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Abstract

RNA-Seq is increasingly the method of choice for researchers studying the transcriptome. The
strategies to analyze such complex high-dimensional data rely on data mining and statistical
learning techniques. The DaMiRseq package offers a tidy pipeline that includes data mining
procedures for data handling and implementation of prediction learning methods to build
classification models. The package accepts any kind of data presented as a table of raw
counts and allows the inclusion of variables that occur with the experimental setting. A
series of functions enables data cleaning by filtering genomic features and samples, data
adjustment by identifying and removing the unwanted source of variation (i.e. batches and
confounding factors) and to select the best predictors for modeling. Finally, a “Stacking”
ensemble learning technique is applied to build a robust classification model. Every step
includes a checkpoint for assessing the effects of data management using diagnostic plots,
such as clustering and heatmaps, RLE boxplots, MDS or correlation plots.

Package
DaMiRseq 2.23.0
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1 Citing DaMiRseq

For citing DaMiRseq:

citation("DaMiRseq")

## To cite package 'DaMiRseq' in publications use:

#it
## Mattia Chiesa, Gualtiero I. Colombo and Luca Piacentini. DaMiRseq
## - an R/Bioconductor package for data mining of RNA-Seq data:

## normalization, feature selection and classification
## Bioinformatics, https://doi.org/10.1093/bioinformatics/btx795 ,

## 2018

##

## A BibTeX entry for LaTeX users is

##

##  @Article{,

## title = {DaMiRseq - an R/Bioconductor package for data mining of

## RNA-Seq data: normalization, feature selection and classification},
## author = {Mattia Chiesa and Gualtiero I. Colombo and Luca Piacentini},
#i#t journal = {Bioinformatics},

## volume = {34},

## number = {8},

## pages = {1416-1418},

## year = {2018},

## doi = {10.1093/bioinformatics/btx795},

# )
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2 Introduction

RNA-Seq is a powerful high-throughput assay that uses next-generation sequencing (NGS)
technologies to profile, discover and quantify RNAs. The whole collection of RNAs defines
the transcriptome, whose plasticity, allows the researcher to capture important biological
information: the transcriptome, in fact, is sensitive to changes occurring in response to
environmental challenges, different healthy/disease state or specific genetic/epigenetic con-
text. The high-dimensional nature of NGS makes the analysis of RNA-Seq data a demanding
task that the researcher may tackle by using data mining and statistical learning procedures.
Data mining usually exploits iterative and interactive processes that include, preprocessing,
transforming and selecting data so that only relevant features are efficiently used by learning
methods to build classification models.

Many software packages have been developed to assess differential expression of genomic
features (i.e. genes, transcripts, exons etc.) of RNA-seq data. (see Bioconductor_ RNASeq-
packages). Here, we propose the DaMiRseq package that offers a systematic and organized
analysis workflow to face classification problems.

Briefly, we summarize the philosophy of DaMiRseq as follows. The pipeline has been
thought to direct the user, through a step-by-step data evaluation, to properly select the best
strategy for each specific classification setting. It is structured into three main parts: (1)
normalization, (2) feature selection, and (3) classification. The package can be used with
any technology that produces read counts of genomic features.

The normalization step integrates conventional preprocessing and normalization procedures
with data adjustment based on the estimation of the effect of “unwanted variation”. Several
factors of interest such as environments, phenotypes, demographic or clinical outcomes may
influence the expression of the genomic features. Besides, an additional unknown source
of variation may also affect the expression of any particular genomic feature and lead to
confounding results and inaccurate data interpretation. The estimation of these unmeasured
factors, also known as surrogate variables (sv), is crucial to fine-tune expression data in order
to gain accurate prediction models [1, 2].

RNA-Seq usually consists of many features that are either irrelevant or redundant for classifi-
cation purposes. Once an expression matrix of n features x m observations is normalized and
corrected for confounding factors, the pipeline provides methods to help the user to reduce
and select a subset of n that will be subsequently used to build the prediction models. This
approach, which exploits the so-called “Feature Selection” techniques, presents clear benefits
since: it (1) limits overfitting, (2) improves classification performance of predictors, (3) re-
duces time training processing, and (4) allows the production of more cost-effective models
[3, 4].

The reduced expression matrix, consisting of the most informative variables with respect to
class, is then used to draw a “meta-learner” by combining different classifiers: Random Forest
(RF), Naive Bayes (NB), 3-Nearest Neighbours (3kNN), Logistic Regression (LR), Linear
Discriminant Analysis (LDA), Support Vectors Machines (SVM), Neural Networks (NN) and
Partial Least Squares (PLS); this method may be referred to as a “Stack Generalization”
or, simply, “Stacking” ensemble learning technique [5]. The idea behind this method is
that “weaker” classifiers may have different generalization performances, leading to future
misclassifications; by contrast, combining and weighting the prediction of several classifiers
may reduce the risk of classification errors [6, 7]. Moreover, the weighted voting method,
used to assess the goodness of each weak classifiers, allows meta-learner to reach consistently
high classification accuracies, better than or comparable with best weak classifiers [8].


https://www.bioconductor.org/packages/release/BiocViews.html#___RNASeq
https://www.bioconductor.org/packages/release/BiocViews.html#___RNASeq
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3 Data Handling

3.1 Input data

DaMiRseq expects as input two kind of data:

= Raw counts Data - They have to be in the classical form of a n x m expression
table of integer values coming from a RNA-Seq experiment: each row represents a
genomic feature (n) while each column represents a sample (m). The expression values
must be un-normalized raw read counts, since DaMiRseq implements normalization
and transformation procedures of raw counts; the RNA-seq workflow in Bioconductor
describes several techniques for preparing count matrices. Unique identifiers are needed
for both genomic features and samples.

= Class and variables Information - This file contains the information related to classes/conditions
(mandatory) and to known variables (optional), such as demographic or clinical data,
biological context/variables and any sequencing or technical details. The column
containing the class/condition information must be labelled ’class’. In this table,
each row represents a sample and each column represents a variable (class/condition
and factorial and/or continuous variables). Rows and identifiers must correspond to
columns in 'Raw Counts Data’ table.

In this vignette we describe the DaMiRseq pipeline, using as sample data a subset of
Genotype-Tissue Expression (GTEx) RNA-Seq database (dbGap Study Accession: phs000424.v6.p1)
[9]. Briefly, GTEx project includes the mRNA sequencing data of 53 tissues from 544 post-
mortem donors, using 76 bp paired-end technique on lllumina HiSeq 2000: overall, 8555
samples were analyzed. Here, we extracted data and some additional sample information
(i.e. sex, age, collection center and death classification based on the Hardy scale) for two
similar brain subregions: Anterior Cingulate Cortex (Bromann Area 24) and Frontal Cortex
(Brodmann Area 9). These areas are close to each other and are deemed to be involved in
decision making as well as in learning. This dataset is composed of 192 samples: 84 Anterior
Cingulate Cortex (ACC) and 108 Frontal Cortex (FC) samples for 56318 genes.

We, also, provide a data frame with classes and variables included.

3.2 Import Data

DaMiRseq package uses data extracted from SummarizedExperiment class object. This ob-
ject is usually employed to store either expression data produced by high-troughput technology
and other information occuring with the experimental setting. The SummarizedExperiment
object may be considered a matrix-like holder where rows and colums represent, respec-
tively, features and samples. If data are not stored in a SummarizedExperiment object, the
DaMiRseq.makeSE function helps the user to build a SummarizedExperiment object starting
from expression and variable data table. The function tests if expression data are in the form
of raw counts, i.e. positive integer numbers, if 'class’ variable is included in the data frame
and if “NAs" are present in either the counts and the variables table. The DaMiRseq.makeSE
function needs two files as input data: 1) a raw counts table and 2) a class and (if present)
variable information table. In this vignette, we will use the dataset described in Section 3.1
but the user could import other count and variable table files into R environment as follows:

library(DaMiRseq)
## only for example:
# rawdata.path <- system.file(package = "DaMiRseq", "extdata")


http://www.bioconductor.org/help/workflows/rnaseqGene/
http://www.gtexportal.org/static/datasets/gtex_analysis_v6/rna_seq_data/GTEx_Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_reads.gct.gz
http://bioconductor.org/packages/SummarizedExperiment

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

setwd(rawdata.path)

filecounts <- list.files(rawdata.path, full.names = TRUE)[2]
filecovariates <- list.files(rawdata.path, full.names = TRUE)[1]
count_data <- read.delim(filecounts)

covariate_data <- read.delim(filecovariates, stringAsFactor = T)
SE<-DaMiR.makeSE (count_data, covariate_data)

H OH B K R K

Here, we load by the data() function a prefiltered sample expression data of the GTEx
RNA-Seq database made of 21363 genes and 40 samples (20 ACC and 20 FC):

data(SE)
assay(SE)[1:5, c(1:5, 21:25)]

## ACC_1 ACC_2 ACC_3 ACC_4 ACC_5 FC_1 FC_2 FC_3 FC_4 FC_5
## ENSGO0000227232 327 491 226 285 1011 465 385 395 219 398
## ENSGO0O000237683 184 57 35 57 138 290 293 93 84 145
## ENSGO0000268903 29 15 7 26 33 84 39 22 31 39
## ENSGO0000241860 25 12 6 5 26 6 17 13 4 12
## ENSGO0000228463 248 126 99 76 172 170 173 157 95 150

colData(SE)

## DataFrame with 40 rows and 5 columns

## center sex age death class
## <factor> <factor> <factor> <integer> <factor>
## ACC_1 B1l, Al M 60-69 2 AcCC
## ACC_2 Bl, Al F 40-49 3 AcC
## ACC_3 Bl, Al F 60-69 2 AcCC
## ACC_4 B1l, Al F 50-59 2 ACC
## ACC_5 (1, Al M 50-59 2 ACC
## ... noc 000 boC 100 00
## FC_16 Cl, Al M 60-69 2 FC
## FC_17 Bl, Al M 60-69 2 FC
## FC_18 C1, Al F 50-59 2 FC
## FC_19 B1l, Al M 50-59 2 FC
## FC_20 C1, Al F 50-59 4 FC

Data are stored in the SE object of class SummarizedExperiment. Expression and variable
information data may be retrieved, respectively, by the assay () and colData() accessor func-
tions L. The “colData(SE)" data frame, containing the variables information, includes also
the ’class’ column (mandatory) as reported in the Reference Manual.

3.3  Preprocessing and Normalization

After importing the counts data, we ought to filter out non-expressed and/or highly variant,
inconsistent genes and, then, perform normalization. Furthermore, the user can also decide to
exclude from the dataset samples that show a low correlation among biological replicates and,
thus, may be suspected to hold some technical artifact. The DaMiR.normalization function
helps solving the first issues, while DalMiR.sampleFilt allows the removal of inconsistent
samples.

1See SummarizedExperiment [10], for more details.


http://bioconductor.org/packages/SummarizedExperiment
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3.3.1  Filtering by Expression

Users can remove genes, setting up the minimum number of read counts permitted across
samples:

data_norm <- DaMiR.normalization(SE, minCounts=10, fSample=0.7,
hyper = "no")

## 2007 Features have been filtered out by espression. 19356 Features remained.
## Performing Normalization by 'vst' with dispersion parameter: parametric

In this case, 19066 genes with read counts greater than 10 (minCounts = 10) in at least
70% of samples (fSample = 0.7), have been selected, while 2297 have been filtered out.
The dataset, consisting now of 19066 genes, is then normalized by the varianceStabilizing
Transformation function of the DESeq2 package [11]. Using assay() function, we can see
that “VST" transformation produces data on the log2 scale normalized with respect to the
library size.

3.3.2 Filtering By Coefficient of Variation (CV)

We named “hypervariants” those genes that present anomalous read counts, by comparing to
the mean value across the samples. We identify them by calculating distinct CV on sample
sets that belong to each 'class’. Genes with all 'class’ CV greater than th.cv are discarded.
Note. Computing a 'class’ restricted CV may prevent the removal of features that may be
specifically associated with a certain class. This could be important in some biological con-
texts, such as immune genes whose expression under definite conditions may unveil peculiar
class-gene associations.

Here, we run again the DaMiR.normalization function by enabling the “hypervariant” gene
detection by setting hyper = "yes" and th.cv=3 (default):

data_norm <- DaMiR.normalization(SE, minCounts=10, fSample=0.7,
hyper = "yes", th.cv=3)

## 2007 Features have been filtered out by espression. 19356 Features remained.
## 13 'Hypervariant' Features have been filtered out. 19343 Features remained.
## Performing Normalization by 'vst' with dispersion parameter: parametric

print(data_norm)

## class: SummarizedExperiment

## dim: 19343 40

## metadata(0):

## assays(l): ''

## rownames(19343): ENSGO0000227232 ENSGO0000237683 ... ENSGO0000198695
##  ENSGO0000198727

## rowData names(0):

## colnames(40): ACC_1 ACC_2 ... FC_19 FC_20

## colData names(5): center sex age death class

assay(data_norm)[c(1:5), c(1l:5, 21:25)]

## ACC_1 ACC_2 ACC_3 ACC_4 ACC_5 FC_1
## ENSGO0000227232 8.199283 9.353454 8.759033 8.452277 9.142766 8.885701
## ENSGO0000237683 7.457537 6.592786 6.435384 6.466654 6.603629 8.248528
## ENSGO0000268903 5.508724 5.337338 5.043412 5.693841 5.273067 6.708270
## ENSGO0000228463 7.837276 7.537126 7.667278 6.787960 6.854035 7.555618


http://bioconductor.org/packages/DESeq2
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## ENSGO0000241670 5.420923 5.687098 6.086880 5.624320 5.227604 5.640934
## FC_2 FC_3 FC_4 FC_5

## ENSGO0000227232 8.377586 8.946374 8.420556 8.799498
## ENSGO0000237683 8.016036 7.068686 7.189774 7.471898
## ENSGO0000268903 5.737260 5.582227 6.083030 5.997092
## ENSGO0000228463 7.344416 7.718235 7.340514 7.514437
## ENSGO0000241670 4.659126 4.792983 5.264038 5.752181

The th.cv = 3 allows the removal of a further 14 "hypervariant” genes from the gene expres-
sion data matrix. The number of genes is now reduced to 19052.

3.3.3 Normalization

After filtering, a normalization step is performed; two normalization methods are embedded
in DaMiRseq: the Variance Stabilizing Transformation (VST) and the Regularized Log Trans-
formation (rlog). As described in the DESeq2 vignette, VST and rlog have similar effects
on data but the VST is faster than rlog, expecially when the number of samples increases;
for these reasons, varianceStabilizingTransformation is the default normalization method,
while rlog can be, alternatively, chosen by user.

# Time Difference, using VST or rlog for normalization:

#

#data_norm <- DaMiR.normalization(SE, minCounts=10, fSample=0.7, th.cv=3)
# VST: about 80 seconds

#
#data_norm <- DaMiR.normalization(SE, minCounts=10, fSample=0.7, th.cv=3,
# type="rlog")

# rlog: about 8890 seconds (i.e. 2 hours and 28 minutes!)

In this example, we run DaMiR.normalization function twice, just modifying type arguments
in order to test the processing time; with type = "vst" (default - the same parameters
used in Section 3.3.2 ) DaMiR.normalization needed 80 seconds to complete filtering and
normalization, while with type = "rlog" required more than 2 hours. Data were obtained
on a workstation with an esa core CPU (2.40 GHz, 16 GB RAM) and 64-bit Operating
System. Note. A general note on data normalization and its implications for the analysis of
high-dimensional data can be found in the Chiesa et al. Supplementary data [12].

3.3.4 Sample Filtering

This step introduces a sample quality checkpoint. The assumption is that global gene ex-
pression should exhibit high correlation among biological replicates; conversely, low correlated
samples may be suspected to hold some technical artifacts (e.g. poor RNA quality or library
preparation), despite pass sequencing quality controls. If not identified and removed, these
samples may negatively affect the entire downstream analysis. DaMiR.sampleFilt assesses
the mean absolute correlation of each sample and removes those samples with a correlation
lower than the value set in th.corr argument. This threshold may be specific for different
experimental settings but should be as high as possible.

data_filt <- DaMiR.sampleFilt(data_norm, th.corr=0.9)

## 0 Samples have been excluded by averaged Sample-per-Sample correlation.
## 40 Samples remained.


http://bioconductor.org/packages/DESeq2
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dim(data_filt)

## [1] 19343 40

In this study case, zero samples were discarded because their mean absolute correlation is
higher than 0.9. Data were stored in a SummarizedExperiment object, which contains a
normalized and filtered expression matrix and an updated DataFrame with the variables of
interest.

3.4  Adjusting Data

After data normalization, we propose to test for the presence of surrogate variables (sv) in
order to remove the effect of putative confounding factors from the expression data. The
algorithm cannot distinguish among real technical batches and important biological effects
(such as environmental, genetic or demographic variables) whose correction is not desirable.
Therefore, we enable the user to evaluate whether any of the retrieved sv is correlated or not
with one or more known variables. Thus, this step gives the user the opportunity to choose
the most appropriate number of sv to be used for expression data adjustment [1, 2].

3.4.1 Identification of Surrogate Variables

Surrogate variables identification, basically, relies on the SVA algorithm by Leek et al. [13]
2 A novel method, which allows the identification of the the maximum number of sv to
be used for data adjustment, has been introduced in our package. Specifically, we compute
eigenvalues of data and calculate the squares of each eigenvalues. The ratio of each “squared
eigenvalue” to the sum of them were then calculated. These values represent a surrogate
measure of the “Fraction of Explained Variance” (fve) that we would obtain by principal
component analysis (PCA). Their cumulative sum can be, finally, used to select sv. The
method to be applied can be selected in the method argument of the DaMiR.SV function. The
option "fve", "be" and "leek" selects, respectively, our implementation or one of the two
methods proposed in the sva package. Interested readers can find further explanations about
the 'fve’ and comparison with other methods in the 'Supplementary data’ of Chiesa et al.
[12].

sv <- DaMiR.SV(data_filt)
## The number of SVs identified, which explain 95 % of Variance, is: 5
Using default values ("fve" method and th.fve = 0.95), we obtained a matrix with 4 sv

that is the number of sv which returns 95% of variance explained. Figure 1 shows all the sv
computed by the algorithm with respect to the corresponding fraction of variance explained.

2See sva package


http://bioconductor.org/packages/sva
http://bioconductor.org/packages/sva
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3.4.2
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Figure 1: Fraction of Variance Explained. This plot shows the relationship between each identified sv and
the corresponding fraction of variance explained. A specific blue dot represents the proportion of variance,
explained by a sv together with the prior ones. The red dot marks the upper limit of sv that should be used
to adjust the data. Here, 4 is the maximum number of sv obtained as it corresponds to < 95% of variance

explained.

Correlation between sv and known covariates

Once the sv have been calculated, we may inquire whether these sv capture an unwanted
source of variation or may be associated with known variables that the user does not wish
to correct. For this purpose, we correlate the sv with the known variables stored in the
“data_filt” object, to decide if all of these sv or only a subset of them should be used to
adjust the data. The function produces a correlation plot where significant
correlations (in the example the threshold is set to sig.level = 0.01) are shown within
colored circles (blue or red gradient). In Figure ??, we can see that the first three sv do
not significantly correlate with any of the used variables and, presumably, recovers the effect
of unmeasured variables. The fourth sv presents, instead, a significant correlation with the
“center” variable. The effect of “center” might be considered a batch effect and we are
interested in adjusting the data for a such confounding factor.

Note a. The correlation with “class” should always be non significant. In fact, the algorithm
for sv identification (embedded into the function) decomposes the expression vari-
ation with respect to the variable of interest (e.g. class), that is what we want to preserve
by correction [1]. Conversely, the user should consider the possibility that hidden factors may
present a certain association with the 'class’ variable. In this case, we suggest not to remove
the effect of these sv so that any overcorrection of the expression data is avoided.

Note b. The function performs a standard correlation analysis between SVs
and known variables. Correlation functions need to transform factors into numbers in order to
work. Importantly, by default, R follows an alphabetical order to assign numbers to factors.
Therefore, the correlation index will make sense when the known variables are::

10
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3.4.3

3.5

= continuous covariates, such as the "age" variable in the package's sample data

= ordinal factors, in which factors can be graded accordingly to a specific ordinal rank,
for example: "1=small", "2=medium","3=large";

= dichotomous categorical variables, where the rank is not important but the maximum
number of factors is 2; e.g., sex = M or F, clinical variable = YES or NO

On the other hand, if a variable consists of factors with more than 2 levels and an ordinal rank
can not be defined (e.g. color = "red" or "blue" or "green"), it is likely that the correlation
index will give rise to a misleading interpretation, e.g. the absence of correlation even though
there may be a significant association between the multi-level factor versus the surrogate
variables. In this case, we warmly recommend to perform a linear regression (for example
by the lm() to assess the relationship between each surrogate variable and the multi-level
factorial variable(s) to be evaluated. For simplicity, we assumed that, herein, we did not have
the latter type of variable.

Cleaning expression data

After sv identification, we need to adjust our expression data. To do this, we exploited the
removeBatchEffect function of the /imma package which is useful for removing unwanted
effects from the expression data matrix [14]. Thus, for the case study, we adjusted our
expression data by setting n.sv = 4 which instructs the algorithm to use the 4 surrogate
variables taken from the sv matrix, produced by DalMiR.SV function (see Section 3.4.1).

data_adjust<-DaMiR.SVadjust(data_filt, sv, n.sv=4)
assay(data_adjust[c(1:5), c(1:5, 21:25)1)

## ACC_1 ACC_2 ACC_3 ACC_4 ACC_5 FC_1
## ENSGO0000227232 8.290889 9.516290 8.863299 8.347355 9.023698 8.701100
## ENSGO0000237683 7.397297 7.393483 6.596511 6.860754 6.546220 7.809292
## ENSGO0000268903 5.652618 5.828790 5.074126 5.679716 5.321179 6.246789
## ENSGO0000228463 7.762128 7.472593 7.599905 6.909482 6.900152 7.484546
## ENSGO0000241670 5.565704 5.650229 6.048206 5.394268 5.276310 5.566598
## FC_2 FC_3 FC_4 FC_5

## ENSGO0000227232 8.492608 8.939920 8.535679 9.126093
## ENSGO0000237683 7.904175 7.024476 6.999965 7.093138
## ENSGO0000268903 5.769698 5.577973 5.704730 5.483063
## ENSGO0000228463 7.236964 7.593969 7.512355 7.713643
## ENSGO0000241670 4.762900 4.847968 5.047882 5.521918

Now, 'data_adjust’ object contains a numeric matrix of log2-expression values with sv effects
removed. An example of the effective use of our 'fve’ method has been obtained for the
detection of sv in a dataset of adipose tissue samples from abdominal aortic aneurysm patients
by Piacentine et al. [15].

Exploring Data

Quality Control (QC) is an essential part of any data analysis workflow, because it allows
checking the effects of each action, such as filtering, normalization, and data cleaning. In
this context, the function DaMiR.Allplot helps identifying how different arguments or spe-
cific tasks, such as filtering or normalization, affect the data. Several diagnostic plots are
generated:

11
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Heatmap - A distance matrix, based on sample-by-sample correlation, is represented by
heatmap and dendrogram using pheatmap package. In addition to 'class’, all covariates
are shown, using color codes; this helps to simultaneously identify outlier samples and
specific clusters, related with class or other variables;

MultiDimensional Scaling (MDS) plots - MDS plot, drawn by ggplot2 package [16], pro-
vides a visual representation of pattern of proximities (e.g. similarities or distances)
among a set of samples, and allows the identification of natural clusters. For the 'class’
and for each variable a MDS plot is drawn.

Relative Log Expression (RLE) boxplot - This plot, drawn by EDASeq package [17], helps
to visualize the differences between the distributions across samples: medians of each
RLE boxplot should be ideally centered around zero and a large shift from zero suggests
that samples could have quality problems. Here, different colors means different classes.

Sample-by-Sample expression distribution - This plot, drawn by ggplot2 package, helps
to visualize the differences between the real expression distributions across samples:
shapes of every samples should be the same; indeed, samples with unusual shapes are
likely outliers.

Average expression distribution by class - This plot, drawn by ggplot2 package, helps to
visualize the differences between the average expression distribution for each class.

In this vignette, DalMiR.Allplot is used to appreciate the effect of data adjusting (see Sec-
tion 3.4). First, we check how data appear just after normalization: the heatmap and RLE
plot in Figure 2 (upper and lower panel, respectively) and MDS plots in Figures 3 and 4 do
not highlight the presence of specific clusters.

Note. If a variable contains missing data (i.e. “NA" values), the function cannot draw the
plot showing variable information. The user is, however, encouraged to impute missing data
if s/he considers it meaningful to plot the covariate of interest.

# After gene filtering and normalization
DaMiR.Allplot(data_filt, colData(data_filt))

The df argument has been supplied using colData() function that returns the data frame
of covariates stored into the “data_filt" object. Here, we used all the variables included into
the data frame (e.g. center, sex, age, death and class), although it is possible to use only a
subset of them to be plotted.

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification
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Heatmap by Dissimilarity
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Heatmap and RLE. Heatmap (upper panel): colors in heatmap highlight the distance matrix,
obtained by Spearman’s correlation metric: color gradient ranges from dark green, meaning 'minimum dis-

Figure 2

tance’ (i.e. dissimilarity = 0, correlation = 1), to light green green. On the top of heatmap, horizontal bars
represent class and covariates. Each variable is differently colored (see legend). On the top and on the left

side of the heatmap the dendrograms are drawn. Clusters can be easily identified.

RLE (lower panel): a boxplot of the distribution of expression values computed as the difference between

the expression of each gene and the median expression of that gene accross all samples. Here, since all

medians are very close to zero, it appears that all the samples are well-normalized and do not present any

quality problems.
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Figure 3: MultiDimentional Scaling plot. An unsupervised MDS plot is drawn. Samples are colored accord-
ing to the 'Hardy death scale’ (upper panel) and the 'center’ variable (lower panel).
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Figure 4: MultiDimentional Scaling plot. An unsupervised MDS plot is drawn. Samples are colored accord-

ing to 'sex’ variable (upper panel) and 'class’ (lower panel).
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Sample by Sample expression value distribution
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Figure 5: Gene Expression distribution. Sample-by-Sample expression distribution (upper panel) helps user
to find outliers and to control the effect of normalization, filtering and adjusting steps; class average expres-
sion distribution (lower panel) highlights global expression differences between classes.
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After removing the effect of “noise” from our expression data, as presented in Section 3.4,
we may appreciate the result of data adjustiment for sv: now, the heatmap in Figure 6 and
MDS plots in Figures 7 and 8 exhibit specific clusters related to 'class’ variable. Moreover,
the effect on data distribution is irrelevant: both RLE in Figures 2 and 6 show minimal shifts
from the zero line, whereas RLE of adjusted data displays lower dispersion.

# After sample filtering and sv adjusting
DaMiR.Allplot(data_adjust, colData(data_adjust))
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Heatmap and RLE. Heatmap (upper panel): colors in heatmap highlight the distance matrix,
obtained by Spearman’s correlation metric: color gradient ranges from dark green, meaning 'minimum dis-

Figure 6

tance’ (i.e. dissimilarity = 0, correlation = 1), to light green green. On the top of heatmap, horizontal bars
represent class and variables. Each variable is differently colored (see legend). The two dendrograms help

to quickly identify clusters.

RLE (lower panel): Relative Log Expression boxplot. A boxplot of the distribution of expression values

computed as the difference between the expression of each gene and the median expression of that gene

accross all samples is shown. Here, all medians are very close to zero, meaning that samples are well-

normalized.
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Figure 7: MultiDimentional Scaling plot. An unsupervised MDS plot is drawn. Samples are colored accord-
ing to the 'Hardy death scale’ (upper panel) and the 'center’ variable (lower panel).
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Figure 8: MultiDimentional Scaling plot. An unsupervised MDS plot is drawn. Samples are colored accord-
ing to 'sex’ variable (upper panel) and 'class’ (lower panel).

20



The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

Sample by Sample expression value distribution
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Figure 9: Gene Expression distribution. Sample-by-Sample expression distribution (upper panel) helps user
to find outliers and to control the effect of normalization, filtering and adjusting steps; class average expres-
sion distribution (lower panel) highlights global expression differences between classes.
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3.6

Exporting output data

DaMiRseq has been designed to allow users to export the outputs of each function, which
consist substantially in matrix or data.frame objects. Export can be done, using the base R
functions, such as write.table or write.csv. For example, we could be interested in saving
normalized data matrix, stored in “data_norm” in a tab-delimited file

outputfile <- "DataNormalized.txt"
write.table(data_norm, file = outputfile_norm, quote = FALSE, sep = "\t")
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4 Two specific supervised machine learning workflows

As we described in the previuos sections, RNA-Seq experiments, are used to generate hundreds
to thousand of features at once. However, most of them are non informative to discriminate
phenotypes and useless for further investigations.

In this context, supervised machine learning is a powerful tool that gathers several algorithms,
to select the most informative features in high-dimensional data and design accurate predic-
tion models. To achieve these aims, the supervised learning algorithms need 'labeled data’,
where each observation of the dataset comes with a priori knowledge of the class member-
ship.

Since version 2.0.0 of the software, DaMiRseq offers a solution to solve two distinct problems,
in supervised learning analysis: (i) finding a small set of robust features, and (ii) building the
most reliable model to predict new samples.

= Finding a small set of robust features to discriminate classes.
This task seeks to select and assess the reliability of a feature set from high-dimensional
data. Specifically, we first implemented a 4-step feature selection strategy (orange box
in Figure 10, panel A), in order to get the most relevant features. Then, we tested
the robustness of the selected features by performing a bootstrap strategy, in which an
'ensemble learner’ classifier is built for each iteration (green box in Figure 10, panel A).
In Section 4.1, we described this analysis in details.

= Building the most reliable model to predict new samples.
An important goal in machine learning is to develop a mathematical model, able to
correctly associate each observation to the corresponding class. This model, also known
as classification or prediction model (Figure 10, panel B), aimed at ensuring the highest
prediction accuracy with as few features as possible.
First, several different models are generate by iteratively (i) splitting data in training
and validation sets; (ii) performing feature selection on the training set (orange box in
Figure 10, panel B); (iii) building a classification model on the training set (pink box
in Figure 10, panel B); and, (iv) testing the classification model on the validation set
(purple box in Figure 10, panel B). Finally, taking into account the performance of all
generated models, the most reliable one is selected (red box in Figure 10, panel B).
This model will be used for any further prediction on independent test sets (light blue
box in Figure 10, panel B). We will refer to this model as 'optimal model’.
In Section 4.2, we thoroughly described how to perform this analysis.
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Figure 10: The DaMiRseq machine learning workflows. Each elliptic box represents a specific step, where
the aims and the corresponding functions are specified. In panel A, we provided the workflow to find a
small set of informative features, described in Section 4.1. In panel B, we provided the workflow to find the

best prediction model, described in Section 4.2.

Finding a small set of informative, robust features

This Section, where we will describe how to get a small set of robust features from an
RNA-Seq dataset, is organized in two parts: in Section 4.1.1, all the feature selection steps
and the corresponding functions are reported in detail; while, in Section 4.1.2 we will focus
on the classification step that we performed for assessing the robustness of the feature set.
Mathematical details about the classifier implementation are also provided.

Feature Selection

The steps implemented in the Section 3 returned a fully filtered, normalized, adjusted expres-
sion matrix with the effect of sv removed. However, the number of features in the dataset is
still high and greatly exceeds the number of observations. We have to deal, here, with the
well-known issue for high-dimensional data known as the “curse of dimensionality”. Adding
noise features that are not truly associated with the response (i.e. class) may lead, in fact,
to a worsening model accuracy. In this situation, the user needs to remove those features
that bear irrelevant or redundant information. The feature selection technique implemented
here does not alter the original representation of the variables, but simply selects a subset of
them. It includes three different steps briefly described in the following paragraphs.

Variable selection in Partial Least Squares (PLS) The first step allows the user to
exclude all non-informative class-related features using a backward variable elimination pro-
cedure [18]. The DaMiR.FSelect function embeds a principal component analysis (PCA) to
identify principal components (PCs) that correlate with “class”. The correlation coefficient
is defined by the user through the th.corr argument. The higher the correlation, the lower
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the number of PCs returned. Importantly, users should pay attention to appropriately set
the th.corr argument since the total number of retrieved features depends, indeed, on the
number of the selected PCs.

The number of class-correlated PCs is then internally used by the function to perform a
backward variable elimination-PLS and remove those variables that are less informative with
respect to class [19].

Note. Before running the DaMiR.FSelect function, we need to transpose our normalized
expression data. It can be done by the base R function t(). However, we implemented the
helper function DaMiR.transpose that transposes the data but also tries to prevent the use
of tricky feature labels. The “-" and “"" characters within variable labels (commonly found,
for example, in gene symbols) may, in fact, cause errors if included in the model design as
it is required to execute part of the code of the DalMiR.FSelect function. Thus, we, firstly,
search and, eventually, replace them with non causing error characters.

We used the set.seed(12345) function that allows the user to make the results of the whole
pipeline reproducible.

wn

set.seed(12345)
data_clean<-DaMiR.transpose(assay(data_adjust))
df<-colData(data_adjust)

data_reduced <- DaMiR.FSelect(data_clean, df, th.corr=0.4)

## You are performing feature selection on a binary class object.
## 19049 Genes have been discarded for classification 294 Genes remained.

The “data_reduced” object returns an expression matrix with potentially informative features.
In our case study, the initial number of 19052 features has been reduced to 274.

Removing highly correlated features Some of the returned informative features may,
however, be highly correlated. To prevent the inclusion of redundant features that may
decrease the model performance during the classification step, we apply a function that
produces a pair-wise absolute correlation matrix. When two features present a correlation
higher than th.corr argument, the algorithm calculates the mean absolute correlation of
each feature and, then, removes the feature with the largest mean absolute correlation.

data_reduced <- DaMiR.FReduct(data_reduced$data)

## 66 Highly correlated features have been discarded for classification.
## 228 Features remained.

DaMiR.MDSplot(data_reduced, df)

In our example, we used a Spearman'’s correlation metric and a correletion threshold of 0.85
(default). This reduction step filters out 54 highly correlated genes from the 274 returned by
the DaMiR.FSelect. The figure below shows the MDS plot drawn by the use of the expression
matrix of the remaining 220 genes.

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification
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Figure 11: MultiDimentional Scaling plot. A MDS plot is drawn, considering only most informative genes,
obtained after feature selection: color code is referred to 'class’.

Ranking and selecting most relevant features The above functions produced a reduced
matrix of variables. Nonetheless, the number of reduced variables might be too high to provide
faster and cost-effective classification models. Accordingly, we should properly select a subset
of the most informative features. The DaMiR.FSort function implements a procedure to rank
features by their importance. The method implements a multivariate filter technique (i.e.
RReliefF) that assessess the relevance of features (for details see the relief function of the
FSelector package) [20, 21]. The function produced a data frame with two columns, which
reports features ranked by importance scores: a RReliefF score and scaled.RReliefF value;
the latter is computed in this package to implement a “z-score” standardization procedure
on RReliefF values.

Note. This step may be time-consuming if a data matrix with a high number of features is
used as input. We observed, in fact, that there is a quadratic relationship between execution
time of the algorithm and the number of features. The user is advised with a message about
the estimated time needed to compute the score and rank the features. Thus, we strongly
suggest to filter out non informative features by the DaMiR.FSelect and DaMiR.FReduct
functions before performing this step.

# Rank genes by importance:
df.importance <- DaMiR.FSort(data_reduced, df)

## Please wait. This operation will take about 43 seconds (i.e. about 1 minutes).
head (df.importance)

## RReliefF scaled.RReliefF
## ENSGO0000164326 0.3225273 3.517257
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## ENSGO0000140015 0.3106638 3.343049
## ENSGO0000131378 0.2598659 2.597116
## ENSGO0000151892 0.2596664 2.594186
## ENSGO0000137699 0.2584854 2.576844
## ENSGO0000258754 0.2504441 2.458762

After the importance score is calculated, a subset of features can be selected and used as
predictors for classification purpose. The function DaMiR.FBest is used to select a small
subset of predictors:

# Select Best Predictors:
selected_features <- DaMiR.FBest(data_reduced, ranking=df.importance,
n.pred = 5)

## 5 Predictors have been selected for classification
selected_features$predictors

## [1] "ENSGO0000164326" "ENSGOO000140015" "ENSGO0000131378" "ENSGOO000151892"
## [5] "ENSGO0000137699"

# Dendrogram and heatmap:
DaMiR.Clustplot(selected_features$data, df)

Here, we selected the first 5 genes (default) ranked by importance.

Note. The user may also wish to select “automatically” (i.e. not defined by the user) the
number of important genes. This is possible by setting autoselect="yes" and a threshold
for the scaled.RReliefF, i.e. th.zscore argument. These normalized values (rescaled to have
a mean of 0 and standard deviation of 1) make it possible to compare predictors ranking
obtained by running the pipeline with different parameters. Further information about the
"feature selection’ step and comparison with other methods can be found in the Supplementary
Article Data by Chiesa et al. [12] with an example code. In adition, an example of the effective
use of our feature selection process has been obtained for the detection of P. aeruginosa
transcriptional signature of Human Infection in Cornforth et al. [22].
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Figure 12: Feature Importance Plot. The dotchart shows the list of top 50 genes, sorted by RReliefF im-
portance score. This plot may be used to select the most important predictors to be used for classification.

age
— I "2 20-29

30-39
40-49
50-59
60-69
70-79

ENSG00000131378

sex

F
ENSG00000140015 I M

center
. B1, Al
C1,A1

ENSG00000151892

ENSG00000137699

MM TN MNMITNMNMNITITNNITTNR>> 2R RRRRRRRRRRIRTRRR
PO000000000000000088886568886888088808084885
PRPRPNNOUOWRENRERRER® P—‘|0|0|0|O|0‘0‘0 o n|n|o‘0‘0|0|n|o -b|o P—‘|0|0|n
oo S vo toee~s Rrhlbibivivihnls 'V ks in ol Tle B lnle

563k ER G =3 N

Figure 13: Clustergram. The clustergram is generated by using the expression values of the 5 predictors
selected by DaMiR.FBest function. As for the heatmap generated by DalMiR.Allplot, 'class’ and covariates
are drawn as horizontal and color coded bars.
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41.2

Classification

All the steps executed so far allowed the reduction of the original expression matrix; the
objective is to capture a subset of original data as informative as possible, in order to carry
out a classification analysis. In this paragraph, we describe the statistical learning strategy
we implemented to tackle both binary and multi-class classification problems.

A meta-learner is built, combining up to 8 different classifiers through a “Stacking” strategy.
Currently, there is no gold standard for creating the best rule to combine predictions [6]. We
decided to implement a framework that relies on the “weighted majority voting” approach
[23]. In particular, our method estimates a weight for each used classifier, based on its own
accuracy, and then use these weights, together with predictions, to fine-tune a decision rule
(i.e. meta-learner). Briefly, first a training set (TR1) and a test set (TS1) are generated
by “Bootstrap” sampling. Then, sampling again from subset TR1, another pair of training
(TR2) and test set (TS2) were obtained. TR2 is used to train RF, NB, SVM, 3kNN, LDA,
NN, PLS and/or LR classifiers (the number and the type are chosen by the user), whereas
TS2 is used to test their accuracy and to calculate weights (w) by formula:

. ACCUTaCy(:lassifiem 1
Welassifier; — N

Z Accuracyclassifierj

j=1
where i is a specific classifiers and N is the total number of them (here, N <= 8). Using
this approach:

N
i=1

The higher the value of w;, the more accurate is the classifier.

The performance of the meta-learner (labelled as “Ensemble”) is evaluated by using TS1. The
decision rule of the meta-learner is made by a linear combination of the products between
weigths (w) and predictions (Pr) of each classifier; for each sample k, the prediction is
computed by:

N
Pr(k,Ensemble) = E w; * Pr(k:,classifieri) E

i=1

P, Ensembie) ranges from 0 to 1. For binary classification analysis, 0 means high proba-
bility to belong to one class, while 1 means high probability to belong to the other class);
predictions close to 0.5 have to be considered as made by chance. For multi-class analysis
1 means right prediction, while 0 means wrong prediction. This process is repeated several
times to assess the robustness of the set of predictors used.

The above mentioned procedure is implemented in the DaMiR.Ensemblelearning function,
where fSample.tr, fSample.tr.w and iter arguments allow the algorithm tuning.

This function performs a Bootstrap resampling strategy with iter iterations, in which several
meta-classifiers are built and tested, by generating iter training sets and iter test sets in a
random way. Then each classification metrics (acc,sen) is calculated on the iter test sets.
Finally, the average performance (and standard deviation) is provided (text and violin plots).
To speed up the execution time of the function, we set iter = 30 (default is 100) but we
suggest to use an higher number of iterations to obtain more accurate results. The function
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returns a list containing the matrix of accuracies of each classifier in each iteration and, in
the case of a binary classification problem, the specificity, the sensitivity, PPV, NPV and the
Matthew's Correlation Coefficient (MCC). These objects can be accessed using the $ accessor.

Classification_res <- DaMiR.EnsemblelLearning(selected_features$data,
classes=df$class, fSample.tr = 0.5,
fSample.tr.w = 0.5, iter = 30)

## You select: RF LR kNN LDA NB SVM weak classifiers for creating
## the Ensemble meta-learner.

## Ensemble classification is running. 30 iterations were chosen:
## Accuracy [%]:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.95 0.95 0.97 0.94 0.91 0.96 0.95
## St.Dev. 0.03 0.04 0.03 0.04 0.08 0.02 0.04
## MCC score:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.91 0.9 0.93 0.89 0.83 0.92 0.9

## St.Dev. 0.06 0.07 0.06 0.08 0.15 0.05 0.07
## Specificity:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.96 0.96 0.98 0.91 0.91 0.96 0.94
## St.Dev. 0.05 0.05 0.04 0.07 0.09 0.05 0.06
## Sensitivity:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.96 0.95 0.96 0.98 0.93 0.96 0.96
## St.Dev. 0.05 0.05 0.05 0.04 0.09 0.05 0.05
## PPV:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.95 0.95 0.98 0.9 0.9 0.96 0.94

## St.Dev. 0.06 0.05 0.05 0.09 0.1 0.05 0.06
## NPV:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.95 0.94 0.96 0.98 0.93 0.96 0.96
## St.Dev. 0.06 0.06 0.06 0.05 0.1 0.05 0.06
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Figure 14: Accuracies Comparison. The violin plot highlights the classification accuracy of each classifier,
computed at each iteration; a black dot represents a specific accuracy value while the shape of each “vi-
olin” is drawn by a Gaussian kernel density estimation. Averaged accuracies and standard deviations are

represented by white dots and lines.

As shown in Figure 14 almost all single, weak classifiers show high or very high classification
performancies, in terms of accuracy, specificity, sensitivity and MCC.

Figure 14 highlights that the five selected features ensured high and reproducible performance,
whatever the classifier; indeed, the average accuracy wass always greater than 90% and
pperformance deviated by no more than 4% from the mean value.

Building the optimal prediction model

In this section, we present the workflow to generate an effective classification model that
can be later used to predict the class membership of new samples. Basically, DaMiRseq
implements a supervised learning procedure, depicted in Figure 10, panel B, where each step
is performed by a specific function.

Indeed, the DaMiR.EnsL Train and the DaMiR.EnsL Test functions allow training and testing
one single model at once, respectively.

The DaMiR.ModelSelect function implements six strategies to perform the model selection,
taking into account a particular classification metrics (e.g., Accuracy) along with the number
of predictors. The idea behind this function is to search for the most reliable model rather than
the best ever; this should help to avoid over-fitted training data, leading to poor performance
in further predictions.

Users can choose a specific strategy, combining one of the three value of the type.sel
argument (type.sel = c("mode", "median", "greater") and one of the two values of the
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4.2.1

npred.sel argument (npred.sel = c("min", "rnd"). Let us assume we generated N different
model during a resampling strategy, each one characterized by a certain accuracy and number
of selected features. Then, the combination of:

= type.sel = "mode" and npred.sel = "min", will select the model with minimum number
of features, among those with the accuracy equal to the mode (i.e., the most frequent
value) of all N accuracies;

= type.sel = "mode" and npred.sel = "rnd", will select randomly one model, among
those with the accuracy equal to the mode (i.e., the most frequent value) of all N
accuracies;

= type.sel = "median" and npred.sel = "min", will select the model with minimum
number of features, among those with the accuracy equal to the median of all N
accuracies;

= type.sel = "median" and npred.sel = "rnd", will select randomly one model, among
those with the accuracy equal to the median of all N accuracies;

= type.sel = "greater" and npred.sel = "min", will select the model with minimum
number of features, among those with the accuracy greater than a fixed value, specified
by th.sel;

= type.sel = "greater” and npred.sel = "rnd", will select randomly one model, among
those with the accuracy greater than a fixed value, specified by th.sel;

Finally, the DaMiR.EnsL_Predict function allows performing the class prediction of new sam-
ples.

Note. Currently, DaMiR.EnsL Train, DaMiR.EnsL Test and DaMiR.EnsL Predict work only
on binary classification problems.

Training and testing inside the cross-validation

In order to simulate a typical genome-wide setting, we performed this analysis on the data_adjust
dataset, which is composed of 40 samples (20 ACC and 20 FC) and 19343 features.

First, we randomly selected 5 ACC and 5 FC samples (Test_set), which will be later used
for the final prediction step. The remaining samples composed the case study dataset (Learn
ing_set).

# Dataset for prediction
set.seed(10101)
nSampl_cll <- 5
nSampl_cl2 <- 5

## May create unbalanced Learning and Test sets
# idx_test <- sample(1l:ncol(data_adjust), 10)

# Create balanced Learning and Test sets
idx_test_cll<-sample(l:(ncol(data_adjust)/2), nSampl_cll)
idx_test_cl2<-sample(l:(ncol(data_adjust)/2), nSampl_cl2) + ncol(data_adjust)/2
idx_test <- c(idx_test_cll, idx_test_cl2)

Test_set <- data_adjust[, idx_test, drop=FALSE]
Learning_set <- data_adjust[, -idx_test, drop=FALSE]

32



The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

Then, we implemented a 3-fold Cross Validation, as resampling strategy. Please, note that
this choice is an unsuitable setting in every real machine learning analysis; therefore, we
strongly recommend to adopt more effective resampling strategies, as bootstrap632 or 10-
fold cross validation, to obtain more accurate results.

# Training and Test into a 'nfold' Cross Validation

nfold <- 3

cv_sample <- c(rep(seq len(nfold), each=ncol(Learning_set)/(2*nfold)),
rep(seq_len(nfold), each=ncol(Learning_set)/(2xnfold)))

# Variables initialization

cv_models <- list()

cv_predictors <- list()

res_df <- data.frame(matrix(nrow = nfold, ncol = 7))

colnames(res_df) <- c("Accuracy",
"N.predictors",
"MCC",
"sensitivity",
"Specificty",
"PPV",
"NPV")

For each iteration, we (i) split the dataset in training (TR_set) and validation set (Val_set);
(ii) performed the features selection and built the model (ensl_model) on the training set;
and, (iii) tested and evaluated the model on the validation set (res_Val). Regarding the
feature selection, we used the DaMiRseq procedure, described in Section 4.1.1; however, any
other feature selection strategies can be jointly utilized, such as the GARS package.

for (cv_fold in seq_len(nfold)){

# Create Training and Validation Sets

idx_cv <- which(cv_sample != cv_fold)

TR_set <- Learning_set[,idx_cv, drop=FALSE]
Val_set <- Learning_set[,-idx_cv, drop=FALSE]

#i### Feature selection
data_reduced <- DaMiR.FSelect(t(assay(TR_set)),
as.data.frame(colData(TR_set)),
th.corr=0.4)
data_reduced <- DaMiR.FReduct(data_reduced$data,th.corr = 0.9)
df_importance <- DaMiR.FSort(data_reduced,
as.data.frame(colData(TR_set)))
selected_features <- DaMiR.FBest(data_reduced,
ranking=df_importance,
autoselect = "yes")
# update datasets
TR_set <- TR_set[selected_features$predictors,, drop=FALSE]
Val_set <- Val_set[selected features$predictors,drop=FALSE]

### Model building
ensl_model <- DaMiR.EnsL_Train(TR_set,
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cl_type = c("RF", "LR"))

# Store all trained models
cv_models[[cv_fold]] <- ensl_model

### Model testing

res_Val <- DaMiR.EnsL_Test(Val_set,

EnsL_model = ensl_model)

# Store all ML results

res_df[cv_fold, 1]
res_df[cv_fold,2]
res_df[cv_fold,3]
res_df[cv_fold,4]
res_df[cv_fold,5]
res_df[cv_fold,6]
res_df[cv_fold,7]

res_Vals$accuracy[1l] # Accuracy
length(res_Val$predictors) # N. of predictors
res_Val$MCC[1]

res_Val$sensitivity[1]

res_Val$Specificty[1]

res_Val$PPV[1]

res_Val$NPV[1]

cv_predictors[[cv_fold]] <- res_Val$predictors

Selection and Prediction

Finally, we searched for the 'optimal model' to be used for predicting new samples. In this
simulation, we set type.sel = "mode" and npred.sel = "min" to select the model with the

lowest number of seleted features ensuring the most frequent accuracy value.

# Model Selection
res_df[,1:5]

##  Accuracy N.predictors

## 1 0.9
## 2 0.8
## 3 0.9

MCC sensitivity Specificty
5 0.8164966 1.0000000 0.8333333
6 0.6546537 1.0000000 0.7142857
9 0.8164966 0.8333333 1.0000000

idx_best_model <- DaMiR.ModelSelect(res_df,

type.sel = "mode",
npred.sel = "min")

## In your df, the 'optimal model' has index: 1

## Accuracy = 0.9
## 5 predictors
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Figure 15: Bubble Chart. The performance of each generated model (blue circle) is reprepesented in terms
of classification metrics (x-axis) and the number of predictors (y-axis). The size of circles corresponds to
the number of models with a specific classification metrics and a specific number of predictors. The red
cross represents the model, deemed optimal by DaMiR.ModelSelect.

The selected model (the red cross in Figure 15) reached an accuracy greater than 90% with
less than 10 predictors(out of 19183) on its validation set, enabling to predict correctly all
the samples composing the independent test set. In addition, subsetting the cv_predictors
object will return the predictors of the optimal model.

# Prediction on the the independent test set
res_predict <- DaMiR.EnsL _Predict(Test_set,
bestModel = cv_models[[idx_best_model]])

# Predictors
cv_predictors[[idx_best_model]]

## [1] "ENSGO0000077943" "ENSGOO000132386" "ENSGOO000170786" "ENSGOO000164326"
## [5] "ENSGO0000171724"

# Prediction assessment for Ensemble learning
id_classifier <- 1 # Ensemble Learning
table(colData(Test_set)$class, res_predict[,id classifier])

##

## ACC FC
## ACC 5 0
##  FC 0 5

# Prediction assessment for Logistic regression

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification
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id_classifier <- 3 # Logistic regression
table(colData(Test_set)$class, res_predict[,id_classifier])

##

## ACC FC
## ACC 5 0
## FC 0 5

Normalizing and Adjusting real independent test
sets

The main issue when dealing with prediction in a high-dimensional context is how to normalize
and adjust new sample data. The problem arises because (i) normalization procedures are
data dependent and (ii) factor-based algorithms to adjust data are supervised methods, i.e.
we must know the variable of interest we wish to adjust for. But this is not the case of novel
samples for which we are not supposed to know their class. In this latter case, however,
we can apply normalization and adjustment on new data by making use of the knowledge
obtained from the learning set.

Hereafter, we will propose two methods, called 'Precise’ and 'Quick’, that demonstrate to
work satisfactory displaying high normalization capability, leading to good prediction accuracy
on new samples. Briefly, with the 'Precise’ method the dispersion function is estimated on the
Learning set; while with the 'Quick’ methods,dispersion and data transformation is performed
directly (and more quickly) on the independent test set.

To illustrate these two options, we exploited the example data of DaMiRseq package by
splitting raw counts at the beginning and using the test set as it would be a completely
independent data set. We encourage the user to use also other kind of data to test our
proposed choices.

data(SE)

# create Independent test set and Learning set (raw counts)
idx_test <- c(18,19,39,40)

Ind_Test set <- SE[, idx_test, drop=FALSE]

Learning_set <- SE[, -idx_test, drop=FALSE]

# DaMiRseq pipeline on Learning Set
data_norm <- DaMiR.normalization(Learning_set,
minCounts=10,

fSample=0.7,
hyper = "yes",
th.cv=3)

## 1919 Features have been filtered out by espression. 19444 Features remained.
## 14 'Hypervariant' Features have been filtered out. 19430 Features remained.
## Performing Normalization by 'vst' with dispersion parameter: parametric

sv <- DaMiR.SV(data_norm)
## The number of SVs identified, which explain 95 % of Variance, is: 4

data_adjust <- DaMiR.SVadjust(data_norm, sv, n.sv=4)

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification
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Then, we normalized the independent test set by the vst (the same normalization used for
the Learning set) and the precise method. Then, we have also adjusted for batch effects
taking advantage of data_adjust, the dataset previously corrected by the estimated SVs.

# remove not expressed genes from Learning _set and Ind_Test_set
expr_LearningSet <- Learning_set[rownames(data_norm)]
expr_Ind_Test set <- Ind_Test_set[rownames(data_norm)]

# Independent test set Normalization

norm_ind_ts <- DaMiR.iTSnorm(expr_LearningSet,
expr_Ind_Test_ set,
normtype = "vst",
method = "precise")

## You selected the vst normalization and the precise method.
# Independent test set batch Adjusting

adj_norm_ind_ts <- DaMiR.iTSadjust(data_adjust, norm_ind_ts)

In Figure 16 and in Figure 17, the effect of normalization and batch correction, applied on
the independent test set, are shown, respectively
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Figure 16: RLE and Gene Expression distribution after normalization. A RLE boxplot of the distribution
of expression values computed as the difference between the expression of each gene and the median ex-
pression of that gene accross all samples. Here, since all medians are very close to zero, it appears that all
the samples are well-normalized and do not present any quality problems (upper panel). Sample-by-Sample
expression distribution (lower panel)
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Figure 17: RLE and Gene Expression distribution after batch correction. A RLE boxplot of the distribution
of expression values computed as the difference between the expression of each gene and the median ex-

pression of that gene accross all samples. Here, since all medians are very close to zero, it appears that all
the samples are well-normalized and do not present any quality problems (upper panel). Sample-by-Sample

expression distribution (lower panel)
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Finally, users can predict the class of the independent test set samples and assessed the
performance, by directly using the DaMiR.EnsL Predict function and the best model built on
the Learning Set. Here, for simplicity, we used the model built on the workflow implemented
in Section 4.2.

# Prediction on independent test set

prediction <- DaMiR.EnsL Predict(t(adj_norm_ind_ts),
bestModel = cv_models[[idx_best_model]])

prediction

#it Ensemble RF LR
## [1,] "ACC" "ACC" "AcCC"
## [2,] "ACC" "ACC" "AcCC"
## [3,] "FC" "FC" "FC"
## [4,] "FC" "FC" "FC"

# confusion matrix for the Ensemble Learner
table(Ind_Test_set@colData$class, prediction[,1])

##

## ACC FC
## ACC 2 0
## FC 0 2

Adjusting the data: a necessary step?

In this section, we highlight how the early step of data correction could impact on the final
classification results. Data transformation and global scaling approaches are traditionally
applied to expression data but they could not be always effective to capture unwanted source
of variation. High-dimensional data are, in fact, known to be deeply influenced by noises
and biases of high-throughput experiments. For this reason, we strongly suggest to check
the presence of any confounding factor and assess their possible effect since they could
dramatically alter the result. However, the step described in Section 3.4 could be skipped if
we assume that the data are not affected by any batches (known or unknown), or if we do
not want to take them into account. Thus, we performed, here, the same feature selection
and classification procedure as applied before but without removing the putative noise effects
from our expression data. In this case, VST normalized data will be used. Since the functions
embedded into these steps require a random sampling to be executed, we set the same seed
as in Section 3 (i.e. set.seed(12345)) to ensure a right comparison between results.

Note. For simplicity, here we do not produce all plots, except for the violin plot gener-
ated by DaMiR.EnsemblelLearning, used to compare the performances, although the usage of
DaMiR.Allplot, DaMiR.corrplot, DaMiR.Clustplot and DaMiR.MDSplot is crucial to check
the effect of each process.

## Feature Selection

set.seed(12345)

data_clean_2<-DaMiR. transpose(assay(data_filt))
df_2<-colData(data_filt)

data_reduced_2 <- DaMiR.FSelect(data_clean_2, df_2, th.corr=0.4)

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification
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## You are performing feature selection on a binary class object.
## 19238 Genes have been discarded for classification 105 Genes remained.

data_reduced_2 <- DaMiR.FReduct(data_reduced_2%$data)

## 31 Highly correlated features have been discarded for classification.
## 74 Features remained.

df.importance_2 <- DaMiR.FSort(data_reduced_2, df_2)
## Please wait. This operation will take about 20 seconds (i.e. about O minutes).

head(df.importance_2)

#i#t RReliefF scaled.RReliefF
## ENSGO0000164326 0.3793656 3.884531
## ENSGO0000258754 0.2665921 2.439328
## ENSG00000169432 0.2602079 2.357513
## ENSGO0000105976 0.2432797 2.140576
## ENSGO0000077327 0.2092149 1.704032
## ENSGO0000170290 0.1932171 1.499019

selected _features_2 <- DaMiR.FBest(data_reduced_2, ranking=df.importance_2,
n.pred=5)

## 5 Predictors have been selected for classification
selected_features_2$predictors

## [1] "ENSGO0000164326" "ENSGOO000258754" "ENSGO0000169432" "ENSGOO000105976"
## [5] "ENSGOO0O0077327"

## Classification

Classification_res_2 <- DaMiR.EnsemblelLearning(selected_features_2$data,
classes=df_2$class,
fSample.tr = 0.5,
fSample.tr.w = 0.5,
iter = 30)

## You select: RF LR kNN LDA NB SVM weak classifiers for creating
## the Ensemble meta-learner.

## Ensemble classification is running. 30 iterations were chosen:
## Accuracy [%]:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.96 0.94 0.96 0.94 0.87 0.95 0.91

## St.Dev. 0.04 0.05 0.04 0.04 0.11 0.04 0.06

## MCC score:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.92 0.88 0.93 0.9 0.75 0.91 0.83

## St.Dev. 0.07 0.1 0.07 0.08 0.21 0.08 0.12

## Specificity:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.98 0.96 0.99 0.96 0.89 0.98 0.93

## St.Dev. 0.04 0.07 0.04 0.06 0.12 0.04 0.08

## Sensitivity:

## Ensemble RF SVM NB LDA LR kNN
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## Mean: 0.94 0.93 0.95 0.94 0.88 0.93 0.91
## St.Dev. 0.06 0.06 0.06 0.07 0.12 0.07 0.08
## PPV:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.98 0.96 0.99 0.96 0.88 0.98 0.93
## St.Dev. 0.05 0.08 0.04 0.07 0.14 0.05 0.09
## NPV:

## Ensemble RF SVM NB LDA LR kNN

## Mean: 0.93 0.92 0.94 0.93 0.86 0.92 0.9
## St.Dev. 0.07 0.07 0.07 0.08 0.17 0.08 0.1

The consequence of data adjustment is already remarkable after the feature selection and
reduction steps. The number of selected genes, indeed, decreased from 220 to 98 when data
adjustment was not performed, suggesting that hidden factors may influence gene expression
and likely mask class-related features. Furthermore, the ranking of the important features
also differs if data correction is not applied. The two sets of 5 genes that are used to build
the classification models shares, in fact, only 1 gene. This suggests that data adjustment
affects both the number and the quality of the features that can be selected for classification.
Therefore, the overall classification performances, without the appropriate data correction,
felt down around 90% of accuracy for all the classifiers.

Figure 18 shows the results of the variation to standard workflow of DaMiRseq, proposed in
this Section. Taking as reference the “Standard Workflow", described in Section 3, we can
observe that the performances significantly decrease.

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification
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Figure 18: Accuracies Comparison. The violin plot shows the effect of the modification to DaMiRseq
standard workflow, described in Section 6: without adjusting data (following the steps described in Sec-
tion 3.4), performances usually decrease; this could be explained by the fact that some noise, probably

coming from unknown source of variation, is present in the dataset.

Check new implementations!

Version 2.0.0, devel: 2.1.0

Since version 2.0.0 of the software, DaMiRseq offers a solution to solve two distinct problems,
in supervised learning analysis: (i) finding a small set of robust features, and (ii) building the
most reliable model to predict new samples

Relevant modifications:

= Since version 2.0.0 of the software, DaMiRseq offers a solution to solve two distinct
problems, in supervised learning analysis: (i) finding a small set of robust features, and
(i) building the most reliable model to predict new samples;

= The functions DaMiR.EnsemblelLearning2cl_Training, EnsembleLearning2cl_Test and
EnsemblelLearning2cl Predict were deprecated and replaced by DaMiR.EnslL Train,
DaMiR.EnsL Test and DaMiR.EnsL Predict, respectively;

= We have created a new function (DalliR.ModelSelect) to select the best model in a
machine learning analysis;

= We have created two new functions (DalMiR.iTSnorm and DaMiR.iTSadjust) to normal-
ize and adjust the gene espression of independent test sets;

= Two types of expression value distribution plot were added to the DaMiR.Allplot func-
tion.
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Minor modifications and bugs fixed:
= Now, the DaMiR.FSelect function properly handles multi factorial experimental settings;
= The DaMiR.FBest function cannot select less than 2 predictors, whatever the mode;

= The axes labels in the RLE plot (DaMiR.Allplot function) are better oriented.

7.2 Version 1.6, devel: 1.5.2

Relevant modifications:

= The DaMiR.normalization embeds also the 'logcpm’ normalization, implemented in
the edgeR package.

= Now, DaMiR.EnsemblelLearning calculates also the Positive Predicted Values (PPV)
and the Negative Predicted Values (NPV);

= Three new functions have been implemented for the binary classification task: DaMiR.EnsemblelLearning2cl Training,
DaMiR.EnsembleLearning2cl_Test and DaMiR.EnsembleLearning2cl_Predict. The first
one allows the user to implement the training task and to select the model with the
highest accuracy or the average accuracy; the second function allows the user to test
the selected classification model on a test set defined by the user; the last function
allows the user to predict the class of new samples.

Minor modifications and bugs fixed:

= Removed black dots in the violin plots.

7.3  Version 1.4.1

= Adjusted Sensitivity and Specificity calculations.

7.4  \Version 1.4

Relevant modifications:
= DaMiRseq performs both binary and multi-class classification analysis;

= The “Stacking” meta-learner can be composed by the user, setting the new parameter
cl_type of the DaMiR.Ensemblelearning function. Any combination up to 8 classifiers
(“RF”, “NB", “"kNN", “SVM", “LDA", “LR", “NN", “PLS") is now allowed;

= If the dataset is imbalanced, a “Down-Sampling” strategy is automatically applied;

= The DaMiR.FSelect function has the new argument, called nPlsIter, which allows the
user to have a more robust features set. In fact, several feature sets are generated
by the bve pls function (embedded in DaMiR.FSelect), setting 'nPLSlter’ parameter
greater than 1. Finally, an intersection among all the feature sets is performed to return
those features which constantly occur in all runs. However, by default, nPlsIter = 1.

Minor modifications and bugs fixed:
= DaMiR.Allplot accepts also 'matrix’ objects;

= The DaMiR.normalization function estimates the dispersion, through the parameter
nFitType; as in DESeq2 package, the argument can be 'parametric’ (default), 'local’
and 'mean’;
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= In the DaMiR.normalization function, the gene filtering is disabled if minCount = 0;

= In the DaMiR.EnsemblelLearning function, the method for implementing the Logistic
Regression has been changed to allow multi-class comparisons; instead of the native lm
function, the bayesglm method implemented in the caret train function is now used;

= The new parameter second.var of the DaMiR.SV function, allows the user to take into
account a secondary variable of interest (factorial or numerical) that the user does not
wish to correct for, during the sv identification.

8 Session Info

= R Under development (unstable) (2025-10-20 r88955), x86_64-pc-linux-gnu

= Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=en_US.UTF-8, LC_ADDRESS=en_US.UTF-8, LC_TELEPHONE=en_US.UTF-8,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=en_US.UTF-8

= Time zone: America/New_York

= TZcode source: system (glibc)

= Running under: Ubuntu 24.04.3 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1ibRblas.so

= LAPACK: /usr/1ib/x86_64-1inux-gnu/lapack/liblapack.s0.3.12.0

= Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

= Other packages: Biobase 2.71.0, BiocGenerics 0.57.0, DaMiRseq 2.23.0,
GenomicRanges 1.63.0, IRanges 2.45.0, MatrixGenerics 1.23.0, S4Vectors 0.49.0,
Seqginfo 1.1.0, SummarizedExperiment 1.41.0, caret 7.0-1, generics 0.1.4,
ggplot2 4.0.0, knitr 1.50, lattice 0.22-7, matrixStats 1.5.0

= Loaded via a namespace (and not attached): AnnotationDbi 1.73.0,
BiocFileCache 3.1.0, BioclO 1.21.0, BiocManager 1.30.26, BiocParallel 1.45.0,
BiocStyle 2.39.0, Biostrings 2.79.1, DBI 1.2.3, DESeq2 1.51.0, DT 0.34.0,
DelayedArray 0.37.0, EDASeq 2.45.0, FSelector 0.34, FactoMineR 2.12,
Formula 1.2-5, GenomicAlignments 1.47.0, GenomicFeatures 1.63.1, Hmisc 5.2-4,
KEGGREST 1.51.0, MASS 7.3-65, Matrix 1.7-4, ModelMetrics 1.2.2.2,
R.methodsS3 1.8.2, R.oo 1.27.1, R.utils 2.13.0, R6 2.6.1, RColorBrewer 1.1-3,
RCurl 1.98-1.17, RSNNS 0.4-17, RSQLite 2.4.3, RWeka 0.4-46, RWekajars 3.9.3-2,
Rcpp 1.1.0, Rdpack 2.6.4, Rsamtools 2.27.0, S4Arrays 1.11.0, S7 0.2.0,
ShortRead 1.69.1, SparseArray 1.11.1, TH.data 1.1-4, XML 3.99-0.19,
XVector 0.51.0, abind 1.4-8, annotate 1.89.0, arm 1.14-4, aroma.light 3.41.0,
backports 1.5.0, baseb4enc 0.1-3, bdsmatrix 1.3-7, biomaRt 2.67.0, bit 4.6.0,
bit64 4.6.0-1, bitops 1.0-9, blob 1.2.4, boot 1.3-32, cachem 1.1.0, checkmate 2.3.3,
cigarillo 1.1.0, class 7.3-23, cli 3.6.5, cluster 2.1.8.1, coda 0.19-4.1, codetools 0.2-20,
colorspace 2.1-2, compiler 4.6.0, corrplot 0.95, crayon 1.5.3, curl 7.0.0,
data.table 1.17.8, dbplyr 2.5.1, deldir 2.0-4, dichromat 2.0-0.1, digest 0.6.37,
dplyr 1.1.4, 1071 1.7-16, edgeR 4.9.0, emmeans 2.0.0, entropy 1.3.2,
estimability 1.5.1, evaluate 1.0.5, farver 2.1.2, fastmap 1.2.0, filelock 1.0.3,
flashClust 1.01-2, foreach 1.5.2, foreign 0.8-90, future 1.67.0, future.apply 1.20.0,
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genalg 0.2.1, genefilter 1.93.0, ggrepel 0.9.6, globals 0.18.0, glue 1.8.0, gower 1.0.2,
grid 4.6.0, gridExtra 2.3, gtable 0.3.6, hardhat 1.4.2, highr 0.11, hms 1.1.4,
htmlTable 2.4.3, htmltools 0.5.8.1, htmlwidgets 1.6.4, httr 1.4.7, httr2 1.2.1,
hwriter 1.3.2.1, igraph 2.2.1, ineq 0.2-13, interp 1.1-6, ipred 0.9-15, iterators 1.0.14,
jpeg 0.1-11, kknn 1.4.1, labeling 0.4.3, latticeExtra 0.6-31, lava 1.8.2, leaps 3.2,
lifecycle 1.0.4, limma 3.67.0, listenv 0.10.0, Ime4 1.1-37, locfit 1.5-9.12,

lubridate 1.9.4, magrittr 2.0.4, memoise 2.0.1, mgcv 1.9-3, minga 1.2.8,

multcomp 1.4-29, multcompView 0.1-10, mvtnorm 1.3-3, nlme 3.1-168, nloptr 2.2.1,
nnet 7.3-20, pROC 1.19.0.1, parallel 4.6.0, parallelly 1.45.1, pheatmap 1.0.13,

pillar 1.11.1, pkgconfig 2.0.3, pls 2.8-5, plsVarSel 0.9.13, plyr 1.8.9, png 0.1-8,
praznik 11.0.0, prettyunits 1.2.0, prodlim 2025.04.28, progress 1.2.3, proxy 0.4-27,
purrr 1.2.0, pwalign 1.7.0, rJava 1.0-11, randomForest 4.7-1.2, rappdirs 0.3.3,
rbibutils 2.3, recipes 1.3.1, reformulas 0.4.2, reshape2 1.4.4, restfulr 0.0.16,

rison 0.2.23, rlang 1.1.6, rmarkdown 2.30, rpart 4.1.24, rstudioapi 0.17.1,
rtracklayer 1.71.0, sandwich 3.1-1, scales 1.4.0, scatterplot3d 0.3-44, splines 4.6.0,
statmod 1.5.1, stringi 1.8.7, stringr 1.6.0, survival 3.8-3, sva 3.59.0, tibble 3.3.0,
tidyselect 1.2.1, timeDate 4051.111, timechange 0.3.0, tinytex 0.57, tools 4.6.0,
vctrs 0.6.5, withr 3.0.2, xfun 0.54, xtable 1.8-4, yaml 2.3.10, zoo 1.8-14
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