
MetCirc: Navigating mass spectral similarity in high-resolution

MS/MS metabolomics data

Thomas Naake1 and Emmanuel Gaquerel2

1 Max Planck Institute of Molecular Plant Physiology

14476 Potsdam-Golm, Germany
2 Plant Defense Metabolism

Centre for Organismal Studies

69120 Heidelberg, Germany

October 29, 2019

1 Introduction

The MetCirc package comprises functionalities to display, (interactively) explore similarities and

annotate features of MS/MS metabolomics data. It is especially designed to improve the inter-

active exploration of metabolomics data obtained from cross-species/cross-tissues comparative

experiments. MetCirc relies on the MSnbase infrastructure to handle MS/MS spectra. Specif-

ically, MetCirc uses the Spectra class from which similarities between Spectrum2 objects are

calculated and which stores information on spectra in the columns of the slot elementMetadata.

Notably, MetCirc provides functions to calculate the similarity between individual MS/MS spec-

tra based on a normalised dot product (NDP, see Li2015 for further details) calculation taking

into account shared fragments or main neutral losses.

Visualisation of molecular networks was pioneered by the Dorrestein lab (Watrous2012) to

efficiently organize MS/MS spectra in such a way that clusters of MS/MS spectra sharing mul-

tiple common fragments are rapidly inferred.

In contrary to the analysis there, the MetCirc framework offers two ways for the computa-

tion of mass spectrum similarity: one way deploys common (shared) fragments and the other

shared neutral losses that are deduced from the spectra. Especially the latter approach al-

lows to extract clusters of spectra corresponding to compound families facilitating the rapid

dereplication of hitherto unknown metabolites. Small molecules, as produced by plants, return

during fragmentation few fragments. Sometimes only a few fragments among them are shared

and diagnostic across the compound family. Compared to the MS/MS similarity scoring based

on shared fragments, the second similarity measure incorporates, in a non-supervised manner,

neutral losses, which definitely helps obtaining biochemically-meaningful MS/MS groupings.

Furthermore, any other function to calculate similarities can be provided or a similarity matrix

1

providing similarity (in the range from 0 to 1) for features that are present in the Spectra object.

The interpretation drawn from network reconstruction highly depends from topological parame-

ters applied during the network construction steps. MetCirc circumvents this confinement. Fur-

thermore, it uses instead smaller MS/MS datasets obtained from experiments involving a priori

defined biological groups (organisms, tissues, etc.) to visualise within and between MS/MS fea-

ture similarities on a circular layout - inspired by the Circos framework (Krzywinkski2009).

The visualisation is adjustable (MS/MS ordering and similarity thresholds) via the shiny inter-

face and does not uniquely emphasize on large clusters of MS/MS features (a frequent caveat of

network visualisation). Furthermore, the implemented functionality for annotation may improve

dereplication of known and unknown molecules.

This vignette uses as a case study indiscriminant MS/MS (idMS/MS) data from Li2015, un-

published idMS/MS data collected from different organs of tobacco flowers and data from the

Global Natural Product Social Molecular Networking (GNPS) library to navigate through the

analysis pipeline. The pipeline includes the creation of Spectra objects, the calculation of a

similarity measure (NDP), assignment to a similarity matrix and visualisation of similarity based

on interactive and non-interactive graphical tools using the circlize framework (Gu2014).

MetCirc is currently under active development. If you discover any bugs, typos or develop ideas

of improving MetCirc feel free to raise an issue via GitHub or send a mail to the developers.

2 Prepare the environment

To install MetCirc enter the following to the R console

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("MetCirc")

Before starting, load the MetCirc package. This will also load the required packages MSnbase,

circlize, amap, scales and shiny:

library(MetCirc)

Loading required package: amap

Loading required package: circlize

==

circlize version 0.4.8

CRAN page: https://cran.r-project.org/package=circlize

Github page: https://github.com/jokergoo/circlize

Documentation: http://jokergoo.github.io/circlize book/book/

##

2

https://github.com/tnaake/MetCirc

If you use it in published research, please cite:

Gu, Z. circlize implements and enhances circular visualization

in R. Bioinformatics 2014.

==

Loading required package: scales

Loading required package: shiny

Loading required package: MSnbase

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: ’BiocGenerics’

The following objects are masked from ’package:parallel’:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from ’package:stats’:

##

IQR, mad, sd, var, xtabs

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append,

as.data.frame, basename, cbind, colnames, dirname, do.call,

duplicated, eval, evalq, get, grep, grepl, intersect,

is.unsorted, lapply, mapply, match, mget, order, paste, pmax,

pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply,

setdiff, sort, table, tapply, union, unique, unsplit, which,

which.max, which.min

Loading required package: Biobase

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages ’citation("pkgname")’.

Loading required package: mzR

Loading required package: Rcpp

Loading required package: S4Vectors

Loading required package: stats4

##

Attaching package: ’S4Vectors’

3

The following object is masked from ’package:base’:

##

expand.grid

Loading required package: ProtGenerics

##

Attaching package: ’ProtGenerics’

The following object is masked from ’package:stats’:

##

smooth

##

This is MSnbase version 2.12.0

Visit https://lgatto.github.io/MSnbase/ to get started.

##

Attaching package: ’MSnbase’

The following object is masked from ’package:base’:

##

trimws

No methods found in package ’MSnbase’ for request: ’Spectra’ when loading ’MetCirc’

No methods found in package ’MSnbase’ for request: ’Spectrum2’ when loading ’MetCirc’

The central infrastructure class of the MetCirc package is the Spectra object. The Spectra ob-

jects stores information on precursor m/z, retention time, m/z and intensity values of fragments

and possible additional information, e.g. to which class the MS/MS feature belong to, the iden-

tity of the MS/MS feature, information on the adduct of the precursor, additional information.

Furthermore the Spectra object can host information under which condition (in which tissue,

etc.) the MS/MS feature was detected.

We provide here three examplary workflows to create Spectra from data frames that are loaded

into R: (1) by loading a data frame with a minimum requirement of a column ”id” (comprising

unique identifiers for MS/MS features) and of the columns ”mz” and ”intensity” comprising the

fragment ions and their intensities, respectively, or (2) by loading a data frame resembling a

.MSP file object.

Load example data sets from Li2015, tissue idMS/MS data and GNPS data. sd02 deconvoluted

comprises 360 idMS/MS deconvoluted spectra with fragment ions (m/z, chromatographic reten-

tion time, relative intensity in %) and a column with unique identifiers for MS/MS features

(here, the corresponding principal component group with the precursor ion). The data set is

derived from the study of Li2015.

load data from Li et al., 2015

data("sd02_deconvoluted", package = "MetCirc")

Warning in data("binnedMSP", package = "MetCirc"): data set ’binnedMSP’ not found

4

The second data set comes from the data-independent MS/MS collection of different floral

organs from tobacco plants. Using our pipeline, this data set will be used to visualise shared

metabolites between tissues as well as structural relationships among within- and between-

organ MS/MS spectra. MS/MS data are merged across floral organs in one unique data file

idMSMStissueproject.Rdata as tissue. Information on the organ-localisation of each MS/MS

spectrum is stored in compartmentTissue.

load idMSMStissueproject

data("idMSMStissueproject", package = "MetCirc")

The third data set comes from the GNPS data base (downloaded at February 11, 2017 from:

http://prime.psc.riken.jp/Metabolomics Software/MS-DIAL/MSMS-GNPS-Curated-Neg.msp).

It contains 22 MS/MS features (a truncated file of the original one) and is formatted in the .MSP

file format, a typical format for MS/MS libraries. The MS/MS spectra are (normally) separated

by blank lines and give information on the metabolite (its name, precursor m/z value, retention

time, class, adduct ion) and contain additional information.

load data from GNPS

data("convertMsp2Spectra", package = "MetCirc")

3 Prepare data for mass spectral similarity calculations

3.1 Preparing the sd02 deconvoluted data set for analysis

Here, we convert the examplatory data from Li2015 into a Spectra object that is later used

as the input for mass spectral similarity calculations. Data in the formof the data frame

sd02 deconvoluted require columns that store the m/z values of fragments, the intensity val-

ues for the respective fragments and a column containing an ”id”. The latter column contains

information about the precursor ion and should be a unique descriptor for the MS/MS features.

For instance, this column may be the derived from the output of the xcms/CAMERA processing

creating unique identifiers for each metabolite decoded in the column ”pcgroup”. A pcgroup is

defined as a peak correlation group obtained by this workflow. It corresponds to a MS or MS/MS

spectrum deconvoluted by CAMERA and contains information about the precursor identity and

its isotope cluster. The column ”id” may additionally contain information about the precursor

retention time.

Create Spectra object from the data of (Li2015):

get all MS/MS spectra

id_uniq <- unique(sd02_deconvoluted[, "id"])

obtain precursor m/z from id_uniq

prec_mz_l <- lapply(strsplit(as.character(id_uniq), split=" _ "), "[", 2)

5

http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/MSMS-GNPS-Curated-Neg.msp

prec_mz_l <- lapply(prec_mz_l, as.numeric)

obtain m/z from fragments per precursor m/z

mz_l <- lapply(id_uniq, function(x) sd02_deconvoluted[sd02_deconvoluted[, "id"] == x, "mz"])

obtain corresponding intensity values

int_l <- lapply(id_uniq, function(x) sd02_deconvoluted[sd02_deconvoluted[, "id"] == x, "intensity"])

obtain retention time by averaging all retention time values

rt_l <- lapply(id_uniq, function(x) sd02_deconvoluted[sd02_deconvoluted[, "id"] == x, "rt"])

rt_l <- lapply(rt_l, mean)

create list of spectrum2 objects

spN_l <- lapply(1:length(mz_l), function(x) new("Spectrum2", rt=rt_l[[x]], precursorMz=prec_mz_l[[x]], mz=mz_l[[x]], intensity=int_l[[x]]))

combine list of spectrum2 objects to Spectra object

spectra_li <- MSnbase::Spectra(spN_l, elementMetadata=S4Vectors::DataFrame(show=rep(TRUE, length(spN_l))))

Furthermore, further columns in the DataFrame passed to elementMetadata can be specified to

host additional information: metabolite name (column ”names”) and classes (column ”classes”),

adduct ion names (column ”adduct”), further information (column ”information”).

3.2 Preparing the floral organ data set for analysis

We would like to restrict the proof-of-function analysis to four tissues (sepal, SPL; limb, LIM;

anther, ANT; style, STY). We will truncate tissue in order that it contains only these instances

belonging to these types of tissue. In a next step, we will create a Spectra-object, spl with

information concerning if the MS/MS features are found in the tissues SPL, LIM, ANT and

STY.

get all MS/MS spectra

tissue <- tissue[tissue[, "id"] %in% compartmentTissue[, "mz_rt_pcgroup"],]

id_uniq <- unique(tissue[, "id"])

obtain precursor m/z from id_uniq

prec_mz_l <- lapply(strsplit(as.character(id_uniq), split="_"), "[", 1)

prec_mz_l <- lapply(prec_mz_l, as.numeric)

obtain m/z from fragments per precursor m/z

mz_l <- lapply(id_uniq, function(x) tissue[tissue[, "id"] == x, "mz"])

obtain corresponding intensity values

obtain retention time by averaging all retention time values

6

int_l <- lapply(id_uniq, function(x) tissue[tissue[, "id"] == x, "intensity"])

rt_l <- lapply(id_uniq, function(x) tissue[tissue[, "id"] == x, "rt"])

rt_l <- lapply(rt_l, mean)

create list of spectrum2 objects

spN_l <- lapply(1:length(mz_l), function(x) new("Spectrum2", rt=rt_l[[x]], precursorMz=prec_mz_l[[x]], mz=mz_l[[x]], intensity=int_l[[x]]))

combine list of spectrum2 objects to Spectra object,

use SPL, LIM, ANT, STY for further analysis

spectra_tissue <- MSnbase::Spectra(spN_l,

elementMetadata=S4Vectors::DataFrame(compartmentTissue[, c("SPL", "LIM", "ANT", "STY")]))

3.3 Preparing the GNPS data set for analysis

Alternatively as mentioned above, an Spectra-object can also created from .MSP objects, that

are typical data formats for storing MS/MS libraries. Required properties of such a data frame

are the name of the metabolite (row entry ”NAME:”), the m/z value of the precursor ion (”PRE-

CURSORMZ” or ”EXACTMASS:”), retention time (”RETENTIONTIME:”), information on

the number of peaks (”Num Peaks:”) and information on fragments and peak areas (for fur-

ther information see convertMsp2Spectra and retrieve data("convertMsp2Spectra", package

= "MetCirc") for a typical msp data frame).

Create Spectra-object from the GNPS .MSP file:

spectra_msp <- convertMsp2Spectra(msp2spectra)

4 Binning and calculation of similarity matrix

4.1 Workflow for tissue data set using fragment ions

Calculation of the similarity matrix. The similarity matrix can be obtained by by the

MSnbase package function compare Spectra which takes a Spectra object and a function for

the similarity calculation as input.

The MetCirc package comes with two functions to calculate pair-wise similarities between MS/MS

features. One of them, normalizeddotproduct calculates the similarity coefficient between two

MS/MS features using the normalised dot product (NDP). For a considered MS/MS pair, peak

intensities of shared m/z values for precursor/fragment ions are employed as weights WS1,i and

WS1,i within the following formula:

NDP =

∑
(WS1,i ·WS2,i)

2∑
(W 2

S1,i) ∗
∑

(W 2
S2,i)

,

7

with S1 and S2 the spectra 1 and 2, respectively, of the ith of j common peaks differing by the

tolerance parameter specified in compare Spectra’s argumentbinSize.

Weights are calculated according to W = [peak intensity]m · [m/z]n, with m = 0.5 and n = 2

as default values as suggested by MassBank. For further information see Li2015.

Similarly, the function neutralloss takes into account neutral losses between precursor m/z

values and all fragments.

Alternatively, the user can specify a custom-defined function to calculate similarities between

MS/MS features or use an implemented function in MSnbase. The function compare Spectra

returns a symmetrical squared similarity matrix with pair-wsie similarity coefficients between

MS/MS features.

similarity Matrix

similarityMat <- compare_Spectra(spectra_tissue[1:100,], fun=normalizeddotproduct, binSize=0.01)

createSimilarityMatrix returns a square matrix with the names of the Spectra MS/MS

features as column and row names. The entries of the returned matrix have to be similarites

cores ranging between 0 and 1 that are the pair-wise similarities between the MS/MS features.

Clustering/visualisation. At this stage, we would like to visualise the pair-wise similarities

of MS/MS features after clustering them. Many functions are available to cluster features such

as hclust from stats, Mclust from mclust or hcluster from amap. We would like to use the

latter to cluster similar features. To cluster features and visualise the result (see figure 1) we

enter:

load package amap

hClustMSP <- hcluster(similarityMat, method="spearman")

visualise clusters

plot(hClustMSP, labels = FALSE, xlab="", sub="")

To promote readibility we will not show labels. These can be printed to the R console by

colnames(similarityMat)[hClustMSP$order].

Extraction of highly-related features using clustering. Within the R session the simi-

larity matrix can be truncated by using the above-mentioned functions to retrieve a similarity

matrix that contains highly-related MS/MS features. For instance, this might be needed when

we want to analyse modules of high similarity, representing e.g. a certain metabolite class. By

way of example, we extract in the following all features from module 1 when defining three

modules in total and define a new similarity matrix of highly-related features. This kind of

matrix can be used in later analysis steps, e.g. in the analysis with shinyCircos.

8

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

Cluster Dendrogram

H
ei

gh
t

Figure 1: Cluster dendrogramm for similarity matrix based on fragment ion NDP calculation

define three clusters

cutTreeMSP <- cutree(hClustMSP, k=3)

extract feature identifiers that belong to module 1

module1 <- names(cutTreeMSP)[as.vector(cutTreeMSP) == "1"]

create a new similarity matrix that contains only highly related features

similarityMat_module1 <- similarityMat[module1, module1]

5 Visualisation using the shiny/circlize framework

MetCirc’s main functionality is to visualise metabolomics data, exploring it interactively and an-

notate unknown features based on similarity to other (known) features. One of the key features

of the implemented interactive framework is, that groups can be compared. A group specifies

the affiliation of the sample: it can be any biological identifier relevant to the comparitive ex-

periment conducted, e.g. it can be a specific tissue, different times, different species, etc. The

visualisation tools implemented in MetCirc allow then to display similarity between precursor

ions between and/or within groups.

shinyCircos uses the function createLinkDf which selects these precursor ions that have a

similarity score (e.g. a normalised dot product) within the range defined by threshold low and

threshold high to a precursor ion. Internally, in shinyCircos, createLinkDf will be called to

produce a data.frame with link information based on the given thresholds.

9

linkDf <- createLinkDf(similarityMatrix=similarityMat, spectra=spectra_tissue,

condition=c("SPL", "LIM", "ANT", "STY"), lower=0.5, upper=1)

As we have calculated similarity coefficients between precursors, we would like to visualise these

connections interactively and explore the data. The MetCirc package implements shinyCircos

that allows for such kind of exploration. It is based on the shiny and on the circlize (Gu2014)

framework. Inside of shinyCircos information of precursor ions are displayed by (single-)

clicking over precursors. Precursors can also be permanently selected by double-clicking on

them. The similarity coefficients can be thresholded by changing the slider input. Also, on the

sidebar panel, the type of link to be displayed can be selected: should only links between groups

be displayed, should only links within groups be displayed or should all links be displayed?

Ordering inside of groups can be changed by selecting the respective option in the sidebar panel.

Momentarily, there are options to reorder features based on clustering, the m/z or the retention

time of the precursor ion. In the ”Appearance” tab, the size of the plot can be changed, as well

as the precision of the displayed values for the m/z and retention time values. Please note, that

the precision will only be changed in the text output (not in the graphical output). Also, the

user can decide if the legend is displayed or not.

On exiting the shiny application via the exit button in the sidebar panel, selected precursors

will be returned which are allocated here to selectedFeatures. selectedFeatures is a vector

of the precursor names.

By way of example, we would like to analyse the tissue data set focusing on the tissues ”SPL”,

”LIM”, ”ANT” and ”STY”.

93.067 95.085 93.068 95.084

To start the shiny app, run

selectedFeatures <- shinyCircos(similarityMat, spectra=spectra_tissue, condition=c("LIM", "ANT", "STY"))

to the console. This will load information stored in the Spectra object spl to the shinyCircos

interface. Information (metabolite names and class, adduct ion name and further information)

will be printed to the interface when (single-)clicking on MS/MS features. Since this Spectra

object did not contain any information about metabolite names, class, adduct ion name and

further information, initally all fields for these instances are set to ”Unkwown”. Note, that on

the sidebar on the right side text fields will appear, that allow for changing the annotation of

the selected feature. Click ”update annotation” to save the changes to the Spectra-object. On

exiting shinyCircos via the exit button, selected precursors and the (updated) Spectra-object

will be returned to the console. In the example above, enter selectedFeatures$spectra to

retrieve the Spectra object with updated annotation.

MetCirc allows also to create such figures outside of an interactive context, which might be help-

ful to create figures and export them e.g. in .pdf or .jpeg format. shinyCircos does currently

not support to export figures as they can be easily rebuilt outside of shinyCircos; building

10

figures outside of the interactive context also promotes reproducibility of such figures.

To rebuild the figure in a non-interactive environment, run

order similarity matrix according to retention time

condition <- c("SPL", "LIM", "ANT", "STY")

simM <- orderSimilarityMatrix(similarityMatrix=similarityMat,

spectra=spectra_tissue, type="retentionTime", group=FALSE)

groupname <- rownames(simM)

inds <- MetCirc:::spectraCond(spectra_tissue,

condition=condition)

inds_match <- lapply(inds, function(x) {inds_match <- match(groupname, x)

inds_match <- inds_match[!is.na(inds_match)]; x[inds_match]})
inds_cond <- lapply(seq_along(inds_match),

function(x) {
if (length(inds_match[[x]]) > 0) {

paste(condition[x], inds_match[[x]], sep="_")

} else character()

})
inds_cond <- unique(unlist(inds_cond))

create link matrix

linkDf <- createLinkDf(similarityMatrix=simM, spectra=spectra_tissue,

condition=c("SPL", "LIM", "ANT", "STY"), lower=0.9, upper=1)

cut link matrix (here: only display links between groups)

linkDf_cut <- cutLinkDf(linkDf=linkDf, type="inter")

set circlize paramters

circos.par(gap.degree=0, cell.padding=c(0, 0, 0, 0),

track.margin=c(0, 0))

here set indSelected arbitrarily

indSelected <- 14

selectedFeatures <- inds_cond[indSelected]

actual plotting

plotCircos(inds_cond, linkDf_cut, initialize=TRUE, featureNames=TRUE,

cexFeatureNames=0.2, groupSector=TRUE, groupName=FALSE,

links=FALSE, highlight=TRUE)

highlight(groupname=inds_cond, ind=indSelected, linkDf=linkDf_cut)

plot without highlighting

plotCircos(inds_cond, linkDf_cut, initialize=TRUE, featureNames=TRUE,

11

cexFeatureNames=0.2, groupSector=TRUE, groupName=FALSE, links=TRUE,

highlight=FALSE)

LIM_18

LIM_15

LIM_12

LIM_10

LIM_9

LIM_7

LIM_5

LIM_1

LIM_14

LIM_8

LIM_68

LIM_3

LIM_60

LIM_67

LIM_4

LIM
_58

LIM
_6

LIM
_11

LIM
_64

LIM
_62LIM

_42LIM
_55LIM

_34LIM
_45

LIM
_54

LIM
_56

LIM
_37

LIM
_46

LIM
_25

LIM
_33

A
N

T
_18

A
N

T
_15A

N
T

_1
2

A
N

T
_1

0

A
N

T
_9

A
N

T
_1

7

A
N

T
_7

A
N

T
_5

1

A
N

T_
5

A
N

T_
53A
N

T_
1A
N

T_
16AN

T_
14

AN
T_

8

AN
T_

3

ANT_
63

ANT_
61

ANT_6
0

ANT_5
9

ANT_67

ANT_4

ANT_58

ANT_6

ANT_11

ANT_62

ANT_47

ANT_42

ANT_38

ANT_49

ANT_44

ANT_2

ANT_55

ANT_34

ANT_45

ANT_41

ANT_48

ANT_54

ANT_56

ANT_66

ANT_37

ANT_46

ANT_52

ANT_40

ANT_65

ANT_50

ANT_43

ANT_69

ANT_78

ANT_79

ANT_77
ANT_80

ANT_81

AN
T_73

AN
T_74

AN
T_87

A
N

T_98

A
N

T_70

A
N

T_85

A
N

T_86

A
N

T
_94

A
N

T
_95

A
N

T
_97

A
N

T
_96

A
N

T
_99

A
N

T
_91

A
N

T
_1

00

A
N

T
_9

0

A
N

T
_9

2

A
N

T
_8

9

A
N

T
_2

4

A
N

T
_2

5

A
N

T
_3

3

S
TY

_6
6

S
TY

_3
7

S
TY

_9
3

S
TY

_7
6

ST
Y_

75

ST
Y_

82

ST
Y_

80

STY
_8

1

STY_8
4

STY_9
9

STY_19

STY_27

STY_26

STY_28

STY_31

STY_32

STY_30

STY_29

STY_24

STY_25

STY_23

STY_33

STY_20

STY_22

STY_21

Figure 2: Examplary circos plot highlighting an arbitrary feature. Upon highlighting, all links
will be plotted in grey (expect links to and from highlighted features). The intensity of the
background colour of features will be reduced as well. Features belonging to a group (species,
individual, organ, different time) will be indicated by the same background colour.

12

Appendix

Session information

All software and respective versions to build this vignette are listed here:

R version 3.6.1 (2019-07-05)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.3 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] MetCirc_1.16.0 MSnbase_2.12.0 ProtGenerics_1.18.0

[4] S4Vectors_0.24.0 mzR_2.20.0 Rcpp_1.0.2

[7] Biobase_2.46.0 BiocGenerics_0.32.0 shiny_1.4.0

[10] scales_1.0.0 circlize_0.4.8 amap_0.8-17

[13] knitr_1.25

##

loaded via a namespace (and not attached):

[1] lattice_0.20-38 foreach_1.4.7 assertthat_0.2.1

[4] digest_0.6.22 mime_0.7 R6_2.4.0

[7] plyr_1.8.4 mzID_1.24.0 evaluate_0.14

[10] ggplot2_3.2.1 highr_0.8 pillar_1.4.2

[13] GlobalOptions_0.1.1 zlibbioc_1.32.0 rlang_0.4.1

[16] lazyeval_0.2.2 preprocessCore_1.48.0 BiocParallel_1.20.0

[19] stringr_1.4.0 munsell_0.5.0 compiler_3.6.1

[22] httpuv_1.5.2 xfun_0.10 pkgconfig_2.0.3

[25] shape_1.4.4 pcaMethods_1.78.0 htmltools_0.4.0

[28] tidyselect_0.2.5 tibble_2.1.3 IRanges_2.20.0

13

[31] codetools_0.2-16 XML_3.98-1.20 crayon_1.3.4

[34] dplyr_0.8.3 later_1.0.0 MASS_7.3-51.4

[37] grid_3.6.1 xtable_1.8-4 gtable_0.3.0

[40] affy_1.64.0 magrittr_1.5 ncdf4_1.17

[43] stringi_1.4.3 impute_1.60.0 promises_1.1.0

[46] affyio_1.56.0 doParallel_1.0.15 limma_3.42.0

[49] iterators_1.0.12 tools_3.6.1 glue_1.3.1

[52] purrr_0.3.3 fastmap_1.0.1 colorspace_1.4-1

[55] BiocManager_1.30.9 vsn_3.54.0 MALDIquant_1.19.3

14

Neutral losses

Table 1: The table gives examplatory fractionation of precursors into neutral losses (given their
m/z and the corresponding atoms):

CH2 14.0157

CH4 16.0313

NH3 17.0265

H2O 18.0106

K+ to NH4
+” 20.9293

Na+ to H+ 21.9819

C2H2 26.0157

CO 27.9949

C2H4 28.0313

CH3N 29.0266

CH2O 30.0106

CH5N 31.0422

S 31.9721

H2S 33.9877

K+to H+ 37.9559

C2H2O 42.0106

C3H6 42.0470

CHNO 43.0058

CO2 43.9898

CH2 O2 46.0055

C4H8 56.0626

C3H9N 59.0735

C2H4 O2 60.0211

CH4N2O 60.0324

SO2 63.9619

C5H8 68.0626

C3H6 O2 74.0368

C6H6 78.0470

SO3 79.9568

C3H2O3 86.0004

C4H8O2 88.0517

C4H12N2 88.1000

H2(SO)4 97.9674

H3(PO)4 97.9769

C5H10O2 102.0618

C3H4O4 104.0110

C6H12O2 116.0861

C2H5O4P 123.9926

15

C5H8O4 132.0423

C7H19N3 145.1579

C6H10O4 146.0579

C6H10O5 162.0528

C6H12O5 164.0685

C6H8O6 176.0321

C6H12O6 180.0634

C6H10O7 194.0427

C8H12O6 204.0655

C11H10O4 206.0579

C10H15N3 O6 S 305.0682

C10H17N3 O6 S 307.0838

C12H20O10 324.1057

C12H22O11 342.1162

16

	1 Introduction
	2 Prepare the environment
	3 Prepare data for mass spectral similarity calculations
	3.1 Preparing the sd02_deconvoluted data set for analysis
	3.2 Preparing the floral organ data set for analysis
	3.3 Preparing the GNPS data set for analysis

	4 Binning and calculation of similarity matrix
	4.1 Workflow for tissue data set using fragment ions

	5 Visualisation using the shiny/circlize framework

