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0.1 Road map

m  Use cases


http://cran.fhcrc.org/web/packages/NMF/index.html
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= user interface concepts
= cluster analysis components
— primitive sensitivity analysis
= classifier components
— role of metapackages like caret/mlr/MLInterfaces

0.2 Use case 1: transcript profiles to distinguish tissue source

= illumina bodymap in GEO
= another application: adequacy of mouse models of human biology

0.3 Species and organ of origin: microarrays and orthologues (McCall et al., NAR 2012)

DI1014 Nucleic Acids Research, 2011, Vol. 39, Database issue
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Figure 2. Hierarchical clustering of human and mouse tissue samples using orthologous genes. These are based on (A) average expression microarray
measurements and (B) tissue specific transcriptomes based on averaged barcodes. The same genes were used in (A) and (B).
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0.4 Species, organ of origin, and batch: RNA-seq and orthologues (Lin et al., PNAS 2014)
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= Between-species disparity stronger than within-organ similarity

0.5 Question

= Distinguishing organ of origin through gene expression patterns
— McCall et al., NAR 2011
— adjusted arrays yield 85 22215-vectors
— barcode transformation: transcriptomes cluster by organ
= Comparison of human and mouse transcriptomes
— Lin et al., PNAS 2014
— mRNA abundance for orthologous genes by RNA-seq, 30 15106-vectors
— transcriptomes cluster by species

Which one is right?

0.6 Use case 2: Oncotype DX gene signature for breast cancer survival

= 21 genes useful for prediction of breast cancer recurrence

= Paik, Shak, Tang et al. NEJM 2004

= genefu package includes notation for the signature (sig.oncotypedx)

= We'll consider the capacity of the gene set for predicting overall survival in a classic breast cancer dataset (van de
Vijver 2002) as packaged in genefu

0.7 Setup for NKI breast cancer expression/clinical data


http://bioconductor.org/packages/genefu
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library(genefu); library(survival)

data(nkis)

map = as.character (annot.nkis$NCBI.gene.symbol)
names (map) = as.character(annot.nkis$probe)
ndata.nkis = data.nkis

colnames(ndata.nkis) = map[colnames(data.nkis)]
cbind(ndata.nkis[1:4,1:4], demo.nkis[1:4,5:8])

#it ESR1 TBC1D9 GATA3 CAl12 grade node size age
## NKI_123 0.195 -0.114 0.202 0.158 3 0 2.0 48
## NKI_327 0.034 0.033 0.158 0.103 2 1 2.0 49
## NKI_291 -0.417 0.140 0.006 -0.266 2 1 1.2 39
## NKI_370 0.429 0.352 -0.050 0.236 1 1 1.8 51

0.8 Label expression columns with appropriate symbols; test

nkSurv = Surv(demo.nkis$t.os, demo.nkis$e.os)

odata = ndata.nkis[, intersect(as.character(sig.oncotypedx$symbol),
colnames(ndata.nkis))]

fullnk = cbind(demo.nkis, odata)

coxph(nkSurv~er+age, data=fullnk)

## Call:

## coxph(formula = nkSurv ~ er + age, data = fullnk)
#i#t

it coef exp(coef) se(coef) z )

## er -1.0018 0.3672 0.3425 -2.92 0.0034

## age -0.0328 0.9677 0.0271 -1.21 0.2268

##

## Likelihood ratio test=10.1 on 2 df, p=0.00657
## n= 129, number of events= 36

#i# (21 observations deleted due to missingness)

0.9 Create a survival tree using all available clinical and expression data

rfullnk = fullnk[,-c(1,2,3,9,10,11,12,13,14,17,18,19)]
library(rpart); rl = rpart(nkSurv~.,data=rfullnk)

rl

## n=129 (21 observations deleted due to missingness)
##

## node), split, n, deviance, yval

## * denotes terminal node

#i#

## 1) root 129 146.652400 1.00000000
#it 2) BIRC5< -0.0365 85 62.712830 0.47436610

#it 4) BIRC5< -0.3975 32 1.801804 0.09909801 x*

#it 5) BIRC5>=-0.3975 53 52.568420 0.70984040

#it 10) BAG1< -0.219 14 1.660224 0.16988820 *

#it 11) BAG1>=-0.219 39 44.603630 0.96814410

#it 22) GSTM1< 0.1565 30 22.464060 0.58792190

#it 44) MKI67>=-0.0655 19  8.070774 0.23294560 *

## 45) MKI67< -0.0655 11  7.582306 1.38868000 *
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#it 23) GSTM1>=0.1565 9 12.691410 2.77622500 *
#i# 3) BIRC5>=-0.0365 44 58.962600 2.35960200

#it 6) PGR>=-0.1625 17 16.872130 1.05016300 *

#it 7) PGR< -0.1625 27 34.118410 3.40043200

#it 14) GSTM1< -0.1235 7 5.180967 1.32643500 *
#it 15) GSTM1>=-0.1235 20 23.712420 4.39730500 *

CRAN package partykit enhances tree support in rpart and provides many additional models

library(partykit)
plp = as.party(prune(rl, cp=.05))

0.10 Visualize the pruned tree along with K-M curves for leaves
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0.11 Question

What are the key vulnerabilities of an analysis of this type?

04000


http://cran.fhcrc.org/web/packages/partykit/index.html
http://cran.fhcrc.org/web/packages/rpart/index.html
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0.12 Use case 3: Cell fate signatures from the fruitfly blastocyst

() cioeevia
Stability-driven nonnegative matrix factorization to

interpret spatial gene expression and build local
gene networks

Sigi Wu®®, Antony Joseph®P<, Ann S. Hammonds®, Susan E. Celniker®, Bin Yu®¢'

, and Erwin Frise®™!

2Department of Statistics, University of California, Berkeley, CA 94720; ®Division of Environmental Genomics and Systems Biology, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720; “Walmart Labs, San Bruno, CA 94066; and “Department of Electrical Engineering and Computer Sciences,

ENAS

University of California, Berkeley, CA 94720

Contributed by Bin Yu, March 6, 2016 (sent for review October 26, 2015; reviewed by Richard Bonneau and Michael S. Waterman)

Spatial gene expression patterns enable the detection of local
covariability and are extremely useful for identifying local gene
interactions during normal development. The abundance of spatial
expression data in recent years has led to the modeling and analysis
of regulatory networks. The inherent complexity of such data makes
it a challenge to extract biological information. We developed
staNMF, a method that combines a scalable implementation of
nonnegative matrix factorization (NMF) with a new stability-driven
model selection criterion. When applied to a set of Drosophila early

0.13 Data setup

library(drosmap) # biocLite("vjcitn/drosmap")
data(expressionPatterns)
data(template); template=templatel[,-1]

inherent in spatial expression patterns are difficult to capture and
finding related patterns is challenging. An alternative, comple-
mentary to ontologies, is the spatial expression information ex-
tracted directly from images (12, 17-19, 22, 27-30). We discovered
putative gene interactions by correlating gene expression and
performing cluster analysis (27), and others have used sparse
Gaussian graphical models (30) to do the same. Due to data
complexity and the large size of image collections, image-based
approaches are not routinely used for modeling.

data(uniqueGenes)

uex expressionPatterns[,uniqueGenes]

uex[1:5,1:5]

#it pnr Abd.B lama Mkp3 £z2
## 14123479 0.05531271 0.014584370 0.2086337 0.3759253

#it

#i#t
#i#t

09015973 0.01234864 0.014212999 0.3222693 0.5585198

13179102 0.03184486 0.005370888 0.2365888 0.2585371
08820991 0.06811459 0.016528382 0.1136623 0.1034636

0.14 Spatial gene-specific patterns

10.0
2 0.0
## 3 0.023047258 0.01486692 0.013431432 0.3599486 0.5329454
4 0.0
5 0.0

imageBatchDisplay(uex[,1:16], nrow=4, ncol=4, template=template)
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0.15 Can we transform spatial patterns for 701 genes to cohere with this fate map?

t-ov-ozaus
oM

of the blastoderm. Notice that the size of the
anlagen of the salivary glands (40) and of the
dorsal ridge (20) is included in the size of C3.
Scales indicate EL% (0-10% and 90%-100%
values are distorted due to the reconstruction
procedure). am: anterior midgut; as:
amnioserosa; C3d: dorsal ridge; cf:
clypeolabrum; dEpi: dorsal epidermis; dr:
dorsal ridge: es: oesophagus; mp: Malpighian
tubes; ms: mesoderm; ol: optic lobes; p:
gnathal protuberances; ph: pharynx; pl:
procephalic lobe: pm: posterior midgut; pNR:
procephalic neurogenic region; pr: proctodeum;
sg: salivary gland; r: tracheace; vNR: ventral
neurogenic region; CI-C3: gnathal segments;
Clp: mandible; C2p: maxilla; C3p: labium;
T1-T3: thoracic segments; A7-A10: abdominal
segments. Sce text for further details
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0.16 Idea: NMF (Brunet, Tamayo, Golub, Mesirov PNAS 2004) for clustering

A (rank M) = W H (rank k=2)

M observables
(samples) k metagenes M samples

s T
‘B 1 | metagenes

i :
in 3
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2N S “ " ‘
! 3 P \An LN
® : A "l R/
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g | N
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- o p—
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Fig. 1. Arank-2 reduction of a DNA microarray of N genes and M samples is
obtained by NMF, A ~ WH. For better visibility, H and W are shown with
exaggerated width compared with original data in A, and a white line
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0.17 From the NMF vignette by Renaud Gaujoux

The main approach to NMF is to estimate matrices W and H as a local minimum:
Wmln [D(X,WH)+ R(W,H)] (2)

—F(W,H)

where

e D is a loss function that measures the quality of the approximation. Common loss functions
are based on either the Frobenius distance

Tr( AB 1
D:A,B ) 22( i 1._7 ’

or the Kullback-Leibler divergence.
D:A,Bw— KL(A||B) = Zaw log — ajj + byj.

e R is an optional regularization function, defined to enforce desirable properties on matrices
W and H, such as smoothness or sparsity (Cichocki et al. ).

0.18 Factor the matrix of expression measures

= Rows are positions in the reregistered ellipse
= Columns are genes

mm = nmf (uex, rank=21) # takes a minute on macbook

<0Object of class: NMFfit>
# Model:
<0Object of class:NMFstd>
features: 405
basis/rank: 21
samples: 701
# Details:
algorithm: brunet
seed: random
RNG: 403L, 1L, ..., 1716923164L [baff3023b8693dbef07d065d4e2b4db6]
distance metric: 'KL'
residuals: 2766.095
Iterations: 2000
Timing:
user system elapsed
72.953 3.245 77.848

10


http://cran.fhcrc.org/web/packages/NMF/index.html
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0.19 Project the basis vectors to the blastocyst template

imageBatchDisplay(basis(mm), nrow=5, ncol=5, template=template)
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0.20 An assignment of “principal patterns”
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0.21 Comments

= Curse of dimensionality: as the number of features increases, utility of distance metrics for object grouping diminishes
(space is mostly empty, distances generally small)

= Bet on sparsity principle: favor procedures that are able to prune features/dimensions, because in non-sparse case,
nothing works

= All the results displayed are tunable, could be interactive

= Sensitivity analysis: Enhance the capacity of reports to demonstrate their own robustness

0.22 Remainder of talk

= Bioconductor strategies: user interface and object designs
= Cluster analysis formalities; hclustWidget
= Classifier formalities; mlearnWidget

0.23 On the user interface

= The method is primary (constituents of CRAN task view “MachineLearning”)
= What does the learner consume?
— data in a specific format, tuning parameters
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= What does the learner emit?
— an object with scores, assignments, metadata about the run
= Aims
— reduce complexity of user tasks
— capitalize on formal structuring of containers for inputs and outputs
— foster sensitivity analysis
= We'll now use a modified MLInterfaces::hclustWidget that capitalizes on these notions

0.24 Exploring clusters with tissue-of-origin data

nicehclustWidget (t(etiss))

0.25 Some definitions: general distance

Definition [(edit
A metric on a set Xis a function (called the distance function or simply distance)
d: Xx X— R,
where R is the set of real numbers, and for all x, y, zin X, the following conditions are satisfied:
1. d(x, y) =20 (non-negativity, or separation axiom)
2. dx,y)=0 ifandonlyif x=y (identity of indiscernibles, or coincidence axiom)
3

. dx, y)=dy, x) (symmetry)
4. d(x, 2) sd(x, y) + dly, 2) (subadditivity | triangle inequality).

Conditions 1 and 2 together define a positive-definite function. The first condition is implied by the others.

0.26 Examples:

13
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0.26.1 Euclidean distance

= High-school analytic geometry: distance between two points in R?

" p1= ($17y1,Z1), D2 = ($27y2722)
= Az =1z — 79, etc.

d(p1,p2) = V/(Az)? + (Ay)? + (Az)?

0.26.2 Manhattan distance

= d(p1,p2) = [Az[ + |Ay| +[Az]

0.26.3 New concept of distance for categorical vectors:

Sam Buttrey and Lyn Whitaker's treeClust (R Journal article)

0.27 What is the ward.D2 agglomeration method?

= Enables very rapid update upon change of distance or # genes

5;n.wikipedia.org/wiki/Ward‘s_method Q RR 0 = |
oc u biocSupport || SharMidSch ™ gmail e EDX_VJC_PLACE G nyt E ndex || irefindex Rdev || girolami g RAue || kidbooks ﬂ AlanKay » ﬁ Other Bookmarks
Suppose that clusters ('; and Cj were next to be merged. At this point all of the current pairwise cluster ‘

distances are known. The recursive formula gives the updated cluster distances following the pending merge of
clusters (; and C'}. Let

« d;;, d;;, and dj;, be the pairwise distances between clusters C;, C';, and CY,, respectively,
« dy; ) be the distance between the new cluster C'; U C'; and CYy..

An algorithm belongs to the Lance-Williams family if the updated cluster distance d(i )k can be computed
recursively by

dijw = aidiy + ajdj, + B3dij + | dir — dji,
where (y;, (¥ 7 3, and " are parameters, which may depend on cluster sizes, that together with the cluster
distance function d; i determine the clustering algorithm. Several standard clustering algorithms such as single
linkage, complete linkage, and group average method have a recursive formula of the above type. A table of
parameters for standard methods is given by several authors.[2/13]4]
Ward's minimum variance method can be implemented by the Lance-Williams formula. For disjoint clusters
C}, C},and C'y, with sizes 1i, 25, and 72, respectively:

d(CUC;,C) = —2 ™ geey C)+— ™ g(c;, )

n; + n; + Ny n; + n; + Ny n; + n; =+ Ny

Mg

d(C;,C;).


http://cran.fhcrc.org/web/packages/treeClust/index.html
https://journal.r-project.org/archive/2015-2/buttrey-whitaker.pdf
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0.28 What is the Jaccard similarity coefficient?

The Jaccard index, also known as the Jaccard similarity coefficient (originally coined coefficient de
communauté by Paul Jaccard), is a statistic used for comparing the similarity and diversity of sample sets. The
Jaccard coefficient measures similarity between finite sample sets, and is defined as the size of the intersection
divided by the size of the union of the sample sets:

|AN B

|AUB|’

(If Aand B are both empty, we define J(A,B) =1.)
0<J(A4,B)<1.

J(A,B) =

0.29 Summary

= Hierarchical clustering is tunable; distance, fusion method, feature selection all have impact
= There are other principles/algorithms: divisive, semi-supervised, model-based

= Other figures of merit: consensus, gap statistic

= See the mlr for structured interface

0.30 On classification methods with genomic data

= Vast topic
= Key resources in R:
— Machine Learning task view at CRAN
— 'metapackage’ mlr
= |n Bioconductor, consider
— The ‘StatisticalMethod’ task view (next slide)
— MLlInterfaces (a kind of metapackage)

15


http://cran.fhcrc.org/web/packages/mlr/index.html
http://cran.r-project.org/web/views/MachineLearning.html
http://cran.r-project.org/web/packages/mlr/index.html
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0.31 BiocViews: StatisticalMethod

€« C' | [) bioconductor.org/packages/devel/BiocViews.html#__Classification

% Apps [Pl bioc [PJ biocSupport & SharMidSch M gmail

All Packages

Bioconductor version 3.2 (Development)

Developers: check this box to toggle the visibility
of childless biocViews.

Autocomplete biocViews search:

Software (1036)

AssayDomain (351)

BiologicalQuestion (318)

Infrastructure (214)

ResearchField (228)

StatisticalMethod (297)
Bayesian (17)
Classification (68)
Clustering (103)
DecisionTree (5)
DimensionReduction (4)
FeatureExtraction (4)
GraphAndNetwork (78)
HiddenMarkovModel (4)
NeuralNetwork (1)

0.32 Conceptual basis for methods covered in the talk

@ EDX_VJC_PLACE

€ nyt B ndex

(] irefindex Mg Rdev  [1[] girolami

Packages found under Classification:

Qe N =

© Rave | kidbooks [[] AlanKay » [ Other Bookmarks

Ist

Noah Hoffman

= “Two cultures” of statistical analysis (Leo Breiman)

— model-based
— algorithmic

= |deally you will understand and use both
- X ~ Np(p, X), seek and use structure in p, ¥ as estimated from data; pursue weakening of model assumptions

— y =~ f(x) with response y and features z, apply agnostic algorithms to the data to choose f and assess the
quality of the prediction/classification

Show | All § | entries Search table:
Package 4 Maintainer Title
AIMS Eric R Paquet AIMS : Absolute Assignment of Breast Cancer Intrir
E— Molecular Subtype
. . Hector . . .
antiProfiles Grerh B Implementation of gene expression anti-profiles
. BGAfun A method to identify specifity determining

baafun Tain Wallace residues in protein families

Bioconductor
bioDist Package Different distance measures

Maintainer
BioSeqClass Li Hong Classification for Biological Sequences
TR Daniel D_evelo_pmenfc and validation of diagnostic tests fron
. Kosztyla high-dimensional molecular data
Cardinal Kyle D. Bemis A mass spectrometry imaging toolbox for statistical
- analysis

Dario A framework for two-class classification problems, \
ClassifyR applications to differential variability and differentia

Strbenac o are——— X

distribution testing.
. Irina . .

Clonality Ostrovnaya Clonality testing

Classification by local similarity threshold

0.33 A method on the boundary: linear discriminant analysis

= The idea is that we can use a linear combination of features to define a score for each object
= The value of the score determines the class assignment
= This assumes that the features are quantitative and are measured consistently for all objects

= for p-dimensional feature vector = with prior probability 7, mean py for class k, and common covariance matrix for

all classes

1
p(z) = 2'S ™y, — 5#2271% + log 7y,

is the discriminant function; z is assigned to the class for which 6 (z) is largest
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0.34 Notes on LDA

= It is “on the boundary” because it can be justified using parametric modeling assumptions, assigning to maximize
likelihood ratio

= Algorithmic arguments justify the criterion as it maximizes ratio of between- to within-class variances among all
linear combinations of features (Fisher)

= Further algorithmic arguments lead to variations based on regularization concepts

0.35 Other approaches, issues
= Direct “learning” of statistical parameters in regression or neural network models
= Recursive partitioning of classes, repeating searches through all features for optimal discrimination
= Ensemble methods in which votes are assembled among different learners or over perturbations of the data

= Unifying loss-function framework: see Elements of statistical learning by Hastie, Tibshirani and Friedman
= Figures of merit: misclassification rate (cross-validated), AUROC

0.36 A demonstration with tissue-of-origin expression data

mlearnWidget (tiss, infmla=Tissue~.)

0.37 check out mir and consider how MLInterfaces could employ it

2 | @ nttps://mir-org.github.io/mlr-tutorial/release/html/ Q<9 P
Pl vioc = Home - PuoMed - N et Disc 5x o Disc 6x ‘R CRAN [Pl bcsupp & SharMidSch M gmail & nyt <> ndex 8% irefindex Rdev @ girolami & RAue »

Home Basics v Advanced ~ Extend ~ endix v
miR i

Tasks QSearch  €Previous Next® O GitHub
Learners

Quick start Train
Predict

Performance

m I r Tuto ri Resampling

. ) Benchmark Experiments . .
This web page provides an b use the mir framework for machine learning

experiments in R. Parallelization

Visualization N . L .
We focus on the comprehel 1 applications. More detailed technical information
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CSAMA 2016: Clustering, classification, and regression with genomic examples

0.38 Remarks

= all examples here employ mature, reduced data

= statistical learning also important at early stages, but data volume leads to challenges
= interactive modeling/learning as the product

= in opposition to a potentially overoptimistic selection

= new work on post-selection inference in selectivelnference
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