
Biostrings
October 25, 2011

AAString-class AAString objects

Description

An AAString object allows efficient storage and manipulation of a long amino acid sequence.

Details

The AAString class is a direct XString subclass (with no additional slot). Therefore all functions
and methods described in the XString man page also work with an AAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the AAString container can only store a string based on the Amino Acid alphabet (see
below).

The Amino Acid alphabet

This alphabet contains all letters from the Single-Letter Amino Acid Code (see ?AMINO_ACID_CODE)
+ the stop ("*"), the gap ("-") and the hard masking ("+") letters. It is stored in the AA_ALPHABET
constant (character vector). The alphabet method also returns AA_ALPHABET when applied to
an AAString object and is provided for convenience only.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1) or a BString object.

AAString(x="", start=1, nchar=NA): Tries to convert x into an AAString object by
reading nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is an AAString object.

alphabet(x): If x is an AAString object, then return the Amino Acid alphabet (see above).
See the corresponding man pages when x is a BString, DNAString or RNAString object.

Author(s)

H. Pages

1

2 AlignedXStringSet-class

See Also

AMINO_ACID_CODE, letter, XString-class, alphabetFrequency

Examples

AA_ALPHABET
a <- AAString("MARKSLEMSIR*")
length(a)
alphabet(a)

AMINO_ACID_CODE The Single-Letter Amino Acid Code

Description

Named character vector mapping single-letter amino acid representations to 3-letter amino acid
representations.

See Also

AAString, GENETIC_CODE

Examples

See all the 3-letter codes
AMINO_ACID_CODE

Convert an AAString object to a vector of 3-letter amino acid codes
aa <- AAString("LANDEECQW")
AMINO_ACID_CODE[strsplit(as.character(aa), NULL)[[1]]]

AlignedXStringSet-class
AlignedXStringSet and QualityAlignedXStringSet objects

Description

The AlignedXStringSet and QualityAlignedXStringSet classes are containers for
storing an aligned XStringSet.

Details

Before we define the notion of alignment, we introduce the notion of "filled-with-gaps subse-
quence". A "filled-with-gaps subsequence" of a string string1 is obtained by inserting 0 or any
number of gaps in a subsequence of s1. For example L-A–ND and A–N-D are "filled-with-gaps
subsequences" of LAND. An alignment between two strings string1 and string2 results in two
strings (align1 and align2) that have the same length and are "filled-with-gaps subsequences" of
string1 and string2.

For example, this is an alignment between LAND and LEAVES:

AlignedXStringSet-class 3

L-A
LEA

An alignment can be seen as a compact representation of one set of basic operations that transforms
string1 into align1. There are 3 different kinds of basic operations: "insertions" (gaps in align1),
"deletions" (gaps in align2), "replacements". The above alignment represents the following basic
operations:

insert E at pos 2
insert V at pos 4
insert E at pos 5
replace by S at pos 6 (N is replaced by S)
delete at pos 7 (D is deleted)

Note that "insert X at pos i" means that all letters at a position >= i are moved 1 place to the right
before X is actually inserted.

There are many possible alignments between two given strings string1 and string2 and a common
problem is to find the one (or those ones) with the highest score, i.e. with the lower total cost in
terms of basic operations.

Accessor methods

In the code snippets below, x is a AlignedXStringSet or QualityAlignedXStringSet
object.

unaligned(x): The original string.

aligned(x, degap = FALSE): If degap = FALSE, the "filled-with-gaps subsequence"
representing the aligned substring. If degap = TRUE, the "gap-less subsequence" repre-
senting the aligned substring.

start(x): The start of the aligned substring.

end(x): The end of the aligned substring.

width(x): The width of the aligned substring, ignoring gaps.

indel(x): The positions, in the form of an IRanges object, of the insertions or deletions
(depending on what x represents).

nindel(x): A two-column matrix containing the length and sum of the widths for each of the
elements returned by indel.

length(x): The length of the aligned(x).

nchar(x): The nchar of the aligned(x).

alphabet(x): Equivalent to alphabet(unaligned(x)).

as.character(x): Converts aligned(x) to a character vector.

toString(x): Equivalent to toString(as.character(x)).

Subsetting methods

x[i]: Returns a new AlignedXStringSet or QualityAlignedXStringSet object
made of the selected elements.

rep(x, times): Returns a new AlignedXStringSet or QualityAlignedXStringSet
object made of the repeated elements.

4 DNAString-class

Author(s)

P. Aboyoun and H. Pages

See Also

pairwiseAlignment, PairwiseAlignedXStringSet-class, XStringSet-class

Examples

pattern <- AAString("LAND")
subject <- AAString("LEAVES")
nw1 <- pairwiseAlignment(pattern, subject, substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1)
alignedPattern <- pattern(nw1)
unaligned(alignedPattern)
aligned(alignedPattern)
as.character(alignedPattern)
nchar(alignedPattern)

BOC_SubjectString-class
BOC_SubjectString and BOC2_SubjectString objects

Description

The BOC_SubjectString and BOC2_SubjectString classes are experimental and might not work
properly.

Please DO NOT TRY TO USE them for now. Thanks for your comprehension!

Author(s)

H. Pages

DNAString-class DNAString objects

Description

A DNAString object allows efficient storage and manipulation of a long DNA sequence.

Details

The DNAString class is a direct XString subclass (with no additional slot). Therefore all functions
and methods described in the XString man page also work with a DNAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the DNAString container can only store a string based on the DNA alphabet (see below).
In addition, the letters stored in a DNAString object are encoded in a way that optimizes fast search
algorithms.

FASTA-io-legacy 5

The DNA alphabet

This alphabet contains all letters from the IUPAC Extended Genetic Alphabet (see ?IUPAC_CODE_MAP)
+ the gap ("-") and the hard masking ("+") letters. It is stored in the DNA_ALPHABET con-
stant (character vector). The alphabet method also returns DNA_ALPHABET when applied to a
DNAString object and is provided for convenience only.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1), a BString object
or an RNAString object.

DNAString(x="", start=1, nchar=NA): Tries to convert x into a DNAString object by
reading nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is a DNAString object.

alphabet(x, baseOnly=FALSE): If x is a DNAString object, then return the DNA al-
phabet (see above). See the corresponding man pages when x is a BString, RNAString or
AAString object.

Author(s)

H. Pages

See Also

IUPAC_CODE_MAP, letter, XString-class, RNAString-class, reverseComplement, alphabetFrequency

Examples

DNA_BASES
DNA_ALPHABET
d <- DNAString("TTGAAAA-CTC-N")
length(d)
alphabet(d) # DNA_ALPHABET
alphabet(d, baseOnly=TRUE) # DNA_BASES

FASTA-io-legacy Legacy functions to read/write FASTA formatted files

Description

readFASTA and writeFASTA read from and write to a FASTA file.

Note that the object returned by readFASTA or passed to writeFASTA is a standard list. For
faster and more memory efficient alternatives that return/accept an XStringSet object, see the read.DNAStringSet
function and family.

Usage

readFASTA(file, checkComments=TRUE, strip.descs=TRUE)
writeFASTA(x, file="", desc=NULL, append=FALSE, width=80)

6 FASTA-io-legacy

Arguments

file Either a character string naming a file or a connection. If "" (the default for
writeFASTA), then the function writes to the standard output connection (the
console) unless redirected by sink.

checkComments
Whether or not comments, lines beginning with a semi-colon should be found
and removed.

strip.descs Whether or not the ">" marking the beginning of the description lines should
be removed. Note that this argument is new in Biostrings >= 2.8. In previous
versions readFASTA was keeping the ">".

x A list as one returned by readFASTA if desc is not specified (i.e. NULL). If
desc is specified (see below) then x can also be a list-like object with XString
elements (for example it can be an XStringSet, XStringViews or BSgenome
object) or just a character vector.

desc If NULL (the default) then x must be a list as one returned by readFASTA and
all the sequences in x are written to the file. Otherwise descmust be a character
vector no longer than the number of sequences in x containing the descriptions
of the sequences in x that must be written to the file.

append TRUE or FALSE. If TRUE output will be appended to file; otherwise, it will
overwrite the contents of file. See ?cat for the details.

width The maximum number of letters per line of sequence.

Details

FASTA is a simple file format for biological sequence data. A file may contain one or more se-
quences, for each sequence there is a description line which begins with a >.

FASTA is a widely used format in biology. It is a relatively simple markup. I am not aware of
a standard. It might be nice to check to see if the data that were parsed are sequences of some
appropriate type, but without a standard that does not seem possible.

There are many other packages that provide similar, but different capabilities. The one in the pack-
age seqinr seems most similar but they separate the biological sequence into single character strings,
which is too inefficient for large problems.

Value

For readFASTA: A list with one element per FASTA record in the file. Each element is in two
parts, one is the description of the record and the second a character string of the biological se-
quence.

Author(s)

R. Gentleman, H. Pages. Improvements to writeFASTA by Kasper D. Hansen

See Also

read.DNAStringSet, fasta.info, write.XStringSet, read.table, scan, write.table,
BSgenome-class

GENETIC_CODE 7

Examples

f1 <- system.file("extdata", "someORF.fa", package="Biostrings")
ff <- readFASTA(f1, strip.descs=TRUE)
desc <- sapply(ff, function(x) x$desc)
desc

Keep the "reverse complement" sequences only:
ff2 <- ff[grep("reverse complement", desc, fixed=TRUE)]

Write them to a FASTA file:
temp_file <- file.path(tempdir(), "temp.fa")
writeFASTA(ff2, file=temp_file)

Write the first 2 to a FASTA file with a modified description:
writeFASTA(ff2, file=temp_file, desc=c("a", "b"))

Write a genome to a FASTA file:
library(BSgenome.Celegans.UCSC.ce2)
writeFASTA(Celegans, file=temp_file, desc=seqnames(Celegans))

GENETIC_CODE The Standard Genetic Code

Description

Two predefined objects (GENETIC_CODE and RNA_GENETIC_CODE) that represent The Stan-
dard Genetic Code.

Usage

GENETIC_CODE
RNA_GENETIC_CODE

Details

Formally, a genetic code is a mapping between tri-nucleotide sequences called codons, and amino
acids.

The Standard Genetic Code (aka The Canonical Genetic Code, or simply The Genetic Code) is the
particular mapping that encodes the vast majority of genes in nature.

GENETIC_CODE and RNA_GENETIC_CODE are predefined named character vectors that repre-
sent this mapping.

Value

GENETIC_CODE and RNA_GENETIC_CODE are both named character vectors of length 64 (the
number of all possible tri-nucleotide sequences) where each element is a single letter representing
either an amino acid or the stop codon "*" (aka termination codon).

The names of the GENETIC_CODE vector are the DNA codons i.e. the tri-nucleotide sequences
(directed 5’ to 3’) that are assumed to belong to the "coding DNA strand" (aka "sense DNA strand"
or "non-template DNA strand") of the gene.

8 HNF4alpha

The names of the RNA_GENETIC_CODE are the RNA codons i.e. the tri-nucleotide sequences
(directed 5’ to 3’) that are assumed to belong to the mRNA of the gene.

Note that the values in the GENETIC_CODE and RNA_GENETIC_CODE vectors are the same, only
their names are different. The names of the latter are those of the former where all occurrences of
T (thymine) have been replaced by U (uracil).

Author(s)

H. Pages

References

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

See Also

AA_ALPHABET, AMINO_ACID_CODE, translate, trinucleotideFrequency, DNAString,
RNAString, AAString

Examples

GENETIC_CODE
GENETIC_CODE[["ATG"]] # codon ATG is translated into M (Methionine)
sort(table(GENETIC_CODE)) # the same amino acid can be encoded by 1

to 6 different codons

RNA_GENETIC_CODE
all(GENETIC_CODE == RNA_GENETIC_CODE) # TRUE

HNF4alpha Known HNF4alpha binding sequences

Description

Seventy one known HNF4alpha binding sequences

Details

A DNAStringSet containing 71 known binding sequences for HNF4alpha.

Author(s)

P. Aboyoun

References

Ellrott, K., Yang, C., Sladek, F.M., Jiang, T. (2002) "Identifying transcription factor binding sites
through Markov chain optimations", Bioinformatics, 18 (Suppl. 2), S100-S109.

Examples

data(HNF4alpha)
HNF4alpha

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

IUPAC_CODE_MAP 9

IUPAC_CODE_MAP The IUPAC Extended Genetic Alphabet

Description

The IUPAC_CODE_MAP named character vector contains the mapping from the IUPAC nucleotide
ambiguity codes to their meaning.

The mergeIUPACLetters function provides the reverse mapping.

Usage

IUPAC_CODE_MAP
mergeIUPACLetters(x)

Arguments

x A vector of non-empty character strings made of IUPAC letters.

Details

IUPAC nucleotide ambiguity codes are used for representing sequences of nucleotides where the
exact nucleotides that occur at some given positions are not known with certainty.

Value

IUPAC_CODE_MAP is a named character vector where the names are the IUPAC nucleotide ambi-
guity codes and the values are their corresponding meanings. The meaning of each code is described
by a string that enumarates the base letters ("A", "C", "G" or "T") associated with the code.

The value returned by mergeIUPACLetters is an unnamed character vector of the same length
as its argument x where each element is an IUPAC nucleotide ambiguity code.

Author(s)

H. Pages

References

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE: Cornish-Bowden (1985) Nucl.
Acids Res. 13: 3021-3030.

See Also

DNAString, RNAString

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

10 MIndex-class

Examples

IUPAC_CODE_MAP
some_iupac_codes <- c("R", "M", "G", "N", "V")
IUPAC_CODE_MAP[some_iupac_codes]
mergeIUPACLetters(IUPAC_CODE_MAP[some_iupac_codes])

mergeIUPACLetters(c("Ca", "Acc", "aA", "MAAmC", "gM", "AB", "bS", "mk"))

InDel-class InDel objects

Description

The InDel class is a container for storing insertion and deletion information.

Details

This is a generic class that stores any insertion and deletion information.

Accessor methods

In the code snippets below, x is a InDel object.

insertion(x): The insertion information.

deletion(x): The deletion information.

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignedXStringSet-class

MIndex-class MIndex objects

Description

The MIndex class is the basic container for storing the matches of a set of patterns in a subject
sequence.

Details

An MIndex object contains the matches (start/end locations) of a set of patterns found in an XString
object called "the subject string" or "the subject sequence" or simply "the subject".

matchPDict function returns an MIndex object.

MIndex-class 11

Accessor methods

In the code snippets below, x is an MIndex object.

length(x): The number of patterns that matches are stored for.

names(x): The names of the patterns that matches are stored for.

startIndex(x): A list containing the starting positions of the matches for each pattern.

endIndex(x): A list containing the ending positions of the matches for each pattern.

countIndex(x): An integer vector containing the number of matches for each pattern. Equiv-
alent to elementLengths(x).

Subsetting methods

In the code snippets below, x is an MIndex object.

x[[i]]: Extract the matches for the i-th pattern as an IRanges object.

Coercion

In the code snippets below, x is an MIndex object.

as(x, "CompressedIRangesList"): Turns x into an CompressedIRangesList object.
This coercion changes x from one RangesList subtype to another with the underlying Ranges
values remaining unchanged.

Other utility methods and functions

In the code snippets below, x and mindex are MIndex objects and subject is the XString object
containing the sequence in which the matches were found.

unlist(x, recursive=TRUE, use.names=TRUE): Return all the matches in a single
IRanges object. recursive and use.names are ignored.

extractAllMatches(subject, mindex): Return all the matches in a single XStringViews
object.

Author(s)

H. Pages

See Also

matchPDict, PDict-class, IRanges-class, XStringViews-class

Examples

See ?matchPDict and ?`matchPDict-inexact` for some examples.

12 MaskedXString-class

MaskedXString-class
MaskedXString objects

Description

The MaskedBString, MaskedDNAString, MaskedRNAString and MaskedAAString classes are con-
tainers for storing masked sequences.

All those containers derive directly (and with no additional slots) from the MaskedXString virtual
class.

Details

In Biostrings, a pile of masks can be put on top of a sequence. A pile of masks is represented by
a MaskCollection object and the sequence by an XString object. A MaskedXString object is the
result of bundling them together in a single object.

Note that, no matter what masks are put on top of it, the original sequence is always stored unmod-
ified in a MaskedXString object. This allows the user to activate/deactivate masks without having
to worry about losing the information stored in the masked/unmasked regions. Also this allows
efficient memory management since the original sequence never needs to be copied (modifying it
would require to make a copy of it first - sequences cannot and should never be modified in place in
Biostrings), even when the set of active/inactive masks changes.

Accessor methods

In the code snippets below, x is a MaskedXString object. For masks(x) and masks(x) <- y,
it can also be an XString object and y must be NULL or a MaskCollection object.

unmasked(x): Turns x into an XString object by dropping the masks.

masks(x): Turns x into a MaskCollection object by dropping the sequence.

masks(x) <- y: If x is an XString object and y is NULL, then this doesn’t do anything.
If x is an XString object and y is a MaskCollection object, then this turns x into a MaskedXString
object by putting the masks in y on top of it.
If x is a MaskedXString object and y is NULL, then this is equivalent to x <- unmasked(x).
If x is a MaskedXString object and y is a MaskCollection object, then this replaces the masks
currently on top of x by the masks in y.

alphabet(x): Equivalent to alphabet(unmasked(x)). See ?alphabet for more infor-
mation.

length(x): Equivalent to length(unmasked(x)). See ¿length,XString-method‘
for more information.

"maskedwidth" and related methods

In the code snippets below, x is a MaskedXString object.

maskedwidth(x): Get the number of masked letters in x. A letter is considered masked iff it’s
masked by at least one active mask.

maskedratio(x): Equivalent to maskedwidth(x) / length(x).

nchar(x): Equivalent to length(x) - maskedwidth(x).

MaskedXString-class 13

Coercion

In the code snippets below, x is a MaskedXString object.

as(x, "XStringViews"): Turns x into an XStringViews object where the views are the
unmasked regions of the original sequence ("unmasked" means not masked by at least one
active mask).

Other methods

In the code snippets below, x is a MaskedXString object.

collapse(x): Collapses the set of masks in x into a single mask made of all active masks.

gaps(x): Reverses all the masks i.e. each mask is replaced by a mask where previously un-
masked regions are now masked and previously masked regions are now unmasked.

Author(s)

H. Pages

See Also

maskMotif, injectHardMask, alphabetFrequency, reverse,MaskedXString-method,
XString-class, MaskCollection-class, XStringViews-class, Ranges-utils

Examples

A. MASKING BY POSITION

mask0 <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))
x <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")
length(x) # same as width(mask0)
nchar(x) # same as length(x)
masks(x) <- mask0
x
length(x) # has not changed
nchar(x) # has changed
gaps(x)

Prepare a MaskCollection object of 3 masks ('mymasks') by running the
examples in the man page for these objects:
example(MaskCollection, package="IRanges")

Put it on 'x':
masks(x) <- mymasks
x
alphabetFrequency(x)

Deactivate all masks:
active(masks(x)) <- FALSE
x

Activate mask "C":
active(masks(x))["C"] <- TRUE
x

14 MultipleAlignment-class

Turn MaskedXString object into an XStringViews object:
as(x, "XStringViews")

Drop the masks:
masks(x) <- NULL
x
alphabetFrequency(x)

B. MASKING BY CONTENT

See ?maskMotif for masking by content

MultipleAlignment-class
MultipleAlignment objects

Description

The MultipleAlignment class is a container for storing multiple sequence alignments.

Usage

Constructors:
DNAMultipleAlignment(x=character(), start=NA, end=NA, width=NA,

use.names=TRUE, rowmask=NULL, colmask=NULL)
RNAMultipleAlignment(x=character(), start=NA, end=NA, width=NA,

use.names=TRUE, rowmask=NULL, colmask=NULL)
AAMultipleAlignment(x=character(), start=NA, end=NA, width=NA,

use.names=TRUE, rowmask=NULL, colmask=NULL)

Read functions:
read.DNAMultipleAlignment(filepath, format)
read.RNAMultipleAlignment(filepath, format)
read.AAMultipleAlignment(filepath, format)

Write funtions:
write.phylip(x, filepath)

... and more (see below)

Arguments

x Either a character vector (with no NAs), or an XString, XStringSet or XStringViews
object containing strings with the same number of characters. If writing out a
Phylip file, then x would be a MultipleAlignment object

start,end,width
Either NA, a single integer, or an integer vector of the same length as x specifying
how x should be "narrowed" (see ?narrow for the details).

use.names TRUE or FALSE. Should names be preserved?

MultipleAlignment-class 15

filepath A character vector (of arbitrary length when reading, of length 1 when writing)
containing the paths to the files to read or write. Note that special values like ""
or "|cmd" (typically supported by other I/O functions in R) are not supported
here. Also filepath cannot be a connection.

format Either "fasta" (the default), stockholm, or "clustal".

rowmask a NormalIRanges object that will set masking for rows

colmask a NormalIRanges object that will set masking for columns

Details

The MultipleAlignment class is designed to hold and represent multiple sequence alignments. The
rows and columns within an alignment can be masked for ad hoc analyses.

Accessor methods

In the code snippets below, x is a MultipleAlignment object.

unmasked(x): The underlying XStringSet object containing the multiple sequence alignment.

rownames(x): NULL or a character vector of the same length as x containing a short user-
provided description or comment for each sequence in x.

rowmask(x), rowmask(x, append, invert) <- value: Gets and sets the NormalI-
Ranges object representing the masked rows in x. The append argument takes union,
replace or intersect to indicate how to combine the new value with rowmask(x).
The invert argument takes a logical argument to indicate whether or not to invert the new
mask. The value argument can be of any class that is coercible to a NormalIRanges via the
as function.

colmask(x), colmask(x, append, invert) <- value: Gets and sets the NormalI-
Ranges object representing the masked columns in x. The append argument takes union,
replace or intersect to indicate how to combine the new value with colmask(x).
The invert argument takes a logical argument to indicate whether or not to invert the new
mask. The value argument can be of any class that is coercible to a NormalIRanges via the
as function.

maskMotif(x, motif, min.block.width=1, ...): Returns a MultipleAlignment ob-
ject with a modified column mask based upon motifs found in the consensus string where the
consensus string keeps all the columns but drops the masked rows.

motif The motif to mask.
min.block.width The minimum width of the blocks to mask.
... Additional arguments for matchPattern.

maskGaps(x, min.fraction, min.block.width): Returns a MultipleAlignment ob-
ject with a modified column mask based upon gaps in the columns. In particular, this mask is
defined by min.block.width or more consecutive columns that have min.fraction
or more of their non-masked rows containing gap codes.

min.fraction A value in [0, 1] that indicates the minimum fraction needed to call a gap in
the consensus string (default is 0.5).

min.block.width A positive integer that indicates the minimum number of consecutive gaps
to mask, as defined by min.fraction (default is 4).

nrow(x): Returns the number of sequences aligned in x.

ncol(x): Returns the number of characters for each alignment in x.

dim(x): Equivalent to c(nrow(x), ncol(x)).

16 MultipleAlignment-class

maskednrow(x): Returns the number of masked aligned sequences in x.
maskedncol(x): Returns the number of masked aligned characters in x.
maskeddim(x): Equivalent to c(maskednrow(x), maskedncol(x)).
maskedratio(x): Equivalent to maskeddim(x) / dim(x).
nchar(x): Returns the number of unmasked aligned characters in x, i.e. ncol(x) - maskedncol(x).
alphabet(x): Equivalent to alphabet(unmasked(x)).

Coercion

In the code snippets below, x is a MultipleAlignment object.

as(from, "DNAStringSet"), as(from, "RNAStringSet"), as(from, "AAStringSet"),
as(from, "BStringSet"): Creates an instance of the specified XStringSet object sub-
type that contains the unmasked regions of the multiple sequence alignment in x.

as.character(x, use.names): Convert x to a character vector containing the unmasked
regions of the multiple sequence alignment. use.names controls whether or not rownames(x)
should be used to set the names of the returned vector (default is TRUE).

as.matrix(x, use.names): Returns a character matrix containing the "exploded" repre-
sentation of the unmasked regions of the multiple sequence alignment. use.names controls
whether or not rownames(x) should be used to set the row names of the returned matrix
(default is TRUE).

Utilities

In the code snippets below, x is a MultipleAlignment object.

consensusMatrix(x, as.prob, baseOnly): Creates an integer matrix containing the
column frequencies of the underlying alphabet with masked columns being represented with
NA values. If as.prob is TRUE, then probabilities are reported, otherwise counts are reported
(the default). If baseOnly is TRUE, then the non-base letters are collapsed into an "other"
category.

consensusString(x, ...): Creates a consensus string for x with the symbol "#" repre-
senting a masked column. See consensusString for details on the arguments.

consensusViews(x, ...): Similar to the consensusStringmethod. It returns a XStringViews
on the consensus string containing subsequence contigs of non-masked columns. Unlike the
consensusString method, the masked columns in the underlying string contain a con-
sensus value rather than the "#" symbol.

alphabetFrequency(x, as.prob, collapse): Creates an integer matrix containing
the row frequencies of the underlying alphabet. If as.prob is TRUE, then probabilities are
reported, otherwise counts are reported (the default). If collapse is TRUE, then returns the
overall frequency instead of the frequency by row.

detail(x, invertColMask, hideMaskedCols): Allows for a full pager driven dis-
play of the object so that masked cols and rows can be removed and the entire sequence can
be visually inspected. If hideMaskedCols is set to it’s default value of TRUE then the
output will hide all the the masked columns in the output. Otherwise, all columns will be
displayed along with a row to indicate the masking status. If invertColMask is TRUE then
any displayed mask will be flipped so as to represent things in a way consistent with Phylip
style files instead of the mask that is actually stored in the MultipleAlignment object.
Please notice that invertColMask will be ignored if hideMaskedCols is set to its de-
fault value of TRUE since in that case it will not make sense to show any masking information
in the output. Masked rows are always hidden in the output.

MultipleAlignment-class 17

Author(s)

P. Aboyoun and M. Carlson

See Also

XStringSet-class, MaskedXString-class

Examples

create an object from file
origMAlign <-
read.DNAMultipleAlignment(filepath =

system.file("extdata",
"msx2_mRNA.aln",
package="Biostrings"),

format="clustal")

list the names of the sequences in the alignment
rownames(origMAlign)

rename the sequences to be the underlying species for MSX2
rownames(origMAlign) <- c("Human","Chimp","Cow","Mouse","Rat",

"Dog","Chicken","Salmon")
origMAlign

See a detailed pager view
if (interactive()) {
detail(origMAlign)
}

operations to mask rows
For columns, just use colmask() and do the same kinds of operations
rowMasked <- origMAlign
rowmask(rowMasked) <- IRanges(start=1,end=3)
rowMasked

remove rowumn masks
rowmask(rowMasked) <- NULL
rowMasked

"select" rows of interest
rowmask(rowMasked, invert=TRUE) <- IRanges(start=4,end=7)
rowMasked

or mask the rows that intersect with masked rows
rowmask(rowMasked, append="intersect") <- IRanges(start=1,end=5)
rowMasked

TATA-masked
tataMasked <- maskMotif(origMAlign, "TATA")
colmask(tataMasked)

automatically mask rows based on consecutive gaps
autoMasked <- maskGaps(origMAlign, min.fraction=0.5, min.block.width=4)
colmask(autoMasked)
autoMasked

18 PDict-class

calculate frequencies
alphabetFrequency(autoMasked)
consensusMatrix(autoMasked, baseOnly=TRUE)[, 84:90]

get consensus values
consensusString(autoMasked)
consensusViews(autoMasked)

cluster the masked alignments
sdist <- stringDist(as(autoMasked,"DNAStringSet"), method="hamming")
clust <- hclust(sdist, method = "single")
plot(clust)
fourgroups <- cutree(clust, 4)
fourgroups

write out the alignement object (with current masks) to Phylip format
write.phylip(x = autoMasked, filepath = tempfile("foo.txt",tempdir()))

PDict-class PDict objects

Description

The PDict class is a container for storing a preprocessed dictionary of DNA patterns that can later be
passed to the matchPDict function for fast matching against a reference sequence (the subject).

PDict is the constructor function for creating new PDict objects.

Usage

PDict(x, max.mismatch=NA, tb.start=NA, tb.end=NA, tb.width=NA,
algorithm="ACtree2", skip.invalid.patterns=FALSE)

Arguments

x A character vector, a DNAStringSet object or an XStringViews object with a
DNAString subject.

max.mismatch A single non-negative integer or NA. See the "Allowing a small number of mis-
matching letters" section below.

tb.start,tb.end,tb.width
A single integer or NA. See the "Trusted Band" section below.

algorithm "ACtree2" (the default) or "Twobit".

skip.invalid.patterns
This argument is not supported yet (and might in fact be replaced by the filter
argument very soon).

PDict-class 19

Details

THIS IS STILL WORK IN PROGRESS!

If the original dictionary x is a character vector or an XStringViews object with a DNAString
subject, then the PDict constructor will first try to turn it into a DNAStringSet object.

By default (i.e. if PDict is called with max.mismatch=NA, tb.start=NA, tb.end=NA and
tb.width=NA) the following limitations apply: (1) the original dictionary can only contain base
letters (i.e. only As, Cs, Gs and Ts), therefore IUPAC ambiguity codes are not allowed; (2) all the
patterns in the dictionary must have the same length ("constant width" dictionary); and (3) later
matchPdict can only be used with max.mismatch=0.

A Trusted Band can be used in order to relax these limitations (see the "Trusted Band" section
below).

If you are planning to use the resulting PDict object in order to do inexact matching where valid
hits are allowed to have a small number of mismatching letters, then see the "Allowing a small
number of mismatching letters" section below.

Two preprocessing algorithms are currently supported: algorithm="ACtree2" (the default)
and algorithm="Twobit". With the "ACtree2" algorithm, all the oligonucleotides in the
Trusted Band are stored in a 4-ary Aho-Corasick tree. With the "Twobit" algorithm, the 2-bit-per-
letter signatures of all the oligonucleotides in the Trusted Band are computed and the mapping from
these signatures to the 1-based position of the corresponding oligonucleotide in the Trusted Band is
stored in a way that allows very fast lookup. Only PDict objects preprocessed with the "ACtree2"
algo can then be used with matchPdict (and family) and with fixed="pattern" (instead of
fixed=TRUE, the default), so that IUPAC ambiguity codes in the subject are treated as ambigu-
ities. PDict objects obtained with the "Twobit" algo don’t allow this. See ¿matchPDict-
inexact‘ for more information about support of IUPAC ambiguity codes in the subject.

Trusted Band

What’s a Trusted Band?

A Trusted Band is a region defined in the original dictionary where the limitations described above
will apply.

Why use a Trusted Band?

Because the limitations described above will apply to the Trusted Band only! For example the
Trusted Band cannot contain IUPAC ambiguity codes but the "head" and the "tail" can (see be-
low for what those are). Also with a Trusted Band, if matchPdict is called with a non-null
max.mismatch value then mismatching letters will be allowed in the head and the tail. Or, if
matchPdict is called with fixed="subject", then IUPAC ambiguity codes in the head and
the tail will be treated as ambiguities.

How to specify a Trusted Band?

Use the tb.start, tb.end and tb.width arguments of the PDict constructor in order to
specify a Trusted Band. This will divide each pattern in the original dictionary into three parts: a left
part, a middle part and a right part. The middle part is defined by its starting and ending nucleotide
positions given relatively to each pattern thru the tb.start, tb.end and tb.width arguments.
It must have the same length for all patterns (this common length is called the width of the Trusted
Band). The left and right parts are defined implicitely: they are the parts that remain before (prefix)
and after (suffix) the middle part, respectively. Therefore three DNAStringSet objects result from
this division: the first one is made of all the left parts and forms the head of the PDict object, the
second one is made of all the middle parts and forms the Trusted Band of the PDict object, and the
third one is made of all the right parts and forms the tail of the PDict object.

20 PDict-class

In other words you can think of the process of specifying a Trusted Band as drawing 2 vertical
lines on the original dictionary (note that these 2 lines are not necessarily straight lines but the
horizontal space between them must be constant). When doing this, you are dividing the dictionary
into three regions (from left to right): the head, the Trusted Band and the tail. Each of them is a
DNAStringSet object with the same number of elements than the original dictionary and the original
dictionary could easily be reconstructed from those three regions.

The width of the Trusted Band must be >= 1 because Trusted Bands of width 0 are not supported.

Finally note that calling PDict with tb.start=NA, tb.end=NA and tb.width=NA (the de-
fault) is equivalent to calling it with tb.start=1, tb.end=-1 and tb.width=NA, which
results in a full-width Trusted Band i.e. a Trusted Band that covers the entire dictionary (no head
and no tail).

Allowing a small number of mismatching letters

TODO

Accessor methods

In the code snippets below, x is a PDict object.

length(x): The number of patterns in x.

width(x): A vector of non-negative integers containing the number of letters for each pattern
in x.

names(x): The names of the patterns in x.

head(x): The head of x or NULL if x has no head.

tb(x): The Trusted Band defined on x.

tb.width(x): The width of the Trusted Band defined on x. Note that, unlike width(tb(x)),
this is a single integer. And because the Trusted Band has a constant width, tb.width(x)
is in fact equivalent to unique(width(tb(x))), or to width(tb(x))[1].

tail(x): The tail of x or NULL if x has no tail.

Subsetting methods

In the code snippets below, x is a PDict object.

x[[i]]: Extract the i-th pattern from x as a DNAString object.

Other methods

In the code snippet below, x is a PDict object.

duplicated(x): [TODO]

patternFrequency(x): [TODO]

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

PairwiseAlignedXStringSet-class 21

See Also

matchPDict, DNA_ALPHABET, IUPAC_CODE_MAP, DNAStringSet-class, XStringViews-class

Examples

A. NO HEAD AND NO TAIL (THE DEFAULT)

library(drosophila2probe)
dict0 <- DNAStringSet(drosophila2probe)
dict0 # The original dictionary.
length(dict0) # Hundreds of thousands of patterns.
unique(nchar(dict0)) # Patterns are 25-mers.

pdict0 <- PDict(dict0) # Store the original dictionary in
a PDict object (preprocessing).

pdict0
class(pdict0)
length(pdict0) # Same as length(dict0).
tb.width(pdict0) # The width of the (implicit)

Trusted Band.
sum(duplicated(pdict0))
table(patternFrequency(pdict0)) # 9 patterns are repeated 3 times.
pdict0[[1]]
pdict0[[5]]

B. NO HEAD AND A TAIL

dict1 <- c("ACNG", "GT", "CGT", "AC")
pdict1 <- PDict(dict1, tb.end=2)
pdict1
class(pdict1)
length(pdict1)
width(pdict1)
head(pdict1)
tb(pdict1)
tb.width(pdict1)
width(tb(pdict1))
tail(pdict1)
pdict1[[3]]

PairwiseAlignedXStringSet-class
PairwiseAlignedXStringSet, PairwiseAlignedFixedSubject, and

Description

The PairwiseAlignedXStringSet class is a container for storing an elementwise pairwise
alignment. The PairwiseAlignedFixedSubject class is a container for storing a pairwise
alignment with a single subject. The PairwiseAlignedFixedSubjectSummary class is a
container for storing the summary of an alignment.

22 PairwiseAlignedXStringSet-class

Usage

Constructors:
When subject is missing, pattern must be of length 2
S4 method for signature 'XString,XString'
PairwiseAlignedXStringSet(pattern, subject,

type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = -1)
S4 method for signature 'XStringSet,missing'
PairwiseAlignedXStringSet(pattern, subject,

type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = -1)
S4 method for signature 'character,character'
PairwiseAlignedXStringSet(pattern, subject,

type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = -1,
baseClass = "BString")

S4 method for signature 'character,missing'
PairwiseAlignedXStringSet(pattern, subject,

type = "global", substitutionMatrix = NULL, gapOpening = 0, gapExtension = -1,
baseClass = "BString")

Arguments

pattern a character vector of length 1 or 2, an XString, or an XStringSet object of
length 1 or 2.

subject a character vector of length 1 or an XString object.

type type of alignment. One of "global", "local", "overlap", "global-
local", and "local-global" where "global" = align whole strings
with end gap penalties, "local" = align string fragments, "overlap" =
align whole strings without end gap penalties, "global-local" = align
whole strings in patternwith consecutive subsequence of subject, "local-
global" = align consecutive subsequence of pattern with whole strings in
subject.

substitutionMatrix
substitution matrix for the alignment. If NULL, the diagonal values and off-
diagonal values are set to 0 and 1 respectively.

gapOpening the cost for opening a gap in the alignment.

gapExtension the incremental cost incurred along the length of the gap in the alignment.

baseClass the base XString class to use in the alignment.

Details

Before we define the notion of alignment, we introduce the notion of "filled-with-gaps subse-
quence". A "filled-with-gaps subsequence" of a string string1 is obtained by inserting 0 or any
number of gaps in a subsequence of s1. For example L-A–ND and A–N-D are "filled-with-gaps
subsequences" of LAND. An alignment between two strings string1 and string2 results in two
strings (align1 and align2) that have the same length and are "filled-with-gaps subsequences" of
string1 and string2.

For example, this is an alignment between LAND and LEAVES:

L-A
LEA

PairwiseAlignedXStringSet-class 23

An alignment can be seen as a compact representation of one set of basic operations that transforms
string1 into align1. There are 3 different kinds of basic operations: "insertions" (gaps in align1),
"deletions" (gaps in align2), "replacements". The above alignment represents the following basic
operations:

insert E at pos 2
insert V at pos 4
insert E at pos 5
replace by S at pos 6 (N is replaced by S)
delete at pos 7 (D is deleted)

Note that "insert X at pos i" means that all letters at a position >= i are moved 1 place to the right
before X is actually inserted.

There are many possible alignments between two given strings string1 and string2 and a common
problem is to find the one (or those ones) with the highest score, i.e. with the lower total cost in
terms of basic operations.

Object extraction methods

In the code snippets below, x is a PairwiseAlignedXStringSet object, except otherwise
noted.

pattern(x): The AlignedXStringSet object for the pattern.

subject(x): The AlignedXStringSet object for the subject.

summary(object, ...): Generates a summary for the PairwiseAlignedXStringSet.

General information methods

In the code snippets below, x is a PairwiseAlignedXStringSet object, except otherwise
noted.

alphabet(x): Equivalent to alphabet(unaligned(subject(x))).

length(x): The length of the aligned(pattern(x)) and aligned(subject(x)).
There is a method for PairwiseAlignedFixedSubjectSummary as well.

type(x): The type of the alignment ("global", "local", "overlap", "global-local",
or "local-global"). There is a method for PairwiseAlignedFixedSubjectSummary
as well.

Aligned sequence methods

In the code snippets below, x is a PairwiseAlignedFixedSubject object, except otherwise
noted.

aligned(x, degap = FALSE, gapCode="-", endgapCode="-"): If degap = FALSE,
"align" the alignments by returning an XStringSet object containing the aligned patterns
without insertions. If degap = TRUE, returns aligned(pattern(x), degap=TRUE).
The gapCode and endgapCode arguments denote the code in the appropriate alphabet
to use for the internal and end gaps.

as.character(x): Converts aligned(x) to a character vector.

as.matrix(x): Returns an "exploded" character matrix representation of aligned(x).

toString(x): Equivalent to toString(as.character(x)).

24 PairwiseAlignedXStringSet-class

Subject position methods

In the code snippets below, x is a PairwiseAlignedFixedSubject object, except otherwise
noted.

consensusMatrix(x, as.prob=FALSE, baseOnly=FALSE, gapCode="-", endgapCode="-
") See ‘consensusMatrix‘ for more information.

consensusString(x) See ‘consensusString‘ for more information.

coverage(x, shift=0L, width=NULL, weight=1L) See ‘coverage,PairwiseAlignedFixedSubject-
method‘ for more information.

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): The XStringViews
object that represents the pairwise alignments along unaligned(subject(subject)).
The start and end arguments must be either NULL/NA or an integer vector of length 1 that
denotes the offset from start(subject(subject)).

Numeric summary methods

In the code snippets below, x is a PairwiseAlignedXStringSet object, except otherwise
noted.

nchar(x): The nchar of the aligned(pattern(x)) and aligned(subject(x)). There
is a method for PairwiseAlignedFixedSubjectSummary as well.

insertion(x): An CompressedIRangesList object containing the locations of the in-
sertions from the perspective of the pattern.

deletion(x): An CompressedIRangesList object containing the locations of the dele-
tions from the perspective of the pattern.

indel(x): An InDel object containing the locations of the insertions and deletions from the
perspective of the pattern.

nindel(x): An InDel object containing the number of insertions and deletions.

score(x): The score of the alignment. There is a method for PairwiseAlignedFixedSubjectSummary
as well.

Subsetting methods

x[i]: Returns a new PairwiseAlignedXStringSet object made of the selected elements.

rep(x, times): Returns a new PairwiseAlignedXStringSet object made of the re-
peated elements.

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, AlignedXStringSet-class, XString-class, XStringViews-
class, align-utils, pid

QualityScaledXStringSet-class 25

Examples

PairwiseAlignedXStringSet("-PA--W-HEAE", "HEAGAWGHE-E")
pattern <- AAStringSet(c("HLDNLKGTF", "HVDDMPNAL"))
subject <- AAString("SMDDTEKMSMKL")
nw1 <- pairwiseAlignment(pattern, subject, substitutionMatrix = "BLOSUM50",
gapOpening = -3, gapExtension = -1)

pattern(nw1)
subject(nw1)
aligned(nw1)
as.character(nw1)
as.matrix(nw1)
nchar(nw1)
score(nw1)
nw1

QualityScaledXStringSet-class
QualityScaledBStringSet, QualityScaledDNAStringSet,

Description

The QualityScaledBStringSet class is a container for storing a BStringSet object with an XStringQuality
object.

Similarly, the QualityScaledDNAStringSet (or QualityScaledRNAStringSet, or QualityScaledAAS-
tringSet) class is a container for storing a DNAStringSet (or RNAStringSet, or AAStringSet)
objects with an XStringQuality object.

Usage

Constructors:
QualityScaledBStringSet(x, quality)
QualityScaledDNAStringSet(x, quality)
QualityScaledRNAStringSet(x, quality)
QualityScaledAAStringSet(x, quality)

Arguments

x Either a character vector, or an XString, XStringSet or XStringViews object.

quality An XStringQuality object.

Details

The QualityScaledBStringSet, QualityScaledDNAStringSet, QualityScaledRNAStringSet
and QualityScaledAAStringSet functions are constructors that can be used to "naturally"
turn x into an QualityScaledXStringSet object of the desired base type.

26 RNAString-class

Accessor methods

The QualityScaledXStringSet class derives from the XStringSet class hence all the accessor meth-
ods defined for an XStringSet object can also be used on an QualityScaledXStringSet object. Com-
mon methods include (in the code snippets below, x is an QualityScaledXStringSet object):

length(x): The number of sequences in x.

width(x): A vector of non-negative integers containing the number of letters for each element
in x.

nchar(x): The same as width(x).

names(x): NULL or a character vector of the same length as x containing a short user-provided
description or comment for each element in x.

quality(x): The quality of the strings.

Subsetting and appending

In the code snippets below, x and values are XStringSet objects, and i should be an index speci-
fying the elements to extract.

x[i]: Return a new QualityScaledXStringSet object made of the selected elements.

Author(s)

P. Aboyoun

See Also

BStringSet-class, DNAStringSet-class, RNAStringSet-class, AAStringSet-class, XStringQuality-
class

Examples

x1 <- DNAStringSet(c("TTGA", "CTCN"))
q1 <- PhredQuality(c("*+,-", "6789"))
qx1 <- QualityScaledDNAStringSet(x1, q1)
qx1

RNAString-class RNAString objects

Description

An RNAString object allows efficient storage and manipulation of a long RNA sequence.

Details

The RNAString class is a direct XString subclass (with no additional slot). Therefore all functions
and methods described in the XString man page also work with an RNAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte charac-
ter set) the RNAString container can only store a string based on the RNA alphabet (see below). In
addition, the letters stored in an RNAString object are encoded in a way that optimizes fast search
algorithms.

WCP 27

The RNA alphabet

This alphabet contains all letters from the IUPAC Extended Genetic Alphabet (see ?IUPAC_CODE_MAP)
where "T" is replaced by "U" + the gap ("-") and the hard masking ("+") letters. It is stored in the
RNA_ALPHABET constant (character vector). The alphabetmethod also returns RNA_ALPHABET
when applied to an RNAString object and is provided for convenience only.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1), a BString object
or a DNAString object.

RNAString(x="", start=1, nchar=NA): Tries to convert x into an RNAString object
by reading nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is an RNAString object.

alphabet(x, baseOnly=FALSE): If x is an RNAString object, then return the RNA al-
phabet (see above). See the corresponding man pages when x is a BString, DNAString or
AAString object.

Author(s)

H. Pages

See Also

IUPAC_CODE_MAP, letter, XString-class, DNAString-class, reverseComplement, alphabetFrequency

Examples

RNA_BASES
RNA_ALPHABET
d <- DNAString("TTGAAAA-CTC-N")
r <- RNAString(d)
r
alphabet(r) # RNA_ALPHABET
alphabet(r, baseOnly=TRUE) # RNA_BASES

When comparing an RNAString object with a DNAString object,
U and T are considered equals:
r == d # TRUE

WCP Weighted Clustered Positions (WCP) objects

Description

The WCP class is a container for storing weighted clustered positions within XString-based strings.

28 XKeySortedDataList

Author(s)

P. Aboyoun

See Also

matchWCP, XString-class

XKeySortedData Data Dictionaries with XString-based Keys

Description

The XKeySortedData class is a container for storing a dictionary with XString-based keys and
DataFrame (an IRanges class) values.

Author(s)

P. Aboyoun

See Also

XStringSet-class, DataFrame-class

XKeySortedDataList List of Data Dictionaries with XString-based Keys

Description

The XKeySortedDataList class is a container for storing a list of dictionaries with XString-based
keys and DataFrame (an IRanges class) values.

Author(s)

P. Aboyoun

See Also

XKeySortedData-class, SimpleList-class

XString-class 29

XString-class BString objects

Description

The BString class is a general container for storing a big string (a long sequence of characters) and
for making its manipulation easy and efficient.

The DNAString, RNAString and AAString classes are similar containers but with the more biology-
oriented purpose of storing a DNA sequence (DNAString), an RNA sequence (RNAString), or a
sequence of amino acids (AAString).

All those containers derive directly (and with no additional slots) from the XString virtual class.

Details

The 2 main differences between an XString object and a standard character vector are: (1) the data
stored in an XString object are not copied on object duplication and (2) an XString object can only
store a single string (see the XStringSet container for an efficient way to store a big collection of
strings in a single object).

Unlike the DNAString, RNAString and AAString containers that accept only a predefined set of
letters (the alphabet), a BString object can be used for storing any single string based on a single-
byte character set.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1) or an XString
object.

BString(x="", start=1, nchar=NA): Tries to convert x into a BString object by read-
ing nchar letters starting at position start in x.

Accessor methods

In the code snippets below, x is an XString object.

alphabet(x): NULL for a BString object. See the corresponding man pages when x is a
DNAString, RNAString or AAString object.

length(x) or nchar(x): Get the length of an XString object, i.e., its number of letters.

Coercion

In the code snippets below, x is an XString object.

as.character(x): Converts x to a character string.

toString(x): Equivalent to as.character(x).

30 XString-class

Subsetting

In the code snippets below, x is an XString object.

x[i]: Return a new XString object made of the selected letters (subscript i must be an NA-free
numeric vector specifying the positions of the letters to select). The returned object belongs
to the same class as x.
Note that, unlike subseq, x[i] does copy the sequence data and therefore will be very
inefficient for extracting a big number of letters (e.g. when i contains millions of positions).

Equality

In the code snippets below, e1 and e2 are XString objects.

e1 == e2: TRUE if e1 is equal to e2. FALSE otherwise.
Comparison between two XString objects of different base types (e.g. a BString object and a
DNAString object) is not supported with one exception: a DNAString object and an RNAS-
tring object can be compared (see RNAString-class for more details about this).
Comparison between a BString object and a character string is also supported (see examples
below).

e1 != e2: Equivalent to !(e1 == e2).

Author(s)

H. Pages

See Also

subseq, letter, DNAString-class, RNAString-class, AAString-class, XStringSet-class, XStringViews-
class, reverse,XString-method, compact, XVector-class

Examples

b <- BString("I am a BString object")
b
length(b)

Extracting a linear subsequence:
subseq(b)
subseq(b, start=3)
subseq(b, start=-3)
subseq(b, end=-3)
subseq(b, end=-3, width=5)

Subsetting:
b2 <- b[length(b):1] # better done with reverse(b)

as.character(b2)

b2 == b # FALSE
b2 == as.character(b2) # TRUE

b[1:length(b)] is equal but not identical to b!
b == b[1:length(b)] # TRUE
identical(b, 1:length(b)) # FALSE

XStringPartialMatches-class 31

This is because subsetting an XString object with [makes a copy
of part or all its sequence data. Hence, for the resulting object,
the internal slot containing the memory address of the sequence
data differs from the original. This is enough for identical() to
see the 2 objects as different.

Compacting. As a particular type of XVector objects, XString
objects can eventually be compacted. Compacting is done typically
before serialization. See ?compact for more information.

XStringPartialMatches-class
XStringPartialMatches objects

Description

WARNING: This class is currently under development and might not work properly! Full docu-
mentation will come later.

Please DO NOT TRY TO USE it for now. Thanks for your comprehension!

Accessor methods

In the code snippets below, x is an XStringPartialMatches object.

subpatterns(x): Not ready yet.

pattern(x): Not ready yet.

Standard generic methods

In the code snippets below, x is an XStringPartialMatches objects, and i can be a numeric or logical
vector.

x[i]: Return a new XStringPartialMatches object made of the selected views. i can be a numeric
vector, a logical vector, NULL or missing. The returned object has the same subject as x.

Author(s)

H. Pages

See Also

XStringViews-class, XString-class, letter

32 XStringQuality-class

XStringQuality-class
PhredQuality and SolexaQuality objects

Description

Objects for storing string quality measures.

Usage

Constructors:
PhredQuality(x)
SolexaQuality(x)

Arguments

x Either a character vector, BString, BStringSet, integer vector, or number vector
of error probabilities.

Details

PhredQuality objects store characters that are interpreted as [0 - 99] quality measures by sub-
tracting 33 from their ASCII decimal representation (e.g. ! = 0, " = 1, \# = 2, ...).

SolexaQuality objects store characters are interpreted as [-5 - 99] quality measures by sub-
tracting 64 from their ASCII decimal representation (e.g. ; = -5, < = -4, = = -3, ...).

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignedXStringSet-class, DNAString-class, BStringSet-class

Examples

PhredQuality(0:40)
SolexaQuality(0:40)

PhredQuality(seq(1e-4,0.5,length=10))
SolexaQuality(seq(1e-4,0.5,length=10))

x <- SolexaQuality(BStringSet(c(a="@ABC", b="abcd")))
as.matrix(x)

XStringSet-class 33

XStringSet-class XStringSet objects

Description

The BStringSet class is a container for storing a set of BString objects and for making its manip-
ulation easy and efficient.

Similarly, the DNAStringSet (or RNAStringSet, or AAStringSet) class is a container for storing a
set of DNAString (or RNAString, or AAString) objects.

All those containers derive directly (and with no additional slots) from the XStringSet virtual class.

Usage

Constructors:
BStringSet(x=character(), start=NA, end=NA, width=NA, use.names=TRUE)
DNAStringSet(x=character(), start=NA, end=NA, width=NA, use.names=TRUE)
RNAStringSet(x=character(), start=NA, end=NA, width=NA, use.names=TRUE)
AAStringSet(x=character(), start=NA, end=NA, width=NA, use.names=TRUE)

Accessor-like methods:
S4 method for signature 'character'
width(x)
S4 method for signature 'XStringSet'
nchar(x, type="chars", allowNA=FALSE)

... and more (see below)

Arguments

x Either a character vector (with no NAs), or an XString, XStringSet or XStringViews
object.

start,end,width
Either NA, a single integer, or an integer vector of the same length as x specifying
how x should be "narrowed" (see ?narrow for the details).

use.names TRUE or FALSE. Should names be preserved?

type,allowNA Ignored.

Details

The BStringSet, DNAStringSet, RNAStringSet and AAStringSet functions are con-
structors that can be used to turn input x into an XStringSet object of the desired base type.

They also allow the user to "narrow" the sequences contained in x via proper use of the start,
end and/or width arguments. In this context, "narrowing" means dropping a prefix or/and a suffix
of each sequence in x. The "narrowing" capabilities of these constructors can be illustrated by the
following property: if x is a character vector (with no NAs), or an XStringSet (or XStringViews)
object, then the 3 following transformations are equivalent:

BStringSet(x, start=mystart, end=myend, width=mywidth)

subseq(BStringSet(x), start=mystart, end=myend, width=mywidth)

34 XStringSet-class

BStringSet(subseq(x, start=mystart, end=myend, width=mywidth))

Note that, besides being more convenient, the first form is also more efficient on character vectors.

Accessor-like methods

In the code snippets below, x is an XStringSet object.

length(x): The number of sequences in x.

width(x): A vector of non-negative integers containing the number of letters for each element
in x. Note that width(x) is also defined for a character vector with no NAs and is equivalent
to nchar(x, type="bytes").

names(x): NULL or a character vector of the same length as x containing a short user-provided
description or comment for each element in x. These are the only data in an XStringSet
object that can safely be changed by the user. All the other data are immutable! As a general
recommendation, the user should never try to modify an object by accessing its slots directly.

alphabet(x): Return NULL, DNA_ALPHABET, RNA_ALPHABET or AA_ALPHABET depend-
ing on whether x is a BStringSet, DNAStringSet, RNAStringSet or AAStringSet object.

nchar(x): The same as width(x).

Subsequence extraction and related transformations

In the code snippets below, x is a character vector (with no NAs), or an XStringSet (or XStringViews)
object.

subseq(x, start=NA, end=NA, width=NA): Applies subseq on each element in x.
See ?subseq for the details.

Note that this is similar to what substr does on a character vector. However there are some
noticeable differences:

(1) the arguments are start and stop for substr;

(2) the SEW interface (start/end/width) interface of subseq is richer (e.g. support for nega-
tive start or end values); and (3) subseq checks that the specified start/end/width values are
valid i.e., unlike substr, it throws an error if they define "out of limits" subsequences or
subsequences with a negative width.

narrow(x, start=NA, end=NA, width=NA, use.names=TRUE): Same as subseq.
The only differences are: (1) narrow has a use.names argument; and (2) all the things
narrow and subseq work on (IRanges, XStringSet or XStringViews objects for narrow,
XVector or XStringSet objects for subseq). But they both work and do the same thing on an
XStringSet object.

threebands(x, start=NA, end=NA, width=NA): Like the method for IRanges ob-
jects, the threebands methods for character vectors and XStringSet objects extend the
capability of narrow by returning the 3 set of subsequences (the left, middle and right subse-
quences) associated to the narrowing operation. See ?threebands in the IRanges package
for the details.

subseq(x, start=NA, end=NA, width=NA) <- value: A vectorized version of the
subseq<- method for XVector objects. See ¿subseq<-‘ for the details.

XStringSet-class 35

Subsetting and appending

In the code snippets below, x and values are XStringSet objects, and i should be an index speci-
fying the elements to extract.

x[i]: Return a new XStringSet object made of the selected elements.

x[[i]]: Extract the i-th XString object from x.

append(x, values, after=length(x)): Add sequences in values to x.

Ordering and related methods

In the code snippets below, x is an XStringSet object.

is.unsorted(x, strictly=FALSE): Return a logical values specifying if x is unsorted.
The strictly argument takes logical value indicating if the check should be for _strictly_
increasing values.

order(x): Return a permutation which rearranges x into ascending or descending order.

sort(x): Sort x into ascending order (equivalent to x[order(x)]).

rank(x): Rank x in ascending order.

Duplicated and unique methods

In the code snippets below, x is an XStringSet object.

duplicated(x): Return a logical vector whose elements denotes duplicates in x.

unique(x): Return an XStringSet containing the unique values in x.

Set operations

In the code snippets below, x and y are XStringSet objects

union(x, y, ...): Union of x and y.

intersect(x, y, ...): Intersection of x and y.

setdiff(x, y, ...): Asymmetric set difference of x and y.

setequal(x, y): Set equality of x to y.

Identical value matching

In the code snippets below, x is a character vector, XString, or XStringSet object and table is an
XStringSet object.

x %in% table: Returns a logical vector indicating which elements in x match identically with
an element in table.

match(x, table, nomatch = NA_integer_, incomparables = NULL): Returns
an integer vector containing the first positions of an identical match in table for the elements
in x.

36 XStringSet-class

Other methods

In the code snippets below, x is an XStringSet object.

unlist(x): Turns x into an XString object by combining the sequences in x together. Fast
equivalent to do.call(c, as.list(x)).

as.character(x, use.names): Convert x to a character vector of the same length as x.
use.names controls whether or not names(x) should be used to set the names of the
returned vector (default is TRUE).

as.matrix(x, use.names): Return a character matrix containing the "exploded" represen-
tation of the strings. This can only be used on an XStringSet object with equal-width strings.
use.names controls whether or not names(x) should be used to set the row names of the
returned matrix (default is TRUE).

toString(x): Equivalent to toString(as.character(x)).

Author(s)

H. Pages

See Also

XString-class, XStringViews-class, XStringSetList-class, subseq, narrow, substr, compact,
XVectorList-class

Examples

A. USING THE XStringSet CONSTRUCTORS ON A CHARACTER VECTOR OR FACTOR

Note that there is no XStringSet() constructor, but an XStringSet
family of constructors: BStringSet(), DNAStringSet(), RNAStringSet(),
etc...
x0 <- c("#CTC-NACCAGTAT", "#TTGA", "TACCTAGAG")
width(x0)
x1 <- BStringSet(x0)
x1

3 equivalent ways to obtain the same BStringSet object:
BStringSet(x0, start=4, end=-3)
subseq(x1, start=4, end=-3)
BStringSet(subseq(x0, start=4, end=-3))

dna0 <- DNAStringSet(x0, start=4, end=-3)
dna0
names(dna0)
names(dna0)[2] <- "seqB"
dna0

When the input vector contains a lot of duplicates, turning it into
a factor first before passing it to the constructor will produce an
XStringSet object that is more compact in memory:
library(hgu95av2probe)
x2 <- sample(hgu95av2probe$sequence, 999000, replace=TRUE)
dna2a <- DNAStringSet(x2)
dna2b <- DNAStringSet(factor(x2)) # slower but result is more compact

XStringSet-class 37

object.size(dna2a)
object.size(dna2b)

B. USING THE XStringSet CONSTRUCTORS ON A SINGLE SEQUENCE (XString
OBJECT OR CHARACTER STRING)

x3 <- "abcdefghij"
BStringSet(x3, start=2, end=6:2) # behaves like 'substring(x3, 2, 6:2)'
BStringSet(x3, start=-(1:6))
x4 <- BString(x3)
BStringSet(x4, end=-(1:6), width=3)

Randomly extract 1 million 40-mers from C. elegans chrI:
extractRandomReads <- function(subject, nread, readlength)
{

if (!is.integer(readlength))
readlength <- as.integer(readlength)

start <- sample(length(subject) - readlength + 1L, nread,
replace=TRUE)

DNAStringSet(subject, start=start, width=readlength)
}
library(BSgenome.Celegans.UCSC.ce2)
rndreads <- extractRandomReads(Celegans$chrI, 1000000, 40)
Notes:
- This takes only 2 or 3 seconds versus several hours for a solution
using substring() on a standard character string.
- The short sequences in 'rndreads' can be seen as the result of a
simulated high-throughput sequencing experiment. A non-realistic
one though because:
(a) It assumes that the underlying technology is perfect (the
generated reads have no technology induced errors).
(b) It assumes that the sequenced genome is exactly the same as the
reference genome.
(c) The simulated reads can contain IUPAC ambiguity letters only
because the reference genome contains them. In a real
high-throughput sequencing experiment, the sequenced genome
of course doesn't contain those letters, but the sequencer
can introduce them in the generated reads to indicate ambiguous
base-calling.
(d) The simulated reads come from the plus strand only of a single
chromosome.
- See the getSeq() function in the BSgenome package for how to
circumvent (d) i.e. how to generate reads that come from the whole
genome (plus and minus strands of all chromosomes).

C. USING THE XStringSet CONSTRUCTORS ON AN XStringSet OBJECT

library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
probes

RNAStringSet(probes, start=2, end=-5) # does NOT copy the sequence data!

D. USING subseq() ON AN XStringSet OBJECT

38 XStringSet-io

subseq(probes, start=2, end=-5)

subseq(probes, start=13, end=13) <- "N"
probes

Add/remove a prefix:
subseq(probes, start=1, end=0) <- "--"
probes
subseq(probes, end=2) <- ""
probes

Do more complicated things:
subseq(probes, start=4:7, end=7) <- c("YYYY", "YYY", "YY", "Y")
subseq(probes, start=4, end=6) <- subseq(probes, start=-2:-5)
probes

E. UNLISTING AN XStringSet OBJECT

library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
unlist(probes)

F. COMPACTING AN XStringSet OBJECT

As a particular type of XVectorList objects, XStringSet objects can
eventually be compacted. Compacting is done typically before
serialization. See ?compact for more information.
library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)

y <- subseq(probes[1:12], start=5)
probes@pool
y@pool
object.size(probes)
object.size(y)

y0 <- compact(y)
y0@pool
object.size(y0)

XStringSet-io Read/write an XStringSet object from/to a file

Description

Functions to read/write an XStringSet object from/to a file.

Usage

Read FASTA (or FASTQ) files in an XStringSet object:
read.BStringSet(filepath, format="fasta",

XStringSet-io 39

nrec=-1L, skip=0L, use.names=TRUE)
read.DNAStringSet(filepath, format="fasta",

nrec=-1L, skip=0L, use.names=TRUE)
read.RNAStringSet(filepath, format="fasta",

nrec=-1L, skip=0L, use.names=TRUE)
read.AAStringSet(filepath, format="fasta",

nrec=-1L, skip=0L, use.names=TRUE)

Extract basic information about FASTA (or FASTQ) files
without loading them:
fasta.info(filepath, nrec=-1L, skip=0L, use.names=TRUE)
fastq.geometry(filepath, nrec=-1L, skip=0L)

Write an XStringSet object to a FASTA (or FASTQ) file:
write.XStringSet(x, filepath, append=FALSE, format="fasta", ...)

Serialize an XStringSet object:
save.XStringSet(x, objname, dirpath=".", save.dups=FALSE, verbose=TRUE)

Arguments

filepath A character vector (of arbitrary length when reading, of length 1 when writing)
containing the path(s) to the file(s) to read or write. Note that special values
like "" or "|cmd" (typically supported by other I/O functions in R) are not
supported here. Also filepath cannot be a connection.

format Either "fasta" (the default) or "fastq".

nrec Single integer. The maximum of number of records to read in. Negative values
are ignored.

skip Single non-negative integer. The number of records of the data file(s) to skip
before beginning to read in records.

use.names Should the returned vector be named? For FASTA the names are taken from the
record description lines. For FASTQ they are taken from the record sequence
ids. Dropping the names can help reducing memory footprint e.g. for a FASTQ
file containing millions of reads.

x For write.XStringSet, the object to write to file.
For save.XStringSet, the object to serialize.

append TRUE or FALSE. If TRUE output will be appended to file; otherwise, it will
overwrite the contents of file. See ?cat for the details.

... Further format-specific arguments. If format="fasta", the width argu-
ment (single integer) can be used to specify the maximum number of letters per
line of sequence. If format="fastq", the qualities argument (BStringSet
object) can be used to specify the qualities. If the qualities are omitted, then the
fake quality ’;’ is assigned to each letter in x and written to the file.

objname The name of the serialized object.

dirpath The path to the directory where to save the serialized object.

save.dups TRUE or FALSE. If TRUE then the Dups object describing how duplicated ele-
ments in x are related to each other is saved too. For advanced users only.

verbose TRUE or FALSE.

40 XStringSet-io

Details

Only FASTA and FASTQ files are supported for now. The qualities stored in the FASTQ records
are ignored.

Reading functions read.BStringSet, read.DNAStringSet, read.RNAStringSet and
read.AAStringSet load sequences from an input file (or set of input files) into an XStringSet
object. When multiple input files are specified, they are read in the corresponding order and their
data are stored in the returned object in that order. Note that when multiple input FASTQ files are
specified, all must have the same "width" (i.e. all their sequences must have the same length).

The fasta.info utility returns an integer vector with one element per FASTA record in the input
files. Each element is the length of the sequence found in the corresponding record.

The fastq.geometry utility returns an integer vector describing the "geometry" of the FASTQ
files i.e. a vector of length 2 where the first element is the total number of FASTQ records in the
files and the second element the common "width" of these files (this width is NA if the files contain
no FASTQ records or records with different widths).

write.XStringSet writes an XStringSet object to a file. WARNING: Please be aware that
using write.XStringSet on a BStringSet object that contains the ’\n’ (LF) or ’\r’ (CR) char-
acters or the FASTA markup characters ’>’ or ’;’ is almost guaranteed to produce a broken FASTA
file!

Serializing an XStringSet object with save.XStringSet is equivalent to using the standard
save mechanism. But it will try to reduce the size of x in memory first before calling save. Most
of the times this leads to a much reduced size on disk.

See Also

readFASTA, writeFASTA, XStringSet-class, BString-class, DNAString-class, RNAString-class,
AAString-class

Examples

A. READ/WRITE FASTA FILES

filepath <- system.file("extdata", "someORF.fa", package="Biostrings")
fasta.info(filepath)
x <- read.DNAStringSet(filepath)
x
out1 <- tempfile()
write.XStringSet(x, out1)

B. READ/WRITE FASTQ FILES

filepath <- system.file("extdata", "s_1_sequence.txt",

package="Biostrings")
fastq.geometry(filepath)
read.DNAStringSet(filepath, format="fastq")

library(BSgenome.Celegans.UCSC.ce2)
Create a "sliding window" on chr I:
sw_start <- seq.int(1, length(Celegans$chrI)-50, by=50)
sw <- Views(Celegans$chrI, start=sw_start, width=10)
my_fake_shortreads <- as(sw, "XStringSet")
my_fake_ids <- sprintf("ID%06d", seq_len(length(my_fake_shortreads)))

XStringSetList-class 41

names(my_fake_shortreads) <- my_fake_ids
my_fake_shortreads

Fake quality ';' will be assigned to each base in 'my_fake_shortreads':
out2 <- tempfile()
write.XStringSet(my_fake_shortreads, out2, format="fastq")

Passing qualities thru the 'qualities' argument:
my_fake_quals <- rep.int(BStringSet("DCBA@?>=<;"),

length(my_fake_shortreads))
my_fake_quals
out3 <- tempfile()
write.XStringSet(my_fake_shortreads, out3, format="fastq",

qualities=my_fake_quals)

C. SERIALIZATION

save.XStringSet(my_fake_shortreads, "my_fake_shortreads", dirpath=tempdir())

XStringSetList-class
XStringSetList objects

Description

The XStringSetList class is a virtual container for storing a list of XStringSet objects.

Details

Concrete flavors of the XStringSetList container are the BStringSetList, DNAStringSetList, RNAS-
tringSetList and AAStringSetList containers for storing a list of BStringSet, DNAStringSet, RNAS-
tringSet and AAStringSet objects, respectively. These four containers are direct subclasses of
XStringSetList with no additional slots.

Methods

TODO

Author(s)

H. Pages

See Also

XStringSet-class, Grouping-class, Vector-class

Examples

unlisted <- DNAStringSet(c("AAA", "AC", "GGATA"))
partitioning <- PartitioningByEnd(c(0, 2, 2, 3))
x <- new("DNAStringSetList",

unlisted=unlisted,
partitioning=partitioning)

42 XStringViews-class

x
length(x)
unlist(x)
x[[1]]
x[[2]]
as.list(x)

names(x) <- LETTERS[1:4]
x[["A"]]
x[["B"]]
as.list(x) # named list

Using the Grouping core API on 'partitioning(x)':
partitioning(x)
length(partitioning(x))
nobj(partitioning(x))
grouplength(partitioning(x)) # same as 'unname(sapply(x, length))'

Using the Ranges core API on 'partitioning(x)':
start(partitioning(x))
end(partitioning(x))
width(partitioning(x)) # same as 'grouplength(partitioning(x))'

XStringViews-class The XStringViews class

Description

The XStringViews class is the basic container for storing a set of views (start/end locations) on the
same sequence (an XString object).

Details

An XStringViews object contains a set of views (start/end locations) on the same XString object
called "the subject string" or "the subject sequence" or simply "the subject". Each view is defined
by its start and end locations: both are integers such that start <= end. An XStringViews object is
in fact a particular case of an Views object (the XStringViews class contains the Views class) so it
can be manipulated in a similar manner: see ?Views for more information. Note that two views
can overlap and that a view can be "out of limits" i.e. it can start before the first letter of the subject
or/and end after its last letter.

Constructor

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): See ?Views
in the IRanges package for the details.

Accessor-like methods

All the accessor-like methods defined for Views objects work on XStringViews objects. In addi-
tion, the following accessors are defined for XStringViews objects:

nchar(x): A vector of non-negative integers containing the number of letters in each view.
Values in nchar(x) coincide with values in width(x) except for "out of limits" views
where they are lower.

XStringViews-class 43

Other methods

In the code snippets below, x, object, e1 and e2 are XStringViews objects, and i can be a
numeric or logical vector.

e1 == e2: A vector of logicals indicating the result of the view by view comparison. The views
in the shorter of the two XStringViews object being compared are recycled as necessary.
Like for comparison between XString objects, comparison between two XStringViews objects
with subjects of different classes is not supported with one exception: when the subjects are
DNAString and RNAString instances.
Also, like with XString objects, comparison between an XStringViews object with a BString
subject and a character vector is supported (see examples below).

e1 != e2: Equivalent to !(e1 == e2).

as.character(x, use.names, check.limits): Convert x to a character vector of
the same length as x. use.names controls whether or not names(x) should be used to
set the names of the returned vector (default is TRUE). check.limits controls whether
or not an error should be raised if x contains "out of limit" views (default is TRUE). With
check.limits=FALSE then "out of limit" views are padded with spaces.

as.matrix(x, mode, use.names, check.limits): Depending on what mode is cho-
sen ("integer" or "character"), return either a 2-column integer matrix containing
start(x) and end(x) or a character matrix containing the "exploded" representation of the
views. mode="character" can only be used on an XStringViews object with equal-width
views. Arguments use.names and check.limits are ignored with mode="integer".
With mode="character", use.names controls whether or not names(x) should be
used to set the row names of the returned matrix (default is TRUE), and check.limits
controls whether or not an error should be raised if x contains "out of limit" views (default is
TRUE). With check.limits=FALSE then "out of limit" views are padded with spaces.

toString(x): Equivalent to toString(as.character(x)).

Author(s)

H. Pages

See Also

Views-class, gaps, XString-class, XStringSet-class, letter, MIndex-class

Examples

One standard way to create an XStringViews object is to use
the Views() constructor.

Views on a DNAString object:
s <- DNAString("-CTC-N")
v4 <- Views(s, start=3:0, end=5:8)
v4
subject(v4)
length(v4)
start(v4)
end(v4)
width(v4)

Attach a comment to views #3 and #4:
names(v4)[3:4] <- "out of limits"

44 XStringViews-constructor

names(v4)

A more programatical way to "tag" the "out of limits" views:
names(v4)[start(v4) < 1 | nchar(subject(v4)) < end(v4)] <- "out of limits"
or just:
names(v4)[nchar(v4) < width(v4)] <- "out of limits"

Two equivalent ways to extract a view as an XString object:
s2a <- v4[[2]]
s2b <- subseq(subject(v4), start=start(v4)[2], end=end(v4)[2])
identical(s2a, s2b) # TRUE

It is an error to try to extract an "out of limits" view:
#v4[[3]] # Error!

v12 <- Views(DNAString("TAATAATG"), start=-2:9, end=0:11)
v12 == DNAString("TAA")
v12[v12 == v12[4]]
v12[v12 == v12[1]]
v12[3] == Views(RNAString("AU"), start=0, end=2)

Here the first view doesn't even overlap with the subject:
Views(BString("aaa--b"), start=-3:4, end=-3:4 + c(3:6, 6:3))

'start' and 'end' are recycled:
subject <- "abcdefghij"
Views(subject, start=2:1, end=4)
Views(subject, start=5:7, end=nchar(subject))
Views(subject, start=1, end=5:7)

Applying gaps() to an XStringViews object:
v2 <- Views("abCDefgHIJK", start=c(8, 3), end=c(14, 4))
gaps(v2)

Coercion:
as(v12, "XStringSet") # same as 'as(v12, "DNAStringSet")'
rna <- as(v12, "RNAStringSet")
as(rna, "Views")

XStringViews-constructor
Basic functions for creating or modifying XStringViews objects

Description

A set of basic functions for creating or modifying an XStringViews object.

Usage

XStringViews(x, subjectClass, collapse="")

Arguments

x An XString object or a character vector for XStringViews.

align-utils 45

subjectClass The class to be given to the subject of the XStringViews object created and re-
turned by the function. Must be the name of one of the direct XString subclasses
i.e. "BString", "DNAString", "RNAString" or "AAString".

collapse An optional character string to be inserted between the views of the XStringViews
object created and returned by the function.

Details

The XStringViews constructor will try to create an XStringViews object from the value passed
to its x argument. If x itself is an XStringViews object, the returned object is obtained by coercing
its subject to the class specified by subjectClass. If x is an XString object, the returned object
is made of a single view that starts at the first letter and ends at the last letter of x (in addition x itself
is coerced to the class specified by subjectClass when specified). If x is a character vector,
the returned object has one view per character string in x (and its subject is an instance of the class
specified by subjectClass).

Value

An XStringViews object y. length(y) (the number of views in y) is 1 when x is an XString
object and length(x) otherwise.

See Also

XStringViews-class, XString-class

Examples

v12 <- Views(DNAString("TAATAATG"), start=-2:9, end=0:11)
XStringViews(v12, subjectClass="RNAString")
XStringViews(AAString("MARKSLEMSIR*"))
XStringViews("abcdefghij", subjectClass="BString")

align-utils Utility functions related to sequence alignment

Description

A variety of different functions used to deal with sequence alignments.

Usage

nedit(x) # also nmatch and nmismatch

mismatchTable(x, shiftLeft=0L, shiftRight=0L, ...)
mismatchSummary(x, ...)
S4 method for signature 'AlignedXStringSet0'
coverage(x, shift=0L, width=NULL, weight=1L)
S4 method for signature 'PairwiseAlignedFixedSubject'
coverage(x, shift=0L, width=NULL, weight=1L)
compareStrings(pattern, subject)

S4 method for signature 'PairwiseAlignedFixedSubject'

46 align-utils

consensusMatrix(x,
as.prob=FALSE, shift=0L, width=NULL,
baseOnly=FALSE, gapCode="-", endgapCode="-")

Arguments

x A character vector or matrix, XStringSet, XStringViews, PairwiseAlignedXStringSet,
or list of FASTA records containing the equal-length strings.

shiftLeft, shiftRight
Non-positive and non-negative integers respectively that specify how many pre-
ceding and succeeding characters to and from the mismatch position to include
in the mismatch substrings.

... Further arguments to be passed to or from other methods.

shift, width See ?coverage.

weight An integer vector specifying how much each element in x counts.
pattern, subject

The strings to compare. Can be of type character, XString, XStringSet,
AlignedXStringSet, or, in the case of pattern, PairwiseAlignedXStringSet.
If pattern is a PairwiseAlignedXStringSet object, then subject
must be missing.

as.prob If TRUE then probabilities are reported, otherwise counts (the default).

baseOnly TRUE or FALSE. If TRUE, the returned vector only contains frequencies for the
letters in the "base" alphabet i.e. "A", "C", "G", "T" if x is a "DNA input", and
"A", "C", "G", "U" if x is "RNA input". When x is a BString object (or an
XStringViews object with a BString subject, or a BStringSet object), then the
baseOnly argument is ignored.

gapCode, endgapCode
The codes in the appropriate alphabet to use for the internal and end gaps.

Details

mismatchTable: a data.frame containing the positions and substrings of the mismatches for the
AlignedXStringSet or PairwiseAlignedXStringSet object.

mismatchSummary: a list of data.frame objects containing counts and frequencies of the mis-
matches for the AlignedXStringSet or PairwiseAlignedFixedSubject object.

compareStrings combines two equal-length strings that are assumed to be aligned into a single
character string containing that replaces mismatches with "?", insertions with "+", and deletions
with "-".

See Also

pairwiseAlignment, consensusMatrix, XString-class, XStringSet-class, XStringViews-
class, AlignedXStringSet-class, PairwiseAlignedXStringSet-class, match-utils

Examples

Compare two globally aligned strings
string1 <- "ACTTCACCAGCTCCCTGGCGGTAAGTTGATC---AAAGG---AAACGCAAAGTTTTCAAG"
string2 <- "GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC"
compareStrings(string1, string2)

basecontent 47

Create a consensus matrix
nw1 <-
pairwiseAlignment(AAStringSet(c("HLDNLKGTF", "HVDDMPNAL")), AAString("SMDDTEKMSMKL"),
substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1)

consensusMatrix(nw1)

Examine the consensus between the bacteriophage phi X174 genomes
data(phiX174Phage)
phageConsmat <- consensusMatrix(phiX174Phage, baseOnly = TRUE)
phageDiffs <- which(apply(phageConsmat, 2, max) < length(phiX174Phage))
phageDiffs
phageConsmat[,phageDiffs]

basecontent Obtain the ATCG content of a gene

Description

WARNING: Both basecontent and countbases are now defunct and will be removed soon
together with this man page. See the examples at the bottom of the man page for how to use
alphabetFrequency instead.

These functions accept a character vector representing the nucleotide sequences and compute the
frequencies of each base (A, C, G, T).

Usage

basecontent(seq)
countbases(seq, dna = TRUE)

Arguments

seq Character vector.

dna Logical value indicating whether the sequence is DNA (TRUE) or RNA (FALSE)

Details

The base frequencies are calculated separately for each element of x. The elements of x can be in
upper case, lower case or mixed.

Value

A matrix with 4 columns and length(x) rows. The columns are named A, C, T, G, and the values
in each column are the counts of the corresponding bases in the elements of x. When dna=FALSE,
the T column is replaced with a U column.

Author(s)

R. Gentleman, W. Huber, S. Falcon

See Also

alphabetFrequency, reverseComplement

48 chartr

Examples

v<-c("AAACT", "GGGTT", "ggAtT")

You can't use these functions anymore (defunct):
if (interactive()) {

basecontent(v)
countbases(v)

}

But you can do this instead:
v <- DNAStringSet(v)
alphabetFrequency(v, baseOnly=TRUE)

chartr Translating letters of a sequence

Description

Translate letters of a sequence.

Usage

S4 method for signature 'ANY,ANY,XString'
chartr(old, new, x)

Arguments

old A character string specifying the characters to be translated.

new A character string specifying the translations.

x The sequence or set of sequences to translate. If x is an XString, XStringSet,
XStringViews or MaskedXString object, then the appropriate chartr method
is called, otherwise the standard chartr R function is called.

Details

See ?chartr for the details.

Note that, unlike the standard chartrR function, the methods for XString, XStringSet, XStringViews
and MaskedXString objects do NOT support character ranges in the specifications.

Value

An object of the same class and length as the original object.

See Also

chartr, replaceLetterAt, XString-class, XStringSet-class, XStringViews-class, MaskedXString-
class, alphabetFrequency, matchPattern, reverseComplement

complementSeq 49

Examples

x <- BString("MiXeD cAsE 123")
chartr("iXs", "why", x)

TRANSFORMING DNA WITH BISULFITE (AND SEARCHING IT...)

library(BSgenome.Celegans.UCSC.ce2)
chrII <- Celegans[["chrII"]]
alphabetFrequency(chrII)
pattern <- DNAString("TGGGTGTATTTA")

Transforming and searching the + strand
plus_strand <- chartr("C", "T", chrII)
alphabetFrequency(plus_strand)
matchPattern(pattern, plus_strand)
matchPattern(pattern, chrII)

Transforming and searching the - strand
minus_strand <- chartr("G", "A", chrII)
alphabetFrequency(minus_strand)
matchPattern(reverseComplement(pattern), minus_strand)
matchPattern(reverseComplement(pattern), chrII)

complementSeq Complementary sequence.

Description

WARNING: complementSeq is now defunct and will be removed soon together with this man
page. See the examples at the bottom of the man page for how to use complement instead.

Function to obtain the complementary sequence.

Usage

complementSeq(seq, start=1, stop=0)

Arguments

seq Character vector consisting of the letters A, C, G and T.

start Numeric scalar: the sequence position at which to start complementing. If 1,
start from the beginning.

stop Numeric scalar: the sequence position at which to stop complementing. If 0, go
until the end.

Details

The complemented sequence for each element of the input is computed and returned. The comple-
ment is given by the mapping: A -> T, C -> G, G -> C, T -> A.

50 complementSeq

An important special case is start=13, stop=13: If seq is a vector of 25mer sequences on
an Affymetrix GeneChip, complementSeq(seq, start=13, stop=13) calculates the so-
called mismatch sequences.

The function deals only with sequences that represent DNA. These can consist only of the letters A,
C, T or G. Upper, lower or mixed case is allowed and honored.

Value

A character vector of the same length as seq is returned. Each component represents the trans-
formed sequence for the input value.

Author(s)

R. Gentleman, W. Huber

See Also

alphabetFrequency, reverseComplement

Examples

EXAMPLE 1

seq <- c("AAACT", "GGGTT")

You can't do this anymore (defunct):
if (interactive()) {
complementSeq(seq) # was inefficient on large vectors

}
But you can do this instead:
complement(DNAStringSet(seq))

EXAMPLE 2

seq <- c("CGACTGAGACCAAGACCTACAACAG", "CCCGCATCATCTTTCCTGTGCTCTT")

You can't do this anymore (defunct):
if (interactive()) {
complementSeq(seq, start=13, stop=13)

}
But you can do this instead:
pm2mm <- function(probes)
{

probes <- DNAStringSet(probes)
subseq(probes, start=13, end=13) <- complement(subseq(probes, start=13, end=13))
probes

}
pm2mm(seq)

detail 51

detail Show (display) detailed object content

Description

This is a variant of show, offering a more detailed display of object content.

Usage

detail(x, ...)

Arguments

x An object. The default simply invokes show.

... Additional arguments. The default definition makes no use of these arguments.

Value

None; the function is invoked for its side effect (detailed display of object content).

Author(s)

Martin Morgan

Examples

origMAlign <-
read.DNAMultipleAlignment(filepath =

system.file("extdata",
"msx2_mRNA.aln",
package="Biostrings"),

format="clustal")
detail(origMAlign)

dinucleotideFrequencyTest
Pearson’s chi-squared Test and G-tests for String Position Dependence

Description

Performs Person’s chi-squared test, G-test, or William’s corrected G-test to determine dependence
between two nucleotide positions.

Usage

dinucleotideFrequencyTest(x, i, j, test = c("chisq", "G", "adjG"),
simulate.p.value = FALSE, B = 2000)

52 dinucleotideFrequencyTest

Arguments

x A DNAStringSet or RNAStringSet object.

i, j Single integer values for positions to test for dependence.

test One of "chisq" (Person’s chi-squared test), "G" (G-test), or "adjG" (William’s
corrected G-test). See Details section.

simulate.p.value
a logical indicating whether to compute p-values by Monte Carlo simulation.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

The null and alternative hypotheses for this function are:

H0: positions i and j are independent

H1: otherwise

Let O and E be the observed and expected probabilities for base pair combinations at positions i
and j respectively. Then the test statistics are calculated as:

test="chisq": stat = sum(abs(O - E)^2/E)

test="G": stat = 2 * sum(O * log(O/E))

test="adjG": stat = 2 * sum(O * log(O/E))/q, where q = 1 + ((df - 1)^2 - 1)/(6*length(x)*(df
- 2))

Under the null hypothesis, these test statistics are approximately distributed chi-squared(df = ((dis-
tinct bases at i) - 1) * ((distinct bases at j) - 1)).

Value

An htest object. See help(chisq.test) for more details.

Author(s)

P. Aboyoun

References

Ellrott, K., Yang, C., Sladek, F.M., Jiang, T. (2002) "Identifying transcription factor binding sites
through Markov chain optimations", Bioinformatics, 18 (Suppl. 2), S100-S109.

Sokal, R.R., Rohlf, F.J. (2003) "Biometry: The Principle and Practice of Statistics in Biological
Research", W.H. Freeman and Company, New York.

Tomovic, A., Oakeley, E. (2007) "Position dependencies in transcription factor binding sites",
Bioinformatics, 23, 933-941.

Williams, D.A. (1976) "Improved Likelihood ratio tests for complete contingency tables", Biometrika,
63, 33-37.

See Also

nucleotideFrequencyAt, XStringSet-class, chisq.test

findPalindromes 53

Examples

data(HNF4alpha)
dinucleotideFrequencyTest(HNF4alpha, 1, 2)
dinucleotideFrequencyTest(HNF4alpha, 1, 2, test = "G")
dinucleotideFrequencyTest(HNF4alpha, 1, 2, test = "adjG")

findPalindromes Searching a sequence for palindromes or complemented palindromes

Description

The findPalindromes and findComplementedPalindromes functions can be used to
find palindromic or complemented palindromic regions in a sequence.

palindromeArmLength, palindromeLeftArm, palindromeRightArm, complementedPalindromeArmLength,
complementedPalindromeLeftArm and complementedPalindromeRightArm are util-
ity functions for operating on palindromic or complemented palindromic sequences.

Usage

findPalindromes(subject, min.armlength=4, max.looplength=1, min.looplength=0, max.mismatch=0)
palindromeArmLength(x, max.mismatch=0, ...)
palindromeLeftArm(x, max.mismatch=0, ...)
palindromeRightArm(x, max.mismatch=0, ...)

findComplementedPalindromes(subject, min.armlength=4, max.looplength=1, min.looplength=0, max.mismatch=0)
complementedPalindromeArmLength(x, max.mismatch=0, ...)
complementedPalindromeLeftArm(x, max.mismatch=0, ...)
complementedPalindromeRightArm(x, max.mismatch=0, ...)

Arguments

subject An XString object containing the subject string, or an XStringViews object.
min.armlength

An integer giving the minimum length of the arms of the palindromes (or com-
plemented palindromes) to search for.

max.looplength
An integer giving the maximum length of "the loop" (i.e the sequence separat-
ing the 2 arms) of the palindromes (or complemented palindromes) to search
for. Note that by default (max.looplength=1), findPalindromes will
search for strict palindromes (or complemented palindromes) only.

min.looplength
An integer giving the minimum length of "the loop" of the palindromes (or com-
plemented palindromes) to search for.

max.mismatch The maximum number of mismatching letters allowed between the 2 arms of
the palindromes (or complemented palindromes) to search for.

x An XString object containing a 2-arm palindrome or complemented palindrome,
or an XStringViews object containing a set of 2-arm palindromes or comple-
mented palindromes.

... Additional arguments to be passed to or from methods.

54 findPalindromes

Details

The findPalindromes function finds palindromic substrings in a subject string. The palin-
dromes that can be searched for are either strict palindromes or 2-arm palindromes (the former
being a particular case of the latter) i.e. palindromes where the 2 arms are separated by an arbitrary
sequence called "the loop".

Use the findComplementedPalindromes function to find complemented palindromic sub-
strings in a DNAString subject (in a complemented palindrome the 2 arms are reverse-complementary
sequences).

Value

findPalindromes and findComplementedPalindromes return an XStringViews object
containing all palindromes (or complemented palindromes) found in subject (one view per palin-
dromic substring found).

palindromeArmLength and complementedPalindromeArmLength return the arm length
(integer) of the 2-arm palindrome (or complemented palindrome) x. It will raise an error if x has
no arms. Note that any sequence could be considered a 2-arm palindrome if we were OK with arms
of length 0 but we are not: x must have arms of length greater or equal to 1 in order to be consid-
ered a 2-arm palindrome. The same apply to 2-arm complemented palindromes. When applied to an
XStringViews object x, palindromeArmLength and complementedPalindromeArmLength
behave in a vectorized fashion by returning an integer vector of the same length as x.

palindromeLeftArm and complementedPalindromeLeftArm return an object of the
same class as the original object x and containing the left arm of x.

palindromeRightArm does the same as palindromeLeftArm but on the right arm of x.

Like palindromeArmLength, both palindromeLeftArm and palindromeRightArm
will raise an error if x has no arms. Also, when applied to an XStringViews object x, both behave
in a vectorized fashion by returning an XStringViews object of the same length as x.

Author(s)

H. Pages

See Also

maskMotif, matchPattern, matchLRPatterns, matchProbePair, XStringViews-class,
DNAString-class

Examples

Note that complemented palindromes (like palindromes) can be nested
findComplementedPalindromes(DNAString("ACGTTNAACGT-ACGTTNAACGT"))

A real use case
library(BSgenome.Dmelanogaster.UCSC.dm3)
chrX <- Dmelanogaster$chrX
chrX_pals <- findComplementedPalindromes(chrX, min.armlength=50, max.looplength=20)
complementedPalindromeArmLength(chrX_pals) # 251

Of course, whitespaces matter
palindromeArmLength(BString("was it a car or a cat I saw"))

Note that the 2 arms of a strict palindrome (or strict complemented

gregexpr2 55

palindrome) are equal to the full sequence.
palindromeLeftArm(BString("Delia saw I was aileD"))
complementedPalindromeLeftArm(DNAString("N-ACGTT-AACGT-N"))
palindromeLeftArm(DNAString("N-AAA-N-N-TTT-N"))

gregexpr2 A replacement for R standard gregexpr function

Description

This is a replacement for the standard gregexpr function that does exact matching only. Standard
gregexpr() misses matches when they are overlapping. The gregexpr2 function finds all matches
but it only works in "fixed" mode i.e. for exact matching (regular expressions are not supported).

Usage

gregexpr2(pattern, text)

Arguments

pattern character string to be matched in the given character vector

text a character vector where matches are sought

Value

A list of the same length as text each element of which is an integer vector as in gregexpr,
except that the starting positions of all (even overlapping) matches are given. Note that, unlike
gregexpr, gregexpr2 doesn’t attach a "match.length" attribute to each element of the returned
list because, since it only works in "fixed" mode, then all the matches have the length of the pattern.
Another difference with gregexpr is that with gregexpr2, the pattern argument must be a
single (non-NA, non-empty) string.

Author(s)

H. Pages

See Also

gregexpr, matchPattern

Examples

gregexpr("aa", c("XaaaYaa", "a"), fixed=TRUE)
gregexpr2("aa", c("XaaaYaa", "a"))

56 injectHardMask

injectHardMask Injecting a hard mask in a sequence

Description

injectHardMask allows the user to "fill" the masked regions of a sequence with an arbitrary
letter (typically the "+" letter).

Usage

injectHardMask(x, letter="+")

Arguments

x A MaskedXString or XStringViews object.

letter A single letter.

Details

The name of the injectHardMask function was chosen because of the primary use that it is
intended for: converting a pile of active "soft masks" into a "hard mask". Here the pile of active
"soft masks" refers to the active masks that have been put on top of a sequence. In Biostrings, the
original sequence and the masks defined on top of it are bundled together in one of the dedicated
containers for this: the MaskedBString, MaskedDNAString, MaskedRNAString and MaskedAAS-
tring containers (this is the MaskedXString family of containers). The original sequence is always
stored unmodified in a MaskedXString object so no information is lost. This allows the user to acti-
vate/deactivate masks without having to worry about losing the letters that are in the regions that are
masked/unmasked. Also this allows better memory management since the original sequence never
needs to be copied, even when the set of active/inactive masks changes.

However, there are situations where the user might want to really get rid of the letters that are in
some particular regions by replacing them with a junk letter (e.g. "+") that is guaranteed to not
interfer with the analysis that s/he is currently doing. For example, it’s very likely that a set of
motifs or short reads will not contain the "+" letter (this could easily be checked) so they will never
hit the regions filled with "+". In a way, it’s like the regions filled with "+" were masked but we
call this kind of masking "hard masking".

Some important differences between "soft" and "hard" masking:

injectHardMask creates a (modified) copy of the original sequence. Using "soft masking"
does not.

A function that is "mask aware" like alphabetFrequency or matchPatternwill really skip
the masked regions when "soft masking" is used i.e. they will not walk thru the regions that
are under active masks. This might lead to some speed improvements when a high percentage
of the original sequence is masked. With "hard masking", the entire sequence is walked thru.

Matches cannot span over masked regions with "soft masking". With "hard masking" they can.

Value

An XString object of the same length as the orignal object x if x is a MaskedXString object, or of
the same length as subject(x) if it’s an XStringViews object.

letter 57

Author(s)

H. Pages

See Also

maskMotif, MaskedXString-class, replaceLetterAt, chartr, XString, XStringViews-class

Examples

A. WITH AN XStringViews OBJECT

v2 <- Views("abCDefgHIJK", start=c(8, 3), end=c(14, 4))
injectHardMask(v2)
injectHardMask(v2, letter="=")

B. WITH A MaskedXString OBJECT

mask0 <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))
x <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")
masks(x) <- mask0
x
subject <- injectHardMask(x)

Matches can span over masked regions with "hard masking":
matchPattern("ACggggggA", subject, max.mismatch=6)
but not with "soft masking":
matchPattern("ACggggggA", x, max.mismatch=6)

letter Subsetting a string

Description

Extract a substring from a string by picking up individual letters by their position.

Usage

letter(x, i)

Arguments

x A character vector, or an XString, XStringViews or MaskedXString object.

i An integer vector with no NAs.

Details

Unlike with the substr or substring functions, i must contain valid positions.

58 letterFrequency

Value

A character vector of length 1 when x is an XString or MaskedXString object (the masks are ignored
for the latter).

A character vector of the same length as x when x is a character vector or an XStringViews object.

Note that, because i must contain valid positions, all non-NA elements in the result are guaranteed
to have exactly length(i) characters.

See Also

subseq, XString-class, XStringViews-class, MaskedXString-class

Examples

x <- c("abcd", "ABC")
i <- c(3, 1, 1, 2, 1)

With a character vector:
letter(x[1], 3:1)
letter(x, 3)
letter(x, i)
#letter(x, 4) # Error!

With a BString object:
letter(BString(x[1]), i) # returns a character vector
BString(x[1])[i] # returns a BString object

With an XStringViews object:
x2 <- as(BStringSet(x), "Views")
letter(x2, i)

letterFrequency Calculate the frequency of letters in a biological sequence, or the

Description

Given a biological sequence (or a set of biological sequences), the alphabetFrequency func-
tion computes the frequency of each letter of the relevant alphabet.

letterFrequency is similar, but more compact if one is only interested in certain letters. It can
also tabulate letters "in common".

letterFrequencyInSlidingView is a more specialized version of letterFrequency
for (non-masked) XString objects. It tallys the requested letter frequencies for a fixed-width view,
or window, that is conceptually slid along the entire input sequence.

The consensusMatrix function computes the consensus matrix of a set of sequences, and the
consensusString function creates the consensus sequence from the consensus matrix based
upon specified criteria.

In this man page we call "DNA input" (or "RNA input") an XString, XStringSet, XStringViews or
MaskedXString object of base type DNA (or RNA).

letterFrequency 59

Usage

alphabetFrequency(x, as.prob=FALSE, ...)
hasOnlyBaseLetters(x)
uniqueLetters(x)

letterFrequency(x, letters, OR="|", as.prob=FALSE, ...)
letterFrequencyInSlidingView(x, view.width, letters, OR="|", as.prob=FALSE)

consensusMatrix(x, as.prob=FALSE, shift=0L, width=NULL, ...)

S4 method for signature 'matrix'
consensusString(x, ambiguityMap="?", threshold=0.5)
S4 method for signature 'DNAStringSet'
consensusString(x, ambiguityMap=IUPAC_CODE_MAP,

threshold=0.25, shift=0L, width=NULL)
S4 method for signature 'RNAStringSet'
consensusString(x,

ambiguityMap=
structure(as.character(RNAStringSet(DNAStringSet(IUPAC_CODE_MAP))),

names=
as.character(RNAStringSet(DNAStringSet(names(IUPAC_CODE_MAP))))),

threshold=0.25, shift=0L, width=NULL)

Arguments

x An XString, XStringSet, XStringViews or MaskedXString object for alphabetFrequency,
letterFrequency, or uniqueLetters.
DNA or RNA input for hasOnlyBaseLetters.
An XString object for letterFrequencyInSlidingView.
A character vector, or an XStringSet or XStringViews object for consensusMatrix.
A consensus matrix (as returned by consensusMatrix), or an XStringSet or
XStringViews object for consensusString.

as.prob If TRUE then probabilities are reported, otherwise counts (the default).

view.width For letterFrequencyInSlidingView, the constant (e.g. 35, 48, 1000)
size of the "window" to slide along x. The specified letters are tabulated
in each window of length view.width. The rows of the result (see value)
correspond to the various windows.

letters For letterFrequency or letterFrequencyInSlidingView, a char-
acter vector (e.g. "C", "CG", c("C", "G")) giving the letters to tabulate. When
x is DNA or RNA input, letters must come from alphabet(x). Ex-
cept with OR=0, multi-character elements of letters (’nchar’ > 1) are taken as
groupings of letters into subsets, to be tabulated in common ("or"’d), as if their
alphabetFrequency’s were added (Arithmetic). The columns of the result (see
value) correspond to the individual and sets of letters which are counted sepa-
rately. Unrelated (and, with some post-processing, related) counts may of course
be obtained in separate calls.

OR For letterFrequency or letterFrequencyInSlidingView, the string
(default |) to use as a separator in forming names for the "grouped" columns,
e.g. "C|G". The otherwise exceptional value 0 (zero) disables or’ing and is
provided for convenience, allowing a single multi-character string (or several

60 letterFrequency

strings) of letters that should be counted separately. If some but not all letters
are to be counted separately, they must reside in separate elements of letters
(with ’nchar’ 1 unless they are to be grouped with other letters), and OR cannot
be 0.

ambiguityMap Either a single character to use when agreement is not reached or a named char-
acter vector where the names are the ambiguity characters and the values are the
combinations of letters that comprise the ambiguity (e.g. link{IUPAC_CODE_MAP}).
When ambiguityMap is a named character vector, occurrences of ambiguous
letters in x are replaced with their base alphabet letters that have been equally
weighted to sum to 1. (See Details for some examples.)

threshold The minimum probability threshold for an agreement to be declared. When
ambiguityMap is a single character, threshold is a single number in (0, 1].
When ambiguityMap is a named character vector (e.g. link{IUPAC_CODE_MAP}),
threshold is a single number in (0, 1/sum(nchar(ambiguityMap) == 1)].

... Further arguments to be passed to or from other methods.
For the XStringViews and XStringSet methods, the collapse argument is
accepted.
Except for letterFrequency or letterFrequencyInSlidingView,
and with DNA or RNA input, the baseOnly argument is accepted. If baseOnly
is TRUE, the returned vector (or matrix) only contains the frequencies of the let-
ters that belong to the "base" alphabet of x i.e. to the alphabet returned by
alphabet(x, baseOnly=TRUE).

shift An integer vector (recycled to the length of x) specifying how each sequence
in x should be (horizontally) shifted with respect to the first column of the con-
sensus matrix to be returned. By default (shift=0), each sequence in x has
its first letter aligned with the first column of the matrix. A positive shift
value means that the corresponding sequence must be shifted to the right, and
a negative shift value that it must be shifted to the left. For example, a shift
of 5 means that it must be shifted 5 positions to the right (i.e. the first letter in
the sequence must be aligned with the 6th column of the matrix), and a shift of
-3 means that it must be shifted 3 positions to the left (i.e. the 4th letter in the
sequence must be aligned with the first column of the matrix).

width The number of columns of the returned matrix for the consensusMatrix
method for XStringSet objects. When width=NULL (the default), then this
method returns a matrix that has just enough columns to have its last column
aligned with the rightmost letter of all the sequences in x after those sequences
have been shifted (see the shift argument above). This ensures that any wider
consensus matrix would be a "padded with zeros" version of the matrix returned
when width=NULL.
The length of the returned sequence for the consensusString method for
XStringSet objects.

Details

alphabetFrequency, letterFrequency, and letterFrequencyInSlidingView are
generic functions defined in the Biostrings package.

letterFrequency is similar to alphabetFrequency but specific to the letters of interest,
hence more compact, especially with OR non-zero.

letterFrequencyInSlidingView yields the same result, on the sequence x, that letterFrequency
would, if applied to the hypothetical (and possibly huge) XStringViews object consisting of all

letterFrequency 61

the intervals of length view.width on x. Taking advantage of the knowledge that successive
"views" are nearly identical, for letter counting purposes, it is both lighter and faster.

For letterFrequencyInSlidingView, a masked (MaskedXString) object x is only sup-
ported through a cast to an (ordinary) XString such as unmasked (which includes its masked
regions).

When consensusString is executed with a named character ambiguityMap argument, it
weights each input string equally and assigns an equal probability to each of the base letters rep-
resented by an ambiguity letter. So for DNA and a threshold of 0.25, a "G" and an "R" would
result in an "R" since 1/2 "G" + 1/2 "R" = 3/4 "G" + 1/4 "A" => "R"; two "G"’s and one "R" would
result in a "G" since 2/3 "G" + 1/3 "R" = 5/6 "G" + 1/6 "A" => "G"; and one "A" and one "N" would
result in an "N" since 1/2 "A" + 1/2 "N" = 5/8 "A" + 1/8 "C" + 1/8 "G" + 1/8 "T" => "N".

Value

alphabetFrequency returns an integer vector when x is an XString or MaskedXString ob-
ject. When x is an XStringSet or XStringViews object, then it returns an integer matrix with
length(x) rows where the i-th row contains the frequencies for x[[i]]. If x is a DNA or
RNA input, then the returned vector is named with the letters in the alphabet. If the baseOnly
argument is TRUE, then the returned vector has only 5 elements: 4 elements corresponding to the 4
nucleotides + the ’other’ element.

letterFrequency returns, similarly, an integer vector or matrix, but restricted and/or collated
according to letters and OR.

letterFrequencyInSlidingView returns, for an XString object x of length (nchar) L, an
integer matrix with L-view.width+1 rows, the i-th of which holding the letter frequencies of
substring(x, i, i+view.width-1).

hasOnlyBaseLetters returns TRUE or FALSE indicating whether or not x contains only base
letters (i.e. As, Cs, Gs and Ts for DNA input and As, Cs, Gs and Us for RNA input).

uniqueLetters returns a vector of 1-letter or empty strings. The empty string is used to repre-
sent the nul character if x happens to contain any. Note that this can only happen if the base class
of x is BString.

An integer matrix with letters as row names for consensusMatrix.

A standard character string for consensusString.

Author(s)

H. Pages and P. Aboyoun; H. Jaffee for letterFrequency and letterFrequencyInSlidingView

See Also

alphabet, coverage, oligonucleotideFrequency, countPDict, XString-class, XStringSet-
class, XStringViews-class, MaskedXString-class, strsplit

Examples

alphabetFrequency()

data(yeastSEQCHR1)
yeast1 <- DNAString(yeastSEQCHR1)

alphabetFrequency(yeast1)

62 letterFrequency

alphabetFrequency(yeast1, baseOnly=TRUE)

hasOnlyBaseLetters(yeast1)
uniqueLetters(yeast1)

With input made of multiple sequences:
library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
alphabetFrequency(probes[1:50], baseOnly=TRUE)
alphabetFrequency(probes, baseOnly=TRUE, collapse=TRUE)

letterFrequency()

letterFrequency(probes[[1]], letters="ACGT", OR=0)
base_letters <- alphabet(probes, baseOnly=TRUE)
base_letters
letterFrequency(probes[[1]], letters=base_letters, OR=0)
base_letter_freqs <- letterFrequency(probes, letters=base_letters, OR=0)
head(base_letter_freqs)
GC_content <- letterFrequency(probes, letters="CG")
head(GC_content)
letterFrequency(probes, letters="CG", collapse=TRUE)

letterFrequencyInSlidingView()

data(yeastSEQCHR1)
x <- DNAString(yeastSEQCHR1)
view.width <- 48
letters <- c("A", "CG")
two_columns <- letterFrequencyInSlidingView(x, view.width, letters)
head(two_columns)
tail(two_columns)
three_columns <- letterFrequencyInSlidingView(x, view.width, letters, OR=0)
head(three_columns)
tail(three_columns)
stopifnot(identical(two_columns[, "C|G"],

three_columns[, "C"] + three_columns[, "G"]))

Note that, alternatively, 'three_columns' can also be obtained by
creating the views on 'x' (as a Views object) and by calling
alphabetFrequency() on it. But, of course, that is be *much* less
efficient (both, in terms of memory and speed) than using
letterFrequencyInSlidingView():
v <- Views(x, start=seq_len(length(x) - view.width + 1), width=view.width)
v
three_columns2 <- alphabetFrequency(v, baseOnly=TRUE)[, c("A", "C", "G")]
stopifnot(identical(three_columns2, three_columns))

Set the width of the view to length(x) to get the global frequencies:
letterFrequencyInSlidingView(x, letters="ACGTN", view.width=length(x), OR=0)

consensus*()

Read in ORF data:

longestConsecutive 63

file <- system.file("extdata", "someORF.fa", package="Biostrings")
orf <- read.DNAStringSet(file)

To illustrate, the following example assumes the ORF data
to be aligned for the first 10 positions (patently false):
orf10 <- DNAStringSet(orf, end=10)
consensusMatrix(orf10, baseOnly=TRUE)

The following example assumes the first 10 positions to be aligned
after some incremental shifting to the right (patently false):
consensusMatrix(orf10, baseOnly=TRUE, shift=0:6)
consensusMatrix(orf10, baseOnly=TRUE, shift=0:6, width=10)

For the character matrix containing the "exploded" representation
of the strings, do:
as.matrix(orf10, use.names=FALSE)

consensusMatrix() can be used to just compute the alphabet frequency
for each position in the input sequences:
consensusMatrix(probes, baseOnly=TRUE)

After sorting, the first 5 probes might look similar (at least on
their first bases):
consensusString(sort(probes)[1:5])
consensusString(sort(probes)[1:5], ambiguityMap = "N", threshold = 0.5)

Consensus involving ambiguity letters in the input strings
consensusString(DNAStringSet(c("NNNN","ACTG")))
consensusString(DNAStringSet(c("AANN","ACTG")))
consensusString(DNAStringSet(c("ACAG","ACAR")))
consensusString(DNAStringSet(c("ACAG","ACAR", "ACAG")))

C. RELATIONSHIP BETWEEN consensusMatrix() AND coverage()

Applying colSums() on a consensus matrix gives the coverage that
would be obtained by piling up (after shifting) the input sequences
on top of an (imaginary) reference sequence:
cm <- consensusMatrix(orf10, shift=0:6, width=10)
colSums(cm)

Note that this coverage can also be obtained with:
as.integer(coverage(IRanges(rep(1, length(orf)), width(orf)), shift=0:6, width=10))

longestConsecutive Obtain the length of the longest substring containing only ’letter’

Description

This function accepts a character vector and computes the length of the longest substring containing
only letter for each element of x.

Usage

longestConsecutive(seq, letter)

64 lowlevel-matching

Arguments

seq Character vector.

letter Character vector of length 1, containing one single character.

Details

The elements of x can be in upper case, lower case or mixed. NAs are handled.

Value

An integer vector of the same length as x.

Author(s)

W. Huber

See Also

complementSeq,basecontent,reverseSeq

Examples

v = c("AAACTGTGFG", "GGGAATT", "CCAAAAAAAAAATT")
longestConsecutive(v, "A")

lowlevel-matching Low-level matching functions

Description

In this man page we define precisely and illustrate what a "match" of a pattern P in a subject S
is in the context of the Biostrings package. This definition of a "match" is central to most pattern
matching functions available in this package: unless specified otherwise, most of them will adhere
to the definition provided here.

hasLetterAt checks whether a sequence or set of sequences has the specified letters at the
specified positions.

neditAt, isMatchingAt and which.isMatchingAt are low-level matching functions that
only look for matches at the specified positions in the subject.

Usage

hasLetterAt(x, letter, at, fixed=TRUE)

neditAt() and related utils:
neditAt(pattern, subject, at=1,

with.indels=FALSE, fixed=TRUE)
neditStartingAt(pattern, subject, starting.at=1,

with.indels=FALSE, fixed=TRUE)
neditEndingAt(pattern, subject, ending.at=1,

with.indels=FALSE, fixed=TRUE)

lowlevel-matching 65

isMatchingAt() and related utils:
isMatchingAt(pattern, subject, at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)
isMatchingStartingAt(pattern, subject, starting.at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)
isMatchingEndingAt(pattern, subject, ending.at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)

which.isMatchingAt() and related utils:
which.isMatchingAt(pattern, subject, at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

which.isMatchingStartingAt(pattern, subject, starting.at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

which.isMatchingEndingAt(pattern, subject, ending.at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

Arguments

x A character vector, or an XString or XStringSet object.

letter A character string or an XString object containing the letters to check.
at, starting.at, ending.at

An integer vector specifying the starting (for starting.at and at) or end-
ing (for ending.at) positions of the pattern relatively to the subject. With
auto.reduce.pattern (below), either a single integer or a constant vec-
tor of length nchar(pattern) (below), to which the former is immediately
converted.
For the hasLetterAt function, letter and at must have the same length.

pattern The pattern string (but see auto.reduce.pattern, below).

subject A character vector, or an XString or XStringSet object containing the subject
sequence(s).

max.mismatch, min.mismatch
Integer vectors of length >= 1 recycled to the length of the at (or starting.at,
or ending.at) argument. More details below.

with.indels See details below.

fixed Only with a DNAString or RNAString-based subject can a fixed value other
than the default (TRUE) be used.
If TRUE (the default), an IUPAC ambiguity code in the pattern can only match
the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity
code in the pattern can match any letter in the subject that is associated with the
code, and vice versa. See IUPAC_CODE_MAP for more information about the
IUPAC Extended Genetic Alphabet.
fixed can also be a character vector, a subset of c("pattern", "subject").
fixed=c("pattern", "subject") is equivalent to fixed=TRUE (the
default). An empty vector is equivalent to fixed=FALSE. With fixed="subject",
ambiguities in the pattern only are interpreted as wildcards. With fixed="pattern",
ambiguities in the subject only are interpreted as wildcards.

66 lowlevel-matching

follow.index Whether the single integer returned by which.isMatchingAt (and related
utils) should be the first *value* in at for which a match occurred, or its *index*
in at (the default).

auto.reduce.pattern
Whether pattern should be effectively shortened by 1 letter, from its begin-
ning for which.isMatchingStartingAt and from its end for which.isMatchingEndingAt,
for each successive (at, max.mismatch) "pair".

Details

A "match" of pattern P in subject S is a substring S’ of S that is considered similar enough to P
according to some distance (or metric) specified by the user. 2 distances are supported by most
pattern matching functions in the Biostrings package. The first (and simplest) one is the "number of
mismatching letters". It is defined only when the 2 strings to compare have the same length, so when
this distance is used, only matches that have the same number of letters as P are considered. The
second one is the "edit distance" (aka Levenshtein distance): it’s the minimum number of operations
needed to transform P into S’, where an operation is an insertion, deletion, or substitution of a single
letter. When this metric is used, matches can have a different number of letters than P.

The neditAt function implements these 2 distances. If with.indels is FALSE (the default),
then the first distance is used i.e. neditAt returns the "number of mismatching letters" between
the pattern P and the substring S’ of S starting at the positions specified in at (note that neditAt
is vectorized so a long vector of integers can be passed thru the at argument). If with.indels
is TRUE, then the "edit distance" is used: for each position specified in at, P is compared to all
the substrings S’ of S starting at this position and the smallest distance is returned. Note that this
distance is guaranteed to be reached for a substring of length < 2*length(P) so, of course, in practice,
P only needs to be compared to a small number of substrings for every starting position.

Value

hasLetterAt: A logical matrix with one row per element in x and one column per letter/position
to check. When a specified position is invalid with respect to an element in x then the corresponding
matrix element is set to NA.

neditAt: If subject is an XString object, then return an integer vector of the same length as
at. If subject is an XStringSet object, then return the integer matrix with length(at) rows
and length(subject) columns defined by:

sapply(unname(subject),
function(x) neditAt(pattern, x, ...))

neditStartingAt is identical to neditAt except that the at argument is now called starting.at.
neditEndingAt is similar to neditAt except that the at argument is now called ending.at
and must contain the ending positions of the pattern relatively to the subject.

isMatchingAt: If subject is an XString object, then return the logical vector defined by:

min.mismatch <= neditAt(...) <= max.mismatch

If subject is an XStringSet object, then return the logical matrix with length(at) rows and
length(subject) columns defined by:

lowlevel-matching 67

sapply(unname(subject),
function(x) isMatchingAt(pattern, x, ...))

isMatchingStartingAt is identical to isMatchingAt except that the at argument is now
called starting.at. isMatchingEndingAt is similar to isMatchingAt except that the
at argument is now called ending.at and must contain the ending positions of the pattern rela-
tively to the subject.

which.isMatchingAt: The default behavior (follow.index=FALSE) is as follow. If subject
is an XString object, then return the single integer defined by:

which(isMatchingAt(...))[1]

If subject is an XStringSet object, then return the integer vector defined by:

sapply(unname(subject),
function(x) which.isMatchingAt(pattern, x, ...))

If follow.index=TRUE, then the returned value is defined by:

at[which.isMatchingAt(..., follow.index=FALSE)]

which.isMatchingStartingAt is identical to which.isMatchingAt except that the
at argument is now called starting.at. which.isMatchingEndingAt is similar to
which.isMatchingAt except that the at argument is now called ending.at and must con-
tain the ending positions of the pattern relatively to the subject.

See Also

nucleotideFrequencyAt, matchPattern, matchPDict, matchLRPatterns, trimLRPatterns,
IUPAC_CODE_MAP, XString-class, align-utils

Examples

hasLetterAt()

x <- DNAStringSet(c("AAACGT", "AACGT", "ACGT", "TAGGA"))
hasLetterAt(x, "AAAAAA", 1:6)

hasLetterAt() can be used to answer questions like: "which elements
in 'x' have an A at position 2 and a G at position 4?"
q1 <- hasLetterAt(x, "AG", c(2, 4))
which(rowSums(q1) == 2)

or "how many probes in the drosophila2 chip have T, G, T, A at
position 2, 4, 13 and 20, respectively?"
library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
q2 <- hasLetterAt(probes, "TGTA", c(2, 4, 13, 20))
sum(rowSums(q2) == 4)

68 lowlevel-matching

or "what's the probability to have an A at position 25 if there is
one at position 13?"
q3 <- hasLetterAt(probes, "AACGT", c(13, 25, 25, 25, 25))
sum(q3[, 1] & q3[, 2]) / sum(q3[, 1])
Probabilities to have other bases at position 25 if there is an A
at position 13:
sum(q3[, 1] & q3[, 3]) / sum(q3[, 1]) # C
sum(q3[, 1] & q3[, 4]) / sum(q3[, 1]) # G
sum(q3[, 1] & q3[, 5]) / sum(q3[, 1]) # T

See ?nucleotideFrequencyAt for another way to get those results.

neditAt() / isMatchingAt() / which.isMatchingAt()

subject <- DNAString("GTATA")

Pattern "AT" matches subject "GTATA" at position 3 (exact match)
neditAt("AT", subject, at=3)
isMatchingAt("AT", subject, at=3)

... but not at position 1
neditAt("AT", subject)
isMatchingAt("AT", subject)

... unless we allow 1 mismatching letter (inexact match)
isMatchingAt("AT", subject, max.mismatch=1)

Here we look at 6 different starting positions and find 3 matches if
we allow 1 mismatching letter
isMatchingAt("AT", subject, at=0:5, max.mismatch=1)

No match
neditAt("NT", subject, at=1:4)
isMatchingAt("NT", subject, at=1:4)

2 matches if N is interpreted as an ambiguity (fixed=FALSE)
neditAt("NT", subject, at=1:4, fixed=FALSE)
isMatchingAt("NT", subject, at=1:4, fixed=FALSE)

max.mismatch != 0 and fixed=FALSE can be used together
neditAt("NCA", subject, at=0:5, fixed=FALSE)
isMatchingAt("NCA", subject, at=0:5, max.mismatch=1, fixed=FALSE)

some_starts <- c(10:-10, NA, 6)
subject <- DNAString("ACGTGCA")
is_matching <- isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1)
some_starts[is_matching]

which.isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1)
which.isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1,

follow.index=TRUE)

WITH INDELS

subject <- BString("ABCDEFxxxCDEFxxxABBCDE")

maskMotif 69

neditAt("ABCDEF", subject, at=9)
neditAt("ABCDEF", subject, at=9, with.indels=TRUE)
isMatchingAt("ABCDEF", subject, at=9, max.mismatch=1, with.indels=TRUE)
isMatchingAt("ABCDEF", subject, at=9, max.mismatch=2, with.indels=TRUE)
neditAt("ABCDEF", subject, at=17)
neditAt("ABCDEF", subject, at=17, with.indels=TRUE)
neditEndingAt("ABCDEF", subject, ending.at=22)
neditEndingAt("ABCDEF", subject, ending.at=22, with.indels=TRUE)

maskMotif Masking by content (or by position)

Description

Functions for masking a sequence by content (or by position).

Usage

maskMotif(x, motif, min.block.width=1, ...)
mask(x, start=NA, end=NA, pattern)

Arguments

x The sequence to mask.

motif The motif to mask in the sequence.

min.block.width
The minimum width of the blocks to mask.

... Additional arguments for matchPattern.

start An integer vector containing the starting positions of the regions to mask.

end An integer vector containing the ending positions of the regions to mask.

pattern The motif to mask in the sequence.

Value

A MaskedXString object for maskMotif and an XStringViews object for mask.

Author(s)

H. Pages

See Also

read.Mask, matchPattern, XString-class, MaskedXString-class, XStringViews-class, MaskCollection-
class

70 maskMotif

Examples

EXAMPLE 1

maskMotif(BString("AbcbbcbEEE"), "bcb")
maskMotif(BString("AbcbcbEEE"), "bcb")

maskMotif() can be used in an incremental way to mask more than 1
motif. Note that maskMotif() does not try to mask again what's
already masked (i.e. the new mask will never overlaps with the
previous masks) so the order in which the motifs are masked actually
matters as it will affect the total set of masked positions.
x0 <- BString("AbcbEEEEEbcbbEEEcbbcbc")
x1 <- maskMotif(x0, "E")
x1
x2 <- maskMotif(x1, "bcb")
x2
x3 <- maskMotif(x2, "b")
x3
Note that inverting the order in which "b" and "bcb" are masked would
lead to a different final set of masked positions.
Also note that the order doesn't matter if the motifs to mask don't
overlap (we assume that the motifs are unique) i.e. if the prefix of
each motif is not the suffix of any other motif. This is of course
the case when all the motifs have only 1 letter.

EXAMPLE 2

x <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

Mask the N-blocks
x1 <- maskMotif(x, "N")
x1
as(x1, "XStringViews")
gaps(x1)
as(gaps(x1), "XStringViews")

Mask the AC-blocks
x2 <- maskMotif(x1, "AC")
x2
gaps(x2)

Mask the GA-blocks
x3 <- maskMotif(x2, "GA", min.block.width=5)
x3 # masks 2 and 3 overlap
gaps(x3)

EXAMPLE 3

library(BSgenome.Dmelanogaster.UCSC.dm3)
chrU <- Dmelanogaster$chrU

match-utils 71

chrU
alphabetFrequency(chrU)
chrU <- maskMotif(chrU, "N")
chrU
alphabetFrequency(chrU)
as(chrU, "XStringViews")
as(gaps(chrU), "XStringViews")

mask2 <- Mask(mask.width=length(chrU), start=c(50000, 350000, 543900), width=25000)
names(mask2) <- "some ugly regions"
masks(chrU) <- append(masks(chrU), mask2)
chrU
as(chrU, "XStringViews")
as(gaps(chrU), "XStringViews")

EXAMPLE 4

Note that unlike maskMotif(), mask() returns an XStringViews object!

masking "by position"
mask("AxyxyxBC", 2, 6)

masking "by content"
mask("AxyxyxBC", "xyx")
noN_chrU <- mask(chrU, "N")
noN_chrU
alphabetFrequency(noN_chrU, collapse=TRUE)

match-utils Utility functions operating on the matches returned by a high-level

Description

Miscellaneous utility functions operating on the matches returned by a high-level matching function
like matchPattern, matchPDict, etc...

Usage

mismatch(pattern, x, fixed=TRUE)
nmatch(pattern, x, fixed=TRUE)
nmismatch(pattern, x, fixed=TRUE)
S4 method for signature 'MIndex'
coverage(x, shift=0L, width=NULL, weight=1L)
S4 method for signature 'MaskedXString'
coverage(x, shift=0L, width=NULL, weight=1L)

Arguments

pattern The pattern string.
x An XStringViews object for mismatch (typically, one returned by matchPattern(pattern,

subject)).
An MIndex object for coverage, or any object for which a coveragemethod
is defined. See ?coverage.

72 matchLRPatterns

fixed See ¿lowlevel-matching‘.

shift, width See ?coverage.

weight An integer vector specifying how much each element in x counts.

Details

The mismatch function gives the positions of the mismatching letters of a given pattern relatively
to its matches in a given subject.

The nmatch and nmismatch functions give the number of matching and mismatching letters
produced by the mismatch function.

The coverage function computes the "coverage" of a subject by a given pattern or set of patterns.

Value

mismatch: a list of integer vectors.

nmismatch: an integer vector containing the length of the vectors produced by mismatch.

coverage: an Rle object indicating the coverage of x. See ?coverage for the details. If x is an
MIndex object, the coverage of a given position in the underlying sequence (typically the subject
used during the search that returned x) is the number of matches (or hits) it belongs to.

See Also

lowlevel-matching, matchPattern, matchPDict, XString-class, XStringViews-class, MIndex-
class, coverage, align-utils

Examples

mismatch() / nmismatch()

subject <- DNAString("ACGTGCA")
m <- matchPattern("NCA", subject, max.mismatch=1, fixed=FALSE)
mismatch("NCA", m)
nmismatch("NCA", m)

coverage()

coverage(m)

See ?matchPDict for examples of using coverage() on an MIndex object...

matchLRPatterns Find paired matches in a sequence

Description

The matchLRPatterns function finds paired matches in a sequence i.e. matches specified by a
left pattern, a right pattern and a maximum distance between the left pattern and the right pattern.

matchLRPatterns 73

Usage

matchLRPatterns(Lpattern, Rpattern, max.gaplength, subject,
max.Lmismatch=0, max.Rmismatch=0,
with.Lindels=FALSE, with.Rindels=FALSE,
Lfixed=TRUE, Rfixed=TRUE)

Arguments

Lpattern The left part of the pattern.

Rpattern The right part of the pattern.
max.gaplength

The max length of the gap in the middle i.e the max distance between the left
and right parts of the pattern.

subject An XString, XStringViews or MaskedXString object containing the target se-
quence.

max.Lmismatch
The maximum number of mismatching letters allowed in the left part of the pat-
tern. If non-zero, an inexact matching algorithm is used (see the matchPattern
function for more information).

max.Rmismatch
Same as max.Lmismatch but for the right part of the pattern.

with.Lindels If TRUE then indels are allowed in the left part of the pattern. In that case
max.Lmismatch is interpreted as the maximum "edit distance" allowed in
the left part of the pattern.
See the with.indels argument of the matchPattern function for more
information.

with.Rindels Same as with.Lindels but for the right part of the pattern.

Lfixed Only with a DNAString or RNAString subject can a Lfixed value other than
the default (TRUE) be used.
With Lfixed=FALSE, ambiguities (i.e. letters from the IUPAC Extended Ge-
netic Alphabet (see IUPAC_CODE_MAP) that are not from the base alphabet) in
the left pattern _and_ in the subject are interpreted as wildcards i.e. they match
any letter that they stand for.
Lfixed can also be a character vector, a subset of c("pattern", "subject").
Lfixed=c("pattern", "subject") is equivalent to Lfixed=TRUE
(the default). An empty vector is equivalent to Lfixed=FALSE. With Lfixed="subject",
ambiguities in the pattern only are interpreted as wildcards. With Lfixed="pattern",
ambiguities in the subject only are interpreted as wildcards.

Rfixed Same as Lfixed but for the right part of the pattern.

Value

An XStringViews object containing all the matches, even when they are overlapping (see the ex-
amples below), and where the matches are ordered from left to right (i.e. by ascending starting
position).

Author(s)

H. Pages

74 matchPDict

See Also

matchPattern, matchProbePair, trimLRPatterns, findPalindromes, reverseComplement,
XString-class, XStringViews-class, MaskedXString-class

Examples

library(BSgenome.Dmelanogaster.UCSC.dm3)
subject <- Dmelanogaster$chr3R
Lpattern <- "AGCTCCGAG"
Rpattern <- "TTGTTCACA"
matchLRPatterns(Lpattern, Rpattern, 500, subject) # 1 match

Note that matchLRPatterns() will return all matches, even when they are
overlapping:
subject <- DNAString("AAATTAACCCTT")
matchLRPatterns("AA", "TT", 0, subject) # 1 match
matchLRPatterns("AA", "TT", 1, subject) # 2 matches
matchLRPatterns("AA", "TT", 3, subject) # 3 matches
matchLRPatterns("AA", "TT", 7, subject) # 4 matches

matchPDict Matching a dictionary of patterns against a reference

Description

A set of functions for finding all the occurrences (aka "matches" or "hits") of a set of patterns (aka
the dictionary) in a reference sequence or set of reference sequences (aka the subject)

The following functions differ in what they return: matchPDict returns the "where" information
i.e. the positions in the subject of all the occurrences of every pattern; countPDict returns the
"how many times" information i.e. the number of occurrences for each pattern; and whichPDict
returns the "who" information i.e. which patterns in the input dictionary have at least one match.

vcountPDict and vwhichPDict are vectorized versions of countPDict and whichPDict,
respectively, that is, they work on a set of reference sequences in a vectorized fashion.

This man page shows how to use these functions (aka the *PDict functions) for exact matching
of a constant width dictionary i.e. a dictionary where all the patterns have the same length (same
number of nucleotides).

See ¿matchPDict-inexact‘ for how to use these functions for inexact matching or when the
original dictionary has a variable width.

Usage

matchPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)

countPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)

whichPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)

matchPDict 75

vcountPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", collapse=FALSE, weight=1L,
verbose=FALSE, ...)

vwhichPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)

Arguments

pdict A PDict object containing the preprocessed dictionary.
All these functions also work with a dictionary that has not been preprocessed (in
other words, the pdict argument can receive an XStringSet object). Of course,
it won’t be as fast as with a preprocessed dictionary, but it will generally be
slightly faster than using matchPattern/countPattern or vmatchPattern/vcountPattern
in a "lapply/sapply loop", because, here, looping is done at the C-level. How-
ever, by using a non-preprocessed dictionary, many of the restrictions that apply
to preprocessed dictionaries don’t apply anymore. For example, the dictionary
doesn’t need to be rectangular or to be a DNAStringSet object: it can be any
type of XStringSet object and have a variable width.

subject An XString or MaskedXString object containing the subject sequence for matchPDict,
countPDict and whichPDict.
An XStringSet object containing the subject sequences for vcountPDict and
vwhichPDict.
For now, only subjects of base class DNAString are supported.

max.mismatch, min.mismatch
The maximum and minimum number of mismatching letters allowed (see ?isMatching
for the details). This man page focuses on exact matching of a constant width
dictionary so max.mismatch=0 in the examples below. See ¿matchPDict-
inexact‘ for inexact matching.

with.indels Only supported by countPDict, whichPDict, vcountPDict and vwhichPDict
at the moment, and only when the input dictionary is non-preprocessed (i.e.
XStringSet).
If TRUE then indels are allowed. In that case, min.mismatch must be 0
and max.mismatch is interpreted as the maximum "edit distance" allowed
between any pattern and any of its matches. See ¿matchPattern‘ for more
information.

fixed Whether IUPAC ambiguity codes should be interpreted literally or not (see
?isMatching for more information). This man page focuses on exact match-
ing of a constant width dictionary so fixed=TRUE in the examples below. See
¿matchPDict-inexact‘ for inexact matching.

algorithm Ignored if pdict is a preprocessed dictionary (i.e. a PDict object). Other-
wise, can be one of the following: "auto", "naive-exact", "naive-
inexact", "boyer-moore" or "shift-or". See ?matchPattern for
more information. Note that "indels" is not supported for now.

verbose TRUE or FALSE.
collapse, weight

collapse must be FALSE, 1, or 2.
If collapse=FALSE (the default), then weight is ignored and vcountPDict
returns the full matrix of counts (M0). If collapse=1, then M0 is collapsed

76 matchPDict

"horizontally" i.e. it is turned into a vector with length equal to length(pdict).
If weight=1L (the default), then this vector is defined by rowSums(M0). If
collapse=2, then M0 is collapsed "vertically" i.e. it is turned into a vector
with length equal to length(subject). If weight=1L (the default),
then this vector is defined by colSums(M0).
If collapse=1 or collapse=2, then the elements in subject (collapse=1)
or in pdict (collapse=2) can be weighted thru the weight argument. In
that case, the returned vector is defined by M0 %*% rep(weight, length.out=length(subject))
and rep(weight, length.out=length(pdict)) %*% M0, respec-
tively.

... Additional arguments for methods.

Details

In this man page, we assume that you know how to preprocess a dictionary of DNA patterns that
can then be used with any of the *PDict functions described here. Please see ?PDict if you
don’t.

When using the *PDict functions for exact matching of a constant width dictionary, the standard
way to preprocess the original dictionary is by calling the PDict constructor on it with no extra
arguments. This returns the preprocessed dictionary in a PDict object that can be used with any of
the *PDict functions.

Value

If M denotes the number of patterns in the pdict argument (M <- length(pdict)), then
matchPDict returns an MIndex object of length M, and countPDict an integer vector of length
M.

whichPDict returns an integer vector made of the indices of the patterns in the pdict argument
that have at least one match.

If N denotes the number of sequences in the subject argument (N <- length(subject)),
then vcountPDict returns an integer matrix with M rows and N columns, unless the collapse
argument is used. In that case, depending on the type of weight, an integer or numeric vector is
returned (see above for the details).

vwhichPDict returns a list of N integer vectors.

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

See Also

PDict-class, MIndex-class, matchPDict-inexact, isMatching, coverage,MIndex-method,
matchPattern, alphabetFrequency, DNAStringSet-class, XStringViews-class, MaskedDNAString-
class

matchPDict 77

Examples

A. A SIMPLE EXAMPLE OF EXACT MATCHING

Creating the pattern dictionary:
library(drosophila2probe)
dict0 <- DNAStringSet(drosophila2probe)
dict0 # The original dictionary.
length(dict0) # Hundreds of thousands of patterns.
pdict0 <- PDict(dict0) # Store the original dictionary in

a PDict object (preprocessing).

Using the pattern dictionary on chromosome 3R:
library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- Dmelanogaster$chr3R # Load chromosome 3R
chr3R
mi0 <- matchPDict(pdict0, chr3R) # Search...

Looking at the matches:
start_index <- startIndex(mi0) # Get the start index.
length(start_index) # Same as the original dictionary.
start_index[[8220]] # Starts of the 8220th pattern.
end_index <- endIndex(mi0) # Get the end index.
end_index[[8220]] # Ends of the 8220th pattern.
count_index <- countIndex(mi0) # Get the number of matches per pattern.
count_index[[8220]]
mi0[[8220]] # Get the matches for the 8220th pattern.
start(mi0[[8220]]) # Equivalent to startIndex(mi0)[[8220]].
sum(count_index) # Total number of matches.
table(count_index)
i0 <- which(count_index == max(count_index))
pdict0[[i0]] # The pattern with most occurrences.
mi0[[i0]] # Its matches as an IRanges object.
Views(chr3R, mi0[[i0]]) # And as an XStringViews object.

Get the coverage of the original subject:
cov3R <- as.integer(coverage(mi0, width=length(chr3R)))
max(cov3R)
mean(cov3R)
sum(cov3R != 0) / length(cov3R) # Only 2.44% of chr3R is covered.
if (interactive()) {
plotCoverage <- function(cx, start, end)
{
plot.new()
plot.window(c(start, end), c(0, 20))
axis(1)
axis(2)
axis(4)
lines(start:end, cx[start:end], type="l")

}
plotCoverage(cov3R, 27600000, 27900000)

}

B. NAMING THE PATTERNS

78 matchPDict

The names of the original patterns, if any, are propagated to the
PDict and MIndex objects:
names(dict0) <- mkAllStrings(letters, 4)[seq_len(length(dict0))]
dict0
dict0[["abcd"]]
pdict0n <- PDict(dict0)
names(pdict0n)[1:30]
pdict0n[["abcd"]]
mi0n <- matchPDict(pdict0n, chr3R)
names(mi0n)[1:30]
mi0n[["abcd"]]

This is particularly useful when unlisting an MIndex object:
unlist(mi0)[1:10]
unlist(mi0n)[1:10] # keep track of where the matches are coming from

C. PERFORMANCE

If getting the number of matches is what matters only (without
regarding their positions), then countPDict() will be faster,
especially when there is a high number of matches:

count_index0 <- countPDict(pdict0, chr3R)
stopifnot(identical(count_index0, count_index))

if (interactive()) {
What's the impact of the dictionary width on performance?
Below is some code that can be used to figure out (will take a long
time to run). For different widths of the original dictionary, we
look at:
o pptime: preprocessing time (in sec.) i.e. time needed for
building the PDict object from the truncated input
sequences;
o nnodes: nb of nodes in the resulting Aho-Corasick tree;
o nupatt: nb of unique truncated input sequences;
o matchtime: time (in sec.) needed to find all the matches;
o totalcount: total number of matches.
getPDictStats <- function(dict, subject)
{
ans_width <- width(dict[1])
ans_pptime <- system.time(pdict <- PDict(dict))[["elapsed"]]
pptb <- pdict@threeparts@pptb
ans_nnodes <- nnodes(pptb)
ans_nupatt <- sum(!duplicated(pdict))
ans_matchtime <- system.time(

mi0 <- matchPDict(pdict, subject)
)[["elapsed"]]

ans_totalcount <- sum(countIndex(mi0))
list(
width=ans_width,
pptime=ans_pptime,
nnodes=ans_nnodes,
nupatt=ans_nupatt,

matchPDict 79

matchtime=ans_matchtime,
totalcount=ans_totalcount

)
}
stats <- lapply(8:25,

function(width)
getPDictStats(DNAStringSet(dict0, end=width), chr3R))

stats <- data.frame(do.call(rbind, stats))
stats

}

D. USING A NON-PREPROCESSED DICTIONARY

dict3 <- DNAStringSet(mkAllStrings(DNA_BASES, 3)) # all trinucleotides
dict3
pdict3 <- PDict(dict3)

The 3 following calls are equivalent (from faster to slower):
res3a <- countPDict(pdict3, chr3R)
res3b <- countPDict(dict3, chr3R)
res3c <- sapply(dict3,

function(pattern) countPattern(pattern, chr3R))
stopifnot(identical(res3a, res3b))
stopifnot(identical(res3a, res3c))

One reason for using a non-preprocessed dictionary is to get rid of
all the constraints associated with preprocessing, e.g., when
preprocessing with \code{\link{PDict}}, the input dictionary must
be DNA and a Trusted Band must be defined (explicitly or implicitly).
See \code{?\link{PDict}} for more information about these constraints.
In particular, using a non-preprocessed dictionary can be
useful for the kind of inexact matching that can't be achieved
with a \link{PDict} object (if performance is not an issue).
See \code{?`\link{matchPDict-inexact}`} for more information about
inexact matching.

dictD <- xscat(dict3, "N", reverseComplement(dict3))

The 2 following calls are equivalent (from faster to slower):
resDa <- matchPDict(dictD, chr3R, fixed=FALSE)
resDb <- sapply(dictD,

function(pattern) matchPattern(pattern, chr3R, fixed=FALSE))
stopifnot(all(sapply(seq_len(length(dictD)),

function(i) identical(resDa[[i]], IRanges(resDb[[i]])))))

E. vcountPDict()

subject <- Dmelanogaster$upstream1000[1:100]
subject
mat1 <- vcountPDict(pdict0, subject)
dim(mat1) # length(pdict0) x length(subject)
nhit_per_probe <- rowSums(mat1)
table(nhit_per_probe)

80 matchPDict

Without vcountPDict(), 'mat1' could have been computed with:
mat2 <- sapply(unname(subject), function(x) countPDict(pdict0, x))
stopifnot(identical(mat1, mat2))
but using vcountPDict() is faster (10x or more, depending of the
average length of the sequences in 'subject').

if (interactive()) {
This will fail (with message "allocMatrix: too many elements
specified") because, on most platforms, vectors and matrices in R
are limited to 2^31 elements:
subject <- Dmelanogaster$upstream1000
vcountPDict(pdict0, subject)
length(pdict0) * length(Dmelanogaster$upstream1000)
1 * length(pdict0) * length(Dmelanogaster$upstream1000) # > 2^31
But this will work:
nhit_per_seq <- vcountPDict(pdict0, subject, collapse=2)
sum(nhit_per_seq >= 1) # nb of subject sequences with at least 1 hit
table(nhit_per_seq)
which(nhit_per_seq == 37) # 603
sum(countPDict(pdict0, subject[[603]])) # 37

}

F. RELATIONSHIP BETWEEN vcountPDict(), countPDict() AND
vcountPattern()

pdict3 <- PDict(dict3)
subject <- Dmelanogaster$upstream1000
subject

The 4 following calls are equivalent (from faster to slower):
mat3a <- vcountPDict(pdict3, subject)
mat3b <- vcountPDict(dict3, subject)
mat3c <- sapply(dict3,

function(pattern) vcountPattern(pattern, subject))
mat3d <- sapply(unname(subject),

function(x) countPDict(pdict3, x))
stopifnot(identical(mat3a, mat3b))
stopifnot(identical(mat3a, t(mat3c)))
stopifnot(identical(mat3a, mat3d))

The 3 following calls are equivalent (from faster to slower):
nhitpp3a <- vcountPDict(pdict3, subject, collapse=1) # rowSums(mat3a)
nhitpp3b <- vcountPDict(dict3, subject, collapse=1)
nhitpp3c <- sapply(dict3,

function(pattern) sum(vcountPattern(pattern, subject)))
stopifnot(identical(nhitpp3a, nhitpp3b))
stopifnot(identical(nhitpp3a, nhitpp3c))

The 3 following calls are equivalent (from faster to slower):
nhitps3a <- vcountPDict(pdict3, subject, collapse=2) # colSums(mat3a)
nhitps3b <- vcountPDict(dict3, subject, collapse=2)
nhitps3c <- sapply(unname(subject),

function(x) sum(countPDict(pdict3, x)))
stopifnot(identical(nhitps3a, nhitps3b))
stopifnot(identical(nhitps3a, nhitps3c))

matchPDict 81

G. vwhichPDict()

The 4 following calls are equivalent (from faster to slower):
vwp3a <- vwhichPDict(pdict3, subject)
vwp3b <- vwhichPDict(dict3, subject)
vwp3c <- lapply(seq_len(ncol(mat3a)), function(j) which(mat3a[, j] != 0L))
vwp3d <- lapply(unname(subject), function(x) whichPDict(pdict3, x))
stopifnot(identical(vwp3a, vwp3b))
stopifnot(identical(vwp3a, vwp3c))
stopifnot(identical(vwp3a, vwp3d))

table(sapply(vwp3a, length))
which.min(sapply(vwp3a, length))
Get the trinucleotides not represented in reference sequence 9181:
dict3[-vwp3a[[9181]]] # 21 trinucleotides

H. MAPPING PROBE SET IDS BETWEEN CHIPS WITH vwhichPDict()

Here we show a simple (and very naive) algorithm for mapping probe
set IDs between the hgu95av2 and hgu133a chips (Affymetrix).
2 probe set IDs are considered mapped iff they share at least one
probe.
WARNING: This example takes about 25 minutes to run.
if (interactive()) {

library(hgu95av2probe)
library(hgu133aprobe)
probes1 <- DNAStringSet(hgu95av2probe)
probes2 <- DNAStringSet(hgu133aprobe)
pdict2 <- PDict(probes2)

Get the mapping from probes1 to probes2 (based on exact matching):
map1to2 <- vwhichPDict(pdict2, probes1) # takes about 10 minutes

The following helper function uses the probe level mapping to induce
the mapping at the probe set IDs level (from hgu95av2 to hgu133a).
To keep things simple, 2 probe set IDs are considered mapped iff
each of them contains at least one probe mapped to one probe of
the other:
mapProbeSetIDs1to2 <- function(psID)
unique(hgu133aprobe$Probe.Set.Name[unlist(
map1to2[hgu95av2probe$Probe.Set.Name == psID]

)])

Use the helper function to build the complete mapping:
psIDs1 <- unique(hgu95av2probe$Probe.Set.Name)
mapPSIDs1to2 <- lapply(psIDs1, mapProbeSetIDs1to2) # about 3 min.
names(mapPSIDs1to2) <- psIDs1

Do some basic stats:
table(sapply(mapPSIDs1to2, length))

[ADVANCED USERS ONLY]
An alternative that is slightly faster is to put all the probes
(hgu95av2 + hgu133a) in a single PDict object and then query its

82 matchPDict-inexact

'dups0' slot directly. This slot is a Dups object containing the
mapping between duplicated patterns.
Note that we can do this only because all the probes have the
same length (25) and because we are doing exact matching:

probes12 <- DNAStringSet(c(hgu95av2probe$sequence, hgu133aprobe$sequence))
pdict12 <- PDict(probes12)
dups0 <- pdict12@dups0

mapProbeSetIDs1to2alt <- function(psID)
{
ii1 <- unique(togroup(dups0, which(hgu95av2probe$Probe.Set.Name == psID)))
ii2 <- members(dups0, ii1) - length(probes1)
ii2 <- ii2[ii2 >= 1L]
unique(hgu133aprobe$Probe.Set.Name[ii2])

}

mapPSIDs1to2alt <- lapply(psIDs1, mapProbeSetIDs1to2alt) # about 10 min.
names(mapPSIDs1to2alt) <- psIDs1

'mapPSIDs1to2alt' and 'mapPSIDs1to2' contain the same mapping:
stopifnot(identical(lapply(mapPSIDs1to2alt, sort),

lapply(mapPSIDs1to2, sort)))
}

matchPDict-inexact Inexact matching with matchPDict()/countPDict()/whichPDict()

Description

The matchPDict, countPDict and whichPDict functions efficiently find the occurrences in
a text (the subject) of all patterns stored in a preprocessed dictionary.

This man page shows how to use these functions for inexact (or fuzzy) matching or when the original
dictionary has a variable width.

See ?matchPDict for how to use these functions for exact matching of a constant width dictio-
nary i.e. a dictionary where all the patterns have the same length (same number of nucleotides).

Details

In this man page, we assume that you know how to preprocess a dictionary of DNA patterns that
can then be used with matchPDict, countPDict or whichPDict. Please see ?PDict if you
don’t.

matchPDict and family support different kinds of inexact matching but with some restrictions.
Inexact matching is controlled via the definition of a Trusted Band during the preprocessing step
and/or via the max.mismatch, min.mismatch and fixed arguments. Defining a Trusted
Band is also required when the original dictionary is not rectangular (variable width), even for exact
matching. See ?PDict for how to define a Trusted Band.

Here is how matchPDict and family handle the Trusted Band defined on pdict:

• (1) Find all the exact matches of all the elements in the Trusted Band.

• (2) For each element in the Trusted Band that has at least one exact match, compare the head
and the tail of this element with the flanking sequences of the matches found in (1).

matchPDict-inexact 83

Note that the number of exact matches found in (1) will decrease exponentially with the width of the
Trusted Band. Here is a simple guideline in order to get reasonably good performance: if TBW is
the width of the Trusted Band (TBW <- tb.width(pdict)) and L the number of letters in the
subject (L <- nchar(subject)), then L / (4^TBW) should be kept as small as possible,
typically < 10 or 20.

In addition, when a Trusted Band has been defined during preprocessing, then matchPDict and
family can be called with fixed=FALSE. In this case, IUPAC ambiguity codes in the head or the
tail of the PDict object are treated as ambiguities.

Finally, fixed="pattern" can be used to indicate that IUPAC ambiguity codes in the subject
should be treated as ambiguities. It only works if the density of codes is not too high. It works
whether or not a Trusted Band has been defined on pdict.

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

See Also

PDict-class, MIndex-class, matchPDict

Examples

A. USING AN EXPLICIT TRUSTED BAND

library(drosophila2probe)
dict0 <- DNAStringSet(drosophila2probe)
dict0 # the original dictionary

Preprocess the original dictionary by defining a Trusted Band that
spans nucleotides 1 to 9 of each pattern.
pdict9 <- PDict(dict0, tb.end=9)
pdict9
tail(pdict9)
sum(duplicated(pdict9))
table(patternFrequency(pdict9))

library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- Dmelanogaster$chr3R
chr3R
table(countPDict(pdict9, chr3R, max.mismatch=1))
table(countPDict(pdict9, chr3R, max.mismatch=3))
table(countPDict(pdict9, chr3R, max.mismatch=5))

B. COMPARISON WITH EXACT MATCHING

When the original dictionary is of constant width, exact matching

84 matchPDict-inexact

(i.e. 'max.mismatch=0' and 'fixed=TRUE) will be more efficient with
a full-width Trusted Band (i.e. a Trusted Band that covers the entire
dictionary) than with a Trusted Band of width < width(dict0).
pdict0 <- PDict(dict0)
count0 <- countPDict(pdict0, chr3R)
count0b <- countPDict(pdict9, chr3R, max.mismatch=0)
identical(count0b, count0) # TRUE

C. USING AN EXPLICIT TRUSTED BAND ON A VARIABLE WIDTH DICTIONARY

Here is a small variable width dictionary that contains IUPAC
ambiguities (pattern 1 and 3 contain an N):
dict0 <- DNAStringSet(c("TACCNG", "TAGT", "CGGNT", "AGTAG", "TAGT"))
(Note that pattern 2 and 5 are identical.)

If we only want to do exact matching, then it is recommended to use
the widest possible Trusted Band i.e. to set its width to
'min(width(dict0))' because this is what will give the best
performance. However, when 'dict0' contains IUPAC ambiguities (like
in our case), it could be that one of them is falling into the
Trusted Band so we get an error (only base letters can go in the
Trusted Band for now):
Not run:
PDict(dict0, tb.end=min(width(dict0))) # Error!

End(Not run)

In our case, the Trusted Band cannot be wider than 3:
pdict <- PDict(dict0, tb.end=3)
tail(pdict)

subject <- DNAString("TAGTACCAGTTTCGGG")

m <- matchPDict(pdict, subject)
countIndex(m) # pattern 2 and 5 have 1 exact match
m[[2]]

We can take advantage of the fact that our Trusted Band doesn't cover
the entire dictionary to allow inexact matching on the uncovered parts
(the tail in our case):

m <- matchPDict(pdict, subject, fixed=FALSE)
countIndex(m) # now pattern 1 has 1 match too
m[[1]]

m <- matchPDict(pdict, subject, max.mismatch=1)
countIndex(m) # now pattern 4 has 1 match too
m[[4]]

m <- matchPDict(pdict, subject, max.mismatch=1, fixed=FALSE)
countIndex(m) # now pattern 3 has 1 match too
m[[3]] # note that this match is "out of limit"
Views(subject, m[[3]])

m <- matchPDict(pdict, subject, max.mismatch=2)

matchPWM 85

countIndex(m) # pattern 4 gets 1 additional match
m[[4]]

Unlist all matches:
unlist(m)

D. WITH IUPAC AMBIGUITY CODES IN THE SUBJECT

pdict <- PDict(c("ACAC", "TCCG"))
as.list(matchPDict(pdict, DNAString("ACNCCGT")))
as.list(matchPDict(pdict, DNAString("ACNCCGT"), fixed="pattern"))
as.list(matchPDict(pdict, DNAString("ACWCCGT"), fixed="pattern"))
as.list(matchPDict(pdict, DNAString("ACRCCGT"), fixed="pattern"))
as.list(matchPDict(pdict, DNAString("ACKCCGT"), fixed="pattern"))

dict <- DNAStringSet(c("TTC", "CTT"))
pdict <- PDict(dict)
subject <- DNAString("CYTCACTTC")
mi1 <- matchPDict(pdict, subject, fixed="pattern")
mi2 <- matchPDict(dict, subject, fixed="pattern")
stopifnot(identical(as.list(mi1), as.list(mi2)))

matchPWM PWM creating, matching, and related utilities

Description

Position Weight Matrix (PWM) creating, matching, and related utilities for DNA data. (PWM for
amino acid sequences are not supported.)

Usage

PWM(x, type = c("log2probratio", "prob"),
prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))

matchPWM(pwm, subject, min.score="80%", ...)
countPWM(pwm, subject, min.score="80%", ...)
PWMscoreStartingAt(pwm, subject, starting.at=1)

Utility functions for basic manipulation of the Position Weight Matrix
maxWeights(x)
minWeights(x)
maxScore(x)
minScore(x)
unitScale(x)
S4 method for signature 'matrix'
reverseComplement(x, ...)

Arguments

x For PWM: a rectangular character vector or rectangular DNAStringSet object
("rectangular" means that all elements have the same number of characters) with

86 matchPWM

no IUPAC ambiguity letters, or a Position Frequency Matrix represented as an
integer matrix with row names containing at least A, C, G and T (typically the
result of a call to consensusMatrix).
For maxWeights, minWeights, maxScore, minScore, unitScale and
reverseComplement: a Position Weight Matrix represented as a numeric
matrix with row names A, C, G and T.

type The type of Position Weight Matrix, either "log2probratio" or "prob". See De-
tails section for more information.

prior.params A positive numeric vector, which represents the parameters of the Dirichlet con-
jugate prior, with names A, C, G, and T. See Details section for more informa-
tion.

pwm A Position Weight Matrix represented as a numeric matrix with row names A,
C, G and T.

subject A DNAString, XStringViews or MaskedDNAString object for matchPWM and
countPWM.
A DNAString object for PWMscoreStartingAt.

min.score The minimum score for counting a match. Can be given as a character string
containing a percentage (e.g. "85%") of the highest possible score or as a single
number.

starting.at An integer vector specifying the starting positions of the Position Weight Matrix
relatively to the subject.

... Additional arguments for methods.

Details

The PWM function uses a multinomial model with a Dirichlet conjugate prior to calculate the esti-
mated probability of base b at position i. As mentioned in the Arguments section, prior.params
supplies the parameters for the DNA bases A, C, G, and T in the Dirichlet prior. These values result
in a position independent initial estimate of the probabilities for the bases to be priorProbs =
prior.params/sum(prior.params) and the posterior (data infused) estimate for the prob-
abilities for the bases in each of the positions to be postProbs = (consensusMatrix(x)
+ prior.params)/(length(x) + sum(prior.params)). When type = "log2probratio",
the PWM = unitScale(log2(postProbs/priorProbs)). When type = "prob",
the PWM = unitScale(postProbs).

Value

A numeric matrix representing the Position Weight Matrix for PWM.

A numeric vector containing the Position Weight Matrix-based scores for PWMscoreStartingAt.

An XStringViews object for matchPWM.

A single integer for countPWM.

A vector containing the max weight for each position in pwm for maxWeights.

A vector containing the min weight for each position in pwm for minWeights.

The highest possible score for a given Position Weight Matrix for maxScore.

The lowest possible score for a given Position Weight Matrix for maxScore.

The modified numeric matrix given by (x - minScore(x)/ncol(x))/(maxScore(x) -
minScore(x)) for unitScale.

A PWM obtained by reverting the column order in PWM x and by reassigning each row to its
complementary nucleotide for reverseComplement.

matchPattern 87

Author(s)

H. Pages and P. Aboyoun

References

Wasserman, WW, Sandelin, A., (2004) Applied bioinformatics for the identification of regulatory
elements, Nat Rev Genet., 5(4):276-87.

See Also

consensusMatrix, matchPattern, reverseComplement, DNAString-class, XStringViews-
class

Examples

Data setup:
data(HNF4alpha)
library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- Dmelanogaster$chr3R
chr3R

Create a PWM from a PFM or directly from a rectangular
DNAStringSet object:
pfm <- consensusMatrix(HNF4alpha)
pwm <- PWM(pfm) # same as 'PWM(HNF4alpha)'

Perform some general routines on the PWM:
round(pwm, 2)
maxWeights(pwm)
maxScore(pwm)
reverseComplement(pwm)

Score the first 5 positions:
PWMscoreStartingAt(pwm, unmasked(chr3R), starting.at=1:5)

Match the plus strand:
hits <- matchPWM(pwm, chr3R)
nhit <- countPWM(pwm, chr3R) # same as 'length(hits)'

Post-calculate the scores of the hits:
scores <- PWMscoreStartingAt(pwm, subject(hits), start(hits))

Match the minus strand:
matchPWM(reverseComplement(pwm), chr3R)

matchPattern String searching functions

Description

A set of functions for finding all the occurrences (aka "matches" or "hits") of a given pattern (typi-
cally short) in a (typically long) reference sequence or set of reference sequences (aka the subject)

88 matchPattern

Usage

matchPattern(pattern, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto")

countPattern(pattern, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto")

vmatchPattern(pattern, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", ...)

vcountPattern(pattern, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", ...)

Arguments

pattern The pattern string.

subject An XString, XStringViews or MaskedXString object for matchPattern and
countPattern.

An XStringSet or XStringViews object for vmatchPattern and vcountPattern.

max.mismatch, min.mismatch
The maximum and minimum number of mismatching letters allowed (see ¿lowlevel-
matching‘ for the details). If non-zero, an algorithm that supports inexact
matching is used.

with.indels If TRUE then indels are allowed. In that case, min.mismatch must be 0
and max.mismatch is interpreted as the maximum "edit distance" allowed
between the pattern and a match. Note that in order to avoid pollution by redun-
dant matches, only the "best local matches" are returned. Roughly speaking, a
"best local match" is a match that is locally both the closest (to the pattern P)
and the shortest. More precisely, a substring S’ of the subject S is a "best local
match" iff:

(a) nedit(P, S') <= max.mismatch
(b) for every substring S1 of S':

nedit(P, S1) > nedit(P, S')
(c) for every substring S2 of S that contains S':

nedit(P, S2) >= nedit(P, S')

One nice property of "best local matches" is that their first and last letters are
guaranteed to match the letters in P that they align with.

fixed If TRUE (the default), an IUPAC ambiguity code in the pattern can only match
the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity
code in the pattern can match any letter in the subject that is associated with the
code, and vice versa. See ¿lowlevel-matching‘ for more information.

algorithm One of the following: "auto", "naive-exact", "naive-inexact",
"boyer-moore", "shift-or" or "indels".

... Additional arguments for methods.

matchPattern 89

Details

Available algorithms are: “naive exact”, “naive inexact”, “Boyer-Moore-like”, “shift-or” and “in-
dels”. Not all of them can be used in all situations: restrictions apply depending on the "search
criteria" i.e. on the values of the pattern, subject, max.mismatch, min.mismatch,
with.indels and fixed arguments.

It is important to note that the algorithm argument is not part of the search criteria. This is be-
cause the supported algorithms are interchangeable, that is, if 2 different algorithms are compatible
with a given search criteria, then choosing one or the other will not affect the result (but will most
likely affect the performance). So there is no "wrong choice" of algorithm (strictly speaking).

Using algorithm="auto" (the default) is recommended because then the best suited algorithm
will automatically be selected among the set of algorithms that are valid for the given search criteria.

Value

An XStringViews object for matchPattern.

A single integer for countPattern.

An MIndex object for vmatchPattern.

An integer vector for vcountPattern, with each element in the vector corresponding to the
number of matches in the corresponding element of subject.

Note

Use matchPDict if you need to match a (big) set of patterns against a reference sequence.

Use pairwiseAlignment if you need to solve a (Needleman-Wunsch) global alignment, a
(Smith-Waterman) local alignment, or an (ends-free) overlap alignment problem.

See Also

lowlevel-matching, matchPDict, pairwiseAlignment, mismatch, matchLRPatterns,
matchProbePair, maskMotif, alphabetFrequency, XStringViews-class, MIndex-class

Examples

A. matchPattern()/countPattern()

A simple inexact matching example with a short subject:
x <- DNAString("AAGCGCGATATG")
m1 <- matchPattern("GCNNNAT", x)
m1
m2 <- matchPattern("GCNNNAT", x, fixed=FALSE)
m2
as.matrix(m2)

With DNA sequence of yeast chromosome number 1:
data(yeastSEQCHR1)
yeast1 <- DNAString(yeastSEQCHR1)
PpiI <- "GAACNNNNNCTC" # a restriction enzyme pattern
match1.PpiI <- matchPattern(PpiI, yeast1, fixed=FALSE)
match2.PpiI <- matchPattern(PpiI, yeast1, max.mismatch=1, fixed=FALSE)

With a genome containing isolated Ns:

90 matchPattern

library(BSgenome.Celegans.UCSC.ce2)
chrII <- Celegans[["chrII"]]
alphabetFrequency(chrII)
matchPattern("N", chrII)
matchPattern("TGGGTGTCTTT", chrII) # no match
matchPattern("TGGGTGTCTTT", chrII, fixed=FALSE) # 1 match

Using wildcards ("N") in the pattern on a genome containing N-blocks:
library(BSgenome.Dmelanogaster.UCSC.dm3)
chrX <- maskMotif(Dmelanogaster$chrX, "N")
as(chrX, "XStringViews") # 4 non masked regions
matchPattern("TTTATGNTTGGTA", chrX, fixed=FALSE)
Can also be achieved with no mask:
masks(chrX) <- NULL
matchPattern("TTTATGNTTGGTA", chrX, fixed="subject")

B. vmatchPattern()/vcountPattern()

Ebox <- DNAString("CANNTG")
subject <- Celegans$upstream5000
mindex <- vmatchPattern(Ebox, subject, fixed=FALSE)
count_index <- countIndex(mindex) # Get the number of matches per

subject element.
sum(count_index) # Total number of matches.
table(count_index)
i0 <- which(count_index == max(count_index))
subject[i0] # The subject element with most matches.

The matches in 'subject[i0]' as an IRanges object:
mindex[[i0]]
The matches in 'subject[i0]' as an XStringViews object:
Views(subject[[i0]], mindex[[i0]])

C. WITH INDELS

library(BSgenome.Celegans.UCSC.ce2)
pattern <- DNAString("ACGGACCTAATGTTATC")
subject <- Celegans$chrI

Allowing up to 2 mismatching letters doesn't give any match:
matchPattern(pattern, subject, max.mismatch=2)

But allowing up to 2 edit operations gives 3 matches:
system.time(m <- matchPattern(pattern, subject, max.mismatch=2, with.indels=TRUE))
m

pairwiseAlignment() returns the (first) best match only:
if (interactive()) {
mat <- nucleotideSubstitutionMatrix(match=1, mismatch=0, baseOnly=TRUE)
Note that this call to pairwiseAlignment() will need to
allocate 733.5 Mb of memory (i.e. length(pattern) * length(subject)
* 3 bytes).
system.time(pwa <- pairwiseAlignment(pattern, subject, type="local",

substitutionMatrix=mat,

matchProbePair 91

gapOpening=0, gapExtension=1))
pwa

}

Only "best local matches" are reported:
- with deletions in the subject

subject <- BString("ACDEFxxxCDEFxxxABCE")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)
- with insertions in the subject

subject <- BString("AiBCDiEFxxxABCDiiFxxxAiBCDEFxxxABCiDEF")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)
- with substitutions (note that the "best local matches" can introduce
indels and therefore be shorter than 6)

subject <- BString("AsCDEFxxxABDCEFxxxBACDEFxxxABCEDF")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)

matchProbePair Find "theoretical amplicons" mapped to a probe pair

Description

In the context of a computer-simulated PCR experiment, one wants to find the amplicons mapped to
a given primer pair. The matchProbePair function can be used for this: given a forward and a
reverse probe (i.e. the chromosome-specific sequences of the forward and reverse primers used for
the experiment) and a target sequence (generally a chromosome sequence), the matchProbePair
function will return all the "theoretical amplicons" mapped to this probe pair.

Usage

matchProbePair(Fprobe, Rprobe, subject, algorithm="auto", logfile=NULL, verbose=FALSE)

Arguments

Fprobe The forward probe.

Rprobe The reverse probe.

subject A DNAString object (or an XStringViews object with a DNAString sub-
ject) containing the target sequence.

algorithm One of the following: "auto", "naive-exact", "naive-inexact",
"boyer-moore" or "shift-or". See matchPattern for more infor-
mation.

logfile A file used for logging.

verbose TRUE or FALSE.

92 matchWCP

Details

The matchProbePair function does the following: (1) find all the "plus hits" i.e. the Fprobe
and Rprobe matches on the "plus" strand, (2) find all the "minus hits" i.e. the Fprobe and Rprobe
matches on the "minus" strand and (3) from the set of all (plus_hit, minus_hit) pairs, extract and
return the subset of "reduced matches" i.e. the (plus_hit, minus_hit) pairs such that (a) plus_hit
<= minus_hit and (b) there are no hits (plus or minus) between plus_hit and minus_hit. This set
of "reduced matches" is the set of "theoretical amplicons".

Value

An XStringViews object containing the set of "theoretical amplicons".

Author(s)

H. Pages

See Also

matchPattern, matchLRPatterns, findPalindromes, reverseComplement, XStringViews

Examples

library(BSgenome.Dmelanogaster.UCSC.dm3)
subject <- Dmelanogaster$chr3R

With 20-nucleotide forward and reverse probes:
Fprobe <- "AGCTCCGAGTTCCTGCAATA"
Rprobe <- "CGTTGTTCACAAATATGCGG"
matchProbePair(Fprobe, Rprobe, subject) # 1 "theoretical amplicon"

With shorter forward and reverse probes, the risk of having multiple
"theoretical amplicons" increases:
Fprobe <- "AGCTCCGAGTTCC"
Rprobe <- "CGTTGTTCACAA"
matchProbePair(Fprobe, Rprobe, subject) # 2 "theoretical amplicons"
Fprobe <- "AGCTCCGAGTT"
Rprobe <- "CGTTGTTCACA"
matchProbePair(Fprobe, Rprobe, subject) # 9 "theoretical amplicons"

matchWCP A simple WCP matching function and related utilities

Description

A function implementing a simple algorithm for matching a set of patterns represented by Weighted
Clustered Positions (WCP) to an XString sequence.

Usage

matchWCP(wcp, subject, min.score="80%")
countWCP(wcp, subject, min.score="80%")
WCPscoreStartingAt(wcp, subject, starting.at=1)

matchprobes 93

Arguments

wcp A WCP object.

subject An XString, XStringViews or MaskedXString object for matchWCP and countWCP.
A XString object for WCPscoreStartingAt.

min.score The minimum score for counting a match. Can be given as a character string
containing a percentage (e.g. "85%") of the highest possible score or as a single
number.

starting.at An integer vector specifying the starting positions of the Weighted Clustered
Positions relatively to the subject.

Value

An XStringViews object for matchWCP.

A single integer for countWCP.

A numeric vector containing the Weighted Clustered Positions-based scores for WCPscoreStartingAt.

Author(s)

P. Aboyoun

See Also

matchPWM, matchPattern, WCP-class, XString-class, XStringViews-class

matchprobes A function to match a query sequence to the sequences of a set of

Description

The query sequence, a character string (probably representing a transcript of interest), is scanned
for the presence of exact matches to the sequences in the character vector records. The indices
of the set of matches are returned.

The function is inefficient: it works on R’s character vectors, and the actual matching algorithm is
of time complexity length(query) times length(records)!

See matchPattern, vmatchPattern and matchPDict for more efficient sequence match-
ing functions.

Usage

matchprobes(query, records, probepos=FALSE)

Arguments

query A character vector. For example, each element may represent a gene (transcript)
of interest. See Details.

records A character vector. For example, each element may represent the probes on a
DNA array.

probepos A logical value. If TRUE, return also the start positions of the matches in the
query sequence.

94 misc

Details

toupper is applied to the arguments query and records before matching. The intention of
this is to make the matching case-insensitive. The function is embarrassingly naive. The matching
is done using the C library function strstr.

Value

A list. Its first element is a list of the same length as the input vector. Each element of the list is a
numeric vector containing the indices of the probes that have a perfect match in the query sequence.

If probepos is TRUE, the returned list has a second element: it is of the same shape as described
above, and gives the respective positions of the matches.

Author(s)

R. Gentleman, Laurent Gautier, Wolfgang Huber

See Also

matchPattern, vmatchPattern, matchPDict

Examples

if(require("hgu95av2probe")){
data("hgu95av2probe")
seq <- hgu95av2probe$sequence[1:20]
target <- paste(seq, collapse="")
matchprobes(target, seq, probepos=TRUE)

}

misc Some miscellaneous stuff

Description

Some miscellaneous stuff.

Usage

N50(csizes)

Arguments

csizes A vector containing the contig sizes.

Value

N50: The N50 value as an integer.

needwunsQS 95

The N50 contig size

Definition The N50 contig size of an assembly (aka the N50 value) is the size of the largest contig
such that the contigs larger than that have at least 50% the bases of the assembly.

How is it calculated? It is calculated by adding the sizes of the biggest contigs until you reach half
the total size of the contigs. The N50 value is then the size of the contig that was added last (i.e. the
smallest of the big contigs covering 50% of the genome).

What for? The N50 value is a standard measure of the quality of a de novo assembly.

Author(s)

Nicolas Delhomme <delhomme@embl.de>

See Also

XStringSet-class

Examples

Generate 10 random contigs of sizes comprised between 100 and 10000:
my.contig <- DNAStringSet(

sapply(
sample(c(100:10000), 10),
function(size)

paste(sample(DNA_BASES, size, replace=TRUE), collapse="")
)

)

Get their sizes:
my.size <- width(my.contig)

Calculate the N50 value of this set of contigs:
my.contig.N50 <- N50(my.size)

needwunsQS (Deprecated) Needleman-Wunsch Global Alignment

Description

Simple gap implementation of Needleman-Wunsch global alignment algorithm.

Usage

needwunsQS(s1, s2, substmat, gappen = 8)

Arguments

s1, s2 an R character vector of length 1 or an XString object.

substmat matrix of alignment score values.

gappen penalty for introducing a gap in the alignment.

96 nucleotideFrequency

Details

Follows specification of Durbin, Eddy, Krogh, Mitchison (1998). This function has been deprecated
and is being replaced by pairwiseAlignment.

Value

An instance of class "PairwiseAlignedXStringSet".

Author(s)

Vince Carey (<stvjc@channing.harvard.edu>) (original author) and H. Pages (current
maintainer).

References

R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis, Cambridge UP 1998,
sec 2.3.

See Also

pairwiseAlignment, PairwiseAlignedXStringSet-class, substitution.matrices

Examples

Not run:
This function has been deprecated
Use 'pairwiseAlignment' instead.

nucleotide alignment
mat <- matrix(-5L, nrow = 4, ncol = 4)
for (i in seq_len(4)) mat[i, i] <- 0L
rownames(mat) <- colnames(mat) <- DNA_ALPHABET[1:4]
s1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 1000, replace=TRUE), collapse=""))
s2 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 1000, replace=TRUE), collapse=""))
nw0 <- needwunsQS(s1, s2, mat, gappen = 0)
nw1 <- needwunsQS(s1, s2, mat, gappen = 1)
nw5 <- needwunsQS(s1, s2, mat, gappen = 5)

amino acid alignment
needwunsQS("PAWHEAE", "HEAGAWGHEE", substmat = "BLOSUM50")

End(Not run)

nucleotideFrequency
Calculate the frequency of oligonucleotides in a DNA or RNA se-
quence

nucleotideFrequency 97

Description

Given a DNA or RNA sequence (or a set of DNA or RNA sequences), the oligonucleotideFrequency
function computes the frequency of all possible oligonucleotides of a given length (called the
"width" in this particular context).

The dinucleotideFrequency and trinucleotideFrequency functions are convenient
wrappers for calling oligonucleotideFrequency with width=2 and width=3, respec-
tively.

The nucleotideFrequencyAt function computes the frequency of the short sequences formed
by extracting the nucleotides found at some fixed positions from each sequence of a set of DNA or
RNA sequences.

In this man page we call "DNA input" (or "RNA input") an XString, XStringSet, XStringViews or
MaskedXString object of base type DNA (or RNA).

Usage

oligonucleotideFrequency(x, width, as.prob=FALSE, as.array=FALSE,
fast.moving.side="right", with.labels=TRUE, ...)

S4 method for signature 'XStringSet'
oligonucleotideFrequency(x,

width, as.prob=FALSE, as.array=FALSE,
fast.moving.side="right", with.labels=TRUE, simplify.as="matrix")

dinucleotideFrequency(x, as.prob=FALSE, as.matrix=FALSE,
fast.moving.side="right", with.labels=TRUE, ...)

trinucleotideFrequency(x, as.prob=FALSE, as.array=FALSE,
fast.moving.side="right", with.labels=TRUE, ...)

nucleotideFrequencyAt(x, at, as.prob=FALSE, as.array=TRUE,
fast.moving.side="right", with.labels=TRUE, ...)

Some related functions:
oligonucleotideTransitions(x, left=1, right=1, as.prob=FALSE)
mkAllStrings(alphabet, width, fast.moving.side="right")

Arguments

x Any DNA or RNA input for the *Frequency and oligonucleotideTransitions
functions.
An XStringSet or XStringViews object of base type DNA or RNA for nucleotideFrequencyAt.

width The number of nucleotides per oligonucleotide for oligonucleotideFrequency.
The number of letters per string for mkAllStrings.

at An integer vector containing the positions to look at in each element of x.
as.prob If TRUE then probabilities are reported, otherwise counts (the default).
as.array,as.matrix

Controls the "shape" of the returned object. If TRUE (the default for nucleotideFrequencyAt)
then it’s a numeric matrix (or array), otherwise it’s just a "flat" numeric vector
i.e. a vector with no dim attribute (the default for the *Frequency functions).

fast.moving.side
Which side of the strings should move fastest? Note that, when as.array is
TRUE, then the supplied value is ignored and the effective value is "left".

98 nucleotideFrequency

with.labels If TRUE then the returned object is named.

... Further arguments to be passed to or from other methods.

simplify.as Together with the as.array and as.matrix arguments, controls the "shape"
of the returned object when the input x is an XStringSet or XStringViews ob-
ject. Supported simplify.as values are "matrix" (the default), "list"
and "collapsed". If simplify.as is "matrix", the returned object is
a matrix with length(x) rows where the i-th row contains the frequencies
for x[[i]]. If simplify.as is "list", the returned object is a list of the
same length as length(x) where the i-th element contains the frequencies
for x[[i]]. If simplify.as is "collapsed", then the the frequencies
are computed for the entire object x as a whole (i.e. frequencies cumulated
across all sequences in x).

left, right The number of nucleotides per oligonucleotide for the rows and columns respec-
tively in the transition matrix created by oligonucleotideTransitions.

alphabet The alphabet to use to make the strings.

Value

If x is an XString or MaskedXString object, the *Frequency functions return a numeric vector
of length 4^width. If as.array (or as.matrix) is TRUE, then this vector is formatted as an
array (or matrix). If x is an XStringSet or XStringViews object, the returned object has the shape
specified by the simplify.as argument.

Author(s)

H. Pages and P. Aboyoun

See Also

alphabetFrequency, alphabet, hasLetterAt, XString-class, XStringSet-class, XStringViews-
class, MaskedXString-class, GENETIC_CODE, AMINO_ACID_CODE, reverse,XString-method,
rev

Examples

A. BASIC *Frequency() EXAMPLES

data(yeastSEQCHR1)
yeast1 <- DNAString(yeastSEQCHR1)

dinucleotideFrequency(yeast1)
trinucleotideFrequency(yeast1)
oligonucleotideFrequency(yeast1, 4)

Get the less and most represented 6-mers:
f6 <- oligonucleotideFrequency(yeast1, 6)
f6[f6 == min(f6)]
f6[f6 == max(f6)]

Get the result as an array:
tri <- trinucleotideFrequency(yeast1, as.array=TRUE)
tri["A", "A", "C"] # == trinucleotideFrequency(yeast1)["AAC"]
tri["T", ,] # frequencies of trinucleotides starting with a "T"

nucleotideFrequency 99

With input made of multiple sequences:
library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
dfmat <- dinucleotideFrequency(probes) # a big matrix
dinucleotideFrequency(probes, simplify.as="collapsed")
dinucleotideFrequency(probes, simplify.as="collapsed", as.matrix=TRUE)

B. OBSERVED DINUCLEOTIDE FREQUENCY VERSUS EXPECTED DINUCLEOTIDE
FREQUENCY

The expected frequency of dinucleotide "ab" based on the frequencies
of its individual letters "a" and "b" is:
exp_Fab = Fa * Fb / N if the 2 letters are different (e.g. CG)
exp_Faa = Fa * (Fa-1) / N if the 2 letters are the same (e.g. TT)
where Fa and Fb are the frequencies of "a" and "b" (respectively) and
N the length of the sequence.

Here is a simple function that implements the above formula for a
DNAString object 'x'. The expected frequencies are returned in a 4x4
matrix where the rownames and colnames correspond to the 1st and 2nd
base in the dinucleotide:
expectedDinucleotideFrequency <- function(x)
{

Individual base frequencies.
bf <- alphabetFrequency(x, baseOnly=TRUE)[DNA_BASES]
(as.matrix(bf) %*% t(bf) - diag(bf)) / length(x)

}

On Celegans chrI:
library(BSgenome.Celegans.UCSC.ce2)
chrI <- Celegans$chrI
obs_df <- dinucleotideFrequency(chrI, as.matrix=TRUE)
obs_df # CG has the lowest frequency
exp_df <- expectedDinucleotideFrequency(chrI)
A sanity check:
stopifnot(as.integer(sum(exp_df)) == sum(obs_df))

Ratio of observed frequency to expected frequency:
obs_df / exp_df # TA has the lowest ratio, not CG!

C. nucleotideFrequencyAt()

nucleotideFrequencyAt(probes, 13)
nucleotideFrequencyAt(probes, c(13, 20))
nucleotideFrequencyAt(probes, c(13, 20), as.array=FALSE)

nucleotideFrequencyAt() can be used to answer questions like: "how
many probes in the drosophila2 chip have T, G, T, A at position
2, 4, 13 and 20, respectively?"
nucleotideFrequencyAt(probes, c(2, 4, 13, 20))["T", "G", "T", "A"]
or "what's the probability to have an A at position 25 if there is
one at position 13?"
nf <- nucleotideFrequencyAt(probes, c(13, 25))
sum(nf["A", "A"]) / sum(nf["A",])

100 pairwiseAlignment

Probabilities to have other bases at position 25 if there is an A
at position 13:
sum(nf["A", "C"]) / sum(nf["A",]) # C
sum(nf["A", "G"]) / sum(nf["A",]) # G
sum(nf["A", "T"]) / sum(nf["A",]) # T

See ?hasLetterAt for another way to get those results.

D. oligonucleotideTransitions()

Get nucleotide transition matrices for yeast1
oligonucleotideTransitions(yeast1)
oligonucleotideTransitions(yeast1, 2, as.prob=TRUE)

E. ADVANCED *Frequency() EXAMPLES

Note that when dropping the dimensions of the 'tri' array, elements
in the resulting vector are ordered as if they were obtained with
'fast.moving.side="left"':
triL <- trinucleotideFrequency(yeast1, fast.moving.side="left")
all(as.vector(tri) == triL) # TRUE

Convert the trinucleotide frequency into the amino acid frequency
based on translation:
tri1 <- trinucleotideFrequency(yeast1)
names(tri1) <- GENETIC_CODE[names(tri1)]
sapply(split(tri1, names(tri1)), sum) # 12512 occurrences of the stop codon

When the returned vector is very long (e.g. width >= 10), using
'with.labels=FALSE' can improve performance significantly.
Here for example, the observed speed up is between 25x and 500x:
f12 <- oligonucleotideFrequency(yeast1, 12, with.labels=FALSE) # very fast!

Spome related functions:
dict1 <- mkAllStrings(LETTERS[1:3], 4)
dict2 <- mkAllStrings(LETTERS[1:3], 4, fast.moving.side="left")
stopifnot(identical(reverse(dict1), dict2))

pairwiseAlignment Optimal Pairwise Alignment

Description

Solves (Needleman-Wunsch) global alignment, (Smith-Waterman) local alignment, and (ends-free)
overlap alignment problems.

Usage

pairwiseAlignment(pattern, subject, ...)
S4 method for signature 'XStringSet,XStringSet'
pairwiseAlignment(pattern, subject,

patternQuality = PhredQuality(22L), subjectQuality = PhredQuality(22L),

pairwiseAlignment 101

type = "global", substitutionMatrix = NULL, fuzzyMatrix = NULL,
gapOpening = -10, gapExtension = -4, scoreOnly = FALSE)

S4 method for signature 'QualityScaledXStringSet,QualityScaledXStringSet'
pairwiseAlignment(pattern, subject,

type = "global", substitutionMatrix = NULL, fuzzyMatrix = NULL,
gapOpening = -10, gapExtension = -4, scoreOnly = FALSE)

Arguments

pattern a character vector of any length, an XString, or an XStringSet object.

subject a character vector of length 1 or an XString object.
patternQuality, subjectQuality

objects of class XStringQuality representing the respective quality scores
for pattern and subject that are used in a quality-based method for gener-
ating a substitution matrix. These two arguments are ignored if !is.null(substitutionMatrix)
or if its respective string set (pattern, subject) is of class QualityScaledXStringSet.

type type of alignment. One of "global", "local", "overlap", "global-
local", and "local-global" where "global" = align whole strings
with end gap penalties, "local" = align string fragments, "overlap" =
align whole strings without end gap penalties, "global-local" = align
whole strings in patternwith consecutive subsequence of subject, "local-
global" = align consecutive subsequence of pattern with whole strings in
subject.

substitutionMatrix
substitution matrix representing the fixed substitution scores for an alignment. It
cannot be used in conjunction with patternQuality and subjectQuality
arguments.

fuzzyMatrix fuzzy match matrix for quality-based alignments. It takes values between 0 and
1; where 0 is an unambiguous mismatch, 1 is an unambiguous match, and values
in between represent a fraction of "matchiness". (See details section below.)

gapOpening the cost for opening a gap in the alignment.

gapExtension the incremental cost incurred along the length of the gap in the alignment.

scoreOnly logical to denote whether or not to return just the scores of the optimal pairwise
alignment.

... optional arguments to generic function to support additional methods.

Details

Quality-based alignments are based on the paper the Bioinformatics article by Ketil Malde listed in
the Reference section below. Let εi be the probability of an error in the base read. For "Phred"
quality measures Q in [0, 99], these error probabilities are given by εi = 10−Q/10. For "Solexa"
quality measures Q in [−5, 99], they are given by εi = 1 − 1/(1 + 10−Q/10). Assuming inde-
pendence within and between base reads, the combined error probability of a mismatch when the
underlying bases do match is εc = ε1 + ε2 − (n/(n − 1)) ∗ ε1 ∗ ε2, where n is the number of
letters in the underlying alphabet (i.e. n = 4 for DNA input, n = 20 for amino acid input, oth-
erwise n is the number of distinct letters in the input). Using εc, the substitution score is given by
b∗ log2(γx,y ∗ (1− εc)∗n+(1−γx,y)∗ εc ∗ (n/(n−1))), where b is the bit-scaling for the scoring
and γx,y is the probability that characters x and y represents the same underlying information (e.g.
using IUPAC, γA,A = 1 and γA,N = 1/4. In the arguments listed above fuzzyMatch represents
γx,y and patternQuality and subjectQuality represents ε1 and ε2 respectively.

102 pairwiseAlignment

If scoreOnly == FALSE, a pairwise alignment with the maximum alignment score is returned.
If more than one pairwise alignment produces the maximum alignment score, then the align-
ment with the smallest initial deletion whose mismatches occur before its insertions and deletions
is chosen. For example, if pattern = "AGTA" and subject = "AACTAACTA", then the
alignment pattern: [1] AG-TA; subject: [1] AACTA is chosen over pattern:
[1] A-GTA; subject: [1] AACTA or pattern: [1] AG-TA; subject: [5]
AACTA if they all achieve the maximum alignment score.

Value

If scoreOnly == FALSE, an instance of class PairwiseAlignedXStringSet or PairwiseAlignedFixedSubject
is returned. If scoreOnly == TRUE, a numeric vector containing the scores for the optimal pair-
wise alignments is returned.

Note

Use matchPattern or vmatchPattern if you need to find all the occurrences (eventually
with indels) of a given pattern in a reference sequence or set of sequences.

Use matchPDict if you need to match a (big) set of patterns against a reference sequence.

Author(s)

P. Aboyoun and H. Pages

References

R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis, Cambridge UP 1998,
sec 2.3.

B. Haubold, T. Wiehe, Introduction to Computational Biology, Birkhauser Verlag 2006, Chapter 2.

K. Malde, The effect of sequence quality on sequence alignment, Bioinformatics 2008 24(7):897-
900.

See Also

stringDist, PairwiseAlignedXStringSet-class, XStringQuality-class, substitution.matrices, matchPattern

Examples

Nucleotide global, local, and overlap alignments
s1 <-
DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG")

s2 <-
DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")

First use a fixed substitution matrix
mat <- nucleotideSubstitutionMatrix(match = 1, mismatch = -3, baseOnly = TRUE)
globalAlign <-
pairwiseAlignment(s1, s2, substitutionMatrix = mat,

gapOpening = -5, gapExtension = -2)
localAlign <-
pairwiseAlignment(s1, s2, type = "local", substitutionMatrix = mat,

gapOpening = -5, gapExtension = -2)
overlapAlign <-
pairwiseAlignment(s1, s2, type = "overlap", substitutionMatrix = mat,

phiX174Phage 103

gapOpening = -5, gapExtension = -2)

Then use quality-based method for generating a substitution matrix
pairwiseAlignment(s1, s2,

patternQuality = SolexaQuality(rep(c(22L, 12L), times = c(36, 18))),
subjectQuality = SolexaQuality(rep(c(22L, 12L), times = c(40, 20))),
scoreOnly = TRUE)

Now assume can't distinguish between C/T and G/A
pairwiseAlignment(s1, s2,

patternQuality = SolexaQuality(rep(c(22L, 12L), times = c(36, 18))),
subjectQuality = SolexaQuality(rep(c(22L, 12L), times = c(40, 20))),
type = "local")

mapping <- diag(4)
dimnames(mapping) <- list(DNA_BASES, DNA_BASES)
mapping["C", "T"] <- mapping["T", "C"] <- 1
mapping["G", "A"] <- mapping["A", "G"] <- 1
pairwiseAlignment(s1, s2,

patternQuality = SolexaQuality(rep(c(22L, 12L), times = c(36, 18))),
subjectQuality = SolexaQuality(rep(c(22L, 12L), times = c(40, 20))),
fuzzyMatrix = mapping,
type = "local")

Amino acid global alignment
pairwiseAlignment(AAString("PAWHEAE"), AAString("HEAGAWGHEE"),

substitutionMatrix = "BLOSUM50",
gapOpening = 0, gapExtension = -8)

phiX174Phage Versions of bacteriophage phiX174 complete genome and sample
short

Description

Six versions of the complete genome for bacteriophage φ X174 as well as a small number of Solexa
short reads, qualities associated with those short reads, and counts for the number times those short
reads occurred.

Details

The phiX174Phage object is a DNAStringSet containing the following six naturally occurring
versions of the bacteriophage φ X174 genome cited in Smith et al.:

Genbank: The version of the genome from GenBank (NC_001422.1, GI:9626372).
RF70s: A preparation of φ X double-stranded replicative form (RF) of DNA by Clyde A. Hutchi-

son III from the late 1970s.
SS78: A preparation of φ X virion single-stranded DNA from 1978.
Bull: The sequence of wild-type φ X used by Bull et al.
G’97: The φ X replicative form (RF) of DNA from Bull et al.
NEB’03: A φ X replicative form (RF) of DNA from New England BioLabs (NEB).

The srPhiX174 object is a DNAStringSet containing short reads from a Solexa machine.

The quPhiX174 object is a BStringSet containing Solexa quality scores associated with srPhiX174.

The wtPhiX174 object is an integer vector containing counts associated with srPhiX174.

104 pid

References

http://www.genome.jp/dbget-bin/www_bget?refseq+NC_001422

Bull, J. J., Badgett, M. R., Wichman, H. A., Huelsenbeck, Hillis, D. M., Gulati, A., Ho, C. &
Molineux, J. (1997) Genetics 147, 1497-1507.

Smith, Hamilton O.; Clyde A. Hutchison, Cynthia Pfannkoch, J. Craig Venter (2003-12-23). "Gen-
erating a synthetic genome by whole genome assembly: {phi}X174 bacteriophage from synthetic
oligonucleotides". Proceedings of the National Academy of Sciences 100 (26): 15440-15445.
doi:10.1073/pnas.2237126100.

Examples

data(phiX174Phage)
nchar(phiX174Phage)
genBankPhage <- phiX174Phage[[1]]
genBankSubstring <- substring(genBankPhage, 2793-34, 2811+34)

data(srPhiX174)
srPhiX174
quPhiX174
summary(wtPhiX174)

alignPhiX174 <-
pairwiseAlignment(srPhiX174, genBankSubstring,

patternQuality = SolexaQuality(quPhiX174),
subjectQuality = SolexaQuality(99L),
type = "global-local")

summary(alignPhiX174, weight = wtPhiX174)

pid Percent Sequence Identity

Description

Calculates the percent sequence identity for a pairwise sequence alignment.

Usage

pid(x, type="PID1")

Arguments

x a PairwiseAlignedXStringSet object.

type one of percent sequence identity. One of "PID1", "PID2", "PID3", and
"PID4". See Details for more information.

Details

Since there is no universal definition of percent sequence identity, the pid function calculates this
statistic in the following types:

"PID1": 100 * (identical positions) / (aligned positions + internal gap positions)

http://www.genome.jp/dbget-bin/www_bget?refseq+NC_001422

pmatchPattern 105

"PID2": 100 * (identical positions) / (aligned positions)

"PID3": 100 * (identical positions) / (length shorter sequence)

"PID4": 100 * (identical positions) / (average length of the two sequences)

Value

A numeric vector containing the specified sequence identity measures.

Author(s)

P. Aboyoun

References

A. May, Percent Sequence Identity: The Need to Be Explicit, Structure 2004, 12(5):737.

G. Raghava and G. Barton, Quantification of the variation in percentage identity for protein se-
quence alignments, BMC Bioinformatics 2006, 7:415.

See Also

pairwiseAlignment, PairwiseAlignedXStringSet-class, match-utils

Examples

s1 <- DNAString("AGTATAGATGATAGAT")
s2 <- DNAString("AGTAGATAGATGGATGATAGATA")

palign1 <- pairwiseAlignment(s1, s2)
palign1
pid(palign1)

palign2 <-
pairwiseAlignment(s1, s2,
substitutionMatrix =
nucleotideSubstitutionMatrix(match = 2, mismatch = 10, baseOnly = TRUE))

palign2
pid(palign2, type = "PID4")

pmatchPattern Longest Common Prefix/Suffix/Substring searching functions

Description

Functions for searching the Longest Common Prefix/Suffix/Substring of two strings.

WARNING: These functions are experimental and might not work properly! Full documentation
will come later.

Please send questions/comments to hpages@fhcrc.org

Thanks for your comprehension!

106 replaceLetterAt

Usage

lcprefix(s1, s2)
lcsuffix(s1, s2)
lcsubstr(s1, s2)
pmatchPattern(pattern, subject, maxlength.out=1L)

Arguments

s1 1st string, a character string or an XString object.

s2 2nd string, a character string or an XString object.

pattern The pattern string.

subject An XString object containing the subject string.
maxlength.out

The maximum length of the output i.e. the maximum number of views in the
returned object.

See Also

matchPattern, XStringViews-class, XString-class

replaceLetterAt Replacing letters in a sequence (or set of sequences) at some specified

Description

replaceLetterAt first makes a copy of a sequence (or set of sequences) and then replaces some
of the original letters by new letters at the specified locations.

.inplaceReplaceLetterAt is the IN PLACE version of replaceLetterAt: it will mod-
ify the original sequence in place i.e. without copying it first. Note that in place modification of a
sequence is fundamentally dangerous because it alters all objects defined in your session that make
reference to the modified sequence. NEVER use .inplaceReplaceLetterAt, unless you
know what you are doing!

Usage

replaceLetterAt(x, at, letter, if.not.extending="replace", verbose=FALSE)

NEVER USE THIS FUNCTION!
.inplaceReplaceLetterAt(x, at, letter)

Arguments

x A DNAString or rectangular DNAStringSet object.

at The locations where the replacements must occur.
If x is a DNAString object, then at is typically an integer vector with no NAs
but a logical vector or Rle object is valid too. Locations can be repeated and in
this case the last replacement to occur at a given location prevails.
If x is a rectangular DNAStringSet object, then at must be a matrix of logicals
with the same dimensions as x.

replaceLetterAt 107

letter The new letters.
If x is a DNAString object, then lettermust be a DNAString object or a char-
acter vector (with no NAs) with a total number of letters (sum(nchar(letter)))
equal to the number of locations specified in at.
If x is a rectangular DNAStringSet object, then letter must be a DNAS-
tringSet object or a character vector of the same length as x. In addition, the
number of letters in each element of letter must match the number of loca-
tions specified in the corresponding row of at (all(width(letter) ==
rowSums(at))).

if.not.extending
What to do if the new letter is not "extending" the old letter? The new letter
"extends" the old letter if both are IUPAC letters and the new letter is as spe-
cific or less specific than the old one (e.g. M extends A, Y extends Y, but Y
doesn’t extend S). Possible values are "replace" (the default) for replacing
in all cases, "skip" for not replacing when the new letter does not extend the
old letter, "merge" for merging the new IUPAC letter with the old one, and
"error" for raising an error.
Note that the gap ("-") and hard masking ("+") letters are not extending or
extended by any other letter.
Also note that "merge" is the only value for the if.not.extending argu-
ment that guarantees the final result to be independent on the order the replace-
ment is performed (although this is only relevant when at contains duplicated
locations, otherwise the result is of course always independent on the order,
whatever the value of if.not.extending is).

verbose When TRUE, a warning will report the number of skipped or merged letters.

Details

.inplaceReplaceLetterAt semantic is equivalent to calling replaceLetterAtwith if.not.extending="merge"
and verbose=FALSE.

Never use .inplaceReplaceLetterAt! It is used by the injectSNPs function in the
BSgenome package, as part of the "lazy sequence loading" mechanism, for altering the original
sequences of a BSgenome object at "sequence-load time". This alteration consists in injecting the
IUPAC ambiguity letters representing the SNPs into the just loaded sequence, which is the only
time where in place modification of the external data of an XString object is safe.

Value

A DNAString or DNAStringSet object of the same shape (i.e. length and width) as the orignal
object x for replaceLetterAt.

Author(s)

H. Pages

See Also

IUPAC_CODE_MAP, chartr, injectHardMask, DNAString, DNAStringSet, injectSNPs,
BSgenome

108 reverseComplement

Examples

Replace letters of a DNAString object:
replaceLetterAt(DNAString("AAMAA"), c(5, 1, 3, 1), "TYNC")
replaceLetterAt(DNAString("AAMAA"), c(5, 1, 3, 1), "TYNC", if.not.extending="merge")

Replace letters of a DNAStringSet object (sorry for the totally
artificial example with absolutely no biological meaning):
library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
at <- matrix(c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE),

nrow=length(probes), ncol=width(probes)[1],
byrow=TRUE)

letter_subject <- DNAString(paste(rep.int("-", width(probes)[1]), collapse=""))
letter <- as(Views(letter_subject, start=1, end=rowSums(at)), "XStringSet")
replaceLetterAt(probes, at, letter)

reverseComplement Sequence reversing and complementing

Description

Use these functions for reversing sequences and/or complementing DNA or RNA sequences.

Usage

S4 method for signature 'character'
reverse(x, ...)
S4 method for signature 'XString'
reverse(x, ...)
complement(x, ...)
reverseComplement(x, ...)

Arguments

x A character vector, or an XString, XStringSet, XStringViews or MaskedXString
object for reverse.
A DNAString, RNAString, DNAStringSet, RNAStringSet, XStringViews (with
DNAString or RNAString subject), MaskedDNAString or MaskedRNAString
object for complement and reverseComplement.

... Additional arguments to be passed to or from methods.

Details

Given an XString object x, reverse(x) returns an object of the same XString base type as x
where letters in x have been reordered in the reverse order.

If x is a DNAString or RNAString object, complement(x) returns an object where each base in
x is "complemented" i.e. A, C, G, T in a DNAString object are replaced by T, G, C, A respectively
and A, C, G, U in a RNAString object are replaced by U, G, C, A respectively.

Letters belonging to the IUPAC Extended Genetic Alphabet are also replaced by their complement
(M <-> K, R <-> Y, S <-> S, V <-> B, W <-> W, H <-> D, N <-> N) and the gap ("-") and hard
masking ("+") letters are unchanged.

reverseComplement 109

reverseComplement(x) is equivalent to reverse(complement(x)) but is faster and
more memory efficient.

Value

An object of the same class and length as the original object.

See Also

DNAString-class, RNAString-class, DNAStringSet-class, RNAStringSet-class, XStringViews-class,
MaskedXString-class, chartr, findPalindromes, IUPAC_CODE_MAP

Examples

A. SOME SIMPLE EXAMPLES

x <- DNAString("ACGT-YN-")
reverseComplement(x)

library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
probes
alphabetFrequency(probes, collapse=TRUE)
rcprobes <- reverseComplement(probes)
rcprobes
alphabetFrequency(rcprobes, collapse=TRUE)

B. OBTAINING THE MISMATCH PROBES OF A CHIP

pm2mm <- function(probes)
{

probes <- DNAStringSet(probes)
subseq(probes, start=13, end=13) <- complement(subseq(probes, start=13, end=13))
probes

}
mmprobes <- pm2mm(probes)
mmprobes
alphabetFrequency(mmprobes, collapse=TRUE)

C. SEARCHING THE MINUS STRAND OF A CHROMOSOME

Applying reverseComplement() to the pattern before calling
matchPattern() is the recommended way of searching hits on the
minus strand of a chromosome.

library(BSgenome.Dmelanogaster.UCSC.dm3)
chrX <- Dmelanogaster$chrX
pattern <- DNAString("ACCAACNNGGTTG")
matchPattern(pattern, chrX, fixed=FALSE) # 3 hits on strand +
rcpattern <- reverseComplement(pattern)
rcpattern
m0 <- matchPattern(rcpattern, chrX, fixed=FALSE)

110 reverseSeq

m0 # 5 hits on strand -

Applying reverseComplement() to the subject instead of the pattern is not
a good idea for 2 reasons:
(1) Chromosome sequences are generally big and sometimes very big
so computing the reverse complement of the positive strand will
take time and memory proportional to its length.
chrXminus <- reverseComplement(chrX) # needs to allocate 22M of memory!
chrXminus
(2) Chromosome locations are generally given relatively to the positive
strand, even for features located in the negative strand, so after
doing this:
m1 <- matchPattern(pattern, chrXminus, fixed=FALSE)
the start/end of the matches are now relative to the negative strand.
You need to apply reverseComplement() again on the result if you want
them to be relative to the positive strand:
m2 <- reverseComplement(m1) # allocates 22M of memory, again!
and finally to apply rev() to sort the matches from left to right
(5'3' direction) like in m0:
m3 <- rev(m2) # same as m0, finally!

WARNING: Before you try the example below on human chromosome 1, be aware
that it will require the allocation of about 500Mb of memory!
if (interactive()) {
library(BSgenome.Hsapiens.UCSC.hg18)
chr1 <- Hsapiens$chr1
matchPattern(pattern, reverseComplement(chr1)) # DON'T DO THIS!
matchPattern(reverseComplement(pattern), chr1) # DO THIS INSTEAD

}

reverseSeq Reverse Sequence

Description

WARNING: The functions described in this man page are now defunct and will be removed soon
together with this man page. See the examples at the bottom of the man page for how to use
reverse,XString-method and reverseComplement instead.

Functions to obtain the reverse and reverse complement of a sequence

Usage

reverseSeq(seq)
revcompDNA(seq)
revcompRNA(seq)

Arguments

seq Character vector. For revcompRNA and revcompDNA the sequence should
consist of appropriate letter codes: [ACGUN] and ACGTN, respectively.

Details

The function reverses the order of the constituent character strings of its argument.

stringDist 111

Value

A character vector of the same length as seq.

Author(s)

R. Gentleman, W. Huber, S. Falcon

See Also

alphabetFrequency, reverseComplement

Examples

w <- c("hey there", "you silly fool")
You can't do this anymore (defunct):
if (interactive()) {

reverseSeq(w) # was inefficient on large vectors
}
But you can do this instead:
reverse(BStringSet(w))

w <- "able was I ere I saw Elba"
You can't do this anymore (defunct):
if (interactive()) {

reverseSeq(w) # was inefficient on large vectors
}
But you can do this instead:
reverse(BStringSet(w))

rna1 <- "UGCA"
You can't do this anymore (defunct):
if (interactive()) {

revcompRNA(rna1) # was inefficient on large vectors
}
But you can do this instead:
reverseComplement(RNAString(rna1))

dna1 <- "TGCA"
You can't do this anymore (defunct):
if (interactive()) {

revcompDNA(dna1) # was inefficient on large vectors
}
But you can do this instead:
reverseComplement(DNAString(dna1))

stringDist String Distance/Alignment Score Matrix

Description

Computes the Levenshtein edit distance or pairwise alignment score matrix for a set of strings.

112 stringDist

Usage

stringDist(x, method = "levenshtein", ignoreCase = FALSE, diag = FALSE, upper = FALSE, ...)
S4 method for signature 'XStringSet'
stringDist(x, method = "levenshtein", ignoreCase = FALSE, diag = FALSE,

upper = FALSE, type = "global", quality = PhredQuality(22L),
substitutionMatrix = NULL, fuzzyMatrix = NULL, gapOpening = 0,
gapExtension = -1)

S4 method for signature 'QualityScaledXStringSet'
stringDist(x, method = "quality", ignoreCase = FALSE,

diag = FALSE, upper = FALSE, type = "global", substitutionMatrix = NULL,
fuzzyMatrix = NULL, gapOpening = 0, gapExtension = -1)

Arguments

x a character vector or an XStringSet object.

method calculation method. One of "levenshtein", "hamming", "quality",
or "substitutionMatrix".

ignoreCase logical value indicating whether to ignore case during scoring.

diag logical value indicating whether the diagonal of the matrix should be printed by
print.dist.

upper logical value indicating whether the upper triangle of the matrix should be printed
by print.dist.

type (applicable when method = "quality" or method = "substitutionMatrix").
type of alignment. One of "global", "local", and "overlap", where
"global" = align whole strings with end gap penalties, "local" = align
string fragments, "overlap" = align whole strings without end gap penalties.

quality (applicable when method = "quality"). object of class XStringQuality
representing the quality scores for x that are used in a quality-based method for
generating a substitution matrix.

substitutionMatrix
(applicable when method = "substitutionMatrix"). symmetric ma-
trix representing the fixed substitution scores in the alignment.

fuzzyMatrix (applicable when method = "quality"). fuzzy match matrix for quality-
based alignments. It takes values between 0 and 1; where 0 is an unambiguous
mismatch, 1 is an unambiguous match, and values in between represent a frac-
tion of "matchiness".

gapOpening (applicable when method = "quality" or method = "substitutionMatrix").
penalty for opening a gap in the alignment.

gapExtension (applicable when method = "quality" or method = "substitutionMatrix").
penalty for extending a gap in the alignment

... optional arguments to generic function to support additional methods.

Details

When method = "hamming", uses the underlying neditStartingAt code to calculate the
distances, where the Hamming distance is defined as the number of substitutions between two
strings of equal length. Otherwise, uses the underlying pairwiseAlignment code to compute
the distance/alignment score matrix.

substitution.matrices 113

Value

Returns an object of class "dist".

Author(s)

P. Aboyoun

See Also

dist, agrep, pairwiseAlignment, substitution.matrices

Examples

stringDist(c("lazy", "HaZy", "crAzY"))
stringDist(c("lazy", "HaZy", "crAzY"), ignoreCase = TRUE)

data(phiX174Phage)
plot(hclust(stringDist(phiX174Phage), method = "single"))

data(srPhiX174)
stringDist(srPhiX174[1:4])
stringDist(srPhiX174[1:4], method = "quality",

quality = SolexaQuality(quPhiX174[1:4]),
gapOpening = -10, gapExtension = -4)

substitution.matrices
Scoring matrices

Description

Predefined substitution matrices for nucleotide and amino acid alignments.

Usage

data(BLOSUM45)
data(BLOSUM50)
data(BLOSUM62)
data(BLOSUM80)
data(BLOSUM100)
data(PAM30)
data(PAM40)
data(PAM70)
data(PAM120)
data(PAM250)
nucleotideSubstitutionMatrix(match = 1, mismatch = 0, baseOnly = FALSE, type = "DNA")
qualitySubstitutionMatrices(fuzzyMatch = c(0, 1), alphabetLength = 4L, qualityClass = "PhredQuality", bitScale = 1)
errorSubstitutionMatrices(errorProbability, fuzzyMatch = c(0, 1), alphabetLength = 4L, bitScale = 1)

114 substitution.matrices

Arguments

match the scoring for a nucleotide match.
mismatch the scoring for a nucleotide mismatch.
baseOnly TRUE or FALSE. If TRUE, only uses the letters in the "base" alphabet i.e. "A",

"C", "G", "T".
type either "DNA" or "RNA".
fuzzyMatch a named or unnamed numeric vector representing the base match probability.
errorProbability

a named or unnamed numeric vector representing the error probability.
alphabetLength

an integer representing the number of letters in the underlying string alphabet.
For DNA and RNA, this would be 4L. For Amino Acids, this could be 20L.

qualityClass a character string of either "PhredQuality" or "SolexaQuality".
bitScale a numeric value to scale the quality-based substitution matrices. By default, this

is 1, representing bit-scale scoring.

Format

The BLOSUM and PAM matrices are square symmetric matrices with integer coefficients, whose
row and column names are identical and unique: each name is a single letter representing a nu-
cleotide or an amino acid.

nucleotideSubstitutionMatrix produces a substitution matrix for all IUPAC nucleic acid
codes based upon match and mismatch parameters.

errorSubstitutionMatrices produces a two element list of numeric square symmetric ma-
trices, one for matches and one for mismatches.

qualitySubstitutionMatrices produces the substitution matrices for Phred or Solexa
quality-based reads.

Details

The BLOSUM and PAM matrices are not unique. For example, the definition of the widely used
BLOSUM62 matrix varies depending on the source, and even a given source can provide different
versions of "BLOSUM62" without keeping track of the changes over time. NCBI provides many
matrices here ftp://ftp.ncbi.nih.gov/blast/matrices/ but their definitions don’t match those of the
matrices bundled with their stand-alone BLAST software available here ftp://ftp.ncbi.nih.gov/blast/

The BLOSUM45, BLOSUM62, BLOSUM80, PAM30 and PAM70 matrices were taken from NCBI
stand-alone BLAST software.

The BLOSUM50, BLOSUM100, PAM40, PAM120 and PAM250 matrices were taken from ftp://ftp.ncbi.nih.gov/blast/matrices/

The quality matrices computed in qualitySubstitutionMatrices are based on the paper
by Ketil Malde. Let εi be the probability of an error in the base read. For "Phred" quality
measures Q in [0, 99], these error probabilities are given by εi = 10−Q/10. For "Solexa" quality
measures Q in [−5, 99], they are given by εi = 1 − 1/(1 + 10−Q/10). Assuming independence
within and between base reads, the combined error probability of a mismatch when the underlying
bases do match is εc = ε1 + ε2 − (n/(n − 1)) ∗ ε1 ∗ ε2, where n is the number of letters in the
underlying alphabet. Using εc, the substitution score is given by when two bases match is given by
b∗ log2(γx,y ∗ (1− εc)∗n+(1−γx,y)∗ εc ∗ (n/(n−1))), where b is the bit-scaling for the scoring
and γx,y is the probability that characters x and y represents the same underlying information (e.g.
using IUPAC, γA,A = 1 and γA,N = 1/4. In the arguments listed above fuzzyMatch represents
γx,y and errorProbability represents εi.

substitution.matrices 115

Author(s)

H. Pages and P. Aboyoun

References

K. Malde, The effect of sequence quality on sequence alignment, Bioinformatics, Feb 23, 2008.

See Also

pairwiseAlignment, PairwiseAlignedXStringSet-class, DNAString-class, AAString-class, PhredQuality-
class, SolexaQuality-class

Examples

s1 <-
DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG")

s2 <-
DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")

Fit a global pairwise alignment using edit distance scoring
pairwiseAlignment(s1, s2,

substitutionMatrix = nucleotideSubstitutionMatrix(0, -1, TRUE),
gapOpening = 0, gapExtension = -1)

Examine quality-based match and mismatch bit scores for DNA/RNA
strings in pairwiseAlignment.
By default patternQuality and subjectQuality are PhredQuality(22L).
qualityMatrices <- qualitySubstitutionMatrices()
qualityMatrices["22", "22", "1"]
qualityMatrices["22", "22", "0"]

pairwiseAlignment(s1, s2)

Get the substitution scores when the error probability is 0.1
subscores <- errorSubstitutionMatrices(errorProbability = 0.1)
submat <- matrix(subscores[,,"0"], 4, 4)
diag(submat) <- subscores[,,"1"]
dimnames(submat) <- list(DNA_ALPHABET[1:4], DNA_ALPHABET[1:4])
submat
pairwiseAlignment(s1, s2, substitutionMatrix = submat)

Align two amino acid sequences with the BLOSUM62 matrix
aa1 <- AAString("HXBLVYMGCHFDCXVBEHIKQZ")
aa2 <- AAString("QRNYMYCFQCISGNEYKQN")
pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM62", gapOpening = -3, gapExtension = -1)

See how the gap penalty influences the alignment
pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM62", gapOpening = -6, gapExtension = -2)

See how the substitution matrix influences the alignment
pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1)

if (interactive()) {
Compare our BLOSUM62 with BLOSUM62 from ftp://ftp.ncbi.nih.gov/blast/matrices/
data(BLOSUM62)
BLOSUM62["Q", "Z"]

116 toComplex

file <- "ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62"
b62 <- as.matrix(read.table(file, check.names=FALSE))
b62["Q", "Z"]

}

toComplex Turning a DNA sequence into a vector of complex numbers

Description

The toComplex utility function turns a DNAString object into a complex vector.

Usage

toComplex(x, baseValues)

Arguments

x A DNAString object.

baseValues A named complex vector containing the values associated to each base e.g.
c(A=1+0i, G=0+1i, T=-1+0i, C=0-1i)

Value

A complex vector of the same length as x.

Author(s)

H. Pages

See Also

DNAString

Examples

seq <- DNAString("accacctgaccattgtcct")
baseValues1 <- c(A=1+0i, G=0+1i, T=-1+0i, C=0-1i)
toComplex(seq, baseValues1)

GC content:
baseValues2 <- c(A=0, C=1, G=1, T=0)
sum(as.integer(toComplex(seq, baseValues2)))
Note that there are better ways to do this (see ?alphabetFrequency)

translate 117

translate DNA/RNA transcription and translation

Description

Functions for transcription and/or translation of DNA or RNA sequences, and related utilities.

Usage

Transcription:
transcribe(x)
cDNA(x)

Translation:
codons(x)
translate(x)

Related utilities:
dna2rna(x)
rna2dna(x)

Arguments

x A DNAString object for transcribe and dna2rna.
An RNAString object for cDNA and rna2dna.
A DNAString, RNAString, MaskedDNAString or MaskedRNAString object for
codons.
A DNAString, RNAString, DNAStringSet, RNAStringSet, MaskedDNAString
or MaskedRNAString object for translate.

Details

transcribe reproduces the biological process of DNA transcription that occurs in the cell. It
takes the naive approach to treat the whole sequence x as if it was a single exon. See extractTranscripts
for a more powerful version that allows the user to extract a set of transcripts specified by the starts
and ends of their exons as well as the strand from which the transcript is coming.

cDNA reproduces the process of synthesizing complementary DNA from a mature mRNA template.

translate reproduces the biological process of RNA translation that occurs in the cell. The input
of the function can be either RNA or coding DNA. The Standard Genetic Code (see ?GENETIC_CODE)
is used to translate codons into amino acids. codons is a utility for extracting the codons involved
in this translation without translating them.

dna2rna and rna2dna are low-level utilities for converting sequences from DNA to RNA and
vice-versa. All what this converstion does is to replace each occurrence of T by a U and vice-versa.

Value

An RNAString object for transcribe and dna2rna.

A DNAString object for cDNA and rna2dna.

Note that if the sequence passed to transcribe or cDNA is considered to be oriented 5’-3’, then
the returned sequence is oriented 3’-5’.

118 trimLRPatterns

An XStringViews object with 1 view per codon for codons. When x is a MaskedDNAString or
MaskedRNAString object, its masked parts are interpreted as introns and filled with the + letter in
the returned object. Therefore codons that span across masked regions are represented by views
that have a width > 3 and contain the + letter. Note that each view is guaranteed to contain exactly
3 base letters.

An AAString object for translate.

See Also

reverseComplement, GENETIC_CODE, DNAString-class, RNAString-class, AAString-class,
XStringSet-class, XStringViews-class, MaskedXString-class

Examples

file <- system.file("extdata", "someORF.fa", package="Biostrings")
x <- read.DNAStringSet(file)
x

The first and last 1000 nucleotides are not part of the ORFs:
x <- DNAStringSet(x, start=1001, end=-1001)

Before calling translate() on an ORF, we need to mask the introns
if any. We can get this information fron the SGD database
(http://www.yeastgenome.org/).
According to SGD, the 1st ORF (YAL001C) has an intron at 71..160
(see http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YAL001C)
y1 <- x[[1]]
mask1 <- Mask(length(y1), start=71, end=160)
masks(y1) <- mask1
y1
translate(y1)

Codons
codons(y1)
which(width(codons(y1)) != 3)
codons(y1)[20:28]

trimLRPatterns Trim Flanking Patterns from Sequences

Description

The trimLRPatterns function trims left and/or right flanking patterns from sequences.

Usage

trimLRPatterns(Lpattern = "", Rpattern = "", subject,
max.Lmismatch = 0, max.Rmismatch = 0,
with.Lindels = FALSE, with.Rindels = FALSE,
Lfixed = TRUE, Rfixed = TRUE, ranges = FALSE)

trimLRPatterns 119

Arguments

Lpattern The left pattern.

Rpattern The right pattern.

subject An XString object, XStringSet object, or character vector containing the target
sequence(s).

max.Lmismatch
Either an integer vector of length nLp = nchar(Lpattern) representing
an absolute number of mismatches (or edit distance if with.Lindels is TRUE)
or a single numeric value in the interval [0, 1) representing a mismatch rate
when aligning terminal substrings (suffixes) of Lpattern with the beginning
(prefix) of subject following the conventions set by neditStartingAt,
isMatchingStartingAt, etc.
When max.Lmismatch is 0L or a numeric value in the interval [0, 1), it is
taken as a "rate" and is converted to as.integer(1:nLp * max.Lmismatch),
analogous to agrep (which, however, employs ceiling).
Otherwise, max.Lmismatch is treated as an integer vector where negative
numbers are used to prevent trimming at the i-th location. When an input inte-
ger vector is shorter than nLp, it is augmented with enough -1s at the beginning
to bring its length up to nLp. Elements of max.Lmismatch beyond the first
nLp are ignored.
Once the integer vector is constructed using the rules given above, when with.Lindels
is FALSE, max.Lmismatch[i] is the number of acceptable mismatches (er-
rors) between the suffix substring(Lpattern, nLp - i + 1, nLp)
of Lpattern and the first i letters of subject. When with.Lindels is
TRUE, max.Lmismatch[i] represents the allowed "edit distance" between
that suffix of Lpattern and subject, starting at position 1 of subject (as
in matchPattern and isMatchingStartingAt).
For a given element s of the subject, the initial segment (prefix) substring(s,
1, j) of s is trimmed if j is the largest i for which there is an acceptable
match, if any.

max.Rmismatch
Same as max.Lmismatch but with Rpattern, along with with.Rindels
(below), and its initial segments (prefixes) substring(Rpattern, 1, i).
For a given element s of the subject, with nS = nchar(s), the terminal seg-
ment (suffix) substring(s, nS - j + 1, nS) of s is trimmed if j is
the largest i for which there is an acceptable match, if any.

with.Lindels If TRUE, indels are allowed in the alignments of the suffixes of Lpattern
with the subject, at its beginning. See the with.indels arguments of the
matchPattern and neditStartingAt functions for detailed informa-
tion.

with.Rindels Same as with.Lindels but for alignments of the prefixes of Rpatternwith
the subject, at its end. See the with.indels arguments of the matchPattern
and neditEndingAt functions for detailed information.

Lfixed, Rfixed
Whether IUPAC extended letters in the left or right pattern should be interpreted
as ambiguities (see ¿lowlevel-matching‘ for the details).

ranges If TRUE, then return the ranges to use to trim subject. If FALSE, then re-
turned the trimmed subject.

120 xscat

Value

A new XString object, XStringSet object, or character vector with the "longest" flanking matches
removed, as described above.

Author(s)

P. Aboyoun and H. Jaffee

See Also

matchPattern, matchLRPatterns, lowlevel-matching, XString-class, XStringSet-class

Examples

Lpattern <- "TTCTGCTTG"
Rpattern <- "GATCGGAAG"
subject <- DNAString("TTCTGCTTGACGTGATCGGA")
subjectSet <- DNAStringSet(c("TGCTTGACGGCAGATCGG", "TTCTGCTTGGATCGGAAG"))

Only allow for perfect matches on the flanks
trimLRPatterns(Lpattern = Lpattern, subject = subject)
trimLRPatterns(Rpattern = Rpattern, subject = subject)
trimLRPatterns(Lpattern = Lpattern, Rpattern = Rpattern, subject = subjectSet)

Allow for perfect matches on the flanking overlaps
trimLRPatterns(Lpattern = Lpattern, Rpattern = Rpattern, subject = subjectSet,

max.Lmismatch = 0, max.Rmismatch = 0)

Allow for mismatches on the flanks
trimLRPatterns(Lpattern = Lpattern, Rpattern = Rpattern, subject = subject,

max.Lmismatch = 0.2, max.Rmismatch = 0.2)
maxMismatches <- as.integer(0.2 * 1:9)
maxMismatches
trimLRPatterns(Lpattern = Lpattern, Rpattern = Rpattern, subject = subjectSet,

max.Lmismatch = maxMismatches, max.Rmismatch = maxMismatches)

Produce ranges that can be an input into other functions
trimLRPatterns(Lpattern = Lpattern, Rpattern = Rpattern, subject = subjectSet,

max.Lmismatch = 0, max.Rmismatch = 0, ranges = TRUE)
trimLRPatterns(Lpattern = Lpattern, Rpattern = Rpattern, subject = subject,

max.Lmismatch = 0.2, max.Rmismatch = 0.2, ranges = TRUE)

xscat Concatenate sequences contained in XString, XStringSet and/or

Description

This function mimics the semantic of paste(..., sep="") but accepts XString, XStringSet
or XStringViews arguments and returns an XString or XStringSet object.

Usage

xscat(...)

xscat 121

Arguments

... One or more character vectors (with no NAs), XString, XStringSet or XStringViews
objects.

Value

An XString object if all the arguments are either XString objects or character strings. An XStringSet
object otherwise.

Author(s)

H. Pages

See Also

XString-class, XStringSet-class, XStringViews-class, paste

Examples

Return a BString object:
xscat(BString("abc"), BString("EF"))
xscat(BString("abc"), "EF")
xscat("abc", "EF")

Return a BStringSet object:
xscat(BStringSet("abc"), "EF")

Return a DNAStringSet object:
xscat(c("t", "a"), DNAString("N"))

Arguments are recycled to the length of the longest argument:
xscat("x", LETTERS, c("3", "44", "555"))

Concatenating big XStringSet objects:
library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
mm <- complement(narrow(probes, start=13, end=13))
left <- narrow(probes, end=12)
right <- narrow(probes, start=14)
xscat(left, mm, right)

Collapsing an XStringSet (or XStringViews) object with a small
number of elements:
probes1000 <- as.list(probes[1:1000])
y1 <- do.call(xscat, probes1000)
y2 <- do.call(c, probes1000) # slightly faster than the above
y1 == y2 # TRUE
Note that this method won't be efficient when the number of
elements to collapse is big (> 10000) so we need to provide a
collapse() (or xscollapse()) function in Biostrings that will
be efficient at doing this. Please complain on the Bioconductor
mailing list (http://bioconductor.org/docs/mailList.html) if you
need this.

122 yeastSEQCHR1

yeastSEQCHR1 An annotation data file for CHR1 in the yeastSEQ package

Description

This is a single character string containing DNA sequence of yeast chromosome number 1. The data
were obtained from the Saccharomyces Genome Database (ftp://genome-ftp.stanford.
edu/pub/yeast/data_download/sequence/genomic_sequence/chromosomes/
fasta/).

Details

Annotation based on data provided by Yeast Genome project.

Source data built:Yeast Genome data are built at various time intervals. Sources used were down-
loaded Fri Nov 21 14:00:47 2003 Package built: Fri Nov 21 14:00:47 2003

References

http://www.yeastgenome.org/DownloadContents.shtml

Examples

data(yeastSEQCHR1)
nchar(yeastSEQCHR1)

ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/genomic_sequence/chromosomes/fasta/
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/genomic_sequence/chromosomes/fasta/
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/genomic_sequence/chromosomes/fasta/
http://www.yeastgenome.org/DownloadContents.shtml

Index

!=,BString,character-method
(XString-class), 29

!=,XString,XString-method
(XString-class), 29

!=,XString,XStringViews-method
(XStringViews-class), 42

!=,XStringViews,XString-method
(XStringViews-class), 42

!=,XStringViews,XStringViews-method
(XStringViews-class), 42

!=,XStringViews,character-method
(XStringViews-class), 42

!=,character,BString-method
(XString-class), 29

!=,character,XStringViews-method
(XStringViews-class), 42

∗Topic character
stringDist, 111

∗Topic classes
AAString-class, 1
AlignedXStringSet-class, 2
BOC_SubjectString-class, 4
DNAString-class, 4
InDel-class, 10
MaskedXString-class, 12
MIndex-class, 10
MultipleAlignment-class, 14
PairwiseAlignedXStringSet-class,

21
PDict-class, 18
QualityScaledXStringSet-class,

25
RNAString-class, 26
WCP, 27
XKeySortedData, 28
XKeySortedDataList, 28
XString-class, 29
XStringPartialMatches-class,

31
XStringQuality-class, 32
XStringSet-class, 33
XStringSetList-class, 41
XStringViews-class, 42

∗Topic cluster
stringDist, 111

∗Topic datasets
HNF4alpha, 8
phiX174Phage, 103
substitution.matrices, 113
yeastSEQCHR1, 122

∗Topic data
AMINO_ACID_CODE, 2
GENETIC_CODE, 7
IUPAC_CODE_MAP, 9
substitution.matrices, 113

∗Topic distribution
dinucleotideFrequencyTest, 51

∗Topic htest
dinucleotideFrequencyTest, 51

∗Topic manip
basecontent, 47
chartr, 48
complementSeq, 49
detail, 51
FASTA-io-legacy, 5
gregexpr2, 55
injectHardMask, 56
letterFrequency, 58
longestConsecutive, 63
maskMotif, 69
matchprobes, 93
matchPWM, 85
matchWCP, 92
misc, 94
nucleotideFrequency, 96
replaceLetterAt, 106
reverseComplement, 108
reverseSeq, 110
translate, 117
xscat, 120
XStringSet-io, 38

∗Topic methods
AAString-class, 1
align-utils, 45
AlignedXStringSet-class, 2
BOC_SubjectString-class, 4

123

124 INDEX

chartr, 48
DNAString-class, 4
findPalindromes, 53
InDel-class, 10
letter, 57
letterFrequency, 58
lowlevel-matching, 64
MaskedXString-class, 12
maskMotif, 69
match-utils, 71
matchLRPatterns, 72
matchPattern, 87
matchPDict, 74
matchPDict-inexact, 82
matchProbePair, 91
matchPWM, 85
matchWCP, 92
MIndex-class, 10
misc, 94
MultipleAlignment-class, 14
needwunsQS, 95
nucleotideFrequency, 96
PairwiseAlignedXStringSet-class,

21
pairwiseAlignment, 100
PDict-class, 18
pid, 104
pmatchPattern, 105
QualityScaledXStringSet-class,

25
reverseComplement, 108
RNAString-class, 26
toComplex, 116
translate, 117
trimLRPatterns, 118
WCP, 27
XKeySortedData, 28
XKeySortedDataList, 28
xscat, 120
XString-class, 29
XStringPartialMatches-class,

31
XStringQuality-class, 32
XStringSet-class, 33
XStringSetList-class, 41
XStringViews-class, 42
XStringViews-constructor, 44

∗Topic models
needwunsQS, 95
pairwiseAlignment, 100

∗Topic multivariate
stringDist, 111

∗Topic utilities
AMINO_ACID_CODE, 2
FASTA-io-legacy, 5
GENETIC_CODE, 7
injectHardMask, 56
IUPAC_CODE_MAP, 9
matchPWM, 85
matchWCP, 92
replaceLetterAt, 106
substitution.matrices, 113
XStringSet-io, 38

.inplaceReplaceLetterAt
(replaceLetterAt), 106

==,BString,character-method
(XString-class), 29

==,XString,XString-method
(XString-class), 29

==,XString,XStringViews-method
(XStringViews-class), 42

==,XStringViews,XString-method
(XStringViews-class), 42

==,XStringViews,XStringViews-method
(XStringViews-class), 42

==,XStringViews,character-method
(XStringViews-class), 42

==,character,BString-method
(XString-class), 29

==,character,XStringViews-method
(XStringViews-class), 42

[,AlignedXStringSet0-method
(AlignedXStringSet-class),
2

[,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

[,QualityScaledXStringSet-method
(QualityScaledXStringSet-class),
25

[,XKeySortedData-method
(XKeySortedData), 28

[,XStringPartialMatches-method
(XStringPartialMatches-class),
31

[<-,AlignedXStringSet0-method
(AlignedXStringSet-class),
2

[<-,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

[[,ByPos_MIndex-method
(MIndex-class), 10

[[,PDict-method (PDict-class), 18

INDEX 125

[[,XKeySortedData-method
(XKeySortedData), 28

[[,XStringSetList-method
(XStringSetList-class), 41

[[<-,XStringSetList-method
(XStringSetList-class), 41

%in%,XString,XStringSet-method
(XStringSet-class), 33

%in%,XStringSet,XStringSet-method
(XStringSet-class), 33

%in%,character,XStringSet-method
(XStringSet-class), 33

AA_ALPHABET, 8, 34
AA_ALPHABET (AAString-class), 1
AA_WCP (WCP), 27
AA_WCP-class (WCP), 27
AAKeySortedData (XKeySortedData),

28
AAKeySortedData-class

(XKeySortedData), 28
AAKeySortedDataList

(XKeySortedDataList), 28
AAKeySortedDataList-class

(XKeySortedDataList), 28
AAMultipleAlignment

(MultipleAlignment-class),
14

AAMultipleAlignment-class
(MultipleAlignment-class),
14

AAString, 1, 2, 5, 8, 27, 29, 33, 118
AAString (AAString-class), 1
AAString-class, 1, 30, 40, 115, 118
AAStringSet, 25, 41
AAStringSet (XStringSet-class), 33
AAStringSet-class, 26
AAStringSet-class

(XStringSet-class), 33
AAStringSetList

(XStringSetList-class), 41
AAStringSetList-class

(XStringSetList-class), 41
ACtree2 (PDict-class), 18
ACtree2-class (PDict-class), 18
adjacentViews

(XStringViews-constructor),
44

agrep, 113, 119
align-utils, 24
align-utils, 45, 67, 72
aligned

(AlignedXStringSet-class),

2
aligned,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

aligned,PairwiseAlignedFixedSubject-method
(PairwiseAlignedXStringSet-class),
21

AlignedXStringSet
(AlignedXStringSet-class),
2

AlignedXStringSet-class, 24
AlignedXStringSet-class, 2, 46
AlignedXStringSet0

(AlignedXStringSet-class),
2

AlignedXStringSet0-class
(AlignedXStringSet-class),
2

alphabet, 12, 23, 46, 58, 59, 61, 98
alphabet (XString-class), 29
alphabet,ANY-method

(XString-class), 29
alphabetFrequency, 2, 5, 13, 27, 47, 48,

50, 76, 89, 98, 111
alphabetFrequency

(letterFrequency), 58
alphabetFrequency,DNAString-method

(letterFrequency), 58
alphabetFrequency,DNAStringSet-method

(letterFrequency), 58
alphabetFrequency,MaskedXString-method

(letterFrequency), 58
alphabetFrequency,MultipleAlignment-method

(MultipleAlignment-class),
14

alphabetFrequency,RNAString-method
(letterFrequency), 58

alphabetFrequency,RNAStringSet-method
(letterFrequency), 58

alphabetFrequency,XString-method
(letterFrequency), 58

alphabetFrequency,XStringSet-method
(letterFrequency), 58

alphabetFrequency,XStringViews-method
(letterFrequency), 58

AMINO_ACID_CODE, 1, 2, 2, 8, 98
append,QualityScaledXStringSet,QualityScaledXStringSet-method

(QualityScaledXStringSet-class),
25

Arithmetic, 59
as.character,AlignedXStringSet0-method

(AlignedXStringSet-class),

126 INDEX

2
as.character,MaskedXString-method

(MaskedXString-class), 12
as.character,MultipleAlignment-method

(MultipleAlignment-class),
14

as.character,PairwiseAlignedFixedSubject-method
(PairwiseAlignedXStringSet-class),
21

as.character,XString-method
(XString-class), 29

as.character,XStringSet-method
(XStringSet-class), 33

as.character,XStringViews-method
(XStringViews-class), 42

as.integer,PhredQuality-method
(XStringQuality-class), 32

as.integer,SolexaQuality-method
(XStringQuality-class), 32

as.list,MTB_PDict-method
(PDict-class), 18

as.matrix,MultipleAlignment-method
(MultipleAlignment-class),
14

as.matrix,PairwiseAlignedFixedSubject-method
(PairwiseAlignedXStringSet-class),
21

as.matrix,XStringQuality-method
(XStringQuality-class), 32

as.matrix,XStringSet-method
(XStringSet-class), 33

as.matrix,XStringViews-method
(XStringViews-class), 42

as.numeric,PhredQuality-method
(XStringQuality-class), 32

as.numeric,SolexaQuality-method
(XStringQuality-class), 32

B_WCP (WCP), 27
B_WCP-class (WCP), 27
basecontent, 47, 64
BKeySortedData (XKeySortedData),

28
BKeySortedData-class

(XKeySortedData), 28
BKeySortedDataList

(XKeySortedDataList), 28
BKeySortedDataList-class

(XKeySortedDataList), 28
BLOSUM100

(substitution.matrices),
113

BLOSUM45 (substitution.matrices),
113

BLOSUM50 (substitution.matrices),
113

BLOSUM62 (substitution.matrices),
113

BLOSUM80 (substitution.matrices),
113

BOC2_SubjectString
(BOC_SubjectString-class),
4

BOC2_SubjectString-class
(BOC_SubjectString-class),
4

BOC_SubjectString
(BOC_SubjectString-class),
4

BOC_SubjectString-class, 4
BSgenome, 6, 107
BSgenome-class, 6
BString, 1, 4, 5, 26, 27, 32, 33, 46, 61
BString (XString-class), 29
BString-class, 40
BString-class (XString-class), 29
BStringSet, 25, 32, 39–41, 46
BStringSet (XStringSet-class), 33
BStringSet-class, 26, 32
BStringSet-class

(XStringSet-class), 33
BStringSetList

(XStringSetList-class), 41
BStringSetList-class

(XStringSetList-class), 41
BStringViews

(XStringViews-constructor),
44

BStringViews,ANY-method
(XStringViews-constructor),
44

BStringViews,file-method
(XStringViews-constructor),
44

ByPos_MIndex-class
(MIndex-class), 10

c, 59
cat, 6, 39
cDNA (translate), 117
ceiling, 119
CharacterToFASTArecords

(XStringSet-io), 38
chartr, 48, 48, 57, 107, 109

INDEX 127

chartr,ANY,ANY,MaskedXString-method
(chartr), 48

chartr,ANY,ANY,XString-method
(chartr), 48

chartr,ANY,ANY,XStringSet-method
(chartr), 48

chartr,ANY,ANY,XStringViews-method
(chartr), 48

chisq.test, 52
class:AA_WCP (WCP), 27
class:AAKeySortedData

(XKeySortedData), 28
class:AAKeySortedDataList

(XKeySortedDataList), 28
class:AAMultipleAlignment

(MultipleAlignment-class),
14

class:AAString (AAString-class), 1
class:AAStringSet

(XStringSet-class), 33
class:AAStringSetList

(XStringSetList-class), 41
class:ACtree2 (PDict-class), 18
class:AlignedXStringSet

(AlignedXStringSet-class),
2

class:AlignedXStringSet0
(AlignedXStringSet-class),
2

class:B_WCP (WCP), 27
class:BKeySortedData

(XKeySortedData), 28
class:BKeySortedDataList

(XKeySortedDataList), 28
class:BOC2_SubjectString

(BOC_SubjectString-class),
4

class:BOC_SubjectString
(BOC_SubjectString-class),
4

class:BString (XString-class), 29
class:BStringSet

(XStringSet-class), 33
class:BStringSetList

(XStringSetList-class), 41
class:ByPos_MIndex

(MIndex-class), 10
class:DNA_WCP (WCP), 27
class:DNAKeySortedData

(XKeySortedData), 28
class:DNAKeySortedDataList

(XKeySortedDataList), 28

class:DNAMultipleAlignment
(MultipleAlignment-class),
14

class:DNAString
(DNAString-class), 4

class:DNAStringSet
(XStringSet-class), 33

class:DNAStringSetList
(XStringSetList-class), 41

class:Expanded_TB_PDict
(PDict-class), 18

class:InDel (InDel-class), 10
class:MaskedAAString

(MaskedXString-class), 12
class:MaskedBString

(MaskedXString-class), 12
class:MaskedDNAString

(MaskedXString-class), 12
class:MaskedRNAString

(MaskedXString-class), 12
class:MaskedXString

(MaskedXString-class), 12
class:MIndex (MIndex-class), 10
class:MTB_PDict (PDict-class), 18
class:MultipleAlignment

(MultipleAlignment-class),
14

class:PairwiseAlignedFixedSubject
(PairwiseAlignedXStringSet-class),
21

class:PairwiseAlignedFixedSubjectSummary
(PairwiseAlignedXStringSet-class),
21

class:PairwiseAlignedXStringSet
(PairwiseAlignedXStringSet-class),
21

class:PDict (PDict-class), 18
class:PDict3Parts (PDict-class),

18
class:PhredQuality

(XStringQuality-class), 32
class:PreprocessedTB

(PDict-class), 18
class:QualityAlignedXStringSet

(AlignedXStringSet-class),
2

class:QualityScaledAAStringSet
(QualityScaledXStringSet-class),
25

class:QualityScaledBStringSet
(QualityScaledXStringSet-class),
25

128 INDEX

class:QualityScaledDNAStringSet
(QualityScaledXStringSet-class),
25

class:QualityScaledRNAStringSet
(QualityScaledXStringSet-class),
25

class:QualityScaledXStringSet
(QualityScaledXStringSet-class),
25

class:RNA_WCP (WCP), 27
class:RNAKeySortedData

(XKeySortedData), 28
class:RNAKeySortedDataList

(XKeySortedDataList), 28
class:RNAMultipleAlignment

(MultipleAlignment-class),
14

class:RNAString
(RNAString-class), 26

class:RNAStringSet
(XStringSet-class), 33

class:RNAStringSetList
(XStringSetList-class), 41

class:SolexaQuality
(XStringQuality-class), 32

class:TB_PDict (PDict-class), 18
class:Twobit (PDict-class), 18
class:WCP (WCP), 27
class:XKeySortedData

(XKeySortedData), 28
class:XKeySortedDataList

(XKeySortedDataList), 28
class:XString (XString-class), 29
class:XStringPartialMatches

(XStringPartialMatches-class),
31

class:XStringQuality
(XStringQuality-class), 32

class:XStringSet
(XStringSet-class), 33

class:XStringSetList
(XStringSetList-class), 41

class:XStringViews
(XStringViews-class), 42

codons (translate), 117
codons,DNAString-method

(translate), 117
codons,MaskedDNAString-method

(translate), 117
codons,MaskedRNAString-method

(translate), 117
codons,RNAString-method

(translate), 117
coerce,AAString,MaskedAAString-method

(MaskedXString-class), 12
coerce,BString,MaskedBString-method

(MaskedXString-class), 12
coerce,BString,PhredQuality-method

(XStringQuality-class), 32
coerce,BString,SolexaQuality-method

(XStringQuality-class), 32
coerce,BStringSet,PhredQuality-method

(XStringQuality-class), 32
coerce,BStringSet,SolexaQuality-method

(XStringQuality-class), 32
coerce,character,AAMultipleAlignment-method

(MultipleAlignment-class),
14

coerce,character,AAString-method
(XString-class), 29

coerce,character,AAStringSet-method
(XStringSet-class), 33

coerce,character,BString-method
(XString-class), 29

coerce,character,BStringSet-method
(XStringSet-class), 33

coerce,character,DNAMultipleAlignment-method
(MultipleAlignment-class),
14

coerce,character,DNAString-method
(XString-class), 29

coerce,character,DNAStringSet-method
(XStringSet-class), 33

coerce,character,PhredQuality-method
(XStringQuality-class), 32

coerce,character,RNAMultipleAlignment-method
(MultipleAlignment-class),
14

coerce,character,RNAString-method
(XString-class), 29

coerce,character,RNAStringSet-method
(XStringSet-class), 33

coerce,character,SolexaQuality-method
(XStringQuality-class), 32

coerce,character,XString-method
(XString-class), 29

coerce,character,XStringSet-method
(XStringSet-class), 33

coerce,DNAString,MaskedDNAString-method
(MaskedXString-class), 12

coerce,integer,PhredQuality-method
(XStringQuality-class), 32

coerce,integer,SolexaQuality-method
(XStringQuality-class), 32

INDEX 129

coerce,MaskedAAString,AAString-method
(MaskedXString-class), 12

coerce,MaskedBString,BString-method
(MaskedXString-class), 12

coerce,MaskedDNAString,DNAString-method
(MaskedXString-class), 12

coerce,MaskedRNAString,RNAString-method
(MaskedXString-class), 12

coerce,MaskedXString,MaskCollection-method
(MaskedXString-class), 12

coerce,MaskedXString,MaskedAAString-method
(MaskedXString-class), 12

coerce,MaskedXString,MaskedBString-method
(MaskedXString-class), 12

coerce,MaskedXString,MaskedDNAString-method
(MaskedXString-class), 12

coerce,MaskedXString,MaskedRNAString-method
(MaskedXString-class), 12

coerce,MaskedXString,NormalIRanges-method
(MaskedXString-class), 12

coerce,MaskedXString,Views-method
(MaskedXString-class), 12

coerce,MaskedXString,XStringViews-method
(MaskedXString-class), 12

coerce,MIndex,CompressedIRangesList-method
(MIndex-class), 10

coerce,MultipleAlignment,AAStringSet-method
(MultipleAlignment-class),
14

coerce,MultipleAlignment,BStringSet-method
(MultipleAlignment-class),
14

coerce,MultipleAlignment,DNAStringSet-method
(MultipleAlignment-class),
14

coerce,MultipleAlignment,RNAStringSet-method
(MultipleAlignment-class),
14

coerce,numeric,PhredQuality-method
(XStringQuality-class), 32

coerce,numeric,SolexaQuality-method
(XStringQuality-class), 32

coerce,PhredQuality,integer-method
(XStringQuality-class), 32

coerce,PhredQuality,numeric-method
(XStringQuality-class), 32

coerce,RNAString,MaskedRNAString-method
(MaskedXString-class), 12

coerce,SolexaQuality,integer-method
(XStringQuality-class), 32

coerce,SolexaQuality,numeric-method
(XStringQuality-class), 32

coerce,XString,AAString-method
(XString-class), 29

coerce,XString,AAStringSet-method
(XStringSet-class), 33

coerce,XString,BString-method
(XString-class), 29

coerce,XString,BStringSet-method
(XStringSet-class), 33

coerce,XString,DNAString-method
(XString-class), 29

coerce,XString,DNAStringSet-method
(XStringSet-class), 33

coerce,XString,RNAString-method
(XString-class), 29

coerce,XString,RNAStringSet-method
(XStringSet-class), 33

coerce,XString,XStringSet-method
(XStringSet-class), 33

coerce,XStringQuality,matrix-method
(XStringQuality-class), 32

coerce,XStringSet,AAStringSet-method
(XStringSet-class), 33

coerce,XStringSet,BStringSet-method
(XStringSet-class), 33

coerce,XStringSet,DNAStringSet-method
(XStringSet-class), 33

coerce,XStringSet,RNAStringSet-method
(XStringSet-class), 33

coerce,XStringSet,Views-method
(XStringViews-class), 42

coerce,XStringSet,XStringViews-method
(XStringViews-class), 42

coerce,XStringViews,AAStringSet-method
(XStringViews-class), 42

coerce,XStringViews,BStringSet-method
(XStringViews-class), 42

coerce,XStringViews,DNAStringSet-method
(XStringViews-class), 42

coerce,XStringViews,RNAStringSet-method
(XStringViews-class), 42

coerce,XStringViews,XStringSet-method
(XStringViews-class), 42

collapse,MaskedXString-method
(MaskedXString-class), 12

colmask
(MultipleAlignment-class),
14

colmask,MultipleAlignment-method
(MultipleAlignment-class),
14

colmask<-
(MultipleAlignment-class),

130 INDEX

14
colmask<-,MultipleAlignment,ANY-method

(MultipleAlignment-class),
14

colmask<-,MultipleAlignment,NormalIRanges-method
(MultipleAlignment-class),
14

colmask<-,MultipleAlignment,NULL-method
(MultipleAlignment-class),
14

compact, 30, 36
compareStrings (align-utils), 45
compareStrings,AlignedXStringSet0,AlignedXStringSet0-method

(align-utils), 45
compareStrings,character,character-method

(align-utils), 45
compareStrings,PairwiseAlignedXStringSet,missing-method

(align-utils), 45
compareStrings,XString,XString-method

(align-utils), 45
compareStrings,XStringSet,XStringSet-method

(align-utils), 45
complement, 49
complement (reverseComplement),

108
complement,DNAString-method

(reverseComplement), 108
complement,DNAStringSet-method

(reverseComplement), 108
complement,MaskedDNAString-method

(reverseComplement), 108
complement,MaskedRNAString-method

(reverseComplement), 108
complement,RNAString-method

(reverseComplement), 108
complement,RNAStringSet-method

(reverseComplement), 108
complement,XStringViews-method

(reverseComplement), 108
complementedPalindromeArmLength

(findPalindromes), 53
complementedPalindromeArmLength,DNAString-method

(findPalindromes), 53
complementedPalindromeArmLength,XStringViews-method

(findPalindromes), 53
complementedPalindromeLeftArm

(findPalindromes), 53
complementedPalindromeLeftArm,DNAString-method

(findPalindromes), 53
complementedPalindromeLeftArm,XStringViews-method

(findPalindromes), 53
complementedPalindromeRightArm

(findPalindromes), 53
complementedPalindromeRightArm,DNAString-method

(findPalindromes), 53
complementedPalindromeRightArm,XStringViews-method

(findPalindromes), 53
complementSeq, 49, 64
CompressedIRangesList, 11, 24
computeAllFlinks (PDict-class), 18
computeAllFlinks,ACtree2-method

(PDict-class), 18
consensusMatrix, 24, 46, 86, 87
consensusMatrix

(letterFrequency), 58
consensusMatrix,character-method

(letterFrequency), 58
consensusMatrix,matrix-method

(letterFrequency), 58
consensusMatrix,MultipleAlignment-method

(MultipleAlignment-class),
14

consensusMatrix,PairwiseAlignedFixedSubject-method
(align-utils), 45

consensusMatrix,XStringSet-method
(letterFrequency), 58

consensusMatrix,XStringViews-method
(letterFrequency), 58

consensusString, 16, 24
consensusString

(letterFrequency), 58
consensusString,AAMultipleAlignment-method

(MultipleAlignment-class),
14

consensusString,ANY-method
(letterFrequency), 58

consensusString,BStringSet-method
(letterFrequency), 58

consensusString,DNAMultipleAlignment-method
(MultipleAlignment-class),
14

consensusString,DNAStringSet-method
(letterFrequency), 58

consensusString,matrix-method
(letterFrequency), 58

consensusString,MultipleAlignment-method
(MultipleAlignment-class),
14

consensusString,RNAMultipleAlignment-method
(MultipleAlignment-class),
14

consensusString,RNAStringSet-method
(letterFrequency), 58

consensusString,XStringViews-method

INDEX 131

(letterFrequency), 58
consensusViews

(MultipleAlignment-class),
14

consensusViews,AAMultipleAlignment-method
(MultipleAlignment-class),
14

consensusViews,DNAMultipleAlignment-method
(MultipleAlignment-class),
14

consensusViews,MultipleAlignment-method
(MultipleAlignment-class),
14

consensusViews,RNAMultipleAlignment-method
(MultipleAlignment-class),
14

countbases (basecontent), 47
countIndex (MIndex-class), 10
countIndex,ByPos_MIndex-method

(MIndex-class), 10
countIndex,MIndex-method

(MIndex-class), 10
countPattern, 75
countPattern (matchPattern), 87
countPattern,BOC2_SubjectString-method

(BOC_SubjectString-class),
4

countPattern,character-method
(matchPattern), 87

countPattern,MaskedXString-method
(matchPattern), 87

countPattern,XString-method
(matchPattern), 87

countPattern,XStringSet-method
(matchPattern), 87

countPattern,XStringViews-method
(matchPattern), 87

countPDict, 61
countPDict (matchPDict), 74
countPDict,MaskedXString-method

(matchPDict), 74
countPDict,XString-method

(matchPDict), 74
countPDict,XStringSet-method

(matchPDict), 74
countPDict,XStringViews-method

(matchPDict), 74
countPWM (matchPWM), 85
countPWM,character-method

(matchPWM), 85
countPWM,DNAString-method

(matchPWM), 85

countPWM,MaskedDNAString-method
(matchPWM), 85

countPWM,XStringViews-method
(matchPWM), 85

countWCP (matchWCP), 92
countWCP,character-method

(matchWCP), 92
countWCP,MaskedXString-method

(matchWCP), 92
countWCP,XString-method

(matchWCP), 92
countWCP,XStringViews-method

(matchWCP), 92
coverage, 46, 61, 71, 72
coverage,AlignedXStringSet0-method

(align-utils), 45
coverage,MaskedXString-method

(match-utils), 71
coverage,MIndex-method, 76
coverage,MIndex-method

(match-utils), 71
coverage,PairwiseAlignedFixedSubject-method,

24
coverage,PairwiseAlignedFixedSubject-method

(align-utils), 45
coverage,PairwiseAlignedFixedSubjectSummary-method

(align-utils), 45

DataFrame-class, 28
dataKey (XKeySortedData), 28
dataKey,XKeySortedData-method

(XKeySortedData), 28
dataTable (XKeySortedData), 28
dataTable,XKeySortedData-method

(XKeySortedData), 28
deletion (InDel-class), 10
deletion,InDel-method

(InDel-class), 10
deletion,PairwiseAlignedXStringSet-method

(PairwiseAlignedXStringSet-class),
21

detail, 51
detail,MultipleAlignment-method

(MultipleAlignment-class),
14

dim,MultipleAlignment-method
(MultipleAlignment-class),
14

dim,XKeySortedData-method
(XKeySortedData), 28

dimnames,XKeySortedData-method
(XKeySortedData), 28

132 INDEX

dinucleotideFrequency
(nucleotideFrequency), 96

dinucleotideFrequencyTest, 51
dinucleotideFrequencyTest,DNAStringSet-method

(dinucleotideFrequencyTest),
51

dinucleotideFrequencyTest,RNAStringSet-method
(dinucleotideFrequencyTest),
51

dist, 113
dna2rna (translate), 117
DNA_ALPHABET, 21, 34
DNA_ALPHABET (DNAString-class), 4
DNA_BASES (DNAString-class), 4
DNA_WCP (WCP), 27
DNA_WCP-class (WCP), 27
DNAKeySortedData

(XKeySortedData), 28
DNAKeySortedData-class

(XKeySortedData), 28
DNAKeySortedDataList

(XKeySortedDataList), 28
DNAKeySortedDataList-class

(XKeySortedDataList), 28
DNAMultipleAlignment

(MultipleAlignment-class),
14

DNAMultipleAlignment-class
(MultipleAlignment-class),
14

DNAString, 1, 8, 9, 18–20, 27, 29, 30, 33,
43, 54, 65, 73, 75, 86, 91, 106–108,
116, 117

DNAString (DNAString-class), 4
DNAString-class, 4, 27, 30, 32, 40, 54,

87, 109, 115, 118
DNAStringSet, 18–20, 25, 41, 52, 75,

106–108, 117
DNAStringSet (XStringSet-class),

33
DNAStringSet-class, 21, 26, 76, 109
DNAStringSet-class

(XStringSet-class), 33
DNAStringSetList

(XStringSetList-class), 41
DNAStringSetList-class

(XStringSetList-class), 41
duplicated,PDict-method

(PDict-class), 18
duplicated,PreprocessedTB-method

(PDict-class), 18
duplicated,XStringSet-method

(XStringSet-class), 33
Dups, 39

elementLengths,MIndex-method
(MIndex-class), 10

end,AlignedXStringSet0-method
(AlignedXStringSet-class),
2

endIndex (MIndex-class), 10
endIndex,ByPos_MIndex-method

(MIndex-class), 10
errorSubstitutionMatrices

(substitution.matrices),
113

Expanded_TB_PDict (PDict-class),
18

Expanded_TB_PDict-class
(PDict-class), 18

extractAllMatches (matchPDict), 74
extractTranscripts, 117

FASTA-io-legacy, 5
fasta.info, 6
fasta.info (XStringSet-io), 38
FASTArecordsToCharacter

(XStringSet-io), 38
FASTArecordsToXStringViews

(XStringSet-io), 38
fastq.geometry (XStringSet-io), 38
findComplementedPalindromes

(findPalindromes), 53
findComplementedPalindromes,DNAString-method

(findPalindromes), 53
findComplementedPalindromes,MaskedXString-method

(findPalindromes), 53
findComplementedPalindromes,XStringViews-method

(findPalindromes), 53
findPalindromes, 53, 74, 92, 109
findPalindromes,MaskedXString-method

(findPalindromes), 53
findPalindromes,XString-method

(findPalindromes), 53
findPalindromes,XStringViews-method

(findPalindromes), 53

gaps, 43
gaps,MaskedXString-method

(MaskedXString-class), 12
GENETIC_CODE, 2, 7, 98, 117, 118
gregexpr, 55
gregexpr2, 55
Grouping-class, 41

hasAllFlinks (PDict-class), 18

INDEX 133

hasAllFlinks,ACtree2-method
(PDict-class), 18

hasLetterAt, 98
hasLetterAt (lowlevel-matching),

64
hasOnlyBaseLetters

(letterFrequency), 58
hasOnlyBaseLetters,DNAString-method

(letterFrequency), 58
hasOnlyBaseLetters,DNAStringSet-method

(letterFrequency), 58
hasOnlyBaseLetters,MaskedXString-method

(letterFrequency), 58
hasOnlyBaseLetters,RNAString-method

(letterFrequency), 58
hasOnlyBaseLetters,RNAStringSet-method

(letterFrequency), 58
hasOnlyBaseLetters,XStringViews-method

(letterFrequency), 58
head,PDict3Parts-method

(PDict-class), 18
head,TB_PDict-method

(PDict-class), 18
HNF4alpha, 8

InDel (InDel-class), 10
indel (AlignedXStringSet-class), 2
indel,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

indel,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

InDel-class, 10
initialize,ACtree2-method

(PDict-class), 18
initialize,BOC2_SubjectString-method

(BOC_SubjectString-class),
4

initialize,BOC_SubjectString-method
(BOC_SubjectString-class),
4

initialize,PreprocessedTB-method
(PDict-class), 18

initialize,Twobit-method
(PDict-class), 18

injectHardMask, 13, 56, 107
injectHardMask,MaskedXString-method

(injectHardMask), 56
injectHardMask,XStringViews-method

(injectHardMask), 56
injectSNPs, 107
insertion (InDel-class), 10

insertion,InDel-method
(InDel-class), 10

insertion,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

intersect,XStringSet,XStringSet-method
(XStringSet-class), 33

IRanges, 11, 34
IRanges-class, 11
is.unsorted,XStringSet-method

(XStringSet-class), 33
isMatching, 75, 76
isMatching (lowlevel-matching), 64
isMatchingAt (lowlevel-matching),

64
isMatchingEndingAt

(lowlevel-matching), 64
isMatchingEndingAt,character-method

(lowlevel-matching), 64
isMatchingEndingAt,XString-method

(lowlevel-matching), 64
isMatchingEndingAt,XStringSet-method

(lowlevel-matching), 64
isMatchingStartingAt, 119
isMatchingStartingAt

(lowlevel-matching), 64
isMatchingStartingAt,character-method

(lowlevel-matching), 64
isMatchingStartingAt,XString-method

(lowlevel-matching), 64
isMatchingStartingAt,XStringSet-method

(lowlevel-matching), 64
IUPAC_CODE_MAP, 5, 9, 21, 27, 65, 67, 73,

107, 109

lcprefix (pmatchPattern), 105
lcprefix,character,character-method

(pmatchPattern), 105
lcprefix,character,XString-method

(pmatchPattern), 105
lcprefix,XString,character-method

(pmatchPattern), 105
lcprefix,XString,XString-method

(pmatchPattern), 105
lcsubstr (pmatchPattern), 105
lcsubstr,character,character-method

(pmatchPattern), 105
lcsubstr,character,XString-method

(pmatchPattern), 105
lcsubstr,XString,character-method

(pmatchPattern), 105
lcsubstr,XString,XString-method

(pmatchPattern), 105

134 INDEX

lcsuffix (pmatchPattern), 105
lcsuffix,character,character-method

(pmatchPattern), 105
lcsuffix,character,XString-method

(pmatchPattern), 105
lcsuffix,XString,character-method

(pmatchPattern), 105
lcsuffix,XString,XString-method

(pmatchPattern), 105
length,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

length,MaskedXString-method
(MaskedXString-class), 12

length,MIndex-method
(MIndex-class), 10

length,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedXStringSet-class),
21

length,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

length,PDict-method
(PDict-class), 18

length,PDict3Parts-method
(PDict-class), 18

length,PreprocessedTB-method
(PDict-class), 18

length,XKeySortedData-method
(XKeySortedData), 28

length,XString-method, 12
length,XStringSetList-method

(XStringSetList-class), 41
letter, 2, 5, 27, 30, 31, 43, 57
letter,character-method (letter),

57
letter,MaskedXString-method

(letter), 57
letter,XString-method (letter), 57
letter,XStringViews-method

(letter), 57
letterFrequency, 58
letterFrequency,MaskedXString-method

(letterFrequency), 58
letterFrequency,XString-method

(letterFrequency), 58
letterFrequency,XStringSet-method

(letterFrequency), 58
letterFrequency,XStringViews-method

(letterFrequency), 58
letterFrequencyInSlidingView

(letterFrequency), 58

letterFrequencyInSlidingView,XString-method
(letterFrequency), 58

longestConsecutive, 63
lowlevel-matching, 72, 88, 119
lowlevel-matching, 64, 72, 89, 120

mask (maskMotif), 69
MaskCollection, 12
MaskCollection-class, 13, 69
MaskedAAString, 56
MaskedAAString

(MaskedXString-class), 12
MaskedAAString-class

(MaskedXString-class), 12
MaskedBString, 56
MaskedBString

(MaskedXString-class), 12
MaskedBString-class

(MaskedXString-class), 12
maskeddim

(MultipleAlignment-class),
14

maskeddim,MultipleAlignment-method
(MultipleAlignment-class),
14

MaskedDNAString, 56, 86, 108, 117, 118
MaskedDNAString

(MaskedXString-class), 12
MaskedDNAString-class, 76
MaskedDNAString-class

(MaskedXString-class), 12
maskedncol

(MultipleAlignment-class),
14

maskedncol,MultipleAlignment-method
(MultipleAlignment-class),
14

maskednrow
(MultipleAlignment-class),
14

maskednrow,MultipleAlignment-method
(MultipleAlignment-class),
14

maskedratio,MaskedXString-method
(MaskedXString-class), 12

maskedratio,MultipleAlignment-method
(MultipleAlignment-class),
14

MaskedRNAString, 56, 108, 117, 118
MaskedRNAString

(MaskedXString-class), 12
MaskedRNAString-class

(MaskedXString-class), 12

INDEX 135

maskedwidth,MaskedXString-method
(MaskedXString-class), 12

MaskedXString, 48, 56–59, 61, 69, 73, 75,
88, 93, 97, 98, 108

MaskedXString
(MaskedXString-class), 12

MaskedXString-class, 12, 17, 48, 57,
58, 61, 69, 74, 98, 109, 118

maskGaps
(MultipleAlignment-class),
14

maskGaps,MultipleAlignment-method
(MultipleAlignment-class),
14

maskMotif, 13, 54, 57, 69, 89
maskMotif,MaskedXString,character-method

(maskMotif), 69
maskMotif,MaskedXString,XString-method

(maskMotif), 69
maskMotif,MultipleAlignment,ANY-method

(MultipleAlignment-class),
14

maskMotif,XString,ANY-method
(maskMotif), 69

masks (MaskedXString-class), 12
masks,MaskedXString-method

(MaskedXString-class), 12
masks,XString-method

(MaskedXString-class), 12
masks<- (MaskedXString-class), 12
masks<-,MaskedXString,MaskCollection-method

(MaskedXString-class), 12
masks<-,MaskedXString,NULL-method

(MaskedXString-class), 12
masks<-,XString,ANY-method

(MaskedXString-class), 12
masks<-,XString,NULL-method

(MaskedXString-class), 12
match,character,XStringSet-method

(XStringSet-class), 33
match,XString,XStringSet-method

(XStringSet-class), 33
match,XStringSet,XStringSet-method

(XStringSet-class), 33
match-utils, 46, 71, 105
matchLRPatterns, 54, 67, 72, 89, 92, 120
matchLRPatterns,MaskedXString-method

(matchLRPatterns), 72
matchLRPatterns,XString-method

(matchLRPatterns), 72
matchLRPatterns,XStringViews-method

(matchLRPatterns), 72

matchPattern, 48, 54, 55, 67, 69, 71–76,
87, 87, 91–94, 102, 106, 119, 120

matchPattern,BOC2_SubjectString-method
(BOC_SubjectString-class),
4

matchPattern,BOC_SubjectString-method
(BOC_SubjectString-class),
4

matchPattern,character-method
(matchPattern), 87

matchPattern,MaskedXString-method
(matchPattern), 87

matchPattern,XString-method
(matchPattern), 87

matchPattern,XStringSet-method
(matchPattern), 87

matchPattern,XStringViews-method
(matchPattern), 87

matchPDict, 10, 11, 18, 21, 67, 71, 72, 74,
82, 83, 89, 93, 94, 102

matchPDict,MaskedXString-method
(matchPDict), 74

matchPDict,XString-method
(matchPDict), 74

matchPDict,XStringSet-method
(matchPDict), 74

matchPDict,XStringViews-method
(matchPDict), 74

matchPDict-inexact, 19, 74, 75
matchPDict-exact (matchPDict), 74
matchPDict-inexact, 76, 82
matchProbePair, 54, 74, 89, 91
matchProbePair,DNAString-method

(matchProbePair), 91
matchProbePair,MaskedDNAString-method

(matchProbePair), 91
matchProbePair,XStringViews-method

(matchProbePair), 91
matchprobes, 93
matchPWM, 85, 93
matchPWM,character-method

(matchPWM), 85
matchPWM,DNAString-method

(matchPWM), 85
matchPWM,MaskedDNAString-method

(matchPWM), 85
matchPWM,XStringViews-method

(matchPWM), 85
matchWCP, 28, 92
matchWCP,character-method

(matchWCP), 92
matchWCP,MaskedXString-method

136 INDEX

(matchWCP), 92
matchWCP,XString-method

(matchWCP), 92
matchWCP,XStringViews-method

(matchWCP), 92
maxScore (matchPWM), 85
maxScore,ANY-method (matchPWM), 85
maxWeights (matchPWM), 85
maxWeights,matrix-method

(matchPWM), 85
maxWeights,WCP-method (WCP), 27
mergeIUPACLetters

(IUPAC_CODE_MAP), 9
MIndex, 71, 72, 76, 89
MIndex (MIndex-class), 10
MIndex-class, 10, 43, 72, 76, 83, 89
minScore (matchPWM), 85
minScore,ANY-method (matchPWM), 85
minWeights (matchPWM), 85
minWeights,matrix-method

(matchPWM), 85
misc, 94
mismatch, 89
mismatch (match-utils), 71
mismatch,AlignedXStringSet0,missing-method

(align-utils), 45
mismatch,ANY,XStringViews-method

(match-utils), 71
mismatchSummary (align-utils), 45
mismatchSummary,AlignedXStringSet0-method

(align-utils), 45
mismatchSummary,PairwiseAlignedFixedSubject-method

(align-utils), 45
mismatchSummary,PairwiseAlignedFixedSubjectSummary-method

(align-utils), 45
mismatchSummary,QualityAlignedXStringSet-method

(align-utils), 45
mismatchTable (align-utils), 45
mismatchTable,AlignedXStringSet0-method

(align-utils), 45
mismatchTable,PairwiseAlignedXStringSet-method

(align-utils), 45
mismatchTable,QualityAlignedXStringSet-method

(align-utils), 45
mkAllStrings

(nucleotideFrequency), 96
MTB_PDict (PDict-class), 18
MTB_PDict-class (PDict-class), 18
MultipleAlignment, 14
MultipleAlignment

(MultipleAlignment-class),
14

MultipleAlignment-class, 14

N50 (misc), 94
names,MIndex-method

(MIndex-class), 10
names,PDict-method (PDict-class),

18
names,XStringSetList-method

(XStringSetList-class), 41
names<-,MIndex-method

(MIndex-class), 10
names<-,PDict-method

(PDict-class), 18
names<-,XStringSetList-method

(XStringSetList-class), 41
narrow, 14, 33, 36
narrow,character-method

(XStringSet-class), 33
narrow,QualityScaledXStringSet-method

(QualityScaledXStringSet-class),
25

nchar, 61
nchar,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

nchar,MaskedXString-method
(MaskedXString-class), 12

nchar,MultipleAlignment-method
(MultipleAlignment-class),
14

nchar,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedXStringSet-class),
21

nchar,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

nchar,XString-method
(XString-class), 29

nchar,XStringSet-method
(XStringSet-class), 33

nchar,XStringViews-method
(XStringViews-class), 42

ncol,MultipleAlignment-method
(MultipleAlignment-class),
14

nedit (align-utils), 45
nedit,PairwiseAlignedFixedSubjectSummary-method

(align-utils), 45
nedit,PairwiseAlignedXStringSet-method

(align-utils), 45
neditAt (lowlevel-matching), 64
neditEndingAt, 119

INDEX 137

neditEndingAt
(lowlevel-matching), 64

neditEndingAt,character-method
(lowlevel-matching), 64

neditEndingAt,XString-method
(lowlevel-matching), 64

neditEndingAt,XStringSet-method
(lowlevel-matching), 64

neditStartingAt, 119
neditStartingAt

(lowlevel-matching), 64
neditStartingAt,character-method

(lowlevel-matching), 64
neditStartingAt,XString-method

(lowlevel-matching), 64
neditStartingAt,XStringSet-method

(lowlevel-matching), 64
needwunsQS, 95
needwunsQS,character,character-method

(needwunsQS), 95
needwunsQS,character,XString-method

(needwunsQS), 95
needwunsQS,XString,character-method

(needwunsQS), 95
needwunsQS,XString,XString-method

(needwunsQS), 95
nindel (AlignedXStringSet-class),

2
nindel,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

nindel,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedXStringSet-class),
21

nindel,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

nmatch (match-utils), 71
nmatch,ANY,XStringViews-method

(match-utils), 71
nmatch,PairwiseAlignedFixedSubjectSummary,missing-method

(align-utils), 45
nmatch,PairwiseAlignedXStringSet,missing-method

(align-utils), 45
nmismatch (match-utils), 71
nmismatch,AlignedXStringSet0,missing-method

(align-utils), 45
nmismatch,ANY,XStringViews-method

(match-utils), 71
nmismatch,PairwiseAlignedFixedSubjectSummary,missing-method

(align-utils), 45
nmismatch,PairwiseAlignedXStringSet,missing-method

(align-utils), 45
nmismatchEndingAt

(lowlevel-matching), 64
nmismatchStartingAt

(lowlevel-matching), 64
nnodes (PDict-class), 18
nnodes,ACtree2-method

(PDict-class), 18
NormalIRanges, 15
nrow,MultipleAlignment-method

(MultipleAlignment-class),
14

nucleotideFrequency, 96
nucleotideFrequencyAt, 52, 67
nucleotideFrequencyAt

(nucleotideFrequency), 96
nucleotideFrequencyAt,XStringSet-method

(nucleotideFrequency), 96
nucleotideFrequencyAt,XStringViews-method

(nucleotideFrequency), 96
nucleotideSubstitutionMatrix

(substitution.matrices),
113

oligonucleotideFrequency, 61
oligonucleotideFrequency

(nucleotideFrequency), 96
oligonucleotideFrequency,MaskedXString-method

(nucleotideFrequency), 96
oligonucleotideFrequency,XString-method

(nucleotideFrequency), 96
oligonucleotideFrequency,XStringSet-method

(nucleotideFrequency), 96
oligonucleotideFrequency,XStringViews-method

(nucleotideFrequency), 96
oligonucleotideTransitions

(nucleotideFrequency), 96
order,XStringSet-method

(XStringSet-class), 33

PairwiseAlignedFixedSubject, 102
PairwiseAlignedFixedSubject

(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedFixedSubject,character,character-method
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedFixedSubject,character,missing-method
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedFixedSubject,XString,XString-method
(PairwiseAlignedXStringSet-class),
21

138 INDEX

PairwiseAlignedFixedSubject,XStringSet,missing-method
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedFixedSubject-class
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedFixedSubjectSummary
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedFixedSubjectSummary-class
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedXStringSet, 102,
104

PairwiseAlignedXStringSet
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedXStringSet,character,character-method
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedXStringSet,character,missing-method
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedXStringSet,XString,XString-method
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedXStringSet,XStringSet,missing-method
(PairwiseAlignedXStringSet-class),
21

PairwiseAlignedXStringSet-class,
4, 10

PairwiseAlignedXStringSet-class,
21, 32, 46, 96, 102, 105, 115

pairwiseAlignment, 4, 10, 24, 32, 46, 89,
96, 100, 105, 113, 115

pairwiseAlignment,character,character-method
(pairwiseAlignment), 100

pairwiseAlignment,character,QualityScaledXStringSet-method
(pairwiseAlignment), 100

pairwiseAlignment,character,XString-method
(pairwiseAlignment), 100

pairwiseAlignment,character,XStringSet-method
(pairwiseAlignment), 100

pairwiseAlignment,QualityScaledXStringSet,character-method
(pairwiseAlignment), 100

pairwiseAlignment,QualityScaledXStringSet,QualityScaledXStringSet-method
(pairwiseAlignment), 100

pairwiseAlignment,QualityScaledXStringSet,XString-method
(pairwiseAlignment), 100

pairwiseAlignment,QualityScaledXStringSet,XStringSet-method
(pairwiseAlignment), 100

pairwiseAlignment,XString,character-method

(pairwiseAlignment), 100
pairwiseAlignment,XString,QualityScaledXStringSet-method

(pairwiseAlignment), 100
pairwiseAlignment,XString,XString-method

(pairwiseAlignment), 100
pairwiseAlignment,XString,XStringSet-method

(pairwiseAlignment), 100
pairwiseAlignment,XStringSet,character-method

(pairwiseAlignment), 100
pairwiseAlignment,XStringSet,QualityScaledXStringSet-method

(pairwiseAlignment), 100
pairwiseAlignment,XStringSet,XString-method

(pairwiseAlignment), 100
pairwiseAlignment,XStringSet,XStringSet-method

(pairwiseAlignment), 100
palindromeArmLength

(findPalindromes), 53
palindromeArmLength,XString-method

(findPalindromes), 53
palindromeArmLength,XStringViews-method

(findPalindromes), 53
palindromeLeftArm

(findPalindromes), 53
palindromeLeftArm,XString-method

(findPalindromes), 53
palindromeLeftArm,XStringViews-method

(findPalindromes), 53
palindromeRightArm

(findPalindromes), 53
palindromeRightArm,XString-method

(findPalindromes), 53
palindromeRightArm,XStringViews-method

(findPalindromes), 53
PAM120 (substitution.matrices),

113
PAM250 (substitution.matrices),

113
PAM30 (substitution.matrices), 113
PAM40 (substitution.matrices), 113
PAM70 (substitution.matrices), 113
partitioning

(XStringSetList-class), 41
partitioning,XStringSetList-method

(XStringSetList-class), 41
paste, 121
pattern

(XStringPartialMatches-class),
31

pattern,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

pattern,XStringPartialMatches-method

INDEX 139

(XStringPartialMatches-class),
31

patternFrequency (PDict-class), 18
patternFrequency,PDict-method

(PDict-class), 18
PDict, 75, 76, 82, 83
PDict (PDict-class), 18
PDict,AsIs-method (PDict-class),

18
PDict,character-method

(PDict-class), 18
PDict,DNAStringSet-method

(PDict-class), 18
PDict,probetable-method

(PDict-class), 18
PDict,XStringViews-method

(PDict-class), 18
PDict-class, 11, 18, 76, 83
PDict3Parts (PDict-class), 18
PDict3Parts-class (PDict-class),

18
phiX174Phage, 103
PhredQuality

(XStringQuality-class), 32
PhredQuality-class, 115
PhredQuality-class

(XStringQuality-class), 32
pid, 24, 104
pid,PairwiseAlignedXStringSet-method

(pid), 104
pmatchPattern, 105
pmatchPattern,character-method

(pmatchPattern), 105
pmatchPattern,XString-method

(pmatchPattern), 105
pmatchPattern,XStringViews-method

(pmatchPattern), 105
PreprocessedTB (PDict-class), 18
PreprocessedTB-class

(PDict-class), 18
print.needwunsQS (needwunsQS), 95
PWM (matchPWM), 85
PWM,character-method (matchPWM),

85
PWM,DNAStringSet-method

(matchPWM), 85
PWM,matrix-method (matchPWM), 85
PWMscore (matchPWM), 85
PWMscoreStartingAt (matchPWM), 85

quality
(QualityScaledXStringSet-class),
25

quality,QualityScaledXStringSet-method
(QualityScaledXStringSet-class),
25

QualityAlignedXStringSet
(AlignedXStringSet-class),
2

QualityAlignedXStringSet-class
(AlignedXStringSet-class),
2

QualityScaledAAStringSet
(QualityScaledXStringSet-class),
25

QualityScaledAAStringSet-class
(QualityScaledXStringSet-class),
25

QualityScaledBStringSet
(QualityScaledXStringSet-class),
25

QualityScaledBStringSet-class
(QualityScaledXStringSet-class),
25

QualityScaledDNAStringSet
(QualityScaledXStringSet-class),
25

QualityScaledDNAStringSet-class
(QualityScaledXStringSet-class),
25

QualityScaledRNAStringSet
(QualityScaledXStringSet-class),
25

QualityScaledRNAStringSet-class
(QualityScaledXStringSet-class),
25

QualityScaledXStringSet, 101
QualityScaledXStringSet

(QualityScaledXStringSet-class),
25

QualityScaledXStringSet-class, 25
qualitySubstitutionMatrices

(substitution.matrices),
113

quPhiX174 (phiX174Phage), 103

Ranges, 11
Ranges-utils, 13
RangesList, 11
rank,XStringSet-method

(XStringSet-class), 33
read.AAMultipleAlignment

(MultipleAlignment-class),
14

read.AAStringSet (XStringSet-io),
38

140 INDEX

read.BStringSet (XStringSet-io),
38

read.DNAMultipleAlignment
(MultipleAlignment-class),
14

read.DNAStringSet, 5, 6
read.DNAStringSet

(XStringSet-io), 38
read.Mask, 69
read.RNAMultipleAlignment

(MultipleAlignment-class),
14

read.RNAStringSet
(XStringSet-io), 38

read.table, 6
read.XStringViews

(XStringSet-io), 38
readFASTA, 40
readFASTA (FASTA-io-legacy), 5
rep,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

rep,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

replaceLetterAt, 48, 57, 106
replaceLetterAt,DNAString-method

(replaceLetterAt), 106
replaceLetterAt,DNAStringSet-method

(replaceLetterAt), 106
replaceLetterAtLoc

(replaceLetterAt), 106
rev, 98
revcompDNA (reverseSeq), 110
revcompRNA (reverseSeq), 110
reverse,character-method

(reverseComplement), 108
reverse,MaskedXString-method, 13
reverse,MaskedXString-method

(reverseComplement), 108
reverse,XString-method, 30, 98, 110
reverse,XString-method

(reverseComplement), 108
reverse,XStringSet-method

(reverseComplement), 108
reverse,XStringViews-method

(reverseComplement), 108
reverseComplement, 5, 27, 47, 48, 50, 74,

87, 92, 108, 110, 111, 118
reverseComplement,DNAString-method

(reverseComplement), 108
reverseComplement,DNAStringSet-method

(reverseComplement), 108
reverseComplement,MaskedDNAString-method

(reverseComplement), 108
reverseComplement,MaskedRNAString-method

(reverseComplement), 108
reverseComplement,matrix-method

(matchPWM), 85
reverseComplement,RNAString-method

(reverseComplement), 108
reverseComplement,RNAStringSet-method

(reverseComplement), 108
reverseComplement,XStringViews-method

(reverseComplement), 108
reverseSeq, 64, 110
Rle, 72, 106
rna2dna (translate), 117
RNA_ALPHABET, 34
RNA_ALPHABET (RNAString-class), 26
RNA_BASES (RNAString-class), 26
RNA_GENETIC_CODE (GENETIC_CODE), 7
RNA_WCP (WCP), 27
RNA_WCP-class (WCP), 27
RNAKeySortedData

(XKeySortedData), 28
RNAKeySortedData-class

(XKeySortedData), 28
RNAKeySortedDataList

(XKeySortedDataList), 28
RNAKeySortedDataList-class

(XKeySortedDataList), 28
RNAMultipleAlignment

(MultipleAlignment-class),
14

RNAMultipleAlignment-class
(MultipleAlignment-class),
14

RNAString, 1, 5, 8, 9, 29, 30, 33, 43, 65, 73,
108, 117

RNAString (RNAString-class), 26
RNAString-class, 5, 26, 30, 40, 109, 118
RNAStringSet, 25, 41, 52, 108, 117
RNAStringSet (XStringSet-class),

33
RNAStringSet-class, 26, 109
RNAStringSet-class

(XStringSet-class), 33
RNAStringSetList

(XStringSetList-class), 41
RNAStringSetList-class

(XStringSetList-class), 41
rowmask

(MultipleAlignment-class),

INDEX 141

14
rowmask,MultipleAlignment-method

(MultipleAlignment-class),
14

rowmask<-
(MultipleAlignment-class),
14

rowmask<-,MultipleAlignment,ANY-method
(MultipleAlignment-class),
14

rowmask<-,MultipleAlignment,NormalIRanges-method
(MultipleAlignment-class),
14

rowmask<-,MultipleAlignment,NULL-method
(MultipleAlignment-class),
14

rownames,MultipleAlignment-method
(MultipleAlignment-class),
14

rownames<-,MultipleAlignment-method
(MultipleAlignment-class),
14

save.XStringSet (XStringSet-io),
38

scan, 6
score,PairwiseAlignedFixedSubjectSummary-method

(PairwiseAlignedXStringSet-class),
21

score,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

setdiff,XStringSet,XStringSet-method
(XStringSet-class), 33

setequal,XStringSet,XStringSet-method
(XStringSet-class), 33

show, 51
show,ACtree2-method

(PDict-class), 18
show,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

show,ByPos_MIndex-method
(MIndex-class), 10

show,MaskedXString-method
(MaskedXString-class), 12

show,MTB_PDict-method
(PDict-class), 18

show,MultipleAlignment-method
(MultipleAlignment-class),
14

show,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedXStringSet-class),

21
show,PairwiseAlignedXStringSet-method

(PairwiseAlignedXStringSet-class),
21

show,QualityScaledXStringSet-method
(QualityScaledXStringSet-class),
25

show,TB_PDict-method
(PDict-class), 18

show,Twobit-method (PDict-class),
18

show,WCP-method (WCP), 27
show,XString-method

(XString-class), 29
show,XStringPartialMatches-method

(XStringPartialMatches-class),
31

show,XStringSet-method
(XStringSet-class), 33

show,XStringSetList-method
(XStringSetList-class), 41

show,XStringViews-method
(XStringViews-class), 42

SimpleList-class, 28
SolexaQuality

(XStringQuality-class), 32
SolexaQuality-class, 115
SolexaQuality-class

(XStringQuality-class), 32
sort,XStringSet-method

(XStringSet-class), 33
srPhiX174 (phiX174Phage), 103
start,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

startIndex (MIndex-class), 10
startIndex,ByPos_MIndex-method

(MIndex-class), 10
stringDist, 102, 111
stringDist,character-method

(stringDist), 111
stringDist,QualityScaledXStringSet-method

(stringDist), 111
stringDist,XStringSet-method

(stringDist), 111
strrev (reverseComplement), 108
strsplit, 61
subject,PairwiseAlignedXStringSet-method

(PairwiseAlignedXStringSet-class),
21

subpatterns
(XStringPartialMatches-class),

142 INDEX

31
subpatterns,XStringPartialMatches-method

(XStringPartialMatches-class),
31

subseq, 30, 34, 36, 58
subseq,character-method

(XStringSet-class), 33
subseq,MaskedXString-method

(MaskedXString-class), 12
subseq<-,character-method

(XStringSet-class), 33
subseq<-,XStringSet-method

(XStringSet-class), 33
subseq<-, 34
substitution.matrices, 96, 102, 113,

113
substr, 34, 36
substr,XString-method

(XString-class), 29
substring, 61
substring,XString-method

(XString-class), 29
subXString (XString-class), 29
summary,PairwiseAlignedFixedSubject-method

(PairwiseAlignedXStringSet-class),
21

tail,PDict3Parts-method
(PDict-class), 18

tail,TB_PDict-method
(PDict-class), 18

tb (PDict-class), 18
tb,PDict3Parts-method

(PDict-class), 18
tb,PreprocessedTB-method

(PDict-class), 18
tb,TB_PDict-method (PDict-class),

18
tb.width (PDict-class), 18
tb.width,PDict3Parts-method

(PDict-class), 18
tb.width,PreprocessedTB-method

(PDict-class), 18
tb.width,TB_PDict-method

(PDict-class), 18
TB_PDict (PDict-class), 18
TB_PDict-class (PDict-class), 18
threebands, 34
threebands,character-method

(XStringSet-class), 33
toComplex, 116
toComplex,DNAString-method

(toComplex), 116

toString,AlignedXStringSet0-method
(AlignedXStringSet-class),
2

toString,MaskedXString-method
(MaskedXString-class), 12

toString,PairwiseAlignedFixedSubject-method
(PairwiseAlignedXStringSet-class),
21

toString,XString-method
(XString-class), 29

toString,XStringSet-method
(XStringSet-class), 33

toString,XStringViews-method
(XStringViews-class), 42

toupper, 94
transcribe (translate), 117
translate, 8, 117
translate,DNAString-method

(translate), 117
translate,DNAStringSet-method

(translate), 117
translate,MaskedDNAString-method

(translate), 117
translate,MaskedRNAString-method

(translate), 117
translate,RNAString-method

(translate), 117
translate,RNAStringSet-method

(translate), 117
trimLRPatterns, 67, 74, 118
trimLRPatterns,character-method

(trimLRPatterns), 118
trimLRPatterns,XString-method

(trimLRPatterns), 118
trimLRPatterns,XStringSet-method

(trimLRPatterns), 118
trinucleotideFrequency, 8
trinucleotideFrequency

(nucleotideFrequency), 96
Twobit (PDict-class), 18
Twobit-class (PDict-class), 18
type

(PairwiseAlignedXStringSet-class),
21

type,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedXStringSet-class),
21

type,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

unaligned
(AlignedXStringSet-class),

INDEX 143

2
unaligned,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

union,XStringSet,XStringSet-method
(XStringSet-class), 33

unique,XStringSet-method
(XStringSet-class), 33

uniqueLetters (letterFrequency),
58

uniqueLetters,MaskedXString-method
(letterFrequency), 58

uniqueLetters,XString-method
(letterFrequency), 58

uniqueLetters,XStringSet-method
(letterFrequency), 58

uniqueLetters,XStringViews-method
(letterFrequency), 58

unitScale (matchPWM), 85
unlist,MIndex-method

(MIndex-class), 10
unlist,XStringSet-method

(XStringSet-class), 33
unlist,XStringSetList-method

(XStringSetList-class), 41
unmasked, 61
unmasked (MaskedXString-class), 12
unmasked,MaskedXString-method

(MaskedXString-class), 12
unmasked,MultipleAlignment-method

(MultipleAlignment-class),
14

unsplit.list.of.XStringSet
(XStringSet-class), 33

updateObject,XString-method
(XString-class), 29

updateObject,XStringSet-method
(XStringSet-class), 33

vcountPattern, 75
vcountPattern (matchPattern), 87
vcountPattern,character-method

(matchPattern), 87
vcountPattern,MaskedXString-method

(matchPattern), 87
vcountPattern,XString-method

(matchPattern), 87
vcountPattern,XStringSet-method

(matchPattern), 87
vcountPattern,XStringViews-method

(matchPattern), 87
vcountPDict (matchPDict), 74

vcountPDict,MaskedXString-method
(matchPDict), 74

vcountPDict,XString-method
(matchPDict), 74

vcountPDict,XStringSet-method
(matchPDict), 74

vcountPDict,XStringViews-method
(matchPDict), 74

Vector-class, 41
Views, 42
Views,character-method

(XStringViews-class), 42
Views,MaskedXString-method

(MaskedXString-class), 12
Views,PairwiseAlignedFixedSubject-method

(PairwiseAlignedXStringSet-class),
21

Views,XString-method
(XStringViews-class), 42

Views-class, 43
vmatchPattern, 75, 93, 94, 102
vmatchPattern (matchPattern), 87
vmatchPattern,character-method

(matchPattern), 87
vmatchPattern,MaskedXString-method

(matchPattern), 87
vmatchPattern,XString-method

(matchPattern), 87
vmatchPattern,XStringSet-method

(matchPattern), 87
vmatchPattern,XStringViews-method

(matchPattern), 87
vmatchPDict (matchPDict), 74
vmatchPDict,ANY-method

(matchPDict), 74
vmatchPDict,MaskedXString-method

(matchPDict), 74
vmatchPDict,XString-method

(matchPDict), 74
vwhichPDict (matchPDict), 74
vwhichPDict,MaskedXString-method

(matchPDict), 74
vwhichPDict,XString-method

(matchPDict), 74
vwhichPDict,XStringSet-method

(matchPDict), 74
vwhichPDict,XStringViews-method

(matchPDict), 74

WCP, 27, 93
WCP-class, 93
WCP-class (WCP), 27
WCPscoreStartingAt (matchWCP), 92

144 INDEX

which.isMatchingAt
(lowlevel-matching), 64

which.isMatchingEndingAt
(lowlevel-matching), 64

which.isMatchingEndingAt,character-method
(lowlevel-matching), 64

which.isMatchingEndingAt,XString-method
(lowlevel-matching), 64

which.isMatchingEndingAt,XStringSet-method
(lowlevel-matching), 64

which.isMatchingStartingAt
(lowlevel-matching), 64

which.isMatchingStartingAt,character-method
(lowlevel-matching), 64

which.isMatchingStartingAt,XString-method
(lowlevel-matching), 64

which.isMatchingStartingAt,XStringSet-method
(lowlevel-matching), 64

whichPDict, 82
whichPDict (matchPDict), 74
whichPDict,MaskedXString-method

(matchPDict), 74
whichPDict,XString-method

(matchPDict), 74
whichPDict,XStringSet-method

(matchPDict), 74
whichPDict,XStringViews-method

(matchPDict), 74
width,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

width,character-method
(XStringSet-class), 33

width,PDict-method (PDict-class),
18

width,PDict3Parts-method
(PDict-class), 18

width,PreprocessedTB-method
(PDict-class), 18

width0 (MIndex-class), 10
width0,MIndex-method

(MIndex-class), 10
write.phylip

(MultipleAlignment-class),
14

write.table, 6
write.XStringSet, 6
write.XStringSet (XStringSet-io),

38
write.XStringViews

(XStringSet-io), 38
writeFASTA, 40

writeFASTA (FASTA-io-legacy), 5
wtPhiX174 (phiX174Phage), 103

XKeySortedData, 28
XKeySortedData-class, 28
XKeySortedData-class

(XKeySortedData), 28
XKeySortedDataList, 28
XKeySortedDataList-class

(XKeySortedDataList), 28
xsbasetype,AAString-method

(XString-class), 29
xsbasetype,AlignedXStringSet0-method

(AlignedXStringSet-class),
2

xsbasetype,BString-method
(XString-class), 29

xsbasetype,DNAString-method
(XString-class), 29

xsbasetype,MaskedXString-method
(MaskedXString-class), 12

xsbasetype,MultipleAlignment-method
(MultipleAlignment-class),
14

xsbasetype,PairwiseAlignedXStringSet-method
(PairwiseAlignedXStringSet-class),
21

xsbasetype,RNAString-method
(XString-class), 29

xsbasetype,WCP-method (WCP), 27
xsbasetype,XKeySortedData-method

(XKeySortedData), 28
xsbasetype,XKeySortedDataList-method

(XKeySortedDataList), 28
xsbasetype,XStringSet-method

(XStringSet-class), 33
xsbasetype,XStringSetList-method

(XStringSetList-class), 41
xsbasetype,XStringViews-method

(XStringViews-class), 42
xsbasetype<-,MaskedXString-method

(MaskedXString-class), 12
xsbasetype<-,XString-method

(XString-class), 29
xsbasetype<-,XStringSet-method

(XStringSet-class), 33
xsbasetype<-,XStringSetList-method

(XStringSetList-class), 41
xsbasetype<-,XStringViews-method

(XStringViews-class), 42
xscat, 120
XString, 1, 4, 6, 10–12, 14, 22, 25, 26, 33,

35, 36, 42–45, 48, 53, 56–59, 61,

INDEX 145

65–67, 73, 75, 88, 93, 95, 97, 98,
101, 106–108, 119–121

XString (XString-class), 29
XString-class, 24
XString-class, 2, 5, 13, 27, 28, 29, 31,

36, 43, 45, 46, 48, 58, 61, 67, 69, 72,
74, 93, 98, 106, 120, 121

XStringPartialMatches-class, 31
XStringQuality, 25, 101, 112
XStringQuality

(XStringQuality-class), 32
XStringQuality-class, 26, 32, 102
XStringSet, 5, 6, 14–16, 22, 25, 26, 29, 38,

40, 41, 48, 58–61, 65–67, 75, 88, 97,
98, 101, 108, 112, 119–121

XStringSet (XStringSet-class), 33
XStringSet-class, 4
XStringSet-class, 17, 28, 30, 33, 40, 41,

43, 46, 48, 52, 61, 95, 98, 118, 120,
121

XStringSet-io, 38
XStringSetList

(XStringSetList-class), 41
XStringSetList-class, 36, 41
XStringSetToFASTArecords

(XStringSet-io), 38
XStringViews, 6, 11, 13, 14, 16, 18, 19, 25,

33, 34, 45, 46, 48, 53, 54, 56–61, 69,
71, 73, 86, 88, 89, 91–93, 97, 98,
108, 118, 120, 121

XStringViews
(XStringViews-constructor),
44

XStringViews,ANY-method
(XStringViews-constructor),
44

XStringViews,XString-method
(XStringViews-constructor),
44

XStringViews,XStringViews-method
(XStringViews-constructor),
44

XStringViews-class, 24
XStringViews-class, 11, 13, 21, 30, 31,

36, 42, 45, 46, 48, 54, 57, 58, 61, 69,
72, 74, 76, 87, 89, 93, 98, 106, 109,
118, 121

XStringViews-constructor, 44
XVector, 34
XVector-class, 30
XVectorList-class, 36

yeastSEQCHR1, 122

	AAString-class
	AMINO_ACID_CODE
	AlignedXStringSet-class
	BOC_SubjectString-class
	DNAString-class
	FASTA-io-legacy
	GENETIC_CODE
	HNF4alpha
	IUPAC_CODE_MAP
	InDel-class
	MIndex-class
	MaskedXString-class
	MultipleAlignment-class
	PDict-class
	PairwiseAlignedXStringSet-class
	QualityScaledXStringSet-class
	RNAString-class
	WCP
	XKeySortedData
	XKeySortedDataList
	XString-class
	XStringPartialMatches-class
	XStringQuality-class
	XStringSet-class
	XStringSet-io
	XStringSetList-class
	XStringViews-class
	XStringViews-constructor
	align-utils
	basecontent
	chartr
	complementSeq
	detail
	dinucleotideFrequencyTest
	findPalindromes
	gregexpr2
	injectHardMask
	letter
	letterFrequency
	longestConsecutive
	lowlevel-matching
	maskMotif
	match-utils
	matchLRPatterns
	matchPDict
	matchPDict-inexact
	matchPWM
	matchPattern
	matchProbePair
	matchWCP
	matchprobes
	misc
	needwunsQS
	nucleotideFrequency
	pairwiseAlignment
	phiX174Phage
	pid
	pmatchPattern
	replaceLetterAt
	reverseComplement
	reverseSeq
	stringDist
	substitution.matrices
	toComplex
	translate
	trimLRPatterns
	xscat
	yeastSEQCHR1
	Index

