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Abstract

Cellular signaling pathways, which are not modulated on a tran-
scriptional level, cannot be directly deduced from expression profiling
experiments. The situation changes, when external interventions like
RNA interference or gene knock-outs come into play.

In [5], [4], [6] and [2] we introduced an algorithm to infer non-
transcriptional pathway features based on differential gene expression
in silencing assays. The method is implemented in the Bioconductor
package nem. Here we demonstrate its practical use in the context of
an RNAi data set investigating the response to microbial challenge in
Drosophila melanogaster.

We show in detail how the data is pre-processed and discretized,
how the pathway can be reconstructed by different approaches, and
how the final result can be post-processed to increase interpretability.

1 Drosophila RNAi data

We applied our method to data from a study on innate immune response in
Drosophila [1]. Selectively removing signaling components blocked induction
of all, or only parts, of the transcriptional response to LPS.

Dataset summary The dataset consists of 16 Affymetrix-microarrays: 4
replicates of control experiments without LPS and without RNAi (negative
controls), 4 replicates of expression profiling after stimulation with LPS
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but without RNAi (positive controls), and 2 replicates each of expression
profiling after applying LPS and silencing one of the four candidate genes
tak, key, rel, and mkk4/hep.

Preprocessing and E-gene selection For preprocessing, we perform
normalization on probe level using a variance stabilizing transformation (Hu-
ber et al., 2002), and probe set summarization using a median polish fit of
an additive model (Irizarry et al., 2003). The result is included as a dataset
in the package nem.

> library(nem)

> data("BoutrosRNAi2002")

The function nem.discretize implements the following two preprocessing
steps: First, we select the genes as effect reporters (E-genes), which are
more then two-fold upregulated by LPS treatment. Next, we transform the
continuous expression data to binary values. We set an E-genes state in an
RNAi experiment to 1 if its expression value is sufficiently far from the mean
of the positive controls, i.e. if the intervention interrupted the information
flow. If the E-genes expression is close to the mean of positive controls, we
set its state to 0.

Let Cik be the continuous expression level of Ei in experiment k. Let µ+
i be

the mean of positive controls for Ei, and µ−i the mean of negative controls.
To derive binary data Eik, we defined individual cutoffs for every gene Ei

by:

Eik =

{
1 if Cik < κ · µ+

i + (1− κ) · µ−i ,

0 else.
(1)

> res.disc <- nem.discretize(BoutrosRNAiExpression, neg.control = 1:4,

+ pos.control = 5:8, cutoff = 0.7)

discretizing with respect to POS and NEG controls

Estimating error probabilities From the positive and negative controls,
we can estimate the error probabilities α and β. The type I error α is the
number of positive controls discretized to state 1, and the type II error β is
the number of negative controls in state 0. To guard against unrealistically
low estimates we add pseudo counts. The error estimates are included into
the discretization results:

2



Original data

Experiments

E
−

ge
ne

s

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

LP
S

LP
S

LP
S

LP
S

re
l−

re
l−

ke
y−

ke
y−

ta
k−

ta
k−

m
kk

4h
ep

−
m

kk
4h

ep
−

CG11141
CG5346
CG3348
CG7956
KrT95D

CG18214
CG4057

Jra
CG17723

AnnIX
Fim

Rac2
CG13503

CG6449
CG9208

CG13893
CG4859
CG3884
CG8805

CG15900
CG11066
CG13117
CG13780

Nhe3
EG:95B7.1

Gli
CG5835

wun
RhoL

puc
CG7816

CecA1
CecA2

CG14704
Rel

CG10794
CG4437

LD32282
Su(dx)

CG12703
loco
shn

lama
CG6725
CG5775

CG10076
CG7629

CG12505
AttA

CG8046
CG8177

CG15678
CG18372

CG6701
CG11709

Mtk
Dro

CecC
CecB

CG1225
CG8008
HL1913.

CG11798
CG1141
CG7778

GH13327
CG14567

CG7142
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Figure 1: Continuous and discretized data

> res.disc$para

a b
0.19 0.07
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2 Applying Nested Effects Models

Which model explains the data best? With only four S-genes, we can ex-
haustively enumerate all pathway models and search the whole space for the
best-fitting model. To score these models use either the marginal likelihood
depending on α and β (details found in Markowetz et al. (2005)) or the full
marginal likelihood depending on hyperparameters (details in Markowetz,
2006).

In cases, where exhaustive search over model space is infeasible (i.e. when
we have more than 4 or 5 perturbed genes) several heuristics have been
developed and integrated into the nem package:

� edge-wise and triplets learning [6]

� greedy hillclimbing

� module networks [2]

An interface to all inference techniques is provided by the function nem().

2.1 Exhaustive search by marginal likelihood

Scoring models by marginal log-likelihood is implemented in function score.
Input consists of models and data, the type of the score ("mLL" or "FULLmLL"),
the corresponding paramters (para) or hyperparameters (hyperpara) and a
prior for E-gene positions (P).

> result <- nem(res.disc$dat, type = "mLL", para = res.disc$para,

+ inference = "search", verbose = FALSE)

> result

Object of class 'score' generated by 'score()'

$graph: phenotypic hierarchy on genes
$mLL: a vector of length 355
$pos: a list of length 355
$mappos: a vector of length 355
$lambda: 0

The output is the highest scoring model (result$graph), a vector of scores
(result$mLL) and a list of E-gene position posteriors (result$pos), and
a MAP estimate of E-gene positions (result$mappos). We can plot the
results using the commands:
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> plot(result, what = "graph")

> plot(result, what = "mLL")

> plot(result, what = "pos")
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Figure 2: The five silencing schemes getting high scores in Fig. 3. It takes
a second to see it, but Nr.2 to 5 are not that different from Nr.1. The main
feature, ie. the branching downstream of tak is conserved in all of them.
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Figure 3: The best 30 scores
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Posterior effect positions
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Figure 4: Posterior distributions of E-gene positions given the highest scor-
ing silencing scheme (Nr. 1 in Fig. 2). The MAP estimate corresponds to
the row-wise maximum.
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2.2 Exhaustive search Full marginal likelihood

Additionally to what we did in the paper [5] the PhD thesis [4] contains
equations for a “full marginal likelihood” in which error probabilities α and
β are integrated out. This section shows that using this score we learn the
same pathways as before.

> result2 <- nem(res.disc$dat, type = "FULLmLL", hyperpara = c(1,

+ 9, 9, 1), inference = "search", verbose = FALSE)

> result2

Object of class 'score' generated by 'score()'

$graph: phenotypic hierarchy on genes
$mLL: a vector of length 355
$pos: a list of length 355
$mappos: a vector of length 355
$lambda: 0
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Figure 5: Same topologies as before.
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Figure 6: The best 30 scores by full marginal likelihood
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Figure 7: Posterior distributions of E-gene positions given the highest scor-
ing silencing scheme (Nr. 1 in Fig. 5). The MAP estimate corresponds to
the row-wise maximum.
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2.3 Edge-wise learning

Instead of scoring whole pathways, we can learn the model edge by edge [6].
For each pair of genes A and B we infer the best of four possible models:
A · ·B (unconnected), A → B (effects of A are superset of effects of B),
A← B (subset), and A↔ B (undistinguishable effects).

> resultPairs <- nem(res.disc$dat, para = res.disc$para, inference = "pairwise",

+ verbose = FALSE)

> resultPairs

Object of class 'pairwise' generated by 'pairwise.posterior()'

$graph: phenotypic hierarchy on genes)
$scores: posterior distributions of local models

Summary of MAP estimates:
all .. -> <->
6 2 3 1

rel−

key−

tak−

mkk4hep−

Figure 8: Result of edge-wise learning. Compare this to the result from
global search. It looks exactely the same.
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2.4 Inference from triples

Edge-wise learning assumes independence of edges. But this is not true in
transitively closed graphs, where a direct edge must exist whenever there is
a longer path between two nodes. Natural extension of edge-wise learning
is inference from triples of nodes [6]. In the package nem we do it by

> resultTriples <- nem(res.disc$dat, para = res.disc$para, inference = "triples",

+ verbose = FALSE)

> resultTriples

Object of class 'triples' generated by 'triples.posterior()'

$graph: phenotypic hierarchy on genes
$avg: matrix of edge frequencies in triple models

rel−

key−

tak−

mkk4hep−

Figure 9: Result of triple learning. Compare this to the result from global
search and pairwise learning
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2.5 Inference with greedy hillclimbing

Greedy hillclimbing is a general search and optimization strategy known
from the literature [7]. Given an initial network hypothesis (usually an
empty graph) we want to arrive at a local maximum of the likelihood function
by successively adding that edge, which adds the most benefit to the current
network’s likelihood. This procedure is continued until no improving edge
can be found any more.

> resultGreedy <- nem(res.disc$dat, para = res.disc$para, inference = "nem.greedy",

+ verbose = FALSE)

Greedy hillclimber for 4 S-genes (lambda = 0 )...

> resultGreedy

Object of class 'nem.greedy' generated by 'nem.greedy()'

$graph: phenotypic hierarchy on genes)

rel−

key−

tak−

mkk4hep−

Figure 10: Result of greedy hillclimbing. It is exactly the same as for the
exhaustive search.

11



Figure 11: Basic idea of module networks: By successively moving down the
cluster hierarchy we identify the clusters (modules) of S-genes, which are
marked in red. They contain 4 S-genes at most and can be estimated via
exhaustive search.

2.6 Inference with module networks

Rather than looking for a complete network hypothesis at once the idea of
the module network is to build up a graph from smaller subgraphs, called
modules in the following [2]. The module network is thus a divide and
conquer approach: We first perform a hierarchical clustering of the prepro-
cessed expression profiles of all S-genes, e.g. via average linkage. The idea
is that S-genes with a similar E-gene response profile (here: with regard
to the Pearson correlation similarity) should be close in the signaling path.
We now successively move down the cluster tree hierarchy until we find a
cluster with only 4 S-genes at most. Figure 11 illustrates the idea with an
assumed network of 10 S-genes. At the beginning we find S8 as a cluster sin-
gleton. Then by successively moving down the hierarchy we identify clusters
S6, S7, S1, S10, S3, S2, S5 and S4, S9. All these clusters (modules) contain 4
S-genes at most and can thus be estimated by taking the highest scoring of
all possible network hypotheses.
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Once all modules have been estimated their connections are constructed.
This is done in a constraint greedy hillcimbing fashion: We successively add
that edge between any pair of S-genes being contained in different modules,
which increases the likelihood of the complete network most. This procedure
is continued until no improvement can be gained any more, i.e. we have
reached a local maximum of the likelihood function.

In the package nem we call the module network by

> resultMN <- nem(res.disc$dat, para = res.disc$para, inference = "ModuleNetwork",

+ verbose = FALSE)

Estimating module network of 4 S-genes (lambda = 0 )...

> resultMN

Object of class 'ModuleNetwork' generated by 'moduleNetwork()'

$graph: phenotypic hierarchy on genes)
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2.7 Incorporating prior Assumptions

2.7.1 Regularization

The nem package allows to specify a prior on the network structure itself.
This can be thought of biasing the score of possible network hypotheses
towards prior knowledge. It is crucial to understand that in principle in any
inference scheme there exist two competing goals: Belief in prior assumptions
/ prior knowledge versus belief in data. Only trusting the data itself may
lead to overfitting, whereas only trusting in prior assumptions does not give
any new information and prevents learning. Therefore, we need a trade-off
between both goals via a regularization constant λ > 0, which specifies the
belief in our prior assumptions. In the simplest case our assumption could
be that the true network structure is sparse, i.e. there are only very few
edges. More complex priors could involve separate prior edge probabilities.

> resultRegularization <- nem(res.disc$dat, para = res.disc$para,

+ Pm = matrix(0, ncol = 4, nrow = 4), lambda = 10, inference = "search",

+ verbose = FALSE)

> resultRegularization

Object of class 'score' generated by 'score()'

$graph: phenotypic hierarchy on genes
$mLL: a vector of length 355
$pos: a list of length 355
$mappos: a vector of length 355
$lambda: 10

rel−

key−

tak−

mkk4hep−

Figure 12: Result of module network learning with regularization towards
sparse graph structures (λ = 10).

In practice we would like to choose a λ in an automated fashion. This
leads to an instance of the classical model selection problem (e.g. [3]) in
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statistical learning. One way of dealing with it is to tune λ such that the
Akaike information criterion (AIC)

AIC(λ, Φopt) = −2 log P (D|Φopt) + 2d(λ, Φopt) (2)

becomes minimal [3]. Here d(λ, Φopt) denotes the number of parameters (i.e.
the number of edges) in the highest scoring network structure Φopt.

> resultModsel <- nemModelSelection(c(0.1, 1, 10), res.disc$dat,

+ para = res.disc$para, Pm = matrix(0, ncol = 4, nrow = 4),

+ inference = "search", verbose = FALSE)

rel−
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Figure 13: Result of module network learning with regularization towards
sparse graph structures and automatic model selection.

2.7.2 Bayesian Model Selection

Searching for an optimal regularization constant relates to a frequentistic
point of view to incorporate prior knowledge. Instead, from a Bayesian
perspective one should define a prior on the regularization parameter and
integrate it out. Here, this is done by assuming an inverse gamma distribu-
tion prior on ν = 1

2λ with hyperparameters 1, 0.5, which leads to a simple
closed form of the full prior [2]. An advantage of the Bayesian perspective
is that no explicit model selection step is needed.

> resultBayes <- nem(res.disc$dat, para = res.disc$para, Pm = matrix(0,

+ ncol = 4, nrow = 4), inference = "search", verbose = FALSE)

> resultBayes

Object of class 'score' generated by 'score()'

$graph: phenotypic hierarchy on genes
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$mLL: a vector of length 355
$pos: a list of length 355
$mappos: a vector of length 355
$lambda: 0
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Figure 14: Result of module network learning with a Bayesian network prior
favoring sparse graphs.
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2.8 Omitting the Data Discretization Step

In general performing a data discretization on the expression profiles as de-
scribed in Sec. 1 can be critical. An alternative is given by taking the raw
p-value profiles obtained from testing for differential gene expression. In
this situation we assume the individual p-values in the data matrix to be
drawn from a mixture of a uniform, a Beta(1, β) and a Beta(α, 1) distri-
bution. The parameters of the distribution are fitted via an EM algorithm
[2]. The nem package supports such a data format using the option type =
"CONTmLLDens" in the call of the function nem. Moreover there is a function
getDensityMatrix, which conveniently does all the fitting of the p-value
profiles and produces diagnostic plots into a user specified directory.

A second possibility to omit the data discretization step is to calculate the
effect probability for each gene based on given the empirical distributions of
the controls.

> densities = getDensityMatrix(myPValueMatrix, dirname = "DiagnosticPlots")

> nem(densities[res.disc$sel, ], type = "CONTmLLDens", inference = "search")

> preprocessed <- nem.cont.preprocess(BoutrosRNAiExpression, neg.control = 1:4,

+ pos.control = 5:8)

> nem(preprocessed$prob.influenced, type = "CONTmLL", inference = "search")
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3 Visualization

> plot.effects(res.disc$dat, result)
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Figure 15: plotting data according to inferred hierarchy
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4 Post-processing of results

Combining strongly connected components First, we identify all
nodes/genes which are not distinguishable given the data. This amounts
to finding the strongly connected components in the graph. Relish and Key
are now combined into one node.

> result.scc <- SCCgraph(result$graph, name = TRUE)

> plot(result.scc$graph)

rel−:key− mkk4hep−

tak−

Figure 16: The undistinguishable profiles of key and rel are summarized into
a single node.

Transitive reduction Additionally, in bigger graphs transitive.reduction()
helps to see the structure of the network better. In this simple example there
are no shortcuts to remove.
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