
Package ‘spatialHeatmap’
April 12, 2022

Type Package

Title spatialHeatmap

Version 2.0.0

Description The spatialHeatmap package provides functionalities for visualizing cell-, tissue- and or-
gan-specific data of biological assays by coloring the corresponding spatial features de-
fined in anatomical images according to a numeric color key.

License Artistic-2.0

Encoding UTF-8

biocViews Visualization, Microarray, Sequencing, GeneExpression,
DataRepresentation, Network, Clustering, GraphAndNetwork,
CellBasedAssays, ATACSeq, DNASeq, TissueMicroarray, SingleCell,
CellBiology, GeneTarget

VignetteBuilder knitr

Suggests knitr, rmarkdown, BiocStyle, BiocSingular, RUnit,
BiocGenerics, ExpressionAtlas, DT, Biobase, GEOquery,
shinyWidgets, shinyjs, htmltools, shinyBS, sortable, scater,
scran

Depends R (>= 3.5.0)

Imports av, BiocFileCache, data.table, DESeq2, distinct, edgeR, WGCNA,
flashClust, htmlwidgets, genefilter, ggplot2, ggdendro,
grImport, grid, gridExtra, gplots, igraph, HDF5Array, limma,
methods, magick, rsvg, shiny, dynamicTreeCut, grDevices,
graphics, ggplotify, parallel, plotly, rols, rappdirs,
reshape2, stats, SummarizedExperiment, shinydashboard,
S4Vectors, utils, visNetwork, UpSetR, xml2, yaml

BugReports https://github.com/jianhaizhang/spatialHeatmap/issues

URL https://github.com/jianhaizhang/spatialHeatmap

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/spatialHeatmap

git_branch RELEASE_3_14

1

https://github.com/jianhaizhang/spatialHeatmap/issues
https://github.com/jianhaizhang/spatialHeatmap

2 R topics documented:

git_last_commit 4bdc542

git_last_commit_date 2021-10-26

Date/Publication 2022-04-12

Author Jianhai Zhang [aut, trl, cre],
Jordan Hayes [aut],
Le Zhang [aut],
Bing Yang [aut],
Wolf Frommer [aut],
Julia Bailey-Serres [aut],
Thomas Girke [aut]

Maintainer Jianhai Zhang <jianhai.zhang@email.ucr.edu>

R topics documented:

spatialHeatmap-package . 3
adj_mod . 11
aggr_rep . 16
aSVG.remote.repo . 19
com_factor . 19
custom_shiny . 20
deg.table . 23
deg_ovl . 24
edit_tar . 26
filter_data . 27
lis.deg.up.down . 30
matrix_hm . 31
network . 35
norm_data . 39
profile_gene . 43
read_cache . 44
read_fr . 45
read_hdf5 . 46
return_feature . 47
save_cache . 49
shiny_shm . 50
spatial_enrich . 52
spatial_hm . 56
submatrix . 66
sub_data . 70
update_feature . 72
write_hdf5 . 74

Index 81

spatialHeatmap-package 3

spatialHeatmap-package

spatialHeatmap Spatial Heatmap, Matrix Heatmap, Network

Description

The spatialHeatmap package provides functionalities for visualizing cell-, tissue- and organ-specific
data of biological assays by coloring the corresponding spatial features defined in anatomical images
according to a numeric color key.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

The spatialHeatmap package provides functionalities for visualizing cell-, tissue- and organ-specific
data of biological assays by coloring the corresponding spatial features defined in anatomical im-
ages according to a numeric color key. The color scheme used to represent the assay values can
be customized by the user. This core functionality is called a spatial heatmap plot. It is enhanced
with nearest neighbor visualization tools for groups of measured items (e.g. gene modules) shar-
ing related abundance profiles, including matrix heatmaps combined with hierarchical clustering
dendrograms and network representations. The functionalities of spatialHeatmap can be used ei-
ther in a command-driven mode from within R or a graphical user interface (GUI) provided by a
Shiny App that is also part of this package. While the R-based mode provides flexibility to cus-
tomize and automate analysis routines, the Shiny App includes a variety of convenience features
that will appeal to many biologists. Moreover, the Shiny App has been designed to work on both
local computers as well as server-based deployments (e.g. cloud-based or custom servers) that can
be accessed remotely as a centralized web service for using spatialHeatmap’s functionalities with
community and/or private data.

As anatomical images the package supports both tissue maps from public repositories and custom
images provided by the user. In general any type of image can be used as long as it can be provided
in SVG (Scalable Vector Graphics) format, where the corresponding spatial features have been de-
fined (see aSVG below). The numeric values plotted onto a spatial heatmap are usually quantitative
measurements from a wide range of profiling technologies, such as microarrays, next generation
sequencing (e.g. RNA-Seq and scRNA-Seq), proteomics, metabolomics, or many other small- or
large-scale experiments. For convenience, several preprocessing and normalization methods for the
most common use cases are included that support raw and/or preprocessed data. Currently, the main
application domains of the spatialHeatmap package are numeric data sets and spatially mapped im-
ages from biological and biomedical areas. Moreover, the package has been designed to also work
with many other spatial data types, such a population data plotted onto geographic maps. This high
level of flexibility is one of the unique features of spatialHeatmap. Related software tools for biolog-
ical applications in this field are largely based on pure web applications (Winter et al. 2007; Waese
et al. 2017) or local tools (Maag 2018; Muschelli, Sweeney, and Crainiceanu 2014) that typically
lack customization functionalities. These restrictions limit users to utilizing pre-existing expression
data and/or fixed sets of anatomical image collections. To close this gap for biological use cases, we

4 spatialHeatmap-package

have developed spatialHeatmap as a generic R/Bioconductor package for plotting quantitative val-
ues onto any type of spatially mapped images in a programmable environment and/or in an intuitive
to use GUI application.

Author(s)

NA Author: NA Jianhai Zhang (PhD candidate at Genetics, Genomics and Bioinformatics, Uni-
versity of California, Riverside), Dr. Thomas Girke (Professor at Department of Botany and Plant
Sciences, University of California, Riverside) Maintainer: NA Jianhai Zhang <jzhan067@ucr.edu;
zhang.jianhai@hotmail.com>.

References

https://www.w3schools.com/graphics/svg_intro.asp

https://shiny.rstudio.com/tutorial/

https://shiny.rstudio.com/articles/datatables.html

https://rstudio.github.io/DT/010-style.html

https://plot.ly/r/heatmaps/

https://www.gimp.org/tutorials/

https://inkscape.org/en/doc/tutorials/advanced/tutorial-advanced.en.html

http://www.microugly.com/inkscape-quickguide/

https://cran.r-project.org/web/packages/visNetwork/vignettes/Introduction-to-visNetwork.html

https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg

Winter, Debbie, Ben Vinegar, Hardeep Nahal, Ron Ammar, Greg V Wilson, and Nicholas J Provart.
2007. "An ’Electronic Fluorescent Pictograph’ Browser for Exploring and Analyzing Large-Scale
Biological Data Sets." PLoS One 2 (8): e718

Waese, Jamie, Jim Fan, Asher Pasha, Hans Yu, Geoffrey Fucile, Ruian Shi, Matthew Cumming, et
al. 2017. "EPlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in
Plant Biology." Plant Cell 29 (8): 1806–21

Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angelica Liechti, et al. 2019. "Gene Expression Across Mammalian Organ Development."
Nature 571 (7766): 505–9

Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas

Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8

McCarthy, Davis J., Chen, Yunshun, Smyth, and Gordon K. 2012. "Differential Expression Anal-
ysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation." Nucleic Acids
Research 40 (10): 4288–97

Maag, Jesper L V. 2018. "Gganatogram: An R Package for Modular Visualisation of Anatograms
and Tissues Based on Ggplot2." F1000Res. 7 (September): 1576

Muschelli, John, Elizabeth Sweeney, and Ciprian Crainiceanu. 2014. "BrainR: Interactive 3 and 4D
Images of High Resolution Neuroimage Data." R J. 6 (1): 41–48

spatialHeatmap-package 5

Morgan, Martin, Valerie Obenchain, Jim Hester, and Hervé Pagès. 2018. SummarizedExperiment:
SummarizedExperiment Container

Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2017). shiny: Web Ap-
plication Framework for R. R package version 1.0.3. https://CRAN.R-project.org/package=shiny

Winston Chang and Barbara Borges Ribeiro (2017). shinydashboard: Create Dashboards with
’Shiny’. R package version 0.6.1. https://CRAN.R-project.org/package=shinydashboard

Paul Murrell (2009). Importing Vector Graphics: The grImport Package for R. Journal of Statistical
Software, 30(4), 1-37. URL http://www.jstatsoft.org/v30/i04/.

Jeroen Ooms (2017). rsvg: Render SVG Images into PDF, PNG, PostScript, or Bitmap Arrays. R
package version 1.1. https://CRAN.R-project.org/package=rsvg

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

Yihui Xie (2016). DT: A Wrapper of the JavaScript Library ’DataTables’. R package version 0.2.
https://CRAN.R-project.org/package=DT

Baptiste Auguie (2016). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package ver-
sion 2.2.1. https://CRAN.R-project.org/package=gridExtra

Andrie de Vries and Brian D. Ripley (2016). ggdendro: Create Dendrograms and Tree Diagrams
Using ’ggplot2’. R package version 0.1-20. https://CRAN.R-project.org/package=ggdendro

Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559 doi:10.1186/1471-2105-9-559

Peter Langfelder, Steve Horvath (2012). Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. URL http://www.jstatsoft.org/v46/i11/.

Simon Urbanek and Jeffrey Horner (2015). Cairo: R graphics device using cairo graphics library
for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display
(X11 and Win32) output. R package version 1.5-9. https://CRAN.R-project.org/package=Cairo

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Duncan Temple Lang and the CRAN Team (2017). XML: Tools for Parsing and Generating XML
Within R and S-Plus. R package version 3.98-1.9. https://CRAN.R-project.org/package=XML

Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec
and Pedro Despouy (NA). plotly: Create Interactive Web Graphics via ’plotly.js’. https://plot.ly/r,
https://cpsievert.github.io/plotly_book/, https://github.com/ropensci/plotly.

Matt Dowle and Arun Srinivasan (2017). data.table: Extension of ‘data.frame‘. R package version
1.10.4. https://CRAN.R-project.org/package=data.table

R. Gentleman, V. Carey, W. Huber and F. Hahne (2017). genefilter: genefilter: methods for filtering
genes from high-throughput experiments. R package version 1.58.1.

Peter Langfelder, Steve Horvath (2012). Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. URL http://www.jstatsoft.org/v46/i11/.

Almende B.V., Benoit Thieurmel and Titouan Robert (2017). visNetwork: Network Visualization
using ’vis.js’ Library. R package version 2.0.1. https://CRAN.R-project.org/package=visNetwork

Lori Shepherd and Martin Morgan (2020). BiocFileCache: Manage Files Across Sessions. R
package version 1.12.1.

6 spatialHeatmap-package

See Also

norm_data, aggr_rep, filter_data, spatial_hm, submatrix, adj_mod, matrix_hm, network,
return_feature, update_feature, shiny_shm, custom_shiny

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as a
"data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.

Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann); df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be made
based on the experiment design, which is accessible through the accession number "E-MTAB-6769"
in the R package ExpressionAtlas. An example targets file is included in this package and
accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".

library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

As conventions, raw sequencing count data should be normalized, aggregated, and filtered to
reduce noise.

Normalize count data.

spatialHeatmap-package 7

The normalizing function "calcNormFactors" (McCarthy et al. 2012) with default settings is used.
df.nor.chk <- norm_data(data=df.chk, norm.fun='CNF', log2.trans=TRUE)
se.nor.chk <- norm_data(data=se.chk, norm.fun='CNF', log2.trans=TRUE)
Aggregate count data.
Aggregate "sample__condition" replicates in toy data1.
df.aggr.chk <- aggr_rep(data=df.nor.chk, aggr='mean')
df.aggr.chk[1:3,]
Aggregate "sample_condition" replicates in toy data2, where "sample" is "organism_part" and
"condition" is "age".
se.aggr.chk <- aggr_rep(data=se.nor.chk, sam.factor='organism_part', con.factor='age', aggr='mean')
assay(se.aggr.chk)[1:3, 1:3]
Filter out genes with low counts and low variance. Genes with counts over 5 (log2 unit) in at
least 1% samples (pOA), and coefficient of variance (CV) between 0.2 and 100 are retained.
Filter toy data1.
df.fil.chk <- filter_data(data=df.aggr.chk, pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)
Filter toy data2.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='organism_part', con.factor='age',
pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)

Spatial heatmaps.

To make spatial heatmaps, a pair of formatted data and pre-annotated SVG (aSVG) file are
required. If the data is a "data frame", the formatting is to use the naming scheme
"sample__condition" in column names. If "SummarizedExperiment", the "sample" and "condition"
replicates should be defined in the "colData" slot. In the aSVG, each spatial feature has a
unique identifier. The numeric values are mapped to spatial features and translated into
colors according to their identifiers programatically. The mapped images are called spatial
heatmaps.

The following shows how to download the corresponding pre-annotated aSVG file from the EBI
SVG repository based on above tissues and species involved, i.e. c('heart', 'brain') and
c('gallus') respectively. See the function "return_feature" for details. An empty directory
is recommended so as to avoid overwriting existing SVG files. Here "tmp.dir" is used.

To meet the package building requirements, the code of querying aSVG remotely is not evaluated.
The matching aSVG "gallus_gallus.svg" is included in this package and accessed.

Make an empty directory "tmp.dir" if not exist.
tmp.dir <- paste0(normalizePath(tempdir(check=TRUE), winslash="/", mustWork=FALSE), '/shm')
Remote aSVG repos.
data(aSVG.remote.repo)
tmp.dir <- normalizePath(tempdir(check=TRUE), winslash="/", mustWork=FALSE)
tmp.dir.ebi <- paste0(tmp, '/ebi.zip')
tmp.dir.shm <- paste0(tmp, '/shm.zip')
Download the remote aSVG repos as zip files. According to Bioconductor's
requirements, downloadings are not allowed inside functions, so the repos are
downloaded before calling "return_feature".
download.file(aSVG.remote.repo$ebi, tmp.dir.ebi)
download.file(aSVG.remote.repo$shm, tmp.dir.shm)
remote <- list(tmp.dir.ebi, tmp.dir.shm)

Query aSVGs from remote repos.

8 spatialHeatmap-package

feature.df <- return_feature(feature=c('heart', 'brain'), species=c('gallus'), dir=tmp.dir,
match.only=FALSE, remote=remote)
feature.df
The path of matching aSVG.
svg.chk <- paste0(tmp.dir, '/gallus_gallus.svg')

Get the matching aSVG path from the package.
svg.chk <- system.file("extdata/shinyApp/example", "gallus_gallus.svg",
package="spatialHeatmap")

Plot spatial heatmaps on gene "ENSGALG00000019846". In the middle are spatial heatmaps. Only
aSVG features with matching countparts in data are colored. On the right is the legend plot,
only the matching features are labeled.
Toy data1.
spatial_hm(svg.path=svg.chk, data=df.fil.chk, ID='ENSGALG00000019846', height=0.4,
legend.r=1.9, sub.title.size=7, ncol=3)
Save spaital heatmaps as HTML and video files by assigning "tmp.dir" to "out.dir".

tmp.dir <- paste0(normalizePath(tempdir(check=TRUE), winslash="/", mustWork=FALSE), '/shm')
spatial_hm(svg.path=svg.chk, data=df.fil.chk, ID='ENSGALG00000019846', height=0.4, legend.r=1.9,
sub.title.size=7, ncol=3, out.dir=tmp.dir)

Toy data2.
spatial_hm(svg.path=svg.chk, data=se.fil.chk, ID='ENSGALG00000019846', legend.r=1.9,
legend.nrow=2, sub.title.size=7, ncol=3)

When plot spatial heatmaps, the data can also come as as a simple vector. The following
gives an example on a vector of 3 random values.
Random values.
vec <- sample(1:100, 3)
Name the vector slots. The last name is assumed as a random sample without a matching
feature in aSVG.
names(vec) <- c('brain', 'heart', 'notMapped')
vec
Plot.
spatial_hm(svg.path=svg.chk, data=vec, ID='geneX', height=0.6, legend.r=1.5, ncol=1)

Plot spatial heatmaps on aSVGs of two Arabidopsis thaliana development stages.

Make up a random numeric data frame.
df.test <- data.frame(matrix(sample(x=1:100, size=50, replace=TRUE), nrow=10))
colnames(df.test) <- c('shoot_totalA__condition1', 'shoot_totalA__condition2',
'shoot_totalB__condition1', 'shoot_totalB__condition2', 'notMapped')
rownames(df.test) <- paste0('gene', 1:10) # Assign row names
df.test[1:3,]

aSVG of development stage 1.
svg1 <- system.file("extdata/shinyApp/example", "arabidopsis.thaliana_organ_shm1.svg",
package="spatialHeatmap")
aSVG of development stage 2.
svg2 <- system.file("extdata/shinyApp/example", "arabidopsis.thaliana_organ_shm2.svg",
package="spatialHeatmap")

spatialHeatmap-package 9

Spatial heatmaps.
spatial_hm(svg.path=c(svg1, svg2), data=df.test, ID=c('gene1'), height=0.8, legend.r=1.6,
preserve.scale=TRUE)

If users want to use custom identifiers for spatial features in the aSVG file, the function
"update_feature" should be used. For illustration purpose, the aSVG "gallus_gallus.svg" in
this package is copied to 'tmp.dir' as example.

Make an empty directory "tmp.dir" if not exist.
tmp.dir <- paste0(normalizePath(tempdir(check=TRUE), winslash="/", mustWork=FALSE), '/shm')
Make a copy of "gallus_gallus.svg".
file.copy(from=svg.chk, to=tmp.dir, overwrite=FALSE)
Remote aSVG repos.
data(aSVG.remote.repo)
tmp.dir <- normalizePath(tempdir(check=TRUE), winslash="/", mustWork=FALSE)
tmp.dir.ebi <- paste0(tmp, '/ebi.zip')
tmp.dir.shm <- paste0(tmp, '/shm.zip')
Download the remote aSVG repos as zip files. According to Bioconductor's
requirements, downloadings are not allowed inside functions, so the repos are
downloaded before calling "return_feature".
download.file(aSVG.remote.repo$ebi, tmp.dir.ebi)
download.file(aSVG.remote.repo$shm, tmp.dir.shm)
remote <- list(tmp.dir.ebi, tmp.dir.shm)

Query "gallus_gallus.svg" in remote repos.
feature.df <- return_feature(feature=c('heart', 'brain'), species=c('gallus'), dir=tmp.dir,
match.only=TRUE, remote=remote)
feature.df

New features.
ft.new <- c('BRAIN', 'HEART')
Add new features to the first column.
feature.df.new <- cbind(featureNew=ft.new, feature.df)
feature.df.new
Update features.
update_feature(df.new=feature.df.new, dir=tmp.dir)

Matrix heatmap

The matrix heatmap and following network are supplements to the core feature of spatial
heatmap. First, nearest neighbors are selected for each target gene according to correlation
(default) or distance measure independently. There are three alternative parameters used for
the selection: "p" is the proportion of top nearest neighbors, "n" is the number of top
nearest neighbors, and "v" is a specific cutoff value for correlation or distance. Then
target genes and their nearest neighbors are hierarchically clustered and visualized in
static or interactive matrix heatmap, where target genes are labeled by black lines. If the
data is "SummarizedExperiment", the argument "ann" is the column name of gene annotation in
"rowData" slot. It is only relevant if users want to see annotation when mousing over a node
in the interactive network below, so it is optional. Here "ann='ann'" is set and the
corresponding annotation is appended to selected nearest neighbors.

10 spatialHeatmap-package

Select nearest neighbors for target genes 'ENSGALG00000019846' and 'ENSGALG00000000112'.
df.sub.mat <- submatrix(data=df.fil.chk, ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), p=0.1)
se.sub.mat <- submatrix(data=se.fil.chk, ann='ann', ID=c('ENSGALG00000019846',
'ENSGALG00000000112'), p=0.1)

In the following, "df.sub.mat" and "se.sub.mat" is used in the same way, so only
"se.sub.mat" illustrated.

The subsetted matrix is partially shown below.
se.sub.mat[c('ENSGALG00000019846', 'ENSGALG00000000112'), c(1:2, 63)]

Static matrix heatmap.
matrix_hm(ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), data=se.sub.mat, angleCol=80,
angleRow=35, cexRow=0.8, cexCol=0.8, margin=c(8, 10), static=TRUE,
arg.lis1=list(offsetRow=0.01, offsetCol=0.01))

Interactive matrix heatmap.
matrix_hm(ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), data=se.sub.mat,

angleCol=80, angleRow=35, cexRow=0.8, cexCol=0.8, margin=c(8, 10), static=FALSE,
arg.lis1=list(offsetRow=0.01, offsetCol=0.01))

Network

Network analysis with WGCNA (Langfelder and Horvath 2008) is applied on the subsetted matix
visualized in the matrix heatmap. The gene module containing a specifc target gene is
visualized in static and interactive network graphs. Briefly, a correlation matrix or
distance matrix is computed on all genes in matrix heatmap, and transformed to an adjacency
matrix and topological overlap matrix (TOM) sequentially, which are advanced measures to
quantify coexpression similarity. Then network modules are identified by hierarchinally
clustering the TOM-transformed dissimilarity matrix 1-TOM, which are clusters of genes with
highly similar coexpression profiles. The module containing a target gene is finally
displayed as network graphs. Refer to function "adj_mod" for details.

Adjacency matrix and module identification

The modules are identified by "adj_mod". It returns a list containing an adjacency matrix and
a data frame of module assignment.
adj.mod <- adj_mod(data=se.sub.mat)

The adjacency matrix is a measure of co-expression similarity between genes, where larger
value denotes more similarity.
adj.mod[['adj']][1:3, 1:3]

The modules are identified at two alternative sensitivity levels (ds=2 or 3). From 2 to 3,
more modules are identified but module sizes are smaller. The two sets of module assignment
are returned in a data frame. The first column is ds=2 while the second is ds=3. The numbers
in each column are module labels, where "0" indicates genes not assigned to any module.
adj.mod[['mod']][1:3,]

Static network. In the graph, nodes are genes and edges are adjacencies between genes. The
thicker edge denotes higher adjacency (co-expression similarity) while larger node indicates
higher gene connectivity (sum of a gene's adjacency with all its direct neighbors). The target

adj_mod 11

gene is labeled by "_target". The node connectivity increases from "turquoise" to "violet",
and the adjacency increases from "yellow" to "blue".
network(ID="ENSGALG00000019846", data=se.sub.mat, adj.mod=adj.mod, adj.min=0.7,
vertex.label.cex=1.5, vertex.cex=4, static=TRUE)

Interactive network. Same with static mode, the target gene ID is appended "_target".
network(ID="ENSGALG00000019846", data=se.sub.mat, adj.mod=adj.mod, static=FALSE)

Shiny App

In additon to generating spatial heatmaps and corresponding gene context plots from R,
spatialHeatmap includes a Shiny App (https://shiny.rstudio.com/) that provides access to the
same functionalities from an intuitive-to-use web browser interface. Apart from being very
user-friendly, this App conveniently organizes the results of the entire visualization
workflow in a single browser window with options to adjust the parameters of the individual
components interactively. This app is launched by the function "shiny_shm" without any
parameters. Upon launched, the app automatically displays a pre-formatted example.
shiny_shm()

The gene expression data and aSVG image files are uploaded to the Shiny App as tabular
text (e.g. in CSV or TSV format) and SVG file, respectively. To also allow users to upload
gene expression data stored in "SummarizedExperiment" objects, one can export them from R
to a tabular file with the "filter_data" function. In this function call, the user sets a
desired directory path under "dir" (see below). Within this directory the tabular file will
be written to "customData.txt" in TSV format. The column names in the exported tabular file
preserve the experimental design information from the "colData" slot by concatenating the
corresponding sample and condition information separated by double underscores. An example
of this format is shown in below.

To interactively view functional descriptions by moving the cursor over network nodes, the
corresponding annotation column needs to be present in the "rowData" slot and its column
name assigned to the "ann" argument. In the exported tabular file the extra annotation
column is appended to the expression matrix.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='organism_part',

con.factor='age', pOA=c(0.01, 5), CV=c(0.2, 100), dir='./'); assay(se.fil.chk)[1:3, 1:3]

The Shiny app can be customized by including user-provided default examples and default
parameters. See the fucntion "custom_shiny" for details.

adj_mod Compute Adjacency Matrix and Identify Modules

Description

The objective is to explore target items (gene, protein, metabolite, etc) in context of their neighbors
sharing highly similar abundance profiles in a more advanced approach than matrix_hm. This
advanced approach is the WGCNA algorithm (Langfelder and Horvath 2008; Ravasz et al. 2002).
It takes the assay matrix subsetted by submatrix as input and splits the items into network modules,
i.e. groups of items showing most similar coexpression profiles.

12 adj_mod

Usage

adj_mod(
data,
type = "signed",
power = if (type == "distance") 1 else 6,
arg.adj = list(),
TOMType = "unsigned",
arg.tom = list(),
method = "complete",
minSize = 15,
arg.cut = list(),
dir = NULL

)

Arguments

data The subsetted data matrix returned by the function submatrix, where rows are
assayed items and columns are samples/conditions.

type The network type, one of "unsigned", "signed", "signed hybrid", "distance".
Correlation and distance are transformed as follows: for type="unsigned",
adjacency=|cor|^power; for type="signed", adjacency=(0.5 * (1+cor))^power;
for type="signed hybrid", if cor>0 adjacency=cor^power, otherwise adja-
cency=0; and for type="distance", adjacency=(1-(dist/max(dist))^2)^power.
Refer to WGCNA (Langfelder and Horvath 2008) for more details.

power A numeric of soft thresholding power for generating the adjacency matrix. The
default is 1 for type=='distance' and 6 for other network types.

arg.adj A list of additional arguments passed to adjacency, e.g. list(corFnc='cor').
The default is an empty list list().

TOMType one of "none", "unsigned", "signed", "signed Nowick", "unsigned 2", "signed
2" and "signed Nowick 2". If "none", adjacency will be used for clustering.
See TOMsimilarityFromExpr for details.

arg.tom A list of additional arguments passed to TOMsimilarity, e.g. list(verbose=1).
The default is an empty list list().

method the agglomeration method to be used. This should be (an unambiguous abbre-
viation of) one of "ward", "single", "complete", "average", "mcquitty",
"median" or "centroid".

minSize The expected minimum module size. The default is 15. Refer to WGCNA for
more details.

arg.cut A list of additional arguments passed to cutreeHybrid, e.g. list(verbose=2).
The default is an empty list list().

dir The directory to save the results. In this directory, a folder "customComputed-
Data" is created automatically, where the adjacency matrix and module assign-
ments are saved as TSV-format files "adj.txt" and "mod.txt" respectively. This
argument should be the same with the dir in submatrix so that the "sub_matrix.txt"
generated in submatrix is saved in the same folder. This argument is designed

adj_mod 13

since the computation is intensive for large data matrix (e.g. > 10,000 genes).
Therefore, to avoid system crash when using the Shiny app (see shiny_shm),
"adj.txt" and "mod.txt" can be computed in advance and then uploaded to the
app. In addition, the saved files can be used repetitively and therefore avoid
repetitive computation. The default is NULL and no file is saved. This argu-
ment is used only when the "customComputedData" is chosen in the Shiny app.
The large matrix issue could be resolved by increasing the subsetting strigency
to get smaller matrix in submatrix in most cases. Only in rare cases users can-
not avoid very large subsetted matrix, this argument is recommended.

Value

A list containing the adjacency matrix and module assignment, which should be provided to network.
The module assignment is a data frame. The first column is ds=2 while the second is ds=3 (see the
"Details" section). The numbers in each column are module labels, where "0" means items not
assigned to any modules. If dir is specified, both adjacency matrix and module assignment are
automatically saved in the folder "customComputedData" as "adj.txt" and "mod.txt" respectively,
which can be uploaded under "customComputedData" in the Shiny app (see shiny_shm).

Details

To identify modules, first a correlation matrix is computed using distance or correlation-based sim-
ilarity metrics. Second, the obtained matrix is transformed into an adjacency matrix defining the
connections among items. Third, the adjacency matrix is used to calculate a topological over-
lap matrix (TOM) where shared neighborhood information among items is used to preserve ro-
bust connections, while removing spurious connections. Fourth, the distance transformed TOM is
used for hierarchical clustering. To maximize time performance, the hierarchical clustering is per-
formed with the flashClust package (Langfelder and Horvath 2012). Fifth, network modules are
identified with the dynamicTreeCut package (Langfelder, Zhang, and Steve Horvath 2016). Its ds
(deepSplit) argument can be assigned integer values from 0 to 3, where higher values increase the
stringency of the module identification process. Since this is a coexpression analysis, variables of
sample/condition should be at least 5. Otherwise, identified modules are not reliable. These proce-
dures are wrapped in adj_mod for convenience. The result is a list containing the adjacency matrix
and the final module assignments stored in a data.frame. Since the interactive network feature (see
network) used in the downstream visualization performs best on smaller modules, only modules
obtained with stringent ds settings (here ds=2 and ds=3) are returned.

Author(s)

Jianhai Zhang <zhang.jianhai@hotmail.com; jzhan067@ucr.edu>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559 doi:10.1186/1471-2105-9-559
Peter Langfelder, Steve Horvath (2012). Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. URL http://www.jstatsoft.org/v46/i11/
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for

14 adj_mod

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Peter Langfelder, Bin Zhang and with contributions from Steve Horvath (2016). dynamicTreeCut:
Methods for Detection of Clusters in Hierarchical Clustering Dendrograms. R package version
1.63-1. https://CRAN.R-project.org/package=dynamicTreeCut
Martin Morgan, Valerie Obenchain, Jim Hester and Hervé Pagès (2018). SummarizedExperiment:
SummarizedExperiment container. R package version 1.10.1
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9
Ravasz, E, A L Somera, D A Mongru, Z N Oltvai, and A L Barabási. 2002. “Hierarchical Organi-
zation of Modularity in Metabolic Networks.” Science 297 (5586): 1551–5.

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as a
"data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.
Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be
made based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in this
package and accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')

adj_mod 15

Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

As conventions, raw sequencing count data should be normalized, aggregated, and filtered to
reduce noise.

Normalize count data.
The normalizing function "calcNormFactors" (McCarthy et al. 2012) with default settings
is used.
df.nor.chk <- norm_data(data=df.chk, norm.fun='CNF', log2.trans=TRUE)
se.nor.chk <- norm_data(data=se.chk, norm.fun='CNF', log2.trans=TRUE)
Aggregate count data.
Aggregate "sample__condition" replicates in toy data1.
df.aggr.chk <- aggr_rep(data=df.nor.chk, aggr='mean')
df.aggr.chk[1:3,]
Aggregate "sample_condition" replicates in toy data2, where "sample" is "organism_part" and
"condition" is "age".
se.aggr.chk <- aggr_rep(data=se.nor.chk, sam.factor='organism_part', con.factor='age',
aggr='mean')
assay(se.aggr.chk)[1:3, 1:3]
Filter out genes with low counts and low variance. Genes with counts over 5 (log2 unit) in
at least 1% samples (pOA), and coefficient of variance (CV) between 0.2 and 100 are retained.
Filter toy data1.
df.fil.chk <- filter_data(data=df.aggr.chk, pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)
Filter toy data2.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='organism_part', con.factor='age',
pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)

Select nearest neighbors for target genes 'ENSGALG00000019846' and 'ENSGALG00000000112',
which are usually genes visualized in spatial heatmaps.
Toy data1.
df.sub.mat <- submatrix(data=df.fil.chk, ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), p=0.1)
Toy data2.
se.sub.mat <- submatrix(data=se.fil.chk, ann='ann', ID=c('ENSGALG00000019846',
'ENSGALG00000000112'), p=0.1)

In the following, "df.sub.mat" and "se.sub.mat" is used in the same way, so only
"se.sub.mat" illustrated.

The subsetted matrix is partially shown below.
se.sub.mat[c('ENSGALG00000019846', 'ENSGALG00000000112'), c(1:2, 63)]
Adjacency matrix and module identification
The modules are identified by "adj_mod". It returns a list containing an adjacency matrix and
a data frame of module assignment.
adj.mod <- adj_mod(data=se.sub.mat)
The adjacency matrix is a measure of co-expression similarity between genes, where larger
value denotes higher similarity.
adj.mod[['adj']][1:3, 1:3]

16 aggr_rep

The modules are identified at two alternative sensitivity levels (ds=2 or 3). From 2 to 3,
more modules are identified but module sizes are smaller. The two sets of module assignment
are returned in a data frame. The first column is ds=2 while the second is ds=3. The numbers
in each column are module labels, where "0" means genes not assigned to any module.
adj.mod[['mod']][1:3,]

aggr_rep Aggregate "Sample__Condition" Replicates in Data Matrix

Description

This function aggregates "sample__condition" (see data argument) replicates by mean or median.
The input data is either a data.frame or SummarizedExperiment.

Usage

aggr_rep(data, sam.factor, con.factor, aggr = "mean")

Arguments

data An object of data.frame or SummarizedExperiment. In either case, the columns
and rows should be sample/conditions and assayed items (e.g. genes, proteins,
metabolites) respectively. If data.frame, the column names should follow the
naming scheme "sample__condition". The "sample" is a general term and stands
for cells, tissues, organs, etc., where the values are measured. The "condition"
is also a general term and refers to experiment treatments applied to "sample"
such as drug dosage, temperature, time points, etc. If certain samples are not
expected to be colored in "spatial heatmaps" (see spatial_hm), they are not re-
quired to follow this naming scheme. In the downstream interactive network
(see network), if users want to see node annotation by mousing over a node, a
column of row item annotation could be optionally appended to the last column.
In the case of SummarizedExperiment, the assays slot stores the data matrix.
Similarly, the rowData slot could optionally store a data frame of row item an-
ntation, which is only relevant to the interactive network. The colData slot usu-
ally contains a data frame with one column of sample replicates and one column
of condition replicates. It is crucial that replicate names of the same sample or
condition must be identical. E.g. If sampleA has 3 replicates, "sampleA", "sam-
pleA", "sampleA" is expected while "sampleA1", "sampleA2", "sampleA3" is
regarded as 3 different samples. If original column names in the assay slot
already follow the "sample__condition" scheme, then the colData slot is not
required at all.
In the function spatial_hm, this argument can also be a numeric vector. In this
vector, every value should be named, and values expected to color the "spatial
heatmaps" should follow the naming scheme "sample__condition".
In certain cases, there is no condition associated with data. Then in the nam-
ing scheme of data frame or vector, the "__condition" part could be dis-
carded. In SummarizedExperiment, the "condition" column could be discarded
in colData slot.

aggr_rep 17

Note, regardless of data class the double underscore is a special string that is
reserved for specific purposes in "spatialHeatmap", and thus should be avoided
for naming feature/samples and conditions.
In the case of spatial-temporal data, there are three factors: samples, conditions,
and time points. The naming scheme is slightly different and includes three op-
tions: 1) combine samples and conditions to make the composite factor "sample-
Condition", then concatenate the new factor and times with double underscore
in between, i.e. "sampleCondition__time"; 2) combine samples and times to
make the composite factor "sampleTime", then concatenate the new factor and
conditions with double underscore in between, i.e. "sampleTime__condition";
or 3) combine all three factors to make the composite factor "sampleTimeCon-
dition" without double underscore. See the vignette for more details by running
browseVignettes('spatialHeatmap') in R.

sam.factor The column name corresponding to samples in the colData of SummarizedExperiment.
If the original column names in the assay slot already follows the scheme "sam-
ple__condition", then the colData slot is not required and accordingly this ar-
gument could be NULL.

con.factor The column name corresponding to conditions in the colData of SummarizedExperiment.
Could be NULL if column names of in the assay slot already follows the
scheme "sample__condition", or no condition is associated with the data.

aggr Aggregate "sample__condition" replicates by "mean" or "median". The de-
fault is "mean". If the data argument is a SummarizedExperiment, the "sam-
ple__condition" replicates are internally formed by connecting samples and con-
ditions with "__" in colData slot, and are subsequently replace the original col-
umn names in assay slot. If no condition specified to con.factor, the data are
aggregated by sample replicates. If "none", no aggregation is applied.

Value

The returned value is the same class with the input data, a data.frame or SummarizedExperiment.
In either case, the column names of the data matrix follows the "sample__condition" scheme.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

SummarizedExperiment: SummarizedExperiment container. R package version 1.10.1
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
McCarthy, Davis J., Chen, Yunshun, Smyth, and Gordon K. 2012. "Differential Expression Anal-
ysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation." Nucleic Acids

18 aggr_rep

Research 40 (10): 4288–97
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on developments of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as a
"data frame" input to exemplify data with simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.

Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be made
based on the experiment design, which is accessible through the accession number "E-MTAB-6769"
in the R package ExpressionAtlas. An example targets file is included in this package and
accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

Aggregate "sample_condition" replicates in toy data1.
df.aggr.chk <- aggr_rep(data=df.chk, aggr='mean')
df.aggr.chk[1:3,]

aSVG.remote.repo 19

Aggregate "sample_condition" replicates in toy data2, where "sample" is "organism_part" and
"condition" is "age".
se.aggr.chk <- aggr_rep(data=se.chk, sam.factor='organism_part', con.factor='age', aggr='mean')
assay(se.aggr.chk)[1:3, 1:3]

aSVG.remote.repo A list of URLs of remote aSVG repos

Description

A list of URLs of remote aSVG repos, i.e. EBI anatomogram and spatialHeatmap_aSVG_Repository.

Usage

data(aSVG.remote.repo)

Format

A list.

Source

EBI anatomogram spatialHeatmap_aSVG_Repository

References

https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg https://github.com/jianhaizhang/spatialHeatmap_aSVG_Repository

Examples

data(aSVG.remote.repo)
aSVG.remote.repo

com_factor Combine Factors in Targets File

Description

This is a helper function for data/aSVGs involving three or more factors such as sample, time,
condition. It combine factors in targets file to make composite factors.

Usage

com_factor(se, target, factors2com, sep = ".", factor.new)

https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg
https://github.com/jianhaizhang/spatialHeatmap_aSVG_Repository

20 custom_shiny

Arguments

se A SummarizedExperiment object.

target A data.frame object of targets file.

factors2com A character vector of column names or a numeric vector of column indeces in
the targets file. Entries in these columns are combined.

sep The separator in the combined factors. One of _, and . (default).

factor.new The column name of the new combined factors.

Value

If se is provided, a SummarizedExperiment object is returned, where the colData slot contains
the new column of combined factors. Otherwise, adata.frame object is returned, where the new
column of combined factors is appended.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Narsai, Reena, David Secco, Matthew D Schultz, Joseph R Ecker, Ryan Lister, and James Whelan.
2017. "Dynamic and Rapid Changes in the Transcriptome and Epigenome During Germination and
in Developing Rice (Oryza Sativa) Coleoptiles Under Anoxia and Re-Oxygenation." Plant J. 89 (4):
805–24

Examples

clp.tar <- system.file('extdata/shinyApp/example/target_coleoptile.txt', package='spatialHeatmap')
target.clp <- read_fr(clp.tar)
target.clp <- com_factor(target=target.clp, factors2com=c('organism_part', 'age'), factor.new='samTime')

custom_shiny Create Customized Shiny App of Spaital Heatmap

Description

This function creates customized Shiny App with user-provided data, aSVG files, and default pa-
rameters. Default settings are defined in the "config.yaml" file in the "config" folder of the app, and
can be edited directly in a yaml file editor.

custom_shiny 21

Usage

custom_shiny(
...,
lis.par = NULL,
lis.par.tmp = FALSE,
lis.dld.single = NULL,
lis.dld.mul = NULL,
lis.dld.st = NULL,
example = TRUE,
app.dir = "."

)

Arguments

... Separate lists of paired data matrix and aSVG files, which are included as default
datasets in the Shiny app. Each list must have three elements with name slots
of "name", "data", and "svg" respectively. For example, list(name=’dataset1’,
data=’./data1.txt’, svg=’./root_shm.svg’). The "name" element (e.g. ’dataset1’)
is listed under "Step 1: data sets" in the app, while "data" and "svg" are the
paths of data matrix and aSVG files. If multiple aSVGs (e.g. growth stages) are
included in one list, the respective paths are stored in a vector in the "svg" slot
(see example below). After calling this function, the data and aSVGs are copied
to the "example" folder in the app. See detailed examples below.

lis.par A list of default parameters of the Shiny app. See lis.par.tmp . Default is
NULL, which means default parameters are adopted.

lis.par.tmp Logical, TRUE or FALSE. Default is FALSE. If TRUE the template of default
paramter list is returned, and users can set customized default values then assign
this list to lis.par . Note, only the existing values in the list can be changed
while the hierarchy of the list should be preserved. Otherwise, it cannot be
recognized by the internal program.

lis.dld.single A list of paired data matrix and single aSVG file, which would be downloadable
on the app for testing. The list should have two elements with name slots of
"data" and "svg" respectively, which are the paths of the data matrix and aSVG
file repectively. After the function call, the specified data and aSVG are copied to
the "example" folder in the app. Note the two name slots should not be changed.
E.g. list(data='./data_download.txt',svg='./root_download_shm.svg').

lis.dld.mul A list of paired data matrix and multiple aSVG files, which would be download-
able on the app for testing. The multiple aSVG files could be multiple growth
stages of a plant. The list should have two elements with name slots of "data"
and "svg" respectively, which are the paths of the data matrix and aSVG files
repectively. The data and aSVG should only include the spatial dimension, no
temporal dimension. After the function call, the specified data and aSVGs are
copied to the "example" folder in the app. Note the two name slots should not be
changed. E.g. list(data=’./data_download.txt’, svg=c(’./root_young_download_shm.svg’,
’./root_old_download_shm.svg’)).

lis.dld.st A list of paired data matrix and single aSVG file, which would be downloadable
on the app for testing. The list should have two elements with name slots of

22 custom_shiny

"data" and "svg" respectively, which are the paths of the data matrix and aSVG
file repectively. Compared with lis.dld.single, the only difference is the data
and aSVG include spatial and temporal dimension. See the example section for
details. After the function call, the specified data and aSVG are copied to the
"example" folder in the app. Note the two name slots should not be changed.
E.g. list(data='./data_download.txt',svg='./root_download_shm.svg').

example Logical, TRUE or FALSE. If TRUE (default), the default examples in "spatial-
Heatmap" package are included in the app as well as those provided to ... by
users.

app.dir The directory to create the Shiny app. Default is current work directory ..

Value

If lis.par.tmp==TRUE, the template of default paramter list is returned. Otherwise, a customized
Shiny app is generated in the path of app.dir.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Jeremy Stephens, Kirill Simonov, Yihui Xie, Zhuoer Dong, Hadley Wickham, Jeffrey Horner,
reikoch, Will Beasley, Brendan O’Connor and Gregory R. Warnes (2020). yaml: Methods to Con-
vert R Data to YAML and Back. R package version 2.2.1. https://CRAN.R-project.org/package=yaml
Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2017). shiny: Web Ap-
plication Framework for R. R package version 1.0.3. https://CRAN.R-project.org/package=shiny

Examples

The examples build on pre-packaged examples in spatialHeatmap.

Get one data path and one aSVG path and assembly them into a list for creating default dataset.
data.path1 <- system.file('extdata/shinyApp/example/expr_arab.txt', package='spatialHeatmap')
svg.path1 <- system.file('extdata/shinyApp/example/arabidopsis.thaliana_shoot_shm.svg',
package='spatialHeatmap')
The list with name slots of "name", "data", and "svg".
lis.dat1 <- list(name='shoot', data=data.path1, svg=svg.path1)

Get the paths of spatiotemporal data and aSVG files and assembly them into a list for
creating default dataset.
data.path.st <- system.file('extdata/shinyApp/example/expr_coleoptile_samTimeCon.txt',
package='spatialHeatmap')
svg.path.st <- system.file('extdata/shinyApp/example/oryza.sativa_coleoptile.ANT_shm.svg',
package='spatialHeatmap')
The list with name slots of "name", "data", and "svg".
lis.dat.st <- list(name='spatiotemporal', data=data.path.st, svg=svg.path.st)

Get one data path and two aSVG paths and assembly them into a list for creating default

deg.table 23

dataset, which include two growth stages.
data.path2 <- system.file('extdata/shinyApp/example/random_data_multiple_aSVGs.txt',
package='spatialHeatmap')
svg.path2.1 <- system.file('extdata/shinyApp/example/arabidopsis.thaliana_organ_shm1.svg',
package='spatialHeatmap')
svg.path2.2 <- system.file('extdata/shinyApp/example/arabidopsis.thaliana_organ_shm2.svg',
package='spatialHeatmap')
The list with name slots of "name", "data", and "svg", where the two aSVG paths are stored
in a vector in "svg".
lis.dat2 <- list(name='growthStage', data=data.path2, svg=c(svg.path2.1, svg.path2.2))

Get one data path and one aSVG path and assembly them into a list for creating downloadable
dataset.
data.path.dld1 <- system.file('extdata/shinyApp/example/expr_arab.txt',
package='spatialHeatmap')
svg.path.dld1 <- system.file('extdata/shinyApp/example/arabidopsis.thaliana_organ_shm.svg',
package='spatialHeatmap')
The list with name slots of "data", and "svg".
lis.dld.single <- list(name='organ', data=data.path.dld1, svg=svg.path.dld1)
For demonstration purpose, the same data and aSVGs are used to make the list for creating
downloadable dataset of two growth stages.
lis.dld.mul <- list(data=data.path2, svg=c(svg.path2.1, svg.path2.2))

For demonstration purpose, the same spatiotemporal data and aSVG are used to create the
downloadable spatiotemporal dataset.
lis.dld.st <- list(data=data.path.st, svg=svg.path.st)

Retrieve the default parameters.
lis.par <- custom_shiny(lis.par.tmp=TRUE)
Change default values.
lis.par$shm.img['color',] <- 'yellow,orange,blue'
The default dataset to show upon the app is launched.
lis.par$default.dataset <- 'shoot'

if (!dir.exists('~/test_shiny')) dir.create('~/test_shiny')
Create custom Shiny app by feeding this function these datasets and parameters.
custom_shiny(lis.dat1, lis.dat2, lis.dat.st, lis.par=lis.par, lis.dld.single=lis.dld.single,
lis.dld.mul=lis.dld.mul, lis.dld.st=lis.dld.st, app.dir='~/test_shiny')
Lauch the app.
shiny::runApp('~/test_shiny/shinyApp')

The customized Shiny app is able to take database backend as well. Examples are
demonstrated in the function "write_hdf5".

deg.table A table of differentialy-expressed genes (DEGs) detected by different
methods

Description

A table of up- and down-DEGs detected by different methods such as edgeR, limma, DEseq2.

24 deg_ovl

Usage

data(deg.table)

Format

A table.

Source

ExpressionAtlas E-MTAB-6769

References

Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

data(deg.table)
deg.table[1:2,]

deg_ovl Plot Overlap of Spatially-Enriched Genes Across Methods

Description

In spatial_enrich, the spatially-enriched genes are detected within each method (edgeR, limma,
DESeq2, distinct). This function plot the overlap of these detected genes across methods in form of
upset plot (Nils, 2019) and overlap matrix.

Usage

deg_ovl(
lis.up.down,
type = "up",
plot = "upset",
order.by = "degree",
nintersects = 40,
point.size = 3,
line.size = 1,
mb.ratio = c(0.6, 0.4),
text.scale = 1.5

)

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6769/

deg_ovl 25

Arguments

lis.up.down The list of all up- and down-regulated genes organized by methods (edgeR,
limma, DESeq2, distinct), which comes from the returned value by spatial_enrich.

type One of up (default) or down, which refers to up- or down-regulated genes.
plot One of upset (default) or matrix, which corresponds to upset plot or overlap

matrix in the output plot.
order.by How the intersections in the matrix should be ordered by. Options include fre-

quency (entered as "freq"), degree, or both in any order.
nintersects Number of intersections to plot. If set to NA, all intersections will be plotted.
point.size Size of points in matrix plot
line.size Width of lines in matrix plot
mb.ratio Ratio between matrix plot and main bar plot (Keep in terms of hundredths)
text.scale Numeric, value to scale the text sizes, applies to all axis labels, tick labels, and

numbers above bar plot. Can be a universal scale, or a vector containing indi-
vidual scales in the following format: c(intersection size title, intersection size
tick labels, set size title, set size tick labels, set names, numbers above bars)

Value

An upset plot or matrix plot, which displays overlap of spatially-enriched genes across methods.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9 Nils Gehlenborg (2019). UpSetR: A More Scalable Alternative to Venn
and Euler Diagrams for Visualizing Intersecting Sets. R package version 1.4.0. https://CRAN.R-
project.org/package=UpSetR

See Also

spatial_enrich

Examples

data(lis.deg.up.down)
Overlap of up-regulated brain-specific genes across methods.
deg_ovl(lis.deg.up.down, type='up', plot='upset')
deg_ovl(lis.deg.up.down, type='up', plot='matrix')
Overlap of down-regulated brain-specific genes across methods.
deg_ovl(lis.deg.up.down, type='down', plot='upset')
deg_ovl(lis.deg.up.down, type='down', plot='matrix')
See detailed examples in the function spatial_enrich.

26 edit_tar

edit_tar Edit Targets Files

Description

Replace existing entries in a chosen column of a targets file with desired ones.

Usage

edit_tar(df.tar, column, old, new, sub.row)

Arguments

df.tar The data frame of a targets file.

column The column to edit, either the column name or an integer of the column index.

old A vector of existing entries to replace, where the length must be the same with
new.

new A vector of desired entries to replace that in old, where each entry corresponds
to a counterpart in old respectively.

sub.row A vector of integers corresponding to target rows for editing, or a vector of
TRUE and FALSE corresponding to each row. Default is all rows in the targets
file.

Value

A data frame.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Mustroph, Angelika, M Eugenia Zanetti, Charles J H Jang, Hans E Holtan, Peter P Repetti, David
W Galbraith, Thomas Girke, and Julia Bailey-Serres. 2009. “Profiling Translatomes of Discrete
Cell Populations Resolves Altered Cellular Priorities During Hypoxia in Arabidopsis.” Proc Natl
Acad Sci U S A 106 (44): 18843–8

Examples

sh.tar <- system.file('extdata/shinyApp/example/target_arab.txt', package='spatialHeatmap')
target.sh <- read_fr(sh.tar)
target.sh.new <- edit_tar(df.tar=target.sh, column='conditions', old=c('control', 'hypoxia'),
new=c('C', 'H'), sub.row=c(1:12))

filter_data 27

filter_data Filter the Data Matrix

Description

This function is designed to filter the numeric data in class of "data.frame" or "SummarizedExperi-
ment". The filtering builds on two functions pOverA and cv from the package genefilter (Gentleman
et al. 2018).

Usage

filter_data(
data,
pOA = c(0, 0),
CV = c(-Inf, Inf),
top.CV = 1,
ann = NULL,
sam.factor,
con.factor,
dir = NULL,
verbose = TRUE

)

Arguments

data An object of data.frame or SummarizedExperiment. In either case, the columns
and rows should be sample/conditions and assayed items (e.g. genes, proteins,
metabolites) respectively. If data.frame, the column names should follow the
naming scheme "sample__condition". The "sample" is a general term and stands
for cells, tissues, organs, etc., where the values are measured. The "condition"
is also a general term and refers to experiment treatments applied to "sample"
such as drug dosage, temperature, time points, etc. If certain samples are not
expected to be colored in "spatial heatmaps" (see spatial_hm), they are not re-
quired to follow this naming scheme. In the downstream interactive network
(see network), if users want to see node annotation by mousing over a node, a
column of row item annotation could be optionally appended to the last column.
In the case of SummarizedExperiment, the assays slot stores the data matrix.
Similarly, the rowData slot could optionally store a data frame of row item an-
ntation, which is only relevant to the interactive network. The colData slot usu-
ally contains a data frame with one column of sample replicates and one column
of condition replicates. It is crucial that replicate names of the same sample or
condition must be identical. E.g. If sampleA has 3 replicates, "sampleA", "sam-
pleA", "sampleA" is expected while "sampleA1", "sampleA2", "sampleA3" is
regarded as 3 different samples. If original column names in the assay slot
already follow the "sample__condition" scheme, then the colData slot is not
required at all.
In the function spatial_hm, this argument can also be a numeric vector. In this

28 filter_data

vector, every value should be named, and values expected to color the "spatial
heatmaps" should follow the naming scheme "sample__condition".
In certain cases, there is no condition associated with data. Then in the nam-
ing scheme of data frame or vector, the "__condition" part could be dis-
carded. In SummarizedExperiment, the "condition" column could be discarded
in colData slot.
Note, regardless of data class the double underscore is a special string that is
reserved for specific purposes in "spatialHeatmap", and thus should be avoided
for naming feature/samples and conditions.
In the case of spatial-temporal data, there are three factors: samples, conditions,
and time points. The naming scheme is slightly different and includes three op-
tions: 1) combine samples and conditions to make the composite factor "sample-
Condition", then concatenate the new factor and times with double underscore
in between, i.e. "sampleCondition__time"; 2) combine samples and times to
make the composite factor "sampleTime", then concatenate the new factor and
conditions with double underscore in between, i.e. "sampleTime__condition";
or 3) combine all three factors to make the composite factor "sampleTimeCon-
dition" without double underscore. See the vignette for more details by running
browseVignettes('spatialHeatmap') in R.

pOA It specifies parameters of the filter function pOverA from the package genefilter
(Gentleman et al. 2018), where genes with expression values larger than "A" in
at least the proportion of "P" samples are retained. The input is a vector of two
numbers with the first being "P" and the second being "A". The default is c(0,
0), which means no filter is applied.
E.g. c(0.1, 2) means genes with expression values over 2 in at least 10% of all
samples are kept.

CV It specifies parameters of the filter function cv from the package genefilter (Gen-
tleman et al. 2018), which filters genes according to the coefficient of variation
(CV). The input is a vector of two numbers that specify the CV range. The de-
fault is c(-Inf, Inf), which means no filtering is applied.
E.g. c(0.1, 5) means genes with CV between 0.1 and 5 are kept.

top.CV The proportion of top coefficient of variations (CVs), which ranges from 0 to 1.
Only row items with CVs in this proportion are kept. E.g. if the proportion is
0.7, only row items with CVs ranked in the top 70% are retained. Default is 1,
which means all items are retained. Note this argument takes precedence over
CV.

ann The column name of row item (gene, proteins, etc.) annotation in the rowData
slot of SummarizedExperiment. The default is NULL. In filter_data, this
argument is only relevant if dir is specified, while in network it is only relevant
if users want to see annotation when mousing over a node.

sam.factor The column name corresponding to samples in the colData of SummarizedExperiment.
If the original column names in the assay slot already follows the scheme "sam-
ple__condition", then the colData slot is not required and accordingly this ar-
gument could be NULL.

con.factor The column name corresponding to conditions in the colData of SummarizedExperiment.
Could be NULL if column names of in the assay slot already follows the
scheme "sample__condition", or no condition is associated with the data.

filter_data 29

dir The directory path where the filtered data matrix is saved as a TSV-format
file "customData.txt", which is ready to upload to the Shiny app launched by
shiny_shm. In the "customData.txt", the rows are assayed items and column
names are in the syntax "sample__condition". If gene annotation is provided
to ann, it is appended to "customData.txt". The default is NULL and no file is
saved. This argument is used only when the data is stored in SummarizedExperiment
and need to be uploaded to the "customData" in the Shiny app.

verbose TRUE or FALSE. If TRUE (default), the summary of statistics is printed.

Value

The returned value is the same class with the input data, a data.frame or SummarizedExperiment.
In either case, the column names of the data matrix follows the "sample__condition" scheme. If
dir is specified, the filtered data matrix is saved in a TSV-format file "customData.txt".

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Gentleman, R, V Carey, W Huber, and F Hahne. 2018. "Genefilter: Methods for Filtering Genes
from High-Throughput Experiments." http://bioconductor.uib.no/2.7/bioc/html/genefilter.html
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of ‘data.frame‘. R package version
1.10.4. https://CRAN.R-project.org/package=data.table
Martin Morgan, Valerie Obenchain, Jim Hester and Hervé Pagès (2018). SummarizedExperiment:
SummarizedExperiment container. R package version 1.10.1
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as
a "data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.

Set up toy data.

Access toy data1.

30 lis.deg.up.down

cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the naming scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be
made based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in
this package and accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

Filter out genes with low counts and low variance. Genes with counts over 5 (log2 unit) in
at least 1% samples (pOA), and coefficient of variance (CV) between 0.2 and 100 are retained.
Filter toy data1.
df.fil.chk <- filter_data(data=df.chk, pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)
Filter toy data2.
se.fil.chk <- filter_data(data=se.chk, sam.factor='organism_part', con.factor='age',
pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)

lis.deg.up.down A nested list of differentialy-expressed genes (DEGs) detected by dif-
ferent methods

Description

A nested list of up- and down-DEGs detected by different methods such as edgeR, limma, DEseq2.

Usage

data(lis.deg.up.down)

matrix_hm 31

Format

A nested list.

Source

ExpressionAtlas E-MTAB-6769

References

Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

data(lis.deg.up.down)
lis.deg.up.down$up.lis$edgeR.up[1:5]

matrix_hm Matrix Heatmap

Description

This function visualizes the input assayed items (gene, protein, metabolite, etc) in context of their
nearest neighbors, which are subsetted by submatrix. The visualization is in form of static or inter-
active matrix heatmap, where rows and columns are sorted by hierarchical clustering dendrograms
and the row of target items are tagged by two lines. In the interactive heatmap, users can zoom in
and out by drawing a rectangle and by double clicking the image, respectively.

Usage

matrix_hm(
ID,
data,
scale = "no",
col = c("yellow", "orange", "red"),
main = NULL,
title.size = 10,
cexCol = 1,
cexRow = 1,
angleCol = 45,
angleRow = 45,
sep.color = "black",
sep.width = 0.02,
static = TRUE,
margin = c(10, 10),
arg.lis1 = list(),
arg.lis2 = list()

)

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6769/

32 matrix_hm

Arguments

ID A vector of target item identifiers in the data.

data The subsetted data matrix returned by the function submatrix, where rows are
assayed items and columns are samples/conditions.

scale One of "row", "column", or "no", corresponding to scale the heatmap by row,
column, or no scale respectively. Default is "no".

col A character vector of color ingredients for constructing the color scale. The
default is c(’yellow’, ’orange’, ’red’).

main The title of the matrix heatmap.

title.size A numeric value of the title size.

cexCol A numeric value of column name size. Default is 1.

cexRow A numeric value of row name size. Default is 1.

angleCol The angle of column names. The default is 45.

angleRow The angle of row names. The default is 45.

sep.color The color of the two lines labeling the row of ID. The default is "black".

sep.width The width of two lines labeling the row of ID. The default is 0.02.

static Logical, TRUE returns the static visualization and FALSE returns the interac-
tive.

margin A vector of two numbers, specifying bottom and right margins respectively. The
default is c(10, 10).

arg.lis1 A list of additional arguments passed to the heatmap.2 function from "gplots"
package. E.g. list(xlab=’sample’, ylab=’gene’). The default is an empty list.

arg.lis2 A list of additional arguments passed to the ggplot function from "ggplot2"
package. The default is an empty list.

Value

A static image or an interactive instance lauched on the web browser.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Martin Morgan, Valerie Obenchain, Jim Hester and Hervé Pagès (2018). SummarizedExperiment:
SummarizedExperiment container. R package version 1.10.1
Andrie de Vries and Brian D. Ripley (2016). ggdendro: Create Dendrograms and Tree Diagrams
Using ’ggplot2’. R package version 0.1-20. https://CRAN.R-project.org/package=ggdendro
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
Carson Sievert (2018) plotly for R. https://plotly-book.cpsievert.me
Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559 doi:10.1186/1471-2105-9-559

matrix_hm 33

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber Andy
Liaw, Thomas Lumley, Martin Maechler, Arni Magnusson, Steffen Moeller, Marc Schwartz and
Bill Venables (2019). gplots: Various R Programming Tools for Plotting Data. R package version
3.0.1.1. https://CRAN.R-project.org/package=gplots
Hadley Wickham (2007). Reshaping Data with the reshape Package. Journal of Statistical Soft-
ware, 21(12), 1-20. URL http://www.jstatsoft.org/v21/i12/
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as
a "data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.
Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be
made based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in
this package and accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')

34 matrix_hm

Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

As conventions, raw sequencing count data should be normalized, aggregated, and filtered
to reduce noise.

Normalize count data.
The normalizing function "calcNormFactors" (McCarthy et al. 2012) with default settings
is used.
df.nor.chk <- norm_data(data=df.chk, norm.fun='CNF', log2.trans=TRUE)
se.nor.chk <- norm_data(data=se.chk, norm.fun='CNF', log2.trans=TRUE)
Aggregate count data.
Aggregate "sample__condition" replicates in toy data1.
df.aggr.chk <- aggr_rep(data=df.nor.chk, aggr='mean')
df.aggr.chk[1:3,]
Aggregate "sample_condition" replicates in toy data2, where "sample" is "organism_part"
and "condition" is "age".
se.aggr.chk <- aggr_rep(data=se.nor.chk, sam.factor='organism_part', con.factor='age',
aggr='mean')
assay(se.aggr.chk)[1:3, 1:3]
Filter out genes with low counts and low variance. Genes with counts over 5 (log2 unit) in
at least 1% samples (pOA), and coefficient of variance (CV) between 0.2 and 100 are retained.
Filter toy data1.
df.fil.chk <- filter_data(data=df.aggr.chk, pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)
Filter toy data2.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='organism_part', con.factor='age',
pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)

Select nearest neighbors for target genes 'ENSGALG00000019846' and 'ENSGALG00000000112',
which are usually genes visualized in spatial heatmaps.
Toy data1.
df.sub.mat <- submatrix(data=df.fil.chk, ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), p=0.1)
Toy data2.
se.sub.mat <- submatrix(data=se.fil.chk, ann='ann', ID=c('ENSGALG00000019846',
'ENSGALG00000000112'), p=0.1)

In the following, "df.sub.mat" and "se.sub.mat" is used in the same way, so only
"se.sub.mat" illustrated.

The subsetted matrix is partially shown below.
se.sub.mat[c('ENSGALG00000019846', 'ENSGALG00000000112'), c(1:2, 63)]

Matrix heatmap.
Static matrix heatmap.
matrix_hm(ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), data=se.sub.mat, angleCol=80,
angleRow=35, cexRow=0.8, cexCol=0.8, margin=c(8, 10), static=TRUE,
arg.lis1=list(offsetRow=0.01, offsetCol=0.01))
Interactive matrix heatmap.

network 35

matrix_hm(ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), data=se.sub.mat,
angleCol=80, angleRow=35, cexRow=0.8, cexCol=0.8, margin=c(8, 10), static=FALSE,
arg.lis1=list(offsetRow=0.01, offsetCol=0.01))
In case the interactive heatmap is not automatically opened, run the following code snippet.
It saves the heatmap as an HTML file according to the value assigned to the "file" argument.

mhm <- matrix_hm(ID=c('ENSGALG00000019846', 'ENSGALG00000000112'), data=se.sub.mat,
angleCol=80, angleRow=35, cexRow=0.8, cexCol=0.8, margin=c(8, 10), static=FALSE,
arg.lis1=list(offsetRow=0.01, offsetCol=0.01))
htmlwidgets::saveWidget(widget=mhm, file='mhm.html', selfcontained=FALSE)
browseURL('mhm.html')

network Visualize a Target Assayed Item in a Network Graph

Description

This function exhibits a target assayed item (gene, protein, metabolite, etc) in the context of corre-
sponding network module as static or interactive network graphs. See function adj_mod for module
identification. In the network graph, nodes are items and edges are adjacencies (coexpression sim-
ilarities) between items. The thicker edge denotes higher adjacency between nodes while larger
node indicates higher connectivity (sum of a node’s adjacencies with all its direct neighbours).
In the interactive mode, there is an interactive color bar to denote node connectivity. The color
ingredients can only be separated by comma, semicolon, single space, dot, hypen, or, underscore.
E.g. "yellow,orange,red", which means node connectivity increases from yellow to red. If too many
edges (e.g.: > 500) are displayed, the app may get crashed, depending on the computer RAM. So
the "Adjacency threshold" option sets a threthold to filter out weak edges. Meanwhile, the "Max-
imun edges" limits the total of shown edges. In case a very low adjacency threshold is choosen
and introduces too many edges that exceed the Maximun edges, the app will internally increase the
adjacency threshold until the edge total is within the Maximun edges, which is a protection against
too many edges. The adjacency threshold of 1 produces no edges, in this case the app wil inter-
nally decrease this threshold until the number of edges reaches the Maximun edges. If adjacency
threshold of 0.998 is selected and no edge is left, this app will also internally update the edges to
1 or 2. To maintain acceptable performance, users are advised to choose a stringent threshold (e.g.
0.9) initially, then decrease the value gradually. The interactive feature allows users to zoom in and
out, or drag a node around. All the node IDs in the network module are listed in "Select by id" in
decreasing order according to node connectivity. The input item ID is appended "_target" as a label.
By clicking an ID in this list, users can identify the corresponding node in the network. If the input
data has item annotations, then the annotation can be seen by hovering the cursor over a node.

Usage

network(
ID,
data,
adj.mod,
ds = "3",

36 network

adj.min = 0,
con.min = 0,
node.col = c("turquoise", "violet"),
edge.col = c("yellow", "blue"),
vertex.label.cex = 1,
vertex.cex = 3,
edge.cex = 10,
layout = "circle",
main = NULL,
static = TRUE,
...

)

Arguments

ID A vector of target item identifiers in the data.

data The subsetted data matrix returned by the function submatrix, where rows are
assayed items and columns are samples/conditions.

adj.mod The two-component list returned by adj_mod with the adjacency matrix and
module assignment respectively.

ds One of "2" or "3", the module splitting sensitivity level. The former indicates
larger but less modules while the latter denotes smaller but more modules. De-
fault is "3". See function adj_mod for details.

adj.min Minimum adjacency between nodes, edges with adjacency below which will be
removed. Default is 0. Applicable to static network.

con.min Minimun connectivity of a node, nodes with connectivity below which will be
removed. Default is 0. Applicable to static network.

node.col A vector of color ingredients for constructing node color scale in the static im-
age. The default is c("turquoise", "violet"), where node connectivity increases
from "turquoise" to "violet".

edge.col A vector of color ingredients for constructing edge color scale in the static im-
age. The default is c("yellow", "blue"), where edge adjacency increases from
"yellow" to "blue".

vertex.label.cex

The size of node label in the static and interactive networks. The default is 1.

vertex.cex The size of node in the static image. The default is 3.

edge.cex The size of edge in the static image. The default is 10.

layout The layout of the network in static image, either "circle" or "fr". The "fr" stands
for force-directed layout algorithm by Fruchterman and Reingold. The default
is "circle".

main The title in the static image. Default is NULL.

static Logical, TRUE returns a static network while FALSE returns an interactive net-
work.

... Other arguments passed to the generic function plot.default, e.g.: asp=1.

network 37

Value

A static or interactive network graph.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Martin Morgan, Valerie Obenchain, Jim Hester and Hervé Pagès (2018). SummarizedExperiment:
SummarizedExperiment container. R package version 1.10.1
Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal,
Complex Systems 1695. 2006. http://igraph.org
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2018). shiny: Web Ap-
plication Framework for R. R package version 1.1.0. https://CRAN.R-project.org/package=shiny
Winston Chang and Barbara Borges Ribeiro (2018). shinydashboard: Create Dashboards with
’Shiny’. R package version 0.7.1. https://CRAN.R-project.org/package=shinydashboard
Almende B.V., Benoit Thieurmel and Titouan Robert (2018). visNetwork: Network Visualization
using ’vis.js’ Library. R package version 2.0.4. https://CRAN.R-project.org/package=visNetwork
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as
a "data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.

Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.

38 network

ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be made
based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in this
package and accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

As conventions, raw sequencing count data should be normalized, aggregated, and filtered to
reduce noise.

Normalize count data.
The normalizing function "calcNormFactors" (McCarthy et al. 2012) with default settings
is used.
df.nor.chk <- norm_data(data=df.chk, norm.fun='CNF', log2.trans=TRUE)
se.nor.chk <- norm_data(data=se.chk, norm.fun='CNF', log2.trans=TRUE)
Aggregate count data.
Aggregate "sample__condition" replicates in toy data1.
df.aggr.chk <- aggr_rep(data=df.nor.chk, aggr='mean')
df.aggr.chk[1:3,]
Aggregate "sample_condition" replicates in toy data2, where "sample" is "organism_part" and
"condition" is "age".
se.aggr.chk <- aggr_rep(data=se.nor.chk, sam.factor='organism_part', con.factor='age',
aggr='mean')
assay(se.aggr.chk)[1:3, 1:3]
Filter out genes with low counts and low variance. Genes with counts over 5 (log2 unit) in
at least 1% samples (pOA), and coefficient of variance (CV) between 0.2 and 100 are retained.
Filter toy data1.
df.fil.chk <- filter_data(data=df.aggr.chk, pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)
Filter toy data2.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='organism_part', con.factor='age',
pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)

Select nearest neighbors for target genes 'ENSGALG00000019846' and 'ENSGALG00000000112',
which are usually genes visualized in spatial heatmaps.
Toy data1.
df.sub.mat <- submatrix(data=df.fil.chk, ID=c('ENSGALG00000019846', 'ENSGALG00000000112'),

norm_data 39

p=0.1)
Toy data2.
se.sub.mat <- submatrix(data=se.fil.chk, ann='ann', ID=c('ENSGALG00000019846',
'ENSGALG00000000112'), p=0.1)

In the following, "df.sub.mat" and "se.sub.mat" is used in the same way, so only
"se.sub.mat" illustrated.

The subsetted matrix is partially shown below.
se.sub.mat[c('ENSGALG00000019846', 'ENSGALG00000000112'), c(1:2, 63)]
Adjacency matrix and module identification
The modules are identified by "adj_mod". It returns a list containing an adjacency matrix
and a data frame of module assignment.
adj.mod <- adj_mod(data=se.sub.mat)
The adjacency matrix is a measure of co-expression similarity between genes, where larger
value denotes higher similarity.
adj.mod[['adj']][1:3, 1:3]
The modules are identified at two alternative sensitivity levels (ds=2 or 3). From 2 to 3,
more modules are identified but module sizes are smaller. The two sets of module assignment
are returned in a data frame. The first column is ds=2 while the second is ds=3. The numbers
in each column are module labels, where "0" means genes not assigned to any module.
adj.mod[['mod']][1:3,]
Static network. In the graph, nodes are genes and edges are adjacencies between genes.
The thicker edge denotes higher adjacency (co-expression similarity) while larger node
indicates higher gene connectivity (sum of a gene's adjacency with all its direct neighbors).
The target gene is labeled by "_target".
network(ID="ENSGALG00000019846", data=se.sub.mat, adj.mod=adj.mod, adj.min=0.7,
vertex.label.cex=1.5, vertex.cex=4, static=TRUE)
Interactive network. The target gene ID is appended "_target".
network(ID="ENSGALG00000019846", data=se.sub.mat, adj.mod=adj.mod, static=FALSE)

norm_data Normalize Sequencing Count Matrix

Description

This function normalizes sequencing count data. It accepts the count matrix and sample metadata
(optional) in form of SummarizedExperiment or data.frame. In either class, the columns and
rows of the count matix should be sample/conditions and genes respectively.

Usage

norm_data(
data,
norm.fun = "CNF",
parameter.list = NULL,
log2.trans = TRUE,
data.trans

)

40 norm_data

Arguments

data An object of data.frame or SummarizedExperiment. In either case, the columns
and rows should be sample/conditions and assayed items (e.g. genes, proteins,
metabolites) respectively. If data.frame, the column names should follow the
naming scheme "sample__condition". The "sample" is a general term and stands
for cells, tissues, organs, etc., where the values are measured. The "condition"
is also a general term and refers to experiment treatments applied to "sample"
such as drug dosage, temperature, time points, etc. If certain samples are not
expected to be colored in "spatial heatmaps" (see spatial_hm), they are not re-
quired to follow this naming scheme. In the downstream interactive network
(see network), if users want to see node annotation by mousing over a node, a
column of row item annotation could be optionally appended to the last column.
In the case of SummarizedExperiment, the assays slot stores the data matrix.
Similarly, the rowData slot could optionally store a data frame of row item an-
ntation, which is only relevant to the interactive network. The colData slot usu-
ally contains a data frame with one column of sample replicates and one column
of condition replicates. It is crucial that replicate names of the same sample or
condition must be identical. E.g. If sampleA has 3 replicates, "sampleA", "sam-
pleA", "sampleA" is expected while "sampleA1", "sampleA2", "sampleA3" is
regarded as 3 different samples. If original column names in the assay slot
already follow the "sample__condition" scheme, then the colData slot is not
required at all.
In the function spatial_hm, this argument can also be a numeric vector. In this
vector, every value should be named, and values expected to color the "spatial
heatmaps" should follow the naming scheme "sample__condition".
In certain cases, there is no condition associated with data. Then in the nam-
ing scheme of data frame or vector, the "__condition" part could be dis-
carded. In SummarizedExperiment, the "condition" column could be discarded
in colData slot.
Note, regardless of data class the double underscore is a special string that is
reserved for specific purposes in "spatialHeatmap", and thus should be avoided
for naming feature/samples and conditions.
In the case of spatial-temporal data, there are three factors: samples, conditions,
and time points. The naming scheme is slightly different and includes three op-
tions: 1) combine samples and conditions to make the composite factor "sample-
Condition", then concatenate the new factor and times with double underscore
in between, i.e. "sampleCondition__time"; 2) combine samples and times to
make the composite factor "sampleTime", then concatenate the new factor and
conditions with double underscore in between, i.e. "sampleTime__condition";
or 3) combine all three factors to make the composite factor "sampleTimeCon-
dition" without double underscore. See the vignette for more details by running
browseVignettes('spatialHeatmap') in R.

norm.fun One of the normalizing functions: "CNF", "ESF", "VST", "rlog", "none". Specif-
ically, "CNF" stands for calcNormFactors from edgeR (McCarthy et al. 2012),
and "EST", "VST", and "rlog" is equivalent to estimateSizeFactors,
varianceStabilizingTransformation, and rlog from DESeq2 respectively
(Love, Huber, and Anders 2014). If "none", no normalization is applied. The
default is "CNF" and the output data is processed by cpm (Counts Per Mil-

norm_data 41

lion). The parameters of each normalization function are provided through
parameter.list.

parameter.list A list of parameters for each normalizing function assigned in norm.fun. The
default is NULL and list(method='TMM'), list(type='ratio'),
list(fitType='parametric',blind=TRUE),
list(fitType='parametric',blind=TRUE) is internally set for "CNF", "ESF",
"VST", "rlog" respectively. Note the slot name of each element in the list is re-
quired. E.g. list(method='TMM') is expected while list('TMM') would cause
errors.
Complete parameters of "CNF": https://www.rdocumentation.org/packages/edgeR/
versions/3.14.0/topics/calcNormFactors
Complete parameters of "ESF": https://www.rdocumentation.org/packages/
DESeq2/versions/1.12.3/topics/estimateSizeFactors
Complete parameters of "VST": https://www.rdocumentation.org/packages/
DESeq2/versions/1.12.3/topics/varianceStabilizingTransformation
Complete parameters of "rlog": https://www.rdocumentation.org/packages/
DESeq2/versions/1.12.3/topics/rlog

log2.trans Logical, TRUE or FALSE. If TRUE (default) and the selected normalization
method does not use log2 scale by default ("ESF"), the output data is log2-
transformed after normalization. If FALSE and the selected normalization method
uses log2 scale by default ("VST", "rlog"), the output data is 2-exponent trans-
formed after normalization.

data.trans This argument is deprecated and replaced by log2.trans. One of "log2", "exp2",
and "none", corresponding to transform the count matrix by "log2", "2-based ex-
ponent", and "no transformation" respecitvely. The default is "none".

Value

If the input data is SummarizedExperiment, the retured value is also a SummarizedExperiment
containing normalized data matrix and metadata (optional). If the input data is a data.frame, the
returned value is a data.frame of normalized data and metadata (optional).

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

SummarizedExperiment: SummarizedExperiment container. R package version 1.10.1
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
McCarthy, Davis J., Chen, Yunshun, Smyth, and Gordon K. 2012. "Differential Expression Anal-
ysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation." Nucleic Acids
Research 40 (10): 4288–97
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold

42 norm_data

Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
McCarthy, Davis J., Chen, Yunshun, Smyth, and Gordon K. 2012. "Differential Expression Anal-
ysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation." Nucleic Acids
Research 40 (10): 4288–97
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

See Also

calcNormFactors in edgeR, and estimateSizeFactors, varianceStabilizingTransformation,
rlog in DESeq2.

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as
a "data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.

Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk)

Normalize raw count data. The normalizing function "calcNormFactors" (McCarthy et al. 2012)
with default settings is used.
df.nor.chk <- norm_data(data=df.chk, norm.fun='CNF', log2.trans=TRUE)
se.nor.chk <- norm_data(data=se.chk, norm.fun='CNF', log2.trans=TRUE)

profile_gene 43

profile_gene Plot Gene Expression Profiles in a Data Frame

Description

Plot Gene Expression Profiles in a Data Frame

Usage

profile_gene(
data,
scale = "none",
x.title = "Sample/conditions",
y.title = "Value",
text.size = 15,
text.angle = 45

)

Arguments

data A data frame, where rows are genes and columns are features/conditions.

scale The way to to scale the data. If none (default), no scaling. If row, the data is
scalaed independently. If all, all the data is scaled as a whole.

x.title, y.title

X-axis title and Y-axis title respectively.

text.size The size of axis title and text.

text.angle The angle of axis text.

Value

An image of ggplot.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
Hadley Wickham (2007). Reshaping Data with the reshape Package. Journal of Statistical Software,
21(12), 1-20. URL http://www.jstatsoft.org/v21/i12/.

See Also

spatial_enrich

44 read_cache

Examples

data(deg.table)
Line graph of selected gene expression profile.
profile_gene(deg.table[1,])
See detailed examples in the function "spatial_enrich".

read_cache Read R Objects from Cache

Description

Read R Objects from Cache

Usage

read_cache(dir, name, info = FALSE)

Arguments

dir The directory path where cached data are located. It should be the path returned
by save_cache.

name The name of the object to retrieve, which is one of the entries in the "rname"
column returned by setting info=TRUE.

info Logical, TRUE or FALSE. If TRUE (default), the information of all tracked files
in cache is returned in a table.

Value

An R object retrieved from the cache.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Lori Shepherd and Martin Morgan (2020). BiocFileCache: Manage Files Across Sessions. R
package version 1.12.1.

Examples

Save the object "iris" in the default cache "~/.cache/shm".
cache.pa <- save_cache(dir=NULL, overwrite=TRUE, iris)
Retrieve "iris".
iris1 <- read_cache(cache.pa, 'iris')

read_fr 45

read_fr Import Data from Tabular Files

Description

This function reads data from a tabular file, which is a wrapper of fread. If the tabular file contains
both character and numeric columns, it is able to maintain the character or numeric attribute for
each column in the returned data frame. In addition, it is able to detect separators automatically.

Usage

read_fr(input, header = TRUE, sep = "auto", fill = TRUE, check.names = FALSE)

Arguments

input The file path.

header One of TRUE, FALSE, or "auto". Default is TRUE. Does the first data line
contain column names, according to whether every non-empty field on the first
data line is type character? If "auto" or TRUE is supplied, any empty column
names are given a default name.

sep The separator between columns. Defaults to the character in the set [,\t |;:]
that separates the sample of rows into the most number of lines with the same
number of fields. Use NULL or "" to specify no separator; i.e. each line a single
character column like base::readLines does.

fill Logical (default is TRUE). If TRUE then in case the rows have unequal length,
blank fields are implicitly filled.

check.names default is FALSE. If TRUE then the names of the variables in the data.table are
checked to ensure that they are syntactically valid variable names. If necessary
they are adjusted (by make.names) so that they are, and also to ensure that there
are no duplicates.

Value

A data frame.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Matt Dowle and Arun Srinivasan (2019). data.table: Extension of ‘data.frame‘. R package version
1.12.8. https://CRAN.R-project.org/package=data.table

46 read_hdf5

Examples

sh.tar <- system.file('extdata/shinyApp/example/target_arab.txt', package='spatialHeatmap')
target.sh <- read_fr(sh.tar); target.sh[60:63,]

read_hdf5 Read Data from the Shiny App Database

Description

This function is used to extract data from the Shiny App Database "data_shm.tar".

Usage

read_hdf5(file, prefix)

Arguments

file The path of "data_shm.tar" generated by write_hdf5.

prefix A vector of data set identifiers such as c('expr_arab','expr_chicken','df_pair').
The vector elements must come from the "data" column in the pairing table that
is made when calling write_hdf5.

Value

A list of data set and/or the pairing table.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

SummarizedExperiment: SummarizedExperiment container. R package version 1.10.1
R Core Team (2018). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Hervé Pagès (2020).
HDF5Array: HDF5 backend for DelayedArray objects. R package version 1.16.1.

Examples

See examples in the function write_hdf5.

return_feature 47

return_feature Return aSVG Files Relevant to Target Features

Description

This function parses a collection of aSVG files and returns those containing target features in a data
frame. Successful spatial heatmap plotting requires the aSVG features of interest have matching
samples (cells, tissues, etc) in the data. To meet this requirement, the returned features could be
used to replace target sample counterparts in the data. Alternatively, the target samples in the data
could be used to replace matching features in the aSVG through function update_feature. Refer
to function spatial_hm for more details on aSVG files.

Usage

return_feature(
feature,
species,
keywords.any = TRUE,
remote = NULL,
dir = NULL,
svg.path = NULL,
desc = FALSE,
match.only = TRUE,
return.all = FALSE

)

Arguments

feature A vector of target feature keywords (case insentitive), which is used to select
aSVG files from a collection. E.g. c(’heart’, ’brain’). If NA or NULL, all
features of all SVG files matching species are returned.

species A vector of target species keywords (case insentitive), which is used to select
aSVG files from a collection. E.g. c(’gallus’). If NA or NULL, all SVG files in
dir are queried.

keywords.any Logical, TRUE or FALSE. Default is TRUE. The internal searching is case-
insensitive. The space, dot, hypen, semicolon, comma, forward slash are treated
as separators between words and not counted in searching. If TRUE, every re-
turned hit contains at least one word in the feature vector and at least one word
in the species vector, which means all the possible hits are returned. E.g. "pre-
frontal cortex" in "homo_sapiens.brain.svg" would be returned if feature=c('frontal')
and species=c('homo'). If FALSE, every returned hit contains at least one ex-
act element in the feature vector and all exact elements in the species vector.
E.g. "frontal cortex" rather than "prefrontal cortex" in "homo_sapiens.brain.svg"
would be returned if feature=c('frontal cortex') and species=c('homo
sapiens','brain').

48 return_feature

remote Logical, FALSE or TRUE. If TRUE (default), the remote EBI aSVG repository
https://github.com/ebi-gene-expression-group/anatomogram/tree/master/
src/svg and spatialHeatmap aSVG Repository https://github.com/jianhaizhang/
spatialHeatmap_aSVG_Repository developed in this project are queried.

dir The directory path of aSVG files. If remote is TRUE, the returned aSVG files
are saved in this directory. Note existing aSVG files with same names as re-
turned ones are overwritten. If remote is FALSE, user-provided (local) aSVG
files should be saved in this directory for query. Default is NULL.

svg.path The path of a specific aSVG file. If the provided aSVG file exists, only features
of this file are returned and there will be no querying process. Default is NULL.

desc Logical, FALSE or TRUE. Default is FALSE. If TRUE, the feature descriptions
from the R package "rols" (Laurent Gatto 2019) are added. If too many features
are returned, this process takes a long time.

match.only Logical, TRUE or FALSE. If TRUE (default), only target features are returned.
If FALSE, all features in the matching aSVG files are returned, and the matching
features are moved on the top of the data frame.

return.all Logical, FALSE or TRUE. Default is FALSE. If TRUE, all features together
with all respective aSVG files are returned, regardless of feature and species.

Value

A data frame containing information on target features and aSVGs.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Laurent Gatto (2019). rols: An R interface to the Ontology Lookup Service. R package version
2.14.0. http://lgatto.github.com/rols/
Hadley Wickham, Jim Hester and Jeroen Ooms (2019). xml2: Parse XML. R package version 1.2.2.
https://CRAN.R-project.org/package=xml2
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. "Gene Expression Across Mammalian Organ Development."
Nature 571 (7766): 505-9

Examples

This function is able to work on the EBI aSVG repository directly: https://github.com/
ebi-gene-expression-group/anatomogram/tree/master/src/svg. The following shows how to
download a chicken aSVG containing spatial features of 'brain' and 'heart'. An empty
directory is recommended so as to avoid overwriting existing SVG files.
Here "~/test" is used.

https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg
https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg
https://github.com/jianhaizhang/spatialHeatmap_aSVG_Repository
https://github.com/jianhaizhang/spatialHeatmap_aSVG_Repository

save_cache 49

Make an empty directory "~/test" if not exist.
if (!dir.exists('~/test')) dir.create('~/test')
Remote aSVG repos.
data(aSVG.remote.repo)
tmp.dir <- normalizePath(tempdir(check=TRUE), winslash="/", mustWork=FALSE)
tmp.dir.ebi <- paste0(tmp.dir, '/ebi.zip')
tmp.dir.shm <- paste0(tmp.dir, '/shm.zip')
Download the remote aSVG repos as zip files. According to Bioconductor's
requirements, downloadings are not allowed inside functions, so the repos are
downloaded before calling "return_feature".
download.file(aSVG.remote.repo$ebi, tmp.dir.ebi)
download.file(aSVG.remote.repo$shm, tmp.dir.shm)
remote <- list(tmp.dir.ebi, tmp.dir.shm)
Query the remote aSVG repos.
feature.df <- return_feature(feature=c('heart', 'brain'), species=c('gallus'), dir='~/test',
match.only=FALSE, remote=remote)
feature.df
The path of downloaded aSVG.
svg.chk <- '~/test/gallus_gallus.svg'

The spatialHeatmap package has a small aSVG collection and can be used to demonstrate the
local query.
Get the path of local aSVGs from the package.
svg.dir <- system.file("extdata/shinyApp/example", package="spatialHeatmap")
Query the local aSVG repo. The "species" argument is set NULL on purpose so as to illustrate
how to select the target aSVG among all matching aSVGs.
feature.df <- return_feature(feature=c('heart', 'brain'), species=NULL, dir=svg.dir,
match.only=FALSE, remote=NULL)
All matching aSVGs.
unique(feature.df$SVG)
Select the target aSVG of chicken.
subset(feature.df, SVG=='gallus_gallus.svg')

save_cache Save R Objects in Cache

Description

Save R Objects in Cache

Usage

save_cache(dir = NULL, overwrite = TRUE, ...)

Arguments

dir The directory path to save the cached data. Default is NULL and the cached
data is stored in ~/.cache/shm.

50 shiny_shm

overwrite Logical, TRUE or FALSE. Default is TRUE and data in the cache with the same
name of the object in ... will be overwritten.

... A single R object to be cached.

Value

The directory path of the cache.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Lori Shepherd and Martin Morgan (2020). BiocFileCache: Manage Files Across Sessions. R
package version 1.12.1.

Examples

Save the object "iris" in the default cache "~/.cache/shm".
cache.pa <- save_cache(dir=NULL, overwrite=TRUE, iris)

shiny_shm Integrated Shiny App

Description

In additon to generating spatial heatmaps and corresponding item (genes, proteins, metabolites, etc.)
context plots from R, spatialHeatmap includes a Shiny App (https://shiny.rstudio.com/) that
provides access to the same functionalities from an intuitive-to-use web browser interface. Apart
from being very user-friendly, this App conveniently organizes the results of the entire visualization
workflow in a single browser window with options to adjust the parameters of the individual com-
ponents interactively. Upon launched, the app automatically displays a pre-formatted example. To
use this app, the data matrix (e.g. gene expression matrix) and aSVG image are uploaded as tabular
text (e.g. in CSV or TSV format) and SVG file, respectively. To also allow users to upload data ma-
trix stored in SummarizedExperiment objects, one can export them from R to a tabular file with the
filter_data function. In this function call, the user sets a desired directory path under dir. Within
this directory the tabular file will be written to "customComputedData/sub_matrix.txt" in TSV for-
mat. The column names in the exported tabular file preserve the experimental design information
from the colData slot by concatenating the corresponding sample and condition information sep-
arated by double underscores. To interactively view functional descriptions by moving the cursor
over network nodes, the corresponding annotation column needs to be present in the rowData slot
and its column name assigned to the ann argument. In the exported tabular file the extra annotation
column is appended to the expression matrix. See function filter_data for details. If the subset-
ted data matrix in the Matrix Heatmap is too large, e.g. >10,000 rows, the "customComputedData"
under "Step 1: data sets" is recommended. Since this subsetted matrix is fed to the Network, and

https://shiny.rstudio.com/

shiny_shm 51

the internal computation of adjacency matrix and module identification would be intensive. In or-
der to protect the app from crash, the intensive computation should be performed outside the app,
then upload the results under "customComputedData". When using "customComputedData", the
data matrix to upload is the subsetted matrix "sub_matrix.txt" generated with submatrix, which
is a TSV-tabular text file. The adjacency matrix and module assignment to upload are "adj.txt"
and "mod.txt" generated in function adj_mod respectively. Note, "sub_matrix.txt", "adj.txt", and
"mod.txt" are downstream to the same call on filter_data, so the three files should not be mixed
between different filtering when uploading. See the instruction page in the app for details. The
large matrix issue could be resolved by increasing the subsetting strigency to get smaller matrix in
submatrix in most cases. Only in rare cases users cannot avoid very large subsetted matrix, the
"customComputedData" is recommended.

Usage

shiny_shm()

Value

A web browser based Shiny app.

Details

No argument is required, this function launches the Shiny app directly.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

https://www.w3schools.com/graphics/svg_intro.asp

https://shiny.rstudio.com/tutorial/

https://shiny.rstudio.com/articles/datatables.html

https://rstudio.github.io/DT/010-style.html

https://plot.ly/r/heatmaps/

https://www.gimp.org/tutorials/

https://inkscape.org/en/doc/tutorials/advanced/tutorial-advanced.en.html

http://www.microugly.com/inkscape-quickguide/

https://cran.r-project.org/web/packages/visNetwork/vignettes/Introduction-to-visNetwork.html

Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2017). shiny: Web Ap-
plication Framework for R. R package version 1.0.3. https://CRAN.R-project.org/package=shiny

Winston Chang and Barbara Borges Ribeiro (2017). shinydashboard: Create Dashboards with
’Shiny’. R package version 0.6.1. https://CRAN.R-project.org/package=shinydashboard

Paul Murrell (2009). Importing Vector Graphics: The grImport Package for R. Journal of Statistical
Software, 30(4), 1-37. URL http://www.jstatsoft.org/v30/i04/

52 spatial_enrich

Jeroen Ooms (2017). rsvg: Render SVG Images into PDF, PNG, PostScript, or Bitmap Arrays. R
package version 1.1. https://CRAN.R-project.org/package=rsvg

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

Yihui Xie (2016). DT: A Wrapper of the JavaScript Library ’DataTables’. R package version 0.2.
https://CRAN.R-project.org/package=DT

Baptiste Auguie (2016). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package ver-
sion 2.2.1. https://CRAN.R-project.org/package=gridExtra

Andrie de Vries and Brian D. Ripley (2016). ggdendro: Create Dendrograms and Tree Diagrams
Using ’ggplot2’. R package version 0.1-20. https://CRAN.R-project.org/package=ggdendro

Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559 doi:10.1186/1471-2105-9-559

Peter Langfelder, Steve Horvath (2012). Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. URL http://www.jstatsoft.org/v46/i11/

Simon Urbanek and Jeffrey Horner (2015). Cairo: R graphics device using cairo graphics library
for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display
(X11 and Win32) output. R package version 1.5-9. https://CRAN.R-project.org/package=Cairo

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Duncan Temple Lang and the CRAN Team (2017). XML: Tools for Parsing and Generating XML
Within R and S-Plus. R package version 3.98-1.9. https://CRAN.R-project.org/package=XML

Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec
and Pedro Despouy (NA). plotly: Create Interactive Web Graphics via ’plotly.js’. https://plot.ly/r,
https://cpsievert.github.io/plotly_book/, https://github.com/ropensci/plotly

Matt Dowle and Arun Srinivasan (2017). data.table: Extension of ‘data.frame‘. R package version
1.10.4. https://CRAN.R-project.org/package=data.table

R. Gentleman, V. Carey, W. Huber and F. Hahne (2017). genefilter: genefilter: methods for filtering
genes from high-throughput experiments. R package version 1.58.1.

Peter Langfelder, Steve Horvath (2012). Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. URL http://www.jstatsoft.org/v46/i11/

Almende B.V., Benoit Thieurmel and Titouan Robert (2017). visNetwork: Network Visualization
using ’vis.js’ Library. R package version 2.0.1. https://CRAN.R-project.org/package=visNetwork

Examples

shiny_shm()

spatial_enrich Identify Spatial Feature-Specifcally Expressed Genes

spatial_enrich 53

Description

This functionality is an extension of the spatial heatmap. It identifies spatial feature-specifically
expressed genes and thus enables the spatial heatmap to visualize feature-specific profiles. The
spatial features include cellular compartments, tissues, organs, etc. The function compares the
target feature with all other selected features in a pairwise manner. The genes significantly up- or
down-regulated in the target feature across all pairwise comparisons are denoted final target feature-
specifcally expressed genes. The underlying methods include edgeR (Robinson et al, 2010), limma
(Ritchie et al, 2015), DESeq2 (Love et al, 2014), distinct (Tiberi et al, 2020). The feature-specific
genes are first detected with each method and can be summarized across methods.
In addition to feature-specific genes, this function is also able to identify genes specifically ex-
pressed in certain condition or in composite factor. The latter is a combination of multiple exper-
mental factors. E.g. the spatiotemporal factor is a combination of feature and time points.

Usage

spatial_enrich(
data,
methods = c("edgeR", "limma"),
norm = "TMM",
log2.trans.dis = TRUE,
log2.fc = 1,
p.adjust = "BH",
fdr = 0.05,
aggr = "mean",
log2.trans.aggr = TRUE

)

Arguments

data A SummarizedExperiment object, which is returned by sub_data. The colData
slot is required to contain at least two columns of "features" and "factors" respec-
tively. The rowData slot can optionally contain a column of discriptions of each
gene and the column name should be metadata.

methods One or more of edgeR, limma, DESeq2, distinct. The default is c('edgeR','limma').

norm The normalization method (TMM, RLE, upperquartile, none) in edgeR. The de-
fault is TMM. Details: https://www.rdocumentation.org/packages/edgeR/versions/3.14.0/topics/calcNormFactors

log2.trans.dis Logical, only applicable when distinct is in methods. The default is TRUE,
and the count data is transformed to log-2 scale.

log2.fc The log2-fold change cutoff. The default is 1.

p.adjust The method (holm, hochberg, hommel, bonferroni, BH, BY, fdr, none) to adjust
p values in multiple hypothesis testing. The default is BH.

fdr The FDR cutoff. The default is 0.05.

aggr One of mean (default), median. The method to aggregated replicates in the data
frame of feature-specific genes.

54 spatial_enrich

log2.trans.aggr

Logical. If TRUE (default), the aggregated data (see aggr) is transformed to log2-
scale, included in the returned data frame of feature-specific genes, and would
be further used in the spatial heatmaps.

Value

A nested list containing the feature-specific genes summarized across methods within methods.

Author(s)

Jianhai Zhang <jianhai.zhang@email.ucr.edu>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Martin Morgan, Valerie Obenchain, Jim Hester and Hervé Pagès (2018). SummarizedExperiment:
SummarizedExperiment container. R package version 1.10.1
Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differen-
tial expression analysis of digital gene expression data. Bioinformatics 26, 139-140
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids
Research 43(7), e47.
Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq
data with DESeq2 Genome Biology 15(12):550 (2014)
Simone Tiberi and Mark D. Robinson. (2020). distinct: distinct: a method for differential analyses
via hierarchical permutation tests. R package version 1.2.0. https://github.com/SimoneTiberi/distinct

Examples

In the following examples, the toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, it is
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769".

library(SummarizedExperiment)

Set up toy data.

Access toy data.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data. It should be made
based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in this

spatial_enrich 55

package and accessed below.
Access the count table.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data corresponds with a row in targets file.
target.chk[1:5,]
Store toy data in "SummarizedExperiment".
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene metadata, but not required. Only the
column named "metadata" will be recognized.
Pseudo row metadata.
metadata <- paste0('meta', seq_len(nrow(count.chk))); metadata[1:3]
rowData(se.chk) <- DataFrame(metadata=metadata)

Subset the data by selected features (brain, heart, kidney) and factors (day10, day12).
data.sub <- sub_data(data=se.chk, feature='organism_part', features=c('brain', 'heart',
'kidney'), factor='age', factors=c('day10', 'day12'), com.by='feature', target='brain')

As conventions, raw sequencing count data should be normalized and filtered to
reduce noise. Since normalization will be performed in spatial enrichment, only filtering
is required.

Filter out genes with low counts and low variance. Genes with counts over 5 in
at least 10% samples (pOA), and coefficient of variance (CV) between 3.5 and 100 are
retained.
data.sub.fil <- filter_data(data=data.sub, sam.factor='organism_part', con.factor='age',
pOA=c(0.1, 5), CV=c(0.7, 100), dir=NULL)
Identify brain-specifically expressed genes relative to heart and kidney, where day10 and
day12 are treated as replicates.
deg.lis <- spatial_enrich(data.sub.fil)
All up- and down-regulated genes in brain across methods. On the right is the data after
replicates aggregated, and will be used in the spatial heatmaps.
deg.lis$deg.table[1:3,]
Up-regulated genes detected by edgeR.
deg.lis$lis.up.down$up.lis$edgeR.up[1:5]
The aSVG path.
svg.chk <- system.file("extdata/shinyApp/example", "gallus_gallus.svg",
package="spatialHeatmap")
Plot one brain-specific gene in spatial heatmap.
spatial_hm(svg.path=svg.chk, data=deg.lis$deg.table, ID=deg.lis$deg.table$gene[1], legend.r=1.9, legend.nrow=2, sub.title.size=7, ncol=2, bar.width=0.11)
Overlap of up-regulated brain-specific genes across methods.
deg_ovl(deg.lis$lis.up.down, type='up', plot='upset')
deg_ovl(deg.lis$lis.up.down, type='up', plot='matrix')
Overlap of down-regulated brain-specific genes across methods.
deg_ovl(deg.lis$lis.up.down, type='down', plot='upset')
deg_ovl(deg.lis$lis.up.down, type='down', plot='matrix')
Line graph of gene expression profile.
profile_gene(deg.lis$deg.table[1,])

56 spatial_hm

spatial_hm Create Spatial Heatmaps

Description

The input are a pair of annotated SVG (aSVG) file and formatted data (vector, data.frame,
SummarizedExperiment). In the former, spatial features are represented by shapes and assigned
unique identifiers, while the latter are numeric values measured from these spatial features and or-
ganized in specific formats. In biological cases, aSVGs are anatomical or cell structures, and data
are measurements of genes, proteins, metabolites, etc. in different samples (e.g. cells, tissues). Data
are mapped to the aSVG according to identifiers of assay samples and aSVG features. Only the data
from samples having matching counterparts in aSVG features are mapped. The mapped features
are filled with colors translated from the data, and the resulting images are termed spatial heatmaps.
Note, "sample" and "feature" are two equivalent terms referring to cells, tissues, organs etc. where
numeric values are measured. Matching means a target sample in data and a target spatial feature
in aSVG have the same identifier.
This function is designed as much flexible as to achieve optimal visualization. For example, sub-
plots of spatial heatmaps can be organized by gene or condition for easy comparison, in multi-layer
anotomical structures selected tissues can be set transparent to expose burried features, color scale
is customizable to highlight difference among features. This function also works with many other
types of spatial data, such as population data plotted to geographic maps.

Usage

spatial_hm(
svg.path,
data,
sam.factor = NULL,
con.factor = NULL,
ID,
tmp.path = NULL,
charcoal = FALSE,
alpha.overlay = 1,
lay.shm = "gene",
ncol = 2,
col.com = c("yellow", "orange", "red"),
col.bar = "selected",
sig.thr = c(NA, NA),
cores = NA,
bar.width = 0.08,
bar.title.size = 0,
trans.scale = NULL,
ft.trans = NULL,
tis.trans = ft.trans,
lis.rematch = NULL,
legend.r = 0.2,
sub.title.size = 11,

spatial_hm 57

legend.plot = "all",
ft.legend = "identical",
bar.value.size = 10,
legend.plot.title = "Legend",
legend.plot.title.size = 11,
legend.ncol = NULL,
legend.nrow = NULL,
legend.position = "bottom",
legend.direction = NULL,
legend.key.size = 0.02,
legend.text.size = 12,
angle.text.key = NULL,
position.text.key = NULL,
legend.2nd = FALSE,
position.2nd = "bottom",
legend.nrow.2nd = NULL,
legend.ncol.2nd = NULL,
legend.key.size.2nd = 0.03,
legend.text.size.2nd = 10,
angle.text.key.2nd = 0,
position.text.key.2nd = "right",
add.feature.2nd = FALSE,
label = FALSE,
label.size = 4,
label.angle = 0,
hjust = 0,
vjust = 0,
opacity = 1,
key = TRUE,
line.size = 0.2,
line.color = "grey70",
relative.scale = NULL,
verbose = TRUE,
out.dir = NULL,
animation.scale = 1,
selfcontained = FALSE,
video.dim = "640x480",
res = 500,
interval = 1,
framerate = 1,
bar.width.vdo = 0.1,
legend.value.vdo = NULL,
...

)

Arguments

svg.path The path of aSVG file(s). E.g.: system.file("extdata/shinyApp/example", "gal-
lus_gallus.svg", package="spatialHeatmap"). Multiple aSVGs are also accepted,

58 spatial_hm

such as aSVGs depicting organs development across mutiple times. In this case,
the aSVGs should be indexed with suffixes "_shm1", "_shm2", ..., such as "ara-
bidopsis.thaliana_organ_shm1.svg", "arabidopsis.thaliana_organ_shm2.svg", and
the paths of these aSVGs be provided in a character vector.
See return_feature for details on how to directly download aSVGs from the
EBI aSVG repository https://github.com/ebi-gene-expression-group/
anatomogram/tree/master/src/svg and spatialHeatmap aSVG Repository https:
//github.com/jianhaizhang/spatialHeatmap_aSVG_Repository developed
in this project.

data An object of data.frame or SummarizedExperiment. In either case, the columns
and rows should be sample/conditions and assayed items (e.g. genes, proteins,
metabolites) respectively. If data.frame, the column names should follow the
naming scheme "sample__condition". The "sample" is a general term and stands
for cells, tissues, organs, etc., where the values are measured. The "condition"
is also a general term and refers to experiment treatments applied to "sample"
such as drug dosage, temperature, time points, etc. If certain samples are not
expected to be colored in "spatial heatmaps" (see spatial_hm), they are not re-
quired to follow this naming scheme. In the downstream interactive network
(see network), if users want to see node annotation by mousing over a node, a
column of row item annotation could be optionally appended to the last column.
In the case of SummarizedExperiment, the assays slot stores the data matrix.
Similarly, the rowData slot could optionally store a data frame of row item an-
ntation, which is only relevant to the interactive network. The colData slot usu-
ally contains a data frame with one column of sample replicates and one column
of condition replicates. It is crucial that replicate names of the same sample or
condition must be identical. E.g. If sampleA has 3 replicates, "sampleA", "sam-
pleA", "sampleA" is expected while "sampleA1", "sampleA2", "sampleA3" is
regarded as 3 different samples. If original column names in the assay slot
already follow the "sample__condition" scheme, then the colData slot is not
required at all.
In the function spatial_hm, this argument can also be a numeric vector. In this
vector, every value should be named, and values expected to color the "spatial
heatmaps" should follow the naming scheme "sample__condition".
In certain cases, there is no condition associated with data. Then in the nam-
ing scheme of data frame or vector, the "__condition" part could be dis-
carded. In SummarizedExperiment, the "condition" column could be discarded
in colData slot.
Note, regardless of data class the double underscore is a special string that is
reserved for specific purposes in "spatialHeatmap", and thus should be avoided
for naming feature/samples and conditions.
In the case of spatial-temporal data, there are three factors: samples, conditions,
and time points. The naming scheme is slightly different and includes three op-
tions: 1) combine samples and conditions to make the composite factor "sample-
Condition", then concatenate the new factor and times with double underscore
in between, i.e. "sampleCondition__time"; 2) combine samples and times to
make the composite factor "sampleTime", then concatenate the new factor and
conditions with double underscore in between, i.e. "sampleTime__condition";
or 3) combine all three factors to make the composite factor "sampleTimeCon-

https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg
https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg
https://github.com/jianhaizhang/spatialHeatmap_aSVG_Repository
https://github.com/jianhaizhang/spatialHeatmap_aSVG_Repository

spatial_hm 59

dition" without double underscore. See the vignette for more details by running
browseVignettes('spatialHeatmap') in R.

sam.factor The column name corresponding to samples in the colData of SummarizedExperiment.
If the original column names in the assay slot already follows the scheme "sam-
ple__condition", then the colData slot is not required and accordingly this ar-
gument could be NULL.

con.factor The column name corresponding to conditions in the colData of SummarizedExperiment.
Could be NULL if column names of in the assay slot already follows the
scheme "sample__condition", or no condition is associated with the data.

ID A character vector of assyed items (e.g. genes, proteins) whose abudance values
are used to color the aSVG.

tmp.path The path of the template image in the form of raster/bitmap. The template is
used to create aSVGs and can be overlaid with spatial heatmaps.

charcoal Logical, if TRUE the template image will be turned black and white.

alpha.overlay The opacity of top-layer spatial heatmaps if a template image is added at the
bottom layer. The default is 1.

lay.shm One of "gene", "con", or "none". If "gene", spatial heatmaps are organized by
genes proteins, or metabolites, etc. and conditions are sorted whithin each gene.
If "con", spatial heatmaps are organized by the conditions/treatments applied
to experiments, and genes are sorted winthin each condition. If "none", spaital
heatmaps are organized by the gene order in ID and conditions follow the order
they appear in data.

ncol An integer of the number of columns to display the spatial heatmaps, which does
not include the legend plot.

col.com A character vector of the color components used to build the color scale. The
default is c(’yellow’, ’orange’, ’red’).

col.bar One of "selected" or "all", the former uses values of ID to build the color scale
while the latter uses all values from the data. The default is "selected".

sig.thr A two-numeric vector of the signal thresholds (the range of the color bar). The
first and the second element will be the minmun and maximum threshold in
the color bar respectively. Signals/values above the max or below min will be
assigned the same color as the max or min respectively. The default is c(NA,NA)
and the min and max signals in the data will be used. If one needs to change
only max or min, the other should be NA.

cores The number of CPU cores for parallelization, relevant for aSVG files with size
larger than 5M. The default is NA, and the number of used cores is 1 or 2 de-
pending on the availability.

bar.width The width of color bar that ranges from 0 to 1. The default is 0.08.

bar.title.size A numeric of color bar title size. The default is 0.

trans.scale One of "log2", "exp2", "row", "column", or NULL, which means transform the
data by "log2" or "2-base expoent", scale by "row" or "column", or no manipua-
tion respectively. This argument should be used if colors across samples cannot
be distinguished due to low variance or outliers.

60 spatial_hm

ft.trans A character vector of tissue/spatial feature identifiers that will be set transparent.
E.g c("brain", "heart"). This argument is used when target features are covered
by overlapping features and the latter should be transparent.

tis.trans This argument is deprecated and replaced by ft.trans.
lis.rematch A list for rematching features. In each slot, the slot name is an existing fea-

ture in the data, and the slot contains a vector of features in aSVG that will
be rematched to the feature in the slot name. E.g. list(featureData1 =
c('featureSVG1','featureSVG2'),featureData2 = c('featureSVG3')), where
features c('featureSVG1','featureSVG2'), c('featureSVG3') in the aSVG
are rematched to features 'featureData1', 'featureData2' in data, respec-
tively.

legend.r A numeric (between -1 and 1) to adjust the legend plot size. The default is 0.2.
sub.title.size A numeric of the subtitle font size of each individual spatial heatmap. The

default is 11.
legend.plot A vector of suffix(es) of aSVG file name(s) such as c('shm1','shm2'). Only

aSVG(s) whose suffix(es) are assigned to this arugment will have a legend plot
on the right. The default is all and each aSVG will have a legend plot. If
NULL, no legend plot is shown.

ft.legend One of "identical", "all", or a character vector of tissue/spatial feature identifiers
from the aSVG file. The default is "identical" and all the identical/matching
tissues/spatial features between the data and aSVG file are colored in the legend
plot. If "all", all tissues/spatial features in the aSVG are shown. If a vector, only
the tissues/spatial features in the vector are shown.

bar.value.size A numeric of value size in the color bar y-axis. The default is 10.
legend.plot.title

The title of the legend plot. The default is ’Legend’.
legend.plot.title.size

The title size of the legend plot. The default is 11.
legend.ncol An integer of the total columns of keys in the legend plot. The default is NULL.

If both legend.ncol and legend.nrow are used, the product of the two argu-
ments should be equal or larger than the total number of shown spatial features.

legend.nrow An integer of the total rows of keys in the legend plot. The default is NULL. It is
only applicable to the legend plot. If both legend.ncol and legend.nrow are
used, the product of the two arguments should be equal or larger than the total
number of matching spatial features.

legend.position

the position of legends ("none", "left", "right", "bottom", "top", or two-element
numeric vector)

legend.direction

layout of items in legends ("horizontal" or "vertical")
legend.key.size

A numeric of the legend key size ("npc"), applicable to the legend plot. The
default is 0.02.

legend.text.size

A numeric of the legend label size, applicable to the legend plot. The default is
12.

spatial_hm 61

angle.text.key A value of key text angle in legend plot. The default is NULL, equivalent to 0.
position.text.key

The position of key text in legend plot, one of "top", "right", "bottom", "left".
Default is NULL, equivalent to "right".

legend.2nd Logical, TRUE or FALSE. If TRUE, the secondary legend is added to each
spatial heatmap, which are the numeric values of each matching spatial features.
The default its FALSE. Only applies to the static image.

position.2nd The position of the secondary legend. One of "top", "right", "bottom", "left", or
a two-component numeric vector. The default is "bottom". Applies to the static
image and video.

legend.nrow.2nd

An integer of rows of the secondary legend keys. Applies to the static image and
video.

legend.ncol.2nd

An integer of columns of the secondary legend keys. Applies to the static image
and video.

legend.key.size.2nd

A numeric of legend key size. The default is 0.03. Applies to the static image
and video.

legend.text.size.2nd

A numeric of the secondary legend text size. The default is 10. Applies to the
static image and video.

angle.text.key.2nd

A value of angle of key text in the secondary legend. Default is 0. Applies to
the static image and video.

position.text.key.2nd

The position of key text in the secondary legend, one of "top", "right", "bottom",
"left". Default is "right". Applies to the static image and video.

add.feature.2nd

Logical TRUE or FALSE. Add feature identifiers to the secondary legend or not.
The default is FALSE. Applies to the static image.

label Logical. If TRUE, spatial features having matching samples are labeled by fea-
ture identifiers. The default is FALSE. It is useful when spatial features are
labeled by similar colors.

label.size The size of spatial feature labels in legend plot. The default is 4.

label.angle The angle of spatial feature labels in legend plot. Default is 0.

hjust The value to horizontally adjust positions of spatial feature labels in legend plot.
Default is 0.

vjust The value to vertically adjust positions of spatial feature labels in legend plot.
Default is 0.

opacity The transparency of colored spatial features in legend plot. Default is 1. If 0,
features are totally transparent.

key Logical. The default is TRUE and keys are added in legend plot. If label is
TRUE, the keys could be removed.

62 spatial_hm

line.size The thickness of each shape outline in the aSVG is maintained in spatial heatmaps,
i.e. the stroke widths in Inkscape. This argument is the extra thickness added to
all outlines. Default is 0.2 in case stroke widths in the aSVG are 0.

line.color A character of the shape outline color. Default is "grey70".

relative.scale A numeric to adjust the relative sizes between multiple aSVGs. Applicable only
if multiple aSVG paths is assigned to svg.path. Default is NULL and all aSVGs
have the same size.

verbose Logical, FALSE or TRUE. If TRUE the samples in data not colored in spatial
heatmaps are printed to R console. Default is TRUE.

out.dir The directory to save interactive spatial heatmaps as independent HTML files
and videos. Default is NULL, and the HTML files and videos are not saved.

animation.scale

A numeric to scale the spatial heatmap size in the HTML files. The default is
1, and the height is 550px and the width is calculated according to the original
aspect ratio in the aSVG file.

selfcontained Whether to save the HTML as a single self-contained file (with external re-
sources base64 encoded) or a file with external resources placed in an adjacent
directory.

video.dim A single character of the dimension of video frame in form of ’widthxheight’,
such as ’1920x1080’, ’1280x800’, ’320x568’, ’1280x1024’, ’1280x720’, ’320x480’,
’480x360’, ’600x600’, ’800x600’, ’640x480’ (default). The aspect ratio of spa-
tial heatmaps are decided by width and height.

res Resolution of the video in dpi.

interval The time interval (seconds) between spatial heatmap frames in the video. De-
fault is 1.

framerate An integer of video framerate in frames per seconds. Default is 1. Larger values
make the video smoother.

bar.width.vdo The color bar width in video, between 0 and 1.
legend.value.vdo

Logical TRUE or FALSE. If TRUE, the numeric values of matching spatial fea-
tures are added to video legend. The default is NULL.

... additional element specifications not part of base ggplot2. In general, these
should also be defined in the element tree argument.

Value

An image of spatial heatmap(s), a three-component list of the spatial heatmap(s) in ggplot format,
a data frame of mapping between assayed samples and aSVG features, and a data frame of feature
attributes.

Details

See the package vignette (browseVignettes('spatialHeatmap')).

spatial_hm 63

Author(s)

Jianhai Zhang <jianhai.zhang@email.ucr.edu>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

https://www.gimp.org/tutorials/
https://inkscape.org/en/doc/tutorials/advanced/tutorial-advanced.en.html
http://www.microugly.com/inkscape-quickguide/ Martin Morgan, Valerie Obenchain, Jim Hester
and Hervé Pagès (2018). SummarizedExperiment: SummarizedExperiment container. R package
version 1.10.1
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
Jeroen Ooms (2018). rsvg: Render SVG Images into PDF, PNG, PostScript, or Bitmap Arrays. R
package version 1.3. https://CRAN.R-project.org/package=rsvg
R. Gentleman, V. Carey, W. Huber and F. Hahne (2017). genefilter: genefilter: methods for filtering
genes from high-throughput experiments. R package version 1.58.1
Paul Murrell (2009). Importing Vector Graphics: The grImport Package for R. Journal of Statistical
Software, 30(4), 1-37. URL http://www.jstatsoft.org/v30/i04/
Baptiste Auguie (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package ver-
sion 2.3. https://CRAN.R-project.org/package=gridExtra
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. RL https://www.R-project.org/
https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg
Yu, G., 2020. ggplotify: Convert Plot to ’grob’ or ’ggplot’ Object. R package version 0.0.5.URLhttps://CRAN.R-
project.org/package=ggplotify30
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
Guangchuang Yu (2020). ggplotify: Convert Plot to ’grob’ or ’ggplot’ Object. R package version
0.0.5. https://CRAN.R-project.org/package=ggplotify
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as
a "data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.

Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')

64 spatial_hm

df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]
df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be made
based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in this
package and accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

As conventions, raw sequencing count data should be normalized, aggregated, and filtered to
reduce noise.

Normalize count data.
The normalizing function "calcNormFactors" (McCarthy et al. 2012) with default settings
is used.
df.nor.chk <- norm_data(data=df.chk, norm.fun='CNF', log2.trans=TRUE)
se.nor.chk <- norm_data(data=se.chk, norm.fun='CNF', log2.trans=TRUE)
Aggregate count data.
Aggregate "sample__condition" replicates in toy data1.
df.aggr.chk <- aggr_rep(data=df.nor.chk, aggr='mean')
df.aggr.chk[1:3,]
Aggregate "sample_condition" replicates in toy data2, where "sample" is "organism_part" and
"condition" is "age".
se.aggr.chk <- aggr_rep(data=se.nor.chk, sam.factor='organism_part', con.factor='age',
aggr='mean')
assay(se.aggr.chk)[1:3, 1:3]
Filter out genes with low counts and low variance. Genes with counts over 5 (log2 unit) in
at least 1% samples (pOA), and coefficient of variance (CV) between 0.2 and 100 are retained.
Filter toy data1.
df.fil.chk <- filter_data(data=df.aggr.chk, pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)
Filter toy data2.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='organism_part', con.factor='age',

spatial_hm 65

pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)

Spatial heatmaps.

The target chicken aSVG is downloaded from the EBI aSVG repository
(https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg) directly with
function "return_feature". It is included in this package and accessed as below. Details on
how this aSVG is selected are documented in function "return_feature".
svg.chk <- system.file("extdata/shinyApp/example", "gallus_gallus.svg",
package="spatialHeatmap")
Plot spatial heatmaps on gene "ENSGALG00000019846".
Toy data1.
spatial_hm(svg.path=svg.chk, data=df.fil.chk, ID='ENSGALG00000019846', height=0.4,
legend.r=1.9, sub.title.size=7, ncol=3)
Save spaital heatmaps as HTML and video files by assigning "out.dir" "~/test".

if (!dir.exists('~/test')) dir.create('~/test')
spatial_hm(svg.path=svg.chk, data=df.fil.chk, ID='ENSGALG00000019846', height=0.4,
legend.r=1.9, sub.title.size=7, ncol=3, out.dir='~/test')

Toy data2.
spatial_hm(svg.path=svg.chk, data=se.fil.chk, ID='ENSGALG00000019846', legend.r=1.9,
legend.nrow=2, sub.title.size=7, ncol=3)

The data can also come as as a simple named vector. The following gives an example on a
vector of 3 random values.
Random values.
vec <- sample(1:100, 3)
Name the vector. The last name is assumed as a random sample without a matching feature
in aSVG.
names(vec) <- c('brain', 'heart', 'notMapped')
vec
Plot.
spatial_hm(svg.path=svg.chk, data=vec, ID='geneX', height=0.6, legend.r=1.5, ncol=1)

Plot spatial heatmaps on aSVGs of two Arabidopsis thaliana development stages.

Make up a random numeric data frame.
df.test <- data.frame(matrix(sample(x=1:100, size=50, replace=TRUE), nrow=10))
colnames(df.test) <- c('shoot_totalA__condition1', 'shoot_totalA__condition2',
'shoot_totalB__condition1', 'shoot_totalB__condition2', 'notMapped')
rownames(df.test) <- paste0('gene', 1:10) # Assign row names
df.test[1:3,]
aSVG of development stage 1.
svg1 <- system.file("extdata/shinyApp/example", "arabidopsis.thaliana_organ_shm1.svg",
package="spatialHeatmap")
aSVG of development stage 2.
svg2 <- system.file("extdata/shinyApp/example", "arabidopsis.thaliana_organ_shm2.svg",
package="spatialHeatmap")
Spatial heatmaps.
spatial_hm(svg.path=c(svg1, svg2), data=df.test, ID=c('gene1'), height=0.8, legend.r=1.6,
preserve.scale=TRUE)

66 submatrix

Multiple development stages can also be arranged in a single aSVG image, but the
samples, stages, and conditions should be formatted in different ways. See the vignette
for details by running "browseVignette('spatialHeatmap')" in R.
Overlay real images with spatial heatmaps.

The first real image used as a template to create an aSVG.
tmp.pa1 <- system.file('extdata/shinyApp/example/overlay_shm1.png',
package='spatialHeatmap')
The first aSVG created with the first real image.
svg.pa1 <- system.file('extdata/shinyApp/example/overlay_shm1.svg',
package='spatialHeatmap')
The second real image used as a template to create an aSVG.
tmp.pa2 <- system.file('extdata/shinyApp/example/overlay_shm2.png',
package='spatialHeatmap')
The second aSVG created with the second real image.
svg.pa2 <- system.file('extdata/shinyApp/example/overlay_shm2.svg',
package='spatialHeatmap')

The data table.
dat.overlay <- read_fr(system.file('extdata/shinyApp/example/dat_overlay.txt',
package='spatialHeatmap'))

Plot spatial heatmaps on top of real images.
spatial_hm(svg.path=c(svg.pa1, svg.pa2), data=dat.overlay, tmp.path=c(tmp.pa1, tmp.pa2),
charcoal=FALSE, ID=c('gene1'), alpha.overlay=0.5)

submatrix Subset Target Assayed Items and Their Nearest Neighbors

Description

Given a vector of target assayed items (gene, protein, metabolite, etc), this function selects nearest
neighbors for every target item independently, which share most similar abundance profiles with
the targets. The selection is based on correlation or distance matrix computed by cor or dist from
the "stats" package respectively. One of three alternative arguments p, n, v sets a cutoff for the
selection.

Usage

submatrix(
data,
ann = NULL,
ID,
p = 0.3,
n = NULL,
v = NULL,
fun = "cor",
cor.absolute = FALSE,
arg.cor = list(method = "pearson"),

submatrix 67

arg.dist = list(method = "euclidean"),
dir = NULL

)

Arguments

data A data.frame or SummarizedExperiment object returned by the function filter_data,
where the columns and rows of the data matrix are samples/conditions and as-
sayed items (e.g. genes, proteins) respectively. Since this function builds on
coexpression analysis, variables of sample/condition should be at least 5. Oth-
erwise, the results are not reliable.

ann Applies to data argument of SummarizedExperiment. The column name cor-
responding to row item annotation in the rowData slot. Default is NULL.

ID A vector of target item identifiers.

p The proportion of top items with most similar expression profiles with the target
items. Only items within this proportion are returned. Default is 0.3. It applies
to each target item independently, and selected items of each target are returned
together.

n An integer of top items with most similar expression profiles with the target
items. Only items within this number are returned. Default is NULL. It ap-
plies to each target independently, and selected items of each target are returned
together.

v A numeric of correlation (-1 to 1) or distance (>=0) threshold to select items
sharing the most similar expression profiles with the target items. If fun='cor',
only items with correlation coefficient larger than v are returned. If fun='dist',
only items with distance less than v are returned. Default is NULL. It applies
to each target independently, and selected items of each target are returned to-
gether.

fun The function to calculate similarity/distance measure, ’cor’ or ’dist’, correspond-
ing to cor or dist from the "stats" package respectively. Default is ’cor’.

cor.absolute Logical, TRUE or FALSE. Use absolute values or not. Only applies to fun='cor'.
Default is FALSE, meaning the correlation coefficient preserves the negative
sign when selecting items.

arg.cor A list of arguments passed to cor in the "stats" package.
Default is list(method="pearson").

arg.dist A list of arguments passed to dist in the "stats" package.
Default is list(method="euclidean").

dir The directory where the folder "customComputedData" is created automatically
to save the subsetted matrix as a TSV-format file "sub_matrix.txt", which is
ready to upload to the Shiny app launched by shiny_shm. In the "sub_matrix.txt",
the rows are assayed items and column names are in the syntax "sample__condition".
This argument should be the same with the dir in adj_mod so that the files
"adj.txt" and "mod.txt" generated by adj_mod are saved in the same folder "cus-
tomComputedData". The default is NULL and no file is saved. This argument
is used only when using the "customComputedData" in the Shiny app.

68 submatrix

Value

The subsetted matrix of target items and their nearest neighbors.

Author(s)

Jianhai Zhang <zhang.jianhai@hotmail.com; jzhan067@ucr.edu>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Langfelder P and Horvath S, WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 2008, 9:559 doi:10.1186/1471-2105-9-559
Peter Langfelder, Steve Horvath (2012). Fast R Functions for Robust Correlations and Hierarchical
Clustering. Journal of Statistical Software, 46(11), 1-17. URL http://www.jstatsoft.org/v46/i11/
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Peter Langfelder, Bin Zhang and with contributions from Steve Horvath (2016). dynamicTreeCut:
Methods for Detection of Clusters in Hierarchical Clustering Dendrograms. R package version
1.63-1. https://CRAN.R-project.org/package=dynamicTreeCut
Martin Morgan, Valerie Obenchain, Jim Hester and Hervé Pagès (2018). SummarizedExperiment:
SummarizedExperiment container. R package version 1.10.1
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

In the following examples, the 2 toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, they are
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769". Toy data1 is used as
a "data frame" input to exemplify data of simple samples/conditions, while toy data2 as
"SummarizedExperiment" to illustrate data involving complex samples/conditions.

Set up toy data.

Access toy data1.
cnt.chk.simple <- system.file('extdata/shinyApp/example/count_chicken_simple.txt',
package='spatialHeatmap')
df.chk <- read.table(cnt.chk.simple, header=TRUE, row.names=1, sep='\t', check.names=FALSE)
Columns follow the namig scheme "sample__condition", where "sample" and "condition" stands
for organs and time points respectively.
df.chk[1:3,]

A column of gene annotation can be appended to the data frame, but is not required.
ann <- paste0('ann', seq_len(nrow(df.chk))); ann[1:3]

submatrix 69

df.chk <- cbind(df.chk, ann=ann)
df.chk[1:3,]

Access toy data2.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data2. It should be made
based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in this
package and accessed below.
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data2 corresponds with a row in targets file.
target.chk[1:5,]
Store toy data2 in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene annotation, but not required.
rowData(se.chk) <- DataFrame(ann=ann)

As conventions, raw sequencing count data should be normalized, aggregated, and filtered to
reduce noise.

Normalize count data.
The normalizing function "calcNormFactors" (McCarthy et al. 2012) with default settings
is used.
df.nor.chk <- norm_data(data=df.chk, norm.fun='CNF', log2.trans=TRUE)
se.nor.chk <- norm_data(data=se.chk, norm.fun='CNF', log2.trans=TRUE)
Aggregate count data.
Aggregate "sample__condition" replicates in toy data1.
df.aggr.chk <- aggr_rep(data=df.nor.chk, aggr='mean')
df.aggr.chk[1:3,]
Aggregate "sample_condition" replicates in toy data2, where "sample" is "organism_part" and
"condition" is "age".
se.aggr.chk <- aggr_rep(data=se.nor.chk, sam.factor='organism_part', con.factor='age',
aggr='mean')
assay(se.aggr.chk)[1:3, 1:3]
Filter out genes with low counts and low variance. Genes with counts over 5 (log2 unit) in at
least 1% samples (pOA), and coefficient of variance (CV) between 0.2 and 100 are retained.
Filter toy data1.
df.fil.chk <- filter_data(data=df.aggr.chk, pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)
Filter toy data2.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='organism_part', con.factor='age',
pOA=c(0.01, 5), CV=c(0.2, 100), dir=NULL)

Select nearest neighbors for target genes 'ENSGALG00000019846' and 'ENSGALG00000000112',
which are usually genes visualized in spatial heatmaps.
Toy data1.
df.sub.mat <- submatrix(data=df.fil.chk, ID=c('ENSGALG00000019846', 'ENSGALG00000000112'),
p=0.1)

70 sub_data

Toy data2.
se.sub.mat <- submatrix(data=se.fil.chk, ann='ann', ID=c('ENSGALG00000019846',
'ENSGALG00000000112'), p=0.1)

In the following, "df.sub.mat" and "se.sub.mat" is used in the same way, so only
"se.sub.mat" illustrated.

The subsetted matrix is partially shown below.
se.sub.mat[c('ENSGALG00000019846', 'ENSGALG00000000112'), c(1:2, 63)]

sub_data Subset Target Data for Spatial Enrichment

Description

This function subsets the target spatial features (e.g. cells, tissues, organs) and factors (e.g. experi-
mental treatments, time points) for the subsequent spatial enrichment.

Usage

sub_data(
data,
feature,
features = NULL,
factor,
factors = NULL,
com.by = "feature",
target = NULL

)

Arguments

data A SummarizedExperiment object. The colData slot is required to contain at
least two columns of "features" and "factors" respectively. The rowData slot can
optionally contain a column of discriptions of each gene and the column name
should be metadata.

feature The column name of "features" in the colData slot.

features A vector of at least two selected features for spatial enrichment, which come
from the feature column. The default is NULL and the first two features will be
selected. If all, then all features will be selected.

factor The column name of "factors" in the colData slot.

factors A vector of at least two selected factors for spatial enrichment, which come from
the factor column. The default is NULL and the first two factors will be selected.
If all, then all factors will be selected.

sub_data 71

com.by One of feature, factor, feature.factor. If feature, pairwise compar-
isons will be perfomed between the selected features and the factors will
be treated as replicates. If factor, pairwise comparisons will be perfomed be-
tween the selected factors and the features will be treated as replicates. If
feature.factor, the selected features and factors will be concatenated by
__ and pairwise comparisons will be perfomed between the "feature__factor"
entities. The default is feature. The corresponding column will be moved to
the first in the colData slot and be recognized in the spatial enrichment process.

target A single-component vector of the target for spatial enrichment. If com.by='feature',
the target will be one of the entries in features. If com.by='factor', the target
will be one of the entries in factors. If com.by='feature.factor', the target
will be one of the concatenated features and factors. E.g. features=c('brain','kidney'),
factors=c('control','drug'), the target could be one of c('brain__control','brain__drug','kidney__control','kidney__drug').
The default is NULL, and the first entity in features is selected, since the default
com.by is feature. A target column will be included in the colData slot and
will be recognized in spatial enrichment.

Value

A subsetted SummarizedExperiment object.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Martin Morgan, Valerie Obenchain, Jim Hester and Hervé Pagès (2018). SummarizedExperiment:
SummarizedExperiment container. R package version 1.10.1

Examples

In the following examples, the toy data come from an RNA-seq analysis on development of 7
chicken organs under 9 time points (Cardoso-Moreira et al. 2019). For conveninece, it is
included in this package. The complete raw count data are downloaded using the R package
ExpressionAtlas (Keays 2019) with the accession number "E-MTAB-6769".

Set up toy data.

Access toy data.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]

A targets file describing samples and conditions is required for toy data. It should be made

72 update_feature

based on the experiment design, which is accessible through the accession number
"E-MTAB-6769" in the R package ExpressionAtlas. An example targets file is included in this
package and accessed below.
Access the count table.
cnt.chk <- system.file('extdata/shinyApp/example/count_chicken.txt', package='spatialHeatmap')
count.chk <- read.table(cnt.chk, header=TRUE, row.names=1, sep='\t')
count.chk[1:3, 1:5]
Access the example targets file.
tar.chk <- system.file('extdata/shinyApp/example/target_chicken.txt', package='spatialHeatmap')
target.chk <- read.table(tar.chk, header=TRUE, row.names=1, sep='\t')
Every column in toy data corresponds with a row in targets file.
target.chk[1:5,]
Store toy data in "SummarizedExperiment".
library(SummarizedExperiment)
se.chk <- SummarizedExperiment(assay=count.chk, colData=target.chk)
The "rowData" slot can store a data frame of gene metadata, but not required. Only the
column named "metadata" will be recognized.
Pseudo row metadata.
metadata <- paste0('meta', seq_len(nrow(count.chk))); metadata[1:3]
rowData(se.chk) <- DataFrame(metadata=metadata)

As conventions, raw sequencing count data should be normalized and filtered to
reduce noise. Since normalization will be performed in spatial enrichment, only filtering
is required before subsetting the data.

Filter out genes with low counts and low variance. Genes with counts over 5 in
at least 10% samples (pOA), and coefficient of variance (CV) between 3.5 and 100 are
retained.
se.fil.chk <- filter_data(data=se.chk, sam.factor='organism_part', con.factor='age',
pOA=c(0.1, 5), CV=c(3.5, 100), dir=NULL)
Subset the data.
data.sub <- sub_data(data=se.fil.chk, feature='organism_part', features=c('brain', 'heart',
'kidney'), factor='age', factors=c('day10', 'day12'), com.by='feature', target='brain')

update_feature Update aSVG Spatial Features

Description

Successful spatial heatmap plotting requires the aSVG features of interest have matching samples
(cells, tissues, etc) in the data. If this requirement is not fulfiled, either the sample identifiers in the
data or the spatial feature identifiers in the aSVG should be changed. This function is designed to
replace existing feature identifiers, stroke (outline) widths, and/or feature colors in aSVG files with
user-provided entries.

Usage

update_feature(df.new, dir)

update_feature 73

Arguments

df.new The custom feature identifiers, stroke (outline) widths, and/or feature colors,
should be included in the data frame returned by return_feature as independent
columns, and the corresponding column names should be "featureNew", "stro-
keNew", and "colorNew" respectively in order to be recognized.
To color the corresponding features, the identifiers in "featureNew" should be
the same with matching sample identifiers. The numeric values in "strokeNew"
would be the outline widths of corresponding features. The colors in "colorNew"
would be the default colors for highlighting target features in the legend plot.

dir The directory path where the aSVG files to update. It should be the same with
dir in return_feature.

Value

Nothing is returned. The aSVG files of interest in dir are updated with provided attributes, and are
ready to use in function spatial_hm.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

Hadley Wickham, Jim Hester and Jeroen Ooms (2019). xml2: Parse XML. R package version 1.2.2.
https://CRAN.R-project.org/package=xml2
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. "Gene Expression Across Mammalian Organ Development."
Nature 571 (7766): 505-9
Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber, Andy
Liaw, Thomas Lumley, Martin Maechler, Arni Magnusson, Steffen Moeller, Marc Schwartz and
Bill Venables (2020). gplots: Various R Programming Tools for Plotting Data. R package version
3.0.3. https://CRAN.R-project.org/package=gplots

Examples

The following shows how to download a chicken aSVG containing spatial features of 'brain'
and 'heart' from the EBI aSVG repository directly
(https://github.com/ebi-gene-expression-group/anatomogram/tree/master/src/svg). An empty
directory is recommended so as to avoid overwriting existing SVG files with the same names.
Here "~/test" is used.

Make an empty directory "~/test" if not exist.
if (!dir.exists('~/test')) dir.create('~/test')
Remote aSVG repos.
data(aSVG.remote.repo)
tmp.dir <- normalizePath(tempdir(check=TRUE), winslash="/", mustWork=FALSE)
tmp.dir.ebi <- paste0(tmp, '/ebi.zip')
tmp.dir.shm <- paste0(tmp, '/shm.zip')

74 write_hdf5

Download the remote aSVG repos as zip files. According to Bioconductor's
requirements, downloadings are not allowed inside functions, so the repos are
downloaded before calling "return_feature".
download.file(aSVG.remote.repo$ebi, tmp.dir.ebi)
download.file(aSVG.remote.repo$shm, tmp.dir.shm)
remote <- list(tmp.dir.ebi, tmp.dir.shm)
Query the remote aSVG repos.
feature.df <- return_feature(feature=c('heart', 'brain'), species=c('gallus'), dir='~/test',
match.only=TRUE, remote=remote)
feature.df

New features, stroke widths, colors.
ft.new <- c('BRAIN', 'HEART')
stroke.new <- c(0.05, 0.1)
col.new <- c('green', 'red')
Include new features, stroke widths, colors to the feature data frame.
feature.df.new <- cbind(featureNew=ft.new, strokeNew=stroke.new, colorNew=col.new, feature.df)
feature.df.new

Update features.
update_feature(df.new=feature.df.new, dir='~/test')

write_hdf5 Construct Database for the Shiny App

Description

This is a convenience function for constructing the database backend in the Shiny app (shiny_shm).
The data to store in the database should be in the class of "data.frame" or "SummarizedExperiment"
and should be formatted according to the conventions in the "data" argument of spatial_hm. After
formatted, all these data should be arranged in a list and each data slot should have a unique name
such as "expr_arab", "expr_chicken", etc..
In addition, a pairing data frame describing the matching relationship between the data and aSVG
files must also be included in the list with the exclusive slot name "df_pair". This data frame
should contain at least three columns: name, data, aSVG. The name column includes concise de-
scription of each data-aSVG pair, and entries in this column will be listed under "Step 1: data
sets" on the Shiny app. The data column contains slot names of all data in the list ("expr_arab",
"expr_chicken", etc.), and the aSVG column includes the aSVG file names corresponding to each
data respectively such as "gallus_gallus.svg", etc. If one data is related to multiple aSVG files
(e.g. multiple development stages), these aSVGs should be concatenated by comma, space, or
semicolon, e.g. "arabidopsis.thaliana_organ_shm1.svg;arabidopsis.thaliana_organ_shm2.svg". In-
clusion of other columns providing metadata of the data and aSVGs are optional, which is up to the
users.
After calling this function, all the data including "df_pair" in the list are saved into independent
DHF5 databases, and all the DHF5 databases are finally compressed in the file "data_shm.tar".
Accordingly, all the corresponding aSVG files listed in the "df_pair" should be compressed in an-
other "tar" file such as "aSVG.tar". If the directory path containing the aSVG files are assigned to
svg.dir, all the SVG files in the diretory are compressed in "aSVGs.tar" automatically. The two

write_hdf5 75

tar files compose the database in the Shiny app and should be placed in the "example" folder in the
app or uploaded on the user interface.

Usage

write_hdf5(
dat.lis,
dir = "./data_shm",
replace = FALSE,
chunkdim = NULL,
level = NULL,
verbose = FALSE,
svg.dir = NULL

)

Arguments

dat.lis A list of data of class "data.frame" or "SummarizedExperiment", where every
data should have a unique slot name such as "expr_arab", "expr_chicken", etc..
In addition to the data, a pairing data frame describing pairing between the data
and aSVG files must be included under the exclusive slot name "df_pair". This
data frame has three required columns: the "name" column includes concise
names of the data-aSVG pair, the "data" column contains all slot names of the
data ("expr_arab", "expr_chicken", etc.) and the "aSVG" column contains the
aSVG file names corresponding to each data. If one data is related to multiple
aSVG files (e.g. multiple development stages), these aSVGs should be concate-
nated by comma, space, or semicolon, e.g.
"arabidopsis.thaliana_organ_shm1.svg;arabidopsis.thaliana_organ_shm2.svg". The
metadata of data and aSVGs could be optionally included in extra columns.

dir The directory path to save the "data_shm.tar" file. Default is ./data_shm.
replace If data with the same slot names in dat.lis are already saved in dir, should the

dir be emptied? Default is FALSE. If TRUE, the existing content in dir will
be lost.

chunkdim The dimensions of the chunks and the compression level to use for writing the
assay data to disk.
Passed to the internal calls to writeHDF5Array. See ?writeHDF5Array for more
information.

level The dimensions of the chunks and the compression level to use for writing the
assay data to disk.
Passed to the internal calls to writeHDF5Array. See ?writeHDF5Array for more
information.

verbose Set to TRUE to make the function display progress.
In the case of saveHDF5SummarizedExperiment(), verbose is set to NA by de-
fault, in which case verbosity is controlled by DelayedArray:::get_verbose_block_processing().
Setting verbose to TRUE or FALSE overrides this.

svg.dir The directory path of aSVG files listed in "df_pair". If provded, all SVG files
in the directory are compressed in "aSVGs.tar" and saved in dir. Default is
NULL, which requires users to compress the aSVGs in a tar file.

76 write_hdf5

Value

A file of "data_shm.tar" is save in dir. If svg.dir is assigned a valid value, all relevant SVG files
are compressed in "aSVGs.tar" in dir.

Author(s)

Jianhai Zhang <jzhan067@ucr.edu; zhang.jianhai@hotmail.com>
Dr. Thomas Girke <thomas.girke@ucr.edu>

References

SummarizedExperiment: SummarizedExperiment container. R package version 1.10.1
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Hervé Pagès (2020). HDF5Array: HDF5 backend for DelayedArray objects. R package version
1.16.1.
Mustroph, Angelika, M Eugenia Zanetti, Charles J H Jang, Hans E Holtan, Peter P Repetti, David
W Galbraith, Thomas Girke, and Julia Bailey-Serres. 2009. “Profiling Translatomes of Discrete
Cell Populations Resolves Altered Cellular Priorities During Hypoxia in Arabidopsis.” Proc Natl
Acad Sci U S A 106 (44): 18843–8
Davis, Sean, and Paul Meltzer. 2007. “GEOquery: A Bridge Between the Gene Expression Om-
nibus (GEO) and BioConductor.” Bioinformatics 14: 1846–7
Gautier, Laurent, Leslie Cope, Benjamin M. Bolstad, and Rafael A. Irizarry. 2004. “Affy—analysis
of Affymetrix GeneChip Data at the Probe Level.” Bioinformatics 20 (3). Oxford, UK: Oxford
University Press: 307–15. doi:10.1093/bioinformatics/btg405
Keays, Maria. 2019. ExpressionAtlas: Download Datasets from EMBL-EBI Expression Atlas
Huber, W., V. J. Carey, R. Gentleman, S. An ders, M. Carlson, B. S. Carvalho, H. C. Bravo, et al.
2015. “Orchestrating High-Throughput Genomic Analysis Wit H Bioconductor.” Nature Methods
12 (2): 115–21. http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. "Moderated Estimation of Fold
Change and Dispersion for RNA-Seq Data with DESeq2." Genome Biology 15 (12): 550. doi:10.1186/s13059-
014-0550-8
McCarthy, Davis J., Chen, Yunshun, Smyth, and Gordon K. 2012. "Differential Expression Anal-
ysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation." Nucleic Acids
Research 40 (10): 4288–97
Cardoso-Moreira, Margarida, Jean Halbert, Delphine Valloton, Britta Velten, Chunyan Chen, Yi
Shao, Angélica Liechti, et al. 2019. “Gene Expression Across Mammalian Organ Development.”
Nature 571 (7766): 505–9

Examples

The examples below demonstrate 1) how to dump Expression Atlas data set into the Shiny database;
2) how to dump GEO data set into the Shiny database; 3) how to include aSVGs of multiple
development stages; 4) how to read the database; 5) how to create customized Shiny app with
the database.

1. Dump data from Expression Atlas into "data_shm.tar" using ExpressionAtlas package (Keays 2019).

write_hdf5 77

The chicken data derived from an RNA-seq analysis on developments of 7 chicken organs under 9
time points (Cardoso-Moreira et al. 2019) is chosen as example.
The following searches the Expression Atlas for expression data from ‘heart’ and ‘gallus’.
library(ExpressionAtlas)
cache.pa <- '~/.cache/shm' # The path of cache.
all.chk <- read_cache(cache.pa, 'all.chk') # Retrieve data from cache.
if (is.null(all.chk)) { # Save downloaded data to cache if it is not cached.
all.chk <- searchAtlasExperiments(properties="heart", species="gallus")
save_cache(dir=cache.pa, overwrite=TRUE, all.chk)

}

all.chk[3,]
rse.chk <- read_cache(cache.pa, 'rse.chk') # Read data from cache.
if (is.null(rse.chk)) { # Save downloaded data to cache if it is not cached.

rse.chk <- getAtlasData('E-MTAB-6769')[[1]][[1]]
save_cache(dir=cache.pa, overwrite=TRUE, rse.chk)

}
The downloaded data is stored in "SummarizedExperiment" by default (SE, M. Morgan et al. 2018).
The experiment design is described in the "colData" slot. The following returns first three rows.
colData(rse.chk)[1:3,]
In the "colData" slot, it is required to define the "sample" and "condition" columns respectively.
Both "sample" and "condition" are general terms. The former refers to entities where the numeric
data are measured such as cell organelles, tissues, organs, ect. while the latter denotes
experimental treatments such as drug dosages, gender, trains, time series, PH values, ect. In the
downloaded data, the two columns are not explicitly defined, so "organism_part" and "age" are
selected and renamed as "sample" and "condition" respectively.
colnames(colData(rse.chk))[c(6, 8)] <- c('condition', 'sample'); colnames(colData(rse.chk))
The raw RNA-Seq count are preprocessed with the following steps: (1) normalization,
(2) aggregation of replicates, and (3) filtering of reliable expression data. The details of
these steps are explained in the pacakge vignette.
browseVignettes('spatialHeatmap')

se.nor.chk <- norm_data(data=rse.chk, norm.fun='ESF', log2.trans=TRUE) # Normalization
se.aggr.chk <- aggr_rep(data=se.nor.chk, sam.factor='sample', con.factor='condition',
aggr='mean') # Replicate agggregation using mean
Genes are filtered out if not meet these criteria: expression values are at least 5 in at least
1% of all samples, coeffient of variance is between 0.6 and 100.
se.fil.chk <- filter_data(data=se.aggr.chk, sam.factor='sample', con.factor='condition',
pOA=c(0.01, 5), CV=c(0.6, 100), dir=NULL)
The aSVG file corresponding with the data is pre-packaged and copied to a temporary directory.
dir.svg <- paste0(tempdir(check=TRUE), '/svg_shm') # Temporary directory.
if (!dir.exists(dir.svg)) dir.create(dir.svg)
Path of the aSVG file.
svg.chk <- system.file("extdata/shinyApp/example", 'gallus_gallus.svg', package="spatialHeatmap")
file.copy(svg.chk, dir.svg, overwrite=TRUE) # Copy the aSVG file.

2. Dump data from GEO into "data_shm.tar" using GEOquery package (S. Davis and Meltzer 2007).

The Arabidopsis thaliana (Arabidopsis) data from an microarray assay of hypoxia treatment on
Arabidopsis root and shoot cell types (Mustroph et al. 2009) is selected as example.
The data set is downloaded with the accession number "GSE14502". It is stored in ExpressionSet
container (W. Huber et al. 2015) by default, and then converted to a SummarizedExperiment object.
library(GEOquery)
gset <- read_cache(cache.pa, 'gset') # Retrieve data from cache.

78 write_hdf5

if (is.null(gset)) { # Save downloaded data to cache if it is not cached.
gset <- getGEO("GSE14502", GSEMatrix=TRUE, getGPL=TRUE)[[1]]
save_cache(dir=cache.pa, overwrite=TRUE, gset)

}
se.sh <- as(gset, "SummarizedExperiment") # Converted to SummarizedExperiment
The gene symbol identifiers are extracted from the rowData component to be used as row names.
rownames(se.sh) <- make.names(rowData(se.sh)[, 'Gene.Symbol'])
A slice of the experimental design in colData slot is shown. Both the samples and conditions
are contained in the "title" column. The samples are indicated by promoters: pGL2 (root
atrichoblast epidermis), pCO2 (root cortex meristematic zone), pSCR (root endodermis),
pWOL (root vasculature), etc., and conditions are control and hypoxia.
colData(se.sh)[60:63, 1:4]
Since the samples and conditions need to be listed in two independent columns, like the the
chicken data above, a targets file is recommended to separate samples and conditions. The main
reason to choose this Arabidopdis data is to illusrate the usage of targets file when necessary.
A pre-packaged targets file is accessed and partially shown below.
sh.tar <- system.file('extdata/shinyApp/example/target_arab.txt', package='spatialHeatmap')
target.sh <- read_fr(sh.tar); target.sh[60:63,]
Load custom the targets file into colData slot.
colData(se.sh) <- DataFrame(target.sh)
This data set was already normalized with the RMA algorithm (Gautier et al. 2004). Thus, the
pre-processing steps are restricted to aggregation of replicates and filtering of reliably
expressed genes.
Replicate agggregation using mean
se.aggr.sh <- aggr_rep(data=se.sh, sam.factor='samples', con.factor='conditions', aggr='mean')
se.fil.arab <- filter_data(data=se.aggr.sh, sam.factor='samples', con.factor='conditions',
pOA=c(0.03, 6), CV=c(0.30, 100), dir=NULL) # Filtering of genes with low intensities and variance

Similarly, the aSVG file corresponding to this data is pre-packaged and copied to the same
temporary directory.
svg.arab <- system.file("extdata/shinyApp/example", 'arabidopsis.thaliana_organ_shm.svg',
package="spatialHeatmap")
file.copy(svg.arab, dir.svg, overwrite=TRUE)

3. The random data and aSVG files of two development stages of Arabidopsis organs.

The gene expression data is randomly generated and pre-packaged.
pa.growth <- system.file("extdata/shinyApp/example", 'random_data_multiple_aSVGs.txt',
package="spatialHeatmap")
dat.growth <- read_fr(pa.growth); dat.growth[1:3,]
Paths of the two corresponsing aSVG files.
svg.arab1 <- system.file("extdata/shinyApp/example", 'arabidopsis.thaliana_organ_shm1.svg',
package="spatialHeatmap")
svg.arab2 <- system.file("extdata/shinyApp/example", 'arabidopsis.thaliana_organ_shm2.svg',
package="spatialHeatmap")
Copy the two aSVG files to the same temporary directory.
file.copy(c(svg.arab1, svg.arab2), dir.svg, overwrite=TRUE)

4. Include aSVG templates of raster images.

pa.leaf <- system.file("extdata/shinyApp/example", 'dat_overlay.txt',
package="spatialHeatmap")
dat.leaf <- read_fr(pa.leaf); dat.leaf[1:2,]

write_hdf5 79

Paths of the two aSVG files.
svg.leaf1 <- system.file("extdata/shinyApp/example", 'overlay_shm1.svg',
package="spatialHeatmap")
svg.leaf2 <- system.file("extdata/shinyApp/example", 'overlay_shm2.svg',
package="spatialHeatmap")
Paths of the two corresponsing raster images of templates.
tmp.leaf1 <- system.file("extdata/shinyApp/example", 'overlay_shm1.png',
package="spatialHeatmap")
tmp.leaf2 <- system.file("extdata/shinyApp/example", 'overlay_shm2.png',
package="spatialHeatmap")
Copy the two aSVG and two template files to the same temporary directory.
file.copy(c(svg.leaf1, svg.leaf2, tmp.leaf1, tmp.leaf2), dir.svg, overwrite=TRUE)

Make the pairing table, which describes matchings between the data and image files.
df.pair <- data.frame(name=c('chicken', 'arab', 'growth', 'leaf'), data=c('expr_chicken', 'expr_arab',
'random_data_multiple_aSVGs', 'leaf'), aSVG=c('gallus_gallus.svg', 'arabidopsis.thaliana_organ_shm.svg',
'arabidopsis.thaliana_organ_shm1.svg;arabidopsis.thaliana_organ_shm2.svg',
'overlay_shm1.svg;overlay_shm1.png;overlay_shm2.svg;overlay_shm2.png'))
Note that multiple aSVGs should be concatenated by comma, semicolon, or single space.
df.pair

Organize the data and pairing table in a list, and create the database.
dat.lis <- list(df_pair=df.pair, expr_chicken=se.fil.chk, expr_arab=se.fil.arab,
random_data_multiple_aSVGs=dat.growth, leaf=dat.leaf)
Create the database in a temporary directory "db_shm".
dir.db <- paste0(tempdir(check=TRUE), '/db_shm') # Temporary directory.

if (!dir.exists(dir.db)) dir.create(dir.db)
write_hdf5(dat.lis=dat.lis, dir=dir.db, svg.dir=dir.svg, replace=TRUE)

4. Read data and/or pairing table from "data_shm.tar".
dat.lis1 <- read_hdf5(paste0(dir.db, '/data_shm.tar'), names(dat.lis))

5. Create customized Shiny app with the database.

if (!dir.exists('~/test_shiny')) dir.create('~/test_shiny')
lis.tar <- list(data=paste0(dir.db, '/data_shm.tar'), svg=paste0(dir.db, '/aSVGs.tar'))
custom_shiny(lis.tar, app.dir='~/test_shiny')
Run the app.
shiny::runApp('~/test_shiny/shinyApp')

Except "SummarizedExperiment", the database also accepts data in form of "data.frame". In that
case, the columns should follow the naming scheme "sample__condition", i.e. a sample and a
condition are concatenated by double underscore. The details are seen in the "data" argument
of the function "spatial_hm".
The following takes the Arabidopsis data as example.
df.arab <- assay(se.fil.arab); df.arab[1:3, 1:3]
The new data list.
dat.lis2 <- list(df_pair=df.pair, expr_chicken=se.fil.chk, expr_arab=df.arab,
random_data_multiple_aSVGs=dat.growth)

80 write_hdf5

If the data does not have an corresponding aSVG or vice versa, in the pairing table the slot
of missing data or aSVG should be filled with "none". In that case, on the Shiny user
interface, users will be prompted to select an aSVG for the unpaired data or select a data
for the unpaired aSVG.
For example, if the aSVG "arabidopsis.thaliana_organ_shm.svg" has no matching data, the
pairing table should be made like below.
df.pair1 <- data.frame(name=c('chicken', 'arab', 'growth'), data=c('expr_chicken', 'none',
'random_data_multiple_aSVGs'), aSVG=c('gallus_gallus.svg', 'arabidopsis.thaliana_organ_shm.svg',
'arabidopsis.thaliana_organ_shm1.svg;arabidopsis.thaliana_organ_shm2.svg'))
df.pair1
The new data list.
dat.lis3 <- list(df_pair=df.pair, expr_chicken=se.fil.chk, none='none',
random_data_multiple_aSVGs=dat.growth)

Index

∗ datasets
aSVG.remote.repo, 19
deg.table, 23
lis.deg.up.down, 30

∗ spatial heatmap
spatialHeatmap-package, 3

adj_mod, 6, 11, 35, 36, 51, 67
adjacency, 12
aggr_rep, 6, 16
aSVG.remote.repo, 19

calcNormFactors, 40, 42
com_factor, 19
cor, 66, 67
cpm, 40
custom_shiny, 6, 20
cutreeHybrid, 12
cv, 27, 28

deg.table, 23
deg_ovl, 24
dist, 66, 67

edit_tar, 26
estimateSizeFactors, 40, 42

filter_data, 6, 27, 28, 50, 51, 67
fread, 45

ggplot, 32

heatmap.2, 32

lis.deg.up.down, 30

make.names, 45
matrix_hm, 6, 11, 31

network, 6, 13, 16, 27, 28, 35, 40, 58
norm_data, 6, 39

plot.default, 36
pOverA, 27, 28
profile_gene, 43

read_cache, 44
read_fr, 45
read_hdf5, 46
return_feature, 6, 47, 58, 73
rlog, 40, 42

save_cache, 44, 49
shiny_shm, 6, 13, 29, 50, 67, 74
spatial_enrich, 52
spatial_hm, 6, 16, 27, 40, 47, 56, 58, 73, 74
spatialHeatmap

(spatialHeatmap-package), 3
spatialHeatmap-package, 3
sub_data, 70
submatrix, 6, 11–13, 32, 36, 51, 66

TOMsimilarity, 12
TOMsimilarityFromExpr, 12

update_feature, 6, 47, 72

varianceStabilizingTransformation, 40,
42

write_hdf5, 74
writeHDF5Array, 75

81

	spatialHeatmap-package
	adj_mod
	aggr_rep
	aSVG.remote.repo
	com_factor
	custom_shiny
	deg.table
	deg_ovl
	edit_tar
	filter_data
	lis.deg.up.down
	matrix_hm
	network
	norm_data
	profile_gene
	read_cache
	read_fr
	read_hdf5
	return_feature
	save_cache
	shiny_shm
	spatial_enrich
	spatial_hm
	submatrix
	sub_data
	update_feature
	write_hdf5
	Index

