspond to genes with low membership value; red and purple colored lines correspond to
genes with high membership value. Note the peaks in negative and positive direction for some
clusters at time-point 90 min which may correspond to an experimental artifact.

7

5 Cluster stability

Variation of the FCM parameter m also allows investigation of the stability of clusters. We
define here stable clusters as clusters that show only minor changes in their structure with
variation of the parameter m. Stable clusters are generally well distinct of other clusters and
compact. This is contrasted by weak clusters that lose their internal structure or disappear if
m was increased.

> cl2 <- mfuzz(yeast.s,c=16,m=1.35)
> mfuzz.plot(yeast.s,cl=cl2,mfrow=c(4,4),time.labels=seq(0,160,10))

6 Global clustering structures

An interesting feature of soft clustering is the overlap or coupling between clusters. The
coupling coefficient Vkl between cluster k and cluster l can be defined by

Vkl =
1

N

N∑
i=1

µikµil (1)

where N is the total number of gene expression vectors. The coupling indicates how many
genes are shared by two clusters. Clusters which have a low coupling show distinct overall
patterns. If the coupling is large, clusters patterns are more similar. Hence, the coupling
defines a similarity measure for pairs of clusters.

> O <- overlap(cl)
> Ptmp <- overlap.plot(cl,over=O,thres=0.05)

This allows the analysis of global clustering structures obtained by soft clustering, since
relationships between clusters are defined. Similarly to hierarchical clustering, the global
clustering structure can be examined at different resolutions determined by the cluster number
c. For a small c, only the major clusters present in the data are obtained.

> cl3 <- mfuzz(yeast.s,c=10,m=1.25)
> mfuzz.plot(yeast.s,cl=cl3,mfrow=c(3,4))
> O3 <- overlap(cl3)
> overlap.plot(cl3,over=O3,P=Ptmp,thres=0.05)

8

If c is increased, sub-clusters with distinct patterns emerge Sub-clusters derived from a
major cluster are generally strongly coupled, since they share the overall expression pattern.
Finally, soft clustering produces empty clusters for further increase of c.

> cl4 <- mfuzz(yeast.s,c=25,m=1.25)
> mfuzz.plot(yeast.s,cl=cl4,mfrow=c(5,5))
> O4 <- overlap(cl4)
> overlap.plot(cl4,over=O4,P=Ptmp,thres=0.05)

7 Mfuzzgui - the graphical user interface for the Mfuzz package

The Mfuzzgui() function provides a graphical user interface for pre-processing, cluster analysis
and visualization of gene expression microarray data using the functions of the Mfuzz package.
The graphical interface is based on Tk widgets using the R-Tk interface developed by Peter
Dalgaard. It also employs some pre-made widgets from the Bioconductor-package tkWidgets
by Jianhua Zhang for the selection of objects or files to be loaded.

Mfuzzgui provides a convenient interface to most functions of the Mfuzz package with-
out restriction of flexibility. An exception is the batch processes such as partcoeff and
cselection routines which are used for parameter selection in fuzzy c-means clustering of
microarray data. These routines are not included in Mfuzzgui. To select various parameters,
the underlying Mfuzz routines may be applied.

Usage of Mfuzzgui assumes no existence of any exprSet objects and these objects can easily
be constructed using the Mfuzzgui package itself from tab-delimited text files containing the
gene expression data.

To start the graphical interface, type:

> Mfuzzgui()

A TclTk-Widget is launched (fig. 3). The use of the interface is intuitive. The GUI is
divided into five sections; the order of these sections reflects the order of a standard analysis
and visualisation procedure for a microarray data set:

1. Loading of data set

2. Pre-processing of the data set

3. Clustering

4. Cluster Analysis

5. Visualisation of Results of Clustering and Cluster Analysis

9

Note that only one data set can be analysed at a time. To visualize the results of various
clustering methods and cluster analysis, it is not necessary to save/export this data set and
reload it.

The general structure of the GUI is straight-forward. Each button corresponds to or is
very similar to the name of the corresponding function in the Mfuzz package. If additional
arguments for the function are needed, an input window is launched. Note that not everything
will be checked to be of correct type. While some checks are implemented (e.g. checks if the
loaded data set has the correct class), most arguments remains unchecked before the under-
lying function is called (e.g. it will not be checked if the array index is a positive integer.) If
errors are produced, the validity of the input arguments should be examined.

For details about the required types of arguments and corresponding functions, please refer
to the help pages of the Mfuzz package. In the following section, a brief introduction to the
functionality of Mfuzzgui is given. As an example, the dataset yeast can be loaded in the
global environment by

> data(yeast)

or alternatively can be loaded for analysis using the Browse objects buttons.

7.1 Loading data

exprSet object

• Browse objects Import of an exprSet object of class exprSet from the global environ-
ment (.GlobalEnv). A window produced by the function objectBrowser of the tkWid-
gets package is generated. Note that, although several objects can be selected, only the
first selected object will be loaded. A check is performed if the object to be loaded
belongs to the correct classes.

• Browse files Loading of an R data set of class exprSet stored in a file. A window pro-
duced by the function fileBrowser of the tkWidgets package is generated. Note that,
although several files can be selected, only the first selected file is loaded. A check is
performed if the object to be loaded belongs to the correct classes.

• Load table Construction and loading of an exprSet object from a tab-delimited data
file. A window produced by the function fileBrowser of the tkWidgets package is gen-
erated. It is user’s responsibility to use a correctly formated file (see also figure 4).
The first row of the file contains sample labels and optionally, the second column can
contains the time points. If the second row is used for the input the time, the first field
in the second row must contain “Time”. Similarly, the first column contains unique gene
IDs and optionally second row can contain gene names. If the second row contains gene
names, the second field in the first row must contain “Gene.Name”. The rest of the file
contains expression data. As example, two tables with expression data are provided.

10

Figure 3: Screenshot of Mfuzzgui window

11

Figure 4: Format of table for direct uploading. The row and column highlighted by yellow
are optinal and their content is not utilized for clustering. Thus, they can potentially contain
information other than the time of measurments or the gene name. However, the labels of
these columns have to be as indicated in order to be recognized by Mfuzzgui.

These examples can be view by inputing data(yeast.table) and data(yeast.table2)
in the R console.

The name of the current exprSet object is shown in the text fields below the buttons once
they are loaded into the current environment.

7.2 Pre-processing

• Filter missing values: This button performs two tasks. First it generates a pop-up win-
dow for the selection of threshold value for filtering the genes. Then after pressing the
OK button of the pop-up window, it removes the genes which have more NAs (missing
values) than the specified threshold value.

• Fill missing values Like before, this button again accomplishes two tasks. First it pro-
duces a pop-up window asking for the parameter values and method to be used for the
replacement of missing values. After pressing the OK button, it replaces the missing
values present in the partially processed data set using the user specified method and
parameter values.

• Standardise Call of the function standardise. This step will standardise the gene
expression values so that they have a mean value of zero and a standard deviation of
one.

• Save object This button can be used to save the pre-processed object to some R data
file. A window is generated to enable the user specify the file name where the object is

12

to be stored.

• Save table This button can be used to save the pre-processed data in a tabular form in
some disk file. A pop-up window is generated to facilitate user to specify the file name
which can later be used to reload the data in the form of an exprSet object.

7.3 Clustering

• Fuzzy C-means: Call of function mfuzz. This button performs the fuzzy c-means clus-
tering of the data. A new window is generated so that user can specify the parameter
values which are to be used in clustering the data.

• K-means Call of the function kmeans2. This button can be used for performing the
standard k-means clustering. The parameter values can be specified in the pop-up win-
dow.

• Export clustering This button can be used to save the results of clustering into a text
file. In the case of fuzzy C-means method, it stores the membership values of each gene
for each cluster in a tabular format whereas for the k-means method, it stores the cluster
vector containing the cluster numbers corresponding to each gene.

Note that the clustering is based soley on the exprs matrix and no information is used
from the phenoData. In particular, the ordering of samples (arrays) is the same as the ordering
of the columns in the exprs matrix. Also, replicated arrays in the exprs matrix are treated
as independent by the mfuzz function i.e. they should be averagered prior to clustering or
placed into different distinct ExpressionSet objects. Similarly, if a table has been uploaded,
the ordering of the samples is based on the ordering of the columns and not on the time of
measurements given in the optinal second row.

7.4 Cluster Analysis

• Cluster cores Call to the function acore.This function extracts genes forming the alpha
cores of soft clusters. The minimum membership value can be specified in the pop-up
window.

• Overlap Call to the function overlap. This function calculates the overlap of clusters
produced by mfuzz.

• Export acore data This button exports the results produced by Cluster cores button
in a text file.

13

• Export overlap data This button, like the previous one also saves the results generated
by Overlap button into a text file. To see the details please refer to the documentation
of Mfuzz package.

7.5 Visualisation

• Soft clustering Call to the function mfuzz.plot. This button can be used to visualise
the results of soft clustering in the form of color-coded plots. Some parameters can be
specified in the pop-up window.

• Hard Clustering Call to the function kmeans2.plot. This function visualises the clus-
ters produced by mfuzz.

• Overlap Call to the function overlap.plot. This function visualises the cluster over-
lap produced by Overlap.

7.6 Help

Apart from the documentations provided with the Mfuzzgui package, there are help buttons in
each section of the Mfuzzgui GUI. When one clicks on a help button, it gives a brief overview
in a message box of what each button in the corresponding section does.

References

[1] M.E. Futschik and B. Charlisle, Noise robust clustering of gene expression time-course
data, Journal of Bioinformatics and Computational Biology, Vol. 3, No. 4, 965-988, 2005

[2] L. Kumar and M. Futschik, Mfuzz: a software package for soft clustering of microarray
data, Bioinformation, 2(1) 5-7,2007

[3] Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG,
Gabrielian AE, Landsman D, Lockhart DJ, Davis RW, A genome-wide transcriptional
analysis of the mitotic cell cycle, Mol Cell, 2:65–73, 1998

[4] Bezdak JC, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press,
New York, 1981

[5] Schwaemmle and Jensen, Bioinformatics,Vol. 26 (22), 2841-2848, 2010

14

