Package ‘Streamer’

September 24, 2012

Type Package

Title Enabling stream processing of large files
Version 1.2.1

Date 2010-10-13

Author Martin Morgan, Nishant Gopalakrishnan
Maintainer Martin Morgan <mtmorgan@fhcrc.org>

Description Large data files can be difficult to work with in R,where data generally resides in mem-
ory. This package encourages a
style of programming where data is ’streamed’ from disk into R via a
‘producer’ and through a series of ‘consumers’ that, typically
reduce the original data to a manageable size. The package provides
useful Producer and Consumer stream components for operations such
as data input, sampling, indexing, and transformation; see package?Streamer for details.

License Artistic-2.0

LazyLoad yes

Imports methods, graph

Suggests RUnit, Rsamtools (>= 1.5.53)
Enhances multicore

Collate generics.R OldClass.R Streamer.R Producer.R BufferInterface.R
Consumer.R Stream.R ConnectionProducer.R RawInput.R
ValueInput.R Downsample.R Utility.R runit_runner.R
ParallelConnector.R TConnector.R YConnector.R UserFunction-class.R zzz.R

R topics documented:

Streamer-package oL e e
BufferInt-class e e
COMNECL . . . v v v i i e i e e e e e e e e e e e e e e e e e
ConnectionProducer-class e
Consumer-class e
Downsample-class

2 Streamer-package

NetCDFFile-class e 8
NetCDFInput-class 0 o o e e 10
ParallelConnector-class 11
Producer-class e e 12
Rawlnput-class e 13
RawToChar-class e 15
ReadLinesInput-class L 16
TESCL . v v e e e e e e e e e e e e e 17
Rev-class e 18
SEATUS . . . v e e e e e 19
SITCAM . . & v v v v e e e e e e e e e e e e e e e e e e e 19
Stream-class e e e 20
Streamer-class e e e 21
TConnector-class e e e e e e e e e e e 22
TOut-class e e 24
UserFunction-class e 25
Utility-class o e e e e e 26
YConnector-class e e 27
yvield . . .o 28
Index 30
Streamer-package Enable stream processing of large files
Description

Large data files can be difficult to work with in R, where data generally resides in memory. This
package encourages a style of programming where data is ’streamed’ from disk into R through a
series of components that, typically, reduce the original data to a manageable size. The package
provides useful Producer and Consumer components for operations such as data input, sampling,
indexing, and transformation.

Details

The central paradigm in this package is a stream composed of a Producer and zero or more
Consumer components. The Producer is responsible for input of data, e.g., from the file system. A
Consumer accepts data from a Producer and performs transformations on it. The stream function
is used to assemble a Producer and zero or more Consumer components into a single string.

The yield function can be applied to a stream to generate one ‘chunk’ of data. The definition of
chunk depends on the stream and its components. A common paradigm repeatedly invokes yield
on a stream, retrieving chunks of the stream for further processing.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Producer, Consumer are the main types of stream components. Use stream to connect components,
and yield to iterate a stream.

mtmorgan@fhcrc.org

Bufferlnt-class 3

Examples

About this package
packageDescription("Streamer")

Existing stream components
getClass("Producer”) # Producer classes
getClass("Consumer™) # Consumer classes

An example

fl <- system.file("extdata”, "s_1_sequence.txt"”, package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(1e4))

s <- stream(RawToChar(), Rev(), b)

s

head(yield(s)) # First chunk

b <- RawInput(fl, 5000L, verbose=TRUE)
d <- Downsample(yieldSize=50)
s <- stream(RawToChar(), d, b)

s
s[[2]1]
Processing the first ten chunks of the file
i<-1
while (10 >= i && OL != length(chunk <- yield(s)))
{
cat("chunk”, i, "length"”, length(chunk), "\n")
i<-1i+1
3
BufferInt-class Class "BufferInt”
Description

An internal reference class container used by the Consumer-class to store functions that operate
on the records stored in the .records field of the Consumer-class. Operations performed on the
.records field by the Consumer-class include length, append, subset.

Users have the options of modifying the behaviour of the above mentioned operations for records
of different data types by declaring an S4 method BufferInterface that returns an object of
BufferInt-class.

Constructors

Instances from this class are constructed with calls to BufferInt constructor.

Fields

length: Object of class function that returns the length of the records.

append: Object of class function that appends records together. This function is called when a
new records is read and is to be added to the existing buffer.

subset: Object of class function that subsets records. This function is called when records have
been yielded and are to be removed from the buffer

4 connect

Methods

Users have the option of controlling the beaviour of the functions length, append and subset used
to manipulate the . records field of the Consumer-class by declaring a function BufferInterface.

BufferInterface

Returns an object of class BufferInt that holds functions for manipulating the record of the
Consumer class.

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

Streamer-package, Consumer-class.

Examples

showClass("BufferInt”)
selectMethod("BufferInterface”, "data.frame")

connect Connect Producer and Consumer streams together and return a
named list of stream’s that the user can invoke the method yield
on.

Description

The function connect can be used to connect Producer and Consumer components together.

For simple streams, it may be more appropriate to use the stream method. The connect function
is useful for connecting together more complex streams involving classes such as YConnector,
TConnector, ParallelConnector etc which cannot be handled by the stream method.

The connect function returns a named list of possible streams from the connection information
provided by the user. The user can then call yield on the streams to obtain records.

Usage

connect(blocks, df)

Arguments
blocks A named list of instances of classes Consumer and Producer to the connected
together in a stream
df A data.frame with two columns: "from" and "to" which are character vectors
corresponding to the names of the blocks. Each row of df describes a connection
between Consumer or Producer blocks.
Details

Arguments blocks must consist of a named list of a single Producer and zero or more Consumer
components.

ngopalak@fhcrc.org

ConnectionProducer-class 5

Value

A named list of instances of class Stream.

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

yield,connect, Stream-class.

Examples

A simple stream involving a Producer and Consumer class

fl <- system.file("extdata”, "s_1_sequence.txt", package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(1e4))

c <- RawToChar(10L)

Create a named list of the blocks to be connected together
blocks <- structure(list(b,c), names = c("b", "c"))

Create a data.frame that describes the connection between blocks
df <- data.frame(from ="b", to = "c")

res <- connect(blocks, df)

yield(res$c)

reset(res$c)

while (length(yield(res$c))) cat("tick\n")

ConnectionProducer-class
Class "ConnectionProducer"

Description

A virtual class containing components that are required to create a custom Producer-class to
read data from file connections. Users can inherit from the ConnectionProducer-class to cre-
ate their own Producer classes that interact with files. Users are expected to pass in appropri-
ate reader and parser functions for files when creating instances of classes that inherit from
ConnectionProducer-class.

Fields
The ConnectionProducer class inherits the ficlds verbose, inUse and yieldSize fields from
the Streamer class. Please refer to the Streamer class for more details.
An object of class connection.
ceader: A function that reads data from a file connection

parser: A function that parses data to records.

ngopalak@fhcrc.org

6 Consumer-class

Class-Based Methods

The ConnectionProducer class inherits the methods initialize, msg, reset, status and
yield from the Streamer virtual class. Please refer to the Streamer class for more details.

Derived classes should implement an appropriate yield method to return the contents of the
current stream. The default method for the base virtual Streamer class returns a 1ist()

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Producer-class, Streamer-class.

Examples

showClass("ConnectionProducer”)

Consumer-class Class "Consumer"

Description

A virtual base class representing components that can consume data from a Producer, and yield
data to the user or other Consumer instances. A Consumer typically transforms records from one
form to another. Producer and Consumer instances are associated with each other through the
stream function or using the connect function.

Methods

Methods defined on this class include:

stream signature(x = "Consumer”, ...): see ?stream.
show signature(object = "Consumer”): Display the stream.
Fields

inputPipe: Object of class Streamer, representing the Producer or Consumer connected up-
stream to it and from which records are yielded.
.records: Object of classlist which is used as a temporary buffer for storing records.

The Consumer class inherits the fields yieldSize, verbose and inUse from the virtual Streamer
class. Please refer to the Streamer class for more details.

Class-Based Methods

initialize(..., inputPipe): A method to initialize the fields of the Consumer class.
inputPipe: An object of class Streamer connected up-stream to it. The class could be a
Consumer or Producer which yields data to the Consumer class.
...t Additonal arguments, currently unused.

verbose: A logical(1) instance indicating whether methods invoked on the class should be
reported to the user.

mtmorgan@fhcrc.org

Downsample-class 7

reset(): Return the result of delegating reset () to the object in the field inputPipe.
yield(): Return the result of delegating yield() to the object in the field inputPipe.
inputs(): Return a character vector representing up-stream components.

status{}: Reports the status of the Consumer class. A 1ist of the status of the length of the object
in the . records field, the classes connected to the inputPipe field and the status of the fields
of the virtual class Streamer are returned.

.fil1(): An internal method that fills the . records field with yieldSize records if available.

.add(input): An internal method that appends the value passed to the argument input to the
.records field.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Streamer-class, Producer-class, Stream-class.

Examples

showClass("Consumer")

Downsample-class Class "Downsample"

Description

A Consumer-class to select records with fixed probability, returning a yield of fixed size. Successive
calls to yield result in sampling of subsequent records in the stream, until the stream is exhausted.
Users interact with this class through the constructor Downsample and methods yield, reset, and

stream.
Usage
Downsample(probability=0.1, ..., yieldSize=1e6, verbose=FALSE)
Arguments
probability A numeric(1) between 0, 1 indicating the probability with which a record
should be retained.
Additional arguments, passed to the $new method of the underlying reference
class. Currently unused.
yieldSize A integer (1) indicating the number of records to yield.

verbose logical (1) indicating whether class methods should report to the user.

mtmorgan@fhcrc.org

8 NetCDFFile-class

Fields
inputPipe: Object of class ANY. The component from which input is retrieved.
probability: Object of class numeric. The probability of including a record in the yield.

yieldSize: Object of class integer storing the number of records to produced each time yield
is invoked.

.buffer: Object of class ANY, used internally to store read but not yet parsed records.

verbose: Object of class logical. Display method invokation messages to the user.

Class-Based Methods
initialize(..., probability, yieldSize, verbose): Initialize the instance.

probability: The probability with which a record is included in the sample.
yieldSize: The number of records to return when yield is invoked.

...t Additional arguments, currently ignored.

verbose: Display method invokation messages to the user.

reset(): Reset sample buffer and delegate reset to inputPipe.

yield(): Continually invoke yield on inputPipe, accumulating a random sample of yieldSize
records until the yield of inputPipe has length 0. The resultis a 1ist of length yieldSize.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

stream

Examples

showClass("Downsample”)

NetCDFFile-class Class "NetCDFFile"

Description

A NetCDFFile-class to interpret data stored in NetCDF files. Users interact with this class through
the constructor NetCDFFile and methods precision, and dimensions.

Usage
NetCDFFile(file = character(), ...)
S4 method for signature ’NetCDFFile’
dimensions(x, ...)

S4 method for signature ’NetCDFFile’
precision(x, ...)

mtmorgan@fhcrc.org

NetCDFFile-class 9

Arguments
file A character string for the path to the NetCDF file.
X An insance of the NetCDFFile class.
Additional arguments, passed to the $new method of this class. Currently ig-
nored.
Class Methods

precision(): Returns a named character vector corresponding to the storage precision of the vari-
ables in the NetCDF file.

dimensions(): Returns a named list containing the names and lengths of the dimensions for
each variable in the NetCDF file.

Class Internal Fields: (For developers)

con: Object of class ncdf4. An R ncdf4 connection obtained by opening a NetCDF file from which
data is to be read using the nc_open function.

dimensions: A named list corresponding to the names of the variables in the NetCDF file. Each
element of the 1ist is a named integer vector, with names of the dimensions for each variable
and values the length of the dimension in the NetCDF file.

precision: A named character vector of the number of precision for each variable stored in the
NetCDF file.

Class Internal Methods: (For developers)

initialize(file=character(), ...): Called during object creation with file being the path
to a valid NetCDF file.

getPath(): Retrive the path to the NetCDF file.

getDimensions(): Retrieves a list of variables, with each element in the list containing a named
integer vector of dimensions and their lengths.

getPrecision(): Retrieves the precision of each variable in the NetCDF file.

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

stream

Examples

Not run:

pth <- system.file("extdata”, "NetCDFData.nc”, package = "Streamer")
ncFile <- NetCDFFile(pth)

dimensions(ncFile)

precision(ncFile)

ncFile

End(Not run)

ngopalak@fhcrc.org

10 NetCDFInput-class

NetCDFInput-class Class "NetCDFInput"

Description

A NetCDFInput-class to retrieve data store in NetCDF files. Users interact with this class through
the constructor NetCDFInput and methods yield, status, and reset.

Usage
NetCDFInput(ncdf, var, slice, ..., verbose = FALSE)
S4 method for signature ’NetCDFInput’
dimensions(x, ...)
Arguments
ncdf An object of class NetCDFFile rrepresenting the file from which data is to be
read.
var A character (1) string naming the variable to be read from the NetCDF file.
slice A named integer vector specifying the slice to be iterated over. The names corre-
spond to dimensions of var, the values to the number of elements to be retrieved
with each yield.
Additional arguments, passed to the $new method of this class. Currently ig-
nored.
verbose logical (1) indicating whether class methods should report to the user.
X An instance of the NetCDFInput class.
Class Methods

dimensions(): Return the dimensions associated with the variable this object is iterating over.

yield(): Processes the NetCDF file and retrieves a matrix of data from the NetCDF file corre-
sponding to the slice size that has been set. Repeated calls to the yield function retrieves the
next block of data until the end of file has been reached.

reset(): Resets the cursor that tracks the next block of data to be read to the start of the file.

status(): Returns a named numeric vector for the position of the start of the block from which
data will be read for the next call to the yield function.

Class Internal Fields: (For developers)

ncdf: An object of class NetCDFFile from which data is being read.
name: A character (1) specifying the name of the variable that is being read.

slice: A named numeric vector specifying the size of the chunk of data that will be retrived along
each dimension using the yield method.

start: A named numeric vector specifying the position along each dimension from which data
will start to be read for the next call to the yield function.

verbose: Report messages from evalaution?

ParallelConnector-class 11

Class Internal Methods: (For developers)

initialize(ncdf, var, slice, ..., verbose): Called during object creation with values to
initialize fields.

yield(): Processes the NetCDF file and retrieves a block of data from the NetCDF file corre-
sponding to the slice size that has been set. Repeated calls to the yield function retrieves the
next block of data until the end of file has been reached.

reset(): Resets the cursor that tracks the next block of data to be read to the start of the file.

status(): Retrieves the position of the start of the block from which data will be read for the next
call to the yield function.

.getCounts(): Retrieve the dimensions of the next slice.

.getNextStart(): Retrieve coordinates at which next yield starts.

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

NetCDFFile

Examples

Not run:
showClass(”"NetCDFInput”)

pth <- system.file("extdata”, "NetCDFData.nc”, package = "Streamer")
ncFile <- NetCDFFile(pth)
dimensions(ncFile) # variable names and dimensions

ncProd <- NetCDFInput(ncFile, "2dIntData”, c(sampleDim=5, snpDim=2))
yield(ncProd)
status(ncProd)
reset(ncProd)
yield(ncProd)

End(Not run)

ParallelConnector-class
Class "ParallelConnector”

Description

The ParallelConnector Consumer-class can be used to parallelize the computations done by

blocks directly connected to the ParallelConnector and all blocks down-stream to the ParallelConnector.
i.e Computations performed by the block directly connected up-stream to the ParallelConnector

and all blocks connected down-stream to the ParallelConnector in a stream happen simultane-

ously.

ngopalak@fhcrc.org

12 Producer-class

Usage
ParallelConnector(..., yieldSize=1e6, verbose=FALSE)
Arguments
Additional arguments to be passed to the constructor.
yieldSize The number of records the input parser is to yield.
verbose logical (1) indicating whether class methods should report to the user.
Constructors

Use ParallelConnector to construct instances of this class.

Fields

.upstream: Object of class ANY. The output of a call to the parallel function from the multicore-
package. This field is internal to the ParallelConnector class and will be populated by a
call to the stream method or the connect function used to connect the ParallelConnector
to other blocks in a stream.

Methods

initialize(...): Initializes the fields of the ParallelConnector class.

yield(): Reads data from the child processes and converts the result (which must be a list of raw)
into a vector of character.

Author(s)

Nishant Gopalakrishnan, Martin Morgan

See Also

stream

Examples

showClass("”ParallelConnector”)

Producer-class Class "Producer"

Description

A virtual class representing components that can read data from connections, and yield records to
the user or a Consumer instance. A Producer represents a source of data, responsible for parsing a
file into records to be passed to Consumer classes. Producer and Consumer instances are associated
with each other through the stream function or using the connect function.

Rawlnput-class 13

Methods

Methods defined on this class include:

stream signature(x = "Producer”, ...):see ?stream.
show signature(object = "Streamer”): Display the stream.
Fields

The Producer class inherits the fields verbose, inUse and yieldSize fields from the Streamer
class. Please refer to the Streamer class for more details.

Class-Based Methods

The Producer class inherits the methods initialize, msg, reset, status and yield from
the Streamer virtual class. Please refer to the Streamer class for more details.

Derived classes should implement an appropriate initialize method to initialize the fields of
the derived class. Additionally, a yield method should be implemented to return the contents
of the current stream. The default method for the base virtual Streamer class returns a list ()

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Consumer-class, Streamer-class.

Examples

showClass("Producer”)

RawInput-class Class "Rawlnput”

Description

A Producer-class to interpret files as raw (binary) data. Users interact with this class through the
constructor RawInput and methods yield, reset, and stream.

This class requires two helper functions; the ‘factory’ methods defined on this page can be used
to supply these. rawReaderFactory creates a ‘reader’, whose responsibility it is to accept a con-
nection and return a vector of predefined type, e.g., raw. rawParserFactory creates a ‘parser’,
responsible for parsing a buffer and vector of the same type as produced by the reader into records.
The final record may be incomplete (e.g., because reader does not return complete records), and
regardless of completion status is the content of buf on the subsequent invocation of parser.
length(buf) or length(bin) may be 0, as when the first or final record is parsed.

Usage

RawInput(con, yieldSize = 1e+06, reader = rawReaderFactory(),
parser = rawParserFactory(), ..., verbose = FALSE)

rawReaderFactory(blockSize = 1e+06, what)

rawParserFactory(separator = charToRaw("\n"), trim = separator)

mtmorgan@fhcrc.org

14

Arguments

con

yieldSize

reader

parser

verbose
blockSize
what

separator

trim

Fields

Rawlnput-class

A character string or connection (opened as "rb"” mode) from which raw input
will be retrieved.

The number of records the input parser is to yield.

A function of one argument (con, an open connection positioned at the start of
the file, or at the position the con was in at the end of the previous invocation of
the reader function) that returns a vector of type raw.

A function of two arguments (buf, bin), parsing the raw vector c(buf, bin)
into records.

Additional arguments, passed to the $new method of this class. Currently ig-
nored.

logical (1) indicating whether class methods should report to the user.
The number of bytes to read at one time.
The type of data to read, as the argument to readBin.

A raw vector indicating the unique sequence of bytes by which record starts are
to be recognized. The parser supplied here includes the record separator at the
start of each record.

A raw vector that is a prefix of separator, and that is to be removed from the
record during parsing.

con: Object of class connection. An R connection opened in “rb” mode from which data will

be read.

blockSize: Object of class integer. Size (e.g., number of raw bytes) input during each yield.

reader: Object of class function. A function used to input blockSize elements. See rawReaderFactory.

parser: Object of class function. A function used to parse raw input into records, e.g., breaking
a raw vector on new lines ‘\n’. See rawParserFactory

.buffer: Object of class raw. Contains read but not parsed raw stream data.

.records: Object of class 1ist. Parsed but not yet yield-ed records.

.parsedRecords: Object of class integer. Total number of records parsed by the Producer.

verbose: Object of class logical. Should progress be reported?

Class-Based Methods

initialize(con, blockSize, reader, parser, verbose): Called during object creation with
values to initialize fields.

reset(): Remove buffer and current records, reset record counter, re-open con.

status(): Summarize status of stream.

yield(): Process stream to yield as many complete records as are represented in the current
blockSize elements.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

mtmorgan@fhcrc.org

RawToChar-class 15

See Also

stream, connect

Examples
fl <- system.file("extdata”, "s_1_sequence.txt”, package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(le4))
yield(b)
RawToChar-class Class "RawToChar"
Description

A Consumer-class to convert raw (binary) records to char, applying rawToChar to each record.

Usage
RawToChar(yieldSize = 1e6,verbose = FALSE)

Arguments

yieldSize A integer (1) indicating the number of records to yield.

verbose logical (1) indicating whether class methods should report to the user.
Constructors

Use RawToChar to construct instances of this class.

Fields

inputPipe: Object of class ANY. The component from which input is retrieved.
yieldSize: A integer(1) indicating the number of records to yield.

verbose: Object of class logical. Display method invokation messages to the user.

Methods

yield(): Convert the result of applying yield to inputPipe (which must be a list of raw) into a
vector of character.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

stream

Examples

showClass("RawToChar")

mtmorgan@fhcrc.org

16 ReadLinesInput-class

ReadlLinesInput-class Class "ReadLinesInput”

Description

A Producer-class to interpret text files. Users interact with this class through the constructor
ReadLinesInput and methods yield, reset, and stream.

This class requires two helper functions; the ‘factory’ methods defined on this page can be used to
supply these. readLinesReaderFactory creates a ‘reader’, whose responsibility it is to accept a
connection and return a character vector. readLinesParserFactory creates a ‘parser’, responsi-
ble for parsing a buffer and vector of the same type as produced by the reader into records.

Usage
ReadLinesInput(con, reader = readlLinesReaderFactory(),
parser = readlLinesParserFactory(), ..., yieldSize = 1e+06,
verbose = FALSE)
readLinesReaderFactory(blockSize=1e+06, ...)
scanReaderFactory(blockSize=1e06, ...)
Arguments
con A character string or connection (opened as "r" mode) from which character
data will be retrieved.
yieldSize The number of records the input parser is to yield.
reader A function of one argument (con, an open connection positioned at the start of

the file, or at the position the con was in at the end of the previous invocation of
the reader function) that returns a vector of type character.

parser A function of two arguments (buf, bin), parsing the raw vector c(buf, bin)
into records.

verbose logical(1) indicating whether class methods should report to the user.
blockSize The number of characters to read at one time.

Additional arugments.

Fields

con: Object of class connection. An R connection opened in “r” mode from which data will be
read.

blockSize: Object of class integer. Size of input during each yield.
reader: Objectof class function. A function used to input blockSize elements. See readLinesReaderFactory.

parser: Object of class function. A function used to parse character input into records. See
readlLinesParserFactory

.records: Object of class character. Records that have been read and parsed but not yet yield-ed
records.

verbose: Object of class logical. Should progress be reported?

reset 17

Class-Based Methods

initialize(..): Called during object creation with values to initialize fields.
reset(): Remove buffer and current records, reset record counter, re-open con.
status(): Summarize status of stream.

yield(): Process stream to yield as many complete records as are represented in the current
blockSize elements.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

stream, connect

Examples

showClass("ReadLinesInput”)

reset Reset a stream, or a stream component and all inputs.

Description
reset on a stream invokes the reset method of all components of the stream; on a component, it
invokes the reset method of the component and all inputs to the component.

Usage

reset(x, ...)
S4 method for signature ’Streamer’
reset(x, ...)

Arguments

X A Stream, Producer, or Consumer object.
Additional arguments, currently unused.

Value

A reference to x, the stream or component on which reset was invoked.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

stream, Producer, Consumer.

Examples

see example(stream)

mtmorgan@fhcrc.org
mtmorgan@fhcrc.org

18 Rev-class

Rev-class Class "Rev"

Description

A Consumer-class to reverse the order of records. Note that the content of the yield is reversed,
and not the entire stream.

Usage

Rev(yieldSize = 1e6, verbose=FALSE)

Arguments

yieldSize A integer (1) indicating the number of records to yield.

verbose logical (1) indicating whether class methods should report to the user.
Constructors

Use Rev to construct instances of this class.

Fields

inputPipe: Object of class ANY. The component from which input is retrieved.
yieldSize: A integer (1) indicating the number of records to yield.

verbose: Object of class logical. Display method invokation messages to the user.

Methods

yield(): Reverse the result of applyng yield to inputPipe.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

stream

Examples

showClass("Rev")

mtmorgan@fhcrc.org

status 19

status Report current status of a stream.

Description

status invoked on a stream yields the current status of the stream, as reported by the status
methods of each component.

Usage

status(x, ...)
S4 method for signature ’Streamer’
status(x, ...)

Arguments

X A Stream, Producer, or Consumer object.

Additional arguments, currently unused.

Value

A component-specific summary the current status

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

stream, Producer, Consumer.

Examples

see example(stream)

stream Create a stream from Consumer and Producer components.

Description

streamis used to create a stream from a single Producer and zero or more Consumer instances.

Usage
stream(x, ..., verbose=FALSE)
S4 method for signature ’Producer’
stream(x, ..., verbose=FALSE)

S4 method for signature ’Consumer’
stream(x, ..., verbose=FALSE)

mtmorgan@fhcrc.org

20 Stream-class

Arguments
X An instance of a Consumer or Producer
Additional Consumer or Producer instances.
verbose A logical(1) indicating whether status information should be reported.
Details

Arguments to stream must consist of a single Producer and zero or more Consumer components.

When invoked with the Producer as the first argument, stream(P, C1, C2) produces a stream in
which the data is read by P, then processed by C1, then processed by C2.

When invoked with the Consumer as the first argument, the . . . must include a Producer as the last
argument. stream(C1, C2, P) produces a stream in which the data is read by P, then processed
by C2, then processed by C1.

Value

An instance of class Stream.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

yield, Stream-class.

Examples

fl <- system.file("extdata”, "s_1_sequence.txt"”, package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(le4))

s <- stream(b, Rev(), RawToChar())

s

yield(s)

reset(s)

while (length(yield(s))) cat("tick\n")

Stream-class Class "Stream"

Description

An ordered collection of Consumer and Producer components combined into a single entity. Ap-
plying a method such as yield to Stream invokes yield on the terminal Consumer component of
the stream, yielding one batch from the stream. The result of yield is defined by the Producer and
Consumer components of the stream.

Constructors

Instances from this class are constructed with calls to stream; see ?stream

mtmorgan@fhcrc.org

Streamer-class 21

Methods

This class inherits the following methods:

reset signature(x = "Streamer”, ...): see ?reset.

yield signature(x = "Streamer"”, ...):see ?yield.

Methods defined on this class include:

length signature(x = "Stream"): the number of components in this stream
[[signature(x = "Stream”, i = "numeric”): The ith component (including inputs) of this
stream.
show signature(object = "Stream"): Display the stream.
Fields

inputPipe: Object of class ANY ~~

verbose: A logical(1) instance indicating whether methods invoked on the class should be re-
ported to the user.

Class-Based Methods

The following methods are inherited (from the corresponding class): initialize ("Streamer"), yield
("Streamer"), msg ("Streamer"), yield ("Consumer"), initialize ("Consumer"), reset ("Consumer"),
reset ("'Streamer"), inputs ("Consumer")

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Consumer-class, Producer-class.

Examples

showClass("Stream")

Streamer-class Class "Streamer”

Description

A virtual base class from which all classes in the Streamer package derive.

Methods

reset signature(x = "Streamer”): see ?reset.

yield signature(x = "Streamer"): see ?yield.

mtmorgan@fhcrc.org

22 TConnector-class

Fields

yieldSize: An integer for the number of records to be returned.

verbose: A logical(1) instance indicating whether methods invoked on the class should be re-
ported to the user.

inUse: A logical(1) instance indicating whether the object instantiated has been used in a stream.

Class-Based Methods

initialize(..., verbose = FALSE): Initialize Streamer, setting verbose, yieldSize and inUse
fields, returning . self invisibly.

msg(fmt, ...): Usemsg to print sprintf(fmt, ...) messages to user.
reset(): Reset Streamer; this default method is a no-op.
yield(): Yield default value list().

status(): Reports the status of the Streamer class. A 1ist of the status of yieldSize, verbose
and inUse fields is returned.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Consumer-class, Producer-class, Stream-class.

Examples

showClass("Streamer")

TConnector-class Class "TConnector"

Description

A Consumer-class that is used to connect the output of one stream to several Consumer stream’s
that perform different operations on the records. The TConnector manages the records supplied to
it to ensure that all the streams connected to it get acess to all the records passed to the TConnector
irrespective of the number of records processed at a time by each stream connected down-stream.

A TConnector can be connected to other Producer and Consumer objects using the connect func-

tion.
Usage
TConnector(..., yieldSize=1e6, verbose=FALSE)
Arguments
Additional arguments
verbose logical(1) indicating whether class methods should report to the user.

yieldSize The number of records the input parser is to yield.

mtmorgan@fhcrc.org

TConnector-class 23

Constructors

Use TConnector to construct instances of this class.

Fields

.records: A temporary buffer used to save records retrieved from the Producer or Consumer class
connector up-stream to the TConnector. This field is used internally by class methods and is
not intende to be manipulated directly by the user.

.tOuts: A list of objects of class TOut of length equal to the number of streams connected down-
stream to it. This field is used internally by the TConnector-class method and not intended to
be manipulated directly by the user.

Methods

initialize(...): A method to initialize the fields of the TConnector class.

.fill(): An internal method used to retrieve records from the Producer or Consumer class con-
nected up-stream to the TConnector.

.add(): An internal method to add records to the internal buffer(. records).

.dump(): An internal method to remove records that have been passed down to all the down-stream
classes (and are no longer needed) from the internal buffer(. records).

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

stream,YConnector, connect

Examples

Two Streams b, c1 and b, c2 connected with a Tconnector t

fl <- system.file("extdata”, "s_1_sequence.txt"”, package="Streamer")
b <- RawInput(fl, 100L, reader=rawReaderFactory(1e4))

c1 and c2 return different number of records

c1 <- RawToChar(10L)

c2 <- RawToChar(20L)

t <- TConnector()

Connect the blocks together using the connect function
blocks <- structure(list(b, c1, c2, t), names = c("b", "c1", "c2", "t"))
df <- data.frame(from =c("b”, "t", "t"),
to = c("t", "c1", "c2"))
res <- connect(blocks, df)

yield on c2 returns 20 records

yield(res$c2)

yield on cl1 returns the same records as with yield on c2
10 records at a time

yield(res$c1)

yield(res$c1)

ngopalak@fhcrc.org

24 TOut-class

TOut-class Class "TOut"

Description

A Consumer-class that is used internally to connect several Consumer streams to a TConnector-
class.

This class is only for use by functions internal to the Streamer package. The TOut-class is respon-
sible for filing the . records field of the TConnector with adequate number of records.

Usage
TOut(..., yieldSize=1e6, verbose=FALSE)
Arguments
Additional arguments. Currently not used
verbose logical (1) indicating whether class methods should report to the user.
yieldSize The number of records the input parser is to yield.
Constructors

Use TOut to construct instances of this class.

Fields

start: A integer(1) indicating the start position of the record to be read next.

.records: A temporary buffer of the TConnector from which the next set of records are to be
read.

Methods

initalize(...): Initializes the fields of the TOut class.

yield(): Retrieves records from the TConnector-class connected up-stream to it.

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

TConnector

Examples

showClass("TOut")

ngopalak@fhcrc.org

UserFunction-class 25

UserFunction-class Class "UserFunction"

Description

The UserFunction class is provided as a convenience class enabling users to quickly create Consumer-
classes that can be added to a stream without having to go into more complex details about the
implementation of the classes hierarchy provided by the Streamer-package.

The users pass in a function fun to the constructor of the UserFunction-class to manipulate the
records returned by the class intended to be connected upstream. The constructor returns an instance
of the UserFunction-class with a with a yield method that the user can directly invoke.

Usage
UserFunction(fun, ..., yieldSize=1e6, verbose=FALSE)
Arguments
fun User defined function that operates on records yielded by the class connected
upstream.
Additional arguments, passed to the $new method of this class. Currently ig-
nored.
yieldSize A integer (1) indicating the number of records to yield.
verbose logical (1) indicating whether class methods should report to the user.
Constructors

Use UserFunction to construct instances of this class.

Fields

.fun: A user suppliedfunction that operates on records yielded by the class connected up-stream.

Methods

initialize(...): Initializes the fields of the UserFunction-class.

yield(): Applies the function fun to the records retrieved from the class connected upstream to
the UserFunction class.

Author(s)

Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

stream

ngopalak@fhcrc.org

26 Utility-class

Examples

f <- system.file("extdata”, "s_1_sequence.txt"”, package="Streamer")
b <- RawInput(f, 100L, reader=rawReaderFactory(le4))
Create a user defined function to convert raw bytes to character
myFun <- function(x) {

sapply(x, rawToChar)

Pass the function to the UserFunction constructor
d <- UserFunction(fun=myFun)

Create a stream
s <- stream(b, d)
yield(s)

Utility-class Class "Utility"

Description

A virtual class containing components that are required to create light weight Consumer classes that
process data from other Producer or Consumer classes. Users can inherit from the Utility-class to
create their own Consumer-classes that performs some operation on the records passed down from
a class upstream. The classes RawToChar and Rev implemented in the Streamer-package derive
from the Utility-class.

Fields

The Utility class inherits the fields verbose, inUse and yieldSize fields from the Streamer
class. Please refer to the Streamer class for more details.

The Utility class inherits the fields inputPipe, and .records from the Consumer class.
Please refer to the Consumer-class class for more details.

Class-Based Methods

The ConnectionProducer class inherits the methods initialize, msg, reset, status and
yield from the Streamer virtual class. Please refer to the Streamer class for more details.

Derived classes should implement an appropriate yield method to return the contents of the
current stream. The default method for the base virtual Streamer class returns a 1ist ()

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

Streamer-package, Consumer-class, Streamer-class.

Examples

showClass("”ConnectionProducer™)

mtmorgan@fhcrc.org

YConnector-class 27

YConnector-class Class "YConnector"

Description

The YConnector Consumer-class can be used to combine the output of multiple stream’s together.
The output records of the stream’s are combined using a user supplied function (fun) passed to
the constructor of the YConnector class. The output of the YConnector can then be used to feed a
Consumer-class connected down-stream to it.

The YConnector can be connector to other Producer and Consumer objects using the connect

function.
Usage
YConnector(fun, ..., yieldSize=1e6, verbose=FALSE)
Arguments
fun A function that is used to combine the output of the streams connected up-
stream to the YConnector. The function fun takes named arguments. The
names correspond to the names of the objects passed to the connect function
used to connect the YConnector to up-stream Streamer classes.
Additional arguments. Currently not used
verbose logical (1) indicating whether class methods should report to the user.
yieldSize The number of records the input parser is to yield.
Methods

Methods defined on this class include:

show signature(object = "YConnector"): Displays the names of the up-stream components
to which the YConnector-class has been connected.

Constructors

Use YConnector to construct instances of this class.

Fields

.fun: User defined function to combine the output of several streams. The function is applied

on the named outputs obtained by calling the yield method on the named streams connected
upstream to it.

.upstream: A named list of objects connected up-stream to the YConnector-class. This field is
meant to be internal to the class and is only modified by using the connect function to connect
the YConnector to other Streamer objects.

Methods

initialize(..., fun): A method to initialize the fields of the YConnector-class.

yield(): Yields the records obtained by applying the function fun to the result obtained by calling
yield on all the stream’s connected up-stream to it.

28 yield

Author(s)
Nishant Gopalakrishnan ngopalak@fhcrc.org

See Also

stream,TConnector, connect

Examples

fl <- system.file("extdata”, "s_1_sequence.txt"”, package="Streamer")
Blocks for streaml

b1 <- RawInput(fl, 100L, reader=rawReaderFactory(le4))

cl <- RawToChar(10L)

#i### Blocks for stream?2

b2 <- RawInput(fl, 100L, reader=rawReaderFactory(le4))

c2 <- RawToChar(20L)

YConnector with function list for combining the blocks
y <- YConnector(fun=list)

blocks <- structure(list(b1,cl, b2, c2, y),
names = C(llb1 ll’ IIC1 II’ Ilbzlr’ I7C2IV’IIle))
df <- data.frame(from =c("b1", "b2", "c1", "c2"), to = c("c1", "c2", "y", "y"))
Connect the blocks using the connect function
res <- connect(blocks, df)
y

Yield data from the y connector
yield(ress$y)

yield Iterate a stream to yield one chunk of data.

Description
yield invoked on a stream yields one chunk of data or, if the stream is complete, a length zero
element of the data. Successive invocations of yield produce successive chunks of data.
Usage
yield(x, ...)
S4 method for signature ’Streamer’
yield(x, ...)
Arguments

X A Stream, Producer, or Consumer object.

Additional arguments, currently unused.

Value

A chunk of data, with the specific notion of chunk defined by the final component of the stream.

ngopalak@fhcrc.org

yield

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

stream, Producer, Consumer.

Examples

see example(stream)

29

mtmorgan@fhcrc.org

Index

*Topic classes
BufferInt-class, 3
ConnectionProducer-class, 5
Downsample-class, 7
NetCDFFile-class, 8
NetCDFInput-class, 10
ParallelConnector-class, 11
Producer-class, 12
RawInput-class, 13
RawToChar-class, 15
ReadLinesInput-class, 16
Rev-class, 18
Stream-class, 20
Streamer-class, 21
TConnector-class, 22
TOut-class, 24
UserFunction-class, 25
Utility-class, 26
YConnector-class, 27

+Topic manip
connect, 4
status, 19
stream, 19
yield, 28

xTopic methods
reset, 17

+Topic package
Streamer-package, 2

[[,Stream,numeric-method

(Stream-class), 20

BufferInt (BufferInt-class), 3

BufferInt-class, 3

BufferInterface (BufferInt-class), 3

BufferInterface, ANY-method
(BufferInt-class), 3

BufferInterface,data.frame-method
(BufferInt-class), 3

concatenationParserFactory
(ReadLinesInput-class), 16
connect, 4,5, 6, 12,15, 17,22, 23,27, 28
connection, 14, 16
ConnectionProducer-class, 5

30

Consumer, 2,4,7,11,13,15,17-19, 21, 22,
24,26, 27, 29
Consumer-class, 6

dimensions, 8

dimensions (NetCDFFile-class), 8

dimensions,NetCDFFile-method
(NetCDFFile-class), 8

dimensions,NetCDFInput-method
(NetCDFInput-class), 10

Downsample (Downsample-class), 7

Downsample-class, 7

length, Stream-method (Stream-class), 20

NetCDFFile, 8, 11

NetCDFFile (NetCDFFile-class), 8
NetCDFFile-class, 8
NetCDFInput, 10

NetCDFInput (NetCDFInput-class), 10
NetCDFInput-class, 10

ParallelConnector
(ParallelConnector-class), 11
ParallelConnector-class, 11
precision, 8
precision (NetCDFFile-class), 8
precision,NetCDFFile-method
(NetCDFFile-class), 8
Producer, 2,6, 7,13, 16, 17, 19, 21, 22, 29
Producer-class, 12

RawInput, /13

RawInput (RawInput-class), 13

RawInput-class, 13

rawParserFactory, 14

rawParserFactory (RawInput-class), 13

rawReaderFactory, 14

rawReaderFactory (RawInput-class), 13

RawToChar (RawToChar-class), 15

RawToChar-class, 15

readBin, /4

ReadLinesInput (ReadLinesInput-class),
16

ReadLinesInput-class, 16

INDEX

readLinesParserFactory, 16

readLinesParserFactory
(ReadLinesInput-class), 16

readLinesReaderFactory, 16

readLinesReaderFactory
(ReadLinesInput-class), 16

reset, 7, 10, 13, 16, 17

reset,Streamer-method (reset), 17

reset-methods (reset), 17

Rev (Rev-class), 18

Rev-class, 18

scanParserFactory
(ReadLinesInput-class), 16

scanReaderFactory
(ReadLinesInput-class), 16

show,BufferInt-method
(BufferInt-class), 3

show, Consumer-method (Consumer-class), 6

show, Producer-class (Producer-class), 12

show, Stream-method (Stream-class), 20

status, /0, 19

status, Streamer-method (status), 19

status-methods (status), 19

Stream, 5, 7, 20, 22

stream, 2,4, 6-9, 12, 13, 15-19, 19, 23, 25,
28, 29

stream, Consumer-method (stream), 19

stream,Producer-method (stream), 19

Stream-class, 20

stream-methods (stream), 19

Streamer, 5-7, 13, 26

Streamer (Streamer-package), 2

Streamer-class, 21

Streamer-package, 2

TConnector, 24, 28

TConnector (TConnector-class), 22
TConnector-class, 22

TOut (TOut-class), 24
TOut-class, 24

UserFunction (UserFunction-class), 25
UserFunction-class, 25
Utility-class, 26

YConnector, 23

YConnector (YConnector-class), 27
YConnector-class, 27

yield, 2, 5,7, 10, 13, 14, 16, 20, 28
yield, Streamer-method (yield), 28
yield-methods (yield), 28

31

	Streamer-package
	BufferInt-class
	connect
	ConnectionProducer-class
	Consumer-class
	Downsample-class
	NetCDFFile-class
	NetCDFInput-class
	ParallelConnector-class
	Producer-class
	RawInput-class
	RawToChar-class
	ReadLinesInput-class
	reset
	Rev-class
	status
	stream
	Stream-class
	Streamer-class
	TConnector-class
	TOut-class
	UserFunction-class
	Utility-class
	YConnector-class
	yield
	Index

