
RDF processing for Bioconductor: Rredland

©2005 VJ Carey <stvjc@channing.harvard.edu>

April 13, 2011

Contents

1 Introduction 1

2 Illustration 2
2.1 Simple manipulations with a fragment of GO 2
2.2 BioPAX Level 1 . 5
2.3 BioPAX level 2 . 8
2.4 HumanCyc . 9

3 Future work 12

1 Introduction

Resource Description Framework (RDF) is a graphical model for information. RDF
statements are ordered triples of the form (subject, predicate, object). Subjects and
objects are viewed as nodes in a directed graph, and predicates are viewed as arcs
in the graph. RDF is a key component of current developments towards a semantic
web, with considerable work completed on web resource metadata representation and
exchange using RDF. A richer metadata model is provided by OWL (Web Ontology
Language), but most OWL models are serialized using XML/RDF. Thus, as we will
illustrate, various public OWL resources can be processed by this package.

Redland is the name of an open source software project downloadable from librdf.

org. Redland is a C language library with bindings provided to a variety of other
languages. Redland is highly modular, and allows developers to drop in components to
substitute for base functionalities. Because metadata resources can be very voluminous,
such flexibility is important. A solution to the problem of persistent storage of indexed
metadata is provided through the use of BerkeleyDB serializations of Redland models.

Rredland is an R package that provides interfaces to facilities of Redland. Configu-
ration support is currently limited. You will be able to use Rredland if you do a stock

1

librdf.org
librdf.org

installation of librdf and BerkeleyDB. If you have these resources in nonstandard loca-
tions, you can set the Makevars variables in src to reflect your configuration. You may
need to set LD_LIBRARY_PATH.

2 Illustration

2.1 Simple manipulations with a fragment of GO

Eric Jain of ISB-CH has provided an RDF serialization of the UniProt database and
associated annotation resources, including an RDF serialization of GO. A fragment of
this serialization is distributed with the Rredland package.

> library(Rredland)

A redland RDF world has been created in package:Rredland as ..GredlWorld.

> gofrag <- system.file("RDF/gopart.rdf", package = "Rredland")

Here we dump the first 10 lines of this document as text:

> readLines(gofrag, n = 10)

[1] "<?xml version='1.0' encoding='UTF-8'?>"
[2] "<rdf:RDF xmlns=\"urn:lsid:uniprot.org:ontology:\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:owl=\"http://www.w3.org/2002/07/owl#\" xmlns:rdfs=\"http://www.w3.org/2000/01/rdf-schema#\">"

[3] "<rdf:Description rdf:about=\"urn:lsid:uniprot.org:go:0000001\">"

[4] "<rdf:type rdf:resource=\"urn:lsid:uniprot.org:ontology:Concept\"/>"

[5] "<rdfs:label>mitochondrion inheritance</rdfs:label>"

[6] "<rdfs:comment>The distribution of mitochondria, including the mitochondrial genome, into daughter cells after mitosis or meiosis, mediated by interactions between mitochondria and the cytoskeleton.</rdfs:comment>"

[7] "<rdfs:subClassOf rdf:resource=\"urn:lsid:uniprot.org:go:0048308\"/>"

[8] "<rdfs:subClassOf rdf:resource=\"urn:lsid:uniprot.org:go:0048311\"/>"

[9] "</rdf:Description>"

[10] "<rdf:Description rdf:about=\"urn:lsid:uniprot.org:go:0000002\">"

This could be processed as an XML document, but let’s use Redlands modeling
facilities. First we need to set up a URI object for the model source document.

> gouri <- makeRedlURI(paste("file:", gofrag, sep = ""))

Now we read from this document. We will set the useCore option to use in-memory
storage.

> gof <- readRDF(gouri)

> gof

2

redlModel object, status=open.

We are handed back an S4 object of class redlModel .

> getClass("redlModel")

Class "redlModel" [package "Rredland"]

Slots:

Name: ref storagetype stateEnv world

Class: externalptr character environment redlWorld

We need to use the model accessor to get to the model reference.
We can easily compute the number of statements (also computed with show()):

> size(gof)

[1] 69

We can also transform to a data frame:

> godf <- as(gof, "data.frame")

> godf[1:4,]

subject

1 urn:lsid:uniprot.org:go:0000001

2 urn:lsid:uniprot.org:go:0000001

3 urn:lsid:uniprot.org:go:0000001

4 urn:lsid:uniprot.org:go:0000001

predicate

1 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2 http://www.w3.org/2000/01/rdf-schema#label

3 http://www.w3.org/2000/01/rdf-schema#comment

4 http://www.w3.org/2000/01/rdf-schema#subClassOf

object

1 urn:lsid:uniprot.org:ontology:Concept

2 "mitochondrion inheritance"

3 "The distribution of mitochondria, including the mitochondrial genome, into daughter cells after mitosis or meiosis, mediated by interactions between mitochondria and the cytoskeleton."

4 urn:lsid:uniprot.org:go:0048308

We see that long text strings can cause a problem for rendering.

> as.character(godf[1:4, 3])

3

[1] "urn:lsid:uniprot.org:ontology:Concept"

[2] "\"mitochondrion inheritance\""

[3] "\"The distribution of mitochondria, including the mitochondrial genome, into daughter cells after mitosis or meiosis, mediated by interactions between mitochondria and the cytoskeleton.\""

[4] "urn:lsid:uniprot.org:go:0048308"

The data frame representation is useful for splitting up the statement set.

> bypred <- split(godf, as.character(godf$predicate))

> names(bypred)

[1] "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

[2] "http://www.w3.org/2000/01/rdf-schema#comment"

[3] "http://www.w3.org/2000/01/rdf-schema#label"

[4] "http://www.w3.org/2000/01/rdf-schema#subClassOf"

[5] "urn:lsid:uniprot.org:ontology:obsolete"

> sapply(bypred, nrow)

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

16

http://www.w3.org/2000/01/rdf-schema#comment

15

http://www.w3.org/2000/01/rdf-schema#label

19

http://www.w3.org/2000/01/rdf-schema#subClassOf

17

urn:lsid:uniprot.org:ontology:obsolete

2

The subClassOf predicate helps determine the DAG structure:

> bypred$"http://www.w3.org/2000/01/rdf-schema#subClassOf"[, -2]

subject object

4 urn:lsid:uniprot.org:go:0000001 urn:lsid:uniprot.org:go:0048308

5 urn:lsid:uniprot.org:go:0000001 urn:lsid:uniprot.org:go:0048311

9 urn:lsid:uniprot.org:go:0000002 urn:lsid:uniprot.org:go:0007005

14 urn:lsid:uniprot.org:go:0000003 urn:lsid:uniprot.org:go:0008150

18 urn:lsid:uniprot.org:go:0000004 urn:lsid:uniprot.org:go:0008150

26 urn:lsid:uniprot.org:go:0000006 urn:lsid:uniprot.org:go:0005385

29 urn:lsid:uniprot.org:go:0000007 urn:lsid:uniprot.org:go:0005385

38 urn:lsid:uniprot.org:go:0000009 urn:lsid:uniprot.org:go:0000030

42 urn:lsid:uniprot.org:go:0000010 urn:lsid:uniprot.org:go:0016765

46 urn:lsid:uniprot.org:go:0000011 urn:lsid:uniprot.org:go:0007033

4

47 urn:lsid:uniprot.org:go:0000011 urn:lsid:uniprot.org:go:0048308

51 urn:lsid:uniprot.org:go:0000012 urn:lsid:uniprot.org:go:0006281

55 urn:lsid:uniprot.org:go:0000014 urn:lsid:uniprot.org:go:0004520

60 urn:lsid:uniprot.org:go:0000015 urn:lsid:uniprot.org:go:0005829

61 urn:lsid:uniprot.org:go:0000015 urn:lsid:uniprot.org:go:0043234

65 urn:lsid:uniprot.org:go:0000016 urn:lsid:uniprot.org:go:0004553

69 urn:lsid:uniprot.org:go:0000017 urn:lsid:uniprot.org:go:0042946

2.2 BioPAX Level 1

The BioPAX pathway ontologies are available.

> bp1 <- makeRedlURI(paste("file:", system.file("RDF/biopax-level1.owl",

+ package = "Rredland"), sep = ""))

> bp1m <- readRDF(bp1)

> size(bp1m)

[1] 630

This is a manageable object, so we convert to data frame:

> bp1df <- as(bp1m, "data.frame")

> sapply(bp1df[1:5,], substring, 1, 70)

subject

[1,] "http://www.biopax.org/release/biopax-level1.owl"

[2,] "http://www.biopax.org/release/biopax-level1.owl"

[3,] "http://www.biopax.org/release/biopax-level1.owl#physicalEntityParticip"

[4,] "http://www.biopax.org/release/biopax-level1.owl#chemicalStructure"

[5,] "http://www.biopax.org/release/biopax-level1.owl#physicalEntityParticip"

predicate

[1,] "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

[2,] "http://www.w3.org/2000/01/rdf-schema#comment"

[3,] "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

[4,] "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

[5,] "http://www.w3.org/2002/07/owl#disjointWith"

object

[1,] "http://www.w3.org/2002/07/owl#Ontology"

[2,] "\"This is version 1.4 of the BioPAX Level 1 ontology. The goal of the "

[3,] "http://www.w3.org/2002/07/owl#Class"

[4,] "http://www.w3.org/2002/07/owl#Class"

[5,] "http://www.biopax.org/release/biopax-level1.owl#chemicalStructure"

5

The namespace qualifications make the strings difficult to render. A simple approach
uses substitution up to the pound sign, preceded by eliminating any XSD postfix infor-
mation.

> strip2pound <- function(x) gsub(".*#", "", cleanXSDT(as.character(x)))

> sapply(bp1df[1:5,], strip2pound)

subject predicate

[1,] "http://www.biopax.org/release/biopax-level1.owl" "type"

[2,] "http://www.biopax.org/release/biopax-level1.owl" "comment"

[3,] "physicalEntityParticipant" "type"

[4,] "chemicalStructure" "type"

[5,] "physicalEntityParticipant" "disjointWith"

object

[1,] "Ontology"

[2,] "\"This is version 1.4 of the BioPAX Level 1 ontology. The goal of the BioPAX group is to develop a common exchange format for biological pathway data. More information is available at http://www.biopax.org. This ontology is freely available under the LGPL (http://www.gnu.org/copyleft/lesser.html).\""

[3,] "Class"

[4,] "Class"

[5,] "chemicalStructure"

Working with a data frame, it is easy to filter statements of interest. Suppose we
wish to determine all the instances of owl#Class in the model.

> isTypeOwlClass <- grep("owl#Class", as.character(bp1df[, 3]))

> strip2pound(bp1df[isTypeOwlClass, 1])

[1] "physicalEntityParticipant" "chemicalStructure"

[3] "openControlledVocabulary" "dataSource"

[5] "xref" "pathwayStep"

[7] "bioSource" "utilityClass"

[9] "rna" "physicalEntity"

[11] "smallMolecule" "complex"

[13] "protein" "relationshipXref"

[15] "unificationXref" "publicationXref"

[17] "control" "conversion"

[19] "interaction" "entity"

[21] "complexAssembly" "biochemicalReaction"

[23] "transport" "(r1302762853r27481r13)"

[25] "pathway" "modulation"

[27] "catalysis" "transportWithBiochemicalReaction"

[29] "(r1302762853r27481r44)" "(r1302762853r27481r47)"

[31] "(r1302762853r27481r50)" "(r1302762853r27481r53)"

[33] "(r1302762853r27481r58)" "(r1302762853r27481r61)"

[35] "(r1302762853r27481r65)" "(r1302762853r27481r68)"

6

We see a number of decipherable terms, and some tokens of the form (rnnn...). The
latter are called blank nodes. These are created to define classes that have no names,
but that are implicitly defined in the model. For example, a class that is the union of
entity and physicalEntity is a blank node in this model.

To get the detailed commentary on a class definition, the following function can be
used:

> getClassComment <- function(term, df, nsPref = "http://www.biopax.org/release/biopax-level1.owl#",

+ commPred = "http://www.w3.org/2000/01/rdf-schema#comment",

+ doChop = TRUE, nword = 12) {

+ ind <- which(as.character(df[, 1]) == paste(nsPref, term,

+ sep = "") & as.character(df[, 2]) == commPred)

+ chopLong(cleanXSDT(as.character(bp1df[ind, 3])), nword = nword)

+ }

> cat(getClassComment("chemicalStructure", bp1df))

"A utility class that defines a small molecule structure. An instance

of this class can also define additional information about a small molecule,

such as its chemical formula, names, and synonyms. This information is stored

in the slot STRUCTURE-DATA, in one of two formats: the CML format

(see URL www.xml-cml.org) or the SMILES format (see URL www.daylight.com/dayhtml/smiles/). The STRUCTURE-FORMAT

slot specifies which format used is used. An example is the

following SMILES string, which describes the structure of glucose-6-phosphate:

'C(OP(=O)(O)O)CH1(CH(O)CH(O)CH(O)CH(O)O1)'."

> cat(getClassComment("biochemicalReaction", bp1df))

"A conversion interaction in which one or more entities (substrates) undergo covalent

changes to become one or more other entities (products). The substrates

of biochemical reactions are defined in terms of sums of species. This

is what is typically done in biochemistry, and, in principle, all of

the EC reactions should be biochemical reactions.

Example: ATP + H2O =

ADP + Pi.

In this reaction, ATP is considered to be an equilibrium

mixture of several species, namely ATP4-, HATP3-, H2ATP2-, MgATP2-, MgHATP-, and Mg2ATP.

Additional species may also need to be considered if other ions (e.g.

Ca2+) that bind ATP are present. Similar considerations apply to ADP and

to inorganic phosphate (Pi). When writing biochemical reactions, it is important not

to attach charges to the biochemical reactants and not to include ions

7

such as H+ and Mg2+ in the equation. The reaction is written

in the direction specified by the EC nomenclature system, if applicable, regardless

of the physiological direction(s) in which the reaction proceeds. (This definition from

EcoCyc)

NOTE: Polymerization reactions involving large polymers whose structure is not explicitly captured

should generally be represented as unbalanced reactions in which the monomer is

consumed but the polymer remains unchanged, e.g. glycogen + glucose = glycogen."

2.3 BioPAX level 2

Here we check the classes available in BioPAX level 2.

> bp2 <- makeRedlURI(paste("file:", system.file("RDF/biopax-level2.owl",

+ package = "Rredland"), sep = ""))

> bp2m <- readRDF(bp2)

> size(bp2m)

[1] 910

> bp2df <- as(bp2m, "data.frame")

> isTypeOwlClass <- grep("owl#Class", as.character(bp2df[, 3]))

> strip2pound(bp2df[isTypeOwlClass, 1])

[1] "dataSource" "openControlledVocabulary"

[3] "xref" "bioSource"

[5] "externalReferenceUtilityClass" "dnaParticipant"

[7] "rnaParticipant" "dna"

[9] "physicalEntityParticipant" "proteinParticipant"

[11] "complexParticipant" "smallMoleculeParticipant"

[13] "transportWithBiochemicalReaction" "biochemicalReaction"

[15] "transport" "complexAssembly"

[17] "conversion" "physicalEntity"

[19] "interaction" "entity"

[21] "pathway" "unificationXref"

[23] "relationshipXref" "publicationXref"

[25] "physicalInteraction" "smallMolecule"

[27] "protein" "rna"

[29] "complex" "sequenceLocation"

[31] "confidence" "evidence"

[33] "chemicalStructure" "utilityClass"

[35] "pathwayStep" "sequenceInterval"

[37] "sequenceSite" "sequenceFeature"

8

[39] "modulation" "catalysis"

[41] "control" "experimentalForm"

[43] "(r1302762853r27481r141)" "(r1302762853r27481r156)"

[45] "(r1302762853r27481r159)" "(r1302762853r27481r166)"

[47] "(r1302762853r27481r170)" "(r1302762853r27481r173)"

[49] "(r1302762853r27481r176)" "(r1302762853r27481r182)"

[51] "(r1302762853r27481r186)" "(r1302762853r27481r189)"

[53] "(r1302762853r27481r201)" "(r1302762853r27481r204)"

[55] "(r1302762853r27481r207)" "(r1302762853r27481r211)"

2.4 HumanCyc

The BioCyc project (www.biocyc.org) is a collection of pathway/genome databases
in a variety of structures. The data resources are available to academic researchers,
and a registration/download process must be completed for access. We illustrate use
of Rredland to work with the BioPAX encoding of HumanCyc. This is 19MB of RDF
and an in-core storage model is not likely to be satisfactory. We will use the default
BerkeleyDB storage approach.

> humu <- makeRedlURI(paste("file:", "humancyc.owl", sep = ""))

> humm <- readRDF(humu, storageType = "bdb", storageName = "hucyc")

Note that the vignette cannot assume that you have this OWL file. After the above
commands, we have

-rw-r--r-- 1 stvjc stvjc 59723776 Jul 28 13:09 test-sp2o.db

-rw-r--r-- 1 stvjc stvjc 39538688 Jul 28 13:07 test-po2s.db

-rw-r--r-- 1 stvjc stvjc 57499648 Jul 28 13:07 test-so2p.db

These are the BerkeleyDB hashes representing aspects of the graph.
It is not too difficult to transform into a data frame.

> hudf <- as(humm, "data.frame")

> husubs <- as.character(hudf[, 1])

> hupreds <- as.character(hudf[, 2])

> huobs <- as.character(hudf[, 3])

> table(hupreds)

hupreds

http://www.biopax.org/release/biopax-level1.owl#AUTHORS

31432

http://www.biopax.org/release/biopax-level1.owl#CELLULAR-LOCATION

2800

9

www.biocyc.org

http://www.biopax.org/release/biopax-level1.owl#COFACTOR

11

http://www.biopax.org/release/biopax-level1.owl#COMMENT

1231

http://www.biopax.org/release/biopax-level1.owl#COMPONENTS

36

http://www.biopax.org/release/biopax-level1.owl#CONTROL-TYPE

36

http://www.biopax.org/release/biopax-level1.owl#CONTROLLED

2216

http://www.biopax.org/release/biopax-level1.owl#CONTROLLER

2216

http://www.biopax.org/release/biopax-level1.owl#DATA-SOURCE

167

http://www.biopax.org/release/biopax-level1.owl#DB

12251

http://www.biopax.org/release/biopax-level1.owl#DELTA-G

23

http://www.biopax.org/release/biopax-level1.owl#EC-NUMBER

872

http://www.biopax.org/release/biopax-level1.owl#ID

12251

http://www.biopax.org/release/biopax-level1.owl#LEFT

1968

http://www.biopax.org/release/biopax-level1.owl#MOLECULAR-WEIGHT

666

http://www.biopax.org/release/biopax-level1.owl#NAME

6046

http://www.biopax.org/release/biopax-level1.owl#NEXT-STEP

895

http://www.biopax.org/release/biopax-level1.owl#ORGANISM

1730

http://www.biopax.org/release/biopax-level1.owl#PATHWAY-COMPONENTS

1049

http://www.biopax.org/release/biopax-level1.owl#PHYSICAL-ENTITY

2800

http://www.biopax.org/release/biopax-level1.owl#RIGHT

2020

http://www.biopax.org/release/biopax-level1.owl#SEQUENCE

12

http://www.biopax.org/release/biopax-level1.owl#SOURCE

5534

10

http://www.biopax.org/release/biopax-level1.owl#SPONTANEOUS

3

http://www.biopax.org/release/biopax-level1.owl#STEP-INTERACTIONS

2869

http://www.biopax.org/release/biopax-level1.owl#STOICHIOMETRIC-COEFFICIENT

2783

http://www.biopax.org/release/biopax-level1.owl#STRUCTURE

776

http://www.biopax.org/release/biopax-level1.owl#STRUCTURE-DATA

776

http://www.biopax.org/release/biopax-level1.owl#STRUCTURE-FORMAT

776

http://www.biopax.org/release/biopax-level1.owl#SYNONYMS

10032

http://www.biopax.org/release/biopax-level1.owl#TAXON-XREF

1

http://www.biopax.org/release/biopax-level1.owl#TERM

10

http://www.biopax.org/release/biopax-level1.owl#TITLE

5534

http://www.biopax.org/release/biopax-level1.owl#XREF

13605

http://www.biopax.org/release/biopax-level1.owl#YEAR

5460

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

22984

http://www.w3.org/2000/01/rdf-schema#comment

1

To find the named pathways,

> isPw <- grep("pathway", husubs)

> isNa <- grep("NAME", hupreds)

> isnp <- intersect(isPw, isNa)

> cleanXSDT(huobs[isnp][1:10])

[1] "\"biosynthesis of aspartate and asparagine; interconversion of aspartate and asparagine.\""

[2] "\"serine and glycine biosynthesis\""

[3] "\"alanine biosynthesis II\""

[4] "\"alanine biosynthesis I\""

[5] "\"alanine biosynthesis III\""

[6] "\"superpathway of alanine biosynthesis\""

[7] "\"arginine biosynthesis III\""

11

[8] "\"citrulline biosynthesis\""

[9] "\"asparagine biosynthesis I\""

[10] "\"aspartate biosynthesis and degradation\""

So we see in the predicate set what kinds of relationships are described, and we get
a glimpse of the pathway names addressed in this resource.

Note that there is no need to parse the data once the Berkeley DB hashes are made
available. The BDBSexists option on readRedlModel can be used to revive a model-hash
association.

3 Future work

We will need to take unions of RDF models and C code will be required for that. We
need R interfaces to Redland approaches to model filtering. Some graph/set-theoretic
activities can be introduced to bring some RDF/RDFS inferencing in.

12

	Introduction
	Illustration
	Simple manipulations with a fragment of GO
	BioPAX Level 1
	BioPAX level 2
	HumanCyc

	Future work

