Package ‘strandCheckR’

November 7, 2025
Type Package

Title Calculate strandness information of a bam file
Version 1.29.0
Maintainer Thu-Hien To <tothuhien@gmail.com>

Description This package aims to quantify and remove putative double strand DNA from a strand-
specific RNA sample. There are also options and methods to plot the positive/negative propor-
tions of all sliding windows, which allow users to have an idea of how much the sample was con-
taminated and the appropriate threshold to be used for filtering.

URL https://github.com/UofABioinformaticsHub/strandCheckR

BugReports https://github.com/UofABioinformaticsHub/strandCheckR/issues
License GPL (>=2)

LazyData TRUE

Encoding UTF-8

Depends ggplot2 (>=4.0.0), Rsamtools, S4 Vectors

Imports BiocGenerics, dplyr, Seqinfo, GenomicAlignments,
GenomicRanges, gridExtra, IRanges, grid, methods, reshape?2,
rlang, stats, stringr, TxDb.Hsapiens.UCSC.hg38.knownGene,
tidyselect

biocViews RNASeq, Alignment, QualityControl, Coverage, InmunoOncology
RoxygenNote 7.3.3

VignetteBuilder knitr

Suggests BiocStyle, knitr, magrittr, rmarkdown, testthat

git_url https://git.bioconductor.org/packages/strandCheckR

git_branch devel

git_last_commit b8130fd

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-06

Author Thu-Hien To [aut, cre],
Stevie Pederson [aut] (ORCID: <https://orcid.org/0000-0001-8197-3303>)

1

https://github.com/UofABioinformaticsHub/strandCheckR
https://github.com/UofABioinformaticsHub/strandCheckR/issues
https://orcid.org/0000-0001-8197-3303

2 strandCheckR-package

Contents
strandCheckR-package 2
.calculateStrandCoverage 3
.calculateStrandNbReads o oo 3
.concatenate Alignments oL L Lo e e 4
.getWinlnSequence 5
KkeptProbaWin oL L 5
keptReadFragment L 6
.sequencelnfolnPartition oL 7
summarizeHist oL L L 7
checkPairedEnd 8
filterDNA 9
getStrandFromBamFileo oo 11
getStrandFromReadInfo oL 13
getWinOverlapEachlRange 14
getWinOverlapEachReadFragment 15
getWinOverlapGRanges 16
intersectWithFeature 17
PlotHist e e e 18
plotWin L 20

Index 22

strandCheckR-package strandCheckR: Check strandedness of alignments in one or more bam

files

Description

- This package contains functions for checking the strandedness of alignments such as [getStrand-
FromBamFile()] - The results can easily be visualised using [plotHist()] - Any suspected genomic
DNA can also be removed using [filterDNA()], with thresholds for filtering able to be determined
manually using [plotWin()]

Author(s)

Thu-

See Also

Hien To

Useful links:

https://github.com/UofABioinformaticsHub/strandCheckR
Report bugs at https://github.com/UofABioinformaticsHub/strandCheckR/issues

https://github.com/UofABioinformaticsHub/strandCheckR
https://github.com/UofABioinformaticsHub/strandCheckR/issues

.calculateStrandCoverage 3

.calculateStrandCoverage
Calculate the strand information based on coverage

Description

Calculate the coverage coming from ’+’/’-’ reads in all sliding windows

Usage

.calculateStrandCoverage(
winPosAlignments,
winNegAlignments,
winWidth = 1000L,
winStep = 100L

)
Arguments
winPosAlignments
a list that has a ‘Coverage* field containing coverage coming from positive reads
winNegAlignments
a list that has a ‘Coverage* field containing coverage coming from negative reads
winWidth the length of the sliding window, 1000 by default.
winStep the step length to sliding the window, 100 by default.
Value

a list of two vectors, containing a positive/negative coverage of the input positive/negative windows

.calculateStrandNbReads
Calculate the strand information based on the number of reads

Description

Calculate the number of reads coming from ’+’/°-’ strands in all sliding wndows

Usage

.calculateStrandNbReads(winPosAlignments, winNegAlignments)

4 .concatenateAlignments

Arguments
winPosAlignments
a list that has a “Win“ field that contains information of sliding windows over-
alapping positive reads
winNegAlignments
a a list that has a “Win‘ field that contains information of sliding windows over-
alapping negative reads
Value

a list of two vectors, containing a positive/negative number of reads of the input positive/negative
windows

.concatenateAlignments
Concatenate a list of Alignments into One

Description

Concatenate a list of Alignments from multiple sequences into a single object

Usage

.concatenateAlignments(readInfo, seqlInfo)

Arguments
readInfo alist returned by scanBam function, each element correspond to a sequence, con-
taining the information of strand, starting position, cigar string, and eventually
flag, gname
seqInfo a data frame that contains some key information of the sequences
Details

This method take a list of alignments across one or more sequences as output by scanBam and
concatenates them into a single set of alignments which may include multiple sequences

Value

the concatenated alignments of the input list

.getWinInSequence

.getWinInSequence Get window data frame with the correct sequence name and position

Description

Get the correct sequence name and position for each window

Usage

.getWinInSequence(Win, segInfo, winWidth = 1000L, winStep = 100L)

Arguments
Win a data frame contains the strand information of every window
seqInfo a data frame that contains some key information of the sequences
winWidth the length of sliding window
winStep the step length to sliding the window

Value

A subset of the input object

.keptProbaWin Get the probability of being kept for each window

Description

Calculate the keeping probability of each window based on its positive/negative proportion

Usage

.keptProbaWin(
winPosAlignments,
winNegAlignments,
winWidth,
winStep,
threshold,
pvalueThreshold,
errorRate,
mustKeepWin,
minCov,
maxCov,
getWin,
useCoverage = FALSE

6 .keptReadFragment

Arguments

winPosAlignments
an object returned by getWinOverlapEachReadFragment for positive reads

winNegAlignments
an object returned by getWinOverlapEachReadFragment for negative reads

winWidth the width of the sliding window, 1000 by default.

winStep the winStep length to sliding the window, 100 by default.

threshold the strand proportion threshold to test whether to keep a window or not.

pvalueThreshold
threshold of p-value

errorRate the probability that an RNA read takes the false strand. 0.01 by default

mustKeepWin the windows that must be kept regardless their strand proportion

minCov In the case that useCoverage=FALSE, if a window has less than minCov reads,
then it will be rejected regardless of the strand proportion. For the case that
useCoverage=TRUE, if a window has max coverage least than minCov, then it
will be rejected. 0 by default

maxCov In the case that useCoverage=FALSE, if a window has more than maxCov reads,
then it will be kept regardless of the strand proportion. For the case that useCoverage=TRUE,
if a window has max coverage more than maxCov, then it will be kept. If O then
it doesn’t have effect on selecting window. 0 by default.

getWin if TRUE, the function will return a data frame containing the information of all
windows. It’s FALSE by default.

useCoverage if TRUE, then the strand information in each window corresponds to the sum
of coverage coming from positive/negative reads; and not the number of posi-
tive/negative reads as default.

Value

A list of 2 numeric-Rle objects containing keeping probability of each +/- alignments. If getWin=TRUE
then the list contains an additional DataFrame for the number of reads and coverage of the input
window +/- alignments

.keptReadFragment Calculate the read fragments to be kept

Description
Calculate the keeping probability of each read fragment based on the keeping probability of the
windows containing it. Then get the list of read fragments to be kept.

Usage

.keptReadFragment(fragments, keptProbaW)

.sequencelnfolnPartition 7

Arguments
fragments an IRanges object defining the starting, ending position of each fragment
keptProbaW an Rle object define the kept probability of each sliding window

Value

an integer vector of read fragment indices to be kept

.sequenceInfolInPartition
Calculate the first/last base/read of each sequence within each part of
the partition.

Description

Calculate the first/last base/read of each sequence within each part of the partition.

Usage

.sequencelInfolInPartition(seqInfo, winWidth, winStep)

Arguments
seqInfo a data frame that contains some key information of the sequences
winWidth the length of sliding window
winStep the step length to sliding the window

Value

Reduced sequence information (data.frame)

.summarizeHist Summarize the histogram of strand proportions from the input win-
dows data frame

Description

Summarize the histogram of positive proportions from the input windows obtained from the func-
tion getStrandFromBamFile

Usage

.summarizeHist(

windows,

checkPairedEnd

split = c(10L, 100L, 1000L),

breaks =

100L,
useCoverage

FALSE,

groupBy = NULL,
normalizeBy = NULL

Arguments

windows

split

breaks

useCoverage

groupBy

normalizeBy

Value

a dataframe object

See Also

data frame containing the strand information of the sliding windows. Windows
can be obtained using the function getStrandFromBamFile.

an integer vector that specifies how you want to partition the windows based
on the coverage. By default split = ¢(10,100,1000), which means that your
windows will be partitionned into 4 groups, those have coverage < 10, from 10
to 100, from 100 to 1000, and > 1000

an integer giving the number of bins for the histogram

if TRUE then plot the coverage strand information, otherwise plot the number
of reads strand information. FALSE by default

the column names of windows that will be used to group the data

instead of using the raw read count/coverage, we will normalize it to a proportion
by dividing it to the total number of read count/coverage of windows that have
the same value in the normalizeBy columns.

getStrandFromBamFile, plotHist, plotWin

checkPairedEnd

Test whether a bam file is single-end or paired-end

Description

Check the first 100000 first reads of the bam file to see whether it is single-end or paired-end

Usage

checkPairedEnd(file, yieldSize = 1e+@5)

filterDNA 9

Arguments
file the input bam file. Your bamfile should be sorted and have an index file located
at the same path as well.
yieldSize the number of reads to be checked, 100000 by default.
Value

return TRUE if the input file is paired end, and FALSE if it is single end

Examples

file <- system.file('extdata', 's1.sorted.bam',package = 'strandCheckR')
checkPairedEnd(file)

filterDNA Filter reads comming from double strand sequences from a bam File

Description

Filter putative double strand DNA from a strand specific RNA-seq using a window sliding across
the genome.

Usage

filterDNA(
file,
destination,
statFile = "out.stat”,
sequences,
mapgFilter = 0,
paired,
yieldSize = 1e+06,
winWidth = 1000L,
winStep = 100L,
readProp = 0.5,
threshold = 0.7,
pvalueThreshold = 0.05,
useCoverage = FALSE,
mustKeepRanges,
getWin = FALSE,
minCov = 0,
maxCov = 0,
errorRate = 0.01

10

Arguments

file

destination
statFile
sequences

mapgFilter

paired

yieldSize

winWidth
winStep

readProp

threshold

pvalueThreshold

useCoverage

mustKeepRanges

getWin

minCov

maxCov

errorRate

Details

filterDNA

the input bam file to be filterd. Your bamfile should be sorted and have an index
file located at the same path.

the file path where the filtered output will be written
the file to write the summary of the results
the list of sequences to be filtered

every read that has mapping quality below mapgFilter will be removed before
any analysis. If missing, the entire bam file will be read.

if TRUE then the input bamfile will be considered as paired-end reads. If miss-
ing, 100 thousands first reads will be inspected to test if the input bam file in
paired-end or single-end.

by default is 1e6, i.e. the bam file is read by block of reads whose size is defined
by this parameter. It is used to pass to same parameter of the scanBam function.

the length of the sliding window, 1000 by default.
the step length to sliding the window, 100 by default.

a read is considered to be included in a window if at least readProp of it is in
the window. Specified as a proportion. 0.5 by default.

the strand proportion threshold to test whether to keep a window or not. 0.7 by
default

the threshold for the p-value in the test of keeping windows. 0.05 by default

if TRUE, then the strand information in each window corresponds to the sum
of coverage coming from positive/negative reads; and not the number of posi-
tive/negative reads as default.

a GRanges object; all reads that map to those ranges will be kept regardless the
strand proportion of the windows containing them.

if TRUE, the function will not only filter the bam file but also return a data frame
containing the information of all windows of the original and filtered bam file.

if useCoverage=FALSE, every window that has less than minCov reads will be
rejected regardless the strand proportion. If useCoverage=TRUE, every window
has max coverage least than minCov will be rejected. 0 by default

if useCoverage=FALSE, every window that has more than maxCov reads will
be kept regardless the strand proportion. If useCoverage=TRUE, every window
with max coverage more than maxCov will be kept. If O then it doesn’t have
effect on selecting window. 0 by default.

the probability that an RNA read takes the false strand. 0.01 by default.

filterDNA reads a bam file containing strand specific RNA reads, and filter reads coming from
putative double strand DNA. Using a window sliding across the genome, we calculate the posi-
tive/negative proportion of reads in each window. We then use logistic regression to estimate the
strand proportion of reads in each window, and calculate the p-value when comparing that to a given
threshold. Let 7 be the strand proportion of reads in a window.

getStrandFromBamFile 11

Null hypothesis for positive window: 7 < threshold.
Null hypothesis for negative window: m > 1 — threshold.

Only windows with p-value <= pvalueThreshold are kept. For a kept positive window, each
positive read in this window is kept with the probability (P-M)/P where P be the number of positive
reads, and M be the number of negative reads. That is because those M negative reads are supposed
to come from double-strand DNA, then there should be also M postive reads among the P positive
reads come from double-strand DNA. In other words, there are only (P-M) positive reads come
from RNA. Each negative read is kept with the probability equalling the rate that an RNA read of
your sample has wrong strand, which is errorRate. Similar for kept negative windows.

Since each alignment can be belonged to several windows, then the probability of keeping an align-
ment is the maximum probability defined by all windows that contain it.
Value

if getWin is TRUE: a DataFrame object which could also be obtained by the function getStrandFromBamFile

See Also

getStrandFromBamFile, plotHist, plotWin

Examples

file <- system.file('extdata', 's2.sorted.bam',package = 'strandCheckR')
out_bam <- tempfile(fileext = ".bam")

out_log <- tempfile(fileext = ".log")

filterDNA(file, sequences = '10', destination = out_bam, statFile = out_log)

getStrandFromBamFile Get the strand information of all windows from bam files

Description

Get the number of positive/negative reads/coverage of all slding windows from the bam input files

Usage

getStrandFromBamFile(
files,
sequences,
mapqFilter = 0,
yieldSize = 1e+06,
winWidth = 1000L,
winStep = 100L,
readProp = 0.5,
paired

12 getStrandFromBamPFile

Arguments

files the input bam files. Your bamfiles should be sorted and have their index files
located at the same path.

sequences character vector used to restrict analysed alignments to a subset of chromosomes
(i.e. sequences) within the provided bam file. These correspond to chromo-
somes/scaffolds of the reference genome to which the reads were mapped. If
absent, the whole bam file will be read. NB: This must match the chromosomes
as defined in your reference genome. If the reference chromosomes were speci-
fied using the ’chr’ prefix, ensure the supplied vector matches this specification.

mapqFilter every read that has mapping quality below mapgFilter will be removed before
any analysis.

yieldSize by default is 1e6, i.e. the bam file is read by block of reads whose size is defined
by this parameter. It is used to pass to same parameter of the scanBam function.

winWidth the width of the sliding window, 1000 by default.

winStep the step length to sliding the window, 100 by default.

readProp A read is considered to be included in a window if at least readProp of it is in
the window. Specified as a proportion. 0.5 by default.

paired if TRUE then the input bamfile will be considered as paired-end reads. If miss-
ing, 100 thousands first reads will be inspected to test if the input bam file in
paired-end or single-end.

Details

This function moves along the specified chromosomes (i.e. sequences) using a sliding window
approach, and counts the number of reads in each window which align to the +/- strands of the
reference genome. As well as the number of reads, the total coverage for each strand is also returned
for each window, representing the total number of bases covered.

Average coverage for the entire window can be simply calculated by dividing the total coverage by
the window size.

Value
a DataFrame object containing the number of positive/negative reads and coverage of each window
sliding across the bam file. The returned DataFrame has 10 columns:

Type: can be either SE if the input file contains single-end reads, or R1/R2 if the input file contains
paired-end reads.

Seq: the reference sequence (chromosome/scaffold) that the reads were mapped to.
Start: the start position of the sliding window.

End: the end position of the sliding window.

NbPos/NbNeg: number of positive/negative reads that overlap the sliding window.

CovPos/CovNeg: number of bases coming from positive/negative reads that were mapped in the
sliding window.

MaxCoverage: the maximum coverage within the sliding window.

File: the name of the input file.

getStrandFromReadInfo 13

See Also

filterDNA, plotHist, plotWin

Examples

file <- system.file('extdata', 'sl1.sorted.bam', package = 'strandCheckR"')
win <- getStrandFromBamFile(file,sequences='10")
win

getStrandFromReadInfo Get the strand information of all windows from read information

Description

Get the number of positive/negative reads of all windows from read information obtained from
[Rsamtools::scanBam()]

Usage

getStrandFromReadInfo(
readInfo,
winWidth = 1000L,
winStep = 100L,
readProp = 0.5,
subset = NULL

)
Arguments
readInfo a list containing read information returned by [Rsamtools::scanBam()].
winWidth the length of the sliding window, 1000 by default.
winStep the step length to sliding the window, 100 by default.
readProp A read is considered to be included in a window if at least readProp of it is in
the window. Specified as a proportion. 0.5 by default.
subset an integer vector specifying the subset of reads to consider
Value

a DataFrame object containing the number of positive/negative reads and coverage of each window
sliding .

See Also

filterDNA, getStrandFromBamFile

14 getWinOverlapEachIRange

Examples

library(Rsamtools)
file <- system.file('extdata', 's2.sorted.bam',package = 'strandCheckR')
readInfo <- scanBam(file, param =

ScanBamParam(what = c("pos”,"cigar"”,"strand")))
getStrandFromReadInfo(readInfo[[1]],1000,100,0.5)

getWinOverlapEachIRange
Get the ranges of sliding windows that overlap each range of an
IRanges object.

Description

Get the ranges of sliding windows that overlap each range of an IRanges object.

Usage

getWinOverlapEachIRange(
X,
winWidth = 1000L,
winStep = 100L,
readProp = 0.5,
maxWin = Inf

)
Arguments
X an IRanges object containing the start and end position of each read fragment.
winWidth the width of the sliding window, 1000 by default.
winStep the step length to sliding the window, 100 by default.
readProp A read is considered to be included in a window if at least readProp of it is in
the window. Specified as a proportion.
maxWin The maximum window ID
Details

This finds the windows that overlap each range of the input [Ranges object. Each range corresponds
to a read fragment. This allows the total number of read fragments within a window to be calculated
simply using [IRanges::coverage()].

Value

An IRanges object containing the index of the windows overlapping each read fragment

getWinOverlapEachReadFragment 15

Examples

library(IRanges)
x <- IRanges(start=round(runif(100,1000,10000)),width=100)
getWinOverlapEachIRange(x)

getWinOverlapEachReadFragment
Get the window ranges that overlap each read fragment

Description

Calculate the window ranges that overlap each read fragment

Usage

getWinOverlapEachReadFragment (
readInfo,
strand,
winWidth,
winStep,
readProp,
useCoverage = FALSE,
subset = NULL

)

Arguments
readInfo a list contains the read information
strand the considering strand
winWidth the width of the sliding window, 1000 by default.
winStep the step length to sliding the window, 100 by default.
readProp a read fragment is considered to be included in a window if and only if at least

readProp percent of it is in the window.

useCoverage either base on coverage or number of reads
subset if we consider only a subset of the input reads

Value

If useCoverage=FALSE: an IRanges object which contains the range of sliding windows that overlap
each read fragment. If useCoverage=TRUE: a list of two objects, the first one is the later IRanges
object, the second one is an integer-Rle object which contains the coverage of the input readInfo

16 getWinOverlapGRanges

Examples

library(Rsamtools)
file <- system.file('extdata', 's2.sorted.bam',package = 'strandCheckR')
readInfo <- scanBam(file, param =

ScanBamParam(what = c("pos”,"cigar"”,"strand")))
getWinOverlapEachReadFragment(readInfo[[1]],"+",1000,100,0.5)

getWinOverlapGRanges Get the sliding windows that overlap a GRanges object

Description

Get the sliding windows that overlap a GRanges object.

Usage

getWinOverlapGRanges(
X,
seglInfo,
winWidth = 1000L,
winStep = 100L,
nbOverlapBases = 1

)
Arguments

X a GRanges object, which defines the coordinates of the ranges in the reference
genome that all reads mapped to those ranges must be kept by the filtering
method filterDNA.

seqInfo a data frame that contains some key information of the sequences

winWidth the length of the sliding window, 1000 by default.

winStep the step length to sliding the window, 100 by default.

nbOverlapBases a window is considered to overlap with a range of x if it overlaps with at least
nbOverlapBases bases.

Details

This finds the windows that overlaps the positive/negative strand of a GRanges object. The GRanges
object, which is mustKeepRanges in the filterDNA method, defines the coordinates of the ranges
in the reference genome that all reads mapped to those ranges must be kept by the filtering method
filterDNA. This method makes use of the method getWinOverlapEachIRange by pretending each
given range as the range of aread. Since the widths of x are not necessarily the same (as normal read
lengths), we use nbOverlapBases to specify the minimum number of bases that a window should
overlap with a range of x, instead of using proprotion as readProp in getWinOverlapEachIRange.

intersectWithFeature 17

Value

A list of two logical vectors (for positive and negative strand) defining which windows that overlap
with the given GRanges object.

Examples

library(GenomicRanges)

X <- GRanges(segnames = "10",ranges = IRanges(start = c(10000,15000),
end=c(20000,30000)),strand = c("+","-"))

seqInfo <- data.frame("Sequence"=10,"FirstBaseInPart"”=1)
getWinOverlapGRanges(x, seqInfo)

seqInfo <- data.frame("”Sequence”=10,"FirstBaseInPart”=10000000)
getWinOverlapGRanges(x,seqInfo)

intersectWithFeature Intersect the windows data frame with an annotation data frame

Description

Intersect the windows with an annotation data frame to get features that overlap with each window

Usage
intersectWithFeature(
windows,
annotation,
getFeatureInfo = FALSE,
overlapCol = "OverlapFeature”,
mcolsAnnot,
collapse,
)
Arguments
windows data frame containing the strand information of the sliding windows. Windows
can be obtained using the function getStrandFromBamFile.
annotation a Grange object that you want to intersect with your windows. It can have mcols

which contains the information or features that could be able to integrate to the
input windows

getFeatureInfo whether to get the information of features in the mcols of annotation data or not.
If FALSE the return windows will have an additional column indicating whether
a window overlaps with any range of the annotion data. If TRUE the return
windows will contain the information of features that overlap each window

overlapCol the columnn name of the return windows indicating whether a window overlaps
with any range of the annotion data.

18 plotHist

mcolsAnnot the column names of the mcols of the annotation data that you want to get infor-
mation
collapse character which is used collapse multiple features that overlap with a same win-

dow into a string. If missing then we don’t collapse them.

used to pass parameters to GenomicRanges::findOverlaps

Value

the input windows DataFrame with some additional columns

See Also

getStrandFromBamFile, plotHist, plotWin

Examples

bamfilein = system.file('extdata', 's2.sorted.bam', package = 'strandCheckR")
windows <- getStrandFromBamFile(file = bamfilein)

#add chr before chromosome names to be consistent with the annotation
windows$Seq <- paste@('chr',windows$Seq)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)

annot <- transcripts(TxDb.Hsapiens.UCSC.hg38.knownGene)

get the transcript names that overlap with each window

windows <- intersectWithFeature(windows,annot,mcolsAnnot="'tx_name")

just want to know whether there's any transcript that

overlaps with each window

windows <- intersectWithFeature(windows,annot,overlapCol='0verlapTranscript')

plotHist(windows,facets = 'OverlapTranscript')
plotWin(windows, facets = 'OverlapTranscript')
plotHist Plot the histogram of positive proportions
Description

Plot the histogram of positive proportions of the input data frame coming from getStrandFromBamFile

Usage

plotHist(
windows,
save = FALSE,
file = "hist.pdf”,
groupBy = NULL,
normalizeBy = NULL,
split = c(10, 100, 1000),
breaks = 100,

plotHist 19

useCoverage = FALSE,
heatmap = FALSE,

)
Arguments

windows data frame containing the strand information of the sliding windows. Windows
can be obtained using the function getStrandFromBamFile.

save if TRUE, then the plot will be save into the file given by file parameter

file the file name to save to plot

groupBy the columns that will be used to split the data.

normalizeBy instead of using the raw read count/coverage, we will normalize it to a proportion
by dividing it to the total number of read count/coverage of windows that have
the same value in the normalizeBy columns.

split an integer vector that specifies how you want to partition the windows based
on the coverage. By default split = ¢(10,100,1000), which means that your
windows will be partitionned into 4 groups, those have coverage < 10, from 10
to 100, from 100 to 1000, and > 1000

breaks an integer giving the number of bins for the histogram

useCoverage if TRUE then plot the coverage strand information, otherwise plot the number
of reads strand information. FALSE by default

heatmap if TRUE, then use heat map to plot the histogram, otherwise use barplot. FALSE
by default.
used to pass parameters to facet_wrap

Value

If heatmap=FALSE: a ggplot object

See Also

getStrandFromBamFile, plotWin

Examples

bamfilein = system.file('extdata', 'sl.sorted.bam',package = 'strandCheckR")
win <- getStrandFromBamFile(file = bamfilein,sequences="'10")
plotHist(win)

20

plotWin

plotWin

Plot the number of reads vs the proportion of '+’ stranded reads.

Description

Plot the number of reads vs the proportion of ’+’ stranded reads of all windows from the input data

frame.

Usage

plotWin(
windows,

split = c(10, 100, 1000),
threshold = c(0.6, 0.7, 0.8, 0.9),
save = FALSE,
file = "win.pdf"”,
groupBy = NULL,

useCoverage

Arguments

windows

split

threshold

save
file
groupBy

useCoverage

Details

FALSE,

data frame containing the strand information of the sliding windows. Windows
should be obtained using the function getStrandFromBamFile to ensure the
correct data structure.

an integer vector that specifies how you want to partition the windows based on
coverage. By default split = ¢(10,100,1000), partition windows into 4 groups
based on these values.

a numeric vector between 0.5 & 1 that specifies which threshold lines to draw
on the plot. The positive windows above the threshold line (or negative windows
below the threshold line) will be kept when using filterDNA.

if TRUE, then the plot will be save into the file given by file parameter
the file name to save to plot

the column that will be used to split the data (which will be used in the facets
method of ggplot2).

if TRUE then plot the coverage strand information, otherwise plot the number
of reads strand information. FALSE by default

used to pass parameters to facet_wrap during plotting

This function will plot the proportion of ’+’ stranded reads for each window, against the number of
reads in each window. The threshold lines indicate the hypothetical boundary where windows will
contain reads to kept or discarded using the filtering methods of filterDNA. Any plot can be easily
modified using standard ggplot2 syntax (see Examples)

plotWin

Value

The plot will be returned as a standard ggplot2 object

See Also

getStrandFromBamFile, plotHist

Examples
bamfilein = system.file('extdata', 's2.sorted.bam', package = 'strandCheckR")
windows <- getStrandFromBamFile(file = bamfilein,sequences = '10")
plotWin(windows)

Change point colour using ggplot2

library(ggplot2)

plotWin(windows) +

scale_colour_manual(values = rgb(seq(@, 1, length.out = 4), 0, 0))

Index

* internal
.calculateStrandCoverage, 3
.calculateStrandNbReads, 3
.concatenateAlignments, 4
.getWinInSequence, 5
.keptProbaWin, 5
.keptReadFragment, 6
.sequencelInfolnPartition, 7
.summarizeHist, 7
strandCheckR-package, 2

.calculateStrandCoverage, 3

.calculateStrandNbReads, 3

.concatenateAlignments, 4

.getWinInSequence, 5

.keptProbaWin, 5

.keptReadFragment, 6

.sequencelInfolInPartition, 7

.summarizeHist, 7

checkPairedEnd, 8
filterDNA, 9, 13, 20

getStrandFromBamFile, /7, 11, 13, 18-21
getStrandFromReadInfo, 13
getWinOverlapEachIRange, 14
getWinOverlapEachReadFragment, 15
getWinOverlapGRanges, 16

intersectWithFeature, 17

plotHist, 11, 13,18, 18, 21
plotWin, /1, 13,18, 19,20

strandCheckR (strandCheckR-package), 2
strandCheckR-package, 2

22

	strandCheckR-package
	.calculateStrandCoverage
	.calculateStrandNbReads
	.concatenateAlignments
	.getWinInSequence
	.keptProbaWin
	.keptReadFragment
	.sequenceInfoInPartition
	.summarizeHist
	checkPairedEnd
	filterDNA
	getStrandFromBamFile
	getStrandFromReadInfo
	getWinOverlapEachIRange
	getWinOverlapEachReadFragment
	getWinOverlapGRanges
	intersectWithFeature
	plotHist
	plotWin
	Index

