Some Basic ChIP-Seq Data Analysis

July 28, 2009

Our goal is to describe the use of Bioconductor software to perform some basic tasks in the analysis of
ChIP-Seq data. We will use several functions in the chipseq package, which provides convenient interfaces
to other powerful packages such as ShortRead and IRanges. We will also use the lattice package for
visualization.

> library(chipseq)
> library(GenomicFeatures)
> library(lattice)

Example data

The cstest data set is included in the chipseq package. The dataset contains data for three chromosomes
from Solexa lanes, one from a CTCF mouse ChIP-Seq, and one from a GFP mouse ChIP-Seq. The raw
reads were aligned to the reference genome (mouse in this case) using an external program (MAQ), and
the results read in using the readReads function, which in turn uses the readAligned function in the
ShortRead package. This step removed all duplicate reads and applied a quality score cutoff. The
remaining data were reduced to a set of alignment start positions (including orientation).

> data(cstest)
> cstest

A GenomeDatalist instance of length 2

cstest is an object of class “GenomeDataList”, and has a list-like structure, each component a
“GenomeData” object representing data from one lane.

> cstest$ctcf

A GenomeData instance for Mmusculus
chromosomes(3): chr10 chril chri2

Each of these are themselves lists containing positive and negative strand alignments:

> str(cstest$ctcf$chrio)

List of 2
$ —: int [1:72371] 3012999 3013096 3013098 3013135 3032735 3040511 3040520 3041297 3044041 304504
$ +: int [1:73179] 3012936 3012941 3012944 3012955 3012963 3012969 3012978 3013071 3018464 30207€

The aligned position of the first cycle is stored.

The mouse genome

The data we have refer to alignments to a genome, and only makes sense in that context. Bioconductor
has genome packages containing the full sequences of several genomes. The one relevant for us is

> library(BSgenome.Mmusculus.UCSC.mm9)
> mouse.chromlens <- seqlengths (Mmusculus)
> head (mouse.chromlens)

chri chr2 chr3 chréd chrb chré
197195432 181748087 159599783 155630120 152537259 149517037

We will only make use of the chromosome lengths, but the actual sequence will be needed for motif
finding, etc.

Extending reads

Solexa gives us the first few (24 in this example) bases of each fragment it sequences, but the actual
fragment is longer. By design, the sites of interest (transcription factor binding sites) should be
somewhere in the fragment, but not necessarily in its initial part. Although the actual lengths of
fragments vary, extending the alignment of the short read by a fixed amount in the appropriate direction,
depending on whether the alignment was to the positive or negative strand, makes it more likely that we
cover the actual site of interest.

How much should we extend? A simple choice is some estimate of the average fragment length. The
following plots the number of bases covered by unextended reads after the negative strand reads are
shifted, with varying amounts of shift associated with varying average fragment length. There is a clear
minima, which can be used as an estimate of the average fragment length.

> bc <- basesCovered(cstest$ctcf$chri0, shift = 1:250, seqlen = 24)
> xyplot(covered ~ mu, bc, type = "1")

1.010 -

1.005 o

1.000 — -

0.995 — -

covered

0.990 — o

0.985 — o

50 100 150 200 250

mu

Exercise 1
What would you expect the plot to be like in control data with no signal? Create a similar plot for
cstestgfpchriO.

We extend all reads to be 150 bases long. This is done using the extendReads () function, which works
on data from one chromosome in one lane.

> ext <- extendReads (cstest$ctcf$chriO, seqlen = 150)
> head(ext)

IRanges instance:

start end width
[1] 3012936 3013085 150
[2] 3012941 3013090 150
[3] 3012944 3013093 150
[4] 3012955 3013104 150
[6] 3012963 3013112 150
[6] 3012969 3013118 150

The result is essentially a collection of intervals (ranges) over the reference genome. Most subsequent
steps will work on the results of this step. We can convert all our data to this form as a preliminary step.
However, the extension step is reasonably fast, and it is often more memory-efficient to perform the
extension on-the-fly whenever necessary.

Coverage, islands, and depth

A useful summary of this information is the coverage, that is, how many times each base in the genome
was covered by one of these intervals.

> cov <- coverage(ext, width = mouse.chromlens/["chr10"])
> cov

'integer' Rle instance of length 129993255 with 288055 runs
Lengths: 3012849 86 53 326 8 6 9 ...
Values : 0123456789 ...

For efficiency, the result is stored in a run-length encoded form.

The regions of interest are contiguous segments of non-zero coverage, also known as islands.

> islands <- slice(cov, lower = 1)
> islands
Views on a 129993255-length Rle subject
views:
start end width
[1] 3012850 3013220 371 1111111111111 111111...]
[2] 3018464 3018613 150 11111111111 11111111...]
[3] 3020766 3020915 150 [1111111111111111111...]
[4] 3023019 3023168 150 11111111111 11111111...]
[5] 3023240 3023389 150 [1111111111111111111...]
[6] 3032586 3032735 150 11111111111 11111111...]
[7] 3038377 3038526 150 1111111111111 111111...]
[8] 3040355 3040520 166 [1111111222222222333...]
[9] 3041148 3041297 150 [1111111111111111111...]
[93350] 129973225 129973447 223 [1122222222222222222...]
[93351] 129974863 129975012 150 [1111111111111111111...]
[93352] 129975575 129975724 150 11111111111 11111111...]
[93353] 129978669 129978818 150 [1111111111111111111...]
[93354] 129979259 129979521 263 [11 1111111111111 1111...]
[93355] 129980303 129980452 150 [1111111111111111111...]
[93356] 129981957 129982106 150 11111111111 11111111...]
[93357] 129982380 129982529 150 [1111111111111111111...]
[93358] 129987020 129987169 150 11111111111 11111111...]

For each island, we can compute the number of reads in the island,

within that island.

> viewSums (head(islands))

[1] 1800

150

150

150

> viewMaxs (head(islands))

[1] 11

1 1 1

1

150

150

> nread.tab <- table(viewSums(islands) / 150)
> depth.tab <- table(viewMaxs(islands))
> head(nread.tab, 10)

1
75820 12

2 3
146 2368

> head(depth.tab, 10)

1
75873 13

Exercise

2 3
170 1824

2

4 5 6 7
679 320 198 171
4 5 6 7
422 255 158 158

Repeat these steps for the gfp dataset.

8 9 10
109 125 107
8 9 10
125 119 111

and the maximum coverage depth

Processing multiple lanes

Although data from one chromosome within one lane is often the natural unit to work with, we typically
want to apply any procedure to all chromosomes in all lanes. A function that is useful for this purpose is
gdapply, which recursively applies a summary function to a full dataset. If the summary function
produces a data frame, the result can be coerced into a flat data frame that is often easier to work with.
Here is a simple summary function that computes the frequency distribution of the number of reads.

> islandReadSummary <- function(x)

+ {

+ g <- extendReads(x, seqlen = 150)

+ s <- slice(coverage(g), lower = 1)

+ tab <- table(viewSums(s) / 150)

+ ans <- data.frame(nread = as.numeric(names(tab)), count = as.numeric(tab))
+ ans

+

}
Applying it to our test-case, we get

> head(islandReadSummary (cstest$ctcf$chri0))

nread count

1 75820
2 12146
3 2368
4 679
5 320
6 198

DOk WN -

We can now use it to summarize the full dataset.

> nread.islands <- gdapply(cstest, islandReadSummary)
> nread.islands <- as(nread.islands, '"data.frame")
> head(nread.islands)

nread count chromosome sample

1 1 75820 chri10 ctct
2 2 12146 chri0 ctct
3 3 2368 chri10 ctct
4 4 679 chri0 ctct
5 5 320 chri0 ctct
6 6 198 chri0 ctct

It is now easy to plot the results.

> xyplot (log(count)

nread | chromosome, nread.islands,

+ subset = (sample == "ctcf" & nread <= 20),
+ layout = c¢(3, 1), pch = 16, type = c("p", "g"))
5 10 15 20
| | | | | | | | | | | |
chrl0 chrll chrl2
_ 104
€
g 8q -
e . .
S 87 1. el ’
4 | . P .. . s | * o o e o °, o o . LY ° o . i
T T T T T T T T T T T T
5 10 15 20 5 10 15 20
nread

If reads were sampled randomly from the genome, then the null distribution of the number of reads per
island would have a geometric distribution; that is,

P(X =k)=p"'(1-p)

In other words, log P(X = k) is linear in k. Although our samples are not random, the islands with just
one or two reads may be representative of the background, and can be used to estimate the parameter of
the null distribution. Graphically, this is the line passing through the first two points.

> xyplot (log(count) ~ nread | chromosome, nread.islands,
+ subset = (sample == "ctcf" & nread <= 20),

+ layout = c(3, 1), pch = 16, type = c("p", "g"),
+ panel = function(x, y, ...) {

+ panel.lmline(x[1:2], y[1:2], col = "black")
+ panel.xyplot(x, y, ...)

+ »

=
o
|

log(count)
[e)} [e0)
| |
./'
e

IN
|

We can create a similar plot of the distribution of depths, this time fitting a Poisson distribution through
the first two points.

> islandDepthSummary <- function(x)
+1{
+ g <- extendReads(x, seqlen = 150)
+ s <- slice(coverage(g), lower = 1)
+ tab <- table(viewMaxs(s))
+ ans <- data.frame(depth = as.numeric(names(tab)), count = as.numeric(tab))
+ ans
+ }
> depth.islands <- gdapply(cstest, islandDepthSummary)
> depth.islands <- as(depth.islands, "data.frame")
> xyplot(log(count) ~ depth | chromosome, depth.islands,
+ subset = (sample == "ctcf" & depth <= 20),
layout = c¢(3, 1), pch = 16, type = c("p", "g"),
panel = function(x, y, ...) {
lambda <- 2 * exp(y[2]) / exp(y[1])
null.est <- function(xx) {
xx * log(lambda) - lambda - lgamma(xx + 1)
}
log.N.hat <- null.est(1) - y[1]
panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")
panel.xyplot(x, y, ...)
»

+ + + + + + + + + +

log(count)

o [e0)

| |
.//
//

T

Exercise 3

Produce similar plots for the gfp dataset. What qualitatitve differences do you see? What would be a
reasonbale cutoff for deciding that the depth of an island is too high to be explained by chance, and hence
is likely to contain a C'I'CF binding site?

Peaks

Going back to our example of chrl0 of the first sample, we can define “peaks” to be regions of the genome
where coverage is 8 or more.

> peaks <- slice(cov, lower = 8)
> peaks

Views on a 129993255-length Rle subject

views:

start end width
[1] 3012963 3013096 134 {8 8 8 8 8 8 9 9 9 9 9 9 9 ...]
[2] 3234799 3234891 93 [8 8 8 8 8 8 8 8 8 8 8 8 8]
[3] 3270074 3270078 5 [8 8 8 8 8]
[4] 3270088 3270260 173 [8 8 8 8 8 8 9 10 11 11 12 12 12 ...]
[5] 3277695 3277811 117 [8 8 8 8 8 8 8 8 8 8 8 8 8 ...]
[6] 3460866 3460928 63 [8 8 8 8 8 8 8 8 8 8 8 8 8 ...]
[7] 3617850 3617947 98 [88888889998999999999 ...]
[8] 3651762 3651957 196 [8 8 10 10 10 12 12 12 12 12 12 12 12 ...]
[9] 4310429 4310670 242 [8 9 9 10 10 10 11 11 11 11 11 11 12 ...]
[1669] 128463192 128463367 176 [8 8 9 9 9 9 9 9 9 9 9 9 9 ...]
[1670] 128986519 128986595 77 [888888888888888888838...]
[1671] 128986604 128986610 7 [6 888 8 8 8]
[1672] 129058941 129058952 12 [8 888888888 8 8]
[1673] 129530064 129530177 1149 9 9 9 9 9 9 9 9 9 9 9 9 ...]
[1674] 129533331 129533381 51 [688888888888888888888...]
[1675] 129665395 129665570 176 [8 9 9 10 10 10 11 12 12 12 12 12 12 ...]
[1676] 129666830 129666897 68 [88888888899999999999 ...]
[1677] 129750671 129750808 138 [8 8 8 8 8 8 9 9 9 9 9 9 9 ...]

It is meaningful to ask about the contribution of each strand to each peak, as the sequenced region of
pull-down fragments would be on opposite sides of a binding site depending on which strand it matched.
We can compute strand-specific coverage, and look at the individual coverages under the combined peaks
as follows:

peak.depths <- viewMaxs (peaks)

cov.pos <- coverage (extendReads (cstest$ctcf$chri0, strand = "+", seqlLen
width = mouse.chromlens["chr10"])

cov.neg <- coverage (extendReads (cstest$ctcf$chri0, strand = "-", seqlLen
width = mouse.chromlens["chr10"])

peaks.pos <- copylRanges(peaks, cov.pos)

peaks.neg <- copylRanges(peaks, cov.neg)

wpeaks <- tail (order (peak.depths), 4)

wpeaks

150),

150),

vV VVV + YV + VvV

[1] 942 15658 875 1025

We plot four highest peaks below.

> coverageplot (peaks.pos[wpeaks[1]], peaks.negl[wpeaks[1]])

20
10
[¢]
o
o 0
]
>
[@]
(@]
_10 -
_20 -
_30 —
T T T T
79627800 79627900 79628000 79628100
Position

> coverageplot (peaks.pos[wpeaks[2]], peaks.negl[wpeaks[2]])

=
o
|

1 1 1 1 1 1
30
20

0

Coverage

T T T T T T
126356200 126356250 126356300 126356350 126356400 126356450

Position

> coverageplot (peaks.pos[wpeaks[3]], peaks.negl[wpeaks[3]])

40 =
20 -
()
()]
©
(5}
>
o
o
0
.
T T T T T T T
77875700 77875750 77875800 77875850 77875900 77875950 77876000

Position

> coverageplot (peaks.pos [wpeaks([4]], peaks.negl[wpeaks[4]])

20 -
Q
(o))
g
g
2 0
O
20 —

T T T T T T
80750550 80750600 80750650 80750700 80750750 80750800

Position

Exercise 4
How does fragment extension length affect this picture? Change the amount of extension from 150 to 100
and 200, and reproduce these figures. What differences do you see?

10

It is of course also possible to plot the raw strand-level alignment locations as well.

> subdata <-

+ subset (do.call (make.groups, cstest$ctcf$chri0),

+ data > start(peaks) [wpeaks[1]] - 200 & data < end(peaks) [wpeaks[1]] + 200)
> densityplot(~data, data = subdata, groups = which, auto.key = TRUE)

+
| | | |
0.005 —| =
0.004 —| =

P

£ 0.003 =

C

[¢]

O 0.002 L
0.001 —| =
0.000 o o 0 08000® o o®® §° 000 W & PP BoafC * D@ ® o -

T T T T
79627600 79627800 79628000 79628200
data

> stripplot(which ~ data, data = subdata, jitter = TRUE)

+ ° ° °%® ® o cooo; o %ac °e 53000 %o
_ R o R L e Doo ooo °°° s odﬂ & oo % o° cc
T T T T T
79627700 79627800 79627900 79628000 79628100
data

Exercise 5
Can you visually locate the likely position of TF binding sites?

11

Differential peaks

One common question is: which peaks are different in two samples? One simple strategy is the following:
combine data from the two samples, find peaks in the combined data, and compare the contributions of
the two samples.

> extRanges <- gdapply(cstest, extendReads, seqlen = 150)
> peakSummary <-

+ diffPeakSummary (extRanges$gfp, extRanges$ctcf,
+ chrom.lens = mouse.chromlens, lower = 10)
> xyplot (loglp(sums2) ~ loglp(sumsl) | chromosome, data = peakSummary,
+ type = c("p", "g"), alpha = 0.5, aspect = "iso", pch = ".", cex = 3)
0 2 4 6 8
| | | | | | | | | | | | | | |
chrl0 chrll chrl2
10 =
4 s iRl ‘J"l
8 - o ol T A -
7] o Ry
= 7 o
\8/ 6 — ‘_‘f’ P * |
o - rs ¥ ;
! ¥ - L
g 4- g LA < -
2 — —
T T T T T T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
loglp(sumsl)

In this case, the control sample has very little signal.

Version information
> sessionInfo()

R version 2.10.0 Under development (unstable) (2009-07-03 r48894)
x86_64-unknown-linux-gnu

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

12

other attached packages:
[1] BSgenome.Mmusculus.UCSC.mm9_1.3.11 GenomicFeatures_0.0.5

[3] chipseq_0.1.23 ShortRead_1.3.16
[6] lattice_0.17-25 BSgenome_1.13.6

[7] Biostrings_2.13.21 IRanges_1.3.26

loaded via a namespace (and not attached):
[1] Biobase_2.5.4 grid_2.10.0 hwriter_1.1 tools_2.10.0

13

