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Abstract

Cellular signaling pathways, which are not modulated on a tran-
scriptional level, cannot be directly deduced from expression profiling
experiments. The situation changes, when external interventions like
RNA interference or gene knock-outs come into play.

In Markowetz et al. (2005) and Markowetz (2006) we introduced an
algorithm to infer non-transcriptional pathway features based on differ-
ential gene expression in silencing assays. The method is implemented
in the Bioconductor package nem. Here we demonstrate its practical
use in the context of an RNAi data set investigating the response to
microbial challenge in Drosophila melanogaster.

We show in detail how the data is pre-processed and discretized,
how the pathway can be reconstructed by different approaches, and
how the final result can be post-processed to increase interpretability.

1 Drosophila RNAi data

We applied our method to data from a study on innate immune response in
Drosophila (Boutros et al., 2002). Selectively removing signaling components
blocked induction of all, or only parts, of the transcriptional response to LPS.

Dataset summary The dataset consists of 16 Affymetrix-microarrays: 4
replicates of control experiments without LPS and without RNAi (negative
controls), 4 replicates of expression profiling after stimulation with LPS
but without RNAi (positive controls), and 2 replicates each of expression
profiling after applying LPS and silencing one of the four candidate genes
tak, key, rel, and mkk4/hep.
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Preprocessing and E-gene selection For preprocessing, we perform
normalization on probe level using a variance stabilizing transformation (Hu-
ber et al., 2002), and probe set summarization using a median polish fit of
an additive model (Irizarry et al., 2003). The result is included as a dataset
in the package nem.

> library(nem)

> data("BoutrosRNAi2002")

The function nem.discretize implements the following two preprocessing
steps: First, we select the genes as effect reporters (E-genes), which are
more then two-fold upregulated by LPS treatment. Next, we transform the
continuous expression data to binary values. We set an E-genes state in an
RNAi experiment to 1 if its expression value is sufficiently far from the mean
of the positive controls, i.e. if the intervention interrupted the information
flow. If the E-genes expression is close to the mean of positive controls, we
set its state to 0.

Let Cik be the continuous expression level of Ei in experiment k. Let µ+
i be

the mean of positive controls for Ei, and µ−i the mean of negative controls.
To derive binary data Eik, we defined individual cutoffs for every gene Ei

by:

Eik =

{
1 if Cik < κ · µ+

i + (1− κ) · µ−i ,

0 else.
(1)

> res.disc <- nem.discretize(BoutrosRNAiExpression, neg.control = 1:4,

+ pos.control = 5:8, cutoff = 0.7)

discretizing with respect to POS and NEG controls

Estimating error probabilities From the positive and negative controls,
we can estimate the error probabilities α and β. The type I error α is the
number of positive controls discretized to state 1, and the type II error β is
the number of negative controls in state 0. To guard against unrealistically
low estimates we add pseudo counts. The error estimates are included into
the discretization results:
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Discretized data
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Figure 1: Continuous and discretized data
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2 Applying Nested Effects Models

Which model explains the data best? With only four S-genes, we can ex-
haustively enumerate all pathway models and search the whole space for the
best-fitting model. To score these models use either the marginal likelihood
depending on α and β (details found in Markowetz et al (2005)) or the full
marginal likelihood depending on hyperparameters (details in Markowetz,
2006). Additionally we show how to employ an edge-wise inference heuris-
tic, which can also be applied to cases where exhaustive search over model
space is infeasible (i.e. when we have more than 4 or 5 perturbed genes).
An interface to all inference techniques is provided by the function nem().

2.1 Exhaustive search by marginal likelihood

Scoring models by marginal log-likelihood is implemented in function score.
Input consists of models and data, the type of the score ("mLL" or "FULLmLL"),
the corresponding paramters (para) or hyperparameters (hyperpara) and a
prior for E-gene positions (P).

> result <- nem(res.disc$dat, type = "mLL", para = res.disc$para,

+ inference = "search")

Generated 355 unique models ( out of 4096 )
Computing marginal likelihood for 355 models

> result

Object of class 'score' generated by 'score()'

$graph: phenotypic hierarchy on genes
$mLL: a vector of length 355
$pos: a list of length 355
$mappos: a vector of length 355
$lambda: 0

The output is the highest scoring model (result$graph), a vector of scores
(result$mLL) and a list of E-gene position posteriors (result$pos), and
a MAP estimate of E-gene positions (result$mappos). We can plot the
results using the commands:

> plot(result, what = "graph")

> plot(result, what = "mLL")

> plot(result, what = "pos")
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Figure 2: The five silencing schemes getting high scores in Fig. ??. It takes
a second to see it, but Nr.2 to 5 are not that different from Nr.1. The main
feature, ie. the branching downstream of tak is conserved in all of them.

●

● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

−
32

0
−

28
0

−
24

0

Score distribution

30 top ranked models

M
ar

gi
na

l l
og

−
lik

el
ih

oo
d

●

Figure 3: The best 30 scores
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Posterior effect positions
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Figure 4: Posterior distributions of E-gene positions given the highest scor-
ing silencing scheme (Nr. 1 in Fig. 2). The MAP estimate corresponds to
the row-wise maximum.
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2.2 Exhaustive search Full marginal likelihood

Additionally to what we did in the paper (Markowetz et al., 2005) the PhD
thesis (Markowetz, 2006) contains equations for a “full marginal likelihood”
in which error probabilities α and β are integrated out. This section shows
that using this score we learn the same pathways as before.

> result2 <- nem(res.disc$dat, type = "FULLmLL", hyperpara = c(1,

+ 9, 9, 1), inference = "search")

Generated 355 unique models ( out of 4096 )
Computing FULL marginal likelihood for 355 models

> result2

Object of class 'score' generated by 'score()'

$graph: phenotypic hierarchy on genes
$mLL: a vector of length 355
$pos: a list of length 355
$mappos: a vector of length 355
$lambda: 0
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Figure 5: Same topologies as before.
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Figure 6: The best 30 scores by full marginal likelihood
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Figure 7: Posterior distributions of E-gene positions given the highest scor-
ing silencing scheme (Nr. 1 in Fig. 5). The MAP estimate corresponds to
the row-wise maximum.
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2.3 Edge-wise learning

Instead of scoring whole pathways, we can learn the model edge by edge.
For each pair of genes A and B we infer the best of four possible models:
A · ·B (unconnected), A → B (effects of A are superset of effects of B),
A← B (subset), and A↔ B (undistinguishable effects).

> result3 <- nem(res.disc$dat, para = res.disc$para, inference = "pairwise")

4 perturbed genes -> 6 pairwise tests (lambda = 0 )
......
estimating effect positions

> result3

Object of class 'pairwise' generated by 'pairwise.posterior()'

$graph: phenotypic hierarchy on genes)
$scores: posterior distributions of local models

Summary of MAP estimates:
all .. -> <->
6 2 3 1

rel−

key−
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Figure 8: Result of edge-wise learning. Compare this to the result from
global search. It looks exactely the same.
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2.4 Inference from triples

Edge-wise learning assumes independence of edges. But this is not true in
transitively closed graphs, where a direct edge must exist whenever there is
a longer path between two nodes. Natural extension of edge-wise learning
is inference from triples of nodes. In the package nem we do it by

> result4 <- nem(res.disc$dat, para = res.disc$para, inference = "triples")

> result4
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3 Visualization

> plot.effects(res.disc$dat, result)
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Figure 9: plotting data according to inferred hierarchy
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4 Post-processing of results

Combining strongly connected components First, we identify all
nodes/genes which are not distinguishable given the data. This amounts
to finding the strongly connected components in the graph. Relish and Key
are now combined into one node.

> result3.scc <- SCCgraph(result3$graph, name = TRUE)

> plot(result3.scc$graph)

rel−:key− mkk4hep−

tak−

Figure 10: The undistinguishable profiles of key and rel are summarized into
a single node.

Transitive reduction Additionally, in bigger graphs transitive.reduction()
helps to see the structure of the network better. In this simple example there
are no shortcuts to remove.
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Session Information

The version number of R and packages loaded for generating the vignette
were:

� R version 2.5.0 (2007-04-23), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats,
tools, utils

� Other packages: annotate 1.14.1, Biobase 1.14.0, class 7.2-33, e1071 1.5-
16, geneplotter 1.14.0, graph 1.14.0, lattice 0.15-4, nem 1.6.0, RBGL 1.12.0,
Rgraphviz 1.14.0, time 1.0
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