
netresponse
October 25, 2011

ICMg.combined.sampler
ICMg.combined.sampler

Description

Main function of the ICMg algorithm. ICMg.combined.sampler computes samples from the pos-
terior of the assignments of datapoints (interactions and expression profiles) to latent components.
From these we can then obtain component membership distributions and clusterings for genes.

Usage

ICMg.combined.sampler(L, X, C, alpha=10, beta=0.01, pm0=0, V0=1, V=0.1, B.num=8, B.size=100, S.num=20, S.size=10, C.boost=1)

Arguments

L N x 2 matrix of link endpoints (N = number of links).

X M x D matrix of gene expression profiles (M = number of nodes, D = number
of observations).

C Number of components.

alpha Hyperparameter describing the global distribution over components, larger al-
pha gives a more uniform distribution.

beta Hyperparameter describing the component-wise distributions over nodes, larger
beta gives a more uniform distribution.

pm0 Hyperparameter describing the prior mean of the expression profiles, should be
zero.

V0 Hyperparameter describing the variation of the component-wise expression pro-
files means around pm0.

V Hyperparameter describing the variation of gene-specific expression profiles
around the component-wise means.

B.num Number of burnin rounds.*

B.size Size of one burnin round.*

S.num Number of sample rounds.*

S.size Size of one sample round.*

C.boost Set to 1 to use faster iteration with C, set to 0 to use slower R functions.

1

2 ICMg.combined.sampler

Details

One run consists of two parts, during burnin the sampler is expected to mix, after which the samples
are taken. Information about convergence (convN and convL are estimates of convergence for link
and node sampling, respectively) and component sizes are printed after each burnin/sample round.
For example: B.num=8, B.size=100, S.num=20, S.size=10, runs 800 burnin iterations in 8 rounds
and then takes 20 samples with an interval of 10 iterations.

Value

Returns samples as a list:

z S.num x N matrix of samples of component assignments for links.

w S.num x M matrix of samples of component assignments for gene expression
profiles.

convl Vector of length (B.num + S.num) with convergence estimator values for link
sampling.

convn Vector of length (B.num + S.num) with convergence estimator values for node
sampling.

countsl (B.num + S.num) x C matrix of link component sizes.

countsn (B.num + S.num) x C matrix of node component sizes.

additionally all parameters of the run are included in the list.

Author(s)

Juuso Parkkinen

References

Parkkinen, J. and Kaski, S. Searching for functional gene modules with interaction component
models. BMC Systems Biology 4 (2010), 4.

See Also

ICMg.links.sampler

Examples

library(netresponse)
data(osmo) # Load data set

Run ICMg combined sampler
res = ICMg.combined.sampler(osmo$ppi, osmo$exp, C=10)

ICMg.get.comp.memberships 3

ICMg.get.comp.memberships
ICMg.get.comp.memberships

Description

Function for computing the component memberships for each data point from the MCMC samples.

Usage

ICMg.get.comp.memberships(links, samples)

Arguments

links N x 2 matrix of link endpoints (N = number of links).

samples Posterior samples, as given by either ICMg.combined.sampler or ICMg.links.sampler.

Value

A matrix containing the component memberships for each data point (node).

Author(s)

Juuso Parkkinen

References

Parkkinen, J. and Kaski, S. Searching for functional gene modules with interaction component
models. BMC Systems Biology 4 (2010), 4.

See Also

ICMg.combined.sampler, ICMg.links.sampler

ICMg.links.sampler ICMg.links.sampler

Description

ICMg.links.sampler computes samples from the posterior of the assignments of datapoints (inter-
actions) to latent components. From these we can then obtain component membership distributions
and clusterings for genes.

Usage

ICMg.links.sampler(L, C, alpha=10, beta=0.01, B.num=8, B.size=100, S.num=20, S.size=10, C.boost=1)

4 ICMg.links.sampler

Arguments

L N x 2 matrix of link endpoints (N = number of links).
C Number of components.
alpha Hyperparameter describing the global distribution over components, larger al-

pha gives a more uniform distribution.
beta Hyperparameter describing the component-wise distributions over nodes, larger

beta gives a more uniform distribution.
B.num Number of burnin rounds.*
B.size Size of one burnin round.*
S.num Number of sample rounds.*
S.size Size of one sample round.*
C.boost Set to 1 to use faster iteration with C, set to 0 to use slower R functions.

Details

One run consists of two parts, during burnin the sampler is expected to mix, after which the samples
are taken. Information about convergence (convN and convL are estimates of convergence for link
and node sampling, respectively) and component sizes are printed after each burnin/sample round.
For example: B.num=8, B.size=100, S.num=20, S.size=10, runs 800 burnin iterations in 8 rounds
and then takes 20 samples with an interval of 10 iterations.

Value

Returns samples as a list:

z S.num x N matrix of samples of component assignments for links.
conv Vector of length (B.num + S.num) with convergence estimator values for link

sampling.
counts (B.num + S.num) x C matrix of link component sizes.

additionally all parameters of the run are included in the list.

Author(s)

Juuso Parkkinen

References

Parkkinen, J. and Kaski, S. Searching for functional gene modules with interaction component
models. BMC Systems Biology 4 (2010), 4.

See Also

ICMg.combined.sampler

Examples

library(netresponse)
data(osmo) # Load data

Run ICMg links sampler
res = ICMg.links.sampler(osmo$ppi, C=10)

NetResponseModel-class 5

NetResponseModel-class
Class "NetResponseModel"

Description

A NetResponse model.

Objects from the Class

Returned by detect.responses function.

Slots

moves Subnetwork merging history.

last.grouping Subnetworks in the last agglomeration level: feature indices

subnets Subnetworks in the last agglomeration level: feature names

params Input parameters.

datamatrix Original input datamatrix that was used to learn the model.

network Original network that was used to learn the model (after netresponse preprocessing), given
in graphNEL format.

models Parameters for the learned subnetwork models.

Methods

[[signature(x = "NetResponseModel"): ...

show signature(x = "NetResponseModel"): ...

Author(s)

Leo Lahti <leo.lahti@iki.fi>

Examples

showClass("NetResponseModel")

detect.responses detect.responses

Description

Main function of the NetResponse algorithm. Detecting network responses across the conditions.

6 detect.responses

Usage

detect.responses(datamatrix, network, initial.responses = 1,
max.responses = 10, max.subnet.size = 10, verbose =
TRUE, prior.alpha = 1, prior.alphaKsi = 0.01, prior.betaKsi =
0.01, update.hyperparams = 0, implicit.noise = 0, vdp.threshold =
1.0e-5, merging.threshold = 0, ite = Inf,
information.criterion = "BIC", speedup = TRUE,
speedup.max.edges = 10)

Arguments

datamatrix Matrix of samples x features. For example, gene expression matrix with condi-
tions on the rows, and genes on the columns. The matrix contains same features
than the ’network’ object, characterizing the network states across the different
samples.

network Network describing undirected pairwise interactions between features of ’data-
matrix’. The following formats are supported: binary matrix, graphNEL, igraph,
graphAM, Matrix, dgCMatrix, dgeMatrix

initial.responses
Initial number of components for each subnetwork model. Used to initialize
calculations.

max.responses
Maximum number of responses for each subnetwork. Can be used to limit the
potential number of network states.

max.subnet.size
Numeric. Maximum allowed subnetwork size.

verbose Logical. Verbose parameter.
implicit.noise

Implicit noise parameter. Add implicit noise to vdp mixture model. Can help to
avoid overfitting to local optima, if this appears to be a problem.

update.hyperparams
Logical. Indicate whether to update hyperparameters during modeling.

prior.alpha, prior.alphaKsi, prior.betaKsi
Prior parameters for Gaussian mixture model that is calculated for each sub-
network (normal-inverse-Gamma prior). alpha tunes the mean; alphaKsi and
betaKsi are the shape and scale parameters of the inverse Gamma function, re-
spectively.

vdp.threshold
Minimal free energy improvement after which the variational Gaussian mixture
algorithm is deemed converged.

merging.threshold
Minimal cost value improvement required for merging two subnetworks.

ite Defines maximum number of iterations on posterior update (updatePosterior).
Increasing this can potentially lead to more accurate results, but computation
may take longer.

information.criterion
Information criterion for model selection. Default is BIC (Bayesian Information
Criterion); other options include AIC and AICc.

speedup Takes advantage of approximations to PCA, mutual information etc in various
places to speed up calculations. Particularly useful with large and densely con-
nected networks and/or large sample size.

dna 7

speedup.max.edges
Used if speedup = TRUE. Applies prefiltering of edges for calculating new joint
models between subnetwork pairs when potential cost changes (delta) are up-
dated for a newly merged subnetwork and its neighborghs. Empirical mutual
information between each such subnetwork pair is calculated based on their first
principal components, and joint models will be calculated only for the top can-
didates up to the number specified by speedup.max.edges. It is expected that the
subnetwork pair that will benefit most from joint modeling will be among the
top mutual infomation candidates. This way it is possible to avoid calculating
exhaustive many models on the network hubs.

Value

NetResponseModel object.

Author(s)

Leo Lahti, Olli-Pekka Huovilainen and Antonio Gusmao. Maintainer: Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010). See citation("netresponse") for details.

Examples

library(netresponse)
data(toydata) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
netw <- toydata$netw # Network

Run NetReponse algorithm
model <- detect.responses(D, netw, verbose = FALSE)

dna Dna damage data set (PPI and expression)

Description

A combined yeast data set with protein-protein interactions and gene expression (dna damage).
Gene expression profiles are transformed into links by computing a Pearson correlation for all pairs
of genes and treating all correlations above 0.85 as additional links.

Usage

data(dna)

8 find.similar.features

Format

List of following objects:

ppi PPI data matrix

exp gene expression profiles data matrix

gids Vector of gene ids corresponding to indices used in data matrices

obs Gene expression observation details

combined.links pooled matrix of PPI and expression links

Details

Number of genes: 1823, number of interactions: 12382, number of gene expression observations:
52, number of total links with PPI and expression links: 15547.

Source

PPI data pooled from yeast data sets of [1] and [2]. Dna damage expression set of [3].

References

Ulitsky, I. and Shamir, R. Identification of functional modules using network topology and high-
throughput data. BMC Systems Biology 2007, 1:8.

Nariai, N., Kolaczyk, E. D. and Kasif, S. Probabilistic Protein Function Predition from Heteroge-
nous Genome-Wide Data. PLoS ONE 2007, 2(3):e337.

Gasch, A., Huang, M., Metzner, S., Botstein, D. and Elledge, S. Genomic expression responses
to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mex1p. Molecular
Biology of the Cell 2001, 12:2987-3003.

Examples

data(dna)

find.similar.features
Find similar features with a given subnetwork.

Description

Given subnetwork, orders the remaining features (genes) in the input data based on similarity with
the subnetwork. Allows the identification of similar features that are not directly connected in the
input network.

Usage

find.similar.features(model, subnet.id, datamatrix = NULL, verbose = FALSE, information.criterion = NULL)

get.model.parameters 9

Arguments

model NetResponseModel object.

subnet.id Investigated subnetwork.

datamatrix Optional. Can be used to compare subnetwork similarity with new data which
was not used for learning the subnetworks.

verbose Logical indicating whether progress of the algorithm should be indicated on the
screen.

information.criterion
Information criterion for model selection. By default uses the same than in the
’model’ object.

Details

The same similarity measure is used as when agglomerating the subnetworks: the features are
ordered by delta (change) in the cost function, assuming that the feature would be merged in the
subnetwork. The smaller the change, the more similar the feature is (change would minimize the
new cost function value). Negative values of delta mean that the cost function would be improved
by merging the new feature in the subnetwork, indicating features having coordinated response.

Value

A data frame with elements feature.names (e.g. gene IDs) and delta, which indicates similarity
level. See details for details. The smaller, the more similar. The data frame is ordered such that the
features are listed by decreasing similarity.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

See citation("netresponse") for reference details.

Examples

data(toydata)
model <- toydata$model
subnet.id <- "Subnet-1"
g <- find.similar.features(model, subnet.id)
List features that are similar to this subnetwork (delta < 0)
(ordered by decreasing similarity)
subset(g, delta < 0)

get.model.parameters
get.model.parameters

Description

Retrieve the mixture model parameters of the NetResponse algorithm for a given subnetwork.

10 get.model.parameters

Usage

get.model.parameters(model, subnet.id)

Arguments

model Result from NetResponse (detect.responses function).

subnet.id Subnet identifier. A natural number which specifies one of the subnetworks
within the ’model’ object.

Details

Only the non-empty components are returned. Note: the original data matrix needs to be provided
for function call separately.

Value

A list with the following elements:

mu Centroids for the mixture components. Components x nodes.

sd Standard deviations for the mixture components. A vector over the nodes for
each component, implying the diagonal covariance matrix of the model (i.e.
diag(std^2)). Components x nodes

w Vector of component weights.

nodes List of nodes in the subnetwork.

K Number of mixture components.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010). See citation("netresponse") for details.

Examples

Load toy data
data(toydata) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
model <- toydata$model # Pre-calculated model

Get model parameters for a given subnet
(Gaussian mixture: mean, covariance diagonal, mixture proportions)
get.model.parameters(model, subnet.id = 1)

get.subnets 11

get.subnets get.subnets

Description

List the detected subnetworks (each is a list of nodes in the corresponding subnetwork).

Usage

get.subnets(model, get.names = TRUE, min.size = 2, max.size = Inf, min.responses = 2)

Arguments

model Output from the detect.responses function. An object of NetResponseModel
class.

get.names Logical. Indicate whether to return subnetwork nodes using node names (TRUE)
or node indices (FALSE).

min.size, max.size
Numeric. Filter out subnetworks whose size is not within the limits specified
here.

min.responses
Numeric. Filter out subnetworks with less responses (mixture components) than
specified here.

Value

A list of subnetworks.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010). See citation("netresponse") for details.

Examples

library(netresponse)

Load a pre-calculated netresponse model obtained with
model <- detect.responses(toydata$emat, toydata$netw, verbose = FALSE)
data(toydata)
model <- toydata$model

#List the detected subnetworks
#(each is a list of nodes for the given subnetwork):
get.subnets(model)

12 model.stats

model.stats model.stats

Description

Subnetwork statistics: size and number of distinct responses for each subnet.

Usage

model.stats(model)

Arguments

model Result from NetResponse (detect.responses function).

Value

A ’subnetworks x properties’ data frame containing the following elements.

subnet.size:
Vector of subnetwork sizes.

subnet.responses:
Vector giving the number of responses in each subnetwork.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010). See citation("netresponse") for reference details.

Examples

library(netresponse)

Load a pre-calculated netresponse model obtained with
model <- detect.responses(toydata$emat, toydata$netw, verbose = FALSE)
data(toydata)
Calculate summary statistics for the model
stat <- model.stats(toydata$model)

netresponse-package 13

netresponse-package
NetResponse: Global modeling of transcriptional responses in

Description

Global modeling of transcriptional responses in interaction networks.

Details

Package: netresponse
Type: Package
Version: See sessionInfo() or DESCRIPTION file
Date: 2011-02-03
License: GNU GPL >=2
LazyLoad: yes

Author(s)

Leo Lahti, Olli-Pekka Huovilainen, Antonio Gusmao and Juuso Parkkinen. Maintainer: Leo Lahti
<leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010). See citation("netresponse") for details.

Examples

Load the package
library(netresponse)

Define parameters for toy data
Ns <- 200 # number of samples (conditions)
Nf <- 10 # number of features (nodes)
feature.names <- paste("feat", seq(Nf), sep="")
sample.names <- paste("sample", seq(Ns), sep="")

random seed
set.seed(123)

Random network
netw <- pmax(array(sign(rnorm(Nf^2)), dim = c(Nf, Nf)), 0)
in pathway analysis nodes correspond to genes
rownames(netw) <- colnames(netw) <- feature.names

Random responses of the nodes across conditions
D <- array(rnorm(Ns*Nf), dim = c(Ns,Nf), dimnames = list(sample.names, feature.names))
D[1:100, 4:6] <- t(sapply(1:(Ns/2),function(x){rnorm(3, mean = 1:3)}))

14 order.responses

D[101:Ns, 4:6] <- t(sapply(1:(Ns/2),function(x){rnorm(3, mean = 7:9)}))

Calculate the model
model <- detect.responses(D, netw)

Subnets (each is a list of nodes)
get.subnets(model)

Retrieve model for one subnetwork
means, standard devations and weights for the components
inds <- which(sapply(model@last.grouping, length) > 2)
subnet.id <- names(model@subnets)[[1]]
m <- get.model.parameters(model, subnet.id)
print(m)

order.responses order.responses

Description

Orders the responses by association strength (enrichment score) to a given factor level.

Usage

order.responses(model, sample, method = "hypergeometric")

Arguments

model NetResponseModel object.

sample Measure enrichment of this sample (set) across the observed responses.

method ’hypergeometric’ measures enrichment of factor levels in this response; ’preci-
sion’ measures response purity for each factor level; ’dependency’ measures log-
arithm of the joint density between response and factor level vs. their marginal
densities: log(P(r,s)/(P(r)P(s)))

Value

A data frame with elements ’ordered.responses’ which gives a data frame of responses ordered by
enrichment score for the investigated sample. The subnetwork, response id and enrichment score
are shown. The method field indicates the enrichment calculation method. The sample field lists
the samples et for which the enrichments were calculated.

Note

Tools for analyzing end results of the model.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

osmo 15

References

See citation("netresponse") for citation details.

Examples

- for given sample/s (factor level), order responses (across all subnets) by association strength (enrichment score)
#order.responses(model, sample, method = "hypergeometric") # overrepresentation

osmo Osmoshock data set (PPI and expression)

Description

A combined yeast data set with protein-protein interactions and gene expression (osmotick shock
response). Gene expression profiles are transformed into links by computing a Pearson correlation
for all pairs of genes and treating all correlations above 0.85 as additional links.

Usage

data(osmo)

Format

List of following objects:

ppi PPI data matrix
exp gene expression profiles data matrix
gids Vector of gene ids corresponding to indices used in data matrices
obs Gene expression observation details
combined.links pooled matrix of PPI and expression links

Details

Number of genes: 1711, number of interactions: 10250, number of gene expression observations:
133, number of total links with PPI and expression links: 14256.

Source

PPI data pooled from yeast data sets of [1] and [2]. Dna damage expression set of [3].

References

Ulitsky, I. and Shamir, R. Identification of functional modules using network topology and high-
throughput data. BMC Systems Biology 2007, 1:8.
Nariai, N., Kolaczyk, E. D. and Kasif, S. Probabilistic Protein Function Predition from Heteroge-
nous Genome-Wide Data. PLoS ONE 2007, 2(3):e337.
O’Rourke, S. and Herskowitz, I. Unique and redundant roles for Hog MAPK pathway components
as revealed by whole-genome expression analysis. Molecular Biology of the Cell 2004, 15:532-42.

Examples

data(osmo)

16 response2sample

read.network Reading network files

Description

Function to read network files.

Usage

read.sif(sif.file, format = "graphNEL", directed = FALSE)

Arguments

sif.file Name of network file in SIF format.

format Output format: igraph or graphNEL

directed Logical. Directed/undirected graph. Not used in the current model.

Details

Read in SIF network file, return R graph object in igraph or graphNEL format.

Value

R graph object in igraph or graphNEL format.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

Examples

#net <- read.sif("network.sif")

response2sample response2sample

Description

List the most strongly associated response of a given subnetwork for each sample.

Usage

response2sample(model, subnet.id, component.list = TRUE)

sample2response 17

Arguments

model A NetResponseModel object. Result from NetResponse (detect.responses func-
tion).

subnet.id Subnet id. A natural number which specifies one of the subnetworks within the
’model’ object.

component.list
List samples separately for each mixture component (TRUE). Else list the most
strongly associated component for each sample (FALSE).

Value

A list. Each element corresponds to one subnetwork response, and contains a list of samples that are
associated with the response (samples for which this response has the highest probability P(response
| sample)).

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010). See citation("netresponse") for citation details.

Examples

library(netresponse)

Load example data
data(toydata) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
model <- toydata$model # Pre-calculated model

Find the samples for each response (for a given subnetwork)
response2sample(model, subnet.id = 1)

sample2response sample2response

Description

Probabilistic sample-response assignments for given subnet.

Usage

sample2response(model, subnet.id)

18 toydata

Arguments

model Result from NetResponse (detect.responses function).

subnet.id Subnet identifier. A natural number which specifies one of the subnetworks
within the ’model’ object.

Value

A matrix of probabilities. Sample-response assignments for given subnet, listing the probability of
each response, given a sample.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010). See citation("netresponse") for citation details.

Examples

#library(netresponse)
#data(toydata) # Load toy data set
#D <- toydata$emat # Response matrix (for example, gene expression)
#netw <- toydata$netw # Network

Detect network responses
#model <- detect.responses(D, netw, verbose = FALSE)

Assign samples to responses (soft, probabilistic assignments sum to 1)
#response.probabilities <- sample2response(model, subnet.id = "Subnet-1")

toydata toydata

Description

Toy data for NetResponse examples.

Usage

data(toydata)

vdp.mixt 19

Format

Toy data: a list with three elements:

emat: Data matrix (samples x features). This contains the same features that are provided in the
network (toydata$netw). The matrix characterizes measurements of network states across different
conditions.

netw: Binary matrix that describes pairwise interactions between features. This defines an undi-
rected network over the features. A link between two nodes is denoted by 1.

model: A pre-calculated model. Object of NetResponseModel class, resulting from applying the
netresponse algorithm on the toydata with model <- detect.responses(D, netw).

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

Examples

data(toydata)
D <- toydata$emat # Response matrix (samples x features)
netw <- toydata$netw # Network between the features
model <- toydata$model # Pre-calculated NetResponseModel obtained with

model <- detect.responses(D, netw)

vdp.mixt vdp.mixt

Description

Accelerated variational Dirichlet process Gaussian mixture.

Usage

vdp.mixt(dat, prior.alpha = 1, prior.alphaKsi = 0.01, prior.betaKsi =
0.01, do.sort = TRUE, threshold = 1e-05, initial.K = 1, ite = Inf,
implicit.noise = 0, c.max = 10, speedup = TRUE, min.size = 5)

Arguments

dat Data matrix (samples x features).
prior.alpha, prior.alphaKsi, prior.betaKsi

Prior parameters for Gaussian mixture model (normal-inverse-Gamma prior).
alpha tunes the mean; alphaKsi and betaKsi are the shape and scale parameters
of the inverse Gamma function, respectively.

do.sort When true, qOFz will be sorted in decreasing fashion by component size, based
on colSums(qOFz). The qOFz matrix describes the sample-component assig-
ments in the mixture model.

threshold Defines the minimal free energy improvement that stops the algorithm: used to
define convergence limit.

initial.K Initial number of mixture components.

20 vdp.mixt

ite Defines maximum number of iterations on posterior update (updatePosterior).
Increasing this can potentially lead to more accurate results, but computation
may take longer.

implicit.noise
Adds implicit noise; used by vdp.mk.log.lambda.so and vdp.mk.hp.posterior.so.
By adding noise (positive values), one can avoid overfitting to local optima in
some cases, if this happens to be a problem.

c.max Maximum number of candidates to consider in find.best.splitting. During mix-
ture model calculations new mixture components can be created until this upper
limit has been reached. Defines the level of truncation for a truncated stick-
breaking process.

speedup When learning the number of components, each component is splitted based on
its first PCA component. To speed up, approximate by using only subset of data
to calculate PCA.

min.size Minimum size for a component required for potential splitting during mixture
estimation.

Details

Implementation of the Accelerated variational Dirichlet process Gaussian mixture model algorithm
by Kenichi Kurihara et al., 2007.

Value

prior Prior parameters of the vdp-gm model.

posterior Posterior estimates for the model parameters and statistics.
weights: Mixture proportions, or weights, for the Gaussian mixture components.
centroids: Centroids of the mixture components.
sds: Standard deviations for the mixture model components (posterior modes of
the covariance diagonals square root). Calculated as sqrt(invgam.scale/(invgam.shape
+ 1)).
qOFz: Sample-to-cluster assigments (soft probabilistic associations).
Nc: Component sizes
invgam.shape: Shape parameter (alpha) of the inverse Gamma distribution
invgam.scale: Scale parameter (beta) of the inverse Gamma distribution
Nparams: Number of model parameters
K: Number of components in the mixture model

opts Model parameters that were used.
free.energy

Free energy of the model.

Note

This implementation is based on the Variational Dirichlet Process Gaussian Mixture Model imple-
mentation, Copyright (C) 2007 Kenichi Kurihara (all rights reserved) and the Agglomerative Inde-
pendent Variable Group Analysis package (in Matlab): Copyright (C) 2001-2007 Esa Alhoniemi,
Antti Honkela, Krista Lagus, Jeremias Seppa, Harri Valpola, and Paul Wagner.

Author(s)

Maintainer: Leo Lahti <leo.lahti@iki.fi>

vdp.mixt 21

References

Kenichi Kurihara, Max Welling and Nikos Vlassis: Accelerated Variational Dirichlet Process Mix-
tures. In B. Sch\"olkopf and J. Platt and T. Hoffman (eds.), Advances in Neural Information Pro-
cessing Systems 19, 761–768. MIT Press, Cambridge, MA 2007.

Examples

set.seed(123)

Generate toy data with two Gaussian components
dat <- rbind(array(rnorm(400), dim = c(200,2)) + 5,

array(rnorm(400), dim = c(200,2)))

Infinite Gaussian mixture model with
Variational Dirichlet Process approximation
mixt <- vdp.mixt(dat)

Centroids of the detected Gaussian components
mixt$posterior$centroids

Hard mixture component assignments for the samples
apply(mixt$posterior$qOFz, 1, which.max)

Index

∗Topic classes
NetResponseModel-class, 5

∗Topic datasets
dna, 7
osmo, 15

∗Topic iteration
detect.responses, 5
vdp.mixt, 19

∗Topic methods
detect.responses, 5
ICMg.combined.sampler, 1
ICMg.get.comp.memberships, 3
ICMg.links.sampler, 3
vdp.mixt, 19

∗Topic misc
toydata, 18

∗Topic package
netresponse-package, 13

∗Topic utilities
find.similar.features, 8
get.model.parameters, 9
get.subnets, 11
model.stats, 12
order.responses, 14
read.network, 16
response2sample, 16
sample2response, 17

[[,NetResponseModel-method
(NetResponseModel-class), 5

detect.responses, 5, 5
dna, 7

find.similar.features, 8

get.model.parameters, 9
get.subnets, 11
get.subnets,NetResponseModel-method

(get.subnets), 11

ICMg.combined.sampler, 1, 3, 4
ICMg.get.comp.memberships, 3
ICMg.links.sampler, 2, 3, 3

model.stats, 12

netresponse
(netresponse-package), 13

netresponse-package, 13
NetResponseModel-class, 5

order.responses, 14
osmo, 15

read.network, 16
read.sif (read.network), 16
response2sample, 16

sample2response, 17
show,NetResponseModel-method

(NetResponseModel-class), 5

toydata, 18

vdp.mixt, 19

22

	ICMg.combined.sampler
	ICMg.get.comp.memberships
	ICMg.links.sampler
	NetResponseModel-class
	detect.responses
	dna
	find.similar.features
	get.model.parameters
	get.subnets
	model.stats
	netresponse-package
	order.responses
	osmo
	read.network
	response2sample
	sample2response
	toydata
	vdp.mixt
	Index

