
Imputed SNP analyses and meta-analysis with
chopsticks

David Clayton

April 14, 2011

Getting started

The need for imputation in SNP analysis studies occurs when we have a smaller set of samples
in which a large number of SNPs have been typed, and a larger set of samples typed in only a
subset of the SNPs. We use the smaller, complete dataset (which will be termed the training
dataset) to impute the missing SNPs in the larger, incomplete dataset (the target dataset).
Examples of such applications include:

• use of HapMap data to impute association tests for a large number of SNPs, given data
from genome-wide studies using, for example, a 500K SNP array, and

• meta-analyses which seek to combine results from two platforms such as the Affymetrix
500K and Illumina 550K platforms.

Here we will not use a real example such as the above to explore the use of chopsticks

for imputation, but generate a fictitious example using the data analysed in earlier exer-
cises. This is particularly artificial in that we have seen that these data suffer from extreme
heterogeneity of population structure.

We start by attaching the required libraries and accessing the data used in the exercises:

> library(chopsticks)

> library(hexbin)

> data(for.exercise)

We shall sample 200 subjects in our fictitious study as the training data set, select
alternate SNPs to be potentially missing or present in the target dataset, and split the
training set into two parts accoordingly:

> training <- sample(1000, 200)

> in.target <- seq(1, ncol(snps.10), 2)

> missing <- snps.10[training, -in.target]

> present <- snps.10[training, in.target]

> missing

1

A snp.matrix with 200 rows and 14250 columns

Row names: jpt.79 ... jpt.698

Col names: rs7093061 ... rs7899159

> present

A snp.matrix with 200 rows and 14251 columns

Row names: jpt.79 ... jpt.698

Col names: rs7909677 ... rs12218790

Thus the training dataset consists of the objects missing and present. The target dataset
holds a subset of the SNPs for the remaining 800 subjects.

> target <- snps.10[-training, in.target]

> target

A snp.matrix with 800 rows and 14251 columns

Row names: jpt.869 ... ceu.464

Col names: rs7909677 ... rs12218790

But, in order to see how successful we have been with imputation, we will also save the SNPs
we have removed from the target dataset

> lost <- snps.10[-training, -in.target]

> lost

A snp.matrix with 800 rows and 14250 columns

Row names: jpt.869 ... ceu.464

Col names: rs7093061 ... rs7899159

We also need to know where the SNPs are on the chromosome in order to avoid having to
search the entire chromosome for suitable predictors of a missing SNP:

> pos.miss <- snp.support$position[-in.target]

> pos.pres <- snp.support$position[in.target]

Calculating the imputation rules

The next step is to calculate a set of rules which for imputing the missing SNPs from the
present SNPs. This is carried out by the function snp.imputation1:

> rules <- snp.imputation(present, missing, pos.pres, pos.miss)

1Sometimes this command generates a warning message concerning the maximum number of EM itera-
tions. If this only concerns a small proportion of the SNPs to be imputed it can be ignored.

2

This took a short while. But the wait was really quite short when we consider what
the function has done. For each of the 14,251 SNPs in the “missing” set, the function has
performed a forward step-wise regression on the 50 nearest SNPs in the“present”set, stopping
each search either when the R2 for prediction exceeds 0.95, or after including 4 SNPs in the
regression, or until R2 is not improved by at least 0.05. The figure 50 is the default value of
the try argument of the function, while the values 0.95, 4 and 0.05 together make up the
default value of the stopping argument. Where this regression equation provides adequate
prediction, the corresponding element of rules contains the regression coefficients together
with the R2 achieved and the minor allele frequency of the target SNP. Where prediction does
not achieve a target R2, phased haplotype frequencies are estimated for the predictor SNPs
plus the target SNP and a prediction rule based on these is evaluated. When the gain in R2

exceeds a threshold, this haplotype-based rule is saved in preference to the regression based
rule. The R2 target and threshold which control this process are supplied in the argument
use.haps.

A short listing of the first 10 rules follows:

> rules[1:10]

rs7093061 ~ rs11253563+rs754034+rs12573723 (MAF = 0.2272727, R-squared = 0.9079632)

rs7475011 ~ rs4881552*rs754034*rs10903844*rs12357593 (MAF = 0.3705584, R-squared = 0.8826525)

rs4881551 ~ rs4881552+rs11253563 (MAF = 0.3838384, R-squared = 0.993976)

rs4880750 ~ rs2379080+rs4881552+rs11253563+rs7910845 (MAF = 0.2831633, R-squared = 0.8556933)

rs7081782 ~ rs1476129+rs2448365 (MAF = 0.0725, R-squared = 0.9053637)

rs7898275 ~ rs1545003 (MAF = 0.06632653, R-squared = 1)

rs4880809 ~ rs6560730+rs17221309 (MAF = 0.2462312, R-squared = 0.9271854)

rs4390277 ~ rs1476129+rs2448365+rs9329280+rs10903844 (MAF = 0.075, R-squared = 0.8977136)

rs9419496 ~ rs7919436 (MAF = 0.2578125, R-squared = 0.9930367)

rs9419498 ~ rs4880517 (MAF = 0.05357143, R-squared = 0.9760987)

The rules are also selectable by SNP for detailed examination:

> rules[c("rs7898275", "rs9419496")]

rs7898275 ~ rs1545003 (MAF = 0.06632653, R-squared = 1)

rs9419496 ~ rs7919436 (MAF = 0.2578125, R-squared = 0.9930367)

Regression-based rules are shown with a + symbol separating predictor SNPs, while
haplotype-based rules are shown with a * separator. A summary table of all the 14,251
rules is generated by

> summary(rules)

SNPs used

R-squared 1 tags (reg) 2 tags (reg) 2 tags (hap) 3 tags (reg) 3 tags (hap)

3

(0,0.1] 90 38 0 0 0

(0.1,0.2] 0 103 0 56 0

(0.2,0.3] 0 30 4 73 2

(0.3,0.4] 0 20 7 62 19

(0.4,0.5] 0 14 5 49 23

(0.5,0.6] 0 24 7 40 38

(0.6,0.7] 0 32 9 60 43

(0.7,0.8] 0 60 22 80 42

(0.8,0.9] 0 165 46 184 109

(0.9,0.95] 0 220 59 164 132

(0.95,0.99] 2130 433 45 380 98

(0.99,1] 2666 87 20 77 25

<NA> 0 0 0 0 0

SNPs used

R-squared 4 tags (reg) 4 tags (hap) <NA>

(0,0.1] 0 0 0

(0.1,0.2] 1 0 0

(0.2,0.3] 79 0 0

(0.3,0.4] 155 20 0

(0.4,0.5] 200 52 0

(0.5,0.6] 291 132 0

(0.6,0.7] 283 278 0

(0.7,0.8] 386 461 0

(0.8,0.9] 477 885 0

(0.9,0.95] 365 831 0

(0.95,0.99] 248 664 0

(0.99,1] 64 99 0

<NA> 0 0 187

Columns represent the number of SNPs and the type of rule, while rows represent group-
ing on R2. The last column (headed <NA>) represents SNPs for which an imputation rule
could not be computed, either because they were monomorphic or because there was insuf-
ficient data (as determined by the minA optional argument in the call to snp.imputation).
The same information may be displayed graphically by

> plot(rules)

4

4 tags (hap)
4 tags (reg)
3 tags (hap)
3 tags (reg)
2 tags (hap)
2 tags (reg)
1 tags (reg)

r2

N
um

be
r

of
 im

pu
te

d
S

N
P

s

0
10

00
20

00
30

00

(0
.9

9,
1]

(0
.9

5,
0.

99
]

(0
.9

,0
.9

5]

(0
.8

,0
.9

]

(0
.7

,0
.8

]

(0
.6

,0
.7

]

(0
.5

,0
.6

]

(0
.4

,0
.5

]

(0
.3

,0
.4

]

(0
.2

,0
.3

]

(0
.1

,0
.2

]

(0
,0

.1
]

Carrying out the association tests

The association tests for imputed SNPs can be carried out using the function single.snp.tests.

> imp <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = target, rules = rules)

Using the observed data in the matrix present and the set of imputation rules stored in
rules, the above command imputes each of the imputed SNPs, carries out 1- and 2-df single

5

tests for association, returns the results in the object imp. To see how successful imputation
has been, we can carry out the same tests using the true data in missing:

> obs <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = lost)

The next commands extract the p-values for the 1-df tests, using both the imputed and
the true “missing” data, and plot one against the other (using the hexbin plotting package
for clarity):

> logP.imp <- -log10(p.value(imp, df = 1))

> logP.obs <- -log10(p.value(obs, df = 1))

> hb <- hexbin(logP.obs, logP.imp, xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

6

0 1 2 3 4 5

0

1

2

3

4

logP.obs

lo
gP

.im
p

1
62

123
184
245
306
367
428
489
550
611
672
733
794
855
916
977

Counts

As might be expected, the agreement is rather better if we only compare the results for
SNPs that can be computed with high R2. The R2 value is extracted from the rules object,
using the function imputation.r2 and used to select a subset of rules:

> use <- imputation.r2(rules) > 0.9

> hb <- hexbin(logP.obs[use], logP.imp[use], xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

7

0 1 2 3 4

0

1

2

3

4

logP.obs[use]

lo
gP

.im
p[

us
e]

1
44
87

130
173
216
259
302
345
388
431
474
517
560
603
646
689

Counts

Similarly, the function imputation.maf can be used to extract the minor allele frequen-
cies of the imputed SNP from the rules object. Note that there is a tendency for SNPs
with a high minor allele frequency to be imputed rather more successfully:

> hb <- hexbin(imputation.maf(rules), imputation.r2(rules), xbin = 50)

> sp <- plot(hb)

8

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

imputation.maf(rules)

im
pu

ta
tio

n.
r2

(r
ul

es
)

1
6
11
16
21
26
31
36
40
45
50
55
60
65
70
75
80

Counts

The function snp.rhs.glm also allows testing imputed SNPs. In its simplest form, it can
be used to calculate essentially the same tests as carried out with single.snp.tests2 (al-
though, being a more flexible function, this will run somewhat slower). The next commands
recalculate the 1 df tests for the imputed SNPs using snp.rhs.tests, and plot the results
against those obtained when values are observed.

> imp2 <- snp.rhs.tests(cc ~ strata(stratum), family = "binomial",

+ data = subject.support, snp.data = target, rules = rules)

> logP.imp2 <- -log10(p.value(imp2))

2There is a small discrepancy, of the order of (N − 1) : N .

9

> hb <- hexbin(logP.obs, logP.imp2, xbin = 50)

> sp <- plot(hb)

> hexVP.abline(sp$plot.vp, 0, 1, col = "black")

0 1 2 3 4 5

0

1

2

3

4

logP.obs

lo
gP

.im
p2

1
62

123
184
245
306
367
428
489
550
611
672
733
794
855
916
977

Counts

Meta-analysis

As stated at the beginning of this document, one of the main reasons that we need imputation
is to perform meta-analyses which bring together data from genome-wide studies which use
different platforms. The chopsticks package includes a number of tools to facilitate this. All

10

the tests implemented in chopsticks are “score” tests. In the 1 df case we calculate a score
defined by the first derivative of the log likelihood function with respect to the association
parameter of interest at the parameter value corresponding to the null hypothesis of no
association. Denote this by U . We also calculate an estimate of its variance, also under the
null hypothesis — V say. Then U2/V provides the chi-squared test on 1 df. This procedure
extends easily to meta-analysis; given two independent studies of the same hypothesis, we
simply add together the two values of U and the two values of V , and then calculate U2/V
as before. These ideas also extend naturally to tests of several parameters (2 or more df
tests).

In chopsticks, the statistical testing functions can be called with the option score=TRUE,
causing an extended object to be saved. The extended object contains the U and V values,
thus allowing later combination of the evidence from different studies. We shall first see
what sort of object we have calculated previously using single.snp.tests without the
score=TRUE argument.

> class(imp)

[1] "snp.tests.single"

attr(,"package")

[1] "chopsticks"

This object contains the imputed SNP tests in our target set. However, these SNPs were
observed in our training set, so we can test them. We will also recalculate the imputed tests.
In both cases we will save the score information:

> obs <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = missing, score = TRUE)

> imp <- single.snp.tests(cc, stratum, data = subject.support,

+ snp.data = target, rules = rules, score = TRUE)

The extended objects have been returned:

> class(obs)

[1] "snp.tests.single.score"

attr(,"package")

[1] "chopsticks"

> class(imp)

[1] "snp.tests.single.score"

attr(,"package")

[1] "chopsticks"

11

These extended objects behave in the same way as the original objects, so that the same
functions can be used to extract chi-squared values, p-values etc., but several additional
functions, or methods, are now available. Chief amongst these is pool, which combines
evidence across independent studies as described at the beginning of this section. Although
obs and imp are not from independent studies, so that the resulting test would not be valid,
we can use them to demonstrate this:

> both <- pool(obs, imp)

> class(both)

[1] "snp.tests.single"

attr(,"package")

[1] "chopsticks"

> both[1:5]

N N.r2 Chi.squared.1.df Chi.squared.2.df P.1df P.2df

rs7093061 975 903.4874 1.84307517 1.9050217 0.1745909 0.3857712

rs7475011 997 903.1220 0.57583838 0.5834111 0.4479482 0.7469884

rs4881551 977 972.3073 0.07096543 0.1409142 0.7899363 0.9319677

rs4880750 958 848.0383 0.19973089 0.2728395 0.6549382 0.8724763

rs7081782 989 914.3320 0.88276176 1.2998059 0.3474464 0.5220965

Note that if we wished at some later stage to combine the results in both with a further
study, we would also need to specify score=TRUE in the call to pool:

> both <- pool(obs, imp, score = TRUE)

> class(both)

[1] "snp.tests.single.score"

attr(,"package")

[1] "chopsticks"

Another reason to save the score statistics is that this allows us to investigate the di-
rection of findings. These can be extracted from the extended objects using the function
effect.sign. For example, this command tabulates the signs of the associations in obs:

> table(effect.sign(obs))

-1 0 1

7226 51 6973

In this table, -1 corresponds to tests in which effect sizes were negative (corresponding to an
odds ratio less than one), while +1 indicates positive effect sizes (odds ratio greater than one).
Zero sign indicates that the effect was NA (for example because the SNP was monomorphic).

12

Reversal of sign can be the explanation of a puzzling phenomenon when two studies give
significant results individually, but no significant association when pooled. Although it is not
impossible that such results are genuine, a more usual explanation is that the two alleles have
been coded differently in the two studies: allele 1 in the first study is allele 2 in the second
study and vice versa. To allow for this, chopsticks provides the switch.alleles function,
which reverses the coding of specified SNPs. It can be applied to snp.matrix objects but,
because allele switches are often discovered quite late on in the analysis and recoding the
original data matrices could have unforeseen consequences, the switch.alleles function
can also be applied to the extended test output objects. This modifies the saved scores as
if the allele coding had been switched in the original data. The use of this is demonstrated
below.

> effect.sign(obs)[1:6]

rs7093061 rs7475011 rs4881551 rs4880750 rs7081782 rs7898275

-1 -1 -1 -1 1 1

> sw.obs <- switch.alleles(obs, c("rs7093061", "rs7475011"))

> class(sw.obs)

[1] "snp.tests.single.score"

attr(,"package")

[1] "chopsticks"

> effect.sign(sw.obs)[1:6]

rs7093061 rs7475011 rs4881551 rs4880750 rs7081782 rs7898275

1 1 -1 -1 1 1

13

