RchyOptimyx: Gating Hierarchy Optimization
for Flow Cytometry

Nima Aghaeepour and Adrin Jalali
March 31, 2012

naghaeep@bccrc.ca

Contents

1 1icensing 1

2 Introduction| 1

3 First Example: Preparing Raw Data for RchyOptimyx]| 2
[3.1 Processing using flowIype[ . . . . . . ... ... ... ... ... 2
3.2 asic RechyOptimyx Functionality|. . . . . . ... ... ... ... 4

4 Analysis of a Large Dataset| 6
4.1 Second Example: Optimization against a Clinical Outcome| . . . 7
(42 ird Example: Optimization against Event Overlap|. . . . . . . 13

1 Licensing

Under the Artistic License, you are free to use and redistribute this software.

2 Introduction

This document demonstrates the functionality of the RchyOptimyx package,
a tool for cellular hieraRCHY OPTIMization for flow cytometry data (named
after Archeopteryx).

RchyOptimyx models all possible gating strategies and marker panels that
can be generated using a high-color assay, and uses dynamic programing and
optimization tools from graph-theory to determine the minimal sets of markers
that can identify a target population to a desired level of purity. A cellular



hierarchy is a directed acyclic graph (DAG), embedded in a plane as a top-
down diagram, with one node on the top most level representing all cells (or a
major component therefore, such as T-cells) and nodes further down showing
more specific cell populations. All the intermediate cell populations are placed
in the hierarchy using parent-child relationships. The graph starts from level
0 to level m including i-marker phenotypes on i** level. The phenotype with
0 markers is the top most phenotype with all cells and the phenotype with m
markers is the cell population of interest.

The required input phenotypes and their respective scores (target values of
the optimization) can be generated either using manual gates or automated
gating algorithms (see the flowType package in Bioconductor for examples).

3 First Example: Preparing Raw Data for Rchy-
Optimyx

In this example, we start from a raw flowSet and generated the required ma-
terials to produce an RchyOptimyx graph. The dataset consists of a flowSet
HIVData with 18 HIVT and 13 normals and a matrix HIVMetaData which
consists of FCS filename, tube number, and patient label. In this example, we
are interested in the second tube only. For more details please see the flowType
package.

> library(flowType)
Scalable Robust Estimators with High Breakdown Point (version 1.3-01)

> data(HIVData)
> data(HIVMetaData)
> HIVMetaData <- HIVMetaData[which(HIVMetaDatal, 'Tube']==2),];

We convert the subject labels so that HIV* and normal subjects are labeled
2 and 1, respectively.

> Labels=(HIVMetaDatal[,2]=="+"')+1;

3.1 Processing using flowType
We start by calculating the cell proportions using flowType:

library(flowCore) ;

library (RchyOptimyx) ;

##Markers for which cell proportions will be measured.
PropMarkers <- 5:10

##Markers for which MFIs will be measured.

MFIMarkers <- PropMarkers

##Marker Names
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MarkerNames <- c('Time', 'FSC-A','FSC-H', 'SSC-A',
'IgG','CD38','CD19','CD3’,
'cD27','CD20', 'NA', 'NA')

##Apply flowType

ResList <- fsApply(HIVData, 'flowType', PropMarkers,

MFIMarkers, 'kmeans', MarkerNames);
##Extract phenotype names
phenotype.names=names (ResList[[1]]@CellFreqs)

VV+ VYV + + VvV

Then we extract all cell proportions from the list of flowType results and
normalize them by the total number of cells in each sample to create the
all.proportions matrix.

> all.proportions <- matrix (0,3 length(PropMarkers)

+ -1,length(HIVMetaDatal[,1]))
> for (i in 1:length(ResList)){

+ all.proportions[,i] = ResList[[i]]@CellFreqs

+

+

+

+

all.proportions[,i] = all.proportions[,i] /
max(all.proportions
[which(names (ResList[[i]]@CellFreqs)=="'"'),1])
}

We use a t-test to select the phenotypes that have a significantly different
mean across the two groups of patients (FDR=0.05). Remember that in real
world use-cases the assumptions of a t-test must be checked or a resampling-
based alternative (e.g., a permutation test) should be used. Sensitivity analysis
(e.g., bootstrapping) is also necessary. Eight phenotypes are selected as statis-
tically significant.

> Pvals <- vector();

> EffectSize <- vector();

> for (i in 1:dim(all.proportions)[1]){

+

##If all of the cell proportions are 1 (i.e., the phenotype

##with no gates) the p-value is 1.

if (length(which(all.proportions[i,]!=1))==0){
Pvals[i]=1;
EffectSize[i]=0;
next;

}

temp=t.test(all.proportions[i, Labels==1],
all.proportions[i, Labels==2])

Pvals[i] <- temp$p.value

EffectSize[i] <- abs(temp$statistic)

+ o+ + F+ + F o+ o+ o+ o+

+ }
> Pvals[is.nan(Pvals)]=1
> names (Pvals)=phenotype.names



> ##Bonferroni's correction
> selected <- which(p.adjust(Pvals)<0.1);
> print (names (selected))

[1] "IgG-CD38-CD19-CD27+CD20-" "IgG-CD38-CD19-CD27+"

[3] "IgG-CD38-CD27+CD20-" "IgG-CD38-CD27+"
[5] "IgG-CD19-CD27+CD20-" "IgG-CD19-CD27+"
[7] "IgG-CD27+CD20-" "IgG-CD27+"

3.2 Basic RchyOptimyx Functionality

We select the longest one (IgG-CD38-CD19-CD27+CD20-) for further analysis
using RchyOptimyx. First we need to create the Signs matrix. We use the
digitsBase number to generate a matrix with 3length(PropMarkers) _ 1 rows and
length(PropMarkers) columns. flowType produces it’s results in the exact
same order, making assigning row and column names easy.

> library(sfsmisc)

> Signs=t(digitsBase(1: (3 length(PropMarkers)-1),
+  3,ndigits=length(PropMarkers)))

> rownames (Signs)=phenotype.names;

> colnames (Signs)=MarkerNames [PropMarkers]

> head(Signs)

[1] 000000

Now we can plot the complete hierarchy:

> res<-RchyOptimyx(Signs, -log10(Pvals),

+ paste (Signs [ ' IgG-CD38-CD19-CD27+CD20-", ],

+ collapse='"'), factorial(6), FALSE)

> plot(res, phenotypeScores=-logl0O(Pvals), ylab='-logl0(Pvalue)')
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and an optimized hierarchy (with only the top 15 paths):
> res<-RchyOptimyx(Signs, -loglO(Pvals),
+ paste (Signs [ ' IgG-CD38-CD19-CD27+CD20-", 1,

+ collapse='"'), 15, FALSE)
> plot(res, phenotypeScores=-loglO(Pvals), ylab='-logl0(Pvalue)')
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4 Analysis of a Large Dataset

In this section we will describe two use-cases of RchyOptimyx using a real-world
clinical dataset of 17-color assays of 466 HIV*' subjects. We start by loading
the library (for installation guidelines see the Bioconductor website).

> library(RchyOptimyx)
> data(HIVData)

The HIVData dataset consists of a matrix (Signs) and 2 numeric vectors
LogRankPuvals and OwverlapScores). The Signs matrix consists of 10 columns
(one per measured marker) and 3'° — 1 = 59048 rows (one per immunopheno-
type) similar to the previous example. See [1] or the flowType package for more



details. For every phenotype (row), the entity corresponding to a given marker
(column) can be 0, 1, and 2 for negative, neutral, and positive respectively. The
row names and column names are set respectively.

LogRankPuals is a vector of log-rank test P-values to determine the corre-
lation between HIV’s progression and each of the measured immunophenotypes
in 466 HIV positive patients (lower values represent a stronger correlation). For
more details see [1]. The names of the vector match the names of the Signs
matrix.

Ganesan et. al. define Naive T-cells as CD28+CD45RO-CD57-CCR5-CD27+
CCR7+ within the CD3+CD14- compartment [2]. The OwverlapScores vector
has the proportion of Naive T-cells (as defined above) to the total number of
cells in any given immunophenotype (a higher value represents a larger overlap):

Z Number of CD287CD45RO~ CD57~ CCR5~ CD27HCCR7T cells
All Samples Number of cells in the given population (1)

(Number of Samples)

The names of the vector match the names of the Signs matrix.

4.1 Second Example: Optimization against a Clinical Out-
come

KI67TCD4~CCR5TCD127~ cells in HIV' patients have a negative correlation
with protection against HIV [1]. The P-value assigned to the immunophenotype
confirms this:

> LogRankPvals['KI-67+CD4-CCR5+CD127-"']

KI-67+CD4-CCR5+CD127-
1.702094e-10

We first need to calculate the base-3 code of the immunophenotype using
the Signs matrix:

> paste(Signs['KI-67+CD4-CCR5+CD127-"',], collapse='")
[1] "2111012110"

Since 4 markers are involved in this immunophenotype, there are 4! = 24 paths
to reach this population. RchyOptimyx can calculate and visualize all of these
paths, alongside each intermediary population’s predictive power:

> par(mar=c(1,4,1,1))
> res<-RchyOptimyx(Signs, -logl0(LogRankPvals),

+ '2111012110', 24,FALSE)
> plot(res, phenotypeScores=-1ogl0(LogRankPvals),
+ ylab="'-1og10(Pvalue)"')
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The width of the edges demonstrates the amount of predictive power gained by
moving from one node to another. The color of the nodes demonstrates the pre-
dictive power of the cell population. Node colors, edge weights, and node/edge
labels can be removed from the graph as desired using the parameters of the
plot function:

[1] FALSE
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res is an OptimizedHierarchy object:

> summary (res)
An optimized hierarchy with 16 nodes, 32 edges, and 24 paths

This object stores the scores assigned to everyone of the calculated paths:

> plot(ecdf (res@pathScores), verticals=TRUE)
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We can re-run RchyOptimyx to limit the hierarchy to the top 4 paths:

> par(mar=c(1,4,1,1))
> res<-RchyOptimyx(Signs, -logl10(LogRankPvals), '2111012110', 4,FALSE)
> plot(res, phenotypeScores=-1ogl0(LogRankPvals), ylab='-logl0(Pvalue)"')
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This suggests that the KI-67TCCR5™ cell population is also correlated with
protection against HIV but uses only 2 markers. This can be confirmed by the
log-rank test P-value:

> LogRankPvals['KI-67+CCR5+']

KI-67+CCR5+
1.317502e-11

In the same manuscript, we found two other immunophenotypes that were
correlated with protection against HIV . We can plot all three of these phe-
notypes in a single hierarchy using the merge function.

> par(mar=c(1,4,1,1))
> res1<-RchyOptimyx (Signs, -log10(LogRankPvals),
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paste(Signs['KI-67+CD4-CCR5+CD127-",],
collapse='"'), 4,FALSE)
res2<-RchyOptimyx (Signs, -logl0(LogRankPvals),
paste (Signs['CD45R0-CD8+CD57+CCR5-CD27+CCR7-CD127-",1],
collapse='"'), 4,FALSE)
res3<-RchyOptimyx (Signs, -logl0(LogRankPvals),
paste(Signs['CD28-CD45R0+CD4~-CD57-CD27-CD127-",1],
collapse='"'), 4,FALSE)
res=merge (resl1, res2)
res=merge (res,res3)
plot(res, phenotypeScores=-1logl0(LogRankPvals),
ylab="'-1og10(Pvalue)"')
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> par(mar=c(1,4,1,1))
> plot(res, phenotypeScores=-1logl0(LogRankPvals),
+ ylab="'-1og10(Pvalue)',colors=c('white', 'gray', 'black'))
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4.2 Third Example: Optimization against Event Overlap

Ganesan et. al. use a strict but potentially redundant definition for naive T-
cells, of CD28% CD45RO~ CD57~ CCR5~ CD27T CCR7+ within the CD3TCD14~
compartment . Since 6 markers are involved, 720 paths can exist:

> res<-RchyOptimyx(Signs, OverlapScores,

+ paste(Signs['CD28+CD45R0-CD57-CCR5-CD27+CCR7+',],
+ collapse='"'), 720, FALSE)

> par(mar=c(1,4,1,1))

13



> plot(res, phenotypeScores=0OverlapScores, ylab='Purity',

+ uniformColors=TRUE, edgeWeights=FALSE, edgeLabels=FALSE,
+ nodeLabels=TRUE)
[1] FALSE
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Here is the distribution of these paths:

> plot(ecdf (res@pathScores), verticals=TRUE)
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And a cellular hierarchy with the top 5 paths:

>
+
+
>
>

res<-RchyOptimyx (Signs, OverlapScores,
paste(Signs['CD28+CD45R0-CD57-CCR5-CD27+CCR7+', ],
collapse='"'), 5, FALSE)
par(mar=c(1,4,1,1))
plot(res, phenotypeScores=0verlapScores, ylab='Purity')

15



CCR74CCR5-

CCR5- CCR7+ CD45RO-

CCR5-CCR7+ -

CD45RO- CCR7+

CD45RO-CCR5-CCR7+

CD27+ CD57-

CD45RO-CCR5-CD27+CCR7+ CD45R0O-CD57-CCR5-CCR7+

CD28+ CD57- CD27+

CD28+CD45R0O-CCR5-CD27+CCR7+ CD45R0O-CD57-CCR5-CD27+CCR7+

CD57- CD28+

CD28+CD45R0O-CD57-CCR5-CD27+CCR7+

This shows that a 95% pure population of strictly naive T cells can be identified
using only 3 markers (CD45RO~CCR5~CCR7™).

Purity
0.6

0.4

> OverlapScores['CD45R0-CCR5-CCR7+']
CD45R0-CCR5-CCR7+

0.9489143
References

[1] N. Aghaeepour, P. K. Chattopadhyay, A. Ganesan, K. O’Neill, H. Zare,
A. Jalali, H. H. Hoos, M. Roederer, and R. R. Brinkman. Early Immunologic
Correlates of HIV Protection can be Identified from Computational Analysis

16



2]

of Complex Multivariate T-cell Flow Cytometry Assays. Bioinformatics, Feb
2012.

A. Ganesan, P.K. Chattopadhyay, T.M. Brodie, J. Qin, W. Gu, J.R. Mas-
cola, N.L. Michael, D.A. Follmann, and M. Roederer. Immunologic and
virologic events in early hiv infection predict subsequent rate of progression.
Journal of Infectious Diseases, 201(2):272, 2010.

17



	Licensing
	Introduction
	First Example: Preparing Raw Data for RchyOptimyx
	Processing using flowType
	Basic RchyOptimyx Functionality

	Analysis of a Large Dataset
	Second Example: Optimization against a Clinical Outcome
	Third Example: Optimization against Event Overlap


