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Outline

Methods
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Workshop

Workshop: Today, 1:00-2:50 pm (Session 1, Intermediate)
Analysis of single-cell RNA-seq data with R and Bioconductor

Davide Risso, Kelly Street, Michael Cole, UC Berkeley
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Olfactory Stem Cells and Neural Regeneration

R. Fletcher, J. Ngai
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Olfactory Stem Cells and Neural Regeneration

• The nature of stem cells giving rise to the nervous system is
of particular interest in neurobiology, because neural stem
cells remain active in certain brain regions for the entire life of
an individual.

• We focus on the mouse olfactory epithelium (OE), a site of
active neurogenesis in the postnatal animal.

• Adult olfactory stem cells support the replacement of olfactory
sensory neurons and non-neuronal support cells (e.g.,
sustentacular) over postnatal life and can reconstitute the
entire OE following injury.

• The OE is a convenient system to study, due to its
experimental accessibility (in situ analysis) and its limited
number of cell types:

I olfactory sensory neurons (OSN),
I sustentacular cells (SUS),
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Olfactory Stem Cells and Neural Regeneration

I cells of the Bowman gland,
I microvillous cells (rare).
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Olfactory Stem Cells and Neural Regeneration

Figure 1: Mouse olfactory epithelium.
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Olfactory Stem Cells and Neural Regeneration

Sustentacular cells 

Mature olfactory neurons 

Immature olfactory neurons 
Globose basal cells 
Horizontal basal cells 
Olfactory ensheathing glia 

Bowman’s gland 

•  HBCs: multipotent, quiescent – deep reserve adult tissue stem cell 
•  GBCs: proliferative progenitor cells + transit-amplifying cells 

The Horizontal Basal Cell Is 
an Adult Tissue Stem Cell

Figure 2: Olfactory epithelium cell types.

11 / 88



Olfactory Stem Cells and Neural Regeneration

Open questions.

• Determine the stage at which the neuronal and non-neuronal
lineages bifurcate/diverge.

• Characterize discrete intermediate stages of cell differentiation.

• Identify the genetic networks and signaling pathways that
promote self-renewal and regulate the transition to
differentiation.
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Olfactory Stem Cells and Neural Regeneration

p63 regulation of horizontal basal cells.

• The horizontal basal cell (HBC) is an adult tissue stem cell.

• The p63 protein (tumor protein p63, TP63) promotes
self-renewal of HBC by blocking differentiation.

• When p63 is down-regulated, this “brake” is removed,
allowing differentiation to proceed at the expense of
self-renewal. Thus, p63 can be viewed as a “molecular
switch” that decides between the alternate stem cell fates of
self-renewal vs. differentiation.

• We use single-cell RNA-Seq to analyze cell fate trajectories
from olfactory stem cells (HBC) of p63 conditional knock-out
mice.
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Olfactory Epithelium p63 Dataset

X 
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Krt5 

YFP 

loxP-STOP-loxP 

Rosa 

p63 

+ 

Experimental design

Russell Fletcher, Levi Gadye, Mike Sanchez

~ ~ 

0 24h 48h 72h 96h 7d 14d 

tamoxifen YFP+;p63+/+: 98 cells 

Resting HBCs 

FACS-purify lineage-traced cells -> analyze by single cell RNA-Seq

Differentiating cells 

YFP+;p63-/-: 88 cells 100 cells 128 cells 110 cells 98 cells 

Figure 3: Experimental design. Single-cell RNA-Seq for 636 HBC: 102
wild-type and 534 p63 knock-out cells.
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Olfactory Epithelium p63 Dataset
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Olfactory Epithelium p63 Dataset

• Single-cell RNA-Seq for 636 HBC.

I 102 wild-type (WT)/resting cells
534 p63 knock-out (KO) cells, at five timepoints following
tamoxifen treatment.

I Biological replicate: Cells from 1–3 mice.
At least two replicates per biological condition.

I One FACS run and one C1 run per biological replicate
=⇒ 14 batches.

I 8 HiSeq runs (96 cells/lane, single-end 50-base-pair reads).

• Some confounding between biological and technical effects.

• Batch effects nested within biological effects.
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Olfactory Epithelium p63 Dataset

• Marker genes. 94 marker genes, curated from literature and
from prior microarray, sequencing, and in situ experiments,
e.g., neuronal, progenitor cell markers.

• Housekeeping genes. 715 housekeeping (HK) genes, curated
from prior microarray experiments, expected to be constantly
and highly-expressed across cells of the OE.

• Gene-level read counts. TopHat2 alignment to RefSeq mm10
genome and featureCounts

(bioinf.wehi.edu.au/featureCounts) counting, with
genes defined as union of all isoforms.
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Zero Inflation

Proportion of genes with zero count, pre gene filtering
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Figure 5: Zero inflation. Pre gene filtering.
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Zero Inflation

• Single-cell RNA-Seq data have many more genes with zero
read counts than bulk RNA-Seq data.

• This zero inflation could occur for biological reasons (i.e., the
gene is simply not expressed) or technical reasons (e.g., low
capture efficiency).

• Zero-count gene filtering is advisable for normalization and
downstream analyses.

• Most RNA-Seq normalization methods involve scaling and
perform poorly when many genes have zero counts.

• In particular, the global-scaling method of Anders and Huber
(2010), implemented in the Bioconductor R package DESeq,
discards any gene having zero count in at least one sample. In
practice, the scaling factors are therefore estimated based on
only a handful of genes, e.g., 5/22,054 genes for OE dataset.
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Zero Inflation

• Full-quantile (FQ) normalization also doesn’t behave properly
due to ties from the large number of zeros.

• We apply the following zero-count gene filtering to the OE
dataset: Retain only the genes with at least nr = 20 reads, in
at least ns = 40 samples.
This yields 9,133/22,054 genes.
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Zero Inflation

Proportion of genes with zero count, post gene filtering

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Proportion of cells in which a gene is detected, post gene filtering

N = 9133   Bandwidth = 0.03333

D
en

si
ty

(a) Proportion of genes with zero count (b) Proportion of cells in which a gene is detected

Figure 6: Zero inflation. Post gene filtering.

21 / 88



Sample-Level QC
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Figure 7: Sample-level QC. Boxplots of QC measures, by batch.
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Sample-Level QC
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Sample-Level QC
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Figure 9: Sample-level QC. Principal component analysis (PCA) of
sample-level QC measures.
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Sample-Level QC
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Sample-Level QC: Summary

• The distribution of QC measures can vary substantially within
and between batches.

• Some QC measures clearly point to low-quality samples, e.g.,
low percentage of mapped reads (RALIGN).

• There can be a strong association between QC measures and
read counts (cf. PCA).

• Filtering samples based on QC measures is advisable, as
normalization procedures may not be able to adjust for QC
and some samples simply have low quality.

• Normalization procedures based on QC measures (e.g.,
regression on first few PC of QC measures) should also be
considered.
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Gene-Level Counts
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Gene-Level Counts: Summary

• After gene and sample filtering and before normalization,
there are large differences in gene-level count distributions
within and between batches (cf. RLE, housekeeping genes).

• The counts are still zero-inflated.

• There can be substantial association of counts and
sample-level QC measures.

• Normalization is essential before any clustering or differential
expression analysis, to ensure that observed differences in
expression measures between samples and/or genes are truly
due to differential expression and not technical artifacts.
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SCONE

D. Risso, M. Cole, N. Yosef
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SCONE

SCONE: Single-Cell Overview of Normalized Expression. A general
framework for the normalization of scRNA-Seq data.

• Range of normalization methods.
I Global-scaling, e.g., DESeq, TMM.
I Full-quantile (FQ).
I Unknown factors of unwanted variation: Remove unwanted

variation (RUV).
I Known factors of unwanted variation: Regression-based

normalization on, e.g., QC PC, C1 run.

• Normalization performance metrics.

• Numerical and graphical summaries of normalized read counts
and metrics.

• R package scone, to be released through the Bioconductor
Project: github.com/yoseflab/scone.
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SCONE

Figure 12: scone. Regression model.
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SCONE

Performance metrics. (Green: Good when high; Red: Good when
low.)

• BIO SIL: Average silhouette width by biological condition.

• BATCH SIL: Average silhouette width by batch.

• PAM SIL: Maximum average silhouette width for PAM
clusterings, for a range of user-supplied numbers of clusters.

• EXP QC COR: Maximum squared Spearman correlation
between count PCs and QC measures.

• EXP UV COR: Maximum squared Spearman correlation
between count PCs and factors of unwanted variation
(preferably derived from other set of negative control genes
than used in RUV).

• EXP WV COR: Maximum squared Spearman correlation
between count PCs and factors of wanted variation (derived
from positive control genes).
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SCONE

• RLE MED: Mean squared median relative log expression
(RLE).

• RLE IQR: Mean inter-quartile range (IQR) of RLE.
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Software Package scone

Application to OE p63 dataset.

• Apply and evaluate 172 normalization procedures using main
scone function.

I scaling method: None, DESeq, TMM, FQ.
I uv factors: None, RUVg k = 1, · · · , 5, QC PC k = 1, · · · , 5.
I adjust biology: Yes/no.
I adjust batch: Yes/no.

• Select a normalization procedure based on (function of) the
performance scores.
Unweighted mean score =⇒ none,fq,qc k=4,bio,no batch

Weighted mean score =⇒
none,fq,qc k=2,no bio,no batch
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Figure 13: scone. Biplot of performance scores, colored by mean score
(yellow high/good, blue low/bad).
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Software Package scone
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Figure 14: scone. PCA of performance scores, colored by mean score.
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Software Package scone
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FQ + RUVg(HK, k=1): W by batch
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Figure 17: scone. Association of RUVg unwanted factor W and QC
measures for none,fq,ruv k=1,no bio,batch.
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Figure 18: scone. Gene-level relative log expression (RLE = log-ratio of
read count to median read count across samples) for method with top
weighted mean score none,fq,qc k=2,no bio,no batch.
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Figure 19: scone. Association of counts and sample-level QC measures,
none,fq,qc k=2,no bio,no batch.
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Software Package scone: Summary

• Unnormalized gene-level counts exhibit large differences in
distributions within and between batches and association with
sample-level QC measures.

• Different normalization methods vary in performance
according to SCONE metrics and lead to different distributions
of gene-level counts, hence clustering and DE results.

• Global-scaling normalization. Not aggressive enough to handle
potentially large batch effects and association of counts and
QC measures. Biological effects are dominated by nuisance
technical effects. Additionally, for DESeq, the scaling factors
are computed based on only a handful of genes with non-zero
counts in all cells (5/22,054).

42 / 88



Software Package scone: Summary

• Batch effect normalization. Adjusting for batch effects
without properly accounting for the nesting of batch within
biological effects (no bio,batch) in the regression model is
problematic, as this removes the biological effects of interest
(e.g., empirical Bayes framework of ComBat).

• FQ followed by QC-based or RUVg normalization. Seems
effective: Similar RLE distributions between samples, lower
association of counts and QC measures. The first unwanted
factor of RUVg is correlated with the first QC PC.

• The remaining analyses are based on
none,fq,qc k=2,no bio,no batch, the best method
according to weighted mean score.
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Software Package scone: Summary

• Interpretation of performance metrics. Some metrics tend to
favor certain methods over others, e.g., EXP UV COR
(correlation between count PCs and factors of unwanted
variation) naturally favors RUVg, especially when the same set
of negative controls are used for normalization and evaluation.
Hence, a careful, global interpretation of the metrics is
recommended.

• Negative controls. The selection of proper, distinct sets of
negative controls is important, as these are used for both
normalization (RUVg) and assessment of normalization results
(EXP UV COR).

• Ongoing efforts.
I Zero-inflated negative binomial (ZINB) model.
I User-supplied factors unwanted and wanted variation (UV and

WV, respectively).
I Other methods (e.g., ComBat/sva).
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Software Package scone: Summary

I Other performance metrics.
I Visualization.
I Shiny app for interactive web interface.
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Resampling-Based Sequential Ensemble Clustering

D. Risso, E. Purdom
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Motivation

• Robustness to choice of samples. Both hierarchical and
partitioning methods tend to be sensitive to the choice of
samples to be clustered. Outlying samples/clusters (e.g., glia)
are common in scRNA-Seq and mask interesting substructure
in the data, often requiring the successive pruning out of
dominating clusters to get to the finer structure.

• Robustness to clustering algorithm and tuning parameters.
Clustering results are sensitive to pre-processing steps such as
normalization and dimensionality reduction, as well as to the
choice of clustering algorithm and associated tuning
parameters (e.g., distance function, number of clusters).

47 / 88



Motivation

• Not focusing on the number of clusters. A major tuning
parameter of partitioning methods such as partitioning around
medoids (PAM) and k-means is the number of clusters k .
Methods for selecting k (e.g., silhouette width) are sensitive
to the choice of samples, normalization, and other tuning
parameters. They tend to be conservative (low k), i.e.,
capture only the coarse clustering structure and mask
interesting substructure in the data. Additionally, the number
of clusters k is often not of primary interest.
E.g. Silhouette width with PAM selects only k = 2 clusters for
the OE p63 dataset.

• Not forcing samples into clusters. Some samples may be
outliers, that do not really belong to any clusters. Leaving
them out can improve the quality and interpretability of the
clustering as well as downstream analyses (e.g., identification
of cluster marker genes).
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Motivation

• Cluster gene expression signatures. Common differential
expression statistics are not well-suited for finding marker
genes for the clusters, especially for finer structure in a
hierarchy.
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Resampling-Based Sequential Ensemble Clustering

• We have developed a resampling-based sequential ensemble
clustering approach, with the aim of obtaining stable and
tight clusters.

• Ensemble clustering, i.e., aggregating multiple clusterings
obtained from different algorithms or applications of a given
algorithm to resampled versions of the learning set, is a
general approach for improving stability. This can be viewed
as the unsupervised analog of ensemble methods in supervised
learning, e.g., bagging, boosting, random forests.

• Our approach is related to bagged/consensus/tight clustering
(Dudoit and Fridlyand, 2003; Leisch, 1999; Tseng and Wong,
2005).

• R package clusterExperiment, released through the
Bioconductor Project.
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Resampling-Based Sequential Ensemble Clustering

RSEC: Resampling-based Sequential Ensemble Clustering.

• Given a base clustering algorithm (e.g., PAM, k-means) and
associated tuning parameters (e.g., number of principal
components, number of clusters k , distance matrix), generate
a single candidate clustering using

I resampling-based clustering to find robust and tight clusters;
I sequential clustering to find stable clusters over a range of

numbers of clusters (Tseng and Wong, 2005).

• Generate a collection of candidate clusterings by repeating the
above procedure for different base clustering algorithms and
tuning parameters.

• Identify a consensus over the different candidate clusterings.

• Merge non-differential clusters.

• Find cluster signatures by testing for differential expression
between selected subsets of clusters.
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Resampling-Based Sequential Ensemble Clustering

• Visualization. Comparison of multiple clusterings of the same
samples, heatmaps of co-clustering matrices, heatmaps with
hierarchical clustering of genes and/or samples.
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Differential Expression

• Find cluster gene expression signatures, i.e., marker genes, by
testing for differential expression between selected subsets of
clusters.

• Standard F -statistic. Tests for any difference between
clusters. Sensitive to outlying samples/clusters. Non-specific,
i.e., not useful for interpreting differences between clusters.

• Standard solution in (generalized) linear models/ANOVA is to
consider contrasts between groups of clusters. By using the
machinery of the (generalized) linear model, we use all of the
samples in testing these contrasts, rather than just those
samples involved in the corresponding clusters.

I All pairwise. All pairwise comparisons between clusters.
I One against all. Compare each cluster to union of remaining

clusters.
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Differential Expression

I Dendrogram. Create a hierarchy of clusters, work up the tree,
test for DE between sister nodes (as in approach used for
merging clusters).

• For each contrast, test for DE using empirical Bayes linear
modeling approach of R package limma, with voom option to
account for mean-variance relationship of log-counts (i.e.,
over-dispersion).
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Software Package clusterExperiment

Workflow.

• clusterMany. Generate a collection of candidate clusterings,
for different base clustering algorithms and tuning parameters,
with option to use resampling and sequential approaches.

• combineMany. Find consensus clustering across several
clusterings.

• Identify non-differential clusters that should be merged into
larger clusters.

I makeDendrogram. Hierarchical clustering of the clusters found
by combineMany.

I mergeClusters. Merge clusters of this hierarchy based on DE
between nodes.

• RSEC. Wrapper function around the clusterExperiment
workflow.
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Software Package clusterExperiment

• getBestFeatures. Find cluster signatures by testing for
differential expression between selected subsets of clusters.

• Visualization.
I plotClusters. Comparison of multiple clusterings of the

same samples. Based on ConsensusClusterPlus package.
I plotHeatmap. Heatmaps of co-clustering matrices, heatmaps

with hierarchical clustering of genes and/or samples (interface
to aheatmap from NMF package).
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Software Package clusterExperiment

Application to OE p63 dataset.

• clusterMany: Generate 22 candidate clusterings.
I Dimensionality reduction: 25, 50 PC.
I Euclidean distance.
I Base clustering method: PAM, k = 5, · · · , 15.
I Resampling-based clustering: B = 100, proportion = 0.7,
α = 0.3.

I Sequential clustering: k0 = 15, β = 0.9.
I clusterFunction=c("hierarchical01").

• combineMany(ce, clusterFunction="hierarchical01",

whichClusters="workflow", proportion=0.7,

propUnassigned=0.5, minSize=5).

• mergeClusters(ce, mergeMethod="adjP",

cutoff=0.05).
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Software Package clusterExperiment

Clusterings from clusterMany

nPCAFeatures=50,k0=15
nPCAFeatures=25,k0=15
nPCAFeatures=50,k0=14
nPCAFeatures=25,k0=14
nPCAFeatures=50,k0=13
nPCAFeatures=25,k0=13
nPCAFeatures=50,k0=12
nPCAFeatures=25,k0=12
nPCAFeatures=50,k0=11
nPCAFeatures=25,k0=11
nPCAFeatures=50,k0=10
nPCAFeatures=25,k0=10

nPCAFeatures=50,k0=9
nPCAFeatures=25,k0=9
nPCAFeatures=50,k0=8
nPCAFeatures=25,k0=8
nPCAFeatures=50,k0=7
nPCAFeatures=25,k0=7
nPCAFeatures=50,k0=6
nPCAFeatures=25,k0=6
nPCAFeatures=50,k0=5
nPCAFeatures=25,k0=5

Figure 20: clusterExperiment. Comparison of 22 clusterMany

clusterings using plotClusters.

58 / 88



Software Package clusterExperiment

combineMany
−1
c1
c10
c11
c12
c13
c14
c15
c16
c17
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c26
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c28
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Co−clustering proportion matrix

combineMany

Figure 21: clusterExperiment. Heatmap of co-clustering matrix for
clusterMany clusterings, used to create combineMany clustering
(plotHeatmap).
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Software Package clusterExperiment
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Figure 22: clusterExperiment. Dendrograms from combineMany and
mergeClusters.

60 / 88



Software Package clusterExperiment
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Figure 23: clusterExperiment. PCA of gene-level log-counts, colored by
mergeClusters.
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Software Package clusterExperiment
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Figure 24: clusterExperiment. Heatmap of log-counts for
getBestFeatures DE genes using dendrogram contrasts (269, top 50 in
each of the 6 nodes).
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Software Package clusterExperiment
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Figure 25: clusterExperiment. Heatmap of log-counts for
getBestFeatures DE genes using F -test (top 100).
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Software Package clusterExperiment
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Figure 26: clusterExperiment. Heatmap of log-counts for “a priori”
markers genes (83).
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Software Package clusterExperiment: Summary

• Tuning parameters.
I α controls tightness.
I β controls stability.
I k0, the initial number of clusters used in sequential clustering,

is the parameter with the greatest impact on the results.
Larger k0 tend to lead to smaller and tighter clusters.

• Caveat. The DE analysis is exploratory and nominal p-values
only a rough summary of significance (reliance on models, tiny
p-values even after adjustment for multiple testing, same data
used to define clusters and to perform DE analysis).

• Ongoing efforts.
I Cluster confidence measures.
I Potentially assign unclustered observations to clusters.
I DE using ZINB model.
I Greater modularity (e.g., distance functions, DE test).
I Shiny app for interactive web interface.
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Cell Lineage and Pseudotime Inference

K. Street, D. Risso, E. Purdom
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Motivation

• Mapping transcriptional progression from stem cells to
specialized cell types is essential for properly understanding
the mechanisms regulating cell and tissue differentiation.

• There may not always be a clear distinction between states,
but rather a smooth transition, with individual cells existing
on a continuum between states.

• In such a case, cells may undergo gradual transcriptional
changes, where the relationship between states can be
represented as a continuous lineage dependent upon an
underlying spatial or temporal variable. This representation,
referred to as pseudotemporal ordering, can help us
understand how cells differentiate and how cell fate decisions
are made (Bendall et al., 2014; Campbell et al., 2015; Ji and
Ji, 2016; Petropoulos et al., 2016; Shin et al., 2015; Trapnell
et al., 2014).
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Motivation

• We have developed Slingshot as a flexible and robust
framework for inferring cell lineages and pseudotimes in the
study of continuous differentiation processes.
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Cell Lineage and Pseudotime Inference

• Input/Output.
I Input. Normalized gene expression measures and cell

clustering.
I Output. Cell lineages, i.e., subsets of ordered cell clusters.

Cell pseudotimes, i.e., for each lineage, ordered sequence of
cells and associated pseudotimes.

• Dimensionality reduction.
I Principal component analysis (PCA) seems effective and

simple, in conjunction with steps detailed next.
I Other approaches include related linear methods, e.g.,

independent component analysis (ICA) (Trapnell et al., 2014,
Monocle), and non-linear methods, e.g., Laplacian
eigenmaps/spectral embedding (Campbell et al., 2015,
Embeddr), t-distributed stochastic neighbor embedding
(t-SNE) (Bendall et al., 2014; Petropoulos et al., 2016,
Wanderlust).
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Cell Lineage and Pseudotime Inference

• Inferring cell lineages.
I Minimum spanning tree (MST; ape package) over cell clusters,

with between-cluster distance based on Euclidean distance
between cluster means scaled by within-cluster covariance.

I Outlying clusters. Identified using granularity parameter ω that
limits maximum edge weight in the tree. Specifically, build
MST using an artificial cluster Ω, with distance ω from other
clusters (a fraction of maximum pairwise distance between
clusters), and then remove Ω.

I Root and leaf nodes. May either be pre-specified or
automatically selected.
Root node. If not pre-specified, selected based on parsimony
(i.e., set of lineages with maximal number of clusters shared
between them).
Leaf nodes. If pre-specified, constrained MST.

I A lineage is then defined as any unique path coming out of the
root node and ending in a leaf node.
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Cell Lineage and Pseudotime Inference

I Constructing the MST on clusters (Ji and Ji, 2016; Shin et al.,
2015, TSCAN,Waterfall) vs. cells (Trapnell et al., 2014,
Monocle) offers greater stability and computational efficiency,
less complex lineages, and easier determination of directionality
and branching.

• Inferring cell pseudotimes.
I Iterative procedure inspired from the principal curve algorithm

of Hastie and Stuetzle (1989); principal.curve function in
princurve package.

I In the case of branching lineages, a shrinkage step is included
at each iteration, that forces a degree of similarity between the
curves in the neighborhood of shared clusters.

I Pseudotime values are derived by orthogonal projection onto
the curves.

I Cells belonging to clusters that are included in multiple
lineages have multiple, similar pseudotime values.
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Cell Lineage and Pseudotime Inference

I Previous approaches also use smooth curves to represent
lineages (Campbell et al., 2015; Petropoulos et al., 2016,
Embeddr), while others use piecewise linear paths through the
MST and extract orderings either by orthogonal projection (Ji
and Ji, 2016; Shin et al., 2015, TSCAN,Waterfall) or PQ tree
(Trapnell et al., 2014, Monocle).

I We find that smooth curves provide discerning power not found
in piecewise linear trajectories, while also adding stability over
a range of dimensionality reduction and clustering methods.

• Differential expression. Regression of gene expression
measures on pseudotime, e.g., generalized additive models
(GAM) (Ji and Ji, 2016, TSCAN).

• Visualization. Two- and three-dimensional plots of cell
lineages and pseudotimes, gene-level trajectories, heatmaps for
DE genes.
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Cell Lineage and Pseudotime Inference

• R package slingshot, to be released through the Bioconductor
Project: github.com/kstreet13/slingshot.
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Software Package slingshot

• Modularity.
I Integrates easily with a range of normalization, clustering, and

dimensionality reduction methods.
I get lineages: Given expression measures and cluster labels,

use MST to infer lineages.
get lineages(X, clus.labels, start.clus = NULL,

end.clus = NULL, dist.fun = NULL, omega = Inf,

distout = FALSE).
I get curves: Given lineages, infer pseudotimes.

get curves(X, clus.labels, lineages, thresh =

1e-04, maxit = 100, stretch = 2, shrink = TRUE).

• Flexibility. Can be used with varying levels of supervision.
I Cluster-based approach allows for easy supervision when

researchers have prior knowledge of cell classes, while still
being able to detect novel branching events.

I User-supplied or data-driven selection of root and leaf nodes.

74 / 88



Software Package slingshot

• Visualization.

I plot tree: MST in 2 and 3D.
I plot curves: Lineage curves in 2 and 3D.
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Software Package slingshot

Application to OE p63 dataset.

• Applied to the first three principal components, Slingshot
identifies two lineages: The first corresponds to the
HBC-to-neurons transition, the second to the
HBC-to-sustentacular cells transition.

• A first-pass DE analysis, based on a regression of log-count on
pseudotime using GAM, suggests that many genes are
involved in the differentiation process.

• Among the top 100 DE genes for each lineage, only 13 are DE
in both, suggesting distinct processes in the neuronal vs.
non-neuronal lineages.
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Software Package slingshot
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Figure 27: slingshot. PCA of gene-level log-counts, colored by clusters,
with MST edges used to infer lineages (get lineages, plot tree).
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Figure 28: slingshot. PCA of gene-level log-counts, colored by clusters,
with smooth curves representing lineages and used to infer pseudotimes
(get curves, plot curves).
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Slingshot: DE genes based on GAM, lineage 1

Figure 29: slingshot. Scatterplots of gene-level log-count vs. pseudotime
for GAM DE genes in lineage 1 (HBC–Neurons).
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Software Package slingshot
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mergeClusters
Bio

Figure 30: slingshot. Heatmap of log-counts for GAM DE genes in
lineage 1 (HBC–Neurons), cells sorted by pseudotime.
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Software Package slingshot

Lineages.

$lineage1

[1] "8" "3" "7" "5" "2" "1"

$lineage2

[1] "8" "3" "7" "4"

Biological annotation of clusters.

cl

b 1 2 3 4 5 7 8

HBC 0 0 26 0 0 1 47

HBC transition 0 0 35 0 0 19 0

INP/GBC 0 0 1 0 41 0 0

INP2 0 34 0 0 0 0 0

iOSN 1 77 1 0 0 0 0

Microvillous 0 0 0 8 0 0 0

mOSNs 33 1 0 0 0 0 0

SUS 0 0 1 61 0 5 0

SUS precursor 0 0 7 2 4 62 0

SUS progenitor 0 0 0 0 6 0 0
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Software Package slingshot: Summary

Ongoing efforts.

• Number of lineages: User-supplied, testing for distinct
lineages, merging non-differential lineages.

• DE within and between (i.e., bifurcation) lineages.

• Visualization.

• Performance measures.

• OOP with S4 classes and methods.

• Shiny app for interactive web interface.
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