Package ‘cycle’

November 6, 2025
Version 1.65.0
Date 2016-02-18
Title Significance of periodic expression pattern in time-series data
Author Matthias Futschik <mfutschik@ualg.pt>
Maintainer Matthias Futschik <mfutschik@ualg.pt>
Depends R (>=2.10.0), Mfuzz
Imports Biobase, stats

Description Package for assessing the statistical significance of
periodic expression based on Fourier analysis and comparison
with data generated by different background models

License GPL-2

URL http://cycle.sysbiolab.eu

biocViews Microarray, TimeCourse

git_url https://git.bioconductor.org/packages/cycle
git_branch devel

git_last_commit cf91b5c

git_last commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-06

Contents
arlanalysis
backgroundData L e e
fdrfourier e
fourierscore e
Index

http://cycle.sysbiolab.eu

2 arlanalysis

arlanalysis Performs AR fitting

Description

Calculation of the autocorrelation coefficients genes and variance of corresponding random vari-
ables to fit gene expression time series by AR1 processes

Usage

arlanalysis(eset)
Arguments

eset object of the class “ExpressionSet”
Value

List of fitted autocorrelation coefficients (alpha) for ExpressionSet features and variance (sigma2)
of corresponding random variables obtained using the ar function of the stats package.

Note

Note that this function evaluates soley the exprs matrix and no information is used from the
phenoData. In particular, the ordering of samples (arrays) is the same as the ordering of the columns
in the exprs matrix. Also, replicated arrays in the exprs matrix are treated as independent i.e. they
should be averagered prior to analysis or placed into different distinct “ExpressionSet” objects.

See Also

ar

Examples
data(yeast) # loading the reduced CDC28 yeast set (from the Mfuzz package)
Data preprocessing

if (interactive()){
data(yeast)

yeast <- filter.NA(yeast)
filters genes with more than 25% of the expression values missing

yeast <- fill.NA(yeast)
for illustration only; rather use knn method for replacing missing values

tmp <- arlanalysis(yeast)
fits AR1 process autocorrelation coefficients

backgroundData 3

plot(density(tmp$alpha),main="Autocorrelation”)

backgroundData Generation of background expression set

Description

The function generates background expression sets using different methods (permutation within
rows, Gaussian distribution, auto-regressive models)

Usage
backgroundData(eset,model=c("rr", "gauss", "ar1"))
Arguments
eset object of the class “ExpressionSet”
model model for generation of background data: “rr”’- random permutation, “gauss”-
Gaussian and “ar1”- AR1 models
Details

Microarray data comprise the measurements of transcript levels for many thousands of genes. Due
to the large number of genes, it can be expected that some genes show periodicity simply by chance.
To assess therefore the significance of periodic signals, it is necessary first to define what distribution
of signals can be expected if the studied process exhibits no true periodicity. In statistical terms this
is equivalent with the definition of a null hypothesis of non-periodic expression.

The most simple model for non-periodic expression is based on randomization of the observed
times series. A background distribution can then be constructed by (repeated) random permutation
of the sequentially ordered measurements in the experiment. This background model is used here
if model="rr" is chosen.

Alternatively, non-periodic expression can be derived using a statistical model. A conventional
approach is based on the assumption of data normality and to use the normal distribution. This
background model is chosen if model="gauss".

However, these two approaches neglect the fact that time series data exhibit generally a considerable
autocorrelation i.e. correlation between successive measurements. Therefore, neither the assump-
tions of data normality nor for randomizations may hold. As demonstrated for yeast cell cycle data
(Bioinformatics 2008), this failure can substantially interfere with the significance testing, and that
neglecting autocorrelation can potentially lead to a considerable overestimation of the number of
periodically expressed genes.

A more suitable model is based on autoregressive processes of order one (AR(1)), for which the
value of the time-dependent variable X depends on its previous value up to a normally distributed
random variable Z. Such model is used here for the setting of model="ar1". The autocorrelation of

fdrfourier

X and variance of Z is estimated for each feature of the ExpressionSet object separately. Mathe-
matical details can be found in the given reference.

It is important to note in this context, that AR(1) processes cannot capture periodic patterns except
for alternations with period two. Since Z is a random variable, we can readily generate a collection
of time series with the same autocorrelation as in the original data set. Therefore, although AR(1)
processes constitute random processes, they allow us to construct a background distribution that
captures the autocorrelation structure of original gene expression time series without fitting the
potentially included periodic pattern.

Value

ExpressionSet object with expression data generated by the chosen background model

Note

Note that this function evaluates soley the exprs matrix and no information is used from the
phenoData. In particular, the ordering of samples (arrays) is the same as the ordering of the columns
in the exprs matrix. Also, replicated arrays in the exprs matrix are treated as independent i.e. they
should be averagered prior to analysis or placed into different distinct “ExpressionSet” objects.

Author(s)

Matthias E. Futschik (http://www.cbme.ualg.pt/mfutschik_cbme.html)

References

Matthias E. Futschik and Hanspeter Herzel (2008) Are we overestimating the number of cell-cycling
genes? The impact of background models on time series analysis, Bioinformatics, 24(8):1063-1069

fdrfourier Calculation of the false discovery rates (FDR) for periodic expression

Description

The function calculates the empirical FDR based on derived Fourier scores derived by fourierscore
for the observed expression and the comparison with scores derived for different background model
generated by backgroundData.

Usage

fdrfourier(eset, T, times,background.model="rr" /N=100,progress=FALSE)

http://www.cbme.ualg.pt/mfutschik_cbme.html

fdrfourier 5

Arguments
eset object of the class “ExpressionSet”
T cycle period
times time of measurements

background.model
model for generation of background data:
Gaussian background, “ar1”- AR1 models

113

rr”’- permutation within rows, “gauss”-

N number of generated data sets for the background distribution
progress if set to TRUE, a progress of calculations is reported
Details

To assess the significance of the Fourier score obtained for the original gene expression time series,
the probability has to be calculated of how often such a score would be observed by chance based
on the chosen background distribution. The statistical significance is given by the calculated false
discovery rate. It is defined here as the expected proportion of false positives among all genes
detected as periodically expressed. Mathematical details can be found in the given reference.

Value
List with FDR for the features of the eset object (fdr), and Fourier scores for ExpressionSet object
(F) and the background data (F . b).

Note

This is the main function of the cycle package. Note that the calculation of FDR employing
empirical background distributions can require considerable time (up to several days for large gene
expression data sets).

Importantly, this function evaluates soley the exprs matrix and no information is used from the
phenoData. In particular, the ordering of samples (arrays) is the same as the ordering of the columns
in the exprs matrix. Also, replicated arrays in the exprs matrix are treated as independent i.e. they
should be averagered prior to analysis or placed into different distinct “ExpressionSet” objects.

Author(s)
Matthias E. Futschik (http://www.cbme.ualg.pt/mfutschik_cbme.html)

References
Matthias E. Futschik and Hanspeter Herzel (2008) Are we overestimating the number of cell-cycling
genes? The impact of background models on time series analysis, Bioinformatics, 24(8):1063-1069
Examples

if (interactive()){

set.seed(1)
data(yeast) # loading the reduced CDC28 yeast set (from the Mfuzz package)

http://www.cbme.ualg.pt/mfutschik_cbme.html

6 fourierscore

Data preprocessing

yeast <- filter.NA(yeast) # filters genes with more than 25% of the expression values missing
yeast <- fill.NA(yeast) # for illustration only; rather use knn method for

yeast <- standardise(yeast)

#

T.yeast <- 85 # cell cycle period (t=85min)

times.yeast <- pData(yeast)$time # time of measurements

#

yeast.test <- yeast[1:600,] # To speed up the example

#

NN <- 50 # number of generated background models
Here, a small number was chosen for demonstration purpose.
For the actual analysis, rather set N = 1000

Calculation of FDRs

i) based on random permutation as background model

fdr.rr <- fdrfourier(eset=yeast.test,T=T.yeast,
times=times.yeast,background.model="rr" /N=NN,progress=TRUE)

ii) based on Gaussian distribution

fdr.g <- fdrfourier(eset=yeast.test,T=T.yeast,
times=times.yeast,background.model="gauss",N=NN, progress=TRUE)

iii) based on AR(1) models as background

fdr.ar1 <- fdrfourier(eset=yeast.test,T=T.yeast,

times=times.yeast,background.model="ar1" ,N=NN, progress=TRUE)

Number of significant genes based on diff. background models
sum(fdr.rr$fdr < 0.1)

sum(fdr.g$fdr < 0.1)

sum(fdr.ar1$fdr < @.1)

Plot top scoring gene
plot(times.yeast,exprs(yeast.test)[order(fdr.ar1$fdr)[1],], type="0",
xlab="Time",ylab="Expression”,
main=paste(featureNames(yeast.test)[order(fdr.ar1$fdr)[1]],"-- FDR:",
fdr.ar1$fdrlorder(fdr.ar1$fdr)[111))

List significant genes
fdr.ar1$fdrfwhich(fdr.ar1$fdr < 0.1)]
3

fourierscore Calculation of the Fourier score

Description

The function calculates fourier score for a chosen periodicity.

fourierscore 7

Usage

fourierscore(eset,T,times=seq_len(ncol(eset)))

Arguments

eset object of the class “ExpressionSet”

T length of chosen period

times measurement times (with the index of the column as default)
Details

The Fourier score can be used to detect periodic signals. The closer a gene’s expression follows a
(possibly shifted) cosine curve of period T, the larger is the Fourier score. Mathematical details can
be found in the given reference. The function fourierscore calculates the Fourier scores for all
features of an ExpressionSet object.

Value

Fourier scores for all features (genes) of eset

Note

Note that this function evaluates soley the exprs matrix and no information is used from the
phenoData. In particular, the ordering of samples (arrays) is the same as the ordering of the columns
in the exprs matrix. Also, replicated arrays in the exprs matrix are treated as independent i.e. they
should be averagered prior to analysis or placed into different distinct “ExpressionSet” objects.

Author(s)

Matthias E. Futschik (http://www.cbme.ualg.pt/mfutschik_cbme.html)

References

Matthias E. Futschik and Hanspeter Herzel (2008) Are we overestimating the number of cell-cycling
genes? The impact of background models on time series analysis, Bioinformatics, 24(8):1063-1069

Examples

Data preprocessing

if (interactive()){

set.seed(1)

data(yeast) # loading the reduced CDC28 yeast set (from the Mfuzz package)

yeast <- yeast[1:600,] # for illustration

yeast <- filter.NA(yeast) # filters genes with more than 25% of the expression values missing
yeast <- fill.NA(yeast) # for illustration only; rather use knn method for

yeast <- standardise(yeast)

T.yeast <- 85 # cell cycle period (t=85min)
times.yeast <- pData(yeast)$time # time of measurements

http://www.cbme.ualg.pt/mfutschik_cbme.html

F <- fourierscore(yeast,T = T.yeast, times= times.yeast)
calculates the Fourier scores for yeast genes

Plot highest scoring gene

plot(times.yeast,exprs(yeast)[order(-F)[1],], type="0",
xlab="Time",ylab="Expression”,
main=featureNames(yeast)[order(-F)[11])

Plot lowest scoring gene

plot(times.yeast,exprs(yeast)[order(F)[1],],type="0",
xlab="Time",ylab="Expression”,
main=featureNames(yeast)[order(F)[1]1]1)

fourierscore

Index

x datagen
backgroundData, 3
x distribution
backgroundData, 3
* htest
fdrfourier, 4
* 1S
arlanalysis, 2
fdrfourier, 4
fourierscore, 6

ar, 2
arlanalysis, 2

backgroundData, 3

fdrfourier, 4
fourierscore, 6

	ar1analysis
	backgroundData
	fdrfourier
	fourierscore
	Index

