
Package ‘transmogR’
April 1, 2025

Type Package

Title Modify a set of reference sequences using a set of variants

Version 1.2.0

Description transmogR provides the tools needed to crate a new reference
genome or reference transcriptome, using a set of variants. Variants can
be any combination of SNPs, Insertions and Deletions. The intended
use-case is to enable creation of variant-modified reference
transcriptomes for incorporation into transcriptomic pseudo-alignment
workflows, such as salmon.

License GPL-3

Encoding UTF-8

URL https://github.com/smped/transmogR

BugReports https://github.com/smped/transmogR/issues

Depends Biostrings, GenomicRanges

Imports BSgenome, dplyr, GenomeInfoDb, GenomicFeatures, ggplot2 (>=
3.5.0), IRanges, jsonlite, matrixStats, methods, parallel,
rlang, scales, stats, S4Vectors, SummarizedExperiment,
VariantAnnotation, vroom

Suggests BiocStyle, BSgenome.Hsapiens.UCSC.hg38, ComplexUpset,
extraChIPs, InteractionSet, knitr, rmarkdown, rtracklayer,
testthat (>= 3.0.0)

biocViews Alignment, GenomicVariation, Sequencing,
TranscriptomeVariant

BiocType Software

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/transmogR

git_branch RELEASE_3_20

git_last_commit a83ed92

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

1

https://github.com/smped/transmogR
https://github.com/smped/transmogR/issues

2 transmogR-package

Date/Publication 2025-03-31

Author Stevie Pederson [aut, cre] (<https://orcid.org/0000-0001-8197-3303>)

Maintainer Stevie Pederson <stephen.pederson.au@gmail.com>

Contents
transmogR-package . 2
digestSalmon . 3
genomogrify . 4
indelcator . 6
overlapsByVar . 8
owl . 9
parY . 10
sjFromExons . 11
transmogrify . 12
upsetVarByCol . 15
varTypes . 16

Index 18

transmogR-package transmogR: Create a variant-modified reference transcriptome

Description

The package transmogR has been designed for creation of a variant-modified reference transcrip-
tome

Details

The package transmogR provides two primary functions for modifying complete transcriptomes or
genomes:

• transmogrify() for incorporating the supplied variants into transcriptomic sequences, and
• genomogrify() for incorporating the supplied variants into genomic sequences, ideally to be

passed as decoy sequences to a tool such as salmon.

The main functions rely on lower-level functions such as:

• owl() which over-writes letters (i.e. SNPs) within a sequence, and
• indelcator() which incorporates InDels into an individual sequence

Additional utility functions are provided which allow characterisation and exploration of any set of
variants:

• overlapsByVar() counts the variants which overlap sets of GenomicRanges, first splitting
the variants into SNV, Insertions and Deletions

• parY() returns the pseudo-autosomal regions for a chosen genome build as a GenomicRanges
object

• upsetVarByCol() produces an UpSet plot counting how many unique IDs are impacted by
a set o variants. IDs can represent any column in the supplied ranges, such as gene_id or
transcript_id

• varTypes() classifies a set of variants into SNV, Insertions of Deletions

https://orcid.org/0000-0001-8197-3303

digestSalmon 3

Author(s)

Stevie Pederson

See Also

Useful links:

• https://github.com/smped/transmogR

• Report bugs at https://github.com/smped/transmogR/issues

digestSalmon Parse the output from salmon

Description

Parse transcript counts and additional data from salmon

Usage

digestSalmon(
paths,
max_sets = 2L,
aux_dir = "aux_info",
name_fun = basename,
verbose = TRUE,
length_as_assay = FALSE,
...

)

Arguments

paths Vector of file paths to directories containing salmon results

max_sets The maximum number of indexes permitted

aux_dir Subdirectory where bootstraps and meta_info.json are stored

name_fun Function applied to paths to provide colnames in the returned object. Set to
NULL or c() to disable.

verbose Print progress messages
length_as_assay

Output transcript lengths as an assay. May be required if using separate refer-
ence transcriptomes for different samples

... Not used

Details

This function is based heavily on edgeR::catchSalmon() with some important exceptions:

1. A SummarizedExperiment object is returned

2. Differing numbers of transcripts are allowed between samples

https://github.com/smped/transmogR
https://github.com/smped/transmogR/issues

4 genomogrify

The second point is intended for the scenario where some samples may have been aligned to a full
reference, with remaining samples aligned to a partially masked reference (e.g. chrY). This will
lead to differing numbers of transcripts within each salmon index, however, common estimates of
overdispersions are required for scaling transcript-level counts. By default, the function will error
if >2 different sets of transcripts are detected, however this can be modified using the max_sets
argument.

The SummarizedExperiment object returned will also contain multiple assays, as described below

Value

A SummarizedExperiment object containing assays for counts, scaledCounts, TPM and effective-
Length. The scaledCounts assay contains counts divided by overdispersions. rowData in the re-
turned object will also include transcript-lengths along with the overdispersion estimates used to
return the scaled counts.

genomogrify Mogrify a genome using a set of variants

Description

Use a set of SNPS, insertions and deletions to modify a reference genome

Usage

genomogrify(x, var, ...)

S4 method for signature 'XStringSet,GRanges'
genomogrify(
x,
var,
alt_col = "ALT",
mask = GRanges(),
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
verbose = TRUE,
...

)

S4 method for signature 'BSgenome,GRanges'
genomogrify(
x,
var,
alt_col = "ALT",
mask = GRanges(),
names,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",

genomogrify 5

verbose = TRUE,
...

)

S4 method for signature 'BSgenome,VcfFile'
genomogrify(
x,
var,
alt_col = "ALT",
mask = GRanges(),
names,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
which,
verbose = TRUE,
...

)

S4 method for signature 'XStringSet,VcfFile'
genomogrify(
x,
var,
alt_col = "ALT",
mask = GRanges(),
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
which,
verbose = TRUE,
...

)

Arguments

x A DNAStringSet or BSgenome
var GRanges object containing the variants, or a VariantAnnotation::VcfFile
... Passed to parallel::mclapply
alt_col The name of the column with var containing alternate bases
mask Optional GRanges object defining regions to be masked with an ’N’
tag Optional tag to add to all sequence names which were modified
sep Separator to place between seqnames names & tag
var_tags logical(1) Add tags indicating which type of variant were incorporated, with ’s’,

’i’ and ’d’ representing SNPs, Insertions and Deletions respectively
var_sep Separator between any previous tags and variant tags
verbose logical(1) Print progress messages while running
names Sequence names to be mogrified
which GRanges object passed to VariantAnnotation::ScanVcfParam if using a VCF

directly

6 indelcator

Details

This function is designed to create a variant-modified reference genome, intended to be included as
a set of decoys when using salmon in selective alignment mode. Sequence lengths will change if
InDels are included and any coordinate-based information will be lost on the output of this function.

Tags are able to be added to any modified sequence to assist identifying any changes that have been
made to a sequence.

Value

XStringSet with variant modified sequences

Examples

library(GenomicRanges)
dna <- DNAStringSet(c(chr1 = "ACGT", chr2 = "AATTT"))
var <- GRanges(c("chr1:1", "chr1:3", "chr2:1-3"))
var$ALT <- c("C", "GG", "A")
dna
genomogrify(dna, var)
genomogrify(dna, var, tag = "mod")
genomogrify(dna, var, var_tags = TRUE)
genomogrify(dna, var, mask = GRanges("chr2:1-5"), var_tags = TRUE)

indelcator Substitute InDels into one or more sequences

Description

Modify one or more sequences to include Insertions or Deletions

Usage

indelcator(x, indels, ...)

S4 method for signature 'XString,GRanges'
indelcator(x, indels, exons, alt_col = "ALT", ...)

S4 method for signature 'DNAStringSet,GRanges'
indelcator(x, indels, alt_col = "ALT", mc.cores = 1, verbose = TRUE, ...)

S4 method for signature 'BSgenome,GRanges'
indelcator(x, indels, alt_col = "ALT", mc.cores = 1, names, ...)

Arguments

x Sequence of class XString

indels GRanges object with InDel locations and the alternate allele

... Passed to parallel::mclapply

exons GRanges object containing exon structure for x

indelcator 7

alt_col Column containing the alternate allele

mc.cores Number of cores to use when calling parallel::mclapply internally

verbose logical(1) Print all messages

names passed to BSgenome::getSeq when x is a BSgenome object

Details

This is a lower-level function relied on by both transmogrify() and genomogrify().

Takes an Biostrings::XString or Biostrings::XStringSet object and modifies the sequence to incor-
porate InDels. The expected types of data determine the behaviour, with the following expectations
describing how the function will incorporate data

Input Data Type Exons Required Use Case Returned
XString Y Modify a Reference Transcriptome XString
DNAStringSet N Modify a Reference Genome DNAStringSet
BSgenome N Modify a Reference Genome DNAStringSet

Value

A DNAStringSet or XString object (See Details)

See Also

transmogrify() genomogrify()

Examples

Start with a DNAStringSet
library(GenomicRanges)
seq <- DNAStringSet(c(seq1 = "AATCTGCGC"))
Define an Insertion
var <- GRanges("seq1:1")
var$ALT <- "AAA"
seq
indelcator(seq, var)

To modify a single transcript
library(GenomicFeatures)
ex <- GRanges(c("seq1:1-3:+", "seq1:7-9:+"))
orig <- extractTranscriptSeqs(seq, GRangesList(tx1 = ex))[["tx1"]]
orig
indelcator(orig, var, exons = ex)

8 overlapsByVar

overlapsByVar Count overlaps by variant type

Description

Count how many variants of each type overlap ranges

Usage

overlapsByVar(x, var, ...)

S4 method for signature 'GRangesList,GRanges'
overlapsByVar(x, var, alt_col = "ALT", ...)

S4 method for signature 'GRanges,GRanges'
overlapsByVar(x, var, alt_col = "ALT", ...)

Arguments

x A GRangesList with features of interest

var A Granges object with variants of interest

... Passed to rowSums

alt_col The column within mcols(var) which contains the alternate allele

Details

Taking any GRanges or GRangesList, count how many of each variant type overlap a region.

Value

A vector or matrix

Examples

library(rtracklayer)
library(VariantAnnotation)
gtf <- import.gff(

system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR")
)
grl <- splitAsList(gtf, gtf$type)
vcf <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
var <- rowRanges(readVcf(vcf, param = ScanVcfParam(fixed = "ALT")))
overlapsByVar(grl, var)

owl 9

owl OverWrite Letters in an XStringSet

Description

OverWrite Letters (e.g. SNPs) in an XStringSet

Usage

owl(seq, snps, ...)

S4 method for signature 'XStringSet,GRanges'
owl(seq, snps, alt_col = "ALT", ...)

S4 method for signature 'BSgenome,GRanges'
owl(seq, snps, alt_col = "ALT", names, ...)

Arguments

seq A BSgenome, DNAStringSet, RNAStringSet or other XStringSet.

snps A GRanges object with SNP positions and a column containing the alternate
allele

... Passed to Biostrings::replaceLetterAt()

alt_col Column name in the mcols element of snps containing the alternate allele

names Sequence names to operate on

Details

This is a lower-level function called by transmogrify() and genomogrify(), but able to be called
by the user if needed

Note that when providing a BSgenome object, this will first be coerced to a DNAStringSet which
can be time consuming.

Value

An object of the same class as the original object, but with SNPs inserted at the supplied positions

Examples

seq <- DNAStringSet(c(chr1 = "AAGC"))
snps <- GRanges("chr1:2")
snps$ALT <- "G"
snps
seq
owl(seq, snps)

10 parY

parY Get the PAR-Y Regions From a Seqinfo Object

Description

Define the Pseudo-Autosomal Regions from a Seqinfo Object

Usage

parY(x, ...)

S4 method for signature 'Seqinfo'
parY(x, ...)

S4 method for signature 'character'
parY(x, prefix = NULL, ...)

Arguments

x A Seqinfo object or any of named build. If passing a character vector, match.arg()
will be used to match the build.

... Not used

prefix Optional prefix to place before chromosome names. Can only be NULL, "" or
"chr"

Details

Using a seqinfo object based on either hg38, hg19, CHM13.v2 or their variations, create a GRanges
object with the Pseudo-Autosomal Regions from the Y chromosome for that build. The length
of the Y chromosome on the seqinfo object is used to determine the correct genome build when
passing a Seqinfo object. Otherwise

An additional mcols column called PAR will indicate PAR1 and PAR2

Value

A GenomicRanges object

Examples

library(GenomeInfoDb)
sq <- Seqinfo(

seqnames = "chrY", seqlengths = 59373566, genome = "hg19_only_chrY"
)
parY(sq)

PAR regions for CHM13 are also available
sq <- Seqinfo(

seqnames = "chrY", seqlengths = 62460029, genome = "CHM13"
)
parY(sq)

Or just call by name

sjFromExons 11

parY("GRCh38", prefix = "chr")

sjFromExons Obtain Splice-Junctions from Exons and Transcripts

Description

Using GRanges defining exons and transcripts, find the splice-junctions

Usage

sjFromExons(
x,
rank_col = c("exon_number", "exon_rank"),
tx_col = c("transcript_id", "tx_id"),
extra_cols = "all",
don_len = 8,
acc_len = 5,
as = c("GRanges", "GInteractions"),
...

)

Arguments

x GRanges object with exons and transcripts. A column indicating the position
(or rank) of each exon within the transcript must be included.

rank_col The column containing the position of each exons within the transcript

tx_col The column containing unique transcript-level identifiers

extra_cols Can be a vector of column names to return beyond rank_col and tx_col. By
default all columns are returned (extra_cols = "all").

don_len, acc_len
Length of donor and acceptor sites respectively

as Return as a set of GenomicRanges, or with each splice junction annotated as a
GenomicInteraction

... Not used

Details

A canonical splice junction consists of a donor site and an acceptor site at each end of an intron,
with a branching site somewhere wthin the intron. Canonical donor sites are 8nt long with the
the first two bases being exonic and the next 6 being derived form intronic sequences. Canonical
acceptor sites are 5nt long with the first four bases being intronic and the final base being the first
base of the next exon.

This functions uses each set of exons within a transcript to identify both donor and acceptor sites.
Branch sites are not identified.

12 transmogrify

Value

A GRanges object with requested columns, and an additional column, ’site’, annotating each region
as a donor or acceptor site.

Alternatively, by specifying as = "GInteractions", the junctions can be returned with each splice
junction annotated as a GenomicInteraction. This can make the set of junctions easier to interpret
for a given transcript.

Examples

library(rtracklayer)
gtf_cols <- c(

"transcript_id", "transcript_name", "gene_id", "gene_name", "exon_number"
)
gtf <- import.gff(

system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR"),
feature.type = "exon", colnames = gtf_cols

)
sj <- sjFromExons(gtf)
sj

Or to simplify shared splice junctions across multiple transcripts
library(extraChIPs, quietly = TRUE)
chopMC(sj)

Splice Junctions can also be returned as a GInteractions object with
anchorOne as the donor & anchorTwo as the acceptor sites
sjFromExons(gtf, as = "GInteractions")

transmogrify Mogrify a transcriptome using a set of variants

Description

Use a set of SNPs, insertions and deletions to modify a reference transcriptome

Usage

transmogrify(x, var, exons, ...)

S4 method for signature 'XStringSet,GRanges,GRanges'
transmogrify(
x,
var,
exons,
alt_col = "ALT",
trans_col = "transcript_id",
omit_ranges = NULL,
tag = NULL,
sep = "_",
var_tags = FALSE,

transmogrify 13

var_sep = "_",
verbose = TRUE,
mc.cores = 1,
...

)

S4 method for signature 'BSgenome,GRanges,GRanges'
transmogrify(
x,
var,
exons,
alt_col = "ALT",
trans_col = "transcript_id",
omit_ranges = NULL,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
verbose = TRUE,
mc.cores = 1,
...

)

S4 method for signature 'BSgenome,VcfFile,GRanges'
transmogrify(
x,
var,
exons,
alt_col = "ALT",
trans_col = "transcript_id",
omit_ranges = NULL,
tag = NULL,
sep = "_",
var_tags = FALSE,
var_sep = "_",
verbose = TRUE,
mc.cores = 1,
which,
...

)

S4 method for signature 'XStringSet,VcfFile,GRanges'
transmogrify(
x,
var,
exons,
alt_col = "ALT",
trans_col = "transcript_id",
omit_ranges = NULL,
tag = NULL,
sep = "_",
var_tags = FALSE,

14 transmogrify

var_sep = "_",
verbose = TRUE,
mc.cores = 1,
which,
...

)

Arguments

x Reference genome as either a DNAStringSet or BSgenome

var GRanges object containing the variants

exons GRanges object with ranges representing exons

... Passed to parallel::mclapply

alt_col Column from var containing alternate bases

trans_col Column from ’exons’ containing the transcript_id

omit_ranges GRanges object containing ranges to omit, such as PAR-Y regions, for example

tag Optional tag to add to all sequence names which were modified

sep Separator to place between seqnames names & tag

var_tags logical(1) Add tags indicating which type of variant were incorporated, with ’s’,
’i’ and ’d’ representing SNPs, Insertions and Deletions respectively

var_sep Separator between any previous tags and variant tags

verbose logical(1) Include informative messages, or operate silently

mc.cores Number of cores to be used when multi-threading via parallel::mclapply

which GRanges object passed to VariantAnnotation::ScanVcfParam if using a VCF
directly

Details

Produce a set of variant modified transcript sequences from a standard reference genome. Supported
variants are SNPs, Insertions and Deletions

Ranges needing to be masked, such as the Y-chromosome, or Y-PAR can be provided.

It should be noted that this is a time consuming process Inclusion of a large set of insertions
and deletions across an entire transcriptome can involve individually modifying many thousands of
transcripts, which can be a computationally demanding task. Whilst this can be parallelised using an
appropriate number of cores, this may also prove taxing for lower power laptops, and pre-emptively
closing memory hungry programs such as Slack, or internet browers may be prudent.

Value

An XStringSet

Examples

library(GenomicRanges)
library(GenomicFeatures)
seq <- DNAStringSet(c(chr1 = "ACGTAAATGG"))
exons <- GRanges(c("chr1:1-3:-", "chr1:7-9:-"))
exons$transcript_id <- c("trans1")

upsetVarByCol 15

When using extractTranscriptSeqs -stranded exons need to be sorted by end
exons <- sort(exons, decreasing = TRUE, by = ~end)
exons
trByExon <- splitAsList(exons, exons$transcript_id)

Check the sequences
seq
extractTranscriptSeqs(seq, trByExon)

Define some variants
var <- GRanges(c("chr1:2", "chr1:8"))
var$ALT <- c("A", "GGG")

Include the variants adding tags to indicate a SNP and indel
The exons GRanges object will be split by transcript internally
transmogrify(seq, var, exons, var_tags = TRUE)

upsetVarByCol Show Variants by Impacted Columns

Description

Produce an UpSet plot showing unique values from a given column

Usage

upsetVarByCol(
gr,
var,
alt_col = "ALT",
mcol = "transcript_id",
...,
intersection_args = list(),
intersection_lab = "Intersection Size",
set_geom = geom_bar(width = 0.6),
set_expand = 0.2,
set_counts = TRUE,
hjust_counts = 1.1,
set_lab = "Set Size",
title

)

Arguments

gr GRanges object with ranges representing a key feature such as exons

var GRanges object with variants in a given column

alt_col Column within var containing the alternate allele

mcol The column within gr to summarise results by

... Passed to ComplexUpset::upset

16 varTypes

intersection_args

See ComplexUpset::intersection_size for possible values
intersection_lab

Y-axis label for the intersection panel

set_geom Passed to ComplexUpset::upset_set_size

set_expand Expand the set-size axis by this amount

set_counts logical(1) Show counts on set sizes

hjust_counts Horizontal adjustment of counts, if being shown

set_lab X-axis label for the set-sizes panel

title Summary title to show above the intersection panel. Can be hidden by setting to
NULL

Details

Take a set of variants, classify them as SNV, Insertion and Deletion, then using a GRanges object,
produce an UpSet plot showing impacted values from a given column

Value

An UpSet plot

See Also

ComplexUpset::upset

Examples

library(rtracklayer)
library(VariantAnnotation)
gtf <- import.gff(

system.file("extdata/gencode.v44.subset.gtf.gz", package = "transmogR"),
feature.type = "exon"

)
vcf <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
var <- rowRanges(readVcf(vcf, param = ScanVcfParam(fixed = "ALT")))
upsetVarByCol(gtf, var)

varTypes Identify SNVs, Insertions and Deletions

Description

Identify SNVs, Insertions and Deletions within a GRanges object

Usage

varTypes(x, alt_col = "ALT", ...)

varTypes 17

Arguments

x GenomicRanges object

alt_col Name of the column with mcols(x) which contains the alternate allele. Can be
an XStringSetList, XStringSet or character

... Not used

Details

Using the width of the reference and alternate alleles, classify each range as an SNV, Insertion or
Deletion.

• SNVs are expected to have REF & ALT widths of 1

• Insertions are expected to have ALT longer than REF

• Deletions are expected to have ALT shorter than REF

These are relatively permissive criteria

Value

Character vector

Examples

Load the example VCF and classify ranges
library(VariantAnnotation)
f <- system.file("extdata/1000GP_subset.vcf.gz", package = "transmogR")
vcf <- readVcf(f)
gr <- rowRanges(vcf)
type <- varTypes(gr)
table(type)
gr[type != "SNV"]

Index

∗ internal
transmogR-package, 2

Biostrings::replaceLetterAt(), 9
Biostrings::XString, 7
Biostrings::XStringSet, 7
BSgenome::getSeq, 7

ComplexUpset::intersection_size, 16
ComplexUpset::upset, 15, 16
ComplexUpset::upset_set_size, 16

digestSalmon, 3

edgeR::catchSalmon(), 3

genomogrify, 4
genomogrify(), 2, 7, 9
genomogrify,BSgenome,GRanges-method

(genomogrify), 4
genomogrify,BSgenome,VcfFile-method

(genomogrify), 4
genomogrify,XStringSet,GRanges-method

(genomogrify), 4
genomogrify,XStringSet,VcfFile-method

(genomogrify), 4
genomogrify-methods (genomogrify), 4

indelcator, 6
indelcator(), 2
indelcator,BSgenome,GRanges-method

(indelcator), 6
indelcator,DNAStringSet,GRanges-method

(indelcator), 6
indelcator,XString,GRanges-method

(indelcator), 6

match.arg(), 10

overlapsByVar, 8
overlapsByVar(), 2
overlapsByVar,GRanges,GRanges-method

(overlapsByVar), 8
overlapsByVar,GRangesList,GRanges-method

(overlapsByVar), 8

overlapsByVar-methods (overlapsByVar), 8
owl, 9
owl(), 2
owl,BSgenome,GRanges-method (owl), 9
owl,XStringSet,GRanges-method (owl), 9

parallel::mclapply, 5–7, 14
parY, 10
parY(), 2
parY,character-method (parY), 10
parY,Seqinfo-method (parY), 10
parY-methods (parY), 10

rowSums, 8

sjFromExons, 11

transmogR (transmogR-package), 2
transmogR-package, 2
transmogrify, 12
transmogrify(), 2, 7, 9
transmogrify,BSgenome,GRanges,GRanges-method

(transmogrify), 12
transmogrify,BSgenome,VcfFile,GRanges-method

(transmogrify), 12
transmogrify,XStringSet,GRanges,GRanges-method

(transmogrify), 12
transmogrify,XStringSet,VcfFile,GRanges-method

(transmogrify), 12
transmogrify-methods (transmogrify), 12

upsetVarByCol, 15
upsetVarByCol(), 2

VariantAnnotation::ScanVcfParam, 5, 14
VariantAnnotation::VcfFile, 5
varTypes, 16
varTypes(), 2

18

	transmogR-package
	digestSalmon
	genomogrify
	indelcator
	overlapsByVar
	owl
	parY
	sjFromExons
	transmogrify
	upsetVarByCol
	varTypes
	Index

