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• Goal: find statistically significant associations of biological
conditions or phenotypes with gene expression.

• Consider the two class problem.

• Data: n points in a p-dimensional space.

• n ≈ 10− 100, p ≈ 5000− 30000

A A A A A B B B B B

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 x2,10

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xp,1 xp,2 xp,3 xp,4 xp,5 xp,6 xp,7 xp,8 xp,9 xp,10



p >> n

• Problem: There are infinitely many ways to separate the space
into two regions by a hyperplane such that the two groups are
perfectly separated.

• This is a simple geometrical fact and holds as long as n < p!

• Answer: regularization. Rather than searching in the huge
space of all hyperplanes in p-dimensional space, restrict
ourselves to a smaller and biologically meaningful space.

• Two major approaches:
• only hyperplanes perpendicular to the p coordinate axes

(gene-by-gene discrimination, geneby-gene hypothesis testing)
• any other reasonable, not too complex set of hypersurfaces

(machine learning)



• Goal: find statistically significant associations of biological
conditions or phenotypes with gene expression.

• The gene-by-gene approach:
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• Goal: find statistically significant associations of biological
conditions or phenotypes with gene expression.

• The gene-by-gene approach:



Fold change vs p-value

• Two basic selection strategies are widely used

• Fold change (effect size):

- Genes are deemed to be interesting if the effect size is large
- For two sample comparisons we often call this the fold-change
- Often values like 1.5 or 2.0 are used

• p-value:

- Genes are deemed to be interesting if the p-value is small



Fold change vs p-value: Volcano plot
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Modeling Considerations

• Parametric assumptions hard to justify with few arrays

• Nonparametric assumption:
• Permutation tests or similar non-parametric tools are tempting
• Such assumptions reduce power and hence ability to

discriminate
• With not much data (samples), a model is needed to help

make inference

• A useful strategy is to aggregate information across genes



Gene by gene tests

• Examples:
• t-test
• Wilcoxon
• F -test / more complex linear models
• Cox regression

• Treating each gene independently of each other wastes
information

• Many properties may be shared among genes; e.g., their
within-group variability



t-test

• Test for differences in means between two groups given the
variability within each group

X̄1 − X̄2

SE (X̄1 − X̄2)

difference between group means / variability of groups



Distribution of p-values
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Moderated / Bayesian t-tests

• Rather than estimating within-group variability (denominator
of t-test) over and over again for each gene, pool the
information from many similar genes

• Baldi, Long 2001 Tusher et al. (SAM) 2001
• Lönnstedt and Speed 2002
• Kendziorski et al. (Ebarrays) 2003
• Smyth (limma) 2004

• Advantages:
• eliminate occurrence of accidentally large t-statistics due to

accidentally small within-group variance
• effectively introduce a “fold-change” criterion



Moderated / Bayesian t-tests

• Typical approach
• An overall estimate of the variance, s2

0 , is computed
• then for each gene, an estimate of the per gene variance, s2

g , is
computed

• the variance used is a weighted average of s2
0 and s2

g

• the actual method of estimating the overall variance and the
method of averaging is slightly different in different contexts



Moderated / Bayesian t-tests

−log10(p) from two−sample t−test
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Moderated / Bayesian t-tests

• In this example with 79 samples, there is no big difference
between ordinary and the moderated t-statistic.

• But for smaller data sets the differences will be larger.



Moderated / Bayesian t-tests

−log10(p) from two−sample t−test

−
lo

g1
0(

p)
 fr

om
 m

od
er

at
ed

 t−
te

st
 (

lim
m

a)

0

1

2

3

4

0 1 2 3 4



p-value corrections

• Problem: we perform a large number of tests and the
resulting p-values are difficult to interpret

• Band-aid: statisticians have turned p-value corrections into an
industry, but they are really more of a band-aid than a solution

• Solution: test fewer, more directed hypotheses. We still need
to correct, but the amount of correction needed will be much
smaller



p-value corrections

• Methodology: there are now more methods than we could
ever consider

• Basic idea: reduce the critical value used to reject

- since truly false hypotheses tend to have smaller p-values, this
adjustment enriches those rejected for those that are truly false

- but among the casualties are those hypotheses that are truly
false, but which did not obtain an extraordinarily small p-value

• Trade-off between sensitivity and specificity



p-value corrections

• The multtest package (by K. Pollard, Y. Ge and S. Dudoit)
provides a wide variety of p-value correction methods

- provides a variety of t- and F -tests, including robust versions
of each test

- Single-step and step-down minP and maxT methods can be
used to control the chosen type I error rate

- criteria for error rate control include FWER, gFWER, FDR

• Check the vignette and other package documentation for
more deatils



FWER

Family wise error rate: Probability of at least one false positive.
> sum(resT$rawp < 0.05)

[1] 577

> sum(resT$adjp < 0.05)

[1] 34

This is a large loss of power!



FDR

False Discovery Rate:

E

(
FP

FP + TP

)
> res <- mt.rawp2adjp(rawp, proc = "BH")
> sum(res$adjp[, "BH"] < 0.05)

[1] 209



Data Reduction

• Typically, most genes do not show differences in expression
across arrays

• Should consider a reduction in the set of gene/probes that are
under consideration:

• not all genes are expressed in all tissues
• one of the basic assumptions of normalization is that most of

the genes have not changed expression levels across conditions
• these observations argue in favor of reducing the set of genes

• We recommend using some form of non-specific filtering



Filtering on variability

• The expression estimate itself does not reflect mRNA
abundance

• Only within-gene, between-array comparisons are valid

• Filtering on absolute expression values (e.g., removing those
below 100) is falling into that same trap: absolute numbers
do not tell us about the true mRNA abundance

• We recommend filtering genes by some measure of the
variability (MAD, IQR, etc) across arrays

• genes that show no variation across the conditions measured
are not interesting



Discrimination scores - ROC curve analysis

• Classification based approach (Pepe et al, 2003)

• Find potential marker genes

Gene expression should discriminate between groups



ROC curve

• Gene g , two groups (A and B)

• For any cutoff θ
• classify sample i to group B if xg ,i ≥ θ
• Specificity: proportion of true positives
• Sensitivity: proportion of true negatives

• ROC curve: plot of Sensitivity vs 1 - Specificity



ROC curve
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AUC:   0.921
pAUC: 0.162 (p=0.2)



Labs from Bioconductor Case Studies

• Chapter 1: The ALL Data Set

• Chapter 6: Easy Differential Expression

• Chapter 7: Differential Expression
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