### R code from vignette source 'vignettes/pathview/inst/doc/pathview.Rnw' ################################################### ### code chunk number 1: install (eval = FALSE) ################################################### ## source("http://bioconductor.org/biocLite.R") ## biocLite("pathview") ################################################### ### code chunk number 2: <install (eval = FALSE) ################################################### ## source("http://bioconductor.org/biocLite.R") ## biocLite(c("Rgraphviz", "png", "KEGGgraph", "org.Hs.eg.db")) ################################################### ### code chunk number 3: install (eval = FALSE) ################################################### ## install.packages("pathview",repos="http://R-Forge.R-project.org") ################################################### ### code chunk number 4: install (eval = FALSE) ################################################### ## install.packages("/your/local/directory/pathview_1.0.0.tar.gz", ## repos = NULL, type = "source") ################################################### ### code chunk number 5: <install (eval = FALSE) ################################################### ## install.packages("/your/local/directory/XML_3.95-0.2.zip", repos = NULL) ################################################### ### code chunk number 6: start ################################################### options(width=80) ################################################### ### code chunk number 7: start ################################################### library(pathview) ################################################### ### code chunk number 8: start (eval = FALSE) ################################################### ## library(help=pathview) ################################################### ### code chunk number 9: start (eval = FALSE) ################################################### ## help(pathview) ## ?pathview ################################################### ### code chunk number 10: dataPrep ################################################### data(gse16873.d) ################################################### ### code chunk number 11: dataPrep ################################################### data(demo.paths) ################################################### ### code chunk number 12: kegg.native ################################################### i <- 1 pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873", kegg.native = T) list.files(pattern="hsa04110", full.names=T) str(pv.out) head(pv.out$plot.data.gene) ################################################### ### code chunk number 13: kegg.native_2layer ################################################### pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.2layer", kegg.native = T, same.layer = F) ################################################### ### code chunk number 14: graphviz ################################################### pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873", kegg.native = F, sign.pos = demo.paths$spos[i]) #pv.out remains the same dim(pv.out$plot.data.gene) head(pv.out$plot.data.gene) ################################################### ### code chunk number 15: graphviz.2layer ################################################### pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.2layer", kegg.native = F, sign.pos = demo.paths$spos[i], same.layer = F) ################################################### ### code chunk number 16: split ################################################### pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.split", kegg.native = F, sign.pos = demo.paths$spos[i], split.group = T) dim(pv.out$plot.data.gene) head(pv.out$plot.data.gene) ################################################### ### code chunk number 17: expanded ################################################### pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.split.expanded", kegg.native = F, sign.pos = demo.paths$spos[i], split.group = T, expand.node = T) dim(pv.out$plot.data.gene) head(pv.out$plot.data.gene) ################################################### ### code chunk number 18: dataPrep ################################################### sim.cpd.data=sim.mol.data(mol.type="cpd", nmol=3000) data(cpd.simtypes) ################################################### ### code chunk number 19: gene_cpd.data ################################################### i <- 3 print(demo.paths$sel.paths[i]) pv.out <- pathview(gene.data = gse16873.d[, 1], cpd.data = sim.cpd.data, pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.cpd", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i]) str(pv.out) head(pv.out$plot.data.cpd) ################################################### ### code chunk number 20: graphviz.gene_cpd.data ################################################### pv.out <- pathview(gene.data = gse16873.d[, 1], cpd.data = sim.cpd.data, pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.cpd", keys.align = "y", kegg.native = F, key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i], cpd.lab.offset = demo.paths$offs[i]) ################################################### ### code chunk number 21: multisample.gene_cpd.data ################################################### head(gse16873.d[, 1:2]) pv.out <- pathview(gene.data = gse16873.d[, 1:2], cpd.data = sim.cpd.data, pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.cpd", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i]) head(pv.out$plot.data.gene) ################################################### ### code chunk number 22: discrete.gene_cpd.data ################################################### require(org.Hs.eg.db) gse16873.t <- apply(gse16873.d, 1, function(x) t.test(x, alternative = "two.sided")$p.value) sel.genes <- names(gse16873.t)[gse16873.t < 0.1] sel.cpds <- names(sim.cpd.data)[abs(sim.cpd.data) > 0.5] pv.out <- pathview(gene.data = sel.genes, cpd.data = sel.cpds, pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.sel.cpd", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i], limit = list(gene = 5, cpd = 2), bins = list(gene = 5, cpd = 2), na.col = "gray", discrete = list(gene = T, cpd = T)) pv.out <- pathview(gene.data = sel.genes, cpd.data = sim.cpd.data, pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.cpd", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i], limit = list(gene = 5, cpd = 1), bins = list(gene = 5, cpd = 10), na.col = "gray", discrete = list(gene = T, cpd = F)) ################################################### ### code chunk number 23: gene.ensprot_cpd.cas ################################################### cpd.cas <- sim.mol.data(mol.type = "cpd", id.type = cpd.simtypes[2], nmol = 10000) gene.ensprot <- sim.mol.data(mol.type = "gene", id.type = gene.idtype.list[4], nmol = 50000) pv.out <- pathview(gene.data = gene.ensprot, cpd.data = cpd.cas, gene.idtype = gene.idtype.list[4], cpd.idtype = cpd.simtypes[2], pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T, out.suffix = "gene.ensprot.cpd.cas", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i], limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6)) ################################################### ### code chunk number 24: gene.ensprot_cpd.cas.manual.map ################################################### id.map.cas <- cpdidmap(in.ids = names(cpd.cas), in.type = cpd.simtypes[2], out.type = "KEGG COMPOUND accession") cpd.kc <- mol.sum(mol.data = cpd.cas, id.map = id.map.cas) id.map.ensprot <- id2eg(ids = names(gene.ensprot), category = gene.idtype.list[4], org = "Hs") gene.entrez <- mol.sum(mol.data = gene.ensprot, id.map = id.map.ensprot) pv.out <- pathview(gene.data = gene.entrez, cpd.data = cpd.kc, pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T, out.suffix = "gene.entrez.cpd.kc", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i], limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6)) ################################################### ### code chunk number 25: gene.ensprot_cpd.cas.manual.map ################################################### ko.data=sim.mol.data(mol.type="gene.ko", nmol=5000) pv.out <- pathview(gene.data = ko.data, pathway.id = "04112", species = "ko", out.suffix = "ko.data", kegg.native = T) ################################################### ### code chunk number 26: GAGE.Pathview.pipeline (eval = FALSE) ################################################### ## library(gage) ## data(gse16873) ## cn <- colnames(gse16873) ## hn <- grep('HN',cn, ignore.case =TRUE) ## dcis <- grep('DCIS',cn, ignore.case =TRUE) ## kgs.file <- system.file("extdata", "kegg.sigmet.rda", package = "pathview") ## load(kgs.file) ## gse16873.kegg.p <- gage(gse16873, gsets = kegg.sigmet, ## ref = hn, samp = dcis) ## gse16873.d <- gagePrep(gse16873, ref = hn, samp = dcis) ## sel <- gse16873.kegg.p$greater[, "q.val"] < 0.1 & !is.na(gse16873.kegg.p$greater[, ## "q.val"]) ## path.ids <- rownames(gse16873.kegg.p$greater)[sel] ## path.ids2 <- substr(path.ids[c(1, 2, 7)], 1, 8) ## pv.out.list <- sapply(path.ids2, function(pid) pathview(gene.data = gse16873.d[, ## 1:2], pathway.id = pid, species = "hsa"))