
ChemmineR
October 25, 2011

AP-class Class "AP"

Description

Container for storing the atom pair descriptors of a single compound as numeric vector. The atom
pairs are used as structural similarity measures and for compound similarity searching.

Objects from the Class

Objects can be created by calls of the form new("AP", ...).

Slots

AP: Object of class "numeric"

Methods

ap signature(x = "AP"): returns atom pairs as numeric vector

coerce signature(from = "APset", to = "AP"): as(apset, "AP")

show signature(object = "AP"): prints summary of AP

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Related classes: SDF, SDFset, SDFstr, APset.

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

1

2 APset-class

Examples

showClass("AP")

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

APset-class Class "APset"

Description

List-like container for storing the atom pair descriptors of a many compounds as objects of class
AP. This container is used for structure similarity searching of compounds.

Objects from the Class

Objects can be created by calls of the form new("APset", ...).

Slots

AP: Object of class "list"

ID: Object of class "character"

APset-class 3

Methods

[signature(x = "APset"): subsetting of class with bracket operator

[[signature(x = "APset"): returns single component as AP object

[[<- signature(x = "APset"): replacement method for single AP component

[<- signature(x = "APset"): replacement method for several AP components

ap signature(x = "APset"): returns atom pair list from AP slot

c signature(x = "APset"): concatenates two APset containers

cid signature(x = "APset"): returns all compound identifiers from ID slot

cid<- signature(x = "APset"): replacement method for compound identifiers in ID slot

coerce signature(from = "APset", to = "AP"): as(apset, "AP")

coerce signature(from = "APset", to = "list"): as(apset, "list")

coerce signature(from = "list", to = "APset"): as(list, "APset")

length signature(x = "APset"): returns number of entries stored in object

show signature(object = "APset"): prints summary of APset

view signature(x = "APset"): prints extended summary of APset

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem
Inf Comput Sci.

See Also

Related classes: SDF, SDFset, SDFstr, AP.

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

showClass("APset")

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format

4 SDF-class

db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

SDF-class Class "SDF"

Description

Container for storing every element of a single molecule defined in an SD/MOL file without infor-
mation loss in a list-like container. The import occurs via the SDFstr container class. The header
block is stored as named character vector, the atom/bond blocks as matrices and the data block as
named character vector.

Objects from the Class

Objects can be created by calls of the form new("SDF", ...).

Slots

header: Object of class "character"

atomblock: Object of class "matrix"

bondblock: Object of class "matrix"

datablock: Object of class "character"

Methods

[signature(x = "SDF"): subsetting of class with bracket operator

[[signature(x = "SDF"): returns one of the four object components

[[<- signature(x = "SDF"): replacement method for the four sub-components

[<- signature(x = "SDF"): replacement method for the four sub-components

atomblock signature(x = "SDF"): returns atom block as matrix

atomcount signature(x = "SDF"): returns atom frequency

bondblock signature(x = "SDF"): returns bond block as matrix

coerce signature(from = "character", to = "SDF"): as(character, "SDF")

SDF-class 5

coerce signature(from = "list", to = "SDF"): as(list, "SDF")

coerce signature(from = "SDF", to = "character"): as(sdf, "character")

coerce signature(from = "SDF", to = "list"): as(sdf, "list")

coerce signature(from = "SDF", to = "SDFset"): as(sdf, "SDFset")

coerce signature(from = "SDF", to = "SDFstr"): as(SDF, "SDFstr")

coerce signature(from = "SDFset", to = "SDF"): as(sdfset, "SDF")

datablock signature(x = "SDF"): returns data block as named character vector

datablocktag signature(x = "SDF"): returns data block as named character vector with
subsetting support

header signature(x = "SDF"): returns header block as named character vector

plot signature(x = "SDF"): plots molecule structure for SDF object

sdf2list signature(x = "SDF"): returns SDF object as list

sdf2str signature(sdf = "SDF"): returns SDF object as character vector

sdfid signature(x = "SDF"): returns molecule ID field from header block

show signature(object = "SDF"): prints summary of SDF

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDFset, SDFstr, AP, APset

Examples

showClass("SDF")

Instances of SDF class
data(sdfsample); sdfset <- sdfsample
(sdf <- sdfset[[1]]) # returns first molecule in sdfset as SDF object

Accessing SDF components
header(sdf); atomblock(sdf); bondblock(sdf); datablock(sdf)
sdfid(sdf)

Plot molecule structure of SDF
plot(sdf) # plots to R graphics device
sdf.visualize(sdf) # viewing in browser

6 SDF2apcmp

SDF2apcmp ’SDF’ to ’list’ for AP generation

Description

Returns SDF class as list containing the components for generating atom pair descriptors.

Usage

SDF2apcmp(SDF)

Arguments

SDF SDF

Details

...

Value

list with atom and bond components

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: sdf2ap, apset2descdb, cmp.search, cmp.similarity

Examples

Instances of SDFset class
data(sdfsample)
sdf <- sdfsample[[1]]

Return list
SDF2apcmp(sdf)

SDFset-class 7

SDFset-class Class "SDFset"

Description

List-like container for storing one or many objects of class SDF each containing the structure defi-
nition information of molecules provided by an SD/MOL file. The SDFset is the most important
class in the ChemmmineR package for accessing and manipulating information stored in SD files.

Objects from the Class

Objects can be created by calls of the form new("SDFset", ...).

Slots

SDF: Object of class "list" storing SDF components

ID: Object of class "character" storing compound identifiers

Methods

[signature(x = "SDFset"): subsetting of class with bracket operator

[[signature(x = "SDFset"): returns single component as SDF object

[[<- signature(x = "SDFset"): replacement method for single SDF component

[<- signature(x = "SDFset"): replacement method for several SDF components

atomblock signature(x = "SDFset"): returns all atom blocks as list

atomcount signature(x = "SDFset"): returns all atom frequencies as list

bondblock signature(x = "SDFset"): returns all bond blocks as list

c signature(x = "SDFset"): concatenates two SDFset containers

cid signature(x = "SDFset"): returns all compound identifiers from ID slot

header<- signature(x = "SDFset"): replacement method for header block

atomblock<- signature(x = "SDFset"): replacement method for atom block

bondblock<- signature(x = "SDFset"): replacement method for bond block

datablock<- signature(x = "SDFset"): replacement method for data block

coerce signature(from = "list", to = "SDFset"): as(list, "SDFset")

coerce signature(from = "SDF", to = "SDFset"): as(sdf, "SDFset")

coerce signature(from = "SDFset", to = "list"): as(sdfset, "list")

coerce signature(from = "SDFset", to = "SDF"): as(sdfset, "SDF")

coerce signature(from = "SDFset", to = "SDFstr"): as(sdfset, "SDFstr")

coerce signature(from = "SDFstr", to = "SDFset"): as(sdfstr, "SDFset")

datablock signature(x = "SDFset"): returns all data blocks as list

datablocktag signature(x = "SDFset"): returns all data blocks as named as list with sub-
setting support

header signature(x = "SDFset"): returns all header blocks as list

length signature(x = "SDFset"): returns number of entries stored in object

8 SDFset-class

plot signature(x = "SDFset"): plots one or many molecule structures from SDFset ob-
ject

sdfid signature(x = "SDFset"): returns molecule ID field from header block

SDFset2list signature(x = "SDFset"): returns SDFset object as list

SDFset2SDF signature(x = "SDFset"): returns SDFset object as list with SDF com-
ponents

SDFset2SDF<- signature(x = "SDFset"): replacement method for SDFset component
in SDFset using accessor method

show signature(object = "SDFset"): prints summary of SDFset

view signature(x = "SDFset"): prints extended summary of SDFset

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDF, SDFstr, AP, APset

Import function: read.SDFset("some_SDF_file")

Export function: write.SDF(sdfset, "some_file.sdf")

Examples

showClass("SDFset")

Instances of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset; view(sdfset[1:4])
sdfset[[1]]

Import and store SD File in SDFset container
sdfset <- read.SDFset("some_SDF_file")

Miscellaneous accessor methods
header(sdfset[1:4])
atomblock(sdfset[1:4])
atomcount(sdfset[1:4])
bondblock(sdfset[1:4])
datablock(sdfset[1:4])

Assigning compound IDs and keeping them unique
cid(sdfset); sdfid(sdfset)
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids

Convert data block to matrix
blockmatrix <- datablock2ma(datablocklist=datablock(sdfset)) # Converts data block to matrix
numchar <- splitNumChar(blockmatrix=blockmatrix) # Splits to numeric and character matrix
numchar[[1]][1:4,]; numchar[[2]][1:4,]

SDFset2SDF 9

Compute atom frequency matrix, molecular weight and formula
propma <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
propma[1:4,]

Assign matrix data to data block
datablock(sdfset) <- propma
view(sdfset[1:4])

String Searching in SDFset
grepSDFset("650001", sdfset, field="datablock", mode="subset") # To return index, set mode="index")

Export SDFset to SD file
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE)

Plot molecule structure of SDF
plot(sdfset[1:4]) # plots to R graphics device
sdf.visualize(sdfset[1:4]) # viewing in browser

SDFset2SDF ’SDFset’ to list with many ’SDF’

Description

Returns object of class SDFset as list were each component consists of an SDF object.

Usage

SDFset2SDF(x)

Arguments

x object of class SDFset

Details

...

Value

list containing one or many SDF objects

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, sdf2list, SDFset2list

10 SDFset2list

Examples

Instance of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset

Returns sdfset as list
SDFset2SDF(sdfset[1:4])
as(sdfset, "SDF")[1:4] # similar result
view(sdfset[1:4]) # same result

SDFset2list ’SDFset’ to ’list’

Description

Returns object of class SDFset as list where each component conists of a list of the four
SDF sub-components: header block, atom block, bond block and data block.

Usage

SDFset2list(x)

Arguments

x object of class SDFset

Details

...

Value

list containing one or many lists each with following components:

character SDF header block

matrix SDF bond block

matrix SDF atom block

character SDF data block

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, sdf2list, SDFset2SDF

SDFstr-class 11

Examples

Instance of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset

Returns sdfset as list
SDFset2list(sdfset[1:4])
as(sdfset, "list")[1:4] # similar result

SDFstr-class Class "SDFstr"

Description

List-like container for storing one or many molecules from an SD (or MOL) file. Each component
of an SDFstr object stores the SD data line by line from a single molecule in a character vector.
The SDFstr class is an intermediate container to import SD files into the more important SDFset
object or to export the data back from an SDFset container to a valid SD file.

Objects from the Class

Objects can be created by calls of the form new("SDFstr", ...).

Slots

a: Object of class "list" with character components

Methods

[signature(x = "SDFstr"): subsetting of class with bracket operator

[[signature(x = "SDFstr"): returns single component as character vector

[[<- signature(x = "SDFstr"): replacement method for single SDFstr component

[<- signature(x = "SDFstr"): replacement method for several SDFstr components

coerce signature(from = "character", to = "SDFstr"): as(character, "SDFstr")

coerce signature(from = "list", to = "SDFstr"): as(list, "SDFstr")

coerce signature(from = "SDF", to = "SDFstr"): as(sdf, "SDFstr")

coerce signature(from = "SDFset", to = "SDFstr"): as(sdfset, "SDFstr")

coerce signature(from = "SDFstr", to = "list"): as(sdfstr, "list")

coerce signature(from = "SDFstr", to = "SDFset"): as(sdfstr, "SDFset")

length signature(x = "SDFstr"): returns length of SDFstr

sdfstr2list signature(x = "SDFstr"): accessor method to return SDFstr as list

sdfstr2list<- signature(x = "SDFstr"): replacement method for several SDFstr com-
ponents

show signature(object = "SDFstr"): prints summary of SDFstr

Author(s)

Thomas Girke

12 ap

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDFset, AP, APset

Import function: read.SDFstr("some_SDF_file")

Examples

showClass("SDFstr")

Instances of SDFstr class
data(sdfsample); sdfset <- sdfsample
sdfstr <- as(sdfset, "SDFstr")
sdfstr[1:4] # print summary of container content
sdfstr[[1]] # returns character vector

Import: sdfstr <- read.SDFstr("some_SDF_file")
Export: write.SDF(sdfstr, "some_file.sdf")

ap Return atom pair component of ’AP/APset’

Description

Returns atom pair component of objects of class AP or APset as list of vectors.

Usage

ap(x)

Arguments

x Object of class AP and APset

Details

...

Value

List with one to many of following components:

numeric atom pairs

Author(s)

Thomas Girke

apset 13

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfset[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

apset Atom pairs stored in ’APset’ object

Description

Atom pairs for 100 molecules stored in sdfsample.

Usage

data(apset)

Format

Object of class apset

Details

Object stores atom pairs of 100 molecules.

Source

apset <- sdf2ap(sdfsample)

14 apset2descdb

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

Examples

data(apset)
apset[1:4]
view(apset[1:4])

apset2descdb ’APset’ to list-style AP database

Description

Coerces APset to old list-style descriptor database used by search/cluster functions.

Usage

apset2descdb(apset)

Arguments

apset Object of class apset

Details

...

Value

list with following components

descdb list of atom pair sets

cids compound IDs

sdfsegs start/end coordinates for each molecule in SD file; only populated when cmp.parse
is used for import

source path/name of SD file

type import method

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

atomblock 15

See Also

Functions: SDF2apcmp, sdf2ap, cmp.search, cmp.similarity

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

atomblock Return atom block

Description

Returns atom block(s) from an object of class SDF or SDFset.

Usage

atomblock(x)

Arguments

x object of class SDF or SDFset

16 atomcount

Details

...

Value

matrix if SDF is provided or list of matrices if SDFset is provided

Author(s)

Thomas Girke

References

...

See Also

header, atomcount, bondblock, datablock, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract atome block
atomblock(sdf)
atomblock(sdfset[1:4])

Replacement methods
sdfset[[1]][[2]][1,1] <- 999
sdfset[[1]]
atomblock(sdfset)[1:2] <- atomblock(sdfset)[3:4]
atomblock(sdfset[[1]]) == atomblock(sdfset[[3]])
view(sdfset[1:2])

atomcount Molecular property functions

Description

Functions to compute molecular properties: weight, formula, atom frequencies, etc.

Usage

atomcount(x, addH = FALSE, ...)

atomcountMA(x, ...)

MW(x, mw=atomprop, ...)

MF(x, ...)

atomcount 17

Arguments

x object of class SDFset or SDF

mw data.frame with atomic weights; imported by default with data(atomprop);
supports custom data sets

addH ’addH = TRUE’ should be passed on to any of these function to add hydrogens
that are often not specified in SD files

... Arguments to be passed to/from other methods.

Details

...

Value

named vector MW and MF

list atomcount

matrix atomcountMA

Author(s)

Thomas Girke

References

Standard atomic weights (2005) from: http://iupac.org/publications/pac/78/11/2051/

See Also

Functions: datablock, datablocktag

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample

Compute properties; to consider missing hydrogens, set 'addH = TRUE'
MW(sdfset[1:4], addH = FALSE)
MF(sdfset[1:4], addH = FALSE)
atomcount(sdfset[1:4], addH = FALSE)
propma <- atomcountMA(sdfset[1:4], addH = FALSE)
boxplot(propma, main="Atom Frequency")

Example for injecting a custom matrix/data frame into the data block of an
SDFset and then writing it to an SD file
props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props
view(sdfset[1:4])
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)

18 bondblock

atomprop Standard atomic weights

Description

Data frame with atom names, symbols, standard atomic weights, group number and period number.

Usage

data(atomprop)

Format

The format is a data frame with 117 rows and 6 columns.

Source

Columns 1 to 4 from: http://iupac.org/publications/pac/78/11/2051/ Columns 5 to 6 from: http://en.wikipedia.org/wiki/List_of_elements

References

Pure Appl. Chem., 2006, Vol. 78, No. 11, pp. 2051-2066

Examples

data(atomprop)
atomprop[1:4,]

bondblock Return bond block

Description

Returns bond block(s) from an object of class SDF or SDFset.

Usage

bondblock(x)

Arguments

x object of class SDF or SDFset

Details

...

Value

matrix if SDF is provided or list of matrices if SDFset is provided

bonds 19

Author(s)

Thomas Girke

References

...

See Also

header, atomcount, atomblock, datablock, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract bond block
bondblock(sdf)
bondblock(sdfset[1:4])

Replacement methods
sdfset[[1]][[3]][1,1] <- 999
sdfset[[1]]
bondblock(sdfset)[1:2] <- bondblock(sdfset)[3:4]
bondblock(sdfset[[1]]) == bondblock(sdfset[[3]])
view(sdfset[1:2])

bonds Bonds, charges and missing hydrogens

Description

Returns information about bonds, charges and missing hydrogens in SDF and SDFset objects.

Usage

bonds(x, type = "bonds")

Arguments

x SDF or SDFset containers

type If type="bonds" (default), a data.frame is returned with columns: atom
(atom labels), Nbondcount (observed bond count), Nbondrule (bond count
according to position in periodic table) and charge (charge of each atom).
If type="charge", all charged atoms are returned and if type="addNH",
the number of missing hydrogens are returned for each molecule.

Details

It is used by many other functions (e.g. MW, MF, atomcount, atomcuntMA and plot) to correct
for missing hydrogens that are often not specified in SD files.

20 cid

Value

If x is of class SDF, then a single data.frame or vector is returned. If x is of class SDFset,
then a list of data.frames or vecotors is returned that has the same length and order as x.

Author(s)

Thomas Girke

References

...

See Also

Functions: conMA

Class: SDF and SDFset

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Returns data frames with bonds and charges
bonds(sdfset[1:2], type="bonds")

Returns charged atoms in each molecule
bonds(sdfset[1:2], type="charge")

Returns the number of missing hydrogens in each molecule
bonds(sdfset[1:2], type="addNH")

cid Return compound IDs

Description

Returns the compound identifiers from the ID slot of an SDFset object.

Usage

cid(x)

Arguments

x object of class SDFset or APset

Details

...

cluster.sizestat 21

Value

character vector

Author(s)

Thomas Girke

References

...

See Also

atomblock, atomcount, bondblock, datablock, header, sdfid

Examples

SDFset/APset instances
data(sdfsample)
sdfset <- sdfsample
apset <- sdf2ap(sdfset[1:4])

Extract compound IDs from SDFset/APset
cid(sdfset[1:4])
cid(apset[1:4])

Extract IDs defined in SD file
sdfid(sdfset[1:4])

Assigning compound IDs and keeping them unique
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids
cid(sdfset[1:4])

Replacement Method
cid(sdfset) <- as.character(1:100)

cluster.sizestat generate statistics on sizes of clusters

Description

’cluster.sizestat’ is used to do simple statistics on sizes of clusters generated by ’cmp.cluster’. It
will return a dataframe which maps a cluster size to the number of clusters with that size. It is often
used along with ’cluster.visualize’.

Usage

cluster.sizestat(cls, cluster.result=1)

22 cluster.sizestat

Arguments

cls The clustering result returned by ’cmp.cluster’

cluster.result
If multiple cutoff values are used in clustering process, this argument tells which
cutoff value is to be considered here.

Details

’cluster.sizestat’ depends on the format that is returned by ’cmp.cluster’ - it will treat the first column
as the indecies, and the second column as the cluster sizes of effective clustering. Because of this,
when multiple cutoffs are used when ’cmp.cluster’ is called, ’cluster.sizestat’ will only consider
the clustering result of the first cutoff. If you want to work on an alternative cutoff, you have to
manually reorder/remove columns.

Value

Returns a data frame of two columns.

cluster size This column lists cluster sizes

count This column lists number of clusters of a cluster size

Author(s)

Y. Eddie Cao

See Also

cmp.cluster, cluster.visualize

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)

Binning clustering using variable similarity cutoffs.
cluster <- cmp.cluster(db=apset, cutoff = c(0.65, 0.5))

Statistics on sizes of clusters
cluster.sizestat(cluster[,c(1,2,3)])
cluster.sizestat(cluster[,c(1,4,5)])

cluster.visualize 23

cluster.visualize visualize clustering result using multi-dimensional scaling

Description

’cluster.visualize’ takes clustering result returned by ’cmp.cluster’ and generate multi-dimensional
scaling plot for visualization purpose.

Usage

cluster.visualize(db, cls, size.cutoff, distmat=NULL, color.vector=NULL, non.interactive="", cluster.result=1, dimensions=2, quiet=FALSE, highlight.compounds=NULL, highlight.color=NULL, ...)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

cls The clustering result returned by ’cmp.cluster’.

size.cutoff The cutoff size for clusters considered in this visualization. Clusters of size
smaller than the cutoff will not be considered.

distmat A distance matrix that corresponds to the ’db’. If not provided, it will be com-
puted on-the-fly in an efficient manner.

color.vector Colors to be used in the plot. If the number of colors in the vector is not enough
for the plot, colors will be reused. If not provided, color will be generated and
randomly sampled from ’rainbow’.

non.interactive
If provided, will enable the non-interactive mode, and the plot will be in an eps
file named after this value.

cluster.result
Used to select the clustering result if multiple clustering results are present in
’cls’.

dimensions Dimensionality to be used in visualization. See details.

quiet Whether to supress the progress bar.
highlight.compounds

A vector of compound IDs, corresponding to compounds to be highlighted in
the plot. A highlighted compound is represented as a filled circle.

highlight.color
Color used for highlighted compounds. If not set, a highlighted compounds will
have the same color as that used for other compounds in the same cluster.

... Further arguments will be passed to ’cmp.similarity’ to calculate similarity ma-
trix.

Details

’cluster.visualize’ internally calls the ’cmdscale’ function to generate a set of points in 2-D for the
compounds in selected clusters. Note that for compounds in clusters smaller than the cutoff size,
they will not be considered in this calculation - their entries in ’distmat’ will be discarded if ’distmat’
is provided, and distances involving them will not be computed if ’distmat’ is not provided.

To determine the value for ’size.cutoff’, you can use ’cluster.sizestat’ to see the size distribution of
clusters.

24 cluster.visualize

Because ’cmp.cluster’ function allows you to perform multiple clustering processes simultaneously
with different cutoff values, the ’cls’ parameter may point to a data frame containing multiple
clustering results. The user can use ’cluster.result’ to specify which result to use. By default, this
is set to 1, and the first clustering result will be used in visualization. Whatever the value is, in
interactive mode (described below), all clustering result will be displayed when a compound is
selected in the interactive plot.

If the colors provided in ’color.vector’ are not enough to distinguish clusters by colors, the function
will silently reuse the colors, resulting multiple clusters colored in the same color. We suggest you
use ’cluster.sizestat’ to see how many clusters will be selected using your ’size.cutoff’, or simply
provide no ’color.vector’.

If ’non.interative’ is not set, the final plot is interactive. You will be able to select points by clicking
them. When you click on any point, information about the compound represented by that point will
be displayed. This includes the cluster ID, cluster size, compound index in the SDF and compound
name if any. You can then perform another selection. To exit this process, right click on X11 device
or press ESC in non-X11 device (Quartz and Windows).

By default, ’dimensions’ is set to 2, and the built-in ’plot’ function will be used for plotting. If you
need to do 3-Dimensional plotting, set ’dimensions’ to 3, and pass the returned value to 3D plot
utilities, such as ’scatterplot3d’ or ’rggobi’. This package does not perform 3D plot on its own.

Value

This function returns a data frame of MDS coordinates and clustering result. This value can be
passed to 3D plot utilities such as ’scatterplot3d’ and ’rggobi’.

The last column of the output gives whether the compounds have been clicked in the interactive
mode.

Author(s)

Y. Eddie Cao

See Also

cmp.parse, cmp.cluster, cluster.sizestat

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

cluster db with 2 cutoffs
clusters <- cmp.cluster(db, cutoff=c(0.5, 0.4))

Return size stats
sizestat <- cluster.sizestat(clusters)

Visualize results, using a cutoff of 3, write to file 'test.eps'
coord <- cluster.visualize(db, clusters, 2, non.interactive="test.eps")

cmp.cluster 25

Not run:
visualize it in interactive mode, using a cutoff of 3 and the 2nd clustering result
coord <- cluster.visualize(db, clusters, cluster.result=2, 3)

3D visualization with scatterplot3d
coord <- cluster.visualize(db, clusters, 3, dimensions=3)
library(scatterplot3d)
scatterplot3d(coord)

End(Not run)

cmp.cluster cluster compounds using a descriptor database

Description

’cmp.cluster’ uses compound descriptors in a database and clusters these compounds based on their
pairwise distances. ’cmp.cluster’ uses single linkage to measure distance between clusters when it
merges clusters. ’cmp.cluster’ accepts both a single cutoff and a cutoff vector. By using a cutoff
vector, it can generate the same result as hierachical clustering.

Usage

cmp.cluster(db, cutoff, is.similarity = TRUE, save.distances = FALSE,
use.distances = NULL, quiet = FALSE, ...)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

cutoff The clustering cutoff. Can be a single value or a vector. The cutoff gives the
maximum distance between two compounds in order to group them in the same
clsuter.

is.similarity
Set when the cutoff supplied is a similarity cutoff. This cutoff is the mimumum
similarity value between two compounds such that they will be grouped in the
same cluster.

save.distances
whether to save distance for future clustering. See details below.

use.distances
Supply pre-computed distance matrix.

quiet Whether to supress the progress information.

... Further arguments to be passed to ’cmp.similarity’ to calculate similarities if
necessary.

26 cmp.cluster

Details

’cmp.cluster’ will compute distance on the fly if ’use.distances’ is not set. Furthermore, if ’save.distances’
is not set, the distance will never be stored and distance between any two compounds is guaranteed
not to be computed twice. Using this method, ’cmp.cluster’ can deal with large database, when
a distance matrix in memory is not feasible. The speed of this cluster function should be slowed
because of using this transient distance value.

When ’save.distances’ is set, ’cmp.cluster’ will be forced to compute the distance matrix and save
it in memory before doing clustering. This is useful when you need to do further clustering in the
future and do not want the distance to be re-computed then. Set ’save.distances’ to TRUE if you
only want to force the clustering to use this 2-step approach; otherwise, set it to the filename under
which you want the distance matrix to be saved. After you save it, when you need to reuse the
distance matrix, you can ’load’ it, and supply to ’cmp.cluster’ via the ’use.distances’ argument.

’cmp.cluster’ supports vector of cutoffs. When you have multiple cutoffs, ’cmp.cluster’ still guaran-
tees that pairwise distances will never be recomputed, and no copy of distances is kept in memory.
It is guaranteed to be as fast as calling ’cmp.cluster’ with a single cutoff that results in the longest
processing time, plus some small overhead linear in that processing time.

Value

Returns a data frame. Besides a variable giving compound ID, each of the other variables in the
data frame will either give the cluster IDs of compounds under some clustering cutoff, or the size
of clusters that the compounds belong to. When N cutoffs are given, in total 2*N+1 variables will
be generated, with N of them giving the cluster ID of each compound under each of the N cutoffs,
and the other N of them giving the cluster size under each of the N cutoffs. The rows are sorted by
the cluster sizes.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.similarity

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

cluster using multiple cutoffs
clusters <- cmp.cluster(db, cutoff=c(0.5, 0.85))

or save the distance before clustering:
clusters <- cmp.cluster(db, cutoff=0.65, save.distances="distmat.rda")
later, you can load the matrix and pass it to do clustering. Load will load
the variable 'distmat' that contains the distance matrix
load("distmat.rda")

cmp.duplicated 27

clusters <- cmp.cluster(db, cutoff=0.60, use.distances=distmat)

cmp.duplicated quickly detect compound duplication in a descriptor database

Description

’cmp.duplicated’ detects duplicated compounds from a descriptor database generated by ’cmp.parse’.
Two compounds are said to duplicate each other when their descriptors are the same.

Usage

cmp.duplicated(db, sort = FALSE, type=1)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

sort Whether to sort the descriptors for a compound. See details.

type Returns results as vector (type=1) or data frame (type=2).

Details

’cmp.duplicated’ will take the descriptors in the descriptor database, concatenate all descriptors for
the same compound into a string, and use this string as the identification of a compound. If two
compounds share the same identification string, they are said to duplicate each other.

’cmp.duplicated’ assume the the database passed in as argument to follow the format generated by
’cmp.parse’. That is, ’db’ is a list, ’db$descdb’ is a list, and each entry of ’db$descdb’ is an array of
numeric values that give descriptors for one compound.

By default, ’cmp.duplicated’ will assume the descriptors for a compound is already sorted. That is
each entry in ’db\$descdb’ is a sorted array. This is true for database generated by ’cmp.parse’. If
you generate the database using some other tools, you might want to enable sorting.

Value

Returns a logic array, telling whether a compound in the database is a duplication of a compound
appearing before this one. For example, if the i-th element of the array is TRUE, it means that the
i-th compound in the database is a duplication of a compound listed before this compound in the
database.

The returned array can be used to remove duplication. Simply use it to index the descriptor database.

If you are interested in what compound is duplicated, you can do a search in the database with cutoff
set to 1.

Author(s)

Y. Eddie Cao

See Also

cmp.parse, cmp.search

28 cmp.parse

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

Manually create a duplication (here compound 1 and 10)
db[10] <- db[1]

Find duplication
dup <- cmp.duplicated(db)
dup
cid(db[dup])

Remove all duplications
db <- db[!dup]

cmp.parse Parse an SDF file and compute descriptors for all compounds

Description

’cmp.parse’ will take a SDF file, parse all the compounds encoded, compute their atom-pair descrip-
tors, and return the descriptors as a list. The list contains two names, ’descdb’ and ’cids’. ’descdb’
is a vector of descriptors, and ’cids’ is a list of names of compounds found in the SDF file. The
returned list is usually used to a database, against which similarity search can be performed using
the ’search’ function. These two functions will parse all compounds in the SDF file. To parse a
single compound, use ’cmp.parse1’ instead.

Usage

cmp.parse(filename, quiet=FALSE, type="normal", dbname="")

Arguments

filename The file name of the SDF file

quiet Whether to silent the output of progress information

type Database type. Use the default value, or set to ’file-backed’ when the library is
large. See below.

dbname Datbase name. Only used when the type is set to ’file-backed’.

Details

The ’filename’ can be a local file or an URL. It is interactive, and will display the parsing progress.
Since the parsing will also compute of atom-pair descriptors, it is time consuming. You will be
reminded to save the parsing result for future use at the end of parsing.

cmp.parse 29

’type’ is either set to the default value ’normal’ or ’file-backed’. When set to ’file-backed’, the
parsing work will be delegated to a separate package called ’ChemmineRpp’, and the database will
be stored in a file instead of in the primary memory. Therefore, ’file-backed’ mode can handle
larger compound libraries. In ’file-backed’ mode, ’dbname’ will be used to name the database file.
A suffix ’.cdb’ will be appended to the given name.

The type of the database is transparent to other part of the package. For example, calling ’cmp.search’
against a database in ’file-backed’ mode will cause the package to load the descriptors from the
database file progressively.

Value

Return a list that can be used as the database against which similarity search can be performed. The
’search’ and ’cmp.cluster’ functions both expect a database returned by ’cmp.parse’.

descdb A vector containing the descriptors for all the compounds.

cids Compound ID information found in the SDF file. It is the first line of SDF of a
compound.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse1, cmp.search, cmp.cluster, cmp.similarity

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset
(optinally) save the db for future use
save(db, file="db.rda", compress=TRUE)
...
later, in a separate session, you can load it back:
load("db.rda")

30 cmp.parse1

cmp.parse1 Parsing an SDF file and calculate the descriptor for one compound

Description

Read SDF information from an SDF file or connection, parse the first compound, and calculate
the descriptor for that compound. The returned descriptor can be added to database returned
by ’cmp.parse’ or be used as the query structure when calling ’search’. This function will only
parse one compound and return only the descriptor. To parse all compounds in an SDF file, use
’cmp.parse’.

Usage

cmp.parse1(filename)

Arguments

filename The file name of the SDF file or a URL or a connection.

Details

’cmp.parse1’ can take a file name or a URL or a connection. When a connection is used, the current
line must be the first line of SDF of the compound to be parsed. ’cmp.parse1’ will skip the header
and parse from the 4th line. Therefore, the compound ID information will be skipped. After the
parsing is done, if ’filename’ is a connection, it will then point to the line after the connection table
of SDF. You can use some other procedure to parse the annotation block.

Value

Return the descriptor, which is encoded as a vector.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse, cmp.search, cmp.cluster, cmp.similarity

Examples

load an SDF file from web and parse it
Not run: structure <- cmp.parse1("http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf")

cmp.search 31

cmp.search Search a descriptor database for compounds similar to query com-
pound

Description

Given descriptor of a query compound and a database of compound descriptors, search for com-
pounds that are similar to the query compound. User can limit the output by supplying a cutoff
similarity score or a cutoff that limits the number of returned compounds. The function can also
return the scores together with the compounds.

Usage

cmp.search(db, query, type=1, cutoff = 0.5, return.score = FALSE, quiet = FALSE,
mode = 1, visualize=FALSE, visualize.browse=TRUE, visualize.query=NULL)

Arguments

db The compound descriptor database returned by ’cmp.parse’.

query The query descriptor, which is usually returned by ’cmp.parse1’.

type Returns results in form of position indices (type=1), named vector with com-
pound IDs (type=2) or data frame (type=3).

cutoff The cutoff similarity (when cutoff <= 1) or the number of maximum compounds
to be returned (when cutoff > 1).

return.score Whether to return similarity scores. If set to TRUE, a data frame will be re-
turned; otherwise, only the compounds’ indices in the database will be returned
in the order of decreasing scores.

quiet Whether to disable progress information.

mode Mode used when computing similarity scores. This value is passed to ’cmp.similarity’.

visualize Whether to visualize the search result in a webpage.
visualize.browse

Whether to open the browser automatically if you choose to visualize the search
result.

visualize.query
Filename/URL or a character string containing the SDF of the query structure if
you also want to visualize the query in the search result visualization webpage.

Details

’cmp.search’ will go through all the compound descriptors in the database and calculate the simi-
larity between the query compound and compounds in the database. When cutoff similarity score
is set, compounds having a similarity score higher than the cutoff will be returned. When maxi-
mum number of compounds to return is set to N via ’cutoff’, the compounds having the highest N
similarity scores will be returned.

If ’visualize’ is set to a TRUE value, sdf.visualize will be called to send the search results
and the scores to ChemMine website. If ’visualize.browse’ is set to a TRUE value, the browser
will open to show the structures in the search result with their corresponding scores. Otherwise, a
URL pointing to that webpage will be printed. By default, ’visualize.query’ is not set, and the query

32 cmp.search

structure will not be uploaded. If you want that to be included in the visualization webpage as well,
you must set this argument to a character string containing the SDF of the query, or a filename
pointing to a file containing the SDF of the query. If the character string or the file containing
multiple SDFs, only the first will be considered as the SDF of the query.

Value

When ’return.score’ is set to FALSE, a vector of matching compounds’ indices in the database will
be returned. Otherwise, a data frame will be returned:

ids The indices of matching compounds in the database.

scores The similarity scores between the matching compounds and the query com-
pound

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.cluster, cmp.similarity, sdf.visualize

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset
query <- db[1]

Ooptinally, save the db for future use
save(db, file="db.rda", compress=TRUE)

Search for similar compounds using similarity cutoff
cmp.search(db, query, cutoff=0.2, type=1) # returns index
cmp.search(db, query, cutoff=0.2, type=2) # returns named vector
cmp.search(db, query, cutoff=0.2, type=3) # returns data frame

you may visualize the search result in ChemMine
Not run: cmp.search(db, query, cutoff=10, visualize=TRUE, visualize.browse=FALSE, visualize.query=url)

in the next session, you may use load a saved db and do the search:
load("db.rda")
cmp.search(db, query, cutoff=3)
you may also use the loaded db to do clustering:

cmp.similarity 33

cmp.cluster(db, cutoff=0.35)

cmp.similarity Compute similarity between two compounds using their descriptors

Description

Given descriptors for two compounds, ’cmp.similarity’ returns the similarity measure between the
two compounds.

Usage

cmp.similarity(a, b, mode = 1, worst = 0)

Arguments

a Descriptor of the first compound.

b Descriptor of the second compound.

mode Mode used when computing the distance. See details below.

worst The worst value you are expecting. If ’cmp.similarity’ finds the upper bound of
similarity is worse than it, it will return a 0 and potentially save some computa-
tion.

Details

’cmp.similarity’ uses descriptor information generated by ’cmp.parse’ and ’cmp.parse1’. Basically,
a descriptor is a vector of numbers. The vector actually reprsents the set of descriptors of structural
fragment. Similarity measurement uses Tanimoto coefficient.

’cmp.similarity’ supports 3 different modes. In mode 1, normal Tanimoto coefficient is used. In
mode 2, it uses the size of descriptor intersection over the size of the smaller descriptor, mainly to
deal with compounds that vary a lot in size. In mode 3, it is similar to mode 2, except that it raises
the similarity to the power 3 to penalize small values. When mode is 0, ’cmp.similarity’ will select
mode 1 or mode 3, based on the size differences between the two descriptors.

When ’cmp.similarity’ is used in searching compounds with a threshold similarity value, or in
clustering with a cutoff distance, the threshold similarity and cutoff distance can be used to decide a
’worse’ value. ’cmp.similarity’ can compute an upper bound of similarity easier, and by comparing
this upper bound to the ’worst’ value, it can potentially skip the real computation if it finds the
similarity will be below the ’worst’ value and will be useless to the caller.

Value

Return a numeric value between 0 and 1 which gives the similarity between the two compounds.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

34 conMA

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

Peter Willett (1998). "Chemical Similarity Searching", in J. Chem. Inf. Comput. Sci.

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.cluster

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)

Compute similarities among two compounds
cmp.similarity(apset[1], apset[2])

Search apset database with a query compound
cmp.search(apset, apset[1], type=3, cutoff = 0.3)

conMA Bond Matrices

Description

Creates a bond matrix from SDF and SDFset objects. The matrix contains the atom labels in the
row and column titles and the bond types are given in the data part as follows: 0 is no connection,
1 is a single bond, 2 is a double bond and 3 is a triple bond.

Usage

conMA(x, exclude = "none")

Arguments

x SDF or SDFset containers

exclude if exclude="none", then all atoms will be considered in the resulting con-
nection table; if exclude=c("H"), then the H atoms will be excluded. Any
number of atom labels to be excluded can be passed on to this argument in form
of a character vector.

Details

...

datablock 35

Value

If x is of class SDF, then a single bond matrix is returned. If x is of class SDFset, then a list
of matrices is returned that has the same length as x.

Author(s)

Thomas Girke

References

...

See Also

Functions: bonds

Class: SDF and SDFset

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Create bond matrix for first two molecules in sdfset
conMA(sdfset[1:2], exclude=c("H"))

Return bond matrix for first molecule and plot its structure with atom numbering
conMA(sdfset[[1]], exclude=c("H"))
plot(sdfset[1], atomnum = TRUE, noHbonds=FALSE , no_print_atoms = "", atomcex=0.8)

Return number of non-H bonds for each atom
rowSums(conMA(sdfset[[1]], exclude=c("H")))

datablock Return data block

Description

Returns data block(s) from an object of class SDF or SDFset.

Usage

datablock(x)

datablocktag(x, tag)

Arguments

x object of class SDF or SDFset

tag numeric position (index) or character name of entry in data block vector

36 datablock2ma

Details

...

Value

named character vector if SDF is provided or list of named character vectors if SDFset
is provided

Author(s)

Thomas Girke

References

...

See Also

atomblock, atomcount, bondblock, header, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract data block
datablock(sdf)
datablock(sdfset[1:4])
datablocktag(sdfset, tag="PUBCHEM_OPENEYE_CAN_SMILES")

Replacement methods
sdfset[[1]][[1]][1] <- "test"
sdfset[[1]]
datablock(sdfset)[1] <- datablock(sdfset[2])
view(sdfset[1:2])

Example for injecting a custom matrix/data frame into the data block of an
SDFset and then writing it to an SD file
props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props
view(sdfset[1:4])
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)

datablock2ma SDF data blocks to matrix

Description

Convert data blocks in SDFset to character matrix with datablock2ma, then store its numeric
columns as numeric matrix and its character columns as character matrix.

datablock2ma 37

Usage

datablock2ma(datablocklist = datablock(sdfset), cleanup = " \\(.*", ...)

splitNumChar(blockmatrix = blockmatrix)

Arguments

datablocklist
list of data block vectors; can be created with datablock(sdfset)

blockmatrix matrix returned by datablock2ma

cleanup character pattern to be used to clean up the name fields of the data block
vectors; the exact pattern matches are replaced by nothing (deleted).

... option to pass on additional arguments

Details

...

Value

datablock2ma character matrix

splitNumChar list with two components, a numeric matrix and a character matrix

Author(s)

Thomas Girke

References

...

See Also

Classes: SDFset

Examples

SDFset instance
data(sdfsample)
sdfset <- sdfsample

Convert data block to matrix
blockmatrix <- datablock2ma(datablocklist=datablock(sdfset))
blockmatrix[1:4, 1:4]

Split matrix to numeric matrix and character matrix
numchar <- splitNumChar(blockmatrix=blockmatrix)
names(numchar)
numchar[[1]][1:4,]
numchar[[2]][1:4,]

38 db.explain

db.explain Explain an atom-pair descriptor or an array of atom-pair descriptors

Description

’db.explain’ will take an atom-pair descriptor in numeric or a set of such descriptors, and interpret
what they represent in a more human readable way.

Usage

db.explain(desc)

Arguments

desc The descriptor or the array/vector of descriptors

Details

’desc’ can be a single numeric giving a single descriptor or can be any container data type, such as
vector or array, such that ’length(desc)’ returns 2 or larger.

Value

Return a character vector describing the descriptors.

See Also

cmp.parse

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

Return atom pairs of first compound in human readable format
db.explain(db[1])

db.subset 39

db.subset Subset a descriptor database and return a sub-database for the se-
lected

Description

’db.subset’ will take a descriptor database generated by ’cmp.parse’ and an array of indecies, and
return a new database for compounds corresponding to these indecies. The returned value is a
descriptor database as returned by the cmp.parse function.

Usage

db.subset(db, cmps)

Arguments

db The database generated by ’cmp.parse’

cmps An array of indecies that correspond to a set of selected compounds from the
database

Details

’db.subset’ creates a sub-database from ’db’ by only including infomration that is relevant to com-
pounds indexed by ’cmps’.

Value

Return a descriptor database for the selected compounds. The format of the database is compatible
with the one returned by cmp.parse.

See Also

cmp.parse, sdf.subset

Examples

Note: this functionality has become obsolete since the introduction of the
'apset' S4 class.

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset
olddb <- apset2descdb(db)

Create a sub-database for the 1st and 2nd compound in that SDF
db_sub <- db.subset(olddb, c(1, 2))

40 fp2bit

fp2bit Convert base 64 fingerprints to binary

Description

The function converts the base 64 encoded PubChem fingerprints to a binary matrix or a character
vector. If applied to a SDFset object, then its data block needs to contain the PubChem fingerprint
information.

Usage

fp2bit(x, type = 2, fptag = "PUBCHEM_CACTVS_SUBSKEYS")

Arguments

x Object of class SDFset or matrix

type If set to 1, the results are returned as binary matrix. If set to 2 (default), the
results are returned as character strings in a named vector.

fptag Name tag in SDF data block where the PubChem fingerprints are stored. Default
is set to "PUBCHEM_CACTVS_SUBSKEYS".

Details

...

Value

Returns results as binary matrix when type=2 or as character strings stored in a named
vector when type=1.

Author(s)

Thomas Girke

References

See PubChem fingerprint specification at: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

See Also

Functions: fpSim

Examples

Load PubChem SDFset sample
data(sdfsample); sdfset <- sdfsample
cid(sdfset) <- sdfid(sdfset)

Convert base 64 encoded fingerprints to character vector or binary matrix
fpset <- fp2bit(x=sdfset, type=1)
fpset <- fp2bit(x=sdfset, type=2)

fpSim 41

Pairwise compound structure comparisons
fpSim(x=fpset[1,], y=fpset[2,])

Structure similarity searching: x is query and y is fingerprint database
fpSim(x=fpset[1,], y=fpset)

Compute fingerprint based Tanimoto similarity matrix
simMA <- sapply(rownames(fpset), function(x) fpSim(x=fpset[x,], fpset))

Hierarchical clustering with simMA as input
hc <- hclust(as.dist(simMA), method="single")

Plot hierarchical clustering tree
plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

fpSim PubChem Fingerprint Search

Description

Function to use PubChem fingerprints for structure similarity comparisons, searching and cluster-
ing.

Usage

fpSim(x, y)

Arguments

x vector containing binary fingerprint data. Needs to have the same length as y
(vector or matrix row).

y vector or matrix containing binary fingerprint data.

Details

The function computes the Tanimoto coefficients for pairwise comparisons of binary fingerprints.
The coefficient is defined as c/(a+b+c), which is the proportion of the "on-bits" shared among the
fingerprints of two compounds divided by their union. The variable c is the number of "on-bits"
common in both compounds, while a and b are the number of "on-bits" that are unique in one or the
other compound, respectively.

Value

Returns numeric vector with Tanimoto coefficients as values and compound identifiers as
names.

Note

Limitation: PubChem fingerprints need to be provided, such as in PubChem’s SD files.

Author(s)

Thomas Girke

42 getIds

References

Tanimoto similarity coefficient: Tanimoto TT (1957) IBM Internal Report 17th Nov see also Jaccard
P (1901) Bulletin del la Societe Vaudoisedes Sciences Naturelles 37, 241-272.

PubChem fingerprint specification: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

See Also

Functions: fp2bit

Examples

Load PubChem SDFset sample
data(sdfsample); sdfset <- sdfsample
cid(sdfset) <- sdfid(sdfset)

Convert base 64 encoded fingerprints to character vector or binary matrix
fpset <- fp2bit(x=sdfset, type=1)
fpset <- fp2bit(x=sdfset, type=2)

Pairwise compound structure comparisons
fpSim(x=fpset[1,], y=fpset[2,])

Structure similarity searching: x is query and y is fingerprint database
fpSim(x=fpset[1,], y=fpset)

Compute fingerprint-based Tanimoto similarity matrix
simMA <- sapply(rownames(fpset), function(x) fpSim(x=fpset[x,], fpset))

Hierarchical clustering with simMA as input
hc <- hclust(as.dist(simMA), method="single")

Plot hierarchical clustering tree
plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

getIds Import Compounds from PubChem

Description

Accepts one or more PubChem compound ids and downloads the corresponding compounds from
PubChem Power User Gateway (PUG) returning results in an SDFset container. The ChemMine
Tools web service is used as an intermediate, to translate queries from plain HTTP POST to a PUG
SOAP query.

Usage

getIds(cids)

Arguments

cids A numeric object which contains one or more PubChem cids

grepSDFset 43

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html

Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

Examples

Not run:
fetch 2 compounds from PubChem
compounds <- getIds(c(111,123))
End(Not run)

grepSDFset String search in ’SDFset’

Description

Convenience grep function for string searching in SDFset containers.

Usage

grepSDFset(pattern, x, field = "datablock", mode = "subset", ignore.case = TRUE, ...)

Arguments

pattern search pattern

x SDFset

field delimits search to specific section in SDF; can be header, atomblock, bondblock
or datablock

mode if mode = "index", then the match positions are returned as vector; if mode
= "subset", a listwith SDF components is returned where every entry has
at least one query match

ignore.case TRUE turns off case sensitivity

... option to pass on additional arguments

Details

...

44 groups

Value

numeric index vector where the name field contains the component positions in the SDFset
and the values the row positions in each sub-component.

list if mode = "subset"

Author(s)

Thomas Girke

References

...

See Also

Class: SDFset

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

String Searching in SDFset
q <- grepSDFset("65000", sdfset, field="datablock", mode="subset")
as(q, "SDFset")
grepSDFset("65000", sdfset, field="datablock", mode="index")

groups Enumeration of Functional Groups and Atom Neighbors

Description

Returns frequency information of functional groups in molecules provided as SDF or SDFset
objects. Alternatively, the function can return for each atom its atom/bond neighbor information.

Usage

groups(x, groups = "fctgroup", type)

Arguments

x SDF or SDFset containers

groups if groups="fctgroup", frequencies of functional groups are returned; if
groups="neighbors", atom/bond neighbor information is returned.

type if type="all", then the complete neighbor information is generated for each
atom in a molecule; if type="count", the neighbors are enumerated in a
list and if type="countMA", then the counts of atom neighbors or functional
groups are returned in a frequency matrix.

header 45

Details

At this point this function is in an experimental stage.

Value

...

Author(s)

Thomas Girke

References

...

See Also

...

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Enumerate functional groups
groups(sdfset[1:20], groups="fctgroup", type="countMA")

Report atom/bond neighbors
groups(sdfset[1:4], groups="neighbors", type="countMA")
groups(sdfset[1:4], groups="neighbors", type="count")
groups(sdfset[1:4], groups="neighbors", type="all")

header Return header block

Description

Returns header block(s) from an object of class SDF or SDFset.

Usage

header(x)

Arguments

x object of class SDF or SDFset

Details

...

46 makeUnique

Value

named character vector if SDF is provided or list of named character vectors if SDFset
is provided

Author(s)

Thomas Girke

References

...

See Also

atomblock, atomcount, bondblock, datablock, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract header block
header(sdf)
header(sdfset[1:4])

Replacement methods
sdfset[[1]][[1]][1] <- "test"
sdfset[[1]]
header(sdfset)[1] <- header(sdfset[2])
view(sdfset[1:2])

makeUnique Uniquify CMP names

Description

Creates unique CMP names by appending a counter to each duplicatation set. The function can be
used for any character vector.

Usage

makeUnique(x, silent = FALSE)

Arguments

x character vector

silent silent = TRUE suppresses message about duplicate count

Details

The function is important to maintain unique compound names in the ID slot of SDFset containers.

plotStruc 47

Value

character of same length as x but without duplications

Author(s)

Thomas Girke

References

...

See Also

Functions: cid, sdfid

Examples

SDFset instance
data(sdfsample)
sdfset <- sdfsample

Create unique compound IDs
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids
cid(sdfset[1:4])

plotStruc Plot compound structures

Description

Plots compound structure(s) for molecules stored in SDF and SDFset containers.

Usage

Convenience plot method
plot(x, griddim, print_cid=cid(x), print=TRUE, ...)

Less important for user
plotStruc(sdf, atomcex = 1.2, atomnum = FALSE, no_print_atoms = c("C"),

noHbonds = TRUE, bondspacer = 0.12, ...)

Arguments

sdf Object of class SDF

atomcex Font size for atom labels

atomnum If TRUE, then the atom numbers are included in the plot. They are the position
numbers of each atom in the atom block of an SDF.

no_print_atoms
Excludes specified atoms from being plotted.

48 plotStruc

noHbonds If TRUE, then the C-hydrogens and their bonds - explicitly defined in an SDF -
are excluded from the plot.

bondspacer Numeric value specifying the plotting distance for double/triple bonds.
... Arguments to be passed to/from other methods.

Details

The function plotStruc depicts a single 2D compound structure based on the XY-coordinates
specified in the atom block of an SDF. The generic method plot can be used as a convenient
shorthand to plot one or many structures at once. Both functions depend on the availability of the
XY-coordinates in the source SD file and only 2D (not 3D) representations are plotted correctly.
Additional arguments that can only be passed on to the plot function when supplied with an
SDFset object:
griddim: numeric vector of length two to define the dimensions for arranging several structures
in one plot.
print_cid: character vector for printing custom compound labels. Default is print_cid=cid(sdfset).
print: if print=TRUE, then a summary of the SDF content for each supplied compound is
printed to the screen. This behavior is turned off with print=TRUE.

Value

Prints summary of SDF/SDFset to screen and plots their structures to graphics device.

Note

The compound depictions created by this function are not as pretty as the structure representations
generated with the sdf.visualize function. This will be improved in the future.

Author(s)

Thomas Girke

References

...

See Also

sdf.visualize

Examples

Import SDFset sample set
data(sdfsample)
(sdfset <- sdfsample)

Plot single compound structure
plotStruc(sdfset[[1]])

Plot several compounds structures
plot(sdfset[1:4])

Customize plot
plot(sdfset[1:4], griddim=c(2,2), print_cid=letters[1:4], print=FALSE, noHbonds=FALSE)

pubchemFPencoding 49

pubchemFPencoding Enncoding of PubChem Fingerprints

Description

Data frame with bit positions and substructure specifications.

Usage

data(pubchemFPencoding)

Format

The format is a data frame with 881 rows and 2 columns.

Source

From: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

References

See: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

Examples

data(pubchemFPencoding)
pubchemFPencoding[1:4,]

read.SDFset SD file to ’SDFset’

Description

Imports one or many molecules from an SD/MOL file and stores it in an SDFset container.

Usage

read.SDFset(sdfstr = sdfstr, ...)

Arguments

sdfstr path/name to an SD file; alternatively an SDFstr object can be provided

... option to pass on additional arguments

Details

...

Value

SDFset for details see ?"SDFset-class"

50 read.SDFstr

Author(s)

Thomas Girke

References

SDF format defintion: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: read.SDFstr

Examples

Write instance of SDFset class to SD file
data(sdfsample); sdfset <- sdfsample
write.SDF(sdfset[1:4], file="sub.sdf")

Import SD file
read.SDFset("sub.sdf")

Pass on SDFstr object
sdfstr <- as(sdfset, "SDFstr")
read.SDFset(sdfstr)

read.SDFstr SD file to ’SDFstr’

Description

Imports one or many molecules from an SD/MOL file and stores it in an SDFstr container.

Usage

read.SDFstr(sdfstr)

Arguments

sdfstr path/name to an SD file

Details

...

Value

SDFstr for details see ?"SDFstr-class"

Author(s)

Thomas Girke

rings 51

References

SDF format defintion: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: read.SDFset

Examples

Write instance of SDFstr class to SD file
data(sdfsample); sdfset <- sdfsample
sdfstr <- as(sdfset, "SDFstr")
write.SDF(sdfset[1:4], file="sub.sdf")

Import SD file
read.SDFstr("sub.sdf")

Pass on SDFstr object
sdfstr <- as(sdfset, "SDFstr")
read.SDFset(sdfstr)

rings Ring and Aromaticity Perception

Description

Identifies all possible rings in molecules using the exhaustive ring perception algorithm from Hanser
et al (1996). In addition, the function can return all smallest possible rings as well as aromaticity
information for each ring.

Usage

rings(x, upper = Inf, type = "all", arom = FALSE, inner = FALSE)

Arguments

x SDF or SDFset containers

upper allows to specify an upper length limit for ring predictions. The default setting
upper=Inf will return all possible rings. Smaller length limits will reduce the
search space resulting in shortened compute times.

type if type="all", the function returns each ring of a compound as character
vector of atom symbols that are numbered by their position in the atom block of
an SDF/SDFset object. Note: the example below shows how to plot structures
with the same numbering information for visual inspection. If type="arom",
only aromatic rings are returned, while type="count" returns the ring and/or
aromaticity counts for each compound in a matrix.

arom if arom="TRUE", ring aromaticity information will be computed. If type="all",
the output is a logical vector where ’TRUE’ values indicate aromatic rings in the
associated ring list. If type="arom", then the function returns only aromatic
rings. A ring is considered aromatic if it meets the following requirements: (i)
all atoms in the ring need to be sp2 hybridized. This means each atom has to

52 rings

have a double bond or at least one lone electron pair and it needs to be attached
to an sp2 hybridized atom. (ii) In addition, Hueckel’s rule ’4n + 2’ needs to be
true, where ’n’ is either zero or any positive integer.

inner if inner="TRUE", only inner (smallest possible) rings will be returned. They
are identified by first computing all possible rings and then selecting only the
inner rings. Note: this requires the setting upper=Inf. If only rings below a
certain size limit (e.g. 6) are of interest, then it will be more time efficient to set
this limmit under the upper argument than identifying all smallest rings.

Details

...

Value

The settings type="all" and type="arom" return lists, and type="count" returns a
matrix.

Author(s)

Thomas Girke

References

Hanser, Jauffret and Kaufmann (1996) A New Algorithm for Exhaustive Ring Perception in a
Molecular Graph. Journal of Chemical Information and Computer Sciences, 36: 1146-1152. URL:
http://pubs.acs.org/doi/abs/10.1021/ci960322f

See Also

...

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Return all possible rings for a single compound
rings(sdfset[1], upper=Inf, type="all", arom=FALSE, inner=FALSE)
plot(sdfset[1], print=FALSE, atomnum=TRUE, no_print_atoms="H")

Return all possible rings for several compounds plus their
aromaticity information
rings(sdfset[1:4], upper=Inf, type="all", arom=TRUE, inner=FALSE)

Return rings with no more than 6 atoms
rings(sdfset[1:4], upper=6, type="all", arom=TRUE, inner=FALSE)

Return rings with no more than 6 atoms that are also armomatic
rings(sdfset[1:4], upper=6, type="arom", arom=TRUE, inner=FALSE)

Return shortest possible rings (no complex rings)
rings(sdfset[1:4], upper=Inf, type="all", arom=TRUE, inner=TRUE)

sdf.subset 53

Count shortest possible rings
rings(sdfset[1:4], upper=Inf, type="count", arom=TRUE, inner=TRUE)

sdf.subset Subset a SDF and return SDF segements for selected compounds

Description

’sdf.subset’ will take a descriptor database generated by ’cmp.parse’ and an array of indices, and
return an SDF string consisting of SDFs for compounds corresponding to that list of indices. The
returned value is a character string.

Usage

sdf.subset(db, cmps)

Arguments

db The database generated by ’cmp.parse’

cmps An array of indecies that correspond to a set of selected compounds from the
database

Details

’sdf.subset’ depends on information embedded in the descriptor database returned by ’cmp.parse’.
It also relies on the availability of the original SDF where the database has been generated from.
Basically, when ’cmp.parse’ parses the original SDF file, it will store the path of that SDF file as
well as offset information for SDF segment in that file. Therefore, if the SDF file has been changed
or deleted, ’sdf.subset’ cannot function properly.

The result SDF will also have names added to compounds if they are not present in the original
SDF.

Value

Return a character string whose content is the concatenation of SDFs for the selected compounds.

See Also

cmp.parse, sdf.visualize

Examples

Note: this functionality has become obsolete since the introduction of the
'SDFset' and 'apset' S4 classes.

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
select SDF for 1st and 2nd compound in that SDF
sdf_segments <- sdf.subset(db, c(1, 2))
now sdf_segments containt the 2 SDFs for those 2 compounds

54 sdf.visualize

sdf.visualize Subset a SDFset and visualize selected compounds in a webpage

Description

’sdf.visualize’ will take a descriptor database generated by ’cmp.parse’ and an array of indices,
send an SDF consisting structure information of compounds indexed by this array to ChemMine
(http://bioweb.ucr.edu/ChemMineV2), and open a webpage that shows the structures of
these compounds. It returns the URL of that page.

Usage

sdf.visualize(db, cmps, extra=NULL, reference.sdf=NULL, reference.note=NULL, browse=TRUE, quiet=TRUE)

Arguments

db The database generated by ’cmp.parse’

cmps A vector of indecies that correspond to a set of selected compounds from the
database

extra A vector or list of character strings or matrices or data frames, each entry of
which gives extra description on the compounds being visualized.

reference.sdf
A character string of SDF or a filename of an SDF file for the reference com-
pound.

reference.note
Note to be displayed with the reference compound.

browse Whether to open the webpage automatically after the upload is finished

quiet Whether to display the progress information

Details

’sdf.visualize’ uses sdf.subset to extract the SDF for the selected compounds. Therefore,
’sdf.visualize’ also depends on information embedded in the descriptor database returned by ’cmp.parse’.
It also relies on the availability of the original SDF file where the database has been generated from.
Basically, when ’cmp.parse’ parses the original SDF file, it will store the path of that SDF file as
well as offset information for SDF segment in that file. Therefore, if the SDF file has been changed
or deleted, ’sdf.visualize’ cannot function properly.

After extracting the SDF segments for the selected compounds, ’sdf.visualize’ will send the SDF to
ChemMine (http://bioweb.ucr.edu/ChemMineV2) using HTTP POST method. Chem-
Mine will generate the 2D images for the selected compounds and a webpage containing these
images as well as the SDFs. The URL is returned by ’sdf.visualize’. If ’browse’ is set to TRUE, the
URL will be opened by your default browser.

If the argument ’extra’ is given, it must be a vector or list of character strings or data frames or
matrices. The length of the vector or list must be the same as that of the indices. Each entry may be
named or not. Each entry of this vector is a character string giving extra description on a compound.
This vector will be sent to ChemMine, and the extra description for a compound will be listed at the
right hand side of the compound. Data frames or matrices will be formatted and displayed as they
would be formatted by the ’print’ function.

http://bioweb.ucr.edu/ChemMineV2
 http://bioweb.ucr.edu/ChemMineV2

sdf2ap 55

The ’reference.sdf’ argument is given when you want to upload an extra compound as a reference
compound. This compound will be displayed at the top of the visualization web page. This argu-
ment can be a character string of SDF(s), or it can be a filename or URL that points to an SDF file.
If the string or the file contains multiple SDFs, this function will use the first one.

If a reference compound is uploaded, note about this compound can be set via the ’reference.note’
argument. This note will be displayed next to the structure of the compound on the resulting web-
page.

Value

Returns the URL of the webpage containing all the SDFs and 2D images corresponding to the
selected compounds.

See Also

cmp.parse, sdf.subset, plotStruc

Examples

Load sample SD file
data(sdfsample)
sdfset <- sdfsample

Not run:
Plot structures using web service ChemMine Tools
sdf.visualize(sdfset[1:4])

Add extra annotation as vector
sdf.visualize(sdfset[1:4], extra=month.name[1:4])

Add extra annotation as matrix
extra <- apply(propma[1:4,], 1, function(x) data.frame(Property=colnames(propma), Value=x))
sdf.visualize(sdfset[1:4], extra=extra)

Add extra annotation as list
sdf.visualize(sdfset[1:4], extra=bondblock(sdfset[1:4]))

End(Not run)

sdf2ap Atom pair library

Description

Creates from a SDFset a searchable atom pair library that is stored in a container of class APset.

Usage

sdf2ap(sdfset)

Arguments

sdfset Objects of classes SDFset or SDF

56 sdf2ap

Details

...

Value

APset if input is SDFset

AP if input is SDF

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Related classes: SDF, SDFset, SDFstr, APset.

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

sdf2list 57

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

sdf2list ’SDF’ to ’list’

Description

Returns objects of class SDF as list.

Usage

sdf2list(x)

Arguments

x object of class SDF

Details

...

Value

list with following components:

character SDF header block

matrix SDF bond block

matrix SDF atom block

character SDF data block

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, SDFset2list, SDFset2SDF

Examples

Instance of SDF class
data(sdfsample); sdfset <- sdfsample
sdf <- sdfset[[1]]

Return as list
sdf2list(sdf)
as(sdf, "list") # similar result

58 sdf2smiles

sdf2smiles ’SDFset’ to ’character’ Convert ’SDFset’ to SMILES (’character’)

Description

Accepts one compound in an SDFset container and returns the corresponding SMILES string
(Simplified Molecular Input Line Entry Specification). The compound is submitted to the Chem-
Mine Tools web service for conversion with the Open Babel Open Source Chemistry Toolbox. If
the input object contains multiple items, only the first is converted.

Usage

sdf2smiles(sdf)

Arguments

sdf A SDFset object which contains one compound

Value

character for details see ?"character"

Author(s)

Tyler Backman

References

Chemmine web service: http://chemmine.ucr.edu

Open Babel: http://openbabel.org

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

Not run:
get a sample compound
data(sdfsample); sdfset <- sdfsample[1]
convert to smiles
smiles <- sdf2smiles(sdfset)
End(Not run)

sdf2str 59

sdf2str ’SDF’ to ’SDFstr’

Description

Converts SDF to SDFstr. Its main use is to facilitate the export to SD files. It contains optional
arguments to generate custom SDF output.

Usage

sdf2str(sdf, head, ab, bb, db, cid = NULL, sig = FALSE, ...)

Arguments

sdf object of class SDF

head optional character vector to supply custom header block

ab optional matrix to supply custom atom block

bb optional matrix to supply custom bond block

db optional character vector to supply custom data block

cid character can be provided to inject custom compound ID into header block

sig if = TRUE then the ChemmineR signature will be injected into the header
block for tracking purposes

... option to pass on additional arguments

Details

If the export function write.SDF is supplied with an SDFset object, then sdf2str is used
internally to customize the export of many molecules to a single SD file using the same optional
arguments.

Value

sdfstr SDF data of one molecule collapsed to character vector

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Coerce functions: sdfstr2list, sdf2str, SDFset2list, SDFset2SDF

Export function: write.SDF

60 sdfid

Examples

Instance of SDF class
data(sdfsample); sdfset <- sdfsample
sdf <- sdfset[[1]]

Customize SDF blocks for export to SD file
sdf2str(sdf=sdf, sig=TRUE, cid=TRUE) # uses default SDF components
sdf2str(sdf=sdf, head=letters[1:4], db=NULL) # uses custom components for header and datablock

The same arguments can be supplied to the write.SDF function for
batch export of custom SDFs
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE, db=NULL)

sdfid Return SDF compound IDs

Description

Returns the compound identifiers from the header block of SDF or SDFset objects.

Usage

sdfid(x, tag = 1)

Arguments

x object of class SDFset or SDF

tag values from 1-4 to extract different header block fields; SDF ID is in first one
(default)

Details

...

Value

character vector

Author(s)

Thomas Girke

References

...

See Also

atomblock, atomcount, bondblock, datablock, header, cid

sdfsample 61

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract IDs from header block
sdfid(sdf, tag=1)
sdfid(sdfset[1:4])

Extract compound IDs from ID slot in SDFset container
cid(sdfset[1:4])

Assigning compound IDs and keeping them unique
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids
cid(sdfset[1:4])

sdfsample SD file in ’SDFset’ object

Description

First 100 compounds from PubChem SD file: Compound_00650001_00675000.sdf.gz

Usage

data(sdfsample)

Format

Object of class sdfset

Details

Object stores 100 molecules from a sample SD file.

Source

ftp://ftp.ncbi.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_00650001_00675000.sdf.gz

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

Examples

data(sdfsample)
sdfset <- sdfsample
view(sdfset[1:4])

62 sdfstr2list

sdfstr2list ’SDFstr’ to ’list’

Description

Returns objects of class SDFstr as list.

Usage

sdfstr2list(x)

Arguments

x object of class SDFstr

Details

...

Value

list with many of the following components:

character SDF content of one molecule vectorized line by line

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdf2list, sdf2str, SDFset2list, SDFset2SDF

Examples

Instance of SDFstr class
data(sdfsample); sdfset <- sdfsample
sdfstr <- as(sdfset, "SDFstr")

Return as list
sdfstr2list(sdfstr)
as(sdfstr, "list") # similar result

searchSim 63

searchSim PubChem Similarity (Fingerprint) Search

Description

Accepts one SDFset container and performs a >0.95 similarity PubChem fingerprint search, re-
turning the hits in an SDFset container. The ChemMine Tools web service is used as an intermedi-
ate, to translate queries from plain HTTP POST to a PubChem Power User Gateway (PUG) query.
If the input object contains multiple items, only the first is used as a query.

Usage

searchSim(sdf)

Arguments

sdf A SDFset object which contains one compound

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html

Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

Not run:
get a sample compound
data(sdfsample); sdfset <- sdfsample[1]
search a compound on PubChem
compounds <- searchSim(sdfset)
End(Not run)

64 searchString

searchString PubChem Similarity (Fingerprint) SMILES Search

Description

Accepts one SMILES string (Simplified Molecular Input Line Entry Specification) and performs
a >0.95 similarity PubChem fingerprint search, returning the hits in an SDFset container. The
ChemMine Tools web service is used as an intermediate, to translate queries from plain HTTP
POST to a PubChem Power User Gateway (PUG) query.

Usage

searchString(smiles)

Arguments

smiles A character object which contains one SMILES string

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html

Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

Not run:
search a compound on PubChem
compounds <- searchString("CC(=O)OC1=CC=CC=C1C(=O)O")
End(Not run)

smiles2sdf 65

smiles2sdf Convert SMILES (’character’) to ’SDFset’

Description

Accepts one compound as a SMILES string (Simplified Molecular Input Line Entry Specification)
and returns it’s equivalent as an SDFset container. The compound is submitted to the ChemMine
Tools web service for conversion with the Open Babel Open Source Chemistry Toolbox.

Usage

smiles2sdf(smiles)

Arguments

smiles A character object which contains one SMILES string

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

Chemmine web service: http://chemmine.ucr.edu

Open Babel: http://openbabel.org

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

Not run:
convert to sdf
sdf <- smiles2sdf("CC(=O)OC1=CC=CC=C1C(=O)O\tname")
End(Not run)

validSDF Validity check of SDFset

Description

Performs validity check of SDFs stored in SDFset objects. Currently, the function tests whether
the atom block and the bond block in each SDF component of an SDFset have at least Nabcol
and Nbbcol columns (default is 3 for both). The function returns a logical vector with TRUE
values for valid compounds and FALSE values for invalid ones.

66 view

Usage

validSDF(x, Nabcol = 3, Nbbcol = 3, logic = "&")

Arguments

x x object of class SDFset

Nabcol minimum number of columns in atom block

Nbbcol minimum number of columns in bond block

logic logical connection (& or |) among Nabcol and Nbbcol cutoffs

Details

The function is important to remove invalid compounds from SDFset containers.

Value

logical vector of length x with TRUE for valid compounds and FALSE for invalid compounds.

Author(s)

Thomas Girke

References

...

See Also

Functions: read.SDFset

Examples

SDFset instance
data(sdfsample)
sdfset <- sdfsample

Detect and remove invalid SDFs in SDFset.
valid <- validSDF(sdfset)
which(!valid) # Returns index for invalid SDFs
sdfset <- sdfset[valid] # Returns only valid SDFs.

view Viewing of complex objects

Description

Convenience function for viewing the content of complex objects like SDFset and APset containers.
The function is a shorthand wrapper for as(sdfset, "SDF") and as(apset, "AP").

Usage

view(x)

write.SDF 67

Arguments

x object of class SDFset or APset

Details

...

Value

List populated with SDF and AP components.

Author(s)

Thomas Girke

References

...

See Also

Classes: SDF, SDFset, AP, APset

Examples

Viewing content of SDFset
data(sdfsample); sdfset <- sdfsample
view(sdfset[1:4])

Viewing content of APset
apset <- sdf2ap(sdfset[1:10])
view(apset)

write.SDF SDF export function

Description

Writes one or many molecules stored in a SDFset, SDFstr or SDF object to SD file.

Usage

write.SDF(sdf, file, cid = FALSE, ...)

Arguments

sdf object of class SDFset, SDFstr or SDF
file name of SD file to write to
cid if cid = TRUE and an SDFset object is provide as input, then the compound

IDs in the ID slot of the SDFset are used for compound naming
... the optional arguments of the sdf2str function can be provided here, in-

cluding head, ab, bb, db; details are provided in the help page for the
sdf2str function

68 write.SDF

Details

If the write.SDF function is supplied with an SDFset object, then it uses internally the sdf2str
function to allow customizing the resulting SD file. For this all optional arguments of the sdf2str
function can be passed on to write.SDF.

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import function: read.SDFset, read.SDFstr

Examples

Instance of SDFset class
data(sdfsample); sdfset <- sdfsample

Write objects of classes SDFset/SDFstr/SDF to file
write.SDF(sdfset[1:4], file="sub.sdf")

Example for writing customized SDFset to file containing
ChemmineR signature, IDs from SDFset and no data block
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE, db=NULL)

Example for injecting a custom matrix/data frame into the data block of an
SDFset and then writing it to an SD file
props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props
view(sdfset[1:4])
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)

Index

∗Topic aplot
plotStruc, 47

∗Topic classes
AP-class, 1
APset-class, 2
SDF-class, 4
SDFset-class, 7
SDFstr-class, 11

∗Topic datasets
apset, 13
atomprop, 18
pubchemFPencoding, 49
sdfsample, 61

∗Topic utilities
ap, 12
apset2descdb, 14
atomblock, 15
atomcount, 16
bondblock, 18
bonds, 19
cid, 20
cluster.sizestat, 21
cluster.visualize, 23
cmp.cluster, 25
cmp.duplicated, 27
cmp.parse, 28
cmp.parse1, 30
cmp.search, 31
cmp.similarity, 33
conMA, 34
datablock, 35
datablock2ma, 36
db.explain, 38
db.subset, 39
fp2bit, 40
fpSim, 41
getIds, 42
grepSDFset, 43
groups, 44
header, 45
makeUnique, 46
plotStruc, 47
read.SDFset, 49

read.SDFstr, 50
rings, 51
sdf.subset, 53
sdf.visualize, 54
sdf2ap, 55
SDF2apcmp, 6
sdf2list, 57
sdf2smiles, 58
sdf2str, 59
sdfid, 60
SDFset2list, 10
SDFset2SDF, 9
sdfstr2list, 62
searchSim, 63
searchString, 64
smiles2sdf, 65
validSDF, 65
view, 66
write.SDF, 67

[,APset-method (APset-class), 2
[,SDF-method (SDF-class), 4
[,SDFset-method (SDFset-class), 7
[,SDFstr-method (SDFstr-class), 11
[<-,APset-method (APset-class), 2
[<-,SDF-method (SDF-class), 4
[<-,SDFset-method (SDFset-class),

7
[<-,SDFstr-method (SDFstr-class),

11
[[,APset-method (APset-class), 2
[[,SDF-method (SDF-class), 4
[[,SDFset-method (SDFset-class), 7
[[,SDFstr-method (SDFstr-class),

11
[[<-,APset-method (APset-class), 2
[[<-,SDF-method (SDF-class), 4
[[<-,SDFset-method

(SDFset-class), 7
[[<-,SDFstr-method

(SDFstr-class), 11

ap, 12
ap,AP-method (AP-class), 1
ap,APset-method (APset-class), 2

69

70 INDEX

AP-class, 1
ap-methods (ap), 12
apset, 13
APset-class, 2
apset2descdb, 14
atomblock, 15
atomblock,SDF-method (SDF-class),

4
atomblock,SDFset-method

(SDFset-class), 7
atomblock-methods (atomblock), 15
atomblock<- (atomblock), 15
atomblock<-,SDFset-method

(SDFset-class), 7
atomcount, 16
atomcount,SDF-method (SDF-class),

4
atomcount,SDFset-method

(SDFset-class), 7
atomcountMA (atomcount), 16
atomprop, 18

bondblock, 18
bondblock,SDF-method (SDF-class),

4
bondblock,SDFset-method

(SDFset-class), 7
bondblock-methods (bondblock), 18
bondblock<- (bondblock), 18
bondblock<-,SDFset-method

(SDFset-class), 7
bonds, 19

c,APset-method (APset-class), 2
c,SDFset-method (SDFset-class), 7
cid, 20
cid,APset-method (APset-class), 2
cid,SDFset-method (SDFset-class),

7
cid<- (cid), 20
cid<-,APset-method (APset-class),

2
cid<-,SDFset-method

(SDFset-class), 7
cluster.sizestat, 21, 24
cluster.visualize, 22, 23
cmp.cluster, 22, 24, 25, 29, 30, 32, 34
cmp.duplicated, 27
cmp.parse, 24, 26, 27, 28, 30, 32, 34, 38,

39, 53, 55
cmp.parse1, 26, 29, 30, 32, 34
cmp.search, 26, 27, 29, 30, 31, 32, 34
cmp.similarity, 26, 29, 30, 32, 33

coerce,APset,AP-method
(APset-class), 2

coerce,APset,list-method
(APset-class), 2

coerce,character,SDF-method
(SDF-class), 4

coerce,character,SDFstr-method
(SDFstr-class), 11

coerce,list,APset-method
(APset-class), 2

coerce,list,SDF-method
(SDF-class), 4

coerce,list,SDFset-method
(SDFset-class), 7

coerce,list,SDFstr-method
(SDFstr-class), 11

coerce,SDF,character-method
(SDF-class), 4

coerce,SDF,list-method
(SDF-class), 4

coerce,SDF,SDFset-method
(SDF-class), 4

coerce,SDF,SDFstr-method
(SDF-class), 4

coerce,SDFset,list-method
(SDFset-class), 7

coerce,SDFset,SDF-method
(SDFset-class), 7

coerce,SDFset,SDFstr-method
(SDFset-class), 7

coerce,SDFstr,list-method
(SDFstr-class), 11

coerce,SDFstr,SDFset-method
(SDFstr-class), 11

conMA, 34

datablock, 35
datablock,SDF-method (SDF-class),

4
datablock,SDFset-method

(SDFset-class), 7
datablock-methods (datablock), 35
datablock2ma, 36
datablock<- (datablock), 35
datablock<-,SDFset-method

(SDFset-class), 7
datablocktag (datablock), 35
datablocktag,SDF-method

(SDF-class), 4
datablocktag,SDFset-method

(SDFset-class), 7
db.explain, 38
db.subset, 39

INDEX 71

fp2bit, 40
fpSim, 41

getIds, 42
grepSDFset, 43
groups, 44

header, 45
header,SDF-method (SDF-class), 4
header,SDFset-method

(SDFset-class), 7
header-methods (header), 45
header<- (header), 45
header<-,SDFset-method

(SDFset-class), 7

length,APset-method
(APset-class), 2

length,SDFset-method
(SDFset-class), 7

length,SDFstr-method
(SDFstr-class), 11

makeUnique, 46
MF (atomcount), 16
MW (atomcount), 16

plot (plotStruc), 47
plot,SDF-method (SDF-class), 4
plot,SDFset-method

(SDFset-class), 7
plotStruc, 47, 55
pubchemFPencoding, 49

read.SDFset, 49
read.SDFstr, 50
rings, 51

SDF-class, 4
sdf.subset, 39, 53, 54, 55
sdf.visualize, 31, 32, 53, 54
sdf2ap, 55
SDF2apcmp, 6
sdf2list, 57
sdf2list,SDF-method (SDF-class), 4
sdf2smiles, 58
sdf2str, 59
sdf2str,SDF-method (SDF-class), 4
sdf2str-methods (sdf2str), 59
sdfid, 60
sdfid,SDF-method (SDF-class), 4
sdfid,SDFset-method

(SDFset-class), 7
sdfsample, 61

SDFset-class, 7
SDFset2list, 10
SDFset2list,SDFset-method

(SDFset-class), 7
SDFset2list-methods

(SDFset2list), 10
SDFset2SDF, 9
SDFset2SDF,SDFset-method

(SDFset-class), 7
SDFset2SDF-methods (SDFset2SDF), 9
SDFset2SDF<- (SDFset2SDF), 9
SDFset2SDF<-,SDFset-method

(SDFset-class), 7
SDFstr-class, 11
sdfstr2list, 62
sdfstr2list,SDFstr-method

(SDFstr-class), 11
sdfstr2list-methods

(sdfstr2list), 62
sdfstr2list<- (sdfstr2list), 62
sdfstr2list<-,SDFstr-method

(SDFstr-class), 11
searchSim, 63
searchString, 64
show,AP-method (AP-class), 1
show,APset-method (APset-class), 2
show,SDF-method (SDF-class), 4
show,SDFset-method

(SDFset-class), 7
show,SDFstr-method

(SDFstr-class), 11
smiles2sdf, 65
splitNumChar (datablock2ma), 36

validSDF, 65
view, 66
view,APset-method (APset-class), 2
view,SDFset-method

(SDFset-class), 7
view-methods (view), 66

write.SDF, 67

	AP-class
	APset-class
	SDF-class
	SDF2apcmp
	SDFset-class
	SDFset2SDF
	SDFset2list
	SDFstr-class
	ap
	apset
	apset2descdb
	atomblock
	atomcount
	atomprop
	bondblock
	bonds
	cid
	cluster.sizestat
	cluster.visualize
	cmp.cluster
	cmp.duplicated
	cmp.parse
	cmp.parse1
	cmp.search
	cmp.similarity
	conMA
	datablock
	datablock2ma
	db.explain
	db.subset
	fp2bit
	fpSim
	getIds
	grepSDFset
	groups
	header
	makeUnique
	plotStruc
	pubchemFPencoding
	read.SDFset
	read.SDFstr
	rings
	sdf.subset
	sdf.visualize
	sdf2ap
	sdf2list
	sdf2smiles
	sdf2str
	sdfid
	sdfsample
	sdfstr2list
	searchSim
	searchString
	smiles2sdf
	validSDF
	view
	write.SDF
	Index

