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1 Package Overview

AgiMicroRna provides useful functionality for the processing, quality assess-
ment and differential expression analysis of Agilent microRNA array data. The
package uses a limma-like structure to generate the processed data in order to
make statistical inferences about differential expression using the linear model
features implemented in limma. Standard Bioconductor objects are used so
that other packages could be used as well.

AgiMicroRna reads into R [12] the scanned data exported by the Agilent
Feature Extraction (AFE) image analysis software [1]. Standard graphical
utilities can be used to evaluate the quality of the data.

AgiMicroRna includes a full data example that can be loaded into R in or-
der to illustrate the capabilities of the package. The data come from human
mesenchymal stem cells obtained from bone marrow. 100 ng of each RNA sam-
ple were hybridized onto Agilent Human microRNA Microarray v2.0 (G4470B,
Agilent Technologies).

The Human microRNA microarray v2.0 contains 723 human and 76 human
viral microRNAs, each of them replicated 16 times. There are 362 microR-
NAs interrogated by 2 different oligonucleotides, 45 microRNAs by 3 and 390
microRNAs interrogated by 4 different oligonucleotides. Only 2 microRNAs
are interrogated by the same oligonucleotide. The array contains also a set of
positive and negative controls that are replicated a different number of times.

For the statistical analysis we need an estimate of the expression measure
for every microRNA that has to be normalized between arrays. This processed
signal is going to be used to make statistical inferences about the differential
expression. In AgiMicroRna the processed microRNA signal can be obtained
using two different protocols. The first uses the Total Gene Signal (TGS)
computed by the AFE algorithm [1] whereas the second obtains an estimate of
the gene signal using the RMA algorithm [8].

In more detail, the data processing for the first protocol is accomplished
according to the following sequential steps: 1) Obtaining the Total microRNA
Gene Signal processed by AFE, 2) normalization between arrays. For the RMA
algorithm, the steps are slightly different: 1) The signal is background corrected
using the exponential + normal convolution model, 2) the background signal



is normalized between arrays, and 3) the total gene signal is estimated from
a linear model that takes into account the probe effect. The estimates of the
model are obtained using a robust methods such as the median polish.

After obtaining the normalized total gene signal, some of the genes are elim-
inated from the analysis using some of the quality flags that AFE attaches to
each feature. Finally, the processed signal that is going to be used to make
statistical inferences is stored in a ExpressionSet object [7].

The differential expression analysis is accomplished using the linear model
features implemented in limma [10]. A linear model is fitted to each microRNA
gene so that the fold change between different experimental conditions and
their associated standard errors can be estimated. Empirical Bayes methods
are applied to obtain moderated statistics [9].

AgiMicroRna contains different functions to extract useful information from
the objects generated by limma. A list of microRNAs with the different statistics
obtained from the differential expression analysis (M value, moderated t and F
statistics, p values and FDR, etc ) is given. In addition, HTML files that
contains links of the declared significant microRNAs to the Sanger miRBase
http://microrna.sanger.ac.uk/ are given. MA plots highlighting the DEGs are
also generated.

2 Target File

AgiMicroRna has been primarily designed to produce a processed data to be an-
alyzed using the limma package. First, a target file is needed in order to assign
each scanned data file to a given experimental group. The target file is a tab-
delimited text format file created by the user where we specify the factors
that are going to be included in the statistical model. The following columns
have to be present in the target file. A first column FileName is mandatory
and includes the image data files names. A second column Treatment is also
mandatory and includes the treatment effect. The third column, GErep is also
mandatory, and includes the treatment effect in a numeric code, from 1 to n,
being n the number of levels of the treatment effect. Other columns in the
target file are optional. They might included information about other explana-
tory variables specifying other experimental conditions, such age, gender, and
blocking variables that take into the account the experimental design (paired,
blocked designed, etc). These variables should be included in the target file for
its eventual use in the limma model.

In the data example provided in AgiMicroRna we use microRNAs that have
been measured in human mesenchymal stem cells obtained from bone marrow of
2 independent donors. We want to compare 2 treatments MSC B and MSC_C
with a control MSC _A. For the sake of simplicity we use only 2 replicates for
each experimental condition. We define a treatment effect with 3 levels (A,B
and C). We need to specify a GErep variable to specify the treatment levels
using a numeric code, i.e. (1,2,3). In Addition, each treatment has been applied
to stem cells that have been obtained from the same individuals, so we have



a randomized blocked (by Subject) design. As we only have two levels of the
blocking variable (subject), this is also known as a paired design. To consider
the paired design in the statistical analysis we have to add an additional Subject
variable in the target file that relates the individual to its sample. The target
file for this example is shown in Table 1.

FileName | Treatment | GErep | Subject
mscAl.txt A 1 1
mscA2.txt A 1 2
mscB1.txt B 2 1
mscB2.txt B 2 2
mscCl.txt C 3 1
mscC2.txt C 3 2

Table 1: Targe file

After the user have define the target text file specifying their experimental
conditions, the target file can be loaded into R using the AgiMicroRna function
readTargets.

## NOT RUN
> library("AgiMicroRna")
> targets.micro=readTargets(infile="targets.txt",verbose=TRUE)

The function readTargets returns a data.frame. We can use the target
included in AgiMicroRna to describe the microRNA data used to illustrate the
capabilities of the package.

> library("AgiMicroRna")
> data(targets.micro)
> print(targets.micro)

FileName Treatment GErep Subject
mscAl mscAl.txt A 1
mscA2 mscA2.txt
mscB1l mscBl.txt
mscB2 mscB2.txt
mscCl mscCl.txt
mscC2 mscC2.txt
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3 Reading the data

We have used microRNA data example coming from human mesenchymal stem
cells obtained from bone marrow of 2 independent donors. 100 ng of each
RNA sample were hybridized onto Agilent Human microRNA Microarray v2.0
(G4470B, Agilent Technologies) The chips were scanned using the Agilent G2567AA



Microarray Scanner System (Agilent Technologies) following manufacturer in-
structions. Image analysis and data collection were carried out using the Agilent
Feature Extraction 9.1.3.1 (AFE) [1]. with default settings.

To read the scanned data files into R we use the readMicroRnaAFE. This func-
tion creates an object of a class uRNAList, similar to the RGList object created
by limma [10], that includes the variables that we need for the data processing
and statistical analysis (see Table 2). In particular, the columns "gTotalGen-
eSignal", "gTotalProbeSignal", "gMeanSignal" and "gProcessedSignal" loaded
from the scanned data files, are stored in the following 4 different slots: TGS, TPS,
meanS and procS. We have created this new class object (adopted from limma)
to use more appropiate names for the signal values that we use in AgiMicroRna.

The readMicroRnaAFE calls a new function read.agiMicroRna, similar to
the read.maimages in limma. read.agiMicroRna is internally used as follows:

## NOT RUN
dd=read.agiMicroRna(targets,
columns=1ist (TGS="gTotalGeneSignal",
TPS="gTotalProbeSignal",
meanS="gMeanSignal",
procS="gProcessedSignal"),
other.columns=1ist (IsGeneDetected="gIsGeneDetected",
IsSaturated="gIsSaturated"”,
IsFeatNonUnifOF="gIsFeatNonUnifOL",
IsFeatPopnOL="gIsFeatPopnOL",
BGKmd="gBGMedianSignal",
BGKus="gBGUsed") ,
annotation = c( "ControlType", "ProbeName","GeneName"),
verbose=TRUE)

This implies that in the data files we must have all the columns that are indi-
cated in the calling to read.agiMicroRna. If any of those columns are missing,
the readMicroRnaAFE will produce an error message. In this case, we will have
to call the read.agiMicroRna by ourselves, omitting those columns that are
not present in the data files. For the data pre-processing and differential expres-
sion analysis, the columns that we must read at least are: gTotalGeneSignal,
gMeanSignal, gIsGeneDetected, ControlType, ProbeName, and GeneName.

A typical use of readMicroRnaAFE is like:

## NOT RUN
> dd.micro=readMicroRnaAFE (targets.micro, verbose=TRUE)

AgiMicroRna contains uRNAList dd.micro that can be used to explore the
capabilities of the package. dd.micro can be loaded into R using the data
command.

> data(dd.micro)
> class(dd.micro)



[1] "uRNAList"
attr(, "package")
[1] ".GlobalEnv"
> dim(dd.micro)
[1] 13737 6

The variables stored in the uRNAList dd.micro are shown in Table 2.

> print(names(dd.micro))

[1] "TGsS" "TPS" "meanS"  "procS"  "targets" "genes"  "other"
variable data
dd.micro$TGS gTotalGeneSignal
dd.micro$TPS gTotalProbeSignal
dd.micro$means gMeanSignal
dd.micro$procs gProcessedSignal
dd.micro$targets File names
dd.micro$genes$ProbeName Probe Name
dd.micro$genes$GeneName microRNA Name
dd.micro$genes$ControlType FLAG to specify the sort of feature

dd.micro$other$gIsGeneDetected | FLAG IsGeneDetected
dd.micro$other$glsSaturated FLAG IsSaturated
dd.micro$other$gIlsFeatNonUnifOL | FLAG IsFeatNonUnifOL
dd.micro$other$glsFeatPopnOL FLAG IsFeatPopnOL
dd.micro$other$gBGMedianSignal | gBGMedianSignal
dd.micro$other$gBGUsed gBGUsed

Table 2: Variables stored in the uRNAList object by readMicroRnaAFE

The ProbeName is an Agilent-assigned identifier for the probe synthesized
on the microarray. The GeneName is an identifier for the gene for which the
probe provides expression information. The target sequence identified by the
systematic name is normally a representative or consensus sequence for the gene.

AFE obtains the gTotalGeneSignal as the TotalProbeSignal times the
number of probes per gene. This signal can be used in the differential expres-
sion analysis after a possible normalization step. The gTotalProbeSignal is
the robust average of all the processed signals for each replicated probe mul-
tiplied by the total number of probe replicates. These signals are used by
AFE algorithms to estimate the gTotalGeneSignal. The gMeanSignal is the
raw signal for every probe. These signals are processed by AFE to obtain the
gProcessedSignal. The gProcessedSignal is obtained after all the AFE pro-
cessing steps have been completed. Typically it contains the Multiplicatively



Detrended BackgroundSubtracted Signal or the BackgroundSubtractedSignal.
These signals are used by AFE algorithms to estimate the gTotalProbeSignal.
The gBGMedianSignal is the median raw signal of the local background cal-
culated from intensities of all inlier pixels that represent the local background

of the feature. The gBGUsed is the background signal computed by AFE algo-
rithms. Usually the gBGUsed is the sum of the local background plus the spatial
detrending surface value computed by the AFE software. The spatial detrend
surface value estimates the noise due to a systematic gradient on the array and

it is estimated using the loess algorithm.

AFE attaches to each feature a flag that identifies different quantification
errors of the signal. These quantification flags can be used to filter out signals
that do not reach a minimum established criterion of quality. gIsGeneDetected
is a Boolean variable that informs if the gene was detected on the microRNA
microarray. This flag considers a probe detected if the signal is three times
the error. If one probe of the set of probes comprising a gene is detected, the
gene is considered detected,(1 = IsDetected 0 = IsNotDetected). gIsSaturated
is Boolean flag. 1 indicates that the feature is saturated, i.e. at least half of
the inlier pixels in the feature have intensities above the saturation thresh-
old. glsFeatureNonUnifOL is Boolean flag. 1 indicates that the feature is a
non-uniformity outlier; the measured feature pixel variance is greater than the
expected feature pixel variance plus the confidence interval. gIsFeatPopOL is
Boolean flag. 1 indicates that the feature is a population outlier.

Finally, the dd.micro$targets contain the name of the files equal to those
in target file.

4 Plotting Functions

AgiMicroRna includes functions to create boxplots, density plots, MA plots,
Relative Log Expression (RLE) [4], and hierarchical cluster of samples that
can assist the user in assessing the quality of the data as well as in checking the
performance of the processing steps.

All these graphical utilites are included in the qcPlots wrapper function.
qcPlots can be called using different intensity signals. For the gMeanSignal,
the boxplots, density plots, MA plots, RLE plots and hierachical clustering plots
are produced. For the gProcessedSignal the same plots are done, except the
hierarchical clustering. For the gTotalProbeSignal and the gTotalGeneSignal
only the boxplots and density plots are done, and finally, for the background
signals only the boxplots are done.

The MA plots represent the fold-change (M) in the y-axis against the average
log expression (A) for two given arrays. To reduce the number of pairwise
comparison MA plots displayed, qcPlots uses a reference array to which the rest
of arrays are compared. The signal values of the reference array are computed
as the median spots taken over the whole set of arrays Every kind of feature is
identified with different color. of feature is identified with different color.

The RLE plot displays for each sample a Boxplot with the Relative Log



Expression (RLE) [4]. The RLE is computed for every spot in the array as the
difference between the spot and the median of the same spot across all the arrays.
If the majority of the spots are expected not to be differentially expressed, the
boxplots should be centered on zero and all of them with approximately the
same dispersion.

qcPlots makes a hierarchical cluster of the samples using the hclust func-
tion of the stats package. We can make a hierarchical clustering of samples
either using the whole set of genes or using for instance only the 100 genes that
show the highest variability across arrays. The options for the distance measures
are euclidean and pearson. The variables that distinguish the experimental
conditions from one another are the differential expressed genes, and that the
number of genes may be few relative to the full set of genes of the data set, and
hence the cluster analysis will often not reflect the influence of these relevant
genes. Therefore if the percentage of differential expression is low, the samples
might not be grouped according to their experimental group, since the whole set
of genes has very little information regarding the experimental grouping, and
the plot will mainly show other grouping features or simply random noise.

A typical call to the qcPlots using the Mean Signal intensity is like:

> qcPlots(dd.micro,offset=5,

+ MeanSignal=TRUE,

+ ProcessedSignal=FALSE,
+ TotalProbeSignal=FALSE,
+ TotalGeneSignal=FALSE,
+ BGMedianSignal=FALSE,

+ BGUsed=FALSE,

+ targets.micro)

>

The same plots can be also generated calling the corresponding functions
individually. Next we show how to use these functions using the gMeanSignal.
Recall, that the gMeanSignal is stored in dd.micro$means.

> boxplotMicroRna(log2(dd.micro$meanS),
+ maintitle='log2 Mean Signal',
+ colorfill= 'orange')
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> plotDensityMicroRna(log2(dd.micro$meanS),

+

Density

maintitle='log2 Mean Signal')
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ddaux=dd.micro

ddaux$G=10g2(dd.micro$meanS)

mvaMicroRna (ddaux,
maintitle='log2 Mean Signal',
verbose=FALSE)

rm(ddaux)
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> RleMicroRna(log2(dd.micro$meansS),
+ maintitle='log2 Mean Signal - RLE')

log2 Mean Signal - RLE
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> hierclusMicroRna(log2(dd.micro$meanS) ,targets.micro$GErep,

+ methdis="euclidean",
+ methclu="complete",
+ sel=TRUE, 100)
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5 Array reproducibility

In the Agilent microRNA platforms normally each microRNA gene is interro-
gated by 16 probes either using 2 different probes, each of them replicated 8
times, or using 4 different probes replicated 4 times. The probe level replication
allows the computation of the coefficient of variation (CV) for each array.

The cvArray identifies the replicated non-controlprobes for each feature in
the array and computes CV for every microRNA probe set. Then, the median
of the CV for each probe set is reported as the array reproducibility. A lower
CV median indicates a better array reproducibility.

A set of boxplots shows the CV at a probe level for each array.

To obtain the CV using the cvArray function, we can either choose the
MeanSignal or ProcessedSignal.

> cvArray(dd.micro,
+ "MeanSignal",
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+ targets.micro,
+ verbose=TRUE)

Foreground: MeanSignal
FILTERING BY ControlType FLAG

RAW DATA: 13737
PROBES without CONTROLS: 12784
(Non-CTRL) Unique Probe: 2421
(Non-CTRL) Unique Genes: 799
DISTRIBUTION OF REPLICATED NonControl Probes
reps
3 4 5 6 8 16

Replication at Probe level- MEDIAN CV
mscAl mscA2 mscBl mscB2 mscCl mscC2
0.326 0.269 0.354 0.398 0.567 0.491

DISTRIBUTION OF REPLICATED Noncontrol Genes

reps
15 16 17
1797 1
>

13
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6 Total Gene Signal

Normally, in the Agilent platfomrs, each microRNA is interrogated by 16 probes
either using 2 different probes, each of them replicated 8 times, or using 4
different probes replicated 4 times. In AgiMicroRna the processed gene signal
that is going to be analyzed can be obtained using two different protocols.
The first uses the gTotalGeneSignal (TGS) computed by the AFE algorithm
[1] and stored in the uRNAList (dd.micro$TGS) after reading the data. The
second option obtains an estimate of the normalized gene signal using the RMA
algorithm [8]. The RMA method is explained in the next section.

The function tgsMicroRna creates an uRNAList containing the gTotalGeneSignal
processed by the AFE software. This signal might be used for making statistical
inferences after a possible normalization step. The TGS processed by AFE [1]
may contain negative values. To obtain signals with positive values we can ei-
ther add a positive small constant (offset) to all the signals or we can select the
half option in tgsMicroRna, which set to 0.5 all the values smaller than 0.5. To
use the offset option we have to set half=FALSE, otherwise the half method
is used by default. The offset option, adds to each signal the quantity (abs(
min (ddTGS$TGS)) + offset), where ddTGS$TGS is the matrix that contains the
gTotalGeneSignal.
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> ddTGS=tgsMicroRna(dd.micro,
" half=TRUE,

+ makePLOT=FALSE,

+ verbose=FALSE)

>

Finally, tgsMicroRna stores the estimated TGS in the four fields ddTGS$TGS
ddTGS$TPS, ddTGS$meanS and ddTGS$procS. Be aware that this TGS is not in
log2 scale.

7 Normalization between arrays

To make direct comparisons of data coming from different chips it is important
to remove sources of variation of non biological nature that may exists between
arrays. Systematic non-biological differences between chips become apparent in
several obvious ways especially in labeling and in hybridization, and bias the
relative measures on any two chips when we want to quantify the differences
in treatment of two samples. Normalization is the attempt to compensate for
systematic technical differences between chips, to see more clearly the biological
differences between samples.

AgiMicroRna uses two strategies to obtain a gene signal estimate normalized
between arrays. The first simply uses the TGS signal processed by the AFE al-
gorithms [1] as it was described in the last section. This TGS can be normalized
between arrays using either the quantile (default) [3],[5] or the scale methods.
AgiMicroRna incorporates the limma function normalizeBetweenArrays with
options (‘none’,’quantile’,’scale’) [10], [11]. If we use the none option the TGS
is only log2 transformed.

> ddNORM=tgsNormalization (ddTGS,

+ "quantile",

+ makePLOTpre=FALSE,
+ makePL0OTpost=FALSE,
+ targets.micro,

+ verbose=TRUE)

NORMMALIZATION: quantile
OUTPUT in log-2 scale

tgsNormalization creates an uRNAList object containing the normalized
total gene signal in log 2 scale. If we set makePLOTpre = TRUE and make-
PLOTpost = TRUE, a density plot, a boxplot, and MA plot, a Relative Log
Expression plot (RLE) [4] and a hierarchical clustering plot are constructed
using the data before and after normalization, respectively.
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The second alternative implemented in AgiMicroRna to obtain an estimate
of the normalized signal for each microRNA uses the robust multiarray aver-
age (RMA) method [8] implemented in the affy package [6]. RMA obtains an
estimate of the expression measure for each gene using all the probe measures
for that gene. First, the signal is background corrected (optional) by fitting a
normal + exponential convolution model to the vector of observed intensities.
The normal part represents the background and the exponential part represents
the signal intensities [8]. Then the arrays are normalized (optional) using the
quantile normalization [3] ,[5]. Finally, an estimate of the microRNA gene
signal is obtained fitting a linear model to , log2 transformed probe intensi-
ties. This model produces an estimate of the gene signal taking into account
the probe effect. The model parameters estimates are obtained by the median
polish algorithm.

The rmaMicroRna is a wrapper function that incorporates different func-
tion to obtain an RMA estimate for the signal of each microRNA. First, the
rmaMicroRna the signal can be background corrected using the rma . background
function of the preprocessCore [2], then the signal may be normalized between
arrays using the limma function normalizeBetweenArrays [10], [11], with the
quantile method [3],[5]. Then, the median of the replicated probes is obtained,
leading to either 2 or 4 different measures for each gene. These measures cor-
respond to different probes measure for the same gene. These probe measure
intensities are log2 transformed and then summarized into a single gene measure
by the rma_c_complete_copy of the affy package [6].

> ddTGS.rma=rmaMicroRna(dd.micro,

+ normalize=TRUE,
+ background=TRUE)
>

Finally, rmaMicroRna stores the estimated RMA signal in the four fields
ddTGS.rma$TGS ddTGS.rma$TPS, ddTGS.rma$meanS and ddTGS.rma$procS. Be
aware that this estimated signal estimated by functionrmaMicroRna is now in
log2 scale. To get some plots with the gene signal processed by RMA, we can
use the code of the following example.

MMM=ddTGS.rma$meanS

colnames (MMM)=colnames (dd.micro$meanS)
maintitle='TGS.rma'

colorfill="'blue'

ddaux=ddTGS.rma

ddaux$meanS=MMM
mvaMicroRna(ddaux,maintitle, verbose=TRUE)
rm(ddaux)

RleMicroRna (MMM, "RLE TGS.rma",colorfill)
boxplotMicroRna(MMM,maintitle,colorfill)
plotDensityMicroRna (MMM, maintitle)
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In the code above, be aware that mvaMicroRna plots by default whatever is
contained in ddaux$mean$S, so first, we create this ddaux object and then, we
stored in ddaux$meanS the matrix we want to use. After the total gene signal
have been obtained, either extracting the TGS produced by AFE, or using the
RMA algorithm, we can filter out the signals using the FLAGS attached to them
by the AFE algorithm.

8 Filtering Probes

The AFE attach to each feature a flag that identifies different quantification
errors of the signal that can be used to filter out the microRNAs that do not
reach a minimum of quality. This filtering is normally done after the Total Gene
Signal has been normalized. Different filtering criteria can be established to be
more or less demanding. With low number of replicates probably we need to
set more restrictive filtering limits.

The steps that are currently implemented in filterMicroRna are to remove
control features, to remove gene that are not detected (gIsGeneDetected = 0),
and to filter out microRNAs which expression do not reach a certain level based
on the expression of the negative controls.

Basically, the glsGeneDetected filtering removes microRNAs that are not
expressed in any experimental condition. To do that, for a given feature xi
across samples, we set limit that is the minimum % of features that they must
remain in at least one experimental condition with a glsGeneDetected-FLAG =
1 (Is Detected).

Additionally, if we want to be more demanding, we can remove the microR-
NAs whose gMeanSignal expression are close to the expression of the negative
control features. As before se set a limit for the % of microRNAs that they must
above a Limit expression value, in at least, one of the experimental conditions.
The Limit expression value is defined as Mean(negative control expression) -+
1.5 x SD(negative control expression)

The function returns a uRNAList containing the FILTERED data. In order
to allow the tracking of features that may have been filtered out from the original
raw data, the following files are given:

NOCtrl_FlagIsGeneDetected.txt: IsGeneDetected Flag for the Non Con-
trol Genes, 1 = detected IsNOTGeneDetected.txt: Genes that do not are not
detected according to IsGeneDetected Flag

To continue the with the illustration we use the total gene signal estimated by
the Agilent Feature Extraction software and normalized by quantile (ddNORM).
We could have use the ddTGS.rma obtained by RMA as well.

> ddPROC=filterMicroRna (ddNORM,

+ dd.micro,

+ control=TRUE,

+ IsGeneDetected=TRUE,
+ wellaboveNEG=FALSE,
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limIsGeneDetected=75,
1imNEG=25,
makePLOT=FALSE,
targets.micro,
verbose=TRUE,
writeout=FALSE)

+ o+ + + + o+

FILTERING PROBES BY FLAGS

FILTERING BY ControlType

FEATURES BEFORE FILTERING: 821
FEATURES AFTER ControlType FILTERING: 799

FILTERING BY IsGeneDetected FLAG

FLAG FILTERING OPTIONS - FLAG OK = 1 - limIsGeneDetected: 75 %
FEATURES AFTER IsGeneDetected FILTERING: 294
NON Gene Detected : 505

9 creating an ExpressionSet object

After all the processing steps the esetMicroRna creates an ExpressionSet ob-
ject [7] that can be used for the statistical analysis. If we set makePLOT=TRUE
some plots are displayed (Heatmaps, PCAs)

> esetPROC=esetMicroRna (ddPROC,

+ targets.micro,
+ makePLOT=FALSE,
+ verbose=TRUE)

outPUT DATA: esetPROC
Features Samples
294 6

The processed data can be written in an output file using the function
writeEset

> writeEset (esetPROC,

+ ddPROC,
+ targets.micro,
+ verbose=TRUE)

18



10 Differential expression analysis using LIMMA

The esetPROC contains the Total Gene Signal for every microRNA that have
passed the filtering process, basically, those microRNAs that are expressed in
at least one of our experimental conditions. This signals are used to look for
the microRNAs that are differentially expressed between our experimental con-
ditions. A linear model is fitted to each microRNA gene so that the fold change
between different experimental conditions and their standard errors can be es-
timated. Empirical Bayes methods are applied to obtain moderated statistics.
The functions of the limma [10] are used to that end.

10.1 Linear Model

In our case, we had a paired design (by subject) and we want to compare
treatment B and C vs. a control treatment A. The linear model that we are
going to fit to every microRNA is going to be y = Treatment + Subject +
error term. This model is going to estimate the treatment effect. Then, the
comparison of interest are done by establishing contrasts between the estimates
of the treatment effects.

First, we define the factors that we are going to use in our model formula:
treatment and subject. We use the structure defined in the targets.micro
data frame. One way of doing this could be this way:

> levels.treatment=levels(factor(targets.micro$Treatment))

> treatment=factor (as.character (targets.micro$Treatment),
+ levels=levels.treatment)

>

> levels.subject=levels(factor (targets.micro$Subject))

v

subject=factor (as.character (targets.micro$Subject),
+ levels=levels.subject)

10.2 Fitting the model. Design and Contrast Matrices

To fit the model, we need to define a design matrix. The design matrix is an
incidence matrix that relates each array/sample/file to its given experimental
conditions, in our case, relates each file to one of the three treatments and to
the subjects (paired design by subject). We can define the design matrix us-
ing model.matrix( -1 + treatment + subject). This will specify a model
without intercept that will give us the estimates for: treatmentA, treatmentB,
treatmentC and subject2. R use by default the contr.treatment parameteri-
zation, which means that each level is compared with its baseline level (which
is set to 0 to avoid singularities). If we specify a model without intercept, no
singularities are produced for the treatment factor, so we get estimates for all its
levels. For the subject factor (two levels), we only get an estimate for the sub-
ject 2, which is interpreted as the difference with respect to subjectl (baseline
= 0).
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We can specify the design matrix as:

> design=model.matrix(~ -1 + treatment + subject)
> print(design)

treatmentA treatmentB treatmentC subject2

1 1 0 0 0
2 1 0 0 1
3 0 1 0 0
4 0 1 0 1
5 0 0 1 0
6 0 0 1 1
attr(,"assign")

[1] 1112

attr(,"contrasts")
attr(,"contrasts")$treatment
[1] "contr.treatment"

attr(,"contrasts")$subject
[1] "contr.treatment"

Then the linear model can be fitted using 1mFit from limma [10]. This will
get the treatment estimates for each microRNA in the ExpressionSet object.

> fit=1mFit (esetPROC,design)
> names (fit)

[1] "coefficients" "rank" "assign" "qr"
[6] "df.residual" "sigma" "cov.coefficients" "stdev.unscaled"
[9] "pivot" "Amean" "method" "design"

> print (head (fit$coeff))

treatmentA treatmentB treatmentC  subject2
hsa-miR-152 7.5721096  7.655674  7.566486 -0.1156653
hsa-miR-15a* 0.9264631  1.065891  1.210531 -0.2241877
hsa-miR-337-5p 6.2447897 7.297695 7.083908 -0.4488954
hsa-miR-129-3p 3.0385412 2.215383 1.110268 0.2156636
hsa-miR-125b  13.0228097 13.022810 13.103000 -0.1069200
hsa-miR-542-5p 3.3726938 2.704901  3.915922 -0.4257320

To compare A vs. B and A vs. C, we can define the contrasts of interest
using a contrast matrix as in

> CM=cbind (MSC_AvsMSC_B=c(1,-1,0,0),
+ MSC_AvsMSC_C=c(1,0,-1,0))
> print (CM)
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MSC_AvsMSC_B MSC_AvsMSC_C

[1,] 1 1
[2,] -1 0
(3,] 0 -1
[4,] 0 0

And then, we can estimate those contrasts using contrasts.fit from limma
[10].

> fit2=contrasts.fit(fit,CM)
> names (fit2)

[1] "coefficients" "rank" "assign" "qr"
[56] "df.residual" "sigma" "cov.coefficients" "stdev.unscaled"
[9] "pivot" "Amean" "method" "design"

[13] "contrasts"
> print (head (fit2$coeff))

MSC_AvsMSC_B MSC_AvsMSC_C
hsa-miR-152 -0.08356481 0.005624054
hsa-miR-15ax* -0.13942829 -0.284067826
hsa-miR-337-5p -1.05290497 -0.839118503
hsa-miR-129-3p 0.82315829 1.928273625
hsa-miR-125b 0.00000000 -0.080189971
hsa-miR-542-5p 0.66779289 -0.543228542

Finally, we can obtain moderated statistics using eBayes from limma [10],
[9].

> fit2=eBayes (fit2)
> names (fit2)

[1] "coefficients" "rank" "assign" "qr"

[6] "df.residual" "sigma" "cov.coefficients" "stdev.unscaled"
[9] "pivot" "Amean" "method" "design"

[13] "contrasts" "df .prior" "s2.prior" "var.prior"

[17] “"proportion" "s2.post" "y "df .total"

[21] "p.value" "lods" "E "F.p.value"

The function basicLimma implemented in AgiMicroRna gathers all the last
steps in a function to produces the last MarrayLM fit2 object.

This MarrayLM object includes, amongst other things, the log fold change
of the contrasts (M value stored in fit2$coeff), along with its moderated-t
statistic (stored in fit$t) and its corresponding p value (in £it2$p.value).
Be aware that to obtain correct inferences these p values must be corrected by
some multiple testing procedure.

> fit2=basicLimma (esetPROC,design,CM,verbose=TRUE)

21



10.3 Selecting significant microRNAs

getDecideTests uses the decideTests function from the limma package [10]
to classify the list of genes as up, down or not significant, taking into account
the multiplicity of the tests. getDecideTests summarizes the number of up
and down genes for every contrasts according to the specified p value threshold.
When we have multiple contrasts, the significant genes can be selected using
different strategies that are specified by DEmethod. In getDecideTests only
separate and nestedF options are implemented. See decideTests in limma

[10]
> DE=getDecideTests (fit2,

+ DEmethod="separate",
+ MTestmethod="BH",

+ PVcut=0.10,

+ verbose=TRUE)

Method for Selecting DEGs: separate
Multiple Testing method: BH - pval 0.1

MSC_AvsMSC_B MSC_AvsMSC_C
UP 26 10
DOWN 23 12

pvalHistogram depicts a histogram of the p values. For multiple contrasts,
the function creates a histogram for every t.test p value (separate) or a single
histogram for the F.test pvalue (nestedF). The histograms of the pvalues
give us an idea about the amount of differential expression that we have in our
data. A uniform histogram will indicate no differential expression in the data
set, whereas a right skewed histogram, will indicate some significant differential
expression

> pvalHistogram(fit2,

DE,

PVcut=0.10,
DEmethod="separate",
MTestmethod="BH",

CM,

verbose=TRUE)

+ + + + + o+

The function significantMicroRna summarizes the results of the differen-
tial expression analysis extracting information from the MArrayLM and TestResults
objects generated by the limma functions. significantMicroRna creates a list
containing the genes with their relevant statistics. The significant genes above
the PVcut p values are also given in a html file that links the selected microR-
NAs to the miRBase http://microrna.sanger.ac.uk/. MA plots highlighting the
differentially expressed genes are also displayed.
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> significantMicroRna(esetPROC,
+ ddPROC,

+ targets.micro,

+ fit2,

+ CM,

+ DE,

+ DEmethod="separate",
+ MTestmethod="BH",

+ PVcut=0.10,

+ Mcut=0,

+ verbose=TRUE)

When multiple contrasts are done, the method for the selection of the signifi-
cant genes can be either separated or nestedF. See decideTests in limma [10]
for a detailed description on these two methods. When separated is plugged in
into the significantMicroRna function then a list including all the genes that
have been analyzed is given for each contrast. These lists contain the statistics
obtained from the differential expression analysis. The information that is given
for each gene is shown in Table 3.

variable | data
PROBE | Probe name (one of the probes interrogating the gene)
GENE | microRNA name

M Fold change

A Mean of the intensity for that microRNA

t moderated t-statistic

pval p value of the t-statistic

adj.pval | p value adjusted by MTestmethod
fdr.pval | p value adjusted by fdr

Table 3: Statistics given by significantMicroRna for separate

The html output files with links to the miRBase hitp://microrna.sanger.ac.uk/
only includes the microRNAs that have been declared as significant. Sometimes
when we correct by multiple testing we cannot declare any single gene as dif-
ferentially expressed so the html files are not created. Despite of the fact that
no gene is been declared significant, the user might be interested in having a
link to the miRBase for the top ranked differentially expressed genes. When
this happens, we can be set MTestmethod = none. Since the adj.pval is the
p value adjusted by the MTestmethod = none, then it will be the p value with-
out any correction. in this case, it might be interesting to have the fdr value,
despite of the fact that the user has decided not apply any multiple testing
correction. That is why, an additional column fdr.pval is included containing
the p values corrected by fdr, independent of the method that we have specify
in MTestmethod. Be aware that a multiple testing correction should be used.
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If the nestedF is used, then two lists are printed out for each contrast. A
first set of lists containing the selected significant genes, and a second group of
lists containing the rest of the genes that have been analyzed and they do not
have been declared significant. The columns given in this case in the output
files are shown in Table 4.

variable | data
PROBE | Probe name (one of the probes interrogating the gene)
GENE microRNA name

M Fold change

A Mean of the intensity for that microRNA

t moderated t-statistic

F F statistic (null hypothesis: Ci = Cj, for all contrasts i, j)

t pval p value of the t-statistic
adj.F.pval | F p value adjusted by MTestmethod
fdr.F.pval | F p value adjusted by fdr

Table 4: Statistics given by significantMicroRna for nestedF
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