BUSseq: Batch Effects Correction with Un-
known Subtypes for scRNA-seq data
User’s Guide

Fangda Song*, Ga Ming Chan and Yingying Wei

The Chinese University of Hong Kong

*sfd1994895@gmail. com

November 3, 2025

Contents
1 Introduction. 2
2 Methodolgy. 2
3 Entireworkflow L 4
3.1 DataPreparation 4
3.2 Model Fitting. 7
3.3 Estimated Cell Type, Batch and Cell-Specific Effect Extraction. 10
3.4 Intrinsic Gene Ildentification 12
3.5 Corrected Read Count Data and Visualization 13
4 Performance of BUSseq inreal dataanalysis 17

5 Sessioninformation. 17

mailto:sfd1994895@gmail.com

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

Introduction

Single-cell RNA-sequencing (scRNA-seq) technologies enable the measurement of the tran-
scriptome of individual cells, which provides unprecedented opportunities to discover cell types
and understand cellular heterogeneity [1]. Despite their widespread applications, single-cell
RNA-sequencing (scRNA-seq) experiments are still plagued by batch effects and dropout
events.

One of the major tasks of scRNA-seq experiments is to identify cell types for a population of
cells [1]. Therefore, the cell type of each individual cell is always unknown and is the target of
inference. However, most existing methods for batch effects correction, such as Combat space
[2] and the surrogate variable analysis (SVA)([3], [4]), are designed for bulk experiments and
require knowledge of the subtype information, which corresponds to cell type information for
scRNA-seq data, of each sample a priori.

Here, the R package BUSseq fits an interpretable Bayesian hierarchical model—the Batch
Effects Correction with Unknown Subtypes for scRNA seq Data(BUSseq)—to correct batch
effects in the presence of unknown cell types [5]. BUSseq is able to simultaneously correct
batch effects, clusters cell types, and takes care of the count data nature, the overdispersion,
the dropout events, and the cell-specific sequencing depth of scRNA-seq data. After correcting
the batch effects with BUSseq, the corrected value can be used for downstream analysis as
if all cells were sequenced in a single batch. BUSseq can integrate the read count matrices
measured from different platforms and allow cell types to be measured in some but not all of
the batches as long as the experimental design fulfills the conditions listed in [5].

This guide provides step-by-step instructions for applying the BUSseq model to correct batch
effects and identify the unknown cell type indicators for each cell for scRNA-seq data.

Methodolgy

BUSseq is a hierarchical model that closely mimics the data generating mechanism of scRNA-
seq experiments [5]. The hierarchical structure of BUSseq can be illustrated by the following
diagram.

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

Cell type indicator -

Pr(Wy; = k) = ”-'bk'z Ty = 1

V=

The batch-specific cell-type proportion

Underlying : : Cell-specific
expression level ~ Overdispersion parameter Cell-type effect gjze factor

t 4
KXpig| Wi = k“NB(Pixig-‘Pbg)-lOB(#big) =ag+fg+ Ufg + 6y
+

Mean expression level Log-scale baseline Location
expression level batch effect

Dropout event

indicator Dropout odds ratio
s Pbi
Zyig Xpig = Xpig~Bernoulli(py:,), log (lii) =¥o + Yu1Xvig
v Prig
Dropout rate
Observed read count Observed read count

4 i
Yoig = XbiglZpig = 0,Ypg = 0|be‘g“= 1
¥

Successful detection Dropout event

Figure 1: The hierarchical stucture of BUSseq model. Only Y3, in the gray rectangle is observed.

Assuming that there are totally B batches and ny; cells in b-th batch, b = 1,2,--- | B, we
define the underlying gene expression level of gene g in cell ¢ of batch b as Xj;,. Given the
cell type Wy, = k, Xy, follows a negative binomial distribution with mean expression level
Lyig and a gene-specific and batch-specific overdispersion parameter ¢,,. The mean expression
level 11,4 is determined by the log-scale baseline expression level o, the cell type effect 3y,
the location batch effect 1,4, and the cell-specific size factor d;,. It is of note that the cell type
Wi of each individual cell is unknown and is our target of inference. Therefore, we assume
that a cell on batch b comes from cell type k with probability Pr(W,; = k) = my, and the
proportions of cell types (71, -+, Tpi) can vary across batches.

Unfortunately, it is not always possible to observe the expression level X3, due to dropout
events. Without dropout (Z,;,, = 0), we can directly observe Y, = X;;,. However, if a
dropout event occurs (Zy;; = 1), then we observe Yj;, = 0 instead of Xj;,. In other words,
when we observe a zero read count Y3;;, = 0, there are two circumstances: a non-expressed
gene—biological zeros— or a dropout event. When gene ¢ is not expressed in cell ¢ of batch
b (Xpiyg = 0), we always have Y;;, = 0; when gene g is actually expressed in cell ¢ of batch b
(Xpig > 0) but a dropout event occurs, we can only observe Y}, = 0, and hence Z;;, = 1.
It has been noted that highly expressed genes are less-likely to suffer from dropout events [6].

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

We thus model the dependence of the dropout rate Pr(Z; = 1|X4;y) on the expression level
using a logistic regression with batch-specific intercept ;0 and log-odds ratio v;;. Noteworthy,
BUSseq includes the negative binomial distribution without zero inflation as a special case.
When all cells are from a single cell type and the cell-specific size factor ¢; is estimated a
priori according to spike-in genes, BUSseq can reduce to a form similar to BASICS [7].

3 Entire workflow

3.1 Data Preparation

The input data of our MCMC algorithm should be a SingleCellExperiment object or a list.
The input SingleCellExperiment object should include a counts assay of raw read count
data and colData indicating the corresponding batch of each cell. On the other hand, if the
input is a list, then each element of the list corresponds to the read count matrix of a batch,
where each row represents a gene and each column corresponds to a cell. Here, we take the
raw read count data assay(BUSseqfits example, "counts") stored in our package as an
example to illustrate how to prepare the input.

library(BUSseq)
library(SingleCellExperiment)

Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

#it
Attaching package: ’'MatrixGenerics’

The following objects are masked from ’package:matrixStats’:

##

#it colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,

#i# colCounts, colCummaxs, colCummins, colCumprods, colCumsums,

#i#t colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,

#it colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#it colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,

#i# colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

##
##
##
##
##
##
##
##
##

##

##

##

##

##
##

##
##
##
##

##
##

##
##
##

##
##
##
##
##
##
##
##

##

colWeightedMeans, colWeightedMedians, colWeightedSds,
colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowlLogSumExps,
rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs,
rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges

Loading required package: stats4

Loading required package: BiocGenerics

Loading required package: generics

Attaching package: ’generics’

The

following objects are masked from ’package:base’:

as.difftime, as.factor, as.ordered, intersect, is.element,
setdiff, setequal, union

Attaching package: ’BiocGenerics’

The

The

following objects are masked from ’package:stats’:

IQR, mad, sd, var, xtabs

following objects are masked from ’package:base’:

Filter, Find, Map, Position, Reduce, anyDuplicated, aperm,
append, as.data.frame, basename, cbind, colnames, dirname,
do.call, duplicated, eval, evalq, get, grep, grepl, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, saveRDS, table, tapply,
unique, unsplit, which.max, which.min

Loading required package: S4Vectors

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

##
Attaching package: ’'S4Vectors’

The following object is masked from ’package:utils’:
#i#t
#it findMatches

The following objects are masked from ’package:base’:
##t
I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

#i# "browseVignettes()’. To cite Bioconductor, see

#i# ‘citation("Biobase")’, and for packages ’citation("pkgname")’.
##t

Attaching package: ’Biobase’

The following object is masked from ’package:MatrixGenerics’:
#i#t
#i#t rowMedians

The following objects are masked from ’package:matrixStats’:
##
#i# anyMissing, rowMedians

#Input data is should be a SingleCellExperiment object or a list
CountData <- assay(BUSseqfits_example, "counts")
batch_ind <- unlist(colData(BUSseqfits_example))

Construct a SingleCellExperiment object with colData as batch indicators
sce_input <- SingleCellExperiment(assays = list(counts = CountData),

colData = DataFrame(Batch_ind = factor(batch_ind)))

Or, construct a list with each element represents the count data matrix

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

3.2

of a batch
num_cell_batch <- table(batch_ind)
list_input <- list(Batchl = CountDatal[,l:num_cell_batch[1]],
Batch2 = CountDatal[,l:num_cell_batch[2] + num_cell_batch[1]])

Cell numbers within each batch
print(num_cell_batch)

batch_ind
#i#t 1 2
150 150

#Peek at the read counts
print(CountData[l:5,1:5])

[,11 [,2]1 [,31 [,4]1 [,5]
[1,] 5 11 5 6 12
[2,] 6 16 8 7 5
[3,] 7 6 7 10 12
[4,] 13 9 8 14 2
[5,] 4 12 5 7 3

The example raw count data CountData consist of two batches. Each batch includes 150 cells,
and there are 300 genes measured in each cell. Because it is a simulated dataset, we actually
know that all of the cells come from 4 cell types.

In a nutshell, users can use a SingleCellExperiment object or a list as the input of our
MCMC algorithm. Note that the gene numbers of all batches need to be the same.

Model Fitting

Once we have prepared the input data and specified the cell type number, we are able to fit
the BUSseq model by running the BUSseq MCMC function.

Conduct MCMC sampling and posterior inference for BUSseq model
BUSseqfits res <- BUSseq MCMC(ObservedData = sce_input,
seed = 1234, n.cores = 2,

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

n.celltypes = 4, n.iterations = 500)

conducting the posterior sampling...

[>] Finish 0.00k/0.50k iterations.
EE===] Finish 0.05k/0.50k iterations.
[========>] Finish 0.10k/0.50k iterations.
[Ea====—=—c] Finish 0.15k/0.50k iterations.
[>] Finish 0.20k/0.50k iterations.
[>] Finish 0.25k/0.50k iterations.
[>] Finish 0.30k/0.50k iterations.
[>] Finish 0.35k/0.50k iterations.
[>] Finish 0.40k/0.50k iterations.
[>] Finish 0.45k/0.50k iterations.
[] Finish 0.50k/0.50k iterations.

The MCMC sampling takes: 0.248 mins
conducting the posterior inference...
#i#t Posterior inference takes: 0.006 mins

The first argument, ObservedData, of BUSseq MCMC should be a SingleCellExperiment ob-
ject or a list as we discuss before.

The second argument, seed, allows the users to obtain reproducible results.

The third argument, n.celltypes, is the number of cell types among all cells, which needs
to be specified by the user in advance. As discussed later, if n.celltypes is unknown, we
can vary the cell type number and use the Bayesian Information Criterion (BIC) to select the
optimal number.

The forth argument, n.iterations, is the total number of iterations of the MCMC algorithm
for the posterior inference of the BUSseq model. Users can also set the number of burnin
iterations by the argument, n.burnin. Given n.iterations, the default number of burnins is
n.iterations/2 iterations. The parameters are inferred by samples after the burnin iterations.

Now, let us take a look at the output:

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

The output is a SingleCellExperiment object
class(BUSseqfits_res)

[1] "SingleCellExperiment"
attr(,"package")
[1] "SingleCellExperiment™

Peek at the output
BUSseqfits_res

class: SingleCellExperiment
dim: 300 300

metadata(0):

assays(2): counts imputed_data
rownames: NULL

rowData names(0):

colnames(300): Batch_ind Batch_ind ... Batch_ind Batch_ind
colData names(1l): Batch_ind
reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

BUSseqfits_res is a SingleCellExperiment object. Compared with the input, BUSseq MCMC
incoporates the inferred underlying true read counts after imputing the dropout events and the
posterior inference of parameters into BUSseqfits_res. The posterior inference includes the
posterior mode of the cell-type indicators for each cell, and the posterior mean and variance of
the cell-type proportions within each batch, the cell-type-specific mean expression levels, the
location batch effects, the overdispersion parameters and the log-odds ratios of the logistic
regression for dropout events. Here, we show how to extract the imputed data from the
output.

Extract the imputed read counts

Imputed count <- assay(BUSseqfits_res, "imputed data")

We will further explain how to obtain the parameter estimation from the output BUSseq
fits_ res in the next section.

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

3.3

Estimated Cell Type, Batch and Cell-Specific Effect Extrac-
tion
Our main interests are the estimation of the cell type for each cell and the estimation of the

batch effects. We can call the celltypes function to extract the estimated cell type labels
W from BUSseqfits_res.

celltyes_est <- celltypes(BUSseqfits_res)
Batch 1 cells’ cell type indicators: 1,1,1...
Batch 2 cells’ cell type indicators: 1,1,1...

The output format is an N-dimensional verctor.

There is a message from the celltypes function to remind the format of it output.

Similarly, you can call the location batch effects and overdispersions functions to get
the estimated location batch effects 7j,, and batch-specific and gene-specific overdispersion

parameters ¢p,. Note that the first batch is taken as the reference batch, so its location batch
effects are zeros for all genes.

location_batch_effects_est <- location batch effects(BUSseqfits_res)
The output format is a matrix.
Each row represents a gene, and each column corresponds to a batch.

head(location_batch_effects_est)

[,1] [,2]
[1,] 0 1.825914
[2,] 0 1.856586
[3,] 0 1.817112
[4,] 0 1.772725
[5,1] 0 1.850341
[0,] 0 1.800893

overdispersion_est <- overdispersions(BUSseqfits_res)

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

The output format is a matrix.
##
Each row represents a gene, and each column corresponds to a batch.

head (overdispersion_est)

#it [,1] [,2]
[1,] 11.01228 7.843142
[2,] 14.60814 11.325966
[3,] 15.32366 12.675340
[4,] 18.04462 10.543350
[5,] 16.99327 15.770450
[6,] 14.27186 6.242549

The estimated cell-specific size factors gbi are available by calling the cell effect values
function. Here, the first cell in each batch is regarded as the reference cell, and its size factor
is set as zero.

cell_effects_est <- cell effect values(BUSseqfits_res)
The output format is an N-dimensional vector.
head(cell_effects_est)

[1] 0.0000000 -0.3329874 -0.3004243 -0.3180968 -0.3163159 -0.4345818

The celltype mean expression function provides the estimated cell-type-specific mean ex-
pression levels exp(a,+ B4r). The estimates remove the technical artifacts, including the batch
effects and the cell-spcific size factors, but retain the biological variability across different cell
types. Moreover, the estimated cell type effects 3, can be obtained by the celltype effects
function. Notice that the first cell type is regarded as the reference cell type implying all zeros
in the first column of celltype_effects_est.

celltype_mean_expression_est <- celltype mean_expression(BUSseqfits_example)
The output format is a matrix.
Each row represents a gene, and each column corresponds to a cell type.
head(celltype_mean_expression_est)

it [,1] [,2] [,3] [,4]

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

[1,] 10.376815 1.250272 1.274214 1.409057
[2,] 9.954963 1.273692 1.341472 1.109019
[3,] 10.406628 1.331637 1.252357 1.356293
[4,] 10.393802 1.423639 1.629966 1.639577
[5,] 8.982671 1.365512 1.315853 1.303614
[6,] 10.825665 1.534218 1.330363 1.483122

celltype_effects_est <- celltype effects(BUSseqfits_res)

The output format is a matrix.
#t
Each row represents a gene, and each column corresponds to a cell type.

head(celltype_effects_est)

[,1] [,2] [,31] [,4]
[1,] 0 -2.116213 -2.097245 -1.996653

[2,] 0 -2.056152 -2.004303 -2.194595
[3,] 0 -2.056034 -2.117415 -2.037687
[4,] 0 -1.987993 -1.852650 -1.846771
[5,] 0 -1.883768 -1.920812 -1.930157
[6,] 0 -1.953899 -2.096468 -1.987770

3.4 Intrinsic Gene Identification

#obtain the intrinsic gene indicators
intrinsic_gene_indicators <- intrinsic_genes_BUSseq(BUSseqfits_res)
print(intrinsic_gene_indicators)

DataFrame with 300 rows and 1 column

#i# IntrinsicGene
#i# <character>
1 Yes
2 Yes
3 Yes
4 Yes
5 Yes
...

296 No

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

297 No
298 No
299 No
300 No

#The estimated FDR, the first 240 genes are known as intrinsic
#genes in the simulation setting.

index_intri <- which(unlist(intrinsic_gene_indicators) == "Yes")
false_discovery_ind <- !(index_intri %in% 1:240)

fdr_est <- sum(false_discovery_ind)/length(index_intri)
print(fdr_est)

[1] 0.004149378

Therefore, the true FDR is 0.0041494 much less than the estimated FDR, 0.05.

3.5 Corrected Read Count Data and Visualization

The BUSseq MCMC function not only conducts MCMC sampling and posterior inference, but
also imputes the missing data caused by dropout events. Furthermore, based on the imputed
data, we expect to correct batch effects as if all the batches were measured in a single scRNA-
seq experiment. The corrected read counts function adjusts to the imputed data and adds
the corrected read count data into the input SingleCellExperiment.

Obtain the corrected read count data
BUSseqfits_res <- corrected_read_counts(BUSseqfits_res)

correcting read counts. ..

The corrected read count matrix is added into the output "SingleCellExperiment"
object.

An new assay "corrected_data" is incorporated
BUSseqfits_res

class: SingleCellExperiment

dim: 300 300

metadata(0):

assays(3): counts imputed_data corrected_data
rownames: NULL

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

rowData names(0):

colnames(300): Batch_ind Batch_ind ... Batch_ind Batch_ind
colData names(1l): Batch_ind

reducedDimNames (0):

mainExpName: NULL

altExpNames(0):

Subsequently, we visualize the raw count data that suffer from batch effects and dropout
events, the inferred true expression levels after imputing dropout events, and the corrected

count data which impute the dropout events and remove the batch effects. The heatmap data BUSseq
function draws the heatmap for the count data across batches for the output SinleCellExper

iment object of the functions BUSseq MCMC and corrected read counts.

First, the used assay to draw the heatmap is determined by the arugment data_type, includ-
ing Raw, Imputed and Corrected. Moreover, the heatmap will be stored in the local folder
according to the argument image dir. The image name can be modified by the argument
project_name. Besides, the user can specify the argument gene_set to only display a subset
of genes in the heatmap.

#generate the heatmap of raw read count data

heatmap_data_BUSseq(BUSseqfits_res, data_type = "Raw",
project_name = "BUSseq_raw_allgenes",
image_dir = "./heatmap")

pdf
2

#display only the first 100 genes in the heatmap
heatmap_data_BUSseq(BUSseqfits_res, data_type = "Raw",
gene_set = 1:100,
project_name = "BUSseq_raw_100genes",
image_dir = "./heatmap")

pdf
2

#generate the heatmap of imputed read count data
heatmap_data BUSseq(BUSseqfits_res, data_type = "Imputed",

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

Figure 2: The heatmap of the raw count data of all genes (left) and the first 100 genes (right). Each row
represents a gene, and each column denotes a cell. The color bar indicates the corresponding batch of each
cell.

project_name = "BUSseq imputed allgenes",
image_dir = "./heatmap")

pdf
2

#generate the heatmap of corrected read count data

heatmap_data_BUSseq(BUSseqfits_res, data_type = "Corrected",
project_name = "BUSseq_corrected_allgenes",
image_dir = "./heatmap")

Figure 3: The heatmap for the imputed (left) and corrected (right) count data of all genes.

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

In all these heatmaps, the top bar indicates the corresponding batch of each cell. That's to
say, cells under the same color are from the same batch. The batch effects present in the raw
data are correctly removed in the corrected count data, and only the biological variabilities are
kept. We can also only display the identified intrinsic genes in the corrected count data by
setting the argument gene_set as the indices of the identified intrinsic genes index_intri in
the last section.

#0nly show the identified intrinsic genes
heatmap_data_BUSseq(BUSseqfits_res, data_type = "Corrected",
gene_set = index_intri,
project_name = "BUSseq_corrected_intrinsic_genes",
image_dir = "./heatmap")

pdf
#H 2

Figure 4: The heatmap for the corrected count data of the identified intrinsic genes.

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

4

Performance of BUSseq in real data analysis

In the scRNA-seq experiments, the unknown cell types of individual cells are usually the target
of inference. Because of severe batch effects, if we directly pool cells from different experi-
ments together, the cells are often clustered by batch or experiment rather than by cell type.
After correcting batch effects, cells can be clustered based on the corrected read count data
or their corresponding low-dimensional embedding. Therefore, to benchmark different batch
effects correct methods, we expect that the estimated cell-type labels are highly consistent
with the reference cell type labels generated by the fluorescence-activated cell sorting (FACS)
technique. The adjusted Rand index (ARI) can measure the consistency between the estimated
labels and the reference ones. ARI ranges from 0 to 1, and the higher value means the better
consistency [8].

[5] benchmarked BUSseq with the state-of-the-art methods of batch effects correction for
scRNA-seq data, including LIGER [9], MNN [10], Scanorama [11], scVI [12], Seurat [13] and
ZINB-WaVE [14]. We applied all these methods to integrate multiple scRNA-seq experiments
in a mouse hematopoietic study and a human pancreatic study, respectively.

Method ARI on hematopoietic study ARI on pancreatic study
BUSseq 0.582 0.608
LIGER 0.307 0.542
MNN 0.575 0.279
Scanorama 0.518 0.527
scVI 0.197 0.282
Seurat 3.0 0.266 0.287
ZINB-WaVE 0.348 0.380

Table 1: The comparison of different methods in the cell type clustering.

According to the above table, BUSseq outperforms all of the other methods in being consistent
with the reference cell-type labels for these two real studies.

Session information

sessionInfo()

R Under development (unstable) (2025-10-20 r88955)

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

Platform: x86_64-pc-linux-gnu

Running under: Ubuntu 24.04.3 LTS

#i#t

Matrix products: default

BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1ibRblas. so

LAPACK: /usr/lib/x86_64-1linux-gnu/lapack/liblapack.so0.3.12.0 LAPACK version 3.12.0

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

time zone: America/New_York
tzcode source: system (glibc)

##

attached base packages:

[1] statsd stats graphics grDevices utils datasets methods
[8] base

##

other attached packages:
[1] SingleCellExperiment_1.33.0 SummarizedExperiment_1.41.0

[3] Biobase_2.71.0 GenomicRanges_1.63.0

[5] Seqinfo_1.1.0 IRanges_2.45.0

[7] S4Vectors_0.49.0 BiocGenerics _0.57.0

[9] generics _0.1.4 MatrixGenerics_1.23.0

[11] matrixStats_1.5.0 BUSseq_1.17.0

##t

loaded via a namespace (and not attached):

[1] gplots_3.2.0 cli_3.6.5 knitr_1.50

[4] rlang_1.1.6 xfun_0.54 highr_0.11

[7] KernSmooth_2.23-26 gtools_3.9.5 DelayedArray_0.37.0
[10] BiocStyle_2.39.0 htmltools_0.5.8.1 rmarkdown_2.30
[13] grid_4.6.0 caTools_1.18.3 abind_1.4-8
[16] evaluate_1.0.5 bitops_1.0-9 fastmap_1.2.0

[19] yaml_2.3.10 BiocManager_1.30.26 compiler_4.6.0

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data

User’s Guide
[22] XVector_0.51.0 lattice 0.22-7 digest 0.6.37
[25] SparseArray_1.11.1 Matrix_1.7-4 tools_4.6.0

[28] S4Arrays_1.11.0

References

[1]
2]
8]
[4]

[5]

[o]

[7]

[8]

[9]

[10]

[11]

Rhonda Bacher and Christina Kendziorski. Design and computational analysis of
single-cell rna-sequencing experiments. Genome Biology, 17(1):63, 2016.

W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray
expression data using empirical bayes methods. Biostatistics, 8(1):118-127, 2007.

Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genetics, 3(9):e161, 2007.

Jeffrey T Leek. svaseq: removing batch effects and other unwanted noise from
sequencing data. Nucleic Acids Research, page gku864, 2014.

Fangda Song, Ga Ming Angus Chan, and Yingying Wei. Flexible experimental designs
for valid single-cell rna-sequencing experiments allowing batch effects correction. Nature
communications, 11(1):1-15, 2020.

Peter V Kharchenko, Lev Silberstein, and David T Scadden. Bayesian approach to
single-cell differential expression analysis. Nature Methods, 11(7):740, 2014.

Catalina A Vallejos, John C Marioni, and Sylvia Richardson. BASICS: Bayesian analysis
of single-cell sequencing data. PLoS Computational Biology, 11(6):e1004333, 2015.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association, 66(336):846-850, 1971.

Joshua D Welch, Velina Kozareva, Ashley Ferreira, Charles Vanderburg, Carly Martin,
and Evan Z Macosko. Single-cell multi-omic integration compares and contrasts
features of brain cell identity. Cell, 177(7):1873-1887.e17, 20109.

Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni. Batch effects
in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors.
Nature Biotechnology, 36(5):421-427, 2018.

Brian Hie, Bryan Bryson, and Bonnie Berger. Efficient integration of heterogeneous
single-cell transcriptomes using Scanorama. Nature Biotechnology, 37(6):685, 2019.

BUSseq: Batch Effects Correction with Unknown Subtypes for scRNA-seq data
User’s Guide

[12] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael | Jordan, and Nir Yosef. Deep

generative modeling for single-cell transcriptomics. Nature Methods, 15(12):1053, 2018.

[13] Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi,
William M Mauck Ill, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija.
Comprehensive integration of single-cell data. Cell, 177(7):1888-1902.e21, 2019.

[14] Davide Risso, Fanny Perraudeau, Svetlana Gribkova, Sandrine Dudoit, and
Jean-Philippe Vert. A general and flexible method for signal extraction from single-cell
RNA-seq data. Nature Communications, 9(1):284, 2018.

	1 Introduction
	2 Methodolgy
	3 Entire workflow
	3.1 Data Preparation
	3.2 Model Fitting
	3.3 Estimated Cell Type, Batch and Cell-Specific Effect Extraction
	3.4 Intrinsic Gene Identification
	3.5 Corrected Read Count Data and Visualization

	4 Performance of BUSseq in real data analysis
	5 Session information

