
Using the qrqc package to gather information about
sequence qualities

Vince Buffalo

Bioinformatics Core
UC Davis Genome Center

vsbuffalo@ucdavis.edu

2010-01-19

Abstract

Many projects in bioinformatics begin with raw sequences from a high-throughput se-
quencer that must be quality checked before additional analysis steps can proceed. The qrqc
(Quick Read Quality Control) package is a fast and extensible package that reports basic
quality and summary statistics on FASTQ and FASTA files, including base and quality
distribution by position, sequence length distribution, and common sequences.

1 Reading in a Sequence File

The qrqc package reads and processes FASTA and FASTQ files in C for speed, through the
function readSeqFile. Optionally, sequences can be hashed (also done at the C level), to see
the most frequent sequences in the file.

> library(qrqc)

> s.fastq <- readSeqFile(system.file('extdata', 'test.fastq', package='qrqc'))

Note that there is a maximum sequence length argument in readSeqFile, max.length. By
default, this is 1,000. It is used to pre-allocate the matrices in C, and could be much larger than
the largest sequence encountered without many downsides (its memory usage is relatively low).
If a sequence larger than max.length is encountered, the function will stop, and the user can
call the function again with a larger max.length.

Readseqfile produces a FASTQSummary object, which inherits from the SequenceSummary

class. Printing the object lists a very short summary:

> s.fastq

Quality Information for: test.fastq

100 sequences, 96 unique

mean quality: 32.673900

min sequence length: 84

max sequence length: 84

Optionally, readSeqFile can be run without hashing, with hash=FALSE. readSeqFile also
works on FASTA files, but type=FASTA must be specified.

1



1 5 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84

0.
0

0.
7

quality distribution by read base and sequence length histogram
(quality type: illumina)

de
ns

ity

1 5 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84

23
45
67
89

1011121314151617181920212223242526272829303132333435363738
● ●

● ● ●
●

●

● ● ● ● ● ● ● ●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ●

●
●

● ●
● ● ● ●

● ● ● ● ●

● ● ●
●

●

●
● ● ● ● ● ● ● ●

● ● ●
● ● ●

● ● ● ● ● ● ●
●

● ●
●

●

position

qu
al

ity

Figure 1: A plot of quality by base position, with sequence length histogram.

2 Plotting Quality of FASTQSummary Objects

If the file read and summarized with readSeqFile is a FASTQ file (and thus the resulting object
is from the FASTQSummary class), quality information by position can be plotted with plotQuals,
which produces a graphic as in Figure 1:

> plotQuals(s.fastq)

By default, quality plots include a histogram of sequence lengths. This is recommended,
as low quality at a particular base position is less worrisome if there are few reads with this
sequence length. The grey lines indicate the 10% and 90% quantiles, orange lines indicate the
lower and upper quartiles, the blue dot is the median, and the green dash the mean. A purple
lowess curve is fit through the distributions. This line is fit by first randomly drawing values
from the empirical (binned) distribution of qualities at a particular base, then fitting through
these points.

plotQuals can be very useful in inspecting base qualities before and after read quality con-
trol pipelines. For example, the package contains test-trimmed.fastq, which has the same
sequences as test.fastq after being trimmed with Nik Joshi’s Sickle, a windowed adaptive
quality trimmer.

> s.trimmed.fastq <- readSeqFile(system.file('extdata', 'test-trimmed.fastq', package='qrqc'))
> plotQuals(s.trimmed.fastq)

2



1 5 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84

0.
0

0.
7

quality distribution by read base and sequence length histogram
(quality type: illumina)

de
ns

ity

1 5 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

● ●
● ● ●

●

●

● ● ● ●
● ● ● ●

●
● ●

● ●
● ● ● ●

● ● ● ● ● ● ●
● ●

● ● ● ● ● ●

●
●

● ●
● ● ● ●

● ● ● ● ●

● ●
●

● ●
●

●
● ● ● ●

●
● ●

●
● ● ● ●

●

● ● ● ●
● ●

●
●

●
● ● ●

position

qu
al

ity

Figure 2: A plot of quality by base position after being trimmed with Sickle.

3



1 5 9 14 20 26 32 38 44 50 56 62 68 74 80

0
20

40
60

80
10

0
12

0

base frequency by position in read

position

fr
eq

ue
nc

y

A
T
C
G

Figure 3: Base frequencies by position in sequence.

3 Other Plots of FASTQSummary and FASTASummary
Objects

The following S4 methods work for FASTQSummary and FASTASummary objects. Base fre-
quencies (counts) and base proportions by position can be plotted with plotBases. When used
with type=’freq’, plotBases produces a graphic as in Figure 3:

> plotBases(s.fastq, type="freq")

plotBases uses the Sanger base color scheme: blue is Cytosine, green is Adenine, black is
Guanine, red is Thymine, and purple in N (any base). When further IUPAC nucleotides are
found in the sequences, a legend is added.

plotBases also accepts a bases parameter, which can be used to specify specific bases. This
is useful for plotting just the frequency of ‘N’.

Base proportions by position can be plotted with plotBases, with type=’prop’. This plot
is basically identical to the plot produced with type=’freq’ with a different y scale:

> plotBases(s.fastq, type="prop")

Sequence length distribution can be plotted with plotSeqLengths (graphic shown in Figure
5):

> plotSeqLengths(s.trimmed.fastq)

4



1 5 9 14 20 26 32 38 44 50 56 62 68 74 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

base proportion by position in read

position

pr
op

or
tio

n

A
C
G
T

Figure 4: Base proportions by position in sequence.

5



0 4 8 13 19 25 31 37 43 49 55 61 67 73 79 85

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sequence length distribution

sequence length

de
ns

ity

Figure 5: Histogram of sequence lengths after quality trimming.

6



1 5 9 14 20 26 32 38 44 50 56 62 68 74 80

0.
0

0.
2

0.
4

0.
6

0.
8

gc content by position in read

position

pr
op

or
tio

n

Figure 6: GC content by position

Called from: plotSeqLengths(s.trimmed.fastq)

The GC content can be plotted with plotGC (graphic shown in Figure 6):

> plotGC(s.fastq)

4 HTML Report Generation

With the help of brew and xtable, qrqc can generate an HTML summary report. This is created
with makeReport. Reports are stored in their own directories, with images kept under ‘images/’
and the report is “report.html”. A specific output directory can be passed through the outputDir
argument, but the present directory is used as a default. Multiple reports generated in the same
directory will have an incremental naming scheme.

5 Working with the FASTQSummary and FASTASummary
classes

qrqc provides the FASTQSummary and FASTASummary classes for users to build functions and
applications around. Both inherit from SequenceSummary, which should not be used directly.

FASTASummary has the same slots as FASTQSummary, except the latter provides additional slots
for quality information. Both contain:

7



• filename: the filename of the file read and summarized with readSeqFile.

• base.freqs: a dataframe containing the frequency counts of each base.

• seq.lengths: a numeric vector containing the sequences lengths (counts by position).

• hash: a numeric vector containing the counts of unique sequences (the actual sequences
are the names attribute).

• hashed: a logical indicating whether sequence hashing to count unique sequences was done.

Additionally, FASTQSummary provides:

• qual.freqs: a dataframe containing the counts of bases of a particular quality by position.

• mean.qual: a numeric giving the mean quality, weighted by sequence lengths.

6 Acknowledgements

Thanks to Simon Andrews for his work on FastQC (a similar program written in Java) from
which this project was inspired. Also thanks to Joseph Fass and Dawei Lin for their advice and
helpful comments.

Thanks to Heng Li for his work on kseq.h khash.h (both MIT License) which this pack-
age uses through RSamtools. More on these header files can be found at http://lh3lh3.users.
sourceforge.net/kseq.shtml and http://attractivechaos.awardspace.com/khash.h.html.

Sickle can be downloaded or cloned from the UC Davis Bioinformatics Github repository:
https://github.com/ucdavis-bioinformatics/sickle.

7 Session Info

> sessionInfo()

R version 2.13.0 (2011-04-13)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] qrqc_1.0.0 Rsamtools_1.4.0 Biostrings_2.20.0

[4] GenomicRanges_1.4.0 IRanges_1.10.0

8

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://lh3lh3.users.sourceforge.net/kseq.shtml
http://lh3lh3.users.sourceforge.net/kseq.shtml
http://attractivechaos.awardspace.com/khash.h.html
https://github.com/ucdavis-bioinformatics/sickle


loaded via a namespace (and not attached):

[1] brew_1.0-5 evaluate_0.3 plyr_1.5 reshape_0.8.4 stringr_0.4

[6] testthat_0.4 xtable_1.5-6

9


	Reading in a Sequence File
	Plotting Quality of FASTQSummary Objects
	Other Plots of FASTQSummary and FASTASummary Objects
	HTML Report Generation
	Working with the FASTQSummary and FASTASummary classes
	Acknowledgements
	Session Info

