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1 Introduction

Multiple genomic observations from the same samples are increasingly avail-
able in biomedical studies, including measurements of gene- and micro-RNA
expression levels, DNA copy number, and methylation status. By investigating
dependencies between different functional layers of the genome it is possible to
discover mechanisms and interactions that are not seen in the individual mea-
surement sources. For instance, integration of gene expression and DNA copy
number can reveal cancer-associated chromosomal regions and associated genes
with potential diagnostic, prognostic and clinical impact [6].

This package implements probabilistic models for integrative analysis of
mRNA expression levels with DNA copy number (aCGH) measurements to
discover functionally active chromosomal alterations. The algorithms can be
used to discover functionally altered chromosomal regions and to visualize the
affected genes and samples. The algorithms can be applied also to other types of
biomedical data, including epigenetic modifications, SNPs, alternative splicing
and transcription factor binding, or in other application fields.

The methods are based on latent variable models including probabilistic
canonical correlation analysis [2] and related extensions [1, 4, 6], implemented in
the dmt package in CRAN [5, 3]. Probabilistic formulation deals rigorously with
uncertainty associated with small sample sizes common in biomedical studies
and provides tools to guide dependency modeling through Bayesian priors [6].

2 Examples

This Section shows how to apply the methods for dependency detection in func-
tional genomics. For further details on the dependency modeling framework,
see the dependency modeling package dmt in CRAN1.

∗ohuovila@gmail.com
1http://dmt.r-forge.r-project.org/
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2.1 Example data

Our example data set contains matched observations of gene expression and
copy number from a set of gastric cancer patients [7]. Load the package and
example data with:

> library(pint)

> data(chromosome17)

The example data contains (geneExp and geneCopyNum) objects. These
lists contain two elements:

• data matrix with gene expression or gene copy number data. Genes are
in rows and samples in columns and rows and columns should be named
and the probes and samples are matched between the two data sets.

• info data frame with additional information about the genes in the data
object; in particular, loc indicates the genomic location of each probe in
base pairs; chr and arm indicate the chromosome and chromosomal arm
of the probe.

The models assume approximately Gaussian distributed observations. With
microarray data sets, this is typically obtained by presenting the data in the
log2 domain, which is the default in many microarray preprocessing methods.

2.2 Discovering functionally active copy number changes

Chromosomal regions that have simultaneous copy number alterations and gene
expression changes will reveal potential cancer gene candidates. To detect these
regions, we measure the dependency between expression and copy number for
each region and pick the regions showing the highest dependency as such regions
have high dependency between the two data sources. A sliding window over the
genome is used to quantify dependency within each region. Here we show a brief
example on chromosome arm 17q:

> models <- screen.cgh.mrna(geneExp, geneCopyNum, windowSize = 10,

+ chr = 17, arm = "q")

The dependency is measured separately for each gene within a chromosomal
region (’window’) around the gene. A fixed dimensionality (window size) is
necessary to ensure comparability of the dependency scores between windows.
The scale of the chromosomal regions can be tuned by changing the window
size (’windowSize’). The default dependency modeling method is a constrained
version of probabilistic CCA; [6]. See help(screen.cgh.mrna) for further options.

2.3 Application in other genomic data integration tasks

Other genomic data sources such as micro-RNA or epigenetic measurements
are increasingly available in biomedical studies, accompanying observations of
DNA copy number changes and mRNA expression levels [8]. Given matched
probes and samples, the current functions can be used to screen for dependency
between any pair of genomic (or other) data sources.
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2.4 Visualizing the results

Dependency plots will reveals chromosomal regions with the strongest depen-
dency between gene expression and copy number changes:

> plot(models, showTop = 10)
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Figure 1: The dependency plot reveals chromosomal regions with the strongest
dependency between gene expression and copy number.

Here the highest dependency is between 30-40Mbp which is a known gastric
cancer-associated region. Note that the display shows the location in megabase-
pairs while location is provided in basepairs. The top-5 genes with the highest
dependency in their chromosomal neighborghood can be retrieved with:

> topGenes(models, 5)

[1] "ENSG00000141738" "ENSG00000141736" "ENSG00000173991" "ENSG00000131748"

[5] "ENSG00000161395"

It is also possible investigate the contribution of individual patients or probes
on the overall dependency based on the model parameters W and the latent
variable z that are easily retrieved from the learned dependency model (Fig.
2). In 1-dimensional case the interpretation is straightforward: z will indicate
the shared signal strength in each sample and W describes how the shared signal
is reflected in each data source. With multi-dimensional W and z, the variable-
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and sample effects are approximated (for visualization purposes) by the loadings
and projection scores corresponding of the first principal component of Wz is
used to summarize the shared signal in each data set.

> model <- topModels(models)

> plot(model, geneExp, geneCopyNum)
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Variable effects (first data set)
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Variable effects (second data set)
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Figure 2: Samples and variable contribution to the dependencies around the
gene with the highest dependency score between gene expression and copy num-
ber measurements in the chromosomal region. The visualization highlights the
affected patients and genes.

2.5 Quantifying dependency between two data sources

Detailed description of the model parameters and available dependency detec-
tion methods is provided with the dmt package in CRAN [5]. The models are
based on probabilistic canonical correlation analysis and related extensions [2, 6].
In summary, the shared signal between two (multivariate) observations X,Y is
modeled with a shared latent variable z. This can have different manifestation
in each data set, which is described by linear transformations Wx and Wy. Stan-
dard multivariate normal distribution for the shared latent variable and data
set-specific effects gives the following model:

X ∼Wxz + εx

Y ∼Wyz + εy
(1)
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The data set-specific effects are modeled with multivariate Gaussians ε. ∼
N (0,Ψ.) with covariances Ψx, Ψy, respectively. Dependency between the data
sets X, Y is quantified by the ratio of shared vs. data set-specific signal (see
’?dependency.score’), calculated as

Tr(WWT )

Tr(Ψ)
(2)

3 Details

• Licensing terms: the package is licensed under FreeBSD open software
license

• Citing pint: Please cite [6]

This document was written using:

> sessionInfo()

R version 2.13.0 (2011-04-13)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] pint_1.4.04 dmt_0.7.06 MASS_7.3-13 Matrix_0.999375-50

[5] lattice_0.19-26 mvtnorm_0.9-999

loaded via a namespace (and not attached):

[1] grid_2.13.0 tools_2.13.0
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