
multiscan
October 25, 2011

multiscan Combining multiple laser scans of microarray data

Description

Estimates gene expressions from multiple laser scans of microarrays using non-linear functional
regression model with additive plus multiplicative errors.

Usage

multiscan(data, initial = NULL, na.rm = TRUE, verbose = FALSE, control = list())

Arguments

data A numeric matrix or data frame containing the intensity data of a single microar-
ray scanned at multiple (two or more) scanner settings. For dual channel arrays,
multiscan should be run on each channel of data separately. The number of
rows (n) is equal to the number of spots/probes on the array, and the number of
columns (m) equals the number of scans. Columns will be arranged in order of
scanner’s sensitivity before fitting the model. Replicated probes on the array are
treated as individual spots.

initial A vector of length m+2 to be used as initial values for the scanning effects
(β2, · · · , βm) and scale (σ1, σ2, ν) parameters. If it is NULL (default), the initial
values are determined from the data.

na.rm Logical. Should missing values be removed? Defaults to TRUE.

verbose Logical. If TRUE, some intermediate results are printed as the iteration proceeds.

control A list of control parameters. See ‘Details’.

Details

The function implements the method of Khondoker et. al. (2006) for combining multiple laser
scans of microarrays. This function is computationally slow and memory-intensive. That is due to
the nested iteration loops of the numerical optimization of the likelihood function involving a large
number (n+m+2) of parameters. The optimization uses an alternating algorithm with the Nelder-
Mead simplex method (Nelder and Mead, 1965) in the inner loops. The function multiscan
directly uses the C function nmmin, the internal code used in the general-purpose optimization
tool optim, for implementing the Nelder-Mead simplex method. For large data sets with many

1

2 multiscan

tens of thousands of probes, it is recommended to consider first fitting the model using a random
subset (e.g. 10,000 rows) of the data matrix, and then using the estimated scanning effects and scale
parameters obtained as initial values for fitting the model to the full data set.

The control is a list of arguments. The users can change/supply any of the following components:

trace Indicator (0 or 1) of tracing information of Nelder-Mead algorithm. If 1, tracing informa-
tion on the progress of the optimization is produced. Because Nelder-Mead may be callled
thousands of times during the estimation process, setting trace = 1 will print too much
information very rapidly, which may not be useful. Defaults to 0.

gmaxit The maximum number of global iterations. Defaults to 150.

maxit The maximum number of Nelder-Mead iterations. Defaults to 5000.

reltol Relative convergence tolerance of Nelder-Mead. The algorithm stops if it is unable to
reduce the value by a factor of reltol * (abs(val) + reltol) at a step. Defaults
to 1e-5.

globaltol Convergence tolerance of the outer (alternating) iteration. The estimation process
converges if the gain in loglikelihood from one complete cycle of the outer iteration is less
than globaltol. Defaults to 1e-10.

alpha, beta, gamma Scaling parameters for the Nelder-Mead method. alpha is the reflection
factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion factor (2.0).

Value

Returns an object of class multiscan with components

call The call of the multiscan function.

beta A vector of length m containing the maximum likelihood estimates of the scan-
ning effects, the first component fixed at 1.

scale A vector of length 3 containing the maximum likelihood estimates of the scale
parameters σ1, σ2, andν.

mu A vector of length n containing the estimated gene expressions.

data A matrix of the input data with columns rearranged in order of scanner’s sensi-
tivity.

fitted A matrix of the fitted model on the data.

sdres A matrix of the standardised residuals.

outerit Number of global iterations completed.
gconv, conv, convmu

Integer convergence codes.

gconv Indicator of global convergence. 0 indicates successful convergence, 1
indicates premature termination.

conv Convergence codes for the Nelder-Mead simplex method in the last global
iteration while updating scanning effects and scale parameters. 0 for suc-
cessful convergence, 1 indicates that the iteration limit maxit had been
reached, 10 indicates degeneracy of the Nelder-Mead simplex method.

convmu Convergence codes for the Nelder-Mead simplex method in the last
global iteration while updating the gene expression parameters. This is an
integer vector of length nwhere each component takes the value 0, 1, or 10
depending on whether the Nelder-Mead simplex method successfully con-
verged, reached iteration limit maxit or produced degeneracy respectively
while updating the corresponding gene expression parameter.

murine 3

outerit Number of global iterations completed.

loglf Value of the loglikelihood function at convergence (gconv=0). NA if not con-
verged (gconv=1).

References

Khondoker, M. R., Glasbey, C. A. and Worton, B. J. (2006). Statistical estimation of gene expres-
sion using multiple laser scans of microarrays. Bioinformatics 22, 215–219.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer
Journal 7 308–313.

See Also

A web interface, created by David Nutter of Biomathematics & Statistics Scotland (BioSS), based
on the original Fortran code written by Khondoker et al. (2006) is available at http://www.bioss.ac.uk/ktshowcase/create.cgi.
Although it uses the same algorithm, results from the web interface may not be exactly identical to
that of multiscan as it uses a different (non-free IMSL routine) implementation of Nelder-Mead
simplex.

Examples

load the multiscan library
library(multiscan)

load the murine data set included in multiscan package
data(murine)
murine[1:10,] ## see first few rows of data

fit the model on murine data with default options
fit <- multiscan(murine)
fit

plot the fitted model
plot(fit)

get the estimated gene expressions
gene.exprs <- fit$mu

see more details as iteration progresses

fit1 <- multiscan(murine, verbose = TRUE)
fit1

murine A subset of murine macrophage gene expression data from Khondoker
et

4 plot.multiscan

Description

This data set contains a subset of 1000 rows of murine macrophage array1 data (Khondoker et al.,
2006). The data set has 4 columns corresponding to 4 laser scans of one channel of a microarray
scanned at four different scanner settings. This data set is used in an example to illustrate the use of
multiscan package.

Usage

data(murine)

Format

A 1000 by 4 data frame.

References

Khondoker, M. R., Glasbey, C. A. and Worton, B. J. (2006). Statistical estimation of gene expres-
sion using multiple laser scans of microarrays. Bioinformatics 22, 215–219.

plot.multiscan Plot fitted model and standardised residuals for a multiscan object

Description

This function provides plots for fitted model and standardised residual for multiscan fitted ob-
jects.

Usage

S3 method for class 'multiscan'
plot(x, residual=FALSE,...)

Arguments

x a multiscan fitted object.

residual Logical. Should residuals be plotted instead of the fitted model?. Defaults to
FALSE.

... Further arguments passed to the plot function.

Details

Fitted model on the input data, after rescaling by the corresponding scanning effects, is plotted
against the estimated gene expressions. Standardised residuals for each scan of data are plotted
against the rank of estimated gene expressions.

Value

Returns either one plot of the fitted model (residual=FALSE) on the input data or m plots of the
residuals (residual=TRUE) corresponding to each scan of data.

plot.multiscan 5

References

Khondoker, M. R., Glasbey, C. A. and Worton, B. J. (2006). Statistical estimation of gene expres-
sion using multiple laser scans of microarrays. Bioinformatics 22, 215–219.

See Also

multiscan

Examples

data(murine)

fit<-multiscan(murine)

plot the fitted model

plot(fit)

plot the residuals

op<-par(mfrow=c(2,2))
plot(fit, residual=TRUE)
par(op)

Index

∗Topic datasets
murine, 3

∗Topic nonlinear
multiscan, 1

∗Topic optimize
multiscan, 1

∗Topic regression
plot.multiscan, 4

multiscan, 1, 4, 5
murine, 3

optim, 1

plot.multiscan, 4

6

	multiscan
	murine
	plot.multiscan
	Index

