DelayedTensor 1.17.0
Authors: Koki Tsuyuzaki [aut, cre]
Last modified: 2025-10-21 16:26:44.753785
Compiled: Fri Oct 31 17:28:49 2025
einsumeinsum is an easy and intuitive way to write tensor operations.
It was originally introduced by
Numpy1 https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
package of Python but similar tools have been implemented in other languages
(e.g. R, Julia) inspired by Numpy.
In this vignette, we will use CRAN einsum package first.
einsum is named after
Einstein summation2 https://en.wikipedia.org/wiki/Einstein_notation
introduced by Albert Einstein,
which is a notational convention that implies summation over
a set of indexed terms in a formula.
Here, we consider a simple example of einsum; matrix multiplication.
If we naively implement the matrix multiplication,
the calculation would look like the following in a for loop.
A <- matrix(runif(3*4), nrow=3, ncol=4)
B <- matrix(runif(4*5), nrow=4, ncol=5)
C <- matrix(0, nrow=3, ncol=5)
I <- nrow(A)
J <- ncol(A)
K <- ncol(B)
for(i in 1:I){
for(j in 1:J){
for(k in 1:K){
C[i,k] = C[i,k] + A[i,j] * B[j,k]
}
}
}
Therefore, any programming language can implement this. However, when analyzing tensor data, such operations tend to be more complicated and increase the possibility of causing bugs because the order of tensors is larger or more tensors are handled simultaneously. In addition, several programming languages, especially R, are known to significantly slow down the speed of computation if the code is written in for loop.
Obviously, in the case of the R language, it should be executed using the built-in matrix multiplication function (%*%) prepared by the R, as shown below.
C <- A %*% B
However, more complex operations than matrix multiplication are not always provided by programming languages as standard.
einsum is a function that solves such a problem.
To put it simply, einsum is a wrapper for the for loop above.
Like the Einstein summation, it omits many notations such as for,
array size (e.g. I, J, and K), brackets (e.g. {}, (), and []),
and even addition operator (+) and
extracts the array subscripts (e.g. i, j, and k)
to concisely express the tensor operation as follows.
suppressPackageStartupMessages(library("einsum"))
C <- einsum('ij,jk->ik', A, B)
DelayedTensorCRAN einsum is easy to use because the syntax is almost
the same as that of Numpy‘s einsum,
except that it prohibits the implicit modes that do not use’->’.
It is extremely fast because the internal calculation
is actually performed by C++.
When the input tensor is huge, however,
it is not scalable because it assumes that the input is R’s standard array.
Using einsum of DelayedTensor,
we can augment the CRAN einsum’s functionality;
in DelayedTensor,
the input DelayedArray objects are divided into
multiple block tensors and the CRAN einsum
is incremently applied in the block processing.
A surprisingly large number of tensor operations can be handled
uniformly in einsum.
In more detail, einsum is capable of performing any tensor operation
that can be described by a combination of the following
three operations3 https://ajcr.net/Basic-guide-to-einsum/.
Some typical operations are introduced below. Here we use the arrays and DelayedArray objects below.
suppressPackageStartupMessages(library("DelayedTensor"))
suppressPackageStartupMessages(library("DelayedArray"))
arrA <- array(runif(3), dim=c(3))
arrB <- array(runif(3*3), dim=c(3,3))
arrC <- array(runif(3*4), dim=c(3,4))
arrD <- array(runif(3*3*3), dim=c(3,3,3))
arrE <- array(runif(3*4*5), dim=c(3,4,5))
darrA <- DelayedArray(arrA)
darrB <- DelayedArray(arrB)
darrC <- DelayedArray(arrC)
darrD <- DelayedArray(arrD)
darrE <- DelayedArray(arrE)
If the same subscript is written on both sides of ->,
einsum will simply output the object without any calculation.
einsum::einsum('i->i', arrA)
## [1] 0.6642120 0.4651370 0.5486966
DelayedTensor::einsum('i->i', darrA)
## <3> DelayedArray object of type "double":
## [1] [2] [3]
## 0.6642120 0.4651370 0.5486966
einsum::einsum('ij->ij', arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.1394184 0.9789374 0.2500528 0.4478540
## [2,] 0.7438522 0.1133659 0.3218046 0.2273018
## [3,] 0.5589536 0.8247054 0.3643696 0.2744393
DelayedTensor::einsum('ij->ij', darrC)
## <3 x 4> DelayedArray object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.1394184 0.9789374 0.2500528 0.4478540
## [2,] 0.7438522 0.1133659 0.3218046 0.2273018
## [3,] 0.5589536 0.8247054 0.3643696 0.2744393
einsum::einsum('ijk->ijk', arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5151145 0.1515130 0.9627853 0.04955566
## [2,] 0.3013725 0.4792008 0.8645018 0.16719959
## [3,] 0.3952423 0.5559293 0.7036041 0.55184719
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9400719 0.08510745 0.9866278 0.9032028
## [2,] 0.1372520 0.29100045 0.8273950 0.6167829
## [3,] 0.1150957 0.03731447 0.6830950 0.8526163
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8116182 0.1376405 0.4671650 0.3529614
## [2,] 0.7208678 0.1883548 0.4333034 0.6338511
## [3,] 0.4533844 0.7580648 0.8640663 0.8909169
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8047085 0.9011789 0.3914012 0.6744287
## [2,] 0.1590672 0.5939951 0.5376426 0.4289432
## [3,] 0.6578105 0.1998059 0.3896633 0.8802339
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8618910 0.7326322 0.05559044 0.2262260
## [2,] 0.7395325 0.9741483 0.10050033 0.4872871
## [3,] 0.6650338 0.1015403 0.31590352 0.5326322
DelayedTensor::einsum('ijk->ijk', darrE)
## <3 x 4 x 5> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.51511447 0.15151303 0.96278530 0.04955566
## [2,] 0.30137254 0.47920079 0.86450180 0.16719959
## [3,] 0.39524235 0.55592935 0.70360409 0.55184719
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.94007194 0.08510745 0.98662781 0.90320283
## [2,] 0.13725196 0.29100045 0.82739503 0.61678286
## [3,] 0.11509568 0.03731447 0.68309503 0.85261628
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.8116182 0.1376405 0.4671650 0.3529614
## [2,] 0.7208678 0.1883548 0.4333034 0.6338511
## [3,] 0.4533844 0.7580648 0.8640663 0.8909169
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.8047085 0.9011789 0.3914012 0.6744287
## [2,] 0.1590672 0.5939951 0.5376426 0.4289432
## [3,] 0.6578105 0.1998059 0.3896633 0.8802339
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.86189097 0.73263224 0.05559044 0.22622605
## [2,] 0.73953246 0.97414829 0.10050033 0.48728713
## [3,] 0.66503376 0.10154032 0.31590352 0.53263225
We can also extract the diagonal elements as follows.
einsum::einsum('ii->i', arrB)
## [1] 0.7703020 0.3160546 0.7985787
DelayedTensor::einsum('ii->i', darrB)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.7703020 0.3160546 0.7985787
einsum::einsum('iii->i', arrD)
## [1] 0.9834322 0.1739180 0.3851428
DelayedTensor::einsum('iii->i', darrD)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.9834322 0.1739180 0.3851428
By using multiple arrays or DelayedArray objects as input and writing “,” on the right side of ->, multiplication will be performed.
Hadamard Product can also be implemented in einsum,
multiplying by the product of each element.
einsum::einsum('i,i->i', arrA, arrA)
## [1] 0.4411775 0.2163524 0.3010679
DelayedTensor::einsum('i,i->i', darrA, darrA)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.4411775 0.2163524 0.3010679
einsum::einsum('ij,ij->ij', arrC, arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.01943749 0.95831842 0.06252638 0.20057325
## [2,] 0.55331604 0.01285182 0.10355823 0.05166612
## [3,] 0.31242915 0.68013894 0.13276524 0.07531696
DelayedTensor::einsum('ij,ij->ij', darrC, darrC)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.01943749 0.95831842 0.06252638 0.20057325
## [2,] 0.55331604 0.01285182 0.10355823 0.05166612
## [3,] 0.31242915 0.68013894 0.13276524 0.07531696
einsum::einsum('ijk,ijk->ijk', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.26534292 0.0229562 0.9269555 0.002455763
## [2,] 0.09082541 0.2296334 0.7473634 0.027955701
## [3,] 0.15621651 0.3090574 0.4950587 0.304535325
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.88373525 0.007243278 0.9734344 0.8157754
## [2,] 0.01883810 0.084681264 0.6845825 0.3804211
## [3,] 0.01324702 0.001392369 0.4666188 0.7269545
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6587241 0.01894491 0.2182431 0.1245817
## [2,] 0.5196504 0.03547752 0.1877519 0.4017673
## [3,] 0.2055574 0.57466227 0.7466105 0.7937329
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.64755576 0.8121234 0.1531949 0.4548541
## [2,] 0.02530239 0.3528302 0.2890596 0.1839922
## [3,] 0.43271463 0.0399224 0.1518375 0.7748118
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.7428561 0.53675001 0.003090297 0.05117823
## [2,] 0.5469083 0.94896490 0.010100316 0.23744875
## [3,] 0.4422699 0.01031044 0.099795031 0.28369711
DelayedTensor::einsum('ijk,ijk->ijk', darrE, darrE)
## <3 x 4 x 5> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.265342915 0.022956197 0.926955542 0.002455763
## [2,] 0.090825410 0.229633394 0.747363370 0.027955701
## [3,] 0.156216512 0.309057440 0.495058711 0.304535325
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.883735253 0.007243278 0.973434440 0.815775353
## [2,] 0.018838100 0.084681264 0.684582537 0.380421101
## [3,] 0.013247016 0.001392369 0.466618822 0.726954520
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.65872411 0.01894491 0.21824312 0.12458172
## [2,] 0.51965044 0.03547752 0.18775187 0.40176726
## [3,] 0.20555739 0.57466227 0.74661049 0.79373293
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.64755576 0.81212343 0.15319489 0.45485408
## [2,] 0.02530239 0.35283016 0.28905960 0.18399225
## [3,] 0.43271463 0.03992240 0.15183747 0.77481180
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.742856051 0.536750006 0.003090297 0.051178225
## [2,] 0.546908261 0.948964898 0.010100316 0.237448749
## [3,] 0.442269899 0.010310437 0.099795031 0.283697113
The outer product can also be implemented in einsum,
in which the subscripts in the input array are all different,
and all of them are kept.
einsum::einsum('i,j->ij', arrA, arrA)
## [,1] [,2] [,3]
## [1,] 0.4411775 0.3089495 0.3644508
## [2,] 0.3089495 0.2163524 0.2552191
## [3,] 0.3644508 0.2552191 0.3010679
DelayedTensor::einsum('i,j->ij', darrA, darrA)
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.4411775 0.3089495 0.3644508
## [2,] 0.3089495 0.2163524 0.2552191
## [3,] 0.3644508 0.2552191 0.3010679
einsum::einsum('ij,klm->ijklm', arrC, arrE)
## , , 1, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07181643 0.5042648 0.1288058 0.2306961
## [2,] 0.38316901 0.0583964 0.1657662 0.1170865
## [3,] 0.28792509 0.4248177 0.1876921 0.1413677
##
## , , 2, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04201687 0.29502485 0.07535904 0.13497091
## [2,] 0.22417662 0.03416536 0.09698308 0.06850253
## [3,] 0.16845327 0.24854355 0.10981101 0.08270848
##
## , , 3, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05510405 0.3869175 0.09883144 0.1770109
## [2,] 0.29400187 0.0448070 0.12719082 0.0898393
## [3,] 0.22092214 0.3259585 0.14401431 0.1084701
##
## , , 1, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02112370 0.14832177 0.03788625 0.06785572
## [2,] 0.11270329 0.01717641 0.04875760 0.03443919
## [3,] 0.08468875 0.12495361 0.05520675 0.04158114
##
## , , 2, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0668094 0.46910757 0.1198255 0.2146120
## [2,] 0.3564545 0.05432502 0.1542090 0.1089232
## [3,] 0.2678510 0.39519946 0.1746062 0.1315116
##
## , , 3, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07750677 0.54422003 0.1390117 0.2489752
## [2,] 0.41352925 0.06302342 0.1789006 0.1263638
## [3,] 0.31073872 0.45847792 0.2025638 0.1525689
##
## , , 1, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1342300 0.9425065 0.2407471 0.4311873
## [2,] 0.7161699 0.1091470 0.3098288 0.2188428
## [3,] 0.5381523 0.7940142 0.3508097 0.2642262
##
## , , 2, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1205274 0.84629314 0.2161711 0.3871706
## [2,] 0.6430615 0.09800501 0.2782007 0.1965028
## [3,] 0.4832164 0.71295928 0.3149982 0.2372533
##
## , , 3, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09809534 0.68878435 0.1759381 0.3151119
## [2,] 0.52337742 0.07976469 0.2264231 0.1599305
## [3,] 0.39328205 0.58026607 0.2563720 0.1930966
##
## , , 1, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.00690897 0.048511888 0.01239153 0.02219370
## [2,] 0.03686208 0.005617921 0.01594724 0.01126409
## [3,] 0.02769931 0.040868818 0.01805658 0.01360002
##
## , , 2, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02331070 0.16367793 0.04180872 0.07488101
## [2,] 0.12437177 0.01895473 0.05380560 0.03800477
## [3,] 0.09345681 0.13789040 0.06092245 0.04588615
##
## , , 3, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07693764 0.54022385 0.1379909 0.2471470
## [2,] 0.41049273 0.06256064 0.1775870 0.1254359
## [3,] 0.30845698 0.45511134 0.2010764 0.1514486
##
## , , 1, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1310633 0.9202716 0.2350676 0.4210150
## [2,] 0.6992745 0.1065721 0.3025195 0.2136801
## [3,] 0.5254566 0.7752824 0.3425337 0.2579927
##
## , , 2, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01913545 0.13436108 0.03432023 0.06146885
## [2,] 0.10209517 0.01555969 0.04416832 0.03119762
## [3,] 0.07671748 0.11319243 0.05001045 0.03766734
##
## , , 3, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01604645 0.11267147 0.02877999 0.05154607
## [2,] 0.08561417 0.01304792 0.03703833 0.02616146
## [3,] 0.06433315 0.09492003 0.04193737 0.03158678
##
## , , 1, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01186554 0.083314866 0.02128135 0.03811572
## [2,] 0.06330736 0.009648281 0.02738797 0.01934508
## [3,] 0.04757112 0.070188571 0.03101057 0.02335683
##
## , , 2, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04057081 0.28487123 0.07276547 0.13032573
## [2,] 0.21646132 0.03298952 0.09364530 0.06614493
## [3,] 0.16265576 0.23998964 0.10603173 0.07986197
##
## , , 3, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.005202322 0.036528525 0.009330585 0.016711434
## [2,] 0.027756446 0.004230187 0.012007968 0.008481646
## [3,] 0.020857055 0.030773440 0.013596259 0.010240557
##
## , , 1, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1375541 0.9658469 0.2467090 0.4418653
## [2,] 0.7339052 0.1118499 0.3175014 0.2242623
## [3,] 0.5514792 0.8136773 0.3594972 0.2707695
##
## , , 2, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1153541 0.80996794 0.2068924 0.3705522
## [2,] 0.6154596 0.09379836 0.2662596 0.1880684
## [3,] 0.4624754 0.68235712 0.3014776 0.2270698
##
## , , 3, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0952360 0.66870727 0.1708098 0.3059269
## [2,] 0.5081217 0.07743967 0.2198232 0.1552687
## [3,] 0.3818184 0.56335214 0.2488991 0.1874682
##
## , , 1, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1259231 0.8841790 0.2258484 0.4045030
## [2,] 0.6718494 0.1023924 0.2906549 0.2052996
## [3,] 0.5048485 0.7448762 0.3290997 0.2478744
##
## , , 2, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08599087 0.60379181 0.1542283 0.2762287
## [2,] 0.45879527 0.06992213 0.1984836 0.1401959
## [3,] 0.34475301 0.50866414 0.2247370 0.1692695
##
## , , 3, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1188704 0.83465796 0.2131991 0.3818477
## [2,] 0.6342205 0.09665759 0.2743759 0.1938012
## [3,] 0.4765730 0.70315722 0.3106675 0.2339915
##
## , , 1, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1131545 0.79452341 0.2029474 0.3634865
## [2,] 0.6037240 0.09200981 0.2611825 0.1844823
## [3,] 0.4536569 0.66934589 0.2957290 0.2227400
##
## , , 2, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1005022 0.70568448 0.1802550 0.3228436
## [2,] 0.5362191 0.08172181 0.2319786 0.1638546
## [3,] 0.4029317 0.59450358 0.2626624 0.1978345
##
## , , 3, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06321012 0.44383492 0.1133700 0.2030500
## [2,] 0.33725095 0.05139832 0.1459012 0.1030551
## [3,] 0.25342084 0.37390853 0.1651995 0.1244265
##
## , , 1, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01918962 0.13474145 0.03441739 0.06164287
## [2,] 0.10238420 0.01560374 0.04429336 0.03128594
## [3,] 0.07693467 0.11351288 0.05015203 0.03777398
##
## , , 2, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02626012 0.1843875 0.04709863 0.08435545
## [2,] 0.14010811 0.0213530 0.06061344 0.04281338
## [3,] 0.10528158 0.1553372 0.06863076 0.05169196
##
## , , 3, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1056882 0.74209800 0.1895562 0.3395024
## [2,] 0.5638882 0.08593868 0.2439488 0.1723095
## [3,] 0.4237231 0.62518012 0.2762158 0.2080428
##
## , , 1, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06513139 0.45732527 0.1168159 0.2092217
## [2,] 0.34750168 0.05296057 0.1503359 0.1061875
## [3,] 0.26112356 0.38527347 0.1702207 0.1282085
##
## , , 2, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06041047 0.42417694 0.1083487 0.19405670
## [2,] 0.32231370 0.04912182 0.1394391 0.09849066
## [3,] 0.24219653 0.35734767 0.1578826 0.11891551
##
## , , 3, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1204667 0.84586677 0.2160621 0.3869756
## [2,] 0.6427375 0.09795563 0.2780605 0.1964038
## [3,] 0.4829730 0.71260007 0.3148395 0.2371338
##
## , , 1, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0492093 0.34552707 0.08825896 0.15807517
## [2,] 0.2625511 0.04001377 0.11358460 0.08022876
## [3,] 0.1972890 0.29108912 0.12860840 0.09686648
##
## , , 2, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0883705 0.62050058 0.1584962 0.2838728
## [2,] 0.4714915 0.07185709 0.2039762 0.1440755
## [3,] 0.3542934 0.52274043 0.2309561 0.1739537
##
## , , 3, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1242102 0.8721519 0.2227762 0.3990007
## [2,] 0.6627105 0.1009996 0.2867012 0.2025070
## [3,] 0.4979812 0.7347440 0.3246231 0.2445027
##
## , , 1, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1121912 0.78775923 0.2012196 0.3603920
## [2,] 0.5985841 0.09122648 0.2589589 0.1829117
## [3,] 0.4497947 0.66364741 0.2932113 0.2208437
##
## , , 2, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02217690 0.1557169 0.03977520 0.07123891
## [2,] 0.11832252 0.0180328 0.05118858 0.03615627
## [3,] 0.08891121 0.1311836 0.05795928 0.04365431
##
## , , 3, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09171087 0.64395528 0.1644873 0.2946031
## [2,] 0.48931375 0.07457326 0.2116865 0.1495215
## [3,] 0.36768555 0.54249983 0.2396862 0.1805291
##
## , , 1, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1256409 0.8821977 0.2253423 0.4035966
## [2,] 0.6703439 0.1021629 0.2900036 0.2048396
## [3,] 0.5037172 0.7432071 0.3283622 0.2473190
##
## , , 2, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08281383 0.58148400 0.1485301 0.2660231
## [2,] 0.44184453 0.06733877 0.1911504 0.1350162
## [3,] 0.33201570 0.48987093 0.2164338 0.1630156
##
## , , 3, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02785662 0.19559747 0.04996202 0.08948388
## [2,] 0.14862606 0.02265117 0.06429847 0.04541625
## [3,] 0.11168223 0.16478100 0.07280321 0.05483460
##
## , , 1, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05456852 0.38315726 0.09787095 0.1752906
## [2,] 0.29114462 0.04437154 0.12595472 0.0889662
## [3,] 0.21877511 0.32279066 0.14261471 0.1074159
##
## , , 2, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07495727 0.52631848 0.1344390 0.2407854
## [2,] 0.39992664 0.06095033 0.1730159 0.1222071
## [3,] 0.30051730 0.44339677 0.1959007 0.1475503
##
## , , 3, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05432622 0.38145595 0.09743638 0.17451228
## [2,] 0.28985187 0.04417452 0.12539545 0.08857117
## [3,] 0.21780370 0.32135740 0.14198147 0.10693894
##
## , , 1, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09402776 0.6602235 0.1686428 0.3020456
## [2,] 0.50167525 0.0764572 0.2170343 0.1532989
## [3,] 0.37697437 0.5562050 0.2457414 0.1850898
##
## , , 2, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05980256 0.41990851 0.1072584 0.19210394
## [2,] 0.31907031 0.04862752 0.1380359 0.09749956
## [3,] 0.23975934 0.35375174 0.1562939 0.11771888
##
## , , 3, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1227208 0.86169393 0.2201049 0.3942163
## [2,] 0.6547639 0.09978849 0.2832634 0.2000788
## [3,] 0.4920099 0.72593366 0.3207305 0.2415708
##
## , , 1, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1201634 0.84373730 0.2155182 0.3860014
## [2,] 0.6411195 0.09770903 0.2773605 0.1959094
## [3,] 0.4817571 0.71080611 0.3140469 0.2365368
##
## , , 2, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1031044 0.72395598 0.1849221 0.3312026
## [2,] 0.5501028 0.08383775 0.2379850 0.1680971
## [3,] 0.4133643 0.60989639 0.2694632 0.2029568
##
## , , 3, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09271793 0.65102641 0.1662935 0.2978381
## [2,] 0.49468680 0.07539214 0.2140110 0.1511634
## [3,] 0.37172302 0.54845691 0.2423181 0.1825114
##
## , , 1, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1021424 0.7172011 0.1831967 0.3281123
## [2,] 0.5449701 0.0830555 0.2357645 0.1665286
## [3,] 0.4095074 0.6042057 0.2669490 0.2010631
##
## , , 2, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1358142 0.9536302 0.2435885 0.4362763
## [2,] 0.7246223 0.1104352 0.3134854 0.2214257
## [3,] 0.5445037 0.8033853 0.3549501 0.2673446
##
## , , 3, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01415659 0.09940162 0.02539044 0.04547524
## [2,] 0.07553099 0.01151121 0.03267615 0.02308030
## [3,] 0.05675633 0.08374085 0.03699821 0.02786666
##
## , , 1, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.007750329 0.054419558 0.01390054 0.02489640
## [2,] 0.041351067 0.006302059 0.01788926 0.01263581
## [3,] 0.031072476 0.045845732 0.02025547 0.01525620
##
## , , 2, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01401159 0.09838353 0.02513038 0.04500948
## [2,] 0.07475739 0.01139331 0.03234147 0.02284391
## [3,] 0.05617502 0.08288316 0.03661927 0.02758124
##
## , , 3, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04404276 0.30924976 0.07899255 0.14147867
## [2,] 0.23498551 0.03581268 0.10165922 0.07180544
## [3,] 0.17657541 0.26052732 0.11510565 0.08669635
##
## , , 1, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03154007 0.22146114 0.05656845 0.10131625
## [2,] 0.16827874 0.02564631 0.07280059 0.05142159
## [3,] 0.12644987 0.18656984 0.08242991 0.06208533
##
## , , 2, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06793678 0.47702360 0.1218475 0.2182335
## [2,] 0.36246959 0.05524173 0.1568113 0.1107613
## [3,] 0.27237090 0.40186831 0.1775526 0.1337308
##
## , , 3, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07425873 0.52141363 0.1331862 0.2385415
## [2,] 0.39619965 0.06038232 0.1714035 0.1210683
## [3,] 0.29771672 0.43926467 0.1940750 0.1461752
DelayedTensor::einsum('ij,klm->ijklm', darrC, darrE)
## <3 x 4 x 3 x 4 x 5> HDF5Array object of type "double":
## ,,1,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.07181643 0.50426482 0.12880579 0.23069610
## [2,] 0.38316901 0.05839640 0.16576623 0.11708646
## [3,] 0.28792509 0.42481767 0.18769208 0.14136768
##
## ,,2,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.04201687 0.29502485 0.07535904 0.13497091
## [2,] 0.22417662 0.03416536 0.09698308 0.06850253
## [3,] 0.16845327 0.24854355 0.10981101 0.08270848
##
## ,,3,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.05510405 0.38691751 0.09883144 0.17701089
## [2,] 0.29400187 0.04480700 0.12719082 0.08983930
## [3,] 0.22092214 0.32595848 0.14401431 0.10847005
##
## ...
##
## ,,1,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.03154007 0.22146114 0.05656845 0.10131625
## [2,] 0.16827874 0.02564631 0.07280059 0.05142159
## [3,] 0.12644987 0.18656984 0.08242991 0.06208533
##
## ,,2,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.06793678 0.47702360 0.12184749 0.21823352
## [2,] 0.36246959 0.05524173 0.15681126 0.11076125
## [3,] 0.27237090 0.40186831 0.17755264 0.13373076
##
## ,,3,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.07425873 0.52141363 0.13318616 0.23854151
## [2,] 0.39619965 0.06038232 0.17140353 0.12106828
## [3,] 0.29771672 0.43926467 0.19407503 0.14617525
If there is a vanishing subscript on the left or right side of ->, the summation is done for that subscript.
einsum::einsum('i->', arrA)
## [1] 1.678046
DelayedTensor::einsum('i->', darrA)
## <1> HDF5Array object of type "double":
## [1]
## 1.678046
einsum::einsum('ij->', arrC)
## [1] 5.245055
DelayedTensor::einsum('ij->', darrC)
## <1> HDF5Array object of type "double":
## [1]
## 5.245055
einsum::einsum('ijk->', arrE)
## [1] 31.29742
DelayedTensor::einsum('ijk->', darrE)
## <1> HDF5Array object of type "double":
## [1]
## 31.29742
einsum::einsum('ij->i', arrC)
## [1] 1.816263 1.406324 2.022468
DelayedTensor::einsum('ij->i', darrC)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 1.816263 1.406324 2.022468
einsum::einsum('ij->j', arrC)
## [1] 1.4422242 1.9170086 0.9362270 0.9495952
DelayedTensor::einsum('ij->j', darrC)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 1.4422242 1.9170086 0.9362270 0.9495952
einsum::einsum('ijk->i', arrE)
## [1] 11.011421 9.682199 10.603800
DelayedTensor::einsum('ijk->i', darrE)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 11.011421 9.682199 10.603800
einsum::einsum('ijk->j', arrE)
## [1] 8.278063 6.187426 8.583245 8.248685
DelayedTensor::einsum('ijk->j', darrE)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 8.278063 6.187426 8.583245 8.248685
einsum::einsum('ijk->k', arrE)
## [1] 5.697866 6.475562 6.712195 6.618879 5.792918
DelayedTensor::einsum('ijk->k', darrE)
## <5> HDF5Array object of type "double":
## [1] [2] [3] [4] [5]
## 5.697866 6.475562 6.712195 6.618879 5.792918
These are the same as what the modeSum function does.
einsum::einsum('ijk->ij', arrE)
## [,1] [,2] [,3] [,4]
## [1,] 3.933404 2.008072 2.863570 2.206375
## [2,] 2.058092 2.526699 2.763343 2.334064
## [3,] 2.286567 1.652655 2.956332 3.708247
DelayedTensor::einsum('ijk->ij', darrE)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 3.933404 2.008072 2.863570 2.206375
## [2,] 2.058092 2.526699 2.763343 2.334064
## [3,] 2.286567 1.652655 2.956332 3.708247
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.2117294 1.1924196 1.985870 1.621586 2.2664572
## [2,] 1.1866432 0.4134224 1.084060 1.694980 1.8083209
## [3,] 2.5308912 2.4971179 1.764535 1.318707 0.4719943
## [4,] 0.7686024 2.3726020 1.877729 1.983606 1.2461454
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.2117294 1.1924196 1.9858704 1.6215862 2.2664572
## [2,] 1.1866432 0.4134224 1.0840601 1.6949799 1.8083209
## [3,] 2.5308912 2.4971179 1.7645347 1.3187071 0.4719943
## [4,] 0.7686024 2.3726020 1.8777294 1.9836058 1.2461454
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.2117294 1.1924196 1.985870 1.621586 2.2664572
## [2,] 1.1866432 0.4134224 1.084060 1.694980 1.8083209
## [3,] 2.5308912 2.4971179 1.764535 1.318707 0.4719943
## [4,] 0.7686024 2.3726020 1.877729 1.983606 1.2461454
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.2117294 1.1924196 1.9858704 1.6215862 2.2664572
## [2,] 1.1866432 0.4134224 1.0840601 1.6949799 1.8083209
## [3,] 2.5308912 2.4971179 1.7645347 1.3187071 0.4719943
## [4,] 0.7686024 2.3726020 1.8777294 1.9836058 1.2461454
If we take the diagonal elements of a matrix
and add them together, we get trace.
einsum::einsum('ii->', arrB)
## [1] 1.884935
DelayedTensor::einsum('ii->', darrB)
## <1> HDF5Array object of type "double":
## [1]
## 1.884935
By changing the order of the indices on the left and right side of ->, we can get a sorted array or DelayedArray.
einsum::einsum('ij->ji', arrB)
## [,1] [,2] [,3]
## [1,] 0.77030196 0.1367265 0.19206457
## [2,] 0.30522497 0.3160546 0.05176618
## [3,] 0.08523346 0.2429886 0.79857869
DelayedTensor::einsum('ij->ji', darrB)
## <3 x 3> DelayedArray object of type "double":
## [,1] [,2] [,3]
## [1,] 0.77030196 0.13672648 0.19206457
## [2,] 0.30522497 0.31605462 0.05176618
## [3,] 0.08523346 0.24298863 0.79857869
einsum::einsum('ijk->jki', arrD)
## , , 1
##
## [,1] [,2] [,3]
## [1,] 0.9834322 0.1552073 0.7141006
## [2,] 0.1583481 0.1727339 0.8592959
## [3,] 0.7088734 0.9606377 0.6367972
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] 0.8417612 0.6055044 0.5987732
## [2,] 0.3157352 0.1739180 0.5995460
## [3,] 0.8248322 0.3263473 0.6993484
##
## , , 3
##
## [,1] [,2] [,3]
## [1,] 0.8832871 0.9748028 0.3041330
## [2,] 0.5446688 0.4902163 0.6051293
## [3,] 0.7375910 0.6512484 0.3851428
DelayedTensor::einsum('ijk->jki', darrD)
## <3 x 3 x 3> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3]
## [1,] 0.9834322 0.1552073 0.7141006
## [2,] 0.1583481 0.1727339 0.8592959
## [3,] 0.7088734 0.9606377 0.6367972
##
## ,,2
## [,1] [,2] [,3]
## [1,] 0.8417612 0.6055044 0.5987732
## [2,] 0.3157352 0.1739180 0.5995460
## [3,] 0.8248322 0.3263473 0.6993484
##
## ,,3
## [,1] [,2] [,3]
## [1,] 0.8832871 0.9748028 0.3041330
## [2,] 0.5446688 0.4902163 0.6051293
## [3,] 0.7375910 0.6512484 0.3851428
Some examples of combining Multiplication and Summation are shown below.
Inner Product first calculate Hadamard Product and collapses it to 0D tensor (norm).
einsum::einsum('i,i->', arrA, arrA)
## [1] 0.9585979
DelayedTensor::einsum('i,i->', darrA, darrA)
## <1> HDF5Array object of type "double":
## [1]
## 0.9585979
einsum::einsum('ij,ij->', arrC, arrC)
## [1] 3.162898
DelayedTensor::einsum('ij,ij->', darrC, darrC)
## <1> HDF5Array object of type "double":
## [1]
## 3.162898
einsum::einsum('ijk,ijk->', arrE, arrE)
## [1] 21.35255
DelayedTensor::einsum('ijk,ijk->', darrE, darrE)
## <1> HDF5Array object of type "double":
## [1]
## 21.35255
The inner product is an operation that eliminates all subscripts, while the outer product is an operation that leaves all subscripts intact. In the middle of the two, the operation that eliminates some subscripts while keeping others by summing them is called contracted product.
einsum::einsum('ijk,ijk->jk', arrE, arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.5123848 0.91582037 1.3839319 1.105573 1.7320342
## [2,] 0.5616470 0.09331691 0.6290847 1.204876 1.4960253
## [3,] 2.1693776 2.12463580 1.1526055 0.594092 0.1129856
## [4,] 0.3349468 1.92315097 1.3200819 1.413658 0.5723241
DelayedTensor::einsum('ijk,ijk->jk', darrE, darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.51238484 0.91582037 1.38393194 1.10557278 1.73203421
## [2,] 0.56164703 0.09331691 0.62908471 1.20487599 1.49602534
## [3,] 2.16937762 2.12463580 1.15260548 0.59409196 0.11298564
## [4,] 0.33494679 1.92315097 1.32008190 1.41365813 0.57232409
Matrix Multiplication is considered a contracted product.
einsum::einsum('ij,jk->ik', arrC, t(arrC))
## [,1] [,2] [,3]
## [1,] 1.2408555 0.3969509 1.0992837
## [2,] 0.3969509 0.7213922 0.6889087
## [3,] 1.0992837 0.6889087 1.2006503
DelayedTensor::einsum('ij,jk->ik', darrC, t(darrC))
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 1.2408555 0.3969509 1.0992837
## [2,] 0.3969509 0.7213922 0.6889087
## [3,] 1.0992837 0.6889087 1.2006503
Some examples of combining Multiplication and Permutation are shown below.
einsum::einsum('ij,ij->ji', arrC, arrC)
## [,1] [,2] [,3]
## [1,] 0.01943749 0.55331604 0.31242915
## [2,] 0.95831842 0.01285182 0.68013894
## [3,] 0.06252638 0.10355823 0.13276524
## [4,] 0.20057325 0.05166612 0.07531696
DelayedTensor::einsum('ij,ij->ji', darrC, darrC)
## <4 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.01943749 0.55331604 0.31242915
## [2,] 0.95831842 0.01285182 0.68013894
## [3,] 0.06252638 0.10355823 0.13276524
## [4,] 0.20057325 0.05166612 0.07531696
einsum::einsum('ijk,ijk->jki', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.265342915 0.883735253 0.65872411 0.6475558 0.742856051
## [2,] 0.022956197 0.007243278 0.01894491 0.8121234 0.536750006
## [3,] 0.926955542 0.973434440 0.21824312 0.1531949 0.003090297
## [4,] 0.002455763 0.815775353 0.12458172 0.4548541 0.051178225
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.09082541 0.01883810 0.51965044 0.02530239 0.54690826
## [2,] 0.22963339 0.08468126 0.03547752 0.35283016 0.94896490
## [3,] 0.74736337 0.68458254 0.18775187 0.28905960 0.01010032
## [4,] 0.02795570 0.38042110 0.40176726 0.18399225 0.23744875
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.1562165 0.013247016 0.2055574 0.4327146 0.44226990
## [2,] 0.3090574 0.001392369 0.5746623 0.0399224 0.01031044
## [3,] 0.4950587 0.466618822 0.7466105 0.1518375 0.09979503
## [4,] 0.3045353 0.726954520 0.7937329 0.7748118 0.28369711
DelayedTensor::einsum('ijk,ijk->jki', darrE, darrE)
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.265342915 0.883735253 0.658724108 0.647555757 0.742856051
## [2,] 0.022956197 0.007243278 0.018944913 0.812123428 0.536750006
## [3,] 0.926955542 0.973434440 0.218243123 0.153194891 0.003090297
## [4,] 0.002455763 0.815775353 0.124581718 0.454854083 0.051178225
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.09082541 0.01883810 0.51965044 0.02530239 0.54690826
## [2,] 0.22963339 0.08468126 0.03547752 0.35283016 0.94896490
## [3,] 0.74736337 0.68458254 0.18775187 0.28905960 0.01010032
## [4,] 0.02795570 0.38042110 0.40176726 0.18399225 0.23744875
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.156216512 0.013247016 0.205557394 0.432714631 0.442269899
## [2,] 0.309057440 0.001392369 0.574662271 0.039922400 0.010310437
## [3,] 0.495058711 0.466618822 0.746610488 0.151837469 0.099795031
## [4,] 0.304535325 0.726954520 0.793732928 0.774811801 0.283697113
Some examples of combining Summation and Permutation are shown below.
einsum::einsum('ijk->ki', arrE)
## [,1] [,2] [,3]
## [1,] 1.678968 1.812275 2.206623
## [2,] 2.915010 1.872430 1.688121
## [3,] 1.769385 1.976377 2.966432
## [4,] 2.771717 1.719648 2.127514
## [5,] 1.876340 2.301468 1.615110
DelayedTensor::einsum('ijk->ki', darrE)
## <5 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 1.678968 1.812275 2.206623
## [2,] 2.915010 1.872430 1.688121
## [3,] 1.769385 1.976377 2.966432
## [4,] 2.771717 1.719648 2.127514
## [5,] 1.876340 2.301468 1.615110
Finally, we will show a more complex example, combining Multiplication, Summation, and Permutation.
einsum::einsum('i,ij,ijk,ijk,ji->jki',
arrA, arrC, arrE, arrE, t(arrC))
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0034257390 0.011409562 0.008504530 0.008360340 0.0095907251
## [2,] 0.0146122292 0.004610539 0.012058941 0.516938133 0.3416556357
## [3,] 0.0384971782 0.040427483 0.009063805 0.006362302 0.0001283424
## [4,] 0.0003271645 0.108680164 0.016597169 0.060597095 0.0068181245
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0233755306 0.0048483193 0.1337412608 0.006512019 0.1407565442
## [2,] 0.0013727157 0.0005062125 0.0002120796 0.002109168 0.0056727770
## [3,] 0.0359995666 0.0329754917 0.0090437749 0.013923643 0.0004865197
## [4,] 0.0006718264 0.0091422117 0.0096551987 0.004421669 0.0057063257
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.02678001 0.0022709202 0.03523846 0.07417975 0.075817801
## [2,] 0.11533712 0.0005196182 0.21445817 0.01489864 0.003847751
## [3,] 0.03606396 0.0339921708 0.05438896 0.01106103 0.007269852
## [4,] 0.01258527 0.0300422361 0.03280193 0.03201999 0.011724111
DelayedTensor::einsum('i,ij,ijk,ijk,ji->jki',
darrA, darrC, darrE, darrE, t(darrC))
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0034257390 0.0114095616 0.0085045304 0.0083603401 0.0095907251
## [2,] 0.0146122292 0.0046105389 0.0120589406 0.5169381329 0.3416556357
## [3,] 0.0384971782 0.0404274827 0.0090638051 0.0063623019 0.0001283424
## [4,] 0.0003271645 0.1086801637 0.0165971691 0.0605970946 0.0068181245
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0233755306 0.0048483193 0.1337412608 0.0065120188 0.1407565442
## [2,] 0.0013727157 0.0005062125 0.0002120796 0.0021091684 0.0056727770
## [3,] 0.0359995666 0.0329754917 0.0090437749 0.0139236426 0.0004865197
## [4,] 0.0006718264 0.0091422117 0.0096551987 0.0044216686 0.0057063257
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0267800102 0.0022709202 0.0352384587 0.0741797526 0.0758178007
## [2,] 0.1153371202 0.0005196182 0.2144581651 0.0148986373 0.0038477512
## [3,] 0.0360639551 0.0339921708 0.0543889573 0.0110610308 0.0072698519
## [4,] 0.0125852744 0.0300422361 0.0328019311 0.0320199936 0.0117241112
einsumBy using einsum and other DelayedTensor functions,
it is possible to implement your original tensor calculation functions.
It is intended to be applied to Delayed Arrays,
which can scale to large-scale data
since the calculation is performed internally by block processing.
For example, kronecker can be easily implmented by eimsum
and other DelayedTensor functions4 https://stackoverflow.com/
questions/56067643/speeding-up-kronecker-products-numpy
(the kronecker function inside DelayedTensor
has a more efficient implementation though).
darr1 <- DelayedArray(array(1:6, dim=c(2,3)))
darr2 <- DelayedArray(array(20:1, dim=c(4,5)))
mykronecker <- function(darr1, darr2){
stopifnot((length(dim(darr1)) == 2) && (length(dim(darr2)) == 2))
# Outer Product
tmpdarr <- DelayedTensor::einsum('ij,kl->ikjl', darr1, darr2)
# Reshape
DelayedTensor::unfold(tmpdarr, row_idx=c(2,1), col_idx=c(4,3))
}
identical(as.array(DelayedTensor::kronecker(darr1, darr2)),
as.array(mykronecker(darr1, darr2)))
## [1] TRUE
## R Under development (unstable) (2025-10-20 r88955)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] einsum_0.1.2 DelayedRandomArray_1.19.0
## [3] HDF5Array_1.39.0 h5mread_1.3.0
## [5] rhdf5_2.55.4 DelayedArray_0.37.0
## [7] SparseArray_1.11.1 S4Arrays_1.11.0
## [9] abind_1.4-8 IRanges_2.45.0
## [11] S4Vectors_0.49.0 MatrixGenerics_1.23.0
## [13] matrixStats_1.5.0 BiocGenerics_0.57.0
## [15] generics_0.1.4 Matrix_1.7-4
## [17] DelayedTensor_1.17.0 BiocStyle_2.39.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_2.0.0 compiler_4.6.0 BiocManager_1.30.26
## [4] rsvd_1.0.5 Rcpp_1.1.0 rhdf5filters_1.23.0
## [7] parallel_4.6.0 jquerylib_0.1.4 BiocParallel_1.45.0
## [10] yaml_2.3.10 fastmap_1.2.0 lattice_0.22-7
## [13] R6_2.6.1 XVector_0.51.0 ScaledMatrix_1.19.0
## [16] knitr_1.50 bookdown_0.45 bslib_0.9.0
## [19] rlang_1.1.6 cachem_1.1.0 xfun_0.54
## [22] sass_0.4.10 cli_3.6.5 Rhdf5lib_1.33.0
## [25] BiocSingular_1.27.0 digest_0.6.37 grid_4.6.0
## [28] irlba_2.3.5.1 rTensor_1.4.9 dqrng_0.4.1
## [31] lifecycle_1.0.4 evaluate_1.0.5 codetools_0.2-20
## [34] beachmat_2.27.0 rmarkdown_2.30 tools_4.6.0
## [37] htmltools_0.5.8.1