farms

October 25, 2011

INI_Calls-class Class INI_Calls

Description

This is a class representation for an INI_calls-class object. The INI_calls-class consists of two instances of exprSet-class, containing an informative exprSet and a non-informative exprSet.

Objects from the Class

Objects can be created using the function INIcalls.

Slots

I_Calls: Object of class "vector" containing informative probe set names.

NI_Calls: Object of class "vector" containing non-informative probe set names.

I_Exprs: Object of class exprSet-class representing the informative exprSet.

NI_Exprs: Object of class exprSet-class representing the non-informative exprSet.

varZX: Object of class "vector" containing the INI-call value.

Author(s)

Djork Clevert

See Also

expFarms, qFarms, lFarms, INIcalls

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", r
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs)  # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs)  # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs)  # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs)  # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs)  # vector containing only non-informative probe sets r</pre>
```

INIcalls-methods Dimension reduction based on informative genes

Description

This function generates an instance of INI_Calls-class of given which has been summarized by expFarms, qFarms or lFarms before, based on the informative genes.

Usage

```
## S4 method for signature 'ExpressionSet'
INIcalls(object)
```

Arguments

object An instance of exprSet-class.

Value

exprSet-class

Methods

signature(object = "ExpressionSet") An instance of exprSet-class.

See Also

expFarms, qFarms, lFarms, INIcalls

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "rma", pmcorrect.method = "pmonly", no
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets r</pre>
```

dummy

Description

Example cdfenv (environment containing the probe locations).

Usage

```
data(testAffyBatch)
```

Format

Containing an environment dummy containing the probe locations

expFarms

Factor Analysis for Robust Microarray Summarization

Description

This function converts an instance of AffyBatch into an instance of exprSet-class using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise.

Usage

expFarms(object, bgcorrect.method = "none", pmcorrect.method = "pmonly normalize.method = "quantiles", weight, mu, weighted.mean, laplacian,

Arguments

object	An instance of AffyBatch.	
weight	Hyperparameter value in the range of $[0,1]$ which determines the influence of the prior. The default value is 0.5	
bgcorrect.me	thod	
	the name of the background adjustment method	
pmcorrect.me	thod	
	the name of the PM adjustment method	
normalize.me	thod	
	the normalization method to use	
mu	Hyper-parameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0	
weighted.mean		
	Boolean flag, that indicates wether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to TRUE.	

laplacian	Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
robust	Boolean flag, that ensures non-constant results. Default value is TRUE.
correction	Value that indicates whether the covariance matrix should be corrected for neg- ative eigenvalues which might emerge from the non-negative correlation con- straints or not. Default = O (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)
centering	Indicates whether the data is "median" or "mean" centered. Default value is "median".
	other arguments to be passed to expresso.

Details

This function is a wrapper for expresso.

Value

exprSet-class

See Also

expresso, qFarms, lFarms.

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", r</pre>
```

generateExprVal.method.farms

Generate an expression value from the probes informations

Description

Generate an expression from the probe

Usage

generateExprVal.method.farms(probes, weight, mu, cyc, tol, weighted.m

Arguments

probes	a matrix of probe intesities with rows representing probes and columns representing samples. Usually $pm(probeset)$ where probeset is a of class ProbeSet
weight	Hyperparameter value in the range of $[0,1]$ which determines the influence of the prior. The default value is 0.5
mu	Hyperparameter value which allows to quantify different aspects of potential prior knowledge. A value near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0
сус	Value which determinates the maximum numbers of EM-Steps. Default value is set to number of arrays/2
tol	Value which determinates the termination tolerance. Convergence threshold is set to 1E-05.
weighted.mea	n
	Boolean flag, that indicates wether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to TRUE .
robust	Boolean flag, that ensures non-constant results. Default value is TRUE.
minNoise	Value, minimal noise assumption. Default value is 0.0001.
correction	Value that indicates whether the covariance matrix should be corrected for neg- ative eigenvalues which might emerge from the non-negative correlation con- straints or not. Default = O (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)
laplacian	Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
centering	Indicates whether the data is "median" or "mean" centered. Default value is "median".
	extra arguments to pass to the respective function

Value

A list containing entries:

exprs	The expression values.
se.exprs	Estimate of the hidden variable.

See Also

generateExprSet-methods,generateExprVal.method.playerout,li.wong,medianpolish

Examples

```
library(affy)
data(SpikeIn) ##SpikeIn is a ProbeSets
probes <- pm(SpikeIn)
exprs.farms <- generateExprVal.method.farms(probes)</pre>
```

getI_Eset-methods Method to generate an ExpressionSet of informative genes

Description

This function generates an instance of exprSet-class, that contains only informative probe sets.

Usage

```
## S4 method for signature 'INI_Calls'
getI Eset(object)
```

Arguments

```
object An instance of INI_Calls-class.
```

Value

exprSet-class

Methods

signature(object = "INI_Calls") An instance of INI_Calls-class.

See Also

expFarms, qFarms, lFarms, INIcalls, summary

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "rma", pmcorrect.method = "pmonly", no
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs)  # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs)  # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs)  # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs)  # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs)  # vector containing only non-informative probe sets names</pre>
```

getI_ProbeSets Method to generate a vector of informative probe set names

Description

This function generates an instance of vector-class, that return a vector of informative probe set names.

getNI_Eset-methods

Usage

```
## S4 method for signature 'INI_Calls'
getI_ProbeSets(object)
```

Arguments

object An instance of INI_Calls-class.

Value

vector

Methods

signature(object = "INI_Calls") An instance of INI_Calls-class.

See Also

expFarms, qFarms, lFarms, INIcalls, summary

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "rma", pmcorrect.method = "pmonly", no
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets r</pre>
```

getNI_Eset-methods Method to generate an ExpressionSet of non-informative genes

Description

This function generates an instance of exprSet-class, that contains only non-informative probe sets.

Usage

```
## S4 method for signature 'INI_Calls'
getNI_Eset(object)
```

Arguments

object An instance of INI_Calls-class.

Value

exprSet-class

Methods

```
signature(object = "INI_Calls") An instance of INI_Calls-class.
```

See Also

expFarms, qFarms, lFarms, INIcalls, summary

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "rma", pmcorrect.method = "pmonly", no
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets r</pre>
```

getNI_ProbeSets Method to generate a vector of non-informative probe set names

Description

This function generates an instance of vector, that return a vector of non-informative probe set names.

Usage

```
## S4 method for signature 'INI_Calls'
getNI_ProbeSets(object)
```

Arguments

```
object An instance of INI_Calls-class.
```

Value

vector

Methods

```
signature(object = "INI_Calls") An instance of INI_Calls-class.
```

See Also

expFarms, qFarms, lFarms, INIcalls, summary

lFarms

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "rma", pmcorrect.method = "pmonly", no
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs)  # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs)  # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs)  # affybatch containing only non-informative probe sets
I_probes <- getII_ProbeSets(INIs)  # vector containing only informative probe sets
NI_probes <- getNI_ProbeSets(INIs)  # vector containing only non-informative probe sets</pre>
```

```
lFarms
```

lFarms expression measure

Description

This function converts an instance of AffyBatch into an instance of exprSet-class using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. This function is a wrapper for expresso and uses the function normalize.loess for array normalization.

Usage

lFarms(object, weight, mu, weighted.mean, laplacian, robust, correction

Arguments

object	An instance of AffyBatch.
weight	Hyperparameter value in the range of $[0,1]$ which determines the influence of the prior. The default value is 0.5
mu	Hyperparameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0
weighted.mea	n
	Boolean flag, that indicates wether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to TRUE.
laplacian	Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
robust	Boolean flag, that ensures non-constant results. Default value is TRUE.
correction	Value that indicates whether the covariance matrix should be corrected for neg- ative eigenvalues which might emerge from the non-negative correlation con- straints or not. Default = O (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)
centering	Indicates whether the data is "median" or "mean" centered. Default value is "median".
	other arguments to be passed to expresso.

Details

This function is a wrapper for expresso.

Value

exprSet-class

See Also

expresso, expFarms, qFarms, normalize.loess

Examples

```
data(testAffyBatch)
eset <- qFarms(testAffyBatch, weight=0.5, weighted.mean=TRUE)</pre>
```

plot-methods	Visualizes the distribution	of informative and	non-informatives genes
P=00 m00m000	risticutives the unstitution		non ngonnan es genes

Description

This function visualizes the distribution of informative and non-informative genes of a given instance of INI_Calls-class.

Usage

```
## S4 method for signature 'INI_Calls,missing'
plot(x)
```

Arguments

Х

An instance of INI_Calls-class.

Value

exprSet-class

Methods

```
signature(x = "INI_Calls", y = "missing") An instance of INI_Calls-class.
```

See Also

expFarms,qFarms,lFarms,INIcalls,summary

10

qFarms

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "rma", pmcorrect.method = "pmonly", no
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs)  # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs)  # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs)  # affybatch containing only non-informative probe sets
I_probes <- getII_ProbeSets(INIs)  # vector containing only informative probe sets
NI_probes <- getNI_ProbeSets(INIs)  # vector containing only non-informative probe sets</pre>
```

qFarms

qFarms expression measure

Description

This function converts an instance of AffyBatch into an instance of exprSet-class using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. This function is a wrapper for expresso and uses the function normalize.quantiles for array normalization.

Usage

qFarms(object, weight, mu, weighted.mean, laplacian, robust, correcti

Arguments

object	An instance of AffyBatch.
weight	Hyperparameter value in the range of $[0,1]$ which determines the influence of the prior. The default value is 0.5
mu	Hyperparameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0
weighted.mea	n
	Boolean flag, that indicates wether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to TRUE.
laplacian	Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
robust	Boolean flag, that ensures non-constant results. Default value is TRUE.
correction	Value that indicates whether the covariance matrix should be corrected for neg- ative eigenvalues which might emerge from the non-negative correlation con- straints or not. Default = O (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)
centering	Indicates whether the data is "median" or "mean" centered. Default value is "median".
•••	other arguments to be passed to expresso.

Details

This function is a wrapper for expresso.

Value

exprSet-class

See Also

expresso, expFarms, lFarms, normalize.quantiles

Examples

```
data(testAffyBatch)
eset <- qFarms(testAffyBatch, weight=0.5, weighted.mean=TRUE)</pre>
```

summary-methods Summary of I/NI-calls

Description

This function determinates the percentage of informative genes of a given instance of of INI_Callsclass which has been summarized by expFarms, qFarms or lFarms before.

Usage

```
## S4 method for signature 'INI_Calls'
summary(object,...)
```

Arguments

object	An instance of INI_Calls-class.
	extra arguments to pass to the respective function

Value

exprSet-class

Methods

```
signature(object = "INI_Calls") An instance of INI_Calls-class.
```

See Also

expFarms, qFarms, lFarms, plot, INIcalls

12

testAffyBatch

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "rma", pmcorrect.method = "pmonly", no
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getII_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getII_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets references.</pre>
```

testAffyBatch AffyBatch instance testAffyBatch

Description

This is an artifical data set. It contains a 2 genes x 2 samples examples (testAffyBatch) and is suitable for testing the rd-examples in farms.

Format

An AffyBatch of 2 samples.

See Also

Dilution

Index

```
*Topic classes
    INI_Calls-class, 1
*Topic datasets
   dummy, 3
   testAffyBatch, 13
*Topic manip
   expFarms, 3
   generateExprVal.method.farms,
       4
   getI_Eset-methods, 6
   getI_ProbeSets, 6
   getNI_Eset-methods,7
   getNI ProbeSets,8
   INIcalls-methods, 2
   lFarms, 9
   plot-methods, 10
   qFarms, 11
   summary-methods, 12
*Topic methods
   getI_Eset-methods, 6
   INIcalls-methods, 2
   plot-methods, 10
   summary-methods, 12
AffyBatch, 3, 9, 11, 13
Dilution, 13
dummy, 3
environment, 3
expFarms, 1, 2, 3, 6-8, 10, 12
expresso, 4, 9-12
exprSet-class, 1-4, 6, 7, 9-12
generateExprSet-methods, 5
generateExprVal.method.farms,4
generateExprVal.method.playerout,
       .5
getI_Eset (getI_Eset-methods), 6
getI_Eset, INI_Calls-method
       (getI_Eset-methods), 6
getI_Eset-methods, 6
getI_ProbeSets, 6
getI_ProbeSets, INI_Calls-method
       (getI_ProbeSets), 6
```

```
getI_ProbeSets-methods
       (getI_ProbeSets), 6
getNI_Eset (getNI_Eset-methods), 7
getNI_Eset, INI_Calls-method
       (getNI_Eset-methods), 7
getNI_Eset-methods,7
getNI_ProbeSets,8
getNI_ProbeSets, INI_Calls-method
       (getNI_ProbeSets), 8
getNI_ProbeSets-methods
       (getNI_ProbeSets), 8
INI_Calls (INI_Calls-class), 1
INI_Calls-class, 2, 6-8, 10, 12
INI Calls-class, 1
INIcalls, 1, 2, 6-8, 10, 12
INIcalls (INIcalls-methods), 2
INIcalls, ExpressionSet-method
       (INIcalls-methods), 2
INIcalls-methods, 2
lFarms, 1, 2, 4, 6-8, 9, 10, 12
li.wong,5
medianpolish, 5
normalize.loess, 9, 10
normalize.quantiles, 11, 12
plot, 12
plot (plot-methods), 10
plot,INI_Calls,missing-method
       (plot-methods), 10
plot-methods, 10
ProbeSet, 5
qFarms, 1, 2, 4, 6-8, 10, 11, 12
summary, 6-8, 10
summary (summary-methods), 12
summary,INI_Calls-method
       (summary-methods), 12
summary-methods, 12
```

testAffyBatch, 13