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Introduction

In this lab we will cover some of the basic principles of machine learning. We will use the
ALL data set and will work on two different problems. For one of them it is relatively
easy to classify the samples and for the other, it is harder.

Fundamental to the task of machine learning is selecting a distance. In many cases it
is more important than the choice of classification method (you might want to try some
different choices for distances in the problems below and see what changes).

Feature selection is also an important problem. We suggest that you take a simple
approach and use genes which are differentially expressed between the phenotypes under
study. In some cases this can be improved on, but in general it seems to be a reasonable
approach.

In most cases we have no a priori reason to believe that any one gene should get more
weighting than another. If that is true, then we must standardize the genes before
carrying out machine learning. If we do not standardize them (for each gene, subtract
some measure of the center and divide by some measure of the variability across samples),
then many machine learning algorithms (and distances) will treat different genes quite
differently, typically depending on their observed mean expression level and its variation
across samples. So, standardization is recommended, however, it raises an important
prerequisite:

If you decide to standardize your expression data you will need to perform some sort of
non-specific filtering to remove genes that have low variability, for example because they
are not expressed, or because the microarray experiment did not work for these genes due
to low labeling or hybridization efficiencies. The reason you must do this is that we do
not want to amplify what is essentially “noise” by the operation of standardization.
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Machine Learning Check List

1. Filter out features (genes) which show little variation across samples, or which are
known not to be of interest. If appropriate transform features to all be on the same
scale.

2. Select a distance measure. What does it mean to be close?

3. Feature selection: select features to be used for machine learning.

4. Select the algorithm: which of the very many machine learning algorithms do you
want to use?

5. Assess the performance of your classifier. Typically this is done using cross-validation.

Non-specific filtering

First load the Biobase and ALL packages and then use the data function to load the ALL

data. Since the data in ALL are large and phenotypically quite diverse, we reduce the cases
down to a reasonable two group comparison. We will return to a multigroup comparison
later.

> library("Biobase")

> library("ALL")

> data(ALL, package = "ALL")

> ALLBs = ALL[, grep("^B", as.character(ALL$BT))]

> ALLBCRNEG = ALLBs[, ALLBs$mol == "BCR/ABL" | ALLBs$mol == "NEG"]

> ALLBCRNEG$mol.biol = factor(ALLBCRNEG$mol.biol)

> numBN = length(ALLBCRNEG$mol.biol)

> ALLBCRALL1 = ALLBs[, ALLBs$mol == "BCR/ABL" | ALLBs$mol == "ALL1/AF4"]

> ALLBCRALL1$mol.biol = factor(ALLBCRALL1$mol.biol)

> numBA = length(ALLBCRALL1$mol.biol)

Question 1
How many samples are in the BCR/ABL-NEG subset? How many are in the BCR/ABL-
ALL1/AF4 subset?

You now have two data sets to work with. Most of the code for carrying out machine
learning can easily be applied to either data set. The comparison of BCR/ABL to NEG is
difficult, and the error rates are typically quite high. On the other hand, the comparison
of BCR/ABL to ALL1/AF4 is rather easy, and the error rates should be small.

In this lab we will first select some genes to use as features for the rest of the lab. Next
we will use those features to do some machine learning, in particular we will make use
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of cross-validation to select parameters of the classification model and see how to assess
the model itself. Many of the details can be explored in much more detail, and some
suggestions are made.

Preprocessing

First carry out non-specific filtering, as described in the Differential Expression Lab. You
should remove those genes that you think are not sufficiently informative to be considered
further. One recommendation is to filter on variability.

Here, we take the simplistic approach of using the 75th percentile of the interquartile
range (IQR) as the cut-off point. We do this because we want to have relatively few
genes to deal with so the examples will run quickly on laptops. Finding the IQR can be
done either by applying the IQR function over all rows of the exprSet , or by manually
computing quantiles using the very fast function rowQ (there are some slight, hardly
relevant numerical differences).

> lowQ = rowQ(ALLBCRNEG, floor(0.25 * numBN))

> upQ = rowQ(ALLBCRNEG, ceiling(0.75 * numBN))

> iqrs = upQ - lowQ

> giqr = iqrs > quantile(iqrs, probs = 0.75)

> sum(giqr)

[1] 3156

> BNsub = ALLBCRNEG[giqr, ]

Exercise 1
What kind of object is BNsub?

Selecting a Distance

To some extent your choices here are not always that flexible because many machine
learning algorithms have the distance measure fixed in advance.

There are a number of different tools that you can use in R to compute the distance
between objects. They include the function dist, the function daisy from the cluster
package (Kaufman and Rousseeuw, 1990), and the functions in the bioDist package. The
bioDist package is discussed in Chapter 12 of Gentleman et al. (2005). Some ideas on
visualizing distance measures can be found in Section 10.5 of that same reference.
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Exercise 2
What distance measures are availble in the bioDist package? Hint: load the package and
then look at the loaded functions, or read the vignette.

To make the computations easier, we take the first sixty genes from the BNsub data set
and use those for the exercises in this section. The dist function computes the distance
between rows of an input matrix. Since we want the distances between samples, we
transpose the matrix using the function t. The return value is an instance of the dist
class and you should read the manual page carefully to find out more about this class.
Since this class is not supported by some R functions we will want to use, we also convert
it to a matrix.

> dSub <- BNsub[1:60, ]

> eucD <- dist(t(exprs(dSub)))

> eucD@Size

[1] 79

> eucM <- as.matrix(eucD)

We can use this as an input to various clustering algorithms and plot the outputs. But
for now we want to visualize it as a heatmap.

> library("RColorBrewer")

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> heatmap(eucM, sym = TRUE, col = hmcol, distfun = function(x) as.dist(x))

Question 2
What do you notice most about the heatmap?

Since our goal is to introduce you to a number of different distances and to help you
understand their effects, visualization is important. We will also create a few helper
functions to make it easier to carry out certain transformations and calculations. First
we define a function to find the closest neighbor of a particular observation given a
distance matrix and a label specifying an observation in the distance matrix.

> closestN = function(distM, label) {

+ loc = match(label, row.names(distM))

+ names(which.min(distM[label, -loc]))

+ }

> closestN(eucM, "03002")

4



43
00

4
27

00
4

43
01

2
12

00
6

24
01

0
28

00
1

27
00

3
28

04
2

28
02

3
28

01
9

04
01

0
30

00
1

28
02

1
28

03
5

28
03

7
28

04
7

28
00

6
28

03
6

28
04

3
28

04
4

28
02

4
24

01
8

36
00

2
22

00
9

28
00

5
28

03
1

28
00

7
43

00
7

08
01

2
49

00
6

04
01

6
04

00
8

15
00

1
68

00
3

43
00

1
16

00
9

01
01

0
24

01
7

64
00

2
20

00
2

68
00

1
25

00
6

33
00

5
48

00
1

09
00

8
15

00
5

62
00

1
12

02
6

14
01

6
37

01
3

12
01

2
57

00
1

31
01

1
22

01
0

62
00

2
24

02
2

62
00

3
26

00
3

09
01

7
11

00
5

08
01

1
12

01
9

24
01

1
22

01
3

03
00

2
24

00
8

84
00

4
08

00
1

04
00

7
25

00
3

24
00

1
08

02
4

22
01

1
06

00
2

64
00

1
65

00
5

26
00

1
01

00
5

12
00

7

12007010052600165005640010600222011080242400125003040070800184004240080300222013240111201908011110050901726003620032402262002220103101157001120123701314016120266200115005090084800133005250066800120002640022401701010160094300168003150010400804016490060801243007280072803128005220093600224018280242804428043280362800628047280372803528021300010401028019280232804227003280012401012006430122700443004

Figure 1: A heatmap of the between-sample distances.
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[1] "22013"

Exercise 3
Compute the distance between the samples using the MIdist function from the bioDist
package. What distance does this function compute? Which sample is closest to "03002"

in this distance?

> library("bioDist")

> cD = MIdist(t(exprs(dSub)))

> cM = as.matrix(cD)

> closestN(cM, "03002")

[1] "84004"

Feature Selection

Now we are ready to select features. Perhaps the easiest approach to feature selection is
to use a t-test.

> library("genefilter")

> tt1 = rowttests(BNsub, "mol.biol")

> numToSel <- 50

Using the t-test statistics, we will select the top 50 genes to use for the machine learning
questions below.

> tt1ord = order(abs(tt1$statistic), decreasing = TRUE)

> top50 = tt1ord[1:numToSel]

> BNsub1 = BNsub[top50, ]

Exercise 4
What is the value of the largest t-statistic? Which gene does it correspond to? What is
the corresponding p-value?

Next we will standardize all gene expression values. As discussed above, it is important
that non-specific filtering has already been applied, otherwise the standardization step
will add unnecessary noise to the data.

Since we will compute IQR by row many times in the next code chunk, we first write a
helper function to compute this for us. The only tricky issue is that we want our helper
to be able to handle instances of the exprSet or matrix classes.
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> rowIQRs = function(eSet) {

+ if (is(eSet, "exprSet"))

+ numSamp = length(sampleNames(eSet))

+ else numSamp = ncol(eSet)

+ lowQ = rowQ(eSet, floor(0.25 * numSamp))

+ upQ = rowQ(eSet, ceiling(0.75 * numSamp))

+ upQ - lowQ

+ }

Exercise 5
Use the rowIQRs function to repeat the IQR calculation that was carried out previously.
Do you get the same values?

Now we are ready to standardize all genes, which we will do by subtracting the row
medians and dividing by the row IQRs. Again, we write a helper function, standardize,
that will do most of the work.

> standardize = function(x) (x - rowMedians(x))/rowIQRs(x)

> exprs(BNsub1) = standardize(exprs(BNsub1))

Take a quick look at the data to verify that everything went as intended.

> library("RColorBrewer")

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> spcol <- ifelse(BNsub1$mol.biol == "BCR/ABL", "goldenrod", "skyblue")

> heatmap(exprs(BNsub1), col = hmcol, ColSideColors = spcol)

Exercise 6
What do we expect to see in the heatmap? Do we see that?

Exercise 7
Optional: Repeat the calculations to this point using ALLBCRALL1.

Exercise 8
Optional: Use either the ROC package or the edd package to select genes for the machine
learning portion. Alternatively you could use genes in a GO category or a KEGG pathway
(but you still want to use only those that passed your non-specific filter).

Make sure that you standardize the gene expression data once you have selected your set
of interesting genes. This standardization insures that all genes have equal weighting in
the machine learning exercises below.
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Machine Learning

There are many different machine learning algorithms available in R. You may use which
ever one you would like, we suggest using k nearest neighbors for this lab since it is
conceptually simple and can be used to demonstrate most of the general principles.

We also recommend that you use the MLInterfaces package. The reason for this suggestion
is that this package provides a uniform set of calling parameters and a uniform return
value which will make it easier to switch your code from one machine learning algorithm
to another. This package does not implement any of the machine learning algorithms,
it just provides a set of interfaces and in general the name of the function or method
remains the same, but a B is post-pended, so we will use knnB and knn.cvB.

Exercise 9
Use the knn method to estimate the prediction error rate. If you are ambitious you could
try to do this with something more sophisticated than leave-one-out cross-validation.

Some example code is given below, but you will need to modify it to answer the questions
that have been posed.

> library("class")

> a1 = knn.cv(t(exprs(BNsub1)), BNsub1$mol.biol)

> ctab1 = table(a1, BNsub1$mol.biol)

> errrate = (ctab1["BCR/ABL", "NEG"] + ctab1["NEG", "BCR/ABL"])/sum(ctab1)

Exercise 10
Use cross-validation to estimate k, the number of nearest neighbors to use. That is, for
each of a number of values of k, estimate the cross-validation error, and then select k as
that value which yields the smallest error rate.

Again, the code below is intended solely to get you started, it does not represent a
complete solution to the question, you must modify it.

> alist = NULL

> for (i in 1:4) alist[[i]] = knn.cv(t(exprs(BNsub1)), BNsub1$mol.biol,

+ k = i)

> sapply(alist, function(x) {

+ ct1 = table(x, BNsub1$mol.biol)

+ (ct1["BCR/ABL", "NEG"] + ct1["NEG", "BCR/ABL"])/sum(ct1)

+ })

[1] 0.05063291 0.05063291 0.07594937 0.08860759
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Exercise 11
Optional: Suppose that instead of Euclidean distance you wanted to use some other
metric, such as 1-correlation. How might you achieve that?

Exercise 12
How might you define outlier and doubt classes? Are there any outliers, or hard to classify
samples?

MLInterfaces

We now repeat some of the previous calculations using the MLInterfaces package. Load
the library and explore its documentation.

> library("MLInterfaces")

Exercise 13
Use library(help=MLInterfaces), ?"MLearn-methods" and openVignette() to ex-
plore the package.

Exercise 14
Try to follow the example at the bottom of the MLearn-methods help page. Depending
on the packages installed on your computer, you might have luck with the command
example("MLearn-methods").

A key function is MLearn. MLearn is designed for easy use with expression data. The first
argument is the name of a variable containing a priori classification information, e.g.,
mol.biol. The second argument is an instance of the exprSet class, the third argument
the name of the machine learning algorithm, and the fourth argument the individuals to
be used for training. So to use the k nearest neighbors machine learning algorithm using
the first 50 samples for training, do the following:

> knnResult <- MLearn("mol.biol", BNsub1, "knn", 1:50)

> knnResult

MLOutput instance, method= knn

Call:

knnB(exprObj = data, classifLab = formula, trainInd = as.integer(trainInd))

predicted class distribution:

BCR/ABL NEG

14 15

summary of class assignment quality scores:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1
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Exercise 15
Interpret each input to MLearn.

a) What would you do to change the training set?

b) To use every second sample as the training set?

c) To use all but the last sample for training?

d) To use a training set of 50 individuals, chosen at random from the samples in BNsub1

(hint: use the sample function).

Exercise 16
Interpret the output of MLearn. In particular, look at the predicted class distribution
and check that the right number of samples are being used for testing.

The confusion matrix compares the known classification of the testing set with the pre-
dicted classification based on the tuned machine learning algorithm.

> confuMat(knnResult)

predicted

given BCR/ABL NEG

BCR/ABL 12 0

NEG 2 15

Exercise 17
Interpret the confusion matrix. How well do you think the algorithm is doing? What
might you do to improve the classification?

Exercise 18
What other information can you extract from the fitted model?

Cross-validation

Cross-validation is often used to assess the prediction error of supervised machine learning.
In order to get an accurate assessment it is important that all steps that can affect the
outcome are included in the cross-validation process.

In particular, the selection of features to use in the machine learning algorithm must be
included within the cross-validation step.
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The MLInterfaces package has a method for performing cross-validation. The method
is called xval. Ponder its help page (?xval) and think about how you might perform
cross-validation of BNsub1.

From the xval help page, it looks like we should be able to perform cross validation with
a command like:

> knnXval <- xval(BNsub1, "mol.biol", knnB, xvalMethod = "LOO")

The first two arguments should be familiar. The third argument, knnB, specifies that we
will use the knn function. The final argument, xvalMethod , indicates the method that
will be used for cross-validation. The cryptic ”LOO” stands for leave-one-out.

Exercise 19
Describe in words the operation that xval is performing.

xval for leave-one-out cross-validation returns a list, with each element in the list being
the result of a single cross validation.

Exercise 20
What is the length of knnXval? Why?

Exercise 21
Interpret the meaning of each element in knnXval.

Exercise 22
What information is provided by the following command? How would you use this to
assess the performance of this machine learning algorithm?

> table(given = BNsub1$mol.biol, predicted = knnXval)

predicted

given BCR/ABL NEG

BCR/ABL 35 2

NEG 2 40

Now, let’s see what happens when we include feature selection in the cross-validation
algorithm. It is important that feature selection be applied separately in each cross
validation, with different features selected depending on individuals present in the training
set. xval allows us to do this by providing a function fsFun to rank features, and an
argument fsNum to indicate how many features to retain.
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The function fsFun must be designed to accept two arguments. These are a ‘feature
matrix’ (with rows representing objects and columns features), and a vector of classifi-
cation labels (with length equal to the number of objects in the feature matrix). fsFun

returns a vector of scores, one for each object. Here is a feature selection function based
on t-statistics between classifier groups:

> t.fun <- function(data, fac) {

+ (abs(rowttests(data, data[[fac]], tstatOnly = FALSE)$statistic))

+ }

The following implements cross-validation with our feature selection function, correctly
applying the function to each cross-validation.

> BNx = BNsub

> exprs(BNx) = standardize(exprs(BNx))

> lk3f <- xval(BNx, "mol.biol", knnB, xvalMethod = "LOO", 0:0,

+ fsFun = t.fun, fsNum = 50)

> table(given = BNx$mol.biol, predicted = lk3f$out)

predicted

given BCR/ABL NEG

BCR/ABL 33 4

NEG 4 38

Exercise 23
In the example above we used 50 features for each of the cross-validations. What happens
if we use twice as many? What happens if we only use 5? How would you interpret these
results?
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> lk3f1 <- xval(BNx, "mol.biol", knnB, xvalMethod = "LOO", 0:0,

+ fsFun = t.fun, fsNum = 100)

> table(given = BNx$mol.biol, predicted = lk3f1$out)

predicted

given BCR/ABL NEG

BCR/ABL 36 1

NEG 6 36

> lk3f2 <- xval(BNx, "mol.biol", knnB, xvalMethod = "LOO", 0:0,

+ fsFun = t.fun, fsNum = 5)

> table(given = BNx$mol.biol, predicted = lk3f2$out)

predicted

given BCR/ABL NEG

BCR/ABL 30 7

NEG 10 32

> table(lk3f2$fs.memory)

183 184 196 539 1578 2368 2500 2573

79 79 79 1 1 79 3 74

> varsused = sort(unique(lk3f2$fs.memory))

> heatmap(exprs(BNsub)[varsused, ], ColSide = ifelse(BNx$mol ==

+ "NEG", "skyblue", "salmon"), col = topo.colors(255), keep.dendro = TRUE)

> library("hgu95av2")

> unlist(mget(geneNames(BNsub)[varsused], hgu95av2SYMBOL))

1635_at 1636_g_at 1674_at 32434_at 37015_at 39730_at 40202_at 40504_at

"ABL1" "ABL1" "YES1" "MARCKS" "ALDH1A1" "ABL1" "KLF9" "PON2"

Exercise 24
Optional: Hard Repeat the exercise above using 10 fold cross-validation. To do this
you will need to divide the data into 10 groups and use the group argument to xval.

Next, use xval with a different classifier, such as support vector machines (the function
is svmB).

The version numbers of R and packages loaded for generating this document are:

Version 2.3.1 Patched (2006-06-08 r38315)

powerpc-apple-darwin8.6.0

attached base packages:

[1] "splines" "tools" "methods" "stats" "graphics" "grDevices"
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[7] "utils" "datasets" "base"

other attached packages:

hgu95av2 MLInterfaces class genefilter survival bioDist

"1.12.0" "1.4.0" "7.2-27.1" "1.10.1" "2.26" "1.4.0"

RColorBrewer ALL Biobase

"0.2-3" "1.2.1" "1.10.0"
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