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DrawContourlines Draw and label a set of pre-calculated isolines

Description

This function draws and labels isolines computed by contourLines, though the labelling is done
very clumsily and with a specialized application in mind.

Usage

DrawContourlines(x, label = FALSE, cex = 0.7, vfont = c("sans serif", "bold"), ...)

Arguments

x a list of isolines as produced by contourLines.

label a logical value indicating whether to label the isolines.

cex size of labels

vfont a vector font specification for the labels as in contour.

... extra arguments to lines

Details

This routine is used by Tornadoplot and Volcanoplot to draw and label isolines that were
computed via contourLines and afterwards transformed. The problem is that all the nice options
that contour has for labelling isolines are not avaiable independently, so this function uses the
following crude procedure that kind of works for the intended applications:

• isoline completely left of zerolabel the leftmost point;

• isoline completely right of zerolabel the rightmost point;

• isoline crosses zero horizontallylabel the topmost point.

Hopefully, one of these days someone will come up with a nice general-purpose function for doing
all the nifty stuff that contour offers.

Author(s)

A. Ploner
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See Also

contour, contourLines, Tornadoplot

EOC Estimated or empirical FDR, sensitivity, etc as a function of cutoff

Description

EOC computes and optionally plots the estimated operating characteristics for data from a microar-
ray experiment with two groups of subjects. The false discovery rate (FDR) is estimated based on
random permutations of the data and plotted against the cutoff level on the t-statistic; a curve for the
classical sensitivity can be added. Different curves for different proportions of non-differentially
expressed genes can be compared in the same plot, and the sample size per group can be varied
between plots.

FDRp is the function that does the underlying hard work and requires package multtest.

Usage

EOC(xdat, grp, p0, paired = FALSE, nperm = 25, seed = NULL, plot = TRUE, ...)

FDRp(xdat, grp, test = "t.equalvar", p0, nperm, seed)

Arguments

xdat the matrix of expression values, with genes as rows and samples as columns

grp a grouping variable giving the class membership of each sample, i.e. each col-
umn in xdat; for EOC, this can be any type of variable, as long as it has exactly
two distinct values, whereas FDRp expects to see only 0s and 1s, see Details.

p0 if supplied, an estimate for the proportion of non-differentially expressed genes;
if not supplied, the routine will estimate it, see Details.

paired logical value indicating whether this is independent sample situation (default) or
a paired sample situation. Note that paired samples need to follow each other in
the data matrix (as in 010101...when paired=TRUE.

nperm number of permutations for establishing the null distribution of the t-statistic

test the type of test to use, see mt.teststat; when called from EOC, this is always
the default.

seed the random seed from which the permutations are started

plot logical value indicating whether to do the plot

... graphical parameters, passed to plot.FDR.result

Details

EOC is the empirical counterpart of the function TOC. It estimates the FDR and sensitivity for a
given data set of expression values measured on subjects in two groups. The FDR is estimated
locally based on the empirical Bayes approach outlined by Efron et al., see References. FDRp
implements the details of this method; this requires among other things the permutation distribution
of the t-statistic, which is calculated via a call to function mt.teststat of package multtest.
This explains why both functions barf at missing values in the expression data.
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Note that p0 is by default estimated from the data, as originally suggested by Efron et al. so as
to make ratio between the densities of the observed distribution of t-statistics and the permutation
distribution smaller than 1; alternatively, the user can supply his own guesstimate of the proportion
of non-differentially expressed genes in the data.

Note also that FDRp keeps all permuations in the memory during compuations. For a large number
of genes, this will limit the number of possible permuations.

Value

For EOC, an object of class FDR.result, which inherits from class data.frame. The three
columns list for each gene its t-statistic, the estimated FDR (two-sided), and the estimated sensitiv-
ity. Additionally, the object carries an attribute param, which is a list with four entries: p0, the
assumed proportion of non-differentially expressed genes used in calculating the FDR; p0.est,
a logical value indicating whether p0 was estimated or user-supplied; statistic indicates how
the t-statistic was computed, i.e. how its sign should be interpreted in terms of relative over- or
under expression, and a logical flag paired to indicate whether a paired t-statistic was used.

FDRp returns a list with essentially the same elements, plus additionally the values of the observed
and permuted distribution of the t-statistics for each gene.

Note

Both the curve labels and the legend may be squashed if the plotting device is too small. Increasing
the size of the device and re-plotting should improve readability.

Author(s)

Y. Pawitan and A. Ploner

References

Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A (2005) False Discovery Rate, Sensitivity
and Sample Size for Microarray Studies. Bioinformatics, 21, 3017-3024.

Efron B, Tibshirani R, Storey JD, Tusher V. (2001) Empirical Bayes Analysis of a Microarray
Experiment. JASA, 96(456), p. 1151-60.

See Also

plot.FDR.result, OCshow, mt.teststat

Examples

# We simulate a small example with 5 percent regulated genes and
# a rather large effect size
set.seed(2003)
xdat = matrix(rnorm(50000), nrow=1000)
xdat[1:25, 1:25] = xdat[1:25, 1:25] - 2
xdat[26:50, 1:25] = xdat[26:50, 1:25] + 2
grp = rep(c("Sample A","Sample B"), c(25,25))

# The default, with legend
ret = EOC(xdat, grp, legend=TRUE)
# Look at the results: yes
ret[1:10,]
which(ret$FDR<0.05)
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# Extra information
attr(ret,"param")

# Run the same data with different permutations: fairly stable, but with
# different p0
ret = EOC(xdat, grp, seed=2000)
which(ret$FDR<0.07)

# Misspecify the p0: not too bad here
ret = EOC(xdat, grp, p0=0.99)
which(ret$FDR<0.01)

# We simulate data in a paired setting
# Note the arrangement of the columns
set.seed(2004)
xdat = matrix(rnorm(50000), nrow=1000)
ndx1 = seq(1,50, by=2)
xdat[1:25, ndx1] = xdat[1:25, ndx1] - 2
xdat[26:50, ndx1] = xdat[26:50, ndx1] + 2
grp = rep(c("Sample A","Sample B"), 25)

ret = EOC(xdat, grp, paired=TRUE)
which(ret$FDR<0.05)

FDR Compute FDR for general scenarios

Description

FDR computes the false discovery rate for comparing gene expression between two groups of sub-
jects when the distribution of the test statistic under the null and alternative hypothesis are both
mixtures of t-distributions. CDF and CDFmix calculate these mixtures.

Usage

FDR(x, n1, n2, pmix, D0, p0, D1, p1, sigma)

CDF(x, n1, n2, D, p, sigma)
CDFmix(x, n1, n2, pmix, D0, p0, D1, p1, sigma)

FDR.paired(x, n, pmix, D0, p0, D1, p1, sigma)

CDF.paired(x, n, D, p, sigma)
CDFmix.paired(x, n, pmix, D0, p0, D1, p1, sigma)

Arguments

x vector of quantiles (two-sample t-statistics)

n, n1, n2 vector of sample sizes (as subjects per group)

pmix the proportion of non-differentially expressed genes

D0 vector of effect sizes for the null distribution



FDR 5

p0 vector of mixing proportions for D0; must be the same length as D0 and sum to
one

D1 vector of effect sizes for the alternative distribution

p1 vector of mixing proportions for D1, same as p0

D, p generic vectors of effect sizes and mixing proportions as above

sigma the standard deviation

Details

These functions are designed for a simple experimental setup, where we wish to compare gene
expression between two groups of subjects of size n1 and n2 for an unspecified number of genes,
using an equal-variance t-statistic.

100pmix% of the genes are assumed to be not differentially expressed. The corresponding t-
statistics follow a mixture of t-distributions; this is more general than the usual central t-distribution,
because we may want to include genes with biologically small effects under the null hypothesis
(Pawitan et al., 2005). The other 100(1-pmix)% genes are assumed to be differentially expressed;
their t-statistics are also mixtures of t-distributions.

The mixture proportions of t-distributions under the null and alternative hypothesis are specified
via p0 and p1, respectively. The individual t-distributions are specified via the means D0 and
D1 and the standard deviation sigma of the underlying data (instead of the mathematically more
obvious, but less intuitive non centrality parameters). As the underlying data are the logarithmized
expression values, D0 and D1 can be interpreted as average log-fold change between conditions,
measured in units of sigma. See Examples.

CDF computes the cumulative distribution function for a mixture of t-distributions based on means
D and standard deviation sigma with mixture proportions p. This function is the work horse for
CDFmix.

Note that the base functions (FDR, CDFmix, CDF) assume two groups of experimental units; the
.paired functions provide the same functionality for one group of paired observations.

The distribution functions call pt for computation; correspondingly, the quantiles x and all argu-
ments that define degrees of freedom and non centrality parameters (n1, n2, D0, D1, sigma) can
be vectors, and will be recycled as necessary.

Value

The appropriate vector of FDRs or probabilities.

Author(s)

Y. Pawitan and A. Ploner

References

Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A. (2005) False Discovery Rate, Sensitivity
and Sample Size for Microarray Studies. Bioinformatics, 21, 3017-3024.

See Also

TOC, samplesize
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Examples

# FDR for H0: 'log fold change is zero'
# vs. H1: 'log fold change is -1 or 1'
# (ie two-fold up- or down regulation)
FDR(1:6, n1=10, n2=10, pmix=0.90, D0=0, p0=1,

D1=c(-1,1), p1=c(0.5, 0.5), sigma=1)

# Include small log fold changes in the H0
# Naturally, this increases the FDR
FDR(1:6, n1=10, n2=10, pmix=0.90, D0=c(-0.25,0, 0.25), p0=c(1/3,1/3,1/3),

D1=c(-1,1), p1=c(0.5, 0.5), sigma=1)

# Consider an asymmetric alternative
# 10 percent of the regulated genes are assumed to be four-fold upregulated
FDR(1:6, n1=10, n2=10, pmix=0.90, D0=0, p0=1,

D1=c(-1,1,2), p1=c(0.45, 0.45, 0.1), sigma=1)

MAsim.smyth Simulate two-sample microarray data

Description

These functions simulate two-sample microarray data from various different models.

Usage

MAsim(ng = 10000, n = 10, n1 = n, n2 = n, D = 1, p0 = 0.9, sigma = 1)

MAsim.var(ng = 10000, n = 10, n1 = n, n2 = n, D = 1, p0 = 0.9)

MAsim.smyth(ng = 10000, n = 10, n1 = n, n2 = n, p0 = 0.9, d0 = 4,
s2_0 = 4, v0 = 2)

MAsim.real(xdat, grp, n, n1, n2, D = 1, p0 = 0.9, replace = TRUE)

Arguments

ng number of genes
n, n1, n2 number of samples per group; by default balanced, except for MAsim.real.
p0 proportion of differentially expressed genes
D effect size for differentially expressed genes, in units of the gene-specific stan-

dard deviation (sigma in MAsim).
sigma standard deviation, constant for all genes
d0, s2_0, v0 prior parameters for effect size and variability across genes in Smyth’s model,

see Details.
xdat, grp expression data and grouping variable for an existing microarray data set, as

specified in EOC.
replace logical switch indicating whether to sub-sample (replace=FALSE) or boot-

strap (replace=TRUE) from the existing data. Note that the specified group-
sizes have to be smaller than the real group sizes in case of sub-sampling.
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Details

MAsim simulates normal data with constant standard deviation sigma across genes and fixed effect
size D; the sign of the effect is equally and randomly split between up- and down-regulation, and
effects are added to the second group. MAsim.var does the same, but instead of relying on a fixed
variance across genes, it simulates gene-specific variances from a standard exponential distribution.

MAsim.smyth simulates from the model suggested in Smyth (2004), using a normal error distri-
bution. The variances are assumed to follow an inverse chisquared distribution with d0 degrees of
freedom and are scaled by s2_0; consequently, large values of d0 lead to similar gene-wise vari-
ances across genes, whereas small values lead to very different variances between genes. The effect
sizes for differentially expressed genes are assumed to follow a normal distribution with mean zero
and variance v0 times the previously simulated gene-specific variance; consequently, large values
of v0 lead to large effects in the model.

MAsim.real finally uses existing real or simulated existing data sets to generate simulated data
with fixed effect sizes: for each group, the specified number of samples is sampled either with or
without replacement from the columns of xdat; for each gene, the group means are subtracted
from the resampled data, so that the groupwise and overall mean for each gene is zero. Then, noise
from an appropriate t-distribution is added to each group to break the sum-to-zero constraint in
a consistent manner. The specified effect (evenly split between up- and down-regulation) for the
differentially expressed genes is again added to the second group.

Value

The functions all return a matrix with ng rows and n1+n2 columns, except for MAsim.real,
where the default is to return a matrix of the same dimensions as xdat. The group membership of
each column is given by its column name. The matrix has additionally the attribute DE, which is a
logical vector specifying for each gene whether or not it was assumed to be differentially expressed
in the simulation.

References

Smyth G (2004). Linear models and empirical Bayes methods for assessing differential expression
in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, No. 1,
Article 3

See Also

EOC

Examples

# Small examples only
sim1 = MAsim(ng=1000, n=10, p0=0.8)
sim2 = MAsim.var(ng=1000, n1=15, n2=5, p0=0.8)
sim3 = MAsim.smyth(ng=1000, n=10, p0=0.8)

# Assess FDR
eoc1 = EOC(sim1, colnames(sim1), plot=FALSE)
eoc2 = EOC(sim2, colnames(sim2), plot=FALSE)
eoc3 = EOC(sim3, colnames(sim3), plot=FALSE)

# Show
par(mfrow=c(2,2))
plot(eoc1)
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plot(eoc2)
plot(eoc3)
OCshow(eoc1, eoc2, eoc3)

# The truth will make you fret
table(eoc1$FDR<0.1, attr(sim1, "DE"))

OCshow Show one ore several OC curves graphically

Description

Plots empirical OC curves for one or several data sets simultaneously, showing the local or global
false discovery rate among the top regulated genes. This is the preferred way of comparing the OC
of different analyses.

Usage

OCshow(x, ..., global = TRUE, percentage = TRUE, top = 0.1, legend, lty, col, main, xlab, ylab)

Arguments

x, ... one or several objects created by either EOC, fdr1d, or fdr2d

global logical value indicating whether to show the global or the local false discovery
rates; note that if any of the objects to be plotted was created by EOC, only global
Fdr is available.

percentage logical switch indicating whether to show the percentage of top regulated genes
or the actual numbers; note that the cutoff top is always a percentage

top a value between 0 and 1 specifying the percentage of top-regulated genes that is
to be shown in the plot

legend a character vector giving names for each of the objects to be plotted for a legend
in the left upper corner

lty, col line styles and colors for the different OC curves

main a plot title

xlab, ylab axis labels

Details

Each object generated by EOC, fdr1d, and fdr2d lists for each gene a t-statistic and either a local
or a global false discovery rate. The OC curves are constrcuted by ordering the genes according
to the false discovery rates, and counting how many fall under a given threshold. These counts are
plotted (either directly or as percentage of all genes) on the horzontal axis, while the thresholds are
plotted on the vertical axis. Where appropriate, local false discovery rates are converted to global
rates by simple averaging.

Author(s)

A. Ploner
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See Also

EOC, fdr1d, fdr2d

Examples

# We simulate a small example with 5 percent regulated genes and
# a rather large effect size
set.seed(2003)
xdat = matrix(rnorm(50000), nrow=1000)
xdat[1:25, 1:25] = xdat[1:25, 1:25] - 2
xdat[26:50, 1:25] = xdat[26:50, 1:25] + 2
grp = rep(c("Sample A","Sample B"), c(25,25))

# Compute the different false discovery rates
# p0 is fixed
global = EOC(xdat, grp, plot=FALSE, p0=0.95)
local1d = fdr1d(xdat, grp, p0=0.95)
local2d = fdr2d(xdat, grp, p0=0.95)

# Some possible arrangements
leg = c("global","local1d","local2d")
par(mfrow=c(2,2))
OCshow(global, local1d, local2d, legend=leg, main="Default")
OCshow(global, local1d, local2d, legend=leg, percentage=FALSE,

main="Number of genes")
OCshow(global, local1d, local2d, legend=leg, top=1, main="All genes")
OCshow(local1d, local2d, legend=leg[2:3], global=FALSE, main="Local fdr")

TOC Theoretical FDR and sensitivity as a function of cutoff level

Description

Computes and plots the operating characteristics for a two group microarray experiment based on
a theoretical model. The false discovery rate (FDR) is plotted against the cutoff level on the t-
statistic. Optionally, curves for the the classical significance level and sensitivity can be added.
Different curves for different proportions of non-differentially expressed genes can be compared in
the same plot, and the sample size per group can be varied between plots.

Usage

TOC(n = 10, p0 = 0.95, sigma = 1, D, F0, F1, n1 = n, n2 = n, paired = FALSE,
plot = TRUE, local.show=FALSE, alpha.show = TRUE, sensitivity.show = TRUE,

nplot = 100, xlim, ylim = c(0, 1), main, legend.show = FALSE, ...)

Arguments

n, n1, n2 number of samples per group, by default equal and specified via n, but can be
set to different values via n1 and n2.

p0 the proportion of not differentially expressed genes, may be vector valued
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sigma the standard deviation for the log expression values

D assumed average log fold change (in units of sigma), by default 1; this is a
shortcut for specifying a simple symmetrical alternative hypothesis through F1.

F0 the distribution of the log2 expression values under the null hypothesis; by de-
fault, this is normal with mean zero and standard deviation sigma, but mixtures
of normals can be specified, see Details and Examples.

F1 the distribution of the log2 expression values under the alternative hypothesis;
by default, this is an equal mixture of two normals with means D and -D and
standard deviation sigma; mixture of normals are again possible, see Details
and Examples.

paired logical value indicating whether two distinct groups of observations or one group
of paired observations are studied.

plot logical value indicating whether the results should be plotted.

local.show logical value indicating whether to show local or global false discovery rate
(default: global).

alpha.show logical value indicating whether to show the classical significance level for test-
ing one hypothesis as a function of the cutoff level.

sensitivity.show
logical value indicating whether to show the classical sensitivity for testing one
hypothesis as a function of the cutoff level.

nplot number of points that are evaluated for the curves

xlim the usual limits on the horizontal axis

ylim the usual limits on the vertical axis

main the main title of the plot

legend.show logical value indicating whether to show a legend for the different types of
curves in the plot.

... the usual graphical parameters, passed to plot

Details

This function plots the FDR as a function of the cutoff level when comparing the expression of
multiple genes between two groups of subjects. We study a gene selection mechanism that declares
all genes to be differentially expressed whose t-statistics have an absolute value greater than a
specified cutoff value. The comparison is based on a two-sample t-statistic for equal variances, for
either paired or unpaired observations.

The underlying model assumes that a proportion p0 of genes are not differentially expressed be-
tween groups, and that 1-p0 are. The logarithmized gene expression values are assumed to be
generated by mixtures of normal distributions. Both null and alternative hypothesis are specified
through the means of the respective mixture components; these means can be interpreted as average
log2 fold changes in units of the standard deviation sigma.

Note that the model does not assume that all genes have the same standard deviation sigma, only
that the mean log2 fold change for all regulated genes is proportional to their individual variability
(standard deviation). sigma generally does not need to be specified explicitly and can be left at
its default value of one, so that D can be interpreted straightforward as log2 fold change between
groups.

The default null distribution of the log2 expression values is a single normal distribution with mean
zero (and standard deviation sigma); the default alternative distribution is is an equal mixture
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of two normals with means D and -D (and again standard deviation sigma). However, general
mixtures of normals can be specified for both null and alternative distribution through F0 and F1,
respectively: both are lists with two elements:

• D is the vector of means (i.e. log2 fold changes),

• p is the vector of mixing proportions for the means.

If present, p must be the same length as D; its elements do not need to be normalized, i.e. sum to
one; if absent, equal mixing is assumed, see Examples. A wide (mixture) null hypothesis, or an
empirical null hypothesis as outlined by Efron (2004), can be used if genes with log fold changes
close to zero are thought to be of no biological interest, and are counted as effectively not regulated.
Similarly, the alternative hypothesis can be any mixture of large and small effects, symmetric or
non-symmetric, depending on the expected regulation patterns, see Examples.

As a consequence, both the null distribution of the t-statistics (for the unregulated genes) and
their alternative distribution (for the regulated genes) are mixtures of (generally non-central) t-
distributions, see FDR.

Sample size n and standard deviation sigma are atomic values, but multiple p0 can be specified,
resulting in multiple curves. Additionally, the usual significance level and sensitivity for a classical
one-hypothesis can be displayed.

Value

This function returns invisibly a data frame with nplot rows whose columns contain the informa-
tion for the individual curves. The number of columns and their names will depend on the number
and value of the p0 specified, and whether alpha and sensitivity are displayed. Additionally, the
returned data frame has an attribute param, which is a list with all the non-plotting arguments to
the function.

Note

Both the curve labels and the legend may be squashed if the plotting device is too small. Increasing
the size of the device and re-plotting should improve readability.

Author(s)

Y. Pawitan and A. Ploner

References

Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A. (2005) False Discovery Rate, Sensitivity
and Sample Size for Microarray Studies. Bioinformatics, 21, 3017-3024.

Efron, B. (2004) Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis.
JASA, 99, 96-104.

See Also

FDR, samplesize, EOC
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Examples

# Default null and alternative distributions, assuming different proportions
# of regulated genes
TOC(p0=c(0.90, 0.95, 0.99), legend.show=TRUE)

# The effect of sample size and effect size
par(mfrow=c(2,2))
TOC(p0=c(0.90, 0.95, 0.99), n=5, D=1)
TOC(p0=c(0.90, 0.95, 0.99), n=30, D=1)
TOC(p0=c(0.90, 0.95, 0.99), n=5, D=2)
TOC(p0=c(0.90, 0.95, 0.99), n=30, D=2)

# A wide null distribution that allows to disregard genes of small effect
# unspecified p means equal mixing proportions
ret = TOC(F0=list(D=c(-0.25,0,0.25)), main="Wide F0")
attr(ret,"param")$F0 # the null hypothesis

# An extended (and unsymmetric) alternative
ret = TOC(F1=list(D=c(-2,-1,1), p=c(1,2,2)), p0=0.95, main="Unsymmetric F1")
attr(ret,"param")$F1 # F1$p is normalized

# Unequal sample sizes
TOC(n1=10, n2=30)

# Curves for a paired t-test
TOC(paired=TRUE)

# The output contains all the x- and y-coordinates
ret = TOC(p0=c(0.90, 0.95, 0.99), main="Default settings")
dim(ret)
colnames(ret)
ret[1:10,]
# Additionally, the list of arguments that determine the experiment
attr(ret,"param")

average.fdr Average a two-dimensional local false discovery rate

Description

This function averages two-dimensional local false discovery rates as computed by fdr2d for
binned values of the first test statistic and across the values of the second test statistic. The result
can easily be plotted and should be comparable to the one-dimensional fdr as provided by fdr1d,
provided that the smoothing parameters were chosen suitably.

Usage

average.fdr(x, breaks)

Arguments

x an object returned by fdr2d.
breaks breaks defining intervals into which the first test statistic is binned; by default

the same values that were used by fdr2d.
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Details

Assuming that we have smoothed the estimate suitably and have chosen the proportion of non-
dffierentially expressed genes suitably, we should get very much the same results from fdr2d as
from fdr1d when we average across the logarithmized standard errors, see Examples.

The averaging is done across the estimated values for the actual genes; this corresponds to a
weighted mean of the smoothed estimates on a grid, where the weight is proportional to cell fre-
quencies.

Note that it is usuually easier to get a good match in the tails of the curves than in the center, which
is okay, as this is where we want to estimate the fdr reliably.

Value

A matrix with two columns tstat and fdr.local.

Author(s)

A. Ploner

References

Ploner A, Calza S, Gusnanto A, Pawitan Y (2005) Multidimensional local false discovery rate for
micorarray studies. Submitted Manuscript.

See Also

fdr2d, fdr1d

Examples

# Create res1d
example(fdr1d)

# Compute fdr2d using the p0
res2d = fdr2d(xdat, grp, p0=p0(res1d))

# Show it
par(mfrow=c(2,1))
plot(res1d, main="fdr1d and averaged fdr2d")
lines(average.fdr(res2d), col="red")
plot(res2d, grid=TRUE, main="fdr2d is averaged across columns")

fdr1d Compute classical local false discovery rate

Description

Calculates the classical local false discovery rate for multiple parallel t-statistics.

Usage

fdr1d(xdat, grp, test, p0, nperm = 100, nr = 50, seed = NULL, null = NULL,
zlim = 1, sv2 = 0.01, err = 1e-04, verb = TRUE, ...)
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Arguments

xdat the matrix of expression values, with genes as rows and samples as columns

grp a grouping variable giving the class membership of each sample, i.e. each col-
umn in xdat

test a function that takes xdat and grp as the first two arguments and returns the
test statistic; by default, two-sample t-statistics are calculated.

p0 if supplied, an estimate for the proportion of non-differentially expressed genes;
if not supplied, the routine will estimate it, see Details.

nperm number of permutations for establishing the null distribution of the t-statistic

nr the number of equidistant breaks into which the range of test statistics is broken
for calculating the fdr.

seed if specified, the random seed from which the permuations are started

null optional argument for passing in a pre-calculated null distribution, see Details.

zlim if no p0 is specified, the ratio of densities in the range of test statistics between
-zlim and zlim will be used to estimate the proportion of non-differentially
expressed genes; ignored if p0 is specified.

sv2 positive number controlling the initial degree of smoothing for the densities in-
volved, with smaller values indicating more smoothing; see Details.

err positive number controlling the convergence of the smoothing procedure, with
smaller values implying more iterations; see Details.

verb logical value indicating whether provide extra information.

... extra arguments to function test.

Details

This function calculates the local false discovery rate (fdr, as opposed to global FDR) introduced
by Efron et al., 2001. The underlying model assumes that for a given grouping of samples, we
study a mixture of differentially expressed (DE) and non-DE genes, and that consequently, the
observed distribution of test statistics is a mixture of test statistics under the alternative and the null
statistic, respectively. The densities involved are estimated nonparametrically and smoothed, using
a permutation argument for the null distribution.

By default, the null distribution is generated and stored only within the function, and is not available
outside. If someone wants to study the null distribution, or wants to re-use the same null distribution
efficiently while e.g. varying the smoothing parameter, the argument null allows the use of an
externally generated null distribution, created e.g. using the PermNull function.

Theoretically, the function should support any kind of function along the lines of tstatistics,
however, this has not been tested, and the current setup is very much geared towards t-tests.

We use non-Gaussian mixed model smoothing for Possion counts for smoothing the density esti-
mates, see Pawitan, 2001, and smooth1d.

Value

Basically, a data frame with one row per gene and two columns: tstat, the test statistic, and
fdr.local, the local false discovery rate. This data frame has the additional class attributes
fdr1d.result and fdr.result, see Examples. This is the bad old S3 class mechanism em-
ployed to provide plot and summary functions.

Additional information is provided by a param attribute, which is a list with the following entries:
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p0 the proportion of non-differentially expressed genes used when calculating the
fdr.

p0.est a logical value indicating whether p0 was estimated from the data or supplied
by the user.

fdr the smoothed fdr values calculated for the original intervals.

xbreaks vector of breaks for the test statistic defining the interval for calculation.

Author(s)

A. Ploner

References

Efron B, Tibshirani R, Storey JD, Tusher V (2001) Empirical Bayes Analysis of a Microarray
Experiment. JASA, 96(456), p. 1151-60.

Pawitan Y.(2001) In All Likelihood, Oxford University Press, ch. 18.11

See Also

plot.fdr1d.result, summary.fdr.result, OCshow, tstatistics, smooth1d, fdr2d,
PermNull

Examples

# We simulate a small example with 5 percent regulated genes and
# a rather large effect size
set.seed(2000)
xdat = matrix(rnorm(50000), nrow=1000)
xdat[1:25, 1:25] = xdat[1:25, 1:25] - 1
xdat[26:50, 1:25] = xdat[26:50, 1:25] + 1
grp = rep(c("Sample A","Sample B"), c(25,25))

# A default run
res1d = fdr1d(xdat, grp)
res1d[1:20,]

# Looking at the results
summary(res1d)
plot(res1d)
res1d[res1d$fdr<0.05, ]

# Averaging estimates the global FDR for a set of genes
ndx = abs(res1d$tstat) > 3
mean(res1d$fdr[ndx])

# Extra information
class(res1d)
attr(res1d,"param")
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fdr2d Compute two-dimensional local false discovery rate

Description

This function calculates the local false discovery rate for a two-sample problem using a bivariate
test statistic, consisting of classical t-statistics and the corresponding logarithmized standard error.

Usage

fdr2d(xdat, grp, test, p0, nperm = 100, nr = 15, seed = NULL, null = NULL,
constrain = TRUE, smooth = 0.2, verb = TRUE, ...)

Arguments

xdat the matrix of expression values, with genes as rows and samples as columns

grp a grouping variable giving the class membership of each sample, i.e. each col-
umn in xdat

test a function that takes xdat and grp as the first two arguments and returns the
bivariate test statistics as two-column matrix; by default, two-sample t-statistics
and logrithmized standard errors are calculated.

p0 if supplied, an estimate for the proportion of non-differentially expressed genes;
if not supplied, the routine will estimate it, see Details.

nperm number of permutations for establishing the null distribution of the t-statistic

nr the number of equidistant breaks for the range of each test statistic; fdr values
are calculated on the resulting (nr-1) x (nr-1) grid of cells.

seed if specified, the random seed from which the permuations are started

null optional argument for passing in a pre-calculated null distribution, see Exam-
ples.

constrain logical value indicating whether the estimated fdr should be constrained to be
monotonously decreasing with the absolute size of the t-statistic (more gener-
ally, the first test statistic).

smooth a numerical value between 0.01 and 0.99, indicating which percentage of the
available degrees of freedom are used for smoothing the fdr estimate; larger
values indicate more smoothing.

verb logical value indicating whether provide extra information.

... extra arguments to function test.

Details

This routine computes a bivariate extension of the classical local false discovery rate as avail-
able through function fdr1d. Consequently, many arguments have identical or similar meaning.
Specifically for fdr2d, nr specifies the number of equidistant breaks defining a two-dimensional
grid of cells on which the bivariate test statistics are counted; argument constrain can be set
to ensure that the estimated fdr is decreasing with increasing absolute value of the t-statistic; and
argument smooth specifies the degree of smoothing when estimating the fdr.

Note that while fdr2d might be used for any suitable pair of test statistics, it has only been tested
for the default pair, and the smoothing procedure specifically is optimized for this situation.
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Note also that the estimation of the proportion p0 directly from the data may be quite unstable and
dependant on the degree of smoothing; too heavy smoothing may even lead to estimates greater
than 1. It is usually more stable use an estimate of p0 provided by fdr1d.

Note that fdr1d can also be used to check the degree of smoothing, see average.fdr.

Value

Basically, a data frame with one row per gene and three columns: tstat, the test statistic, logse,
the corresponding logarithmized standard error, and fdr.local, the local false discovery rate.
This data frame has the additional class attributes fdr2d.result and fdr.result, see Exam-
ples. This is the bad old S3 class mechanism employed to provide plot and summary functions.

Additional information is provided by a param attribute, which is a list with the following entries:

p0 the proportion of non-differentially expressed genes used when calculating the
fdr.

p0.est a logical value indicating whether p0 was estimated from the data or supplied
by the user.

fdr the matrix of smoothed fdr values calculated on the original grid.

xbreaks vector of breaks for the first test statistic.

ybreaks vector of breaks for the second test statistic.

Author(s)

A Ploner and Y Pawitan

References

Ploner A, Calza S, Gusnanto A, Pawitan Y (2005) Multidimensional local false discovery rate for
micorarray studies. Submitted Manuscript.

See Also

plot.fdr2d.result, summary.fdr.result, OCshow, fdr1d, average.fdr

Examples

# We simulate a small example with 5 percent regulated genes and
# a rather large effect size
set.seed(2000)
xdat = matrix(rnorm(50000), nrow=1000)
xdat[1:25, 1:25] = xdat[1:25, 1:25] - 1
xdat[26:50, 1:25] = xdat[26:50, 1:25] + 1
grp = rep(c("Sample A","Sample B"), c(25,25))

# A default run
res2d = fdr2d(xdat, grp)
res2d[1:20,]

# Looking at the results
summary(res2d)
plot(res2d)
res2d[res2d$fdr<0.05, ]

# Extra information
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class(res2d)
attr(res2d,"param")

plot.FDR.result Plot the empirical FDR as a function of the cutoff level

Description

Plots the output from EOC. The resulting graph is the empirical counterpart to those produced by
TOC, i.e. the estimated FDR as a function of the cutoff-level on the t-statistic.

Usage

plot.FDR.result(x, add=FALSE, sensitivity.show = TRUE, legend.show = FALSE,
xlim, ylim = c(0, 1), xlab, ylab, main, ...)

Arguments

x an object created by EOC

add logical value indicating whether to add to an existing plot or start a new one
sensitivity.show

logical value indicating whether to show the classical sensitivity for testing one
hypothesis as a function of the cutoff level.

legend.show logical value indicating whether to add a legend to the plot

xlim, ylim limits for the horizontal and vertical axis

xlab, ylab axis labels

main plot title

... the usual graphical parameters, passed to plot

Author(s)

A. Ploner

See Also

EOC

Examples

# We simulate a small example with 5 percent regulated genes and
# a rather large effect size
set.seed(2003)
xdat = matrix(rnorm(50000), nrow=1000)
xdat[1:25, 1:25] = xdat[1:25, 1:25] - 2
xdat[26:50, 1:25] = xdat[26:50, 1:25] + 2
grp = rep(c("Sample A","Sample B"), c(25,25))

# Compute the EOC without plotting
ret = EOC(xdat, grp, plot=FALSE)

# Some possible arrangements
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par(mfrow=c(2,2))
plot(ret)
plot(ret, legend=TRUE)
plot(ret, sensitivity=FALSE)

plot.fdr1d.result Plot univariate local false discovery output

Description

A plotting function for fdr1d.

Usage

plot.fdr1d.result(x, add = FALSE, grid = FALSE, rug = TRUE,
xlab = "t-Statistic", ylab = "fdr", lcol = "black", ...)

Arguments

x output from fdr1d

add logical value indicating whether to create a new plot or add to an existing one

grid logical value indicating whether to show the intervals used for calculating the
fdr.

rug logical value indicating whether to add a 1D scatterplot showing the observed
test statistics

xlab, ylab the usual axis labels

lcol the color of the lines

... extra options passed to plot.default.

Author(s)

A Ploner

See Also

fdr1d

Examples

example(fdr1d)
plot(res1d, grid=TRUE, rug=FALSE)



20 plot.fdr2d.result

plot.fdr2d.result Plotting the bivariate local false discovery results

Description

These functions provide different ways of plotting the output fdr2d.

Usage

plot.fdr2d.result(x, levels, nr.plot = 20, add = FALSE, grid = FALSE,
pch = ".",xlab, ylab, vfont = c("sans serif", "plain"), lcol = "black", ...)

Tornadoplot(x, levels, nr.plot = 20, label = FALSE, constrain = FALSE,
pch = ".", xlab, ylab, vfont = c("sans serif", "plain"), lcol = "black", ...)

Volcanoplot(x, df, levels, nr.plot = 20, label = FALSE, constrain = FALSE,
pch = ".", xlab, ylab, vfont = c("sans serif", "plain"), lcol = "black", ...)

Arguments

x an object created by fdr2d.

df the appropriate degrees of freedom for a two-sample t-test with equal variances
(in order to provide p-values for the volcano plot).

levels vector of levels for drawing fdr isolines

nr.plot number of equidistant breaks defining a two-dimensional grid for smoothing
isolines, see Details.

add logical value indicating whether to create a new plot, or to add to an existing
plot.

grid logical value indicating whether the original grid used for estimating the local
fdr should be shown.

label logical value indicating whether to draw labels on the isolines.

constrain logical flag indicating whether transformed fdr values should be made monot-
nously decreasing with the absolute size of the first test statistic, see fdr2d.

pch, xlab, ylab
the usual graphical parameters

vfont vector font specification for labelling the isolines, see contour.

lcol colour used for drawing the isolines

... extra graphical parameters passed to plot.default.

Details

The plot format is basically a scatter plot of the observed test statistics, overlayed with isolines
showing the estimated fdr. The generic plot function displays the original test statistics that are
used to estimate the fdr, i.e. the two-sample t-statistics and the logarithmized standard errors; the
other plots use different, but mathematically equivalent test statistics:

• mean difference and logarithmized standard error for the tornado plot,
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• mean difference and − log 10(p) for the volcano plot, where p is the p-value from the standard
two-sample t-test.

By default, the estimated fdr isolines are smoothed and cropped to the convex hull of the observed
test statistics by using akima. This is entirely a graphical pre-processing step which produces
smoother isolines and enforces sanity at the edges of the observed distribution; it does not change
the estimated fdr at all. This graphical smoothing is controlled via the argument nr.plot, which
specifies the grid size, with lower values resulting in stronger smoothing. In order to suppress
graphical smoothing, set nr.plot to zero.

Note that the test statistics and the fdr for the volcano- and tornado plots are not computed from
scratch, but rather through transformation of the original results. Specifically, the isolines in these
plots are also transformed; this has the unfortunate side effect that the labelling of isolines in
these plots is not nearly as pretty as the standard provided by contour. This functionality is
currently not available outside of contour, and our implementation in DrawContourlines
frankly leaves a lot to be desired. We apologize for the inconvenience.

Value

The original x, invisibly.

Author(s)

A. Ploner

References

Ploner A, Calza S, Gusnanto A, Pawitan Y (2005) Multidimensional local false discovery rate for
micorarray studies. Submitted Manuscript.

See Also

fdr2d, DrawContourlines

Examples

# Create res2d
example(fdr2d)

par(mfrow=c(2,2))
plot(res2d, main="Generic plotting")
Volcanoplot(res2d, df=length(grp)-2, main="Volcano plot", label=TRUE)
Tornadoplot(res2d, main="Tornado plot", label=TRUE)
# This is without graphical smoothing
plot(res2d, main="Generic plotting, raw", nr.plot=0)

samplesize FDR as a function of sample size

Description

This function tabulates the false discovery rate (FDR) for selecting differentially expressed genes
as a function of sample size and cutoff level. Additionally, the same information can be displayed
through an attractive plot.
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Usage

samplesize(n = seq(5, 50, by = 5), p0 = 0.99, sigma = 1, D, F0, F1,
paired = FALSE, crit, crit.style = c("top percentage", "cutoff"),

plot =TRUE, local.show=FALSE, nplot = 100, ylim = c(0, 1), main,
legend.show = FALSE, grid.show = FALSE, ...)

Arguments

n sample size (as subjects per group)

p0 the proportion of non-differentially expressed genes

sigma the standard deviation for the log expression values

D assumed average log fold change (in units of sigma), by default 1; this is a
shortcut for specifying a simple symmetrical alternative hypothesis through F1.

F0 the distribution of the log2 expression values under the null hypothesis; by de-
fault, this is normal with mean zero and standard deviation sigma, but mixtures
of normals can be specified, see Details and Examples.

F1 the distribution of the log2 expression values under the alternative hypothesis;
by default, this is an equal mixture of two normals with means D and -D and
standard deviation sigma; mixture of normals are again possible, see Details
and Examples.

paired logical value indicating whether this is the independent sample case (default) or
the paired sample case.

crit a vector of cutoff values for selecting differentially expressed genes; the inter-
pretation depends on crit.style.

crit.style indicates how differentially expressed genes are selected: either by a fixed cut-
off level for the absolute value of the t-statistic or as a fixed percentage of the
absolute largest t-statistics.

plot logical value indicating whether to do the plotting business

local.show logical value indicating whether to show local or global false discovery rate
(default: global).

nplot number of points that are evaluated for the curves

ylim the usual limits on the vertical axis

main the main title of the plot

legend.show logical value indicating whether to show a legend for the types of gene selection
in the plot

grid.show logical value indicating whether to draw grid lines showing the sample sizes n
to be tabulated in the plot

... the usual graphical parameters, passed to plot

Details

This function plots the FDR as a function of the sample size when comparing the expression of
multiple genes between two groups of subjects. This is based on a model assuming that a propor-
tion p0 of genes is not differentially expressed (regulated) between groups, and that 1-p0 genes
are. The logarithmized gene expression values of regulated and non regulated genes are assumed
to be generated by mixtures of normal distributions; these mixtures can be specified through the
parameters F0, F1 or D, and sigma; please see TOC for details on the model and the specification
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of the mixtures. By default, the null distribution of the log expression values is a normal centered
on zero, and the alternative an equal mixture of normals centered at +D and -D.

The list of nominally differentially expressed genes can be selected in two ways:

• all genes with absolute t-statistic larger than the specified critical cutoff values (cutoff),

• all genes that represent the specified critical top percentage of the absolutely largest t-statistics
(top percentage).
Multiple critical values correspond to multiple curves, each labeled by the critical value, but
only one value can be specified for the proportion of non-regulated genes p0 and the standard
deviation sigma.

Value

A matrix with rows corresponding to elements of n and columns corresponding to the specified
critical values is returned. The matrix has the attribute param that contains the specified arguments,
see Examples.

Note

Both the curve labels and the legend may be squashed if the plotting device is too small. Increasing
the size of the device and re-plotting should improve readability.

Author(s)

Y. Pawitan and A. Ploner

References

Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A (2005) False Discovery Rate, Sensitivity
and Sample Size for Microarray Studies. Bioinformatics, 21, 3017-3024.

Jung SH (2005) Sample size for FDR-control in microarray data analysis. Bioinformatics, 21,
3097-104.

See Also

FDR, TOC, EOC

Examples

# Default assumes a proportion of 0.01 regulated genes equally split
# between two-fold up- and down-regulated
# We select the top 1, 2, 3 percent absolute largest t-statistics
samplesize(crit=c(0.03,0.02, 0.01))

# Same model, but using a hard cutoff for the t-statistics
samplesize(crit=2:4, crit.style="cutoff")

# Paired test of the same size has slightly better FDR (as expected)
samplesize(paired=TRUE)

# Compare the effect of p0 and effect size
par(mfrow=c(2,2))
samplesize(crit=c(0.03,0.02, 0.01), p0=0.95, D=1)
samplesize(crit=c(0.03,0.02, 0.01), p0=0.99, D=1)
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samplesize(crit=c(0.03,0.02, 0.01), p0=0.95, D=2)
samplesize(crit=c(0.03,0.02, 0.01), p0=0.99, D=2)

# An asymmetric alternative distribution: 20 percent of the regulated genes
# are expected to be (at least) four-fold up regulated
# NB, no graphical output
ret = samplesize(F1=list(D=c(-1,1,2), p=c(2,2,1)), p0=0.95, crit=0.05, plot=FALSE)
ret
# Look at the parameters
attr(ret, "param")

# A wide null distribution that allows to disregard genes with small effect
# Here: |log2 fold change| < 0.25, i.e. fold change of less than 19 percent
samplesize(F0=list(D=c(-0.25,0,0.25)), grid=TRUE)

# This is close to Example 3 in Jung's paper (see References):
# p0=0.99 and sensitivity=0.6, so we want a rejection rate of
# around 0.006 from the top list.
# Here we require around 40 arrays/group, compared to
# around 37 in Jung's paper, most likely because we use
# the t-distribution instead of normal. Jung's alternative
# is only one-sided, so the exact correspondence is
#
samplesize(p0=0.99,crit.style="top", crit=0.006, F1=list(D=1, p=1), grid=TRUE)
abline(h=0.01)

#The result is very close to the symmetric alternatives:
samplesize(p0=0.99,crit=0.006, D=1, grid=TRUE, ylim=c(0,0.9))

smooth1d Smoothing a vector of counts

Description

This function takes a vector of counts and uses a mixed model approach to smooth it. A com-
mon use of this is smoothing binned counts of an observed quantity prior to estimating its density
nonparametrically through the relative frequencies.

Usage

smooth1d(y, sv2 = 0.1, err = 0.01, verb = TRUE)

Arguments

y the vector of counts

sv2 the user-specified starting value for the variance of the random effects, see De-
tails.

err Tolerance for convergence, see Details

verb logical value indicating whether to print diagnostics.
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Details

The smoothing assumes that the counts are Poisson from a generalized linear mixed model, where
the second differences are normally distributed. Using the extended likelihood approach described
in Pawitan (2001) and the initial estimate sv2 for the variance of the random effects, the rou-
tine iteratetively optimizes the fixed and random contributions to the extended likelihood, until the
estimate for the variance convergences with tolerance err. The result is quite stable within a rea-
sonable range of starting values and tolerances, and the function can be used for fairly automatic
smoothing ((i.e. withou fixing a bandwidth parameter).

Value

A list with three components:

fit the smoothed counts

df the degrees of freedom used for smoothing at convergence

sv2 the estimated variance at convergence, equivalent to df.

Author(s)

Y. Pawitan and A. Ploner

References

Pawitan Y.(2001) In All Likelihood, Oxford University Press, ch. 18.11

See Also

fdr1d

Examples

# Stupid dummies, obviously
smooth1d(1:10)
smooth1d(1:10, sv2=1)

summary.fdr.result Display functions for local fdr output

Description

Display functions for output from fdr1d and fdr2d, summarizing the output, displaying the
proportion of non-differentially expressed genes and extracting the list of top-regulated genes.

Usage

summary.fdr.result(object, ...)

p0(x, how = FALSE)

topDE(x, co = 0.1)
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Arguments

x, object an object of class fdr.result created by fdr1d or fdr2d.

how a logical value indicating whether to return only the numerical value of the pro-
portion of non-differentially expressed genes, or a list whose second element
indicates whether the proportion was estimated from the data or supplied by the
user.

... extra arguments, currently unused

co cutoff for either FDR or fdr

Value

For summary.fdr.result, a list with the summary items.

For p0, either a numerical value or a list with two elements, depending on the value of parameter
how.

For topDE, the genes that have FDR (EOC) or fdr (fdr1d, fdr2d) less or equal than co, sorted
by FDR or fdr respectively.

Author(s)

A. Ploner

See Also

fdr1d, fdr2d, EOC

Examples

# Create object res1d
example(fdr1d)

summary(res1d)
p0(res1d)
p0(res1d, how=TRUE)
topDE(res1d)

tMixture Fit a mixture of t-distributions

Description

For a vector of individual genewise t-statistics, this functions fits a distribution of central and non-
central t-distributions, with the primary goal of estimating the proportion p0 of non-differentially
expressed genes.

Usage

tMixture(tstat, n1 = 10, n2 = n1, nq, p0, p1, D, delta, paired = FALSE,
tbreak, ext = TRUE, threshold.delta=0.75, ...)
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Arguments

tstat the vector of genewise t-statistics

n1 number of samples in the first group

n2 number of samples in the second group

nq the number of components in the mixture that is fitted

p0 a starting value for the proportion of non-differentially expressed genes.

p1 a vector with starting values for the proportions of genes that are differentially
expressed with effect size D.

D a vector of starting values for the effect sizes of the differentially expressed
genes, corresponding to the proportions p1.

delta a vector of starting values for the effect sizes of the differentially expressed
genes, expressed as non-centrality parameters; this is just a different way of
specifying D, though if both are given, delta will get priority.

paired a logical value indicating whether the t-statistics are two-sample or paired.

tbreak either the number of equally spaced bins for tabulating tstat, or the explicit
break points for the bins, very much like the argument breaks to function cut;
the default value is the square root of the number of genes.

ext a logical value indicating whether to extend the bins, i.e. to set the lowest bin
limit to -infinity and the largest bin limit to inifinity.

threshold.delta
mixture components with an estimated absolute non-centrality parameter delta
below this value are considered to be too small for independent estimation; these
components and their corresponding p1 are pooled with the null-component and
p0, see Details.

... additional arguments that are passed to optim to control the optimization.

Details

The minimum parameter that needs to be specified is nq - if nothing else is given, the proportions
are equally distributed between p0 and the p1, and the noncentrality parameters are set up sym-
metrically around zero, e.g. nq=5 leads to equal proportions of 0.2 and noncentrality parameters
-2, -1, 1, and 2. If any of p1, D, or delta is specified, nq is redundant and will be ignored (with
a warning). tMixture will in general make a valiant effort to deduce valid starting values from
any combination of nq, p0, p1, D, and delta specified by the user, and will complain if that is
not possible.

The fitting problem that this function tries to solve is badly conditioned, and will in general depend
on the precise set of starting values. Multiple runs from different starting values are usually a good
idea. We have found however, that the model seems fairly robust towards misspecification of the
number of components, at least when estimating p0. What happens when too many components
are specified is that some of the nominally noncentral t-distributions describing the behaviour of
differentially expressed genes are fitted with noncentrality parameters very close to zero, and the
true p0 gets spread out between the nominal p0 and the almost-central components. Adding up
these different contributions usually gives a similar solution to re-fitting the model with fewer com-
ponents. The cutoff for the size of non-centrality parameters that can be estimated realistically is
specified via threshold.delta, whose default value is based on a small simulation study re-
ported in Pawitan et al. (2005); see Examples. (Note that the AIC can also be helpful in determining
the number of components.)
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Value

A list with the following components:

p0.est the estimated proportion of non-differentially expressed genes, after collapsing
components with estimated non-centrality sizes below threshold.delta.

p0.raw the estimated proportion before collapsing the components.

p1 the estimated proportions of differentially expressed genes corresponding to the
effect sizes, relating to p0.raw.

D effect sizes of the differentially expressed genes in multiples of the gene-by-gene
standard deviation.

delta effect sizes of the differentially expressed genes expressed as the noncentrality
parameter of the corresponding noncentral t-distribution.

AIC the AIC value for the maximum likelihood fit.

opt The output from optim, giving details about the optimization process.

Author(s)

Y. Pawitan and A. Ploner

References

Pawitan Y, Krishna Murthy KR, Michiels S, Ploner A (2005) Bias in the estimation of false discov-
ery rate in microarray studies, Bioinformatics.

See Also

tstatistics, EOC, optim

Examples

# We simulate a small example with 5 percent regulated genes and
# a rather large effect size
set.seed(2011)
xdat = matrix(rnorm(50000), nrow=1000)
xdat[1:25, 1:25] = xdat[1:25, 1:25] - 2
xdat[26:50, 1:25] = xdat[26:50, 1:25] + 2
grp = rep(c("Sample A","Sample B"), c(25,25))
# Use a helper function for the test statistics
myt = tstatistics(xdat, grp)$tstat
r1 = tMixture(myt, n1=25, nq=3)
r1

# Equivalently, we could have specified the same set of starting values
# as follows:
# r1 = tMixture(myt, n1=25, p0=1/3, p1=c(1/3, 1/3), delta=c(-1,1))

# Alternative starting value for p0, other starting values are filled in
r2 = tMixture(myt, n1=25, nq=3, p0=0.80)
r2

# Specification of too many components usually leads to spurious
# noncentral components like here - note the difference between
# p0.est and p0.raw!
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r3 = tMixture(myt, n1=25, nq=5)
r3

# We simulate a data in a paired setting
# Note the arrangement of the columns
set.seed(2012)
xdat = matrix(rnorm(50000), nrow=1000)
ndx1 = seq(1,50, by=2)
xdat[1:25, ndx1] = xdat[1:25, ndx1] - 2
xdat[26:50, ndx1] = xdat[26:50, ndx1] + 2
grp = rep(c("Sample A","Sample B"), 25)
# Use a helper function for the test statistics
myt = tstatistics(xdat, grp, paired=TRUE)$tstat
r1p = tMixture(myt, n1=25, nq=3)
r1p

tstatistics Compute multiple parallel t-statistics

Description

tstatistics computes either two-sample or paired t-statistics for a bunch of variables mea-
sured on the same objects, e.g. genewise t-statistics for a microarray experiment. PermNull uses
tstatistics to generate a permutation distribution.

Usage

tstatistics(xdat, grp, logse = FALSE, paired = FALSE)

PermNull(xdat, grp, nperm = 100, seed = NULL, logse = FALSE, paired=FALSE)

Arguments

xdat the matrix of expression values, with genes (or variables) as rows and samples
as columns.

grp a grouping variable giving the class membership of each sample, i.e. each col-
umn in xdat, see Details.

nperm number of permutations for establishing the null distribution of the t-statistic

seed random number generator seed for initializing the permutations from a known
starting point.

logse logical flag indicating whether to return the logarithmized standard errors, too.

paired indicates whether to use two-sample or paired t-statistic.

Details

tstatistics is a fairly fast replacement for function mt.teststat in package multtest,
which is written exlusively in R and does not require loading half the Bioconductor infrastruc-
ture packages before doing anything. As such, it is used for computing the default test statistics by
fdr1d and fdr2d.

Note that for the paired test, tstatistics requires the same data structure as mt.teststat:
columns belonging to the same pair must be consecutive (though not necessarily in the same order
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throughout, as ‘grp’ will indicate the order). The function checks for this and barfs if it does not
hold.

PermNull returns the t-statistics and optionally the logarithmized standard errors of the mean for
a specified number of permutations.

Both functions are not especially economic in using memory, and collecting the whole set of per-
mutations like PermNull does instead of binning and counting them directly as they come is
inherently wasteful.

Value

A data frame with first column tstat and optionally (if logse=TRUE) a second column logse.
tstat returns the same number of test statistics as rows in xdat and in the same order, PermNull
does the same for consecutive permuations of the grouping variable grp.

If the argument seed is specified, PermNull adds an attribute of the same name to the returned
data frame.

Author(s)

A. Ploner

See Also

fdr1d, fdr2d, examples in tMixture
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