Package 'cellity'

November 6, 2025

Type Package

Title Quality Control for Single-Cell RNA-seq Data

Version 1.39.0

Date 2016-02-22

Author Tomislav Illicic, Davis McCarthy

Maintainer Tomislav Ilicic <ti243@cam.ac.uk>

Description A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.

License GPL (>= 2)

Depends R (>= 3.3)

Imports AnnotationDbi, e1071, ggplot2, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils

Suggests BiocStyle, caret, knitr, testthat, rmarkdown

VignetteBuilder knitr

LazyData true

biocViews ImmunoOncology, RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, SupportVectorMachine

RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/cellity

git_branch devel

git_last_commit 6d83db0

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-06

Contents

cellity-package	2
assess_cell_quality_PCA	2
	3
ė į	4
	5
extra_mouse_genes	6
	6
	7
	7
	8
	9
±	9
	10
•	
•	
	16
ity-package Quality Control for Single-Cell RNA-seq Data	
	feature_generation feature_info mES1_features mES1_labels multiplot normalise_by_factor param_mES_all param_mES_common plot_pca sample_counts sample_stats simple_cap sum_prop training_mES_features training_mES_labels uni.plot

Description

cellity provides a support vector machine and PCA approaches to identifying and filtering low quality cells from single-cell RNA-seq datasets.

assess_cell_quality_PCA

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Description

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Usage

```
assess_cell_quality_PCA(features, file = "")
```

Arguments

features Input dataset containing features (cell x features)

file Output_file where plot is saved

Details

This function applies PCA on features and uses outlier detection to determine which cells are low and which are high quality

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)

Examples

```
data(training_mES_features)
training_mES_features_all <- training_mES_features[[1]]
training_quality_PCA_allF <- assess_cell_quality_PCA(training_mES_features_all)</pre>
```

```
assess_cell_quality_SVM
```

Assess quality of a cell - SVM version

Description

Assess quality of a cell - SVM version

Usage

```
assess_cell_quality_SVM(training_set_features, training_set_labels,
  ensemble_param, test_set_features)
```

Arguments

```
training_set_features
A training set containing features (cells x features) for prediction
training_set_labels
Annotation of each individual cell if high or low quality (1 or 0 respectively)
ensemble_param Dataframe of parameters for SVM
test_set_features
```

Dataset to predict containing features (cells x features)

Details

This function takes a training set + annotation to predict a test set. It requires that hyper-parameters have been optimised.

4 extract_features

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively) data.frame with decision on quality of cells

Examples

```
data(param_mES_all)
data(training_mES_features)
data(training_mES_labels)
data(mES1_features)
data(mES1_labels)
mES1_features_all <- mES1_features[[1]]
training_mES_features_all <- training_mES_features[[1]]
mES1_quality_SVM <- assess_cell_quality_SVM( training_mES_features_all, training_mES_labels[,2], param_mES_all, mES1_features_all)</pre>
```

extract_features

Extracts biological and technical features for given dataset

Description

Extracts biological and technical features for given dataset

Usage

```
extract_features(counts_nm, read_metrics, prefix = "", output_dir = "",
  common_features = NULL, GO_terms = NULL, extra_genes = NULL,
  organism = "mouse")
```

Arguments

counts_nm Gene expression counts dataframe (genes x cells). Either normalised by library

size or TPM values

read_metrics Dataframe with mapping statistics produced by python pipeline

prefix Prefix of outputfiles output_dir Output directory of files

common_features

Subset of features that are applicable within one species, but across cell types

GO_terms DataFrame with gene ontology term IDs, that will be used in feature extraction

extra_genes Additional genes used for feature extraction organism The target organism to generate the features for

Details

This function takes a combination of gene counts and mapping statistics to extract biological and technical features, which than can be used for quality data analysis

extra_human_genes 5

Value

a list with two elements, one providing all features, and one providing common features.

Examples

```
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))
sample_features <- extract_features(sample_counts_nm, sample_stats)</pre>
```

extra_human_genes

Additional human genes that are used in feature extraction

Description

This list contains human genes that are used for feature extraction of biological features

Usage

```
extra_human_genes
```

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

6 feature_generation

extra_	mouse	genes
CALI U_	_iiiousc_	_601103

Additional mouse genes that are used in feature extraction

Description

This list contains mouse genes that are used for feature extraction of biological features

Usage

```
extra_mouse_genes
```

Format

a list containing vectors of genes. Name indicates which GO category.

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

C .	
teature	generation

Helper Function to create all features

Description

Helper Function to create all features

Usage

```
feature_generation(counts_nm, read_metrics, GO_terms, extra_genes, organism)
```

Arguments

counts_nm	Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values
read_metrics	Dataframe with mapping statistics produced by python pipeline
GO_terms	DataFrame with gene ontology term IDs, that will be used in feature extraction
extra_genes	Additional genes used for feature extraction
organism	The target organism to generate the features for

feature_info 7

Value

Returns the entire set of features in a data.frame

feature_info	Information which genes and GO categories should be included as features. Also defines which features are cell-type independent (com-
	mon features)

Description

This list contains metadata information that is used to extract features from in the function extract_features

Usage

feature_info

Format

a list with 2 elements (GO_terms,common_features).

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

mES1_features	Real test dataset containing all and common features from the paper (mES1)
---------------	--

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

mES1_features

8 mES1_labels

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

mES1_labels

Real test dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

mES1_labels

Format

a dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

multiplot 9

multiplot

Internal multiplot function to combine plots onto a grid

Description

Internal multiplot function to combine plots onto a grid

Usage

```
multiplot(..., plotlist = NULL, file, cols = 6, layout = NULL)
```

Arguments

... individual plots to combine into a single plot plotlist a vector with names of plots to use in the plot

file string giving filename to which pdf of plots is to be saved

cols integer giving number of columns for the plot

layout matrix defining the layout for the plots

Value

a plot object

normalise_by_factor

Internal function to normalize by library size

Description

Internal function to normalize by library size

Usage

```
normalise_by_factor(counts, norm_factor)
```

Arguments

counts matrix of counts

norm_factor vector of normalisation factors

Value

a matrix with normalized gene counts

param_mES_common

Examples

```
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))</pre>
```

param_mES_all

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for all features and our training data

Usage

```
param_mES_all
```

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

param_mES_common

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for common features and our training data

Usage

```
param_mES_common
```

plot_pca 11

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

plot_pca Plots PCA of all features. Colors high and low quality cells based on

outlier detection.

Description

Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Usage

```
plot_pca(features, annot, pca, col, output_file)
```

Arguments

features Input dataset containing features (cell x features)

annot Matrix annotation of each cell

pca PCA of features

col color code indicating what color high and what low quality cells

output_file where plot is stored

Details

This function plots PCA of all features + most informative features

Value

Plots of PCA

12 sample_stats

sample_counts

Sample gene expression data containing 40 cells

Description

This data frame contains genes (rows) and cells (columns) showing raw read counts

Usage

```
sample_counts
```

Format

a dataframe with genes x cells

Value

NULL, but makes available a dataframe with raw read counts

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

sample_stats

Sample read statistics data containing 40 cells

Description

This data frame contains read metrics (columns) and cells (rows)

Usage

```
sample_stats
```

Format

a dataframe with cells x metrics

Value

NULL, but makes available a dataframe with read statistics

simple_cap 13

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

simple_cap

Converts all first letters to capital letters

Description

Converts all first letters to capital letters

Usage

```
simple_cap(x)
```

Arguments

Χ

string

Value

a character vector in title case

sum_prop

Sums up normalised values of genes to groups.

Description

Supports TPM and proportion of mapped reads.

Usage

```
sum_prop(counts, genes_interest)
```

Arguments

```
counts Normalised gene expression count matrix genes_interest dataframe of genes of interest to merge
```

Value

a vector of sums per group

14 training_mES_labels

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

training_mES_features

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

```
training_mES_labels
```

Format

a dataframe with 2 columns (cell_names, label).

uni.plot

Value

NULL, but makes available a dataframe with cell annotations

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

uni.plot

Internal function to detect outliers from the mvoultier pacakge Modified slightly so that plots are not printed

Description

Internal function to detect outliers from the mvoultier pacakge Modified slightly so that plots are not printed

Usage

```
uni.plot(x, symb = FALSE, quan = 1/2, alpha = 0.025)
```

Arguments

x A matrix containing counts

symb Symbols quan quan alpha alpha

Value

a list of outlier indicators

Index

```
{\tt assess\_cell\_quality\_PCA, 2}
assess_cell_quality_SVM, 3
{\tt cellity-package}, {\color{red} 2}
extra_human_genes, 5
\verb|extra_mouse_genes|, 6
extract_features, 4
feature_generation, 6
feature_info, 7
mES1_features, 7
mES1_labels, 8
multiplot, 9
normalise_by_factor, 9
param_mES_all, 10
param_mES_common, 10
plot_pca, 11
sample_counts, 12
{\tt sample\_stats}, \\ 12
simple_cap, 13
sum_prop, 13
{\tt training\_mES\_features}, 14
training_mES_labels, 14
uni.plot, 15
```