Analysis of Bead Level Data using beadarray

Mark Dunning
September 27, 2007

Introduction

beadarray is a Bioconductor package for the analysis of data dervied using the Illumina BeadArray
platform. The package is able to analyse data generated by Illumina’s BeadStudio software as well as
the raw data created when arrays are scanned.

In this document we will describe how to read raw Bead Level data from a Bead Array expression ar-
ray. Although the example in this document is for a single-channel expression array, the same procedure
can be applied to methlyation or SNP data.

The example data used in this vignette (BeadLevelExample.zip) can be obtained as a 800 MB zip
archive at:

http://criwebshare.cancerresearchuk.org/IlluminaData/BeadLevelExample.zip

1 Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning MJ, Smith ML, Ritchie ME, Tavaré S, beadarray: R classes and methods for Illumina
bead-based data, Bioinformatics, 23(16):2183-2184

2 Asking for help on beadarray

Wherever possible, questions about beadarray should be sent to the Bioconductor mailing list (biocon-
ductor@stat.math.ethz.ch). Therefore all problems and solutions will be kept in a searchable archive.
When posting to this mailing list, please state the version of beadarray and R to help to diagnose the
problem. This can be done by pasting the output of running the command sessionInfo().

3 Import

The example in this vignette shows how to read the raw data from a Human-6 BeadChip into R. On this
chip there are 6 arrays, with each array made up 2 strips on the chip surface. The raw data consists of a
tif image scanned from each strip and a text (.txt or .csv) file which describes the position and identity
of each bead on each strip. These text files are required because of the random nature of BeadArrays
which means we cannot rely on each position on the array having the same probe sequence attached.
The tif images and txt files are produced by Illumina’s BeadScan software. BeadScan version 3.1 is
required with the settings.xml file in the program directory modified to include the lines

<IncludeXY>true</IncludeXY>

and

<SaveTextFiles>true</SaveTextFiles>.

For more details see http://criwebshare.cancerresearchuk.org/IlluminaResources.html

By default, readI1lumina will read all arrays in the current working directory with both txt and
tif files (for two colour experiments, both red and green images are required).

The 2 strips for each array have a different set of bead types attached and images from each strip
can be analysed separately. The function readI1llumina implements the image processing steps used
by Illumina. However, both the sharpening and background correction steps are optional. We estimate
a background for each bead by taking the average of the 5 dimmest pixels in a local area around each
bead centre. However, we do not subtract this value automatically. The same call to readIllumina will
read data for two-colour SNP and methylation data as well and data from 96-well Sentrix Array Matrix
(SAM) experiments. The only difference would be the working directory that the command is run from.

In this example data set we have three different samples, three samples supplied by Hlumina (I), four
tumour samples (P) and two normals (Norm). This BeadChip is part of the same example set supplied
in the BeadSummaryFExamples zip file and described in the the Analysis of Bead Summary Data using
beadarray vignette. A targets text file can be used to define which samples have been hybridised to
each array.

The function can also read in the metrics.txt file that is created by BeadScan. This file can be useful
for quality control purposes

> library(beadarray)

> targets = read.table("targets.txt", sep = "\t", header = TRUE,

+ as.is = TRUE)

> targets

> BLData <- readIllumina(textType = ".csv", backgroundMethod = "none",
+

targets = targets, arrayNames = targets$ArrayName, metrics = TRUE)

4 The BLData object

Once imported, the bead level data is stored in a BeadLevelList object. This class can handle raw data
from both single channel and two-colour BeadArrays. Due to the random nature of the technology, each
array generally has a variable number of rows of intensity data, and we use an R environment variable
to store this information in a memory efficient way.

The BeadLevelList class contains as number of slots useful for describing Illumina data. The inten-
sities for each array can be accessed by first subsetting the beadData slot by the name of the array and
then finding the correct list name. Alternatively, getArrayData can be used.

> is(BLData)
[1] "BeadLevellList"
> class(BLData)

[1] "BeadLevelList"
attr(, "package")
[1] "beadarray"

> slotNames (BLData)

[1] "beadData" "phenoData" "arrayInfo" "annotation" "beadAnno"
[6] "scanMetrics"

> an = arrayNames (BLData)
> an

[1] "1475542113_A_1" "1475542113_A_2" "1475542113_B_1" "1475542113_B_2"
[5] "1475542113_C_1" "1475542113_C_2" "1475542113_D_1" "1475542113_D_2"
[9] "1475542113_E_1" "1475542113_E_2" "1475542113_F_1" "1475542113_F_2"

> names (BLData@beadData[[an[1]]])
[1] ||ProbeID|| ||G|| ||Gb|l n Grnxll ||GrnY||
> BLData[[an[1]]1$G[1:10]

[1] 647.1598 1291.8708 4646.7958 994.2587 716.0407 647.0293 646.6438
[8] 654.3582 659.4786 816.0154

> BLData[[an[2]]]1$Gb[1:10]
[1] 636 634 635 637 639 636 637 637 636 637
> pData(BLData)

ArrayName SampleID Origin

1 1475542113_A_1 IC Illumina
2 1475542113_A_2 IC Illumina
3 1475542113 _B_1 IH Illumina
4 1475542113_B_2 IH Illumina
5 1475542113_C_1 IC Illumina
6 1475542113_C_2 IC Illumina
7 1475542113_D_1 P Breast
8 1475542113_D_2 P Breast
9 1475542113 _E_1 P Breast
10 1475542113_E_2 P Breast
11 1475542113_F_1 Norm Normal
12 1475542113_F_2 Norm Normal

> getArrayData(BLData, array = 1, what = "G", log = FALSE)[1:10]

[1] 647.1598 1291.8708 4646.7958 994.2587 716.0407 647.0293 646.6438
[8] 654.3582 659.4786 816.0154

> getArrayData(BLData, array = 2, what = "Gb", log = FALSE)[1:10]
[1] 636 634 635 637 639 636 637 637 636 637

Boxplots can be used to compare foreground and background intensities between arrays. In this
example we can see very little variation between arrays. Notice that the background level appears to
be virtually constant both for beads on the same array and between arrays.

Background correction can be performed by the backgroundCorrect function and the default set-
tings of the function subtract the background estimate for each bead from the foreground.

par (mfrow = c(1, 3))

boxplotBeads (BLData, las = 2, outline = FALSE, ylim = c(4, 12),
main = "Foreground")

boxplotBeads (BLData, las = 2, whatToPlot = "Gb", outline = FALSE,
ylim = c(4, 12), main = "Background")

BLData.bc = backgroundCorrect(BLData, method = "subtract")

boxplotBeads (BLData.bc, las = 2, outline = FALSE, ylim = c(4,
12), main = "Background Corrected")

+ VvV + Vv + VvV

Foreground Background Background Corrected

12 12 12

T T -

El?glaﬁkEELsEka =

L L
_L.I.I

10 10 10

|
B |
B |
B |

R |
B |

-
T ' T
8 8 8 ! - 1 T 1
1 | ' | 1 T
' ' ' | ' |
' | ' 1 ' '
1 | ' | 1 |
! ' ! ! '
! '
'
IH:HI H
T ' [
6 - 6 - 6 ' !
' II||'|| !
|'I|||'||:'|
|'I|||'|l ta
[[R
ot 1
' L L o
! ot by
[' o
' , S '
' L ' | [
' -:- ' | '
4 4 44 + ! '

L L o+
rrTrTr T T T T T TTT rrTrTr T T T T T TTT rrTrTr T T T T T TTT
N O N N N O N N N O N N
({IN‘MIU‘OIDDLU‘HJ‘LLILL‘ <‘<m‘m|U‘OID‘DLUuJLLILL‘ <‘<Im‘m|U‘OID‘DILU‘uJ‘LLILL‘

) o oo)) ™ oo ™Moo o oo
993338883833 993338883833 993338883833
ddddodddddddd ddddodddddddd ddddodddddddd
N R RN RN N RN ENEN RN RN AN N R RN RN N RN ENENENENEN AN dagdyayyNgyyy

YNNI T S YNNI T S YNNI

The whatToPlot argument of boxplotBeads controls which intensities are plotted for each bead.
Options are G, Gb and residG (Cy3 residuals) for single channel data and R, Rb, residR, M (log-ratios)
residM or A (average log-intensities) for two-colour data.

5 Bead Level Analysis

We can plot the position and location of the replicates for a particular bead type using the following
code. Each BeadArray is produced using a random sampling mechanism, therefore we would expect
the placement of each bead type on an array to be random.

We can also produce boxplots of bead intensities using plotBeadIntensities. This function takes
a list of ProbelDs and arrays as arguments and produces a boxplot for each bead type on each array
grouping ProbelDs on the same array together. Any red dots on a boxplot indicate the outliers for the
bead type, these are any beads outside a 3 median absolute deviation cut-off from the mean for the
bead type and are excluded from analysis. Illumina use the unlogged bead intensities for this outlier
removal and this is the default option in beadarray.

In the following code we show how to plot the intensities of three different bead types on two separate
arrays in the experiment. For this particular example we have to remember that all odd-numbered arrays
in the experiment contain RefSeq genes whereas the even-numbered arrays contain Supplemental genes,
therefore we plot the intensities of the beads on the first and third arrays.

> ids = unique(BLData[[an[1]]]$ProbeID) [1:10]
> ids

[1] 0 50008 50014 50017 50020 50022 50025 50026 50035 50037

> ProbeCols = rainbow(10)
> plotBeadIntensities(BLData, arrays = c(1, 3), ProbeIDs = ids,
+ ProbeCols = ProbeCols, log = TRUE, ylim = c(8, 15))

intensities

15

14

13

12

11

10

o®

o+~

+ - -+

+l-o

I o

+ il -
HiH ©

o

il ®

+{l 4o

-0
HIH ©

+ i -
- o

HflHo o

3 B

oo

We can repeat the outlier analysis shown above for all bead types on an array using findAl110ut-
liers. The result of this function is a list of row indices to BLData to identify which beads on the given
array are outliers. Typically we find that the number of outliers on an array is less than 10% and both
the number and location of outliers can be used as a useful diagnostic tool.

> o = findAllOutliers(BLData, array = 1)
> o[1:10]

[1] 81845 81894 81898 81956 81973 82010 82033 82037 82046 82072
> length(o)/numBeads (BLData) [1]

[1] 0.03525418

> par(mfrow = c(2, 1))

> par(mar = c(1, 1, 3, 1))

> for (i in 1:2) {

+ o = findAl1l0utliers(BLData, array = i)

+ plotBeadLocations(BLData, BeadIDs = o0[1:1000], array = i,
+ SAM = FALSE, cex = 0.5, col = "red", pch = 16)

+ }

Bead locations

'—"r'-v'w; T
’\,... g s, "\ ER AN
et s Tl

— . o o ®

e o ° 0 e
e 4, " P’ .
“: XTI AN
O A
-
oo ,,'.830. e e
N en® s o
-
'tpo. % o
Wil pn . . oo
A L AT
. . S > ¢
I I A .. .
P Y 0. .
. LR . .
B e, . o
e o L3 e . * .
oo Sest o e . .
L) . e
] o 3 ae o . .
I I I I I

Bead locations

T e "

R g 90 \o
3 o4,
.2

Spatial artefacts on the array surface can occur from mis-handling or scanning problems.

Image

plots can be used to identify these artefacts, and with the raw bead-level data, we can plot false images
of each array. This kind of visualisation is not possible when using the summarised BeadStudio output,
as the summary values are averaged over spatial positions. Image plots in R are also more convenient
than scrutinising the original tiffs, as multiple arrays can be visualised on the one page.

> par(mfrow = c(2, 1))
> for (i in 1:2) {

+ imageplot (BLData, array = i, nrow = 20, ncol
+ 10), low = "yellow", high "red", what = "G")
+ F

Warning: 2 NA, NaN or Inf values, which will be ignored.
Check your data or try setting log="FALSE"

= 200, zlim = range (9,

z-range 9.6 to 10.1 (saturation 9, 10)

G

z-range 9.4 to 9.8 (saturation 9, 10)

In the imageplot function, the argument whatToPlot is used to choose the quantity to display. For
single channel data, whatToPlot can be set to G, Gb or residG to plot the Cy3 foreground, background
or foreground residuals respectively. For two-colour data, the Cy5 foreground (R), background (Rb),
log-ratios (M), average log-intensities (A) and residuals
(residR, residM) can be plotted by changing whatToPlot. Because of the high number of beads on
each array, imageplot function maps a grid of size specified by the nrow and ncol arguments onto the
array surface and averages the intensities of the beads within each section of the grid.

The createBeadSummaryData function can be used to summarise the values for each probe. Outliers
are removed using a cut-off of 3 MADS and the mean of the remaining beads is used as the summary
value. At this point we combine the two strips for each array by using the imagesPerArray argument,
leaving us with 6 columns now instead of 12. Alternative methods for removing outliers, such as using
a trimmed mean or median can be used by changing the method argument to createBeadSummarData.

By default, we summarise the values for the green channel. In the case of two-colour data, one may
wish to create summary values for the red and green channels separately or summarise the log-ratios
for each bead. These can be achieved by setting the what argument to RG or M respectively.

> BSData = createBeadSummaryData(BLData, imagesPerArray = 2)

The default settings for createBeadSummaryData assume that the same probes are to be found on
each array in the experiment as this will be true in general. At present, createBeadSummaryData is a
memory intensive operation and currently requires at least 1Gb of RAM for BeadChip data.

The BSData can be analysed using functionality described in the Analysis of Bead Summary Data
vignette.
This vignette was built using the following packages:

> sessionInfo()

R version 2.6.0 Under development (unstable) (2007-08-12 r42483)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_GB.UTF-8;LC_NUMERIC=C;LC_TIME=en_GB.UTF-8;LC_COLLATE=en_GB.UTF-8;LC_MONETARY=en_GB.UTF-8;L

attached base packages:
[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] beadarray_1.5.14 affy_1.15.7 preprocessCore_0.99.12
[4] affyio_1.3.2 geneplotter_1.15.6 lattice_0.14-16
[7] annotate_1.13.4 Biobase_1.15.26 limma_2.11.9

loaded via a namespace (and not attached):
[1] grid_2.6.0 KernSmooth_2.22-19 RColorBrewer_0.2-3

Acknowledgements

We are grateful to Inma Spiteri for providing the BeadChip data set distributed for this vignette. We
also thank Julie Addison, Tom Hardcastle, John Marioni, Inma Spiteri and Anna Git for their helpful
feedback on the exercises in this tutorial.

