Package ‘DECIPHER’

September 24, 2012

Type Package

Title Database Enabled Code for Ideal Probe Hybridization Employing R
Version 1.2.0

Date 2012-03-03

Author Erik Wright

Maintainer Erik Wright <DECIPHER@cae.wisc.edu>

biocViews Clustering, Genetics, Sequencing, Infrastructure,Datalmport, Visualization, Microar-

ray, QualityControl
Description A toolset that assist in the design of hybridization probes.
Depends R (>=2.13.0), Biostrings (>= 2.16), RSQLite (>= 0.9),IRanges, stats
Imports Biostrings, RSQLite, IRanges, stats
LinkingTo Biostrings, RSQLite, IRanges, stats
License GPL-3

LazyData yes

R topics documented:

DECIPHER-package e
Add2DB . . . e
BrowseDB e
BrowseSequences
CalculateEfficiencyArray e
ConsensusSeqUeNCe e e
CreateChimeras i it e e e
DB2FASTA . . . e
deltaGrules e
DistanceMatrix e e e e
FindChimeras e
FormGroups o
IdClusters o e e e
IdConsensus e

2 DECIPHER-package

IdentifyByRank 21

IdLengths e e e 22

SearchDB e 23

Seqs2DB . . . 24

TerminalChar e 25
Index 27

DECIPHER-package Database Enabled Code for Ideal Probe Hybridization Employing R

Description

Database Enabled Code for Ideal Probe Hybridization Employing R (DECIPHER) is a software
toolset that can be used for deciphering and managing DNA sequences efficiently using the R sta-
tistical programming language. The program is designed to be used with non-destructive workflows
that guide the user through the process of importing, maintaining, analyzing, manipulating, and ex-
porting a massive amount of DNA sequences. Some functionality of the program is provided online
through web tools. DECIPHER is an ongoing project in the Environmental Engineering Department
at the University of Wisconsin Madison and is freely available for download.

Details
Package: DECIPHER
Type: Package
Version: 1.3.5
Date: 2011-07-22
Depends: R (>=2.13.0), Biostrings (>= 2.16), RSQLite (>= 0.9), IRanges, stats
Imports: Biostrings, RSQLite, IRanges, stats
LinkingTo: Biostrings, RSQLite, IRanges, stats
License: GPL-3
LazyLoad: yes
Index:
Add2DB Add Data To A Database
BrowseDB View A Database Table In A Web Browser
BrowseSequences View Sequences In A Web Browser
ConsensusSequence Create A Consensus Sequence
CreateChimeras Creates Artificial Chimeras
DB2FASTA Export Database to FASTA File
DistanceMatrix Calculate the Distance Between DNA Sequences
FindChimeras Find Chimeras In A Sequence Database
FormGroups Forms Groups By Rank
IdClusters Cluster Sequences By Distance
IdConsensus Create Consensus Sequences by Groups
IdLengths Determine the Number of Bases and Nonbases In
Each Sequence
IdentifyByRank Update Identifier To Level of Taxonomic Rank

SearchDB Obtain Specific Sequences from A Database

Add2DB

Seqs2DB
TerminalChar

Author(s)
Erik Wright

Add Sequences from Text File to Database
Determine the Number of Terminal Gaps

Maintainer: Erik Wright <DECIPHER @cae.wisc.edu>

Add2DB

Add Data To A Database

Description

Adds a data. frame to a database table by row.names.

Usage

Add2DB(myData,
dbFile,
tb1Name
verbose

.2

Arguments

myData
dbFile

tb1Name

verbose

Details

Data contained in myData will be added to the tb1Name by its respective row.names.

Value

= "DNA" ,
= TRUE,

Data frame containing information to be added to the dbFile.

A SQLite connection object or a character string specifying the path to the

database file.

Character string specifying the table in which to add the data.

Logical indicating whether to display each query as it is sent to the database.

Additional expressions to add as part of a where clause in the query. Further
arguments provided in ... will be added to the query separated by " and " as

part of the where clause.

Returns TRUE if the data was added successfully.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

Seqs2DB, SearchDB, BrowseDB

4 BrowseDB

Examples

Create a sequence database

gen <- system.file("extdata”, "Bacteria_175seqs.gen"”, package="DECIPHER")
dbConn <- dbConnect(SQLite(), ":memory:")

Seqs2DB(gen, "GenBank"”, dbConn, "Bacteria")

Identify the sequence lengths
1 <- IdLengths(dbConn)

Add lengths to the database
Add2DB(1, dbConn)

View the added lengths
BrowseDB(dbConn)
dbDisconnect (dbConn)

BrowseDB View A Database Table In A Web Browser

Description

Opens an html file in a web browser to show the contents of a table in a database.

Usage
BrowseDB(dbFile,
htmlFile=file.path(tempdir(), "db.html"),
tb1lName = "DNA",
identifier = "",
limit = -1,
orderBy = "row_names"”,
maxChars = 50,
)
Arguments
dbFile A SQLite connection object or a character string specifying the path to the
database file.
htmlFile Character string giving the location where the html file should be written.
tb1Name Character string specifying the table to view.
identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.
limit Number of results to display. The default (-1) does not limit the number of
results.
orderBy Character string giving the column name for sorting the results. Defaults to
the order of entries in the database. Optionally can be followed by " ASC" or
" DESC" to specify ascending (the default) or descending order.
maxChars Maximum number of characters to display in each column.

Additional expressions to add as part of a where clause in the query. Further
arguments provided in ... will be added to the query separated by " and " as
part of the where clause.

BrowseSequences 5

Value

Creates a table containing all the fields of the database table and opens it in the web browser for
easy viewing.

Returns TRUE if the html file was written successfully.

Note

If viewing a table containing sequences, the sequences are purposefully not shown in the output.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

BrowseSequences

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")
BrowseDB(db)

BrowseSequences View Sequences In A Web Browser

Description

Opens an html file in a web browser to show the sequences in a DNAStringSet.

Usage
BrowseSequences(myDNAStringSet,
htmlFile = paste(tempdir(), "/dna.html”, sep = ""),
colorBases=FALSE,
L)

Arguments

myDNAStringSet A DNAStringSet object of sequences.

htmlFile Character string giving the location where the html file should be written.
colorBases Logical specifying whether to color each type of base (A, C, G, and T) the same
color.

Additional arguments to be passed directly to ConsensusSequence.

Details

Some web browsers cannot quickly display a large amount data, so it is recommended to use
color = FALSE (the default) when viewing a large DNAStringSet.

Value

CalculateEfficiencyArray

Creates an html file containing sequence data and opens it in a web browser for easy viewing. The
viewer has the sequence name on the left, position legend on the top, number of characters on the
right, and consensus sequence on the bottom.

Returns TRUE if the html file was written successfully.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

BrowseDB

Examples

db <- system.file("extdata”, "Bacteria_175seqgs.sqlite”, package="DECIPHER")
dna <- SearchDB(db)
BrowseSequences(dnal[1:5], colorBases=TRUE)

CalculateEfficiencyArray

Calculates the Efficiency of Probe/Target Sequence Pairs

Description

Calculates the Gibb’s free energy and hybridization efficiency of probe/target pairs at varying con-
centrations of the denaturant formamide.

Usage

CalculateEfficiencyArray(probe,

Arguments

probe

target

FA
dGini
Po

target,

FA =0,

dGini = 1.96,

Po = 10%-2.0021,

m = 0.1731,

temp = 42,
deltaGrules = NULL)

A DNAStringSet object or character vector with pairwise-aligned probe se-
quences in 5° to 3’ orientation.

A DNAStringSet object or character vector with pairwise-aligned target se-
quences in 5’ to 3’ orientation.

A vector of one or more formamide concentrations (as percent v/v).
The initiation free energy. The default is 1.96 [kcal/mol].

The effective probe concentration.

CalculateEfficiencyArray 7

m The m-value defining the linear relationship of denaturation in the presence of
formamide.
temp Equilibrium temperature in degrees Celsius.

deltaGrules Free energy rules for all possible base pairings in quadruplets. If NULL, de-
faults to the parameters obtained using NimbleGen microarrays and a Linear
Free Energy Model developed by Yilmaz et al.

Details

This function calculates the free energy and hybridization efficiency (HE) for a given formamide
concentration ([FA]) using the linear free energy model given by:

HE = Pox exp[—(dGo + m x FA)/RT)/(1 + Po * exp[—(dGo + m x FA)/RT))

Probe and target input sequences must be entered in pairwise alignment, such as that given by
pairwiseAlignment. Only "A", "C", "G", "T", and "-" characters are permitted in the probe se-
quence.

If deltaGrules is NULL then the rules defined in data(deltaGrules) are used.

Value

A matrix with the predicted Gibb’s free energy (dG) and hybridization efficiency (HE) at each
concentration of formamide ([FA]).

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Coming soon!

See Also

deltaGrules

Examples

probes <- c("AAAAACGGGGAGCGGGGGGATACTG", "AAAAACTCAACCCGAGGAGCGGGGG")

targets <- c("CAACCCGGGGAGCGGGGGGATACTG", "TCGGGCTCAACCCGAGGAGCGGGGG")

result <- CalculateEfficiencyArray(probes, targets, FA=0:40)

dGO <- result[, "dG_0"]

HEO <- result[, "HybEff_0"]

plot(result[1, 1:40], xlab="[FA]", ylab="HE", main="Probe/Target # 1", type="1")

8 ConsensusSequence

ConsensusSequence Create A Consensus Sequence

Description

Forms a consensus sequence representing a set of sequences.

Usage

ConsensusSequence (myDNAStringSet,
threshold = 0.05,
ambiguity = TRUE,
noConsensusChar = "N",
minInformation = 0.75,
ignoreNonBases = FALSE,
includeTerminalGaps = FALSE,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet object of aligned sequences.

threshold Maximum fraction of sequence information that may be lost in forming the con-
sensus.
ambiguity Logical specifying whether to consider ambiguity as split between their respec-

tive nucleotides. Degeneracy codes are specified in the IUPAC_CODE_MAP.
noConsensusChar

Single character from the DNA_ALPHABET giving the base to use when there is no
consensus in a position.

minInformation Minimum fraction of information required to form consensus in each position.

ignoreNonBases Logical specifying whether to count gap (
the consensus.

includeTerminalGaps
Logical specifying whether or not to include terminal gaps (
each end of the sequence) into the formation of consensus.

) or mask ("+") characters towards

non

characters on

verbose Logical indicating whether to print the elapsed time upon completion.

Details

Two key parameters control the degree of consensus. The default threshold (0.05) indicates that
at least 95% of sequence information will be represented by the consensus sequence. The default
minInformation (0.75) specifies that at least 75% of sequences must contain the information in
the consensus, otherwise the noConsensusChar is used.

If ambiguity = TRUE (the default) then degeneracy codes are split between their respective bases
according to the IUPAC_CODE_MAP. For example, an "R" would count as half an "A" and half a
"G". If ambiguity = FALSE then degeneracy codes are not considered in forming the consensus.
If includeNonBases = TRUE (the default) then gap ("-") and mask ("+") characters are counted
towards the consensus, otherwise they are omitted from development of the consensus.

CreateChimeras

Value

A DNAStringSet with a single consensus sequence.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

IdConsensus, Seqs2DB

Examples

dna <- DNAStringSet(c(”ANGCT-","-ACCT-"))
ConsensusSequence(dna)
returns "ANSCT-"

CreateChimeras

Creates Artificial Chimeras

Description

Creates artificial random chimeras from a set of sequences.

Usage

CreateChimeras(myDNAStringSet,

Arguments

myDNAStringSet
numChimeras
numParts
minLength
maxLength

numChimeras = 10,

numParts = 2,

minLength = 80,

maxLength = Inf,
minChimericRegionLength = 30,
randomLengths = TRUE,
includeParents = TRUE,
verbose = TRUE)

A DNAStringSet object with aligned sequences.

Number of chimeras desired.

Number of chimeric parts from which to form a single chimeric sequence.
Minimum length of the complete chimeric sequence.

Maximum length of the complete chimeric sequence.

minChimericRegionLength

randomLengths

includeParents

verbose

Minimum length of the chimeric region of each sequence part.

Logical specifying whether to create random length chimeras in addition to ran-
dom breakpoints.

Whether to include the parents of each chimera in the output.

Logical indicating whether to display progress.

10

Details

DB2FASTA

Forms a set of random chimeras from the input set of (typically good quality) sequences. The
chimeras are created by merging random sequences at random breakpoints. These chimeras can be

used for testing the accuracy of the FindChimeras or other chimera finding functions.

Value

A DNAStringSet object containing chimeras. The names of the chimeras are specified as "parent

#1 name [chimeric region] (distance from parent to chimera), ...".

If includeParents = TRUE then the parents of the the chimeras are included at the end of the

result. The parents are made to be the same length as the chimera if randomLengths

= TRUE. The

names of the parents are specified as "parent #1 name [region] (distance to parent #2, ...)".

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

FindChimeras, Seqs2DB

Examples

db <- system.file("extdata”, "Bacteria_175seqgs.sqlite”, package="DECIPHER")

dna <- SearchDB(db)
chims <- CreateChimeras(dna)
BrowseSequences(chims)

DB2FASTA

Export Database Sequences to FASTA File

Description

Exports a database containing sequences to a FASTA formatted file of sequences.

Usage

DB2FASTA(file,
dbFile,
tblName = "D
identifier =
limit = -1,
replaceChar
orderBy = "r
append = FAL
comments = T
removeGaps =
verbose = TR

)

n

NA",
nn

’

= NULL,

ow_names”,

SE,

RUE,
"none",

UE,

DB2FASTA

Arguments
file
dbFile

tb1Name

identifier

limit

replaceChar

orderBy

append
comments

removeGaps

verbose

Value

11

Character string giving the location where the FASTA file should be written.

A SQLite connection object or a character string specifying the path to the
database file.

Character string specifying the table in which to extract the data.

Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

Number of results to display. The default (-1) does not limit the number of
results.

Optional character used to replace any sequence characters not present in the
DNA_ALPHABET. If NULL (the default) then no replacement occurs and the se-
quences are exported identical to how they were upon import.

Character string giving the column name for sorting the results. Defaults to
the order of entries in the database. Optionally can be followed by " ASC" or
" DESC" to specify ascending (the default) or descending order.

Logical indicating whether to append the results to the existing file.

Logical specifying whether to add the value of any database fields into the
FASTA record description separated by semicolons.

Determines how gaps are removed in the sequences. This should be (an unam-
biguous abbreviation of) one of "none”, "all” or "common".

Logical indicating whether to display status.

Additional expressions to add as part of a where clause in the query. Further
arguments provided in ...will be added to the query separated by " and " as
part of the where clause.

Writes a FASTA formatted file containing the sequences in the database.

Returns TRUE if the file was written successfully.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")

tf <- tempfile()

DB2FASTA(tf, db, 1=10)

file.show(tf)

unlink(tf)

12 deltaGrules

deltaGrules An 8-dimensional array containing the free energy of hybridization of
probe/target quadruplets.

Description

The 8D array works with four adjacent base pairs of the probe and target sequence at a time. Each
dimension has five elements defining the residue at that position ("A", "C", "G", "T", or "-"). The
array contains the standard Gibb’s free energy change of probe binding (dG, [kcal/mol]) for every
quadruple base pairing.

Usage

data(deltaGrules)

Format
The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -0.141 0000 ... - attr(*, "dimnames")=List
of 8 ..$: chr[1:5]"A" "C""G" "T" $:chr[1:5]"A""C""G" "T" $:chr[1:5]"A" "C" "G"

T .. $:chr [1:5]"A""C" "G" "T" $:chr [I:5]"A""C" "G" "T" $: chr[1:5] "A" "C"
IIGII IIT|| $: Chr [1:5] ||A|| ||C|| "G" IITII $: Chr [1:5] llAll ||Cll ||Gl| "Tll .

Details

The first four dimensions correspond to the 4 probe positions from 5’ to 3’. The fifth to eighth
dimensions correspond to the 4 positions from 5’ to 3’ of the target sequence.

Source

Data obtained using NimbleGen microarrays and a Linear Free Energy Model developed by Yilmaz
etal.

References

Coming soon!

Examples

data(deltaGrules)
dG of probe = AGCT / target = A-CT pairing
deltaGrules[”A”, "G", "C", "T", "A", "-" "c' "T"]

DistanceMatrix 13

DistanceMatrix Calculate the Distance Between DNA Sequences

Description

Calculates a distance matrix for a DNAStringSet. Each element of the distance matrix corresponds
to the dissimilarity between two sequences in the DNAStringSet.

Usage

DistanceMatrix(myDNAStringSet,
includeTerminalGaps = FALSE,
penalizeGaplLetterMatches = TRUE,
penalizeGapGapMatches = FALSE,
removeDuplicates = FALSE,
correction = "none”,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet object of aligned sequences.
includeTerminalGaps
Logical specifying whether or not to include terminal gaps (
each end of the sequence) into the calculation of distance.
penalizeGaplLetterMatches
Logical specifying whether or not to consider gap-to-letter matches as mis-
matches.
penalizeGapGapMatches
Logical specifying whether or not to consider gap-to-gap matches as mismatches.

non

characters on

removeDuplicates
Logical specifying whether to remove any identical sequences from the DNAStringSet
before calculating distance. If FALSE (the default) then the distance matrix is
calculated with the entire DNAStringSet provided as input.

correction The substitution model used for distance correction. This should be (an unam-
biguous abbreviation of) one of "none"” or "Jukes-Cantor".
verbose Logical indicating whether to display progress.
Details

The uncorrected distance matrix represents the percent distance between each of the sequences in
the DNAStringSet. Ambiguity can be represented using the characters of the ITUPAC_CODE_MAP. For
example, the distance between an "N’ and any other base is zero.

If includeTerminalGaps = FALSE then terminal gaps are not included in sequence length. This

can be faster since only the positions common to each two sequences are compared. If removeDuplicates = TRUE
then the distance matrix will only represent unique sequences in the DNAStringSet. This is can be

faster because less sequences need to be compared. For example, if only two sequences in the set

are exact duplicates then one is removed and the distance is calculated on the remaining set. Note

that the distance matrix can still contain values of 100% after removing duplicates because only

exact duplicates are removed without taking into account ambiguous matches represented by the
TUPAC_CODE_MAP or the treatment of gaps.

14 FindChimeras

The elements of the distance matrix can be referenced by dimnames corresponding to the names of
the DNAStringSet. Additionally, an attribute named "correction” specifying the method of correc-
tion used can be accessed using the function attr.

Value

A symmetric matrix where each element is the distance between the sequences referenced by
the respective row and column. The dimnames of the matrix correspond to the names of the
DNAStringSet. Sequences with no overlapping positions in the alignment are given a value of
NA.

Author(s)
Erik Wright <DECIPHER@cae.wisc.edu>

See Also

IdClusters

Examples

defaults compare intersection of internal ranges:
dna <- DNAStringSet(c("ANGCT-","-ACCT-"))

d <- DistanceMatrix(dna)

d[1,2] is still 1 base in 4 = 0.25

compare union of internal ranges:

dna <- DNAStringSet(c("ANGCT-","-ACCT-"))

d <- DistanceMatrix(dna, includeTerminalGaps=TRUE)
d[1,2] is now 2 bases in 5 = 0.40

compare the entire sequence ranges:

dna <- DNAStringSet(c("ANGCT-","-ACCT-"))

d <- DistanceMatrix(dna, includeTerminalGaps=TRUE,
penalizeGapGapMatches=TRUE)

d[1,2] is now 3 bases in 6 = 0.50

FindChimeras Find Chimeras In A Sequence Database

Description

Finds chimeras present in a database of sequences. Makes use of a reference database of (presumed
to be) good quality sequences.

Usage
FindChimeras(dbFile,
tblName = "DNA",
dbFileReference,

batchSize = 100,
minNumFragments = 20000,
tb.width = 5,

FindChimeras 15

multiplier = 20,
minLength = 70,
minCoverage = 0.6,
overlap = 200,
minSuspectFragments
showPercentCoverage = FALSE,
add2tbl = FALSE,
maxGroupSize = -1,

verbose = TRUE)

1
(3}

Arguments

dbFile A SQLite connection object or a character string specifying the path to the
database file to be checked for chimeric sequences.

tb1Name Character string specifying the table in which to check for chimeras.

dbFileReference
A SQLite connection object or a character string specifying the path to the refer-
ence database file of (presumed to be) good quality sequences. A 16S reference
database is available from DECIPHER. cee.wisc.edu.

batchSize Number sequences to tile with fragments at a time.

minNumFragments
Number of suspect fragments to accumulate before searching through other
groups.

tb.width A single integer [1..14] giving the number of nucleotides at the start of each
fragment that are part of the trusted band.

multiplier A single integer specifying the multiple of fragments found out-of-group greater
than fragments found in-group in order to consider a sequence a chimera.

minLength Minimum length of a chimeric region in order to be considered as a chimera.

minCoverage Minimum fraction of coverage necessary in a chimeric region.

overlap Number of nucleotides at the end of the sequence that the chimeric region must
overlap in order to be considered a chimera.

minSuspectFragments
Minimum number of suspect fragments belonging to another group required to
consider a sequence a chimera.

showPercentCoverage
Logical indicating whether to list the percent coverage of suspect fragments in
each chimeric region in the output.

add2tbl Logical or a character string specifying the table name in which to add the result.

maxGroupSize Maximum number of sequences searched in a group. A value of less than 0
means the search is unlimited.

verbose Logical indicating whether to display progress.

Details

The algorithm works by finding suspect fragments that are uncommon in the group where the se-
quence belongs, but very common in another group where the sequence does not belong. Each
sequence in the dbFile is tiled into short sequence segments called fragments. If the fragments
are infrequent in their respective group in the dbFileReference then they are considered suspect.

DECIPHER.cee.wisc.edu

16 FormGroups

If enough suspect fragments from a sequence meet the specified constraints then the sequence is
flagged as a chimera.

The default parameters are optimized for full-length 16S sequences (> 1,000 nucleotides). Shorter
16S sequences require optimal parameters that are different than the defaults. These are: minLength = 40,
and minSuspectFragments = 2.

Groups are determined by the identifier present in each database. For this reason, the groups in the
dbFile should exist in the groups of the dbFileReference. The reference database is assumed to
contain many sequences of only good quality.

If a reference database is not present then it is feasible to create a reference database by using the
input database as the reference database. Removing chimeras from the reference database and then
iteratively repeating the process can result in a clean reference database.

For non-16S sequences it may be necessary to optimize the parameters for the particular sequences.
The simplest way to perform an optimization is to experiment with different input parameters on ar-
tificial chimeras such as those created using CreateChimeras. Adjusting input parameters until the
maximum number of artificial chimeras are identified is the easiest way to determine new defaults.

Value

A data. frame containing only the sequences that meet the specifications for being chimeric. The
chimera column contains information on the chimeric region and to which group it belongs. The
row.names of the data. frame correspond to those of the sequences in dbFile.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

ES Wright et al. (2011) "DECIPHER: A Search-Based Approach to Chimera Identification for 16S
rRNA Sequences." Applied and Environmental Microbiology, doi:10.1128/AEM.06516-11.

See Also

CreateChimeras, Add2DB

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")
It is necessary to set dbFileReference to the file path of the

16S reference database available from DECIPHER.cee.wisc.edu

chimeras <- FindChimeras(db, dbFileReference=db)

FormGroups Forms Groups By Rank

Description

Agglomerates sequences into groups in a certain size range based on taxonomic rank.

FormGroups 17
Usage
FormGroups(dbFile,
tb1lName = "DNA",
goalSize = 1000,
minGroupSize = 500,
maxGroupSize = 10000,
add2tbl = FALSE,
verbose = TRUE)
Arguments
dbFile A SQLite connection object or a character string specifying the path to the
database file.
tb1Name Character string specifying the table where the rank information is located.
goalSize Number of sequences required in each group to stop adding more sequences.
minGroupSize Minimum number of sequences in each group required to stop trying to recom-
bine with a larger group.
maxGroupSize Maximum number of sequences in each group allowed to continue agglomera-
tion.
add2tbl Logical or a character string specifying the table name in which to add the result.
verbose Logical indicating whether to print database queries and other information.
Details

Form groups uses the rank field in the dbFile table to group sequences with similar taxonomic
rank. Requires that rank information be present in the tb1Name, such as that created when importing
sequences from a GenBank file.

Beginning with the least common ranks, the algorithm agglomerates groups with similar ranks
until the goalSize is reached. If the group size is below minGroupSize then further agglomer-
ation is attempted with a larger group. If additional agglomeration results in a group larger than
maxGroupSize then the agglomeration is undone so that the group is smaller.

Value

Returns a data. frame of rank and id for each group. If add2tbl is not FALSE then the tb1Name is
updated with the group as the identifier.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also
IdentifyByRank

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")
g <- FormGroups(db, goalSize=10, minGroupSize=5, maxGroupSize=20)

18 IdClusters

IdClusters Cluster Sequences By Distance

Description

Groups the sequences represented by a distance matrix into clusters of similarity.

Usage

IdClusters(myDistMatrix,
method = "UPGMA",
cutoff = -Inf,
showPlot = FALSE,
asDendrogram = FALSE,
myDNAStringSet = NULL,
add2tbl = FALSE,
dbFile = NULL,
verbose = TRUE)

Arguments
myDistMatrix A symmetric NV x N distance matrix with the values of dissimilarity between N
sequences.

method An agglomeration method to be used. This should be (an unambiguous abbrevi-
ation of) one of "complete”, "single”, "UPGMA", "average"”, "NJ" or "ML".

cutoff A vector with the maximum branch length separating the sequences in the same
cluster. If asDendrogram=TRUE then only one cutoff may be specified.

showPlot Logical specifying whether or not to plot the resulting dendrogram.
asDendrogram Logical. If TRUE the object returned is of class dendrogram.

myDNAStringSet DNAStringSet used in the creation of myDistMatrix. Only necessary if method="ML".

add2tbl Logical or a character string specifying the table name in which to add the result.
dbFile A connection to a SQLite database or character string giving the path to the
database file. Only necessary if add2tbl is not FALSE.
verbose Logical indicating whether to display progress.
Details

Groups the input sequences into clusters using a set dissimilarities representing the distance be-
tween NN sequences. Initially a phylogenetic tree is formed using the specified method. Then each
leaf (sequence) of the tree is assigned to a cluster based on its branch lengths to the other leaves
(sequences).

A number of different clustering methods are provided. The method (complete assigns clusters
using complete-linkage so that sequences in the same cluster are no more than cutoff percent
apart. The method single assigns clusters using single-linkage so that sequences in the same
cluster are within cutoff of at least one other sequence in the same cluster. UPGMA or average
(the default) assigns clusters using average-linkage which is a compromise between the sensitivity
of complete-linkage clustering to outliers and the tendency of single-linkage clustering to connect
distant relatives that do not appear to be closely related.

IdClusters 19

NJ uses the Neighbor-Joining method proposed by Saitou and Nei that does not assume lineages
evolve at the same rate (the molecular clock hypothesis). The NJ method is typically the most
phylogenetically accurate of the above distance based methods. ML creates a neighbor-joining tree
and then prints the negative log likelihood of the tree. Presently ML does not adjust the neighbor
joining tree to maximize its likelihood.

If a add2tb1=TRUE then the resulting data.frame is added/updated into column(s) of the default table
"DNA" in dbFile. If add2tbl is a character string then the result is added to the specified table
name in dbFile. The added/updated column names are printed if verbose=TRUE.

Value

If asDendrogram=FALSE (the default), returns a data.frame with a column for each cutoff specified.
The row.names of the data.frame correspond to the dimnames of myDistMatrix. Each one of N
sequences is assigned to one of M clusters. If asDendrogram=TRUE, returns an object of class
dendrogram that can be used for further manipulation and plotting. Leaves of the dendrogram are
randomly colored by cluster number.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

References

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17(6), 368-376

Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.

See Also

DistanceMatrix, Add2DB

Examples

using the matrix from the original paper by Saitou and Nei
m <- matrix(o0,8,8)

mf2:8,1] <- <(7, 8, 11, 13, 16, 13, 17)

m[3:8,2] <- c(5, 8, 10, 13, 10, 14)

mf4:8,3] <- ¢(5, 7, 10, 7, 11)

m[5:8,4] <- c(8, 11, 8, 12)

m[6:8,5] <- c(5, 6, 10)

m[7:8,6] <- c(9, 13)

m[8,7] <- c(8)

returns an object of class "dendrogram"
myClusters <- IdClusters(m, cutoff=10, method="NJ", showPlot=TRUE, asDendrogram=TRUE)

example of specifying a cutoff
returns a data frame
IdClusters(m, cutoff=c(2,6,10,20))

20

IdConsensus

IdConsensus

Create Consensus Sequences by Groups

Description

Forms a consensus sequence representing the sequences in each group.

Usage
IdConsensus(dbFile,
tblName = "DNA",
identifier = "",
colName = "cluster”,
add2tbl = FALSE,
verbose = TRUE,
)
Arguments
dbFile A SQLite connection object or a character string specifying the path to the
database file.
tb1Name Character string specifying the table in which to form consensus.
identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.
colName Column containing the group name of each sequence.
add2tbl Logical or a character string specifying the table name in which to add the result.
verbose Logical indicating whether to display progress.
Additional arguments to be passed directly to ConsensusSequence.
Details

Creates a consensus sequence for each of the distinct groups defined in colName. The resulting
DNAStringSet contains as many consensus sequences as there are groups in colName. For example,
it is possible to create a set of consensus sequences with one consensus sequence for each "id" or

"cluster”.

Value

A DNAStringSet object containing the consensus sequence for each group. The names of the
DNAStringSet contain the number of sequences and name of each group.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also
Seqs2DB

IdentifyByRank 21

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")
con <- IdConsensus(db, colName="id")
BrowseSequences(con, colorBases=TRUE)

IdentifyByRank Identify By Taxonomic Rank

Description

Identifies sequences by a specific level of their taxonomic rank.

Usage
IdentifyByRank(dbFile,
tblName = "DNA",
level = 3,
add2tbl = FALSE,
verbose = TRUE)
Arguments
dbFile A SQLite connection object or a character string specifying the path to the
database file.
tb1Name Character string specifying the table where the rank information is located.
level Level of the taxonomic rank.
add2tbl Logical or a character string specifying the table name in which to add the result.
verbose Logical indicating whether to print database queries and other information.
Details

Simply identifies a sequence by a specific level of its taxonomic rank. Requires that rank informa-
tion be present in the tb1Name, such as that created when importing sequences from a GenBank
file.

If the specified level of rank does not exist then the closest rank is chosen. This makes it possible
to determine the lowest level classification (e.g., genus) by specifying level = 100.

Value

A data. frame with the rank and corresponding identifier as "id".

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

FormGroups

22 IdLengths

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")
ids <- IdentifyByRank(db)

IdLengths Determine the Number of Bases, Nonbases, and Width of Each Se-
quence

Description

Counts the number of bases (A, C, G, T) and ambiguities/degeneracies in each sequence.

Usage
IdLengths(dbFile,
tb1Name = "DNA",
identifier = ""
add2tbl = FALSE,
verbose = TRUE)
Arguments
dbFile A SQLite connection object or a character string specifying the path to the
database file.
tb1Name Character string specifying the table where the sequences are located.
identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.
add2tbl Logical or a character string specifying the table name in which to add the result.
verbose Logical indicating whether to display progress.
Value

A data. frame with the number of bases, nonbases, and width of each sequence. The width is
defined as the sum of bases and nonbases in each sequence. The row.names of the data. frame
correspond to the "row_names" in the tb1Name of the dbFile.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also
Add2DB

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")
1 <- IdLengths(db)

SearchDB

23

SearchDB

Obtain Specific Sequences from A Database

Description

Returns the set of sequences meeting the search criteria.

Usage
SearchDB(dbFile,
tblName = "DNA",
identifier = "",
limit = -1,
replaceChar = "-",
orderBy = "row_names”,
countOnly = FALSE,
removeGaps = "none”,
verbose = TRUE,
.
Arguments
dbFile A SQLite connection object or a character string specifying the path to the
database file.
tb1Name Character string specifying the table where the sequences are located.
identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.
limit Number of results to display. The default (-1) does not limit the number of
results.
replaceChar Optional character used to replace any characters of the sequence that are not
present in the DNA_ALPHABET.
orderBy Character string giving the column name for sorting the results. Defaults to
the order of entries in the database. Optionally can be followed by " ASC" or
" DESC" to specify ascending (the default) or descending order.
countOnly Logical specifying whether to return only the number of sequences.
removeGaps Determines how gaps are removed in the sequences. This should be (an unam-
biguous abbreviation of) one of "none”, "all” or "common”.
verbose Logical indicating whether to display queries as they are sent to the database.
Additional expressions to add as part of a where clause in the query. Further
arguments provided in ...will be added to the query separated by ” and " as
part of the where clause.
Details

If RNA is present in the database then all U’s are converted to T’s before creating the DNAStringSet.

Value

A DNAStringSet with the sequences that meet the specified criteria. The names of the DNAStringSet
correspond to the value in the "row_names" column of the database.

24 Seqs2DB

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

Seqs2DB, DB2FASTA

Examples

db <- system.file("extdata”, "Bacteria_175seqs.sqlite"”, package="DECIPHER")
dna <- SearchDB(db)

Seqs2DB Add Sequences from Text File to Database

Description

Adds sequences to a database.

Usage
Seqs2DB(seqs,
type,
dbFile,
identifier,
tblName = "DNA",
chunkSize = 99999,
replaceTbl = FALSE,
verbose = TRUE)
Arguments
seqs Either a character string specifying the file path to the file containing the se-
quences, or a DNAStringSet object.
type The type of sequences being imported. This should be (an unambiguous abbre-
viation of) one of "FASTA", "GenBank", or "DNAStringSet".
dbFile A SQLite connection object or a character string specifying the path to the
database file. If the dbFile does not exist then a new database is created at
this location.
identifier Character string specifying the "id" to give the imported sequences in the database.
tb1Name Character string specifying the table in which to add the sequences.
chunkSize Number of lines of the seqs to read at a time. For very large sequence files,
using 1e7 results in a quicker import than the default (99999), but only if enough
memory is available.
replaceTbl Logical. If FALSE (the default) then the sequences are appended to any already
existing in the table. If TRUE then any sequences already in the table are over-
written.

verbose Logical indicating whether to display each query as it is sent to the database.

TerminalChar 25

Details

Sequences are imported into the database in chunks of lines specified by chunkSize. The sequences
can then be identified by searching the database for the identifier provided. Sequences are added
to the database verbatim, so that no sequence information is lost when the sequences are exported
from the database.

Value

The total number of sequences in the database table is returned after import.

Author(s)

Erik Wright <DECIPHER@cae.wisc.edu>

See Also

SearchDB, DB2FASTA

Examples

gen <- system.file("extdata”, "Bacteria_175seqs.gen”, package="DECIPHER")
dbConn <- dbConnect(SQLite(), ":memory:")

Seqs2DB(gen, "GenBank"”, dbConn, "Bacteria")

BrowseDB (dbConn)

dbDisconnect (dbConn)

TerminalChar Determine the Number of Terminal Characters

Description

Counts the number of terminal characters for every sequence in a DNAStringSet. Terminal charac-
ters are defined as a specific character repeated at the beginning and end of a sequence.

Usage

TerminalChar (myDNAStringSet,
char = "-")

Arguments

myDNAStringSet A DNAStringSet object of sequences.

char A single character giving the terminal character to count.

Value

A matrix containing the results for each sequence in its respective row. The first column contains
the number of leading char, the second contains the number of trailing char, and the third contains
the total number of characters in between.

26 TerminalChar

Author(s)
Erik Wright <DECIPHER@cae.wisc.edu>

See Also
IdLengths

Examples

db <- system.file("extdata”, "Bacteria_175seqgs.sqlite”, package="DECIPHER")
dna <- SearchDB(db)
t <- TerminalChar(dna)

Index

*Topic datasets
deltaGrules, 12

xTopic package
DECIPHER-package, 2

Add2DB, 3, 16, 19, 22

BrowseDB, 3, 4, 6
BrowseSequences, 5, 5

CalculateEfficiencyArray, 6
ConsensusSequence, 8
CreateChimeras, 9, 16

DB2FASTA, 10, 24, 25

DECIPHER (DECIPHER-package), 2
DECIPHER-package, 2
deltaGrules, 7, 12
DistanceMatrix, 13, 19

FindChimeras, 10, 14
FormGroups, 16, 21

IdClusters, 14,18
IdConsensus, 9, 20
IdentifyByRank, 17,21
IdLengths, 22, 26

SearchDB, 3, 23, 25
Seqs2DB, 3, 9, 10, 20, 24, 24

TerminalChar, 25

27

	DECIPHER-package
	Add2DB
	BrowseDB
	BrowseSequences
	CalculateEfficiencyArray
	ConsensusSequence
	CreateChimeras
	DB2FASTA
	deltaGrules
	DistanceMatrix
	FindChimeras
	FormGroups
	IdClusters
	IdConsensus
	IdentifyByRank
	IdLengths
	SearchDB
	Seqs2DB
	TerminalChar
	Index

